1
|
Bansal L, Mehra S. Mixed Type Atypical Rabies Encephalitis: A Case Report. Indian Pediatr 2025; 62:464-467. [PMID: 40163230 DOI: 10.1007/s13312-025-00043-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/05/2025] [Indexed: 04/02/2025]
Affiliation(s)
- Lukshay Bansal
- Department of Radiodiagnosis, Atal Bihari Vajpayee Institute of Medical Sciences and Dr. Ram Manohar Lohia Hospital, New Delhi, 110001, India.
| | - Shibani Mehra
- Department of Radiodiagnosis, Atal Bihari Vajpayee Institute of Medical Sciences and Dr. Ram Manohar Lohia Hospital, New Delhi, 110001, India
| |
Collapse
|
2
|
Ghosh S, Das Sarma J. The age-dependent neuroglial interaction with peripheral immune cells in coronavirus-induced neuroinflammation with a special emphasis on COVID-19. Biogerontology 2025; 26:111. [PMID: 40380990 DOI: 10.1007/s10522-025-10252-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 05/02/2025] [Indexed: 05/19/2025]
Abstract
Neurodegenerative diseases are chronic progressive disorders that impair memory, cognition, and motor functions, leading to conditions such as dementia, muscle weakness, and speech difficulties. Aging disrupts the stringent balance between pro- and anti-inflammatory cytokines, increasing neuroinflammation, which contributes to neurodegenerative diseases. The aging brain is particularly vulnerable to infections due to a weakened and compromised immune response and impaired integrity of the blood-brain barrier, allowing pathogens like viruses to trigger neurodegeneration. Coronaviruses have been linked to both acute and long-term neurological complications, including cognitive impairments, psychiatric disorders, and neuroinflammation. The virus can induce a cytokine storm, damaging the central nervous system (CNS) and worsening existing neurological conditions. Though its exact mechanism of neuroinvasion remains elusive, evidence suggests it disrupts the blood-brain barrier and triggers immune dysregulation, leading to persistent neurological sequelae in elderly individuals. This review aims to understand the interaction between the peripheral immune system and CNS glial cells in aged individuals, which is imperative in addressing coronavirus-induced neuroinflammation and concomitant neurodegeneration.
Collapse
Affiliation(s)
- Satavisha Ghosh
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
| | - Jayasri Das Sarma
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India.
- Department of Ophthalmology, University of Pennsylvania, 19104, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Akinsulie OC, Adebowale OO, Adesola RO, Banwo OG, Idris I, Ogunleye SC, Fasakin O, Bakre A, Oladapo IP, Aliyu VA, Waniwa EO, Fasiku O, Joshi M, Olorunshola M. Holistic application of the one health approach in the prevention and control of rabies: plausible steps towards achieving the 2030 vision in Africa. ONE HEALTH OUTLOOK 2024; 6:22. [PMID: 39261974 PMCID: PMC11389241 DOI: 10.1186/s42522-024-00108-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 06/07/2024] [Indexed: 09/13/2024]
Abstract
Rabies remains a significant public health challenge in Africa, primarily burdening impoverished rural communities, with children and young adults being the most vulnerable. Achieving complete elimination in the continent by 2030 requires a coordinated effort hinged on the One Health concept, external support from international organizations like the World Health Organization (WHO) and the national governments of endemic countries. Here, we reviewed the various socio-economic and ecological factors influencing the spatial distribution and molecular epidemiology of the disease. To mitigate the transmission of rabies on a global scale, and specifically in Africa, we proposed a multi-pronged approach including enhanced access to healthcare resources, cultural sensitization and massive health promotion with efforts geared towards promoting responsible dog and pet ownership and population management, effective monitoring, and mitigation of environmental changes.
Collapse
Affiliation(s)
- Olalekan Chris Akinsulie
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA.
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria.
| | | | - Ridwan Olamilekan Adesola
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olamilekan Gabriel Banwo
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ibrahim Idris
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Usman Danfodiyo University, Sokoto, Nigeria
| | - Seto Charles Ogunleye
- Comparative Biomedical Sciences, Mississippi State University, Mississippi State, Starkville, MS, 39760, USA
| | | | - Adetolase Bakre
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ifeoluwa Peace Oladapo
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Victor Ayodele Aliyu
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Emily Onesai Waniwa
- Central Veterinary Laboratory, Division of Veterinary Technical Services, Ministry of Lands, Agriculture, Water and Rural Resettlement, Harare, Zimbabwe
| | - Oluwatobi Fasiku
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Melina Joshi
- Center for Molecular Dynamics Nepal, Kathmandu, Nepal.
| | - Mercy Olorunshola
- Department of Biological Sciences, State University of New York at Binghamton, Binghamton, NY, USA
| |
Collapse
|
4
|
Schlein S, Park A, Sethi S. Animal Bites and Attacks. Emerg Med Clin North Am 2024; 42:639-652. [PMID: 38925779 DOI: 10.1016/j.emc.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
This text serves to familiarize readers with animal bites and attacks. Topics include appropriate management of animal bite wounds, postexposure prophylaxis for possible rabies exposures, and unique infectious diseases transmitted through animal vectors. Large mammal attacks are discussed, in addition to the management of smaller animal attacks and exposures.
Collapse
Affiliation(s)
- Sarah Schlein
- Larner College of Medicine, University of Vermont, 111 Colchester Avenue, Burlington, VT 05401, USA.
| | - Andrew Park
- Larner College of Medicine, University of Vermont, 111 Colchester Avenue, Burlington, VT 05401, USA
| | - Sameer Sethi
- Larner College of Medicine, University of Vermont, 111 Colchester Avenue, Burlington, VT 05401, USA
| |
Collapse
|
5
|
Lu J, Bai Y, Wang X, Huang P, Liu M, Wang R, Zhang H, Wang H, Li Y. Sensitive, Semiquantitative, and Portable Nucleic Acid Detection of Rabies Virus Using a Personal Glucose Meter. ACS OMEGA 2024; 9:26058-26065. [PMID: 38911722 PMCID: PMC11191140 DOI: 10.1021/acsomega.4c01352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024]
Abstract
Rabies is a zoonotic infection with the potential to infect all mammals and poses a significant threat to mortality. Although enzyme-linked immunosorbent tests and real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR) have been established for rabies virus (RABV) detection, they require skilled staff. Here, we introduce a personal glucose meter (PGM)-based nucleic acid (NA-PGM) detection method to diagnose RABV. This method ensures sensitive and convenient RABV diagnosis through hybridization of reverse transcription-recombinase aided amplification (RT-RAA) amplicons with probes labeled with sucrose-converting enzymes, reaching a detection level as low as 6.3 copies/μL equivalent to 12.26 copies. NA-PGM allows for the differentiation of RABV from other closely related viruses. In addition, NA-PGM showed excellent performance on 65 clinical samples with a 100% accuracy rate compared with the widely adopted RT-qPCR method. Thus, our developed NA-PGM method stands out as sensitive, semiquantitative, and portable for RABV detection, showcasing promise as a versatile platform for a wide range of pathogens.
Collapse
Affiliation(s)
| | | | - Xuejin Wang
- State Key Laboratory for
Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key
Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine,
Jilin University, Changchun 130062, China
| | - Pei Huang
- State Key Laboratory for
Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key
Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine,
Jilin University, Changchun 130062, China
| | - Meihui Liu
- State Key Laboratory for
Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key
Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine,
Jilin University, Changchun 130062, China
| | - Ruijia Wang
- State Key Laboratory for
Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key
Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine,
Jilin University, Changchun 130062, China
| | - Haili Zhang
- State Key Laboratory for
Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key
Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine,
Jilin University, Changchun 130062, China
| | - Hualei Wang
- State Key Laboratory for
Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key
Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine,
Jilin University, Changchun 130062, China
| | - Yuanyuan Li
- State Key Laboratory for
Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key
Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine,
Jilin University, Changchun 130062, China
| |
Collapse
|
6
|
Liu Y, Wang Z, Liu X, Yang Q, Tian Z, Liu J. Serum mir-142-3p release in children with viral encephalitis and its relationship with nerve injury and inflammatory response. J Neurovirol 2024; 30:267-273. [PMID: 38861222 DOI: 10.1007/s13365-024-01214-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/09/2024] [Accepted: 05/20/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Viral encephalitis (VE) is a common infectious disease of the central nervous system in children. Children with severe disease may have progressive neurological damage and even lead to death. AIMS To assess the serum miR-142-3p levels in children with VE and the correlation between miR-142-3p and the severity and prognosis of VE. Besides, its relationship with nerve injury and inflammatory response was assessed. METHODS Children with VE were regarded as a case group and healthy children served as control. The content of serum miR-142-3p was determined using real-time quantitative PCR. The risk factors associated with severity and prognosis of cases were evaluated using logistic analysis. The discrepancy in miR-142-3p levels, nerve injury-related indicators, and inflammatory cytokines were contrasted among groups. The ROC curve was conducted to assess the diagnostic performance of serum miR-142-3p in predicting prognosis of children with VE. RESULTS The altered expression of miR-142-3p in serum of children with VE was enhanced in contrast to healthy control. Serum nerve injury indicators MBP, β-EP, and NSE levels and serum inflammatory cytokines IL-6, IL-18, and IFN-γ were high in children with VE in contrast to healthy control, and had positive relevance with serum miR-142-3p. Besides, serum miR-142-3p was a risk factor associated with the severity and prognosis of children with VE. Serum miR-142-3p had diagnostic performance in predicting the prognosis of children with VE. CONCLUSION Serum miR-142-3p content is high in children with VE and maybe a diagnosis marker for predicting prognosis. The specific miR-142-3p expression may be directly related to the severity of nerve injury and inflammatory response for VE.
Collapse
Affiliation(s)
- Yanjiang Liu
- Department of Pediatric Neurological Rehabilitation, Children's Hospital of Shanxi, Women Health Center of Shanxi, No. 13, Xinmin North Street, Xinghualing District, Taiyuan City, 030000, Shanxi Province, China.
| | - ZhenFang Wang
- Department of Pediatric Neurological Rehabilitation, Children's Hospital of Shanxi, Women Health Center of Shanxi, No. 13, Xinmin North Street, Xinghualing District, Taiyuan City, 030000, Shanxi Province, China
| | - Xiaoli Liu
- Department of Pediatric Neurological Rehabilitation, Children's Hospital of Shanxi, Women Health Center of Shanxi, No. 13, Xinmin North Street, Xinghualing District, Taiyuan City, 030000, Shanxi Province, China
| | - Qinghua Yang
- Department of Pediatric Neurological Rehabilitation, Children's Hospital of Shanxi, Women Health Center of Shanxi, No. 13, Xinmin North Street, Xinghualing District, Taiyuan City, 030000, Shanxi Province, China
| | - Zhuoling Tian
- Department of Pediatric Neurological Rehabilitation, Children's Hospital of Shanxi, Women Health Center of Shanxi, No. 13, Xinmin North Street, Xinghualing District, Taiyuan City, 030000, Shanxi Province, China
| | - Junmei Liu
- Department of Pediatric Neurological Rehabilitation, Children's Hospital of Shanxi, Women Health Center of Shanxi, No. 13, Xinmin North Street, Xinghualing District, Taiyuan City, 030000, Shanxi Province, China
| |
Collapse
|
7
|
Ashwini MA, Pattanaik A, Mani RS. Recent updates on laboratory diagnosis of rabies. Indian J Med Res 2024; 159:48-61. [PMID: 38376376 PMCID: PMC10954107 DOI: 10.4103/ijmr.ijmr_131_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Indexed: 02/21/2024] Open
Abstract
Rabies is a lethal viral disease transmitted through the bite of rabid animals. India has a high burden of rabies, contributing to a significant proportion of the global deaths. However, under-reporting of the disease is prevalent due to lack of laboratory confirmation. Laboratory diagnosis of rabies plays a crucial role in differentiating the disease from clinical mimics, initiation of appropriate care, implementing infection control measures and informing disease surveillance. This review provides an overview of the recent advancements in laboratory diagnosis of rabies, aimed at updating physicians involved in diagnosis and management of rabies cases in India.
Collapse
Affiliation(s)
- M. A. Ashwini
- Department of Neurovirology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Amrita Pattanaik
- Department of Neurovirology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
- Department of Virus Research, Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, India
| | - Reeta S. Mani
- Department of Neurovirology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| |
Collapse
|
8
|
Khairullah AR, Kurniawan SC, Hasib A, Silaen OSM, Widodo A, Effendi MH, Ramandinianto SC, Moses IB, Riwu KHP, Yanestria SM. Tracking lethal threat: in-depth review of rabies. Open Vet J 2023; 13:1385-1399. [PMID: 38107233 PMCID: PMC10725282 DOI: 10.5455/ovj.2023.v13.i11.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/10/2023] [Indexed: 12/19/2023] Open
Abstract
An infectious disease known as rabies (family Rhabdoviridae, genus Lyssavirus) causes severe damage to mammals' central nervous systems (CNS). This illness has been around for a very long time. The majority of human cases of rabies take place in underdeveloped regions of Africa and Asia. Following viral transmission, the Rhabdovirus enters the peripheral nervous system and proceeds to the CNS, where it targets the encephalon and produces encephalomyelitis. Postbite prophylaxis requires laboratory confirmation of rabies in both people and animals. All warm-blooded animals can transmit the Lyssavirus infection, while the virus can also develop in the cells of cold-blooded animals. In the 21st century, more than 3 billion people are in danger of contracting the rabies virus in more than 100 different nations, resulting in an annual death toll of 50,000-59,000. There are three important elements in handling rabies disease in post exposure prophylaxis (PEP), namely wound care, administration of anti-rabies serum, and anti-rabies vaccine. Social costs include death, lost productivity as a result of early death, illness as a result of vaccination side effects, and the psychological toll that exposure to these deadly diseases has on people. Humans are most frequently exposed to canine rabies, especially youngsters and the poor, and there are few resources available to treat or prevent exposure, making prevention of human rabies challenging.
Collapse
Affiliation(s)
- Aswin Rafif Khairullah
- Division of Animal Husbandry, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Shendy Canadya Kurniawan
- Master Program of Animal Sciences, Department of Animal Sciences, Specialisation in Molecule, Cell and Organ Functioning, Wageningen University and Research, Wageningen, Netherlands
| | - Abdullah Hasib
- School of Agriculture and Food Sustainability, The University of Queensland, Gatton, Australia
| | - Otto Sahat Martua Silaen
- Doctoral Program in Biomedical Science, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Agus Widodo
- Department of Health, Faculty of Vocational Studies, Universitas Airlangga, Surabaya, Indonesia
| | - Mustofa Helmi Effendi
- Division of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | | - Ikechukwu Benjamin Moses
- Department of Applied Microbiology, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | - Katty Hendriana Priscilia Riwu
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Pendidikan Mandalika, Mataram, Indonesia
| | | |
Collapse
|
9
|
Guo Y, Mills DJ, Lau CL, Mills C, Furuya‐Kanamori L. Immune response after rabies pre-exposure prophylaxis and a booster dose in Australian bat carers. Zoonoses Public Health 2023; 70:465-472. [PMID: 37170441 PMCID: PMC10952468 DOI: 10.1111/zph.13048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/31/2023] [Accepted: 04/29/2023] [Indexed: 05/13/2023]
Abstract
Periodic vaccination against rabies is essential for individuals at continuing risk of rabies exposure. There is limited evidence on long-term immunogenicity after a 3-dose intramuscular (3IM) pre-exposure prophylaxis (PrEP) and single IM booster dose, thus current guideline recommendations differ in the interval for serology tests following PrEP and boosters. This study investigated post-PrEP and post-booster persistence of antibodies in Australian bat carers. Bat carers who received 3IM PrEP/booster doses and had post-PrEP/booster serology test results were included. The proportion of antibody-negative (<0.5 EU/mL) individuals after PrEP/booster dose were examined. Three hundred and five participants (65.6% females, median age at PrEP 43.1 years) were included. The proportion who were antibody-negative varied depending on the time between 3IM PrEP and the serology test: 8.0% <1 year, 29.8% 1-2 years, 21.2% 2-3 years and 7.7% >3 years. Ninety-one participants receiving booster doses were further assessed. Only one participant was antibody-negative at >3 years after receiving one IM booster dose. Our findings support that a serology test should be performed 1 year after 3IM PrEP, followed by first booster if required. Rabies antibodies persist for many years after receiving the booster doses. The interval between subsequent serology tests and the first booster dose should be no longer than 3 years. Future studies are required to provide more insight into the most appropriate timing of subsequent boosters.
Collapse
Affiliation(s)
- Yihan Guo
- School of Medicine, Faculty of MedicineThe University of QueenslandHerstonAustralia
| | - Deborah J. Mills
- Dr Deb The Travel DoctorTravel Medicine AllianceBrisbaneAustralia
| | - Colleen L. Lau
- Dr Deb The Travel DoctorTravel Medicine AllianceBrisbaneAustralia
- School of Public Health, Faculty of MedicineThe University of QueenslandHerstonAustralia
| | - Christine Mills
- Dr Deb The Travel DoctorTravel Medicine AllianceBrisbaneAustralia
| | - Luis Furuya‐Kanamori
- School of Public Health, Faculty of MedicineThe University of QueenslandHerstonAustralia
| |
Collapse
|
10
|
Liu Y, Mo X, Feng Y, Willoughby RE, Weng X, Wang Y, Li X, Gao J, Tian J, Peng J. Metagenomic next-generation sequencing for the etiological diagnosis of rabies virus in cerebrospinal fluid. Front Med (Lausanne) 2023; 10:982290. [PMID: 36844226 PMCID: PMC9947348 DOI: 10.3389/fmed.2023.982290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 01/02/2023] [Indexed: 02/11/2023] Open
Abstract
Background Rabies is a highly fatal disease. Once symptoms develop, death usually occurs within days. Survivors were occasionally reported in the literatures. Ante-mortem diagnosis remains a challenge in most rabies endemic countries. A novel, accurate diagnostic assay is highly desirable. Methods We used metagenomic next-generation sequencing (mNGS) to examine the cerebrospinal fluid (CSF) samples of a 49-year-old patient with rabies and validated the results by TaqMan PCR and RT-PCR/Sanger sequencing. Results Metagenomic next-generation sequencing identified sequence reads uniquely aligned to the rabies virus (RABV). PCR confirmed the presence of the partial RABV N gene in the CSF. Phylogenetic analysis showed that the RABV grouped as an Asian clade, which is the most broadly distributed clade in China. Conclusion Metagenomic next-generation sequencing may be a useful screening tool for the etiological diagnosis of rabies, especially in the absence of timely rabies laboratory testing or in patients with no exposure history.
Collapse
Affiliation(s)
- Yong Liu
- Intensive Care Unit, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Xichao Mo
- Department of Infectious Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Ye Feng
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Rodney E. Willoughby
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, MI, United States
| | - Xing Weng
- Department of Infectious Disease, BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Yuyang Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Xing Li
- Department of Infectious Disease, BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Junling Gao
- Centre of Buddhists Studies, The University of Hong Kong, Hong Kong, Hong Kong SAR, China,Department of Medicine, LKS Medical Faculty, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jinfei Tian
- Intensive Care Unit, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Jie Peng
- Department of Infectious Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong, China,*Correspondence: Jie Peng,
| |
Collapse
|
11
|
Structured Imaging Approach for Viral Encephalitis. Neuroimaging Clin N Am 2023; 33:43-56. [DOI: 10.1016/j.nic.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Schöler L, Le-Trilling VTK, Dittmer U, Fiedler M, Trilling M. Establishment and clinical validation of an in-cell-ELISA-based assay for the rapid quantification of Rabies lyssavirus neutralizing antibodies. PLoS Negl Trop Dis 2022; 16:e0010425. [PMID: 35536867 PMCID: PMC9159627 DOI: 10.1371/journal.pntd.0010425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 06/01/2022] [Accepted: 04/18/2022] [Indexed: 11/19/2022] Open
Abstract
Neutralizing antibodies (nAbs) prevent the entry of viruses into permissive cells. Since nAbs represent correlates of protection against the Rabies lyssavirus, the presence of sufficient nAbs indicates effective vaccination. Accordingly, Rabies lyssavirus-specific nAb titers need to be determined in routine diagnostics to identify individuals being at risk of Rabies lyssavirus infections due to insufficient immunity. The current gold standard for the quantification of Rabies lyssavirus-specific nAbs is the rapid fluorescent focus inhibition test (RFFIT). However, RFFITs are expensive and labor-intensive since multiple microplate wells must be evaluated one-by-one by trained personnel through microscopic inspection, which limits the number of samples that can be processed. To overcome this disadvantage, we established a novel assay for Rabies lyssavirus-specific nAbs relying on an in-cell-ELISA (icELISA)-based neutralization test (icNT). The icNT differs from the RFFIT in the readout phase, and can be automatically quantified in minutes using broadly available microplate readers. During the establishment, icNT parameters such as antibody concentrations, permeabilization procedures, blocking reagents, infectious doses, and the duration of infection were optimized. Afterwards, a dose-dependent detection of Rabies lyssavirus neutralization was demonstrated using the WHO Standard Rabies Immunoglobulin reference. A panel of 200 sera with known RFFIT titers revealed very good sensitivity and specificity of the icNT. Furthermore, the icNT showed very good intra- and inter-assay precision. By recognizing Rabies lyssavirus-specific antigens, the assay can be applied immediately to automatically quantify the concentration of Rabies lyssavirus nAbs in routine diagnostics or for various basic research questions such as screening for antiviral compounds.
Collapse
Affiliation(s)
- Lara Schöler
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Melanie Fiedler
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Mirko Trilling
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
13
|
Harsha PK, Ranganayaki S, Yale G, Dey G, Mangalaparthi KK, Yarlagadda A, Chandrasekhar Sagar BK, Mahadevan A, Srinivas Bharath MM, Mani RS. Mitochondrial Dysfunction in Rabies Virus-Infected Human and Canine Brains. Neurochem Res 2022; 47:1610-1636. [PMID: 35229271 DOI: 10.1007/s11064-022-03556-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 11/26/2022]
Abstract
Rabies is a fatal encephalitis caused by the Rabies lyssavirus (RABV). The presence of minimal neuropathological changes observed in rabies indicates that neuronal dysfunction, rather than neuronal death contributes to the fatal outcome. The role of mitochondrial changes has been suggested as a possible mechanism for neuronal dysfunction in rabies. However, these findings are mostly based on studies that have employed experimental models and laboratory-adapted virus. Studies on brain tissues from naturally infected human and animal hosts are lacking. The current study investigated the role of mitochondrial changes in rabies by morphological, biochemical and proteomic analysis of RABV-infected human and canine brains. Morphological analysis showed minimal inflammation with preserved neuronal and disrupted mitochondrial structure in both human and canine brains. Proteomic analysis revealed involvement of mitochondrial processes (oxidative phosphorylation, cristae formation, homeostasis and transport), synaptic proteins and autophagic pathways, with over-expression of subunits of mitochondrial respiratory complexes. Consistent with these findings, human and canine brains displayed elevated activities of complexes I (p < 0.05), IV (p < 0.05) and V (p < 0.05). However, this did not result in elevated ATP production (p < 0.0001), probably due to lowered mitochondrial membrane potential as noted in RABV-infected cells in culture. These could lead to mitochondrial dysfunction and mitophagy as indicated by expression of FKBP8 (p < 0.05) and PINK1 (p < 0.001)/PARKIN (p > 0.05) and ensuing autophagy, as shown by the status of LCIII (p < 0.05), LAMP1 (p < 0.001) and pertinent ultrastructural markers. We propose that altered mitochondrial bioenergetics and cristae architecture probably induce mitophagy, leading to autophagy and consequent neuronal dysfunction in rabies.
Collapse
Affiliation(s)
- Pulleri Kandi Harsha
- Department of Neurovirology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Sathyanarayanan Ranganayaki
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | | | - Gourav Dey
- Manipal Academy of Higher Education, Manipal, India
- Institute of Bioinformatics, Bangalore, India
| | | | - Anusha Yarlagadda
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - B K Chandrasekhar Sagar
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - M M Srinivas Bharath
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India.
| | - Reeta S Mani
- Department of Neurovirology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India.
| |
Collapse
|
14
|
Farr RJ, Godde N, Cowled C, Sundaramoorthy V, Green D, Stewart C, Bingham J, O'Brien CM, Dearnley M. Machine Learning Identifies Cellular and Exosomal MicroRNA Signatures of Lyssavirus Infection in Human Stem Cell-Derived Neurons. Front Cell Infect Microbiol 2022; 11:783140. [PMID: 35004351 PMCID: PMC8739477 DOI: 10.3389/fcimb.2021.783140] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/07/2021] [Indexed: 12/17/2022] Open
Abstract
Despite being vaccine preventable, rabies (lyssavirus) still has a significant impact on global mortality, disproportionally affecting children under 15 years of age. This neurotropic virus is deft at avoiding the immune system while travelling through neurons to the brain. Until recently, research efforts into the role of non-coding RNAs in rabies pathogenicity and detection have been hampered by a lack of human in vitro neuronal models. Here, we utilized our previously described human stem cell-derived neural model to investigate the effect of lyssavirus infection on microRNA (miRNA) expression in human neural cells and their secreted exosomes. Conventional differential expression analysis identified 25 cellular and 16 exosomal miRNAs that were significantly altered (FDR adjusted P-value <0.05) in response to different lyssavirus strains. Supervised machine learning algorithms determined 6 cellular miRNAs (miR-99b-5p, miR-346, miR-5701, miR-138-2-3p, miR-651-5p, and miR-7977) were indicative of lyssavirus infection (100% accuracy), with the first four miRNAs having previously established roles in neuronal function, or panic and impulsivity-related behaviors. Another 4-miRNA signatures in exosomes (miR-25-3p, miR-26b-5p, miR-218-5p, miR-598-3p) can independently predict lyssavirus infected cells with >99% accuracy. Identification of these robust lyssavirus miRNA signatures offers further insight into neural lineage responses to infection and provides a foundation for utilizing exosome miRNAs in the development of next-generation molecular diagnostics for rabies.
Collapse
Affiliation(s)
- Ryan J Farr
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Australian Animal Health Laboratory at the Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Nathan Godde
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Australian Animal Health Laboratory at the Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Christopher Cowled
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Health and Biosecurity at the Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Vinod Sundaramoorthy
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Australian Animal Health Laboratory at the Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Diane Green
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Australian Animal Health Laboratory at the Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Cameron Stewart
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Health and Biosecurity at the Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - John Bingham
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Australian Animal Health Laboratory at the Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Carmel M O'Brien
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Clayton, VIC, Australia.,Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - Megan Dearnley
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Australian Animal Health Laboratory at the Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| |
Collapse
|
15
|
López-Ojeda W, Hurley RA. Enigmatic Neural Pathways: Potentiating Viral Neuroinvasion Into the CNS. J Neuropsychiatry Clin Neurosci 2021; 33:260-265. [PMID: 34709060 DOI: 10.1176/appi.neuropsych.21060152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Wilfredo López-Ojeda
- Veterans Affairs Mid-Atlantic Mental Illness Research, Education, and Clinical Center, and Research and Academic Affairs Service Line, W.G. Hefner Veterans Affairs Medical Center, Salisbury, N.C. (López-Ojeda, Hurley); Department of Psychiatry and Behavioral Medicine, Wake Forest School of Medicine, Winston-Salem, N.C. (López-Ojeda); Departments of Psychiatry and Radiology, Wake Forest School of Medicine, Winston-Salem, N.C. (Hurley); and the Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston (Hurley)
| | - Robin A Hurley
- Veterans Affairs Mid-Atlantic Mental Illness Research, Education, and Clinical Center, and Research and Academic Affairs Service Line, W.G. Hefner Veterans Affairs Medical Center, Salisbury, N.C. (López-Ojeda, Hurley); Department of Psychiatry and Behavioral Medicine, Wake Forest School of Medicine, Winston-Salem, N.C. (López-Ojeda); Departments of Psychiatry and Radiology, Wake Forest School of Medicine, Winston-Salem, N.C. (Hurley); and the Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston (Hurley)
| |
Collapse
|
16
|
Chailangkarn T, Tanwattana N, Jaemthaworn T, Sriswasdi S, Wanasen N, Tangphatsornruang S, Leetanasaksakul K, Jantraphakorn Y, Nawae W, Chankeeree P, Lekcharoensuk P, Lumlertdacha B, Kaewborisuth C. Establishment of Human-Induced Pluripotent Stem Cell-Derived Neurons-A Promising In Vitro Model for a Molecular Study of Rabies Virus and Host Interaction. Int J Mol Sci 2021; 22:ijms222111986. [PMID: 34769416 PMCID: PMC8584829 DOI: 10.3390/ijms222111986] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/24/2021] [Accepted: 11/02/2021] [Indexed: 12/15/2022] Open
Abstract
Rabies is a deadly viral disease caused by the rabies virus (RABV), transmitted through a bite of an infected host, resulting in irreversible neurological symptoms and a 100% fatality rate in humans. Despite many aspects describing rabies neuropathogenesis, numerous hypotheses remain unanswered and concealed. Observations obtained from infected primary neurons or mouse brain samples are more relevant to human clinical rabies than permissive cell lines; however, limitations regarding the ethical issue and sample accessibility become a hurdle for discovering new insights into virus-host interplays. To better understand RABV pathogenesis in humans, we generated human-induced pluripotent stem cell (hiPSC)-derived neurons to offer the opportunity for an inimitable study of RABV infection at a molecular level in a pathologically relevant cell type. This study describes the characteristics and detailed proteomic changes of hiPSC-derived neurons in response to RABV infection using LC-MS/MS quantitative analysis. Gene ontology (GO) enrichment of differentially expressed proteins (DEPs) reveals temporal changes of proteins related to metabolic process, immune response, neurotransmitter transport/synaptic vesicle cycle, cytoskeleton organization, and cell stress response, demonstrating fundamental underlying mechanisms of neuropathogenesis in a time-course dependence. Lastly, we highlighted plausible functions of heat shock cognate protein 70 (HSC70 or HSPA8) that might play a pivotal role in regulating RABV replication and pathogenesis. Our findings acquired from this hiPSC-derived neuron platform help to define novel cellular mechanisms during RABV infection, which could be applicable to further studies to widen views of RABV-host interaction.
Collapse
Affiliation(s)
- Thanathom Chailangkarn
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; (N.W.); (Y.J.)
- Correspondence: (T.C.); (C.K.)
| | - Nathiphat Tanwattana
- Interdisciplinary Program in Genetic Engineering and Bioinformatics, Graduate School, Kasetsart University, Bangkok 10900, Thailand;
| | - Thanakorn Jaemthaworn
- Computational Molecular Biology Group, Chulalongkorn University, Pathum Wan, Bangkok 10330, Thailand; (T.J.); (S.S.)
| | - Sira Sriswasdi
- Computational Molecular Biology Group, Chulalongkorn University, Pathum Wan, Bangkok 10330, Thailand; (T.J.); (S.S.)
- Research Affairs, Faculty of Medicine, Chulalongkorn University, Pathum Wan, Bangkok 10330, Thailand
| | - Nanchaya Wanasen
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; (N.W.); (Y.J.)
| | - Sithichoke Tangphatsornruang
- National Omics Center, National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; (S.T.); (W.N.)
| | - Kantinan Leetanasaksakul
- Functional Proteomics Technology, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand;
| | - Yuparat Jantraphakorn
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; (N.W.); (Y.J.)
| | - Wanapinun Nawae
- National Omics Center, National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; (S.T.); (W.N.)
| | - Penpicha Chankeeree
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (P.C.); (P.L.)
| | - Porntippa Lekcharoensuk
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (P.C.); (P.L.)
- Center for Advance Studies in Agriculture and Food, KU Institute Studies, Kasetsart University, Bangkok 10900, Thailand
| | - Boonlert Lumlertdacha
- Queen Saovabha Memorial Institute, Thai Red Cross Society, WHO Collaborating Center for Research and Training Prophylaxis on Rabies, 1871 Rama 4 Road, Pathumwan, Bangkok 10330, Thailand;
| | - Challika Kaewborisuth
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; (N.W.); (Y.J.)
- Correspondence: (T.C.); (C.K.)
| |
Collapse
|
17
|
Kim PK, Ahn JS, Kim CM, Seo JM, Keum SJ, Lee HJ, Choo MJ, Kim MS, Lee JY, Maeng KE, Shin JY, Yi KS, Osinubi MOV, Franka R, Greenberg L, Shampur M, Rupprecht CE, Lee SY. A broad-spectrum and highly potent human monoclonal antibody cocktail for rabies prophylaxis. PLoS One 2021; 16:e0256779. [PMID: 34469480 PMCID: PMC8409651 DOI: 10.1371/journal.pone.0256779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/15/2021] [Indexed: 11/18/2022] Open
Abstract
Post-exposure prophylaxis (PEP) is highly effective in preventing disease progression of rabies when used in timely and appropriate manner. The key treatment for PEP is infiltration of rabies immune globulin (RIG) into lesion site after bite exposure, besides wound care and vaccination. Unfortunately, however, RIG is expensive and its supply is limited. Currently, several anti-rabies virus monoclonal antibody (mAb) products are under development as alternatives to RIG, and two recently received regulatory approval in India. In this study, fully human mAbs that recognize different rabies virus glycoprotein conformational antigenic site (II and III) were created from peripheral blood mononuclear cells of heathy vaccinated subjects. These mAbs neutralized a diverse range of lyssavirus types. As at least two anti-rabies virus mAbs are recommended for use in human PEP to ensure broad coverage against diverse lyssaviruses and to minimize possible escape variants, two most potent mAbs, NP-19-9 and 11B6, were selected to be used as cocktail treatment. These two mAbs were broadly reactive to different types of lyssaviruses isolates, and were shown to have no interference with each other. These results suggest that NP-19-9 and 11B6 are potent candidates to be used for PEP, suggesting further studies involving clinical studies in human.
Collapse
Affiliation(s)
- Pan Kyeom Kim
- Department of Research and Development, Celltrion, INC, Incheon, Republic of Korea
- * E-mail:
| | - Jung Sun Ahn
- Department of Research and Development, Celltrion, INC, Incheon, Republic of Korea
| | - Cheol Min Kim
- Department of Research and Development, Celltrion, INC, Incheon, Republic of Korea
| | - Ji Min Seo
- Department of Research and Development, Celltrion, INC, Incheon, Republic of Korea
| | - Sun Ju Keum
- Department of Research and Development, Celltrion, INC, Incheon, Republic of Korea
| | - Hyun Joo Lee
- Department of Research and Development, Celltrion, INC, Incheon, Republic of Korea
| | - Min Joo Choo
- Department of Research and Development, Celltrion, INC, Incheon, Republic of Korea
| | - Min Soo Kim
- Department of Research and Development, Celltrion, INC, Incheon, Republic of Korea
| | - Jun Young Lee
- Department of Research and Development, Celltrion, INC, Incheon, Republic of Korea
| | - Ki Eun Maeng
- Department of Research and Development, Celltrion, INC, Incheon, Republic of Korea
| | - Ji Young Shin
- Department of Research and Development, Celltrion, INC, Incheon, Republic of Korea
| | - Kye Sook Yi
- Department of Research and Development, Celltrion, INC, Incheon, Republic of Korea
| | - Modupe O. V. Osinubi
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Richard Franka
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Lauren Greenberg
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Madhusudana Shampur
- National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | | | - Soo Young Lee
- Department of Research and Development, Celltrion, INC, Incheon, Republic of Korea
| |
Collapse
|
18
|
Exploring rabies endemicity in Pakistan: Major constraints & possible solutions. Acta Trop 2021; 221:106011. [PMID: 34144001 DOI: 10.1016/j.actatropica.2021.106011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 04/27/2021] [Accepted: 06/06/2021] [Indexed: 01/13/2023]
Abstract
Rabies, the oldest recorded viral zoonosis in the Indo-Pakistan subcontinent, is a neglected and lingering endemic disease in Pakistan. The review of online available rabies-related journals, papers and reports through platforms and electronic databases have provided the basis for a detailed analysis of the rabies situation in Pakistan. Only published materials related to various research areas of rabies in Pakistan were included and meaningful conclusions were developed to identify major constraints and generate an intellectual discussion on possible solutions. Results revealed 52 studies representing major issues concerning rabies prevention related to topics including, but not limited to: epidemiological investigations (40.38%), prophylactic measures (21.15%), population of wandering dogs (13.46%), public awareness and government interventions (17.30%) and diagnostic surveillance (7.69%). In order to minimize these problems and reduce the prevalence of dog bites or rabies in significant manners, the country direly needs to apply the following actions: a maintained supply of rabies prophylactic measures in public hospitals at subsidized rates, mass dog vaccination at regional levels, enforced responsible animal ownerships, implementing a systematic One Health approach, and diagnostic labs equipped with surveillance mechanisms established in coordination with the livestock and medical departments. This review, which presents up-to-date information on the risk factors and epidemiological features of rabies in Pakistan, provides useful information for scientists, policy makers, and administrative health officials wishing to understand how this deadly disease persists in the absence of effective control measures.
Collapse
|
19
|
Hobart-Porter N, Stein M, Toh N, Amega N, Nguyen HB, Linakis J. Safety and efficacy of rabies immunoglobulin in pediatric patients with suspected exposure. Hum Vaccin Immunother 2021; 17:2090-2096. [PMID: 33563087 PMCID: PMC8189119 DOI: 10.1080/21645515.2020.1854000] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Rabies is a deadly viral zoonosis with global disease burden. Following exposure to a rabid animal, post-exposure prophylaxis (PEP) is the standard of care for unvaccinated persons. Despite the large proportion of pediatric cases, limited safety and efficacy data exist for use in pediatric patients. We report the safety, efficacy, and immunogenicity of a phase 4, prospective, 2-center, open-label, single-arm clinical trial evaluating human rabies immunoglobulin (HRIG150; KEDRAB 150 IU/mL) as part of PEP in patients (aged <17) with suspected or confirmed rabies exposure, where PEP was indicated. Thirty participants received 20 IU/kg HRIG150 infiltrated into the detectable wound site(s), with any remainder injected intramuscularly, concomitantly with the first of a 4-dose series (days 0, 3, 7, and 14) of rabies vaccine. Rabies virus neutralizing antibody (RVNA) titers and tolerability were assessed on day 14 following administration. Participant safety was monitored for 84 days. No serious adverse events, rabies infections, or deaths were recorded. Twenty-one participants (70.0%) experienced a total of 57 treatment-emergent adverse events (TEAEs) within 14 days following administration. Twelve participants (40.0%) experienced a total of 13 adverse events deemed treatment related. All TEAEs were mild in severity. On day 14, 28 participants (93.3%) had RVNA levels of ≥0.5 IU/mL (mean±standard deviation: 18.89 ± 31.61). These results demonstrate that HRIG150 is well tolerated and effective in pediatric patients as a component of PEP. To the authors' knowledge, this study is the first to establish pediatric safety and efficacy of HRIG in the US.
Collapse
Affiliation(s)
- Nicholas Hobart-Porter
- Department of Pediatrics, Division of Pediatric Emergency Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Michal Stein
- Department of Medical Affairs, Kamada Ltd., Beit Kama, Israel
| | - Naveh Toh
- Department of Medical Affairs, Kamada Ltd., Beit Kama, Israel
| | - Novinyo Amega
- Department of Medical Affairs, Kedrion Biopharma Inc., Fort Lee, NJ, USA
| | - Huy-Binh Nguyen
- Department of Medical Affairs, Kedrion Biopharma Inc., Fort Lee, NJ, USA
| | - James Linakis
- Departments of Emergency Medicine and Pediatrics, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI, USA
| |
Collapse
|
20
|
Surve RM, Pendharkar HS, Bansal S. Paralytic rabies mimicking Guillain-Barré syndrome: the dilemma still prevails. JOURNAL OF NEUROCRITICAL CARE 2021. [DOI: 10.18700/jnc.210005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
21
|
Rasheed J, Jamil A, Hameed AA, Al-Turjman F, Rasheed A. COVID-19 in the Age of Artificial Intelligence: A Comprehensive Review. Interdiscip Sci 2021; 13:153-175. [PMID: 33886097 PMCID: PMC8060789 DOI: 10.1007/s12539-021-00431-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 04/03/2021] [Accepted: 04/09/2021] [Indexed: 12/23/2022]
Abstract
The recent COVID-19 pandemic, which broke at the end of the year 2019 in Wuhan, China, has infected more than 98.52 million people by today (January 23, 2021) with over 2.11 million deaths across the globe. To combat the growing pandemic on urgent basis, there is need to design effective solutions using new techniques that could exploit recent technology, such as machine learning, deep learning, big data, artificial intelligence, Internet of Things, for identification and tracking of COVID-19 cases in near real time. These technologies have offered inexpensive and rapid solution for proper screening, analyzing, prediction and tracking of COVID-19 positive cases. In this paper, a detailed review of the role of AI as a decisive tool for prognosis, analyze, and tracking the COVID-19 cases is performed. We searched various databases including Google Scholar, IEEE Library, Scopus and Web of Science using a combination of different keywords consisting of COVID-19 and AI. We have identified various applications, where AI can help healthcare practitioners in the process of identification and monitoring of COVID-19 cases. A compact summary of the corona virus cases are first highlighted, followed by the application of AI. Finally, we conclude the paper by highlighting new research directions and discuss the research challenges. Even though scientists and researchers have gathered and exchanged sufficient knowledge over last couple of months, but this structured review also examined technological perspectives while encompassing the medical aspect to help the healthcare practitioners, policymakers, decision makers, policymakers, AI scientists and virologists to quell this infectious COVID-19 pandemic outbreak.
Collapse
Affiliation(s)
- Jawad Rasheed
- Department of Computer Engineering, Istanbul Aydin University, Istanbul, 34295, Turkey.
| | - Akhtar Jamil
- Department of Computer Engineering, Istanbul Sabahattin Zaim University, Istanbul, 34303, Turkey
| | - Alaa Ali Hameed
- Department of Computer Engineering, Istanbul Sabahattin Zaim University, Istanbul, 34303, Turkey
| | - Fadi Al-Turjman
- Artificial Intelligence Engineering Department, Research Center for AI and IoT, Near East University, Nicosia, Mersin 10, Turkey
| | - Ahmad Rasheed
- Department of Electrical and Electronics Engineering, Eastern Mediterranean University, Famagusta, Mersin 10, Turkey
| |
Collapse
|
22
|
Pharande RR, Majee SB, Gaikwad SS, Moregoankar SD, Bannalikar A, Doiphode A, Gandge R, Dighe D, Ingle S, Mukherjee S. Evolutionary analysis of rabies virus using the partial Nucleoprotein and Glycoprotein gene in Mumbai region of India. J Gen Virol 2021; 102. [PMID: 33544071 DOI: 10.1099/jgv.0.001521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nearly 1.7 million cases of dog bites are reported every year in India and many cases of animal rabies are left unattended and undiagnosed. Therefore, a mere diagnosis of rabies is not sufficient to understand the epidemiology and the spread of the rabies virus (RV) in animals. There is a paucity of information about the evolutionary dynamics of RV in dogs and its biodiversity patterns in India. In total, 50 dog-brain samples suspected of rabies were screened by the nucleoprotein- (N) and glycoprotein- (G) gene PCR. The N and G genes were subsequently sequenced to understand the molecular evolution in these genes. The phylogenetic analysis of the N gene revealed that six isolates in the Mumbai region belonged to a single Arctic lineage. Time-scaled phylogeny by Bayesian coalescent analysis of the partial N gene revealed that the time to the most recent common ancestor (TMRCA) for the sequences belonged to the cluster from 2006.68 with a highest posterior density of 95 % betweeen 2005-2008, which is assigned to Indian lineage I. Migration pattern revealed a strong Bayes factor between Mumbai to Delhi, Panji to Hyderabad, Delhi to Chennai, and Chennai to Chandigarh. Phylogenetic analysis of the G gene revealed that the RVs circulating in the Mumbai region are divided into three lineages. Time-scaled phylogeny by the Bayesian coalescent analysis method estimated that the TMRCA for sequences under study was from 1993 and Indian clusters was from 1962. In conclusion, the phylogenetic analysis of the N gene revealed that six isolates belonged to single Arctic lineages along with other Indian isolates and they were clustered into a single lineage but divided into three clades based on the G-gene sequences. The present study highlights and enhances the current molecular epidemiology and evolution of RV and revealed strong location bias and geographical clustering within Indian isolates on the basis of N and G genes.
Collapse
Affiliation(s)
| | - Sharmila Badal Majee
- Department of Veterinary Microbiology, Mumbai Veterinary College, Parel, Mumbai-400012, India
| | - Satish S Gaikwad
- Animal Biotechnology Educational and Research Cell, COVAS, Parbhani, India
| | | | | | - Aakash Doiphode
- Department of Animal Genetics and Breeding, KNPCVS, Shirval, Pune, India
| | - Rajashri Gandge
- Department of Veterinary Microbiology, Mumbai Veterinary College, Mumbai, India
| | - Dhananjay Dighe
- Department of Preventive Medicine, Mumbai Veterinary College, Parel, Mumbai, India
| | - Sonal Ingle
- Animal Biotechnology, Mumbai Veterinary College, Mumbai
| | | |
Collapse
|
23
|
Lippi G, Cervellin G. Updates on Rabies virus disease: is evolution toward "Zombie virus" a tangible threat? ACTA BIO-MEDICA : ATENEI PARMENSIS 2021; 92:e2021045. [PMID: 33682816 PMCID: PMC7975959 DOI: 10.23750/abm.v92i1.9153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 01/15/2020] [Indexed: 12/25/2022]
Abstract
Human rabies disease is caused by Rabies Lyssavirus, a virus belonging to Rhabdoviridae family. The more frequent means of contagion is through bites of infected mammals (especially dogs, but also bats, skunks, foxes, raccoons and wolves) which, lacerating the skin, directly inoculate virus-laden saliva into the underlying tissues. Immediately after inoculation, the Rabies virus enters neural axons and migrates along peripheral nerves towards the central nervous system, where it preferentially localizes and injuries neurons of brainstem, thalamus, basal ganglia and spinal cord. After an initial prodromic period, the infection evolves towards two distinct clinical entities, encompassing encephalitic (i.e., “furious”; ~70-80% of cases) and paralytic (i.e., “dumb”; ~20-30% of cases) rabies disease. The former subtype is characterized by fever, hyperactivity, hydrophobia, hypersalivation, deteriorated consciousness, phobic or inspiratory spasms, autonomic stimulation, irritability, up to aggressive behaviours. The current worldwide incidence and mortality of rabies disease are estimated at 0.175×100,000 and 0.153×100,000, respectively. The incidence is higher in Africa and South-East Asia, nearly double in men than in women, with a higher peak in childhood. Mortality remains as high as ~90%. Since patients with encephalitic rabies remind the traditional image of “Zombies”, we need to think out-of-the-box, in that apocalyptic epidemics of mutated Rabies virus may be seen as an imaginable menace for mankind. This would be theoretically possible by either natural or artificial virus engineering, producing viral strains characterized by facilitated human-to-human transmission, faster incubation, enhanced neurotoxicity and predisposition towards developing highly aggressive behaviours. (www.actabiomedica.it)
Collapse
Affiliation(s)
- Giuseppe Lippi
- Laboratory of Clinical Chemistry and Hematology, Academic Hospital of Parma..
| | | |
Collapse
|
24
|
Abstract
UNLABELLED A 4-year-old boy was admitted with an acute onset fever for 4 days and drowsiness for 3 days, followed by progressive flaccid weakness of both lower limbs and encephalopathy soon after admission. He had sustained a WHO Class III stray dog bite 2 weeks previously and had received three doses of post-exposure rabies vaccination with purified vero cell vaccine but not rabies immunoglobulin. He was diagnosed with rabies based on the presence of rabies virus neutralising antibody in CSF (Day 1 1:128 and Day 26 1:2048) and typical findings on neuro-imaging. Rabies viral RNA was not detected in CSF, in saliva or on nuchal skin. The child survived with supportive treatment alone but he has extensive neurological sequelae. This report demonstrates the detailed clinico-investigative profile of a child who survived rabies following inadequate post-exposure prophylaxis and adds to the sparse knowledge of this usually fatal condition. ABBREVIATIONS ADEM, acute disseminated encephalomyelitis; CBNAAT, cartridge-based nucleic acid amplification test; CSF, cerebrospinal fluid; EEG, electroencephalogram; GCS, Glasgow coma scale; EVM, eye opening, best verbal response, best motor response; IM, intramuscular; IVIg, intravenous immunoglobulin; MRC, Medical Research Council; MRI/FLAIR, magnetic resonance imaging/fluid attenuation inversion recovery; PCR, polymerase chain reaction; RFFIT, rapid fluorescent focus inhibition test; RIg, rabies immunoglobulin; RNA, ribonucleic acid; WBC, white blood cells; WHO, World Health Organization.
Collapse
Affiliation(s)
- Biju John
- Department of Pediatrics, Armed Forces Medical College , Pune, India
| | - Shyam Kumar
- Department of Pediatrics, Command Hospital (Air Force) , Bangalore, India
| | - Sudeep Kumar
- Department of Pediatrics, Command Hospital (Air Force) , Bangalore, India
| | - S S Dalal
- Department of Pediatrics, Command Hospital (Air Force) , Bangalore, India
| | - Aneesh Mohimen
- Department of Radiology, Command Hospital (Air Force) , Bangalore, India
| |
Collapse
|
25
|
Bartlett ML, Griffin DE. Acute RNA Viral Encephalomyelitis and the Role of Antibodies in the Central Nervous System. Viruses 2020; 12:v12090988. [PMID: 32899509 PMCID: PMC7551998 DOI: 10.3390/v12090988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 12/25/2022] Open
Abstract
Acute RNA viral encephalomyelitis is a serious complication of numerous virus infections. Antibodies in the cerebral spinal fluid (CSF) are correlated to better outcomes, and there is substantive evidence of antibody secreting cells (ASCs) entering the central nervous system (CNS) and contributing to resolution of infection. Here, we review the RNA viruses known to cause acute viral encephalomyelitis with mechanisms of control that require antibody or ASCs. We compile the cytokines, chemokines, and surface receptors associated with ASC recruitment to the CNS after infection and compare known antibody-mediated mechanisms as well as potential noncytolytic mechanisms for virus control. These non-canonical functions of antibodies may be employed in the CNS to protect precious non-renewable neurons. Understanding the immune-specialized zone of the CNS is essential for the development of effective treatments for acute encephalomyelitis caused by RNA viruses.
Collapse
|
26
|
Diaz-Arias LA, Pardo CA, Probasco JC. Infectious Encephalitis in the Neurocritical Care Unit. Curr Treat Options Neurol 2020. [DOI: 10.1007/s11940-020-00623-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
27
|
Integrin β1 Promotes Peripheral Entry by Rabies Virus. J Virol 2020; 94:JVI.01819-19. [PMID: 31666383 DOI: 10.1128/jvi.01819-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 02/03/2023] Open
Abstract
Rabies virus (RABV) is a widespread pathogen that causes fatal disease in humans and animals. It has been suggested that multiple host factors are involved in RABV host entry. Here, we showed that RABV uses integrin β1 (ITGB1) for cellular entry. RABV infection was drastically decreased after ITGB1 short interfering RNA knockdown and moderately increased after ITGB1 overexpression in cells. ITGB1 directly interacts with RABV glycoprotein. Upon infection, ITGB1 is internalized into cells and transported to late endosomes together with RABV. The infectivity of cell-adapted RABV in cells and street RABV in mice was neutralized by ITGB1 ectodomain soluble protein. The role of ITGB1 in RABV infection depends on interaction with fibronectin in cells and mice. We found that Arg-Gly-Asp (RGD) peptide and antibody to ITGB1 significantly blocked RABV infection in cells in vitro and street RABV infection in mice via intramuscular inoculation but not the intracerebral route. ITGB1 also interacts with nicotinic acetylcholine receptor, which is the proposed receptor for peripheral RABV infection. Our findings suggest that ITGB1 is a key cellular factor for RABV peripheral entry and is a potential therapeutic target for postexposure treatment against rabies.IMPORTANCE Rabies is a severe zoonotic disease caused by rabies virus (RABV). However, the nature of RABV entry remains unclear, which has hindered the development of therapy for rabies. It is suggested that modulations of RABV glycoprotein and multiple host factors are responsible for RABV invasion. Here, we showed that integrin β1 (ITGB1) directly interacts with RABV glycoprotein, and both proteins are internalized together into host cells. Differential expression of ITGB1 in mature muscle and cerebral cortex of mice led to A-4 (ITGB1-specific antibody), and RGD peptide (competitive inhibitor for interaction between ITGB1 and fibronectin) blocked street RABV infection via intramuscular but not intracerebral inoculation in mice, suggesting that ITGB1 plays a role in RABV peripheral entry. Our study revealed this distinct cellular factor in RABV infection, which may be an attractive target for therapeutic intervention.
Collapse
|
28
|
Dougas G, Mavrouli M, Vrioni G, Lytras T, Mellou K, Metallidis S, Istikoglou I, Mitrou K, Tzani M, Georgopoulou I, Tsalikoglou F, Garetsou E, Poulakou G, Giannitsioti E, Moschopoulos C, Baka A, Georgakopoulou T, Tsiodras S, Tsakris A. Antibody Response Following Pre-Exposure Immunization Against Rabies in High-Risk Professionals. Vector Borne Zoonotic Dis 2019; 20:303-309. [PMID: 31794689 DOI: 10.1089/vbz.2019.2526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Vaccination against rabies and routine antibody testing of subjects participating in programs for the surveillance and control of rabies in animals is strongly recommended. The scope of this study is to describe the antibody level as measured by a commercial enzyme-linked immunosorbent assay (ELISA) after primary and booster intramuscular vaccination with a purified vero-cell rabies vaccine (PVRV) in high-risk professionals and to determine the influence of an array of factors on antibody level, that is, time elapsed since primary immunization series and booster dose, sex, age, pathologic conditions, high-risk occupation, and peak antibody level after initial scheme and booster dose. A primary series of three doses of PVRV was administered and a commercial ELISA was recommended 14 days postimmunization with continuous repetition at 6 months and yearly intervals for the laboratory personnel and the rest of the professionals, respectively. The protective antibody titer was defined as a minimum of 0.5 equivalent units/mL (EU/mL) (seroconvertion) and a booster dose was applied if the titer was determined nonprotective. The seroconversion rate (SCR) after primary vaccination was 100%, with a geometric mean titer (GMT) of 2.90 EU/mL (interquartile range [IQR]: 1.85-3.45). After booster vaccination due to nonprotective titer, the SCR was 100% and the GMT increased by 678% (95% confidence interval [CI]: 514-887) reaching 4.25 EU/mL (IQR: 4.00-4.60), 2.5 times higher than the GMT elicited by the primary vaccine scheme in the respective recipients. The titer dropped by 1.20% per month (95% CI: 0.52-1.89) regardless of booster administration or any other factor. Women had 51% higher titer compared with men (95% CI: 6-116). High-risk professionals should be verified for adequate antibody titers, but routine administration of a single booster dose of PVRV 1 year after the primary series could be considered; more evidence is needed to support the benefit in terms of immunity and logistics.
Collapse
Affiliation(s)
| | - Maria Mavrouli
- Department of Microbiology, Medical School, University of Athens, Athens, Greece
| | - Georgia Vrioni
- Department of Microbiology, Medical School, University of Athens, Athens, Greece
| | | | | | - Symeon Metallidis
- Infectious Diseases Division, 1st Internal Medicine Department, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Istikoglou
- Infection Control Committee, "AHEPA" University Hospital, Thessaloniki, Greece
| | | | - Myrsini Tzani
- Department of Zoonoses, Animal Health Directorate, Directorate General of Veterinary Services, Ministry of Rural Development and Food, Athens, Greece
| | - Ioanna Georgopoulou
- Department of Zoonoses, Animal Health Directorate, Directorate General of Veterinary Services, Ministry of Rural Development and Food, Athens, Greece
| | | | | | - Garyfallia Poulakou
- "Attikon" Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Efthymia Giannitsioti
- "Attikon" Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Charalampos Moschopoulos
- "Attikon" Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Agoritsa Baka
- European Centre for Disease Prevention and Control, Solna, Sweden
| | | | - Sotirios Tsiodras
- National Public Health Organization, Athens, Greece.,"Attikon" Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Athanassios Tsakris
- Department of Microbiology, Medical School, University of Athens, Athens, Greece
| |
Collapse
|
29
|
Matson MA, Schenker E, Stein M, Zamfirova V, Nguyen HB, Bergman GE. Safety and efficacy results of simulated post-exposure prophylaxis with human immune globulin (HRIG; KEDRAB) co-administered with active vaccine in healthy subjects: a comparative phase 2/3 trial. Hum Vaccin Immunother 2019; 16:452-459. [PMID: 31549899 PMCID: PMC7062421 DOI: 10.1080/21645515.2019.1656967] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We conducted a clinical trial to assess the safety and putative efficacy of an additional human rabies immune globulin (HRIG; KEDRAB) versus an older product (Comparator, HyperRAB S/D® [Grifols]) and determine whether HRIG interferes with development of endogenous antibodies versus Comparator, when each is given with an active rabies vaccine. This was a prospective, double-blind, single-period, non-inferiority study in which subjects were randomized (1:1) to a single dose (20 IU/kg) of HRIG or Comparator on day 0 and rabies vaccine (RabAvert® [GlaxoSmithKline]; 1 mL of ≥2.5 IU/mL) on days 0, 3, 7, 14, and 28. Anti-rabies antibodies were measured by rapid fluorescent focus inhibition test on day 14, and subjects were followed until day 185. Rabies virus neutralizing antibody (RVNA) titers ≥0.5 IU/mL were considered seroconversion putatively indicative of protection. The non-inferiority criterion was the lower limit of the 90% confidence interval (CI) >–10%, for the between-group difference in the proportion of subjects achieving RVNA ≥0.5 IU/mL. On day 14, 98.3% of 59 subjects in the HRIG group and 100% of 59 in the Comparator group had RVNA ≥0.5 IU/mL (difference between proportions – 1.8%; 90% CI, – 8.2, 3.1; non-inferiority criterion met). One subject in the HRIG group did not meet the seroconversion criteria for anti-rabies antibody, and one subject in the Comparator group showed an anamnestic response, with much higher than expected anti-rabies antibody levels at both baseline and on day 14. Thus, HRIG allows for prophylactic anti-rabies antibody titers and is non-inferior to Comparator, when administered with rabies vaccine.
Collapse
Affiliation(s)
| | - Eran Schenker
- Department of Medical Affairs, Kamada Ltd, Beit Kama, MP Negev, Israel
| | - Michal Stein
- Department of Medical Affairs, Kamada Ltd, Beit Kama, MP Negev, Israel
| | | | - Huy-Binh Nguyen
- Department of Medical Affairs, Kedrion Biopharma Inc, Fort Lee, NJ, USA
| | - Garrett E Bergman
- Department of Medical Affairs, Kedrion Biopharma Inc, Fort Lee, NJ, USA
| |
Collapse
|
30
|
Hamta A, Saghafipour A, Hosseinalipour SA, Rezaei F. Forecasting delay times in post-exposure prophylaxis to human animal bite injuries in Central Iran: A decision tree analysis. Vet World 2019; 12:965-971. [PMID: 31528019 PMCID: PMC6702578 DOI: 10.14202/vetworld.2019.965-971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 05/15/2019] [Indexed: 11/25/2022] Open
Abstract
Background and Aim: Data mining in medical sciences provides countless opportunities for demonstrating hidden patterns of a data set. These patterns can help general physicians and health workers in preventing diseases. This study aimed to forecast delay times in post-exposure prophylaxis (PEP) to human animal bite injuries in central Iran using a decision tree analysis. Materials and Methods: The data of 2072 human animal bite cases were collected from Centers for Disease Control and Prevention unit of Qom Provincial Health Center, Iran from January 2017 to December 2018. The information related to animal bite incidents, including the biting animal characteristics and data on the bitten humans, was obtained by investigating the epidemiological survey forms of human animal bites. The decision tree model was applied to forecast the delay time of receiving PEP. Results: A delay of more than 48 h in the initiation of PEP was estimated among 12.73% of animal bite victims. The most important variables to predict delay time of receiving PEP were the species of biting animal, time and cause of animal bite occurrences in 24 h a day, respectively. Hence, the model showed a delay in the initiation of PEP if the biting animal was a cattle or, a carnivore, and the time of being bitten was from 7 am to 1 pm, or if the animal was carnivore and the time of being bitten was between 1 and 7 pm, and the cause of animal bite was playing with the animal. Conclusion: Based on the findings of the study on different variables affecting the initiation of PEP, the concepts related to animal bite and rabies, including the timely injection of anti-rabies vaccine to prevent rabies, it is a must to educate and train, all the people, especially housewives and students.
Collapse
Affiliation(s)
- Amir Hamta
- Department of Social Medicine, Faculty of Medical Sciences, Qom University of Medical Sciences, Qom, Iran
| | - Abedin Saghafipour
- Department of Public Health, Faculty of Health, Qom University of Medical Sciences, Qom, Iran
| | | | - Fatemeh Rezaei
- Department of Social Medicine, Faculty of Medical Sciences, Jahrom University of Medical Sciences, Jahrom, Iran
| |
Collapse
|
31
|
Smith SP, Wu G, Fooks AR, Ma J, Banyard AC. Trying to treat the untreatable: experimental approaches to clear rabies virus infection from the CNS. J Gen Virol 2019; 100:1171-1186. [PMID: 31237530 DOI: 10.1099/jgv.0.001269] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Rabies virus causes an invariably fatal encephalitis following the onset of clinical disease. Despite the availability of safe and effective vaccines, the clinical stages of rabies encephalitis remain untreatable, with few survivors being documented. A principal obstacle to the treatment of rabies is the neurotropic nature of the virus, with the blood-brain barrier size exclusion limit rendering the delivery of antiviral drugs and molecules to the central nervous system inherently problematic. This review focuses on efforts to try and overcome barriers to molecule delivery to treat clinical rabies and overviews current progress in the development of experimental live rabies virus vaccines that may have future applications in the treatment of clinical rabies, including the attenuation of rabies virus vectors through either the duplication or mutation of existing genes or the incorporation of non-viral elements within the genome. Rabies post-infection treatment (PIT) remains the holy grail of rabies research.
Collapse
Affiliation(s)
- Samuel P Smith
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency (APHA), Addlestone, Surrey, KT15 3NB, UK.,Institute for Infection and Immunity, St George's Hospital Medical School, University of London, London, UK
| | - Guanghui Wu
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency (APHA), Addlestone, Surrey, KT15 3NB, UK
| | - Anthony R Fooks
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency (APHA), Addlestone, Surrey, KT15 3NB, UK.,Institute for Infection and Immunity, St George's Hospital Medical School, University of London, London, UK.,Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Julian Ma
- Institute for Infection and Immunity, St George's Hospital Medical School, University of London, London, UK
| | - Ashley C Banyard
- Institute for Infection and Immunity, St George's Hospital Medical School, University of London, London, UK.,School of Life Sciences, University of West Sussex, Falmer, West Sussex, UK.,Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency (APHA), Addlestone, Surrey, KT15 3NB, UK
| |
Collapse
|
32
|
Affiliation(s)
- N Kumar
- Department of Neurology, All India Institute of Medical Sciences, Virbhadra Road, Rishikesh, Dehradun, Uttarakhand, India
| | - P Gupta
- Department of Microbiology, All India Institute of Medical Sciences, Virbhadra Road, Rishikesh, Dehradun, Uttarakhand, India
| | - M K Meena
- Department of General Medicine, All India Institute of Medical Sciences, Virbhadra Road, Rishikesh, Dehradun, Uttarakhand, India
| |
Collapse
|
33
|
Warrell M, Warrell DA, Tarantola A. The Imperative of Palliation in the Management of Rabies Encephalomyelitis. Trop Med Infect Dis 2017; 2:E52. [PMID: 30270909 PMCID: PMC6082067 DOI: 10.3390/tropicalmed2040052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 09/18/2017] [Accepted: 09/28/2017] [Indexed: 12/25/2022] Open
Abstract
The aim of this review is to guide clinicians in the practical management of patients suffering from rabies encephalomyelitis. This condition is eminently preventable by modern post-exposure vaccination, but is virtually always fatal in unvaccinated people. In the absence of any proven effective antiviral or other treatment, palliative care is an imperative to minimise suffering. Suspicion of rabies encephalomyelitis depends on recognising the classic symptomatology and eliciting a history of exposure to a possibly rabid mammal. Potentially treatable differential diagnoses must be eliminated, notably other infective encephalopathies. Laboratory confirmation of suspected rabies is not usually possible in many endemic areas, but is essential for public health surveillance. In a disease as agonising and terrifying as rabies encephalomyelitis, alleviation of distressing symptoms is the primary concern and overriding responsibility of medical staff. Calm, quiet conditions should be created, allowing relatives to communicate with the dying patient in safety and privacy. Palliative management must address thirst and dehydration, fever, anxiety, fear, restlessness, agitation, seizures, hypersecretion, and pain. As the infection progresses, coma and respiratory, cardiovascular, neurological, endocrine, or gastrointestinal complications will eventually ensue. When the facilities exist, the possibility of intensive care may arise, but although some patients may survive, they will be left with severe neurological sequelae. Recovery from rabies is extremely rare, and heroic measures with intensive care should be considered only in patients who have been previously vaccinated, develop rabies antibody within the first week of illness, or were infected by an American bat rabies virus. However, in most cases, clinicians must have the courage to offer compassionate palliation whenever the diagnosis of rabies encephalomyelitis is inescapable.
Collapse
Affiliation(s)
- Mary Warrell
- Oxford Vaccine Group, University of Oxford, Centre for Clinical Vaccinology & Tropical Medicine, Churchill Hospital, Old Rd, Headington, Oxford, OX3 7LJ, UK.
| | - David A Warrell
- Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DW, UK.
| | - Arnaud Tarantola
- Institut Pasteur de Nouvelle-Calédonie, BP 61 ⁻ 98845 Nouméa cedex, New Caledonia.
| |
Collapse
|
34
|
Rupprecht C, Kuzmin I, Meslin F. Lyssaviruses and rabies: current conundrums, concerns, contradictions and controversies. F1000Res 2017; 6:184. [PMID: 28299201 PMCID: PMC5325067 DOI: 10.12688/f1000research.10416.1] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/14/2017] [Indexed: 12/20/2022] Open
Abstract
Lyssaviruses are bullet-shaped, single-stranded, negative-sense RNA viruses and the causative agents of the ancient zoonosis rabies. Africa is the likely home to the ancestors of taxa residing within the Genus Lyssavirus, Family Rhabdoviridae. Diverse lyssaviruses are envisioned as co-evolving with bats, as the ultimate reservoirs, over seemingly millions of years. In terms of relative distribution, overt abundance, and resulting progeny, rabies virus is the most successful lyssavirus species today, but for unknown reasons. All mammals are believed to be susceptible to rabies virus infection. Besides reservoirs among the Chiroptera, meso-carnivores also serve as major historical hosts and are represented among the canids, raccoons, skunks, mongooses, and ferret badgers. Perpetuating as a disease of nature with the mammalian central nervous system as niche, host breadth alone precludes any candidacy for true eradication. Despite having the highest case fatality of any infectious disease and a burden in excess of or comparative to other major zoonoses, rabies remains neglected. Once illness appears, no treatment is proven to prevent death. Paradoxically, vaccines were developed more than a century ago, but the clear majority of human cases are unvaccinated. Tens of millions of people are exposed to suspect rabid animals and tens of thousands succumb annually, primarily children in developing countries, where canine rabies is enzootic. Rather than culling animal populations, one of the most cost-effective strategies to curbing human fatalities is the mass vaccination of dogs. Building on considerable progress to date, several complementary actions are needed in the near future, including a more harmonized approach to viral taxonomy, enhanced de-centralized laboratory-based surveillance, focal pathogen discovery and characterization, applied pathobiological research for therapeutics, improved estimates of canine populations at risk, actual production of required vaccines and related biologics, strategies to maximize prevention but minimize unnecessary human prophylaxis, and a long-term, realistic plan for sustained global program support to achieve success in disease control, prevention, and elimination.
Collapse
Affiliation(s)
| | - Ivan Kuzmin
- University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA
| | - Francois Meslin
- DVM, former Team Leader, Neglected Zoonotic Diseases, WHO Headquarters, Geneva, Switzerland
| |
Collapse
|