1
|
Kato S, Kuwata K. Pro-/anti-oxidative properties of dopamine on membrane lipid peroxidation upon X-ray irradiation. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2021.109518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
2
|
Girotti AW, Korytowski W. Cholesterol Peroxidation as a Special Type of Lipid Oxidation in Photodynamic Systems. Photochem Photobiol 2018; 95:73-82. [PMID: 29962109 DOI: 10.1111/php.12969] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/15/2018] [Indexed: 02/06/2023]
Abstract
Like other unsaturated lipids in cell membranes and lipoproteins, cholesterol (Ch) is susceptible to oxidative modification, including photodynamic oxidation. There is a sustained interest in the pathogenic properties of Ch oxides such as those generated by photooxidation. Singlet oxygen (1 O2 )-mediated Ch photooxidation (Type II mechanism) gives rise to three hydroperoxide (ChOOH) isomers: 5α-OOH, 6α-OOH and 6β-OOH, the 5α-OOH yield far exceeding that of the others. 5α-OOH detection is relatively straightforward and serves as a definitive indicator of 1 O2 involvement in a reaction, photochemical or otherwise. Like all lipid hydroperoxides (LOOHs), ChOOHs can disrupt membrane or lipoprotein structure/function on their own, but subsequent light-independent reactions may either intensify or attenuate such effects. Such reactions include (1) one-electron reduction to redox-active free radical intermediates, (2) two-electron reduction to redox-silent alcohols and (3) translocation to other lipid compartments, where (1) or (2) may take place. In addition to these effects, ChOOHs may act as signaling molecules in reactions that affect cell fates. Although processes a-c have been well studied for ChOOHs, signaling activity is still poorly understood compared with that of hydrogen peroxide. This review focuses on these various aspects Ch photoperoxidation and its biological consequences.
Collapse
Affiliation(s)
- Albert W Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI
| | | |
Collapse
|
3
|
Larsson K, Quinn P, Sato K, Tiberg F. Lipids of biological membranes. Lipids 2012. [DOI: 10.1533/9780857097910.183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Laguerre M, Decker EA, Lecomte J, Villeneuve P. Methods for evaluating the potency and efficacy of antioxidants. Curr Opin Clin Nutr Metab Care 2010; 13:518-25. [PMID: 20601864 DOI: 10.1097/mco.0b013e32833aff12] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The aim of this article is to present a brief panorama of the most widely used methods and of new analytical approaches for evaluating antioxidant capacity and to discuss them in terms of advantages and drawbacks. RECENT FINDINGS To date, many in-vitro tests are available from the chemical assay performed in a homogenous solution such as oxygen radical antioxidant capacity assay to more complex cell-based methods using exogenic probes to detect oxidation. In complement to these existing methods, novel approaches have recently been developed such as the conjugated autoxidizable triene assay implemented in emulsions and using tung oil as ultraviolet probe. SUMMARY The complexity and diverse range of research topics investigated have led to the development of a multitude of tests, but unfortunately none of them are universal. Thus, one of the major challenges is to know which method is best suited for a particular application.
Collapse
Affiliation(s)
- Mickaël Laguerre
- Department of Food Science, University of Massachusetts, Chenoweth Laboratory, Amherst, MA, USA
| | | | | | | |
Collapse
|
5
|
Boldyrev IA, Pavlova IB, Molotkovskiĭ IG. [Synthesis and characteristics of new fluorescent probes based on cardiolipin]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2009; 35:239-44. [PMID: 19537175 DOI: 10.1134/s1068162009020101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
New fluorescent lipid probes, cardiolipin derivatives AV12-CL and B7-CL, bearing the residues of 12-(9-anthryl)-11E-dodecenoic and 7-(4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacen-8-yl)heptanoic acid, respectively, have been synthesized by acylation of 1-lysocardiolipin, which had been obtained from bovine heart cardiolipin by enzymatic hydrolysis with bacterial lipase. The resulting probes are intended for the study of protein-anionic phospholipid interactions.
Collapse
|
6
|
Soh N, Ariyoshi T, Fukaminato T, Nakajima H, Nakano K, Imato T. Swallow-tailed perylene derivative: a new tool for fluorescent imaging of lipid hydroperoxides. Org Biomol Chem 2007; 5:3762-8. [PMID: 18004455 DOI: 10.1039/b713223a] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A swallow-tailed perylene derivative including a triphenylphosphine moiety was synthesized and applied to the detection and the live-cell imaging of lipid hydroperoxides. The novel probe, named Spy-LHP, reacted rapidly and quantitatively with lipid hydroperoxides to form the corresponding oxide, Spy-LHPOx, which emits extremely strong fluorescence (Phi approximately 1) in the visible range (lambda(em) = 535 nm, 574 nm). Spy-LHP was highly selective for lipid hydroperoxides, and the addition of other reactive oxygen species (ROS) including hydrogen peroxides, hydroxyl radical, superoxide anion, nitric oxide, peroxynitrite, and alkylperoxyl radical, caused no significant increase in the fluorescence intensity. The probe exhibited good localization to cellular membranes and was successfully applied to the confocal laser scanning microscopy (CLSM) imaging of lipid hydroperoxides in live J774A.1 cells, in which lipid peroxidation was proceeded by the stimulation of 2,2-azobis(2-amidinopropane)dihydrochloride (AAPH). These findings establish Spy-LHP as a promising new tool for investigating the physiology of lipid hydroperoxides.
Collapse
Affiliation(s)
- Nobuaki Soh
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744, Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | | | | | | | | | | |
Collapse
|
7
|
Okrój M, Stawikowska D, Słomińska EM, Myśliwski A, Bigda J. The atypical pattern of cell death in B16F10 melanoma cells treated with TNP-470. Cell Mol Biol Lett 2007; 11:384-95. [PMID: 16874459 PMCID: PMC6472845 DOI: 10.2478/s11658-006-0032-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Accepted: 05/30/2006] [Indexed: 11/21/2022] Open
Abstract
TNP-470 is an acknowledged anti-angiogenic factor, and was studied clinically as an anti-cancer drug. We previously reported on an additional property of this molecule: the intracellular generation of reactive oxygen species in B16F10 melanoma cells. We showed that a massive generation of ROS occurred in the first few hours after treatment with TNP-470 and that this event was critical to subsequent cell death. In this study, we analyzed the process of cell death and noticed an atypical pattern of death markers. Some of these, such as DNA fragmentation or condensation of chromatin, were characteristic for programmed cell death, while others (the lack of phosphatidylserine flip-flop but permeability to propidium iodide, the maintenance of adhesion to the substratum, no change in mitochondrial transmembrane potential, no effect of the panspecific caspase inhibitor) rather suggested a necrotic outcome. We concluded that TNP-470 induced at least some pathways of programmed cell death. However, increasing damage to critical cell functions appears to cause a rapid switch into the necrotic mode. Our data is similar to that in other reports describing the action of ROS-generating agents. We hypothesize that this rapid programmed cell death/necrosis switch is a common scenario following free radical stress.
Collapse
Affiliation(s)
- Marcin Okrój
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology, Medical University of Gdańsk, Debinki 1, Gdańsk, Poland.
| | | | | | | | | |
Collapse
|
8
|
Laguerre M, Lecomte J, Villeneuve P. Evaluation of the ability of antioxidants to counteract lipid oxidation: Existing methods, new trends and challenges. Prog Lipid Res 2007; 46:244-82. [PMID: 17651808 DOI: 10.1016/j.plipres.2007.05.002] [Citation(s) in RCA: 371] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 05/09/2007] [Accepted: 05/11/2007] [Indexed: 12/12/2022]
Abstract
Oxidative degradation of lipids, especially that induced by reactive oxygen species (ROS), leads to quality deterioration of foods and cosmetics and could have harmful effects on health. Currently, a very promising way to overcome this is to use vegetable antioxidants for nutritional, therapeutic or food quality preservation purposes. A major challenge is to develop tools to assess the antioxidant capacity and real efficacy of these molecules. Many rapid in vitro tests are now available, but they are often performed in dissimilar conditions and different properties are thus frequently measured. The so-called 'direct' methods, which use oxidizable substrates, seem to be the only ones capable of measuring real antioxidant power. Some oxidizable substrates correspond to molecules or natural extracts exhibiting biological activity, such as lipids, proteins or nucleic acids, while others are model substrates that are not encountered in biological systems or foods. Only lipid oxidation and direct methods using lipid-like substrates will be discussed in this review. The main mechanisms of autoxidation and antioxidation are recapitulated, then the four components of a standard test (oxidizable substrate, medium, oxidation conditions and antioxidant) applied to a single antioxidant or complex mixtures are dealt with successively. The study is focused particularly on model lipids, but also on dietary and biological lipids isolated from their natural environment, including lipoproteins and phospholipidic membranes. Then the advantages and drawbacks of existing methods and new approaches are compared according to the context. Finally, recent trends based on the chemometric strategy are introduced as a highly promising prospect for harmonizing in vitro methods.
Collapse
Affiliation(s)
- M Laguerre
- UMR 1208 Ingénierie des Agropolymères et Technologies Emergentes, CIRAD, INRA, Montpellier SupAgro, Université Montpellier 2, F-34000 Montpellier, France
| | | | | |
Collapse
|
9
|
Matsura T, Togawa A, Kai M, Nishida T, Nakada J, Ishibe Y, Kojo S, Yamamoto Y, Yamada K. The presence of oxidized phosphatidylserine on Fas-mediated apoptotic cell surface. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1736:181-8. [PMID: 16168707 DOI: 10.1016/j.bbalip.2005.08.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2005] [Revised: 07/26/2005] [Accepted: 08/17/2005] [Indexed: 10/25/2022]
Abstract
A growing body of evidence suggests that phosphatidylserine (PS) oxidation is linked with its transmembrane migration from the inner to the outer leaflet of the plasma membrane during apoptosis. However, there is no direct evidence for the presence of oxidized PS (PSox) on the surface of cells undergoing apoptosis. The present study was performed to detect PSox externalized to the cell surface after Fas engagement in Jurkat cells. Treatment of Jurkat cells with anti-Fas antibody induced caspase-3 activation, chromatin condensation, PS externalization, generation of reactive oxygen species, intracellular glutathione depletion, disruption of mitochondrial transmembrane potential and release of cytochrome c from mitochondria. To determine externalized PS and phosphatidylethanolamine (PE), Jurkat cells were treated with anti-Fas antibody and then labeled with membrane-impermeable fluorescamine, a probe for visualizing lipids that contain primary amino groups. Their total lipids were extracted and subjected to two-dimensional high-performance thin-layer chromatography (HPTLC). The HPTLC plate was sprayed with N,N,N',N'-tetramethyl-p-phenylenediamine dihydrochloride to detect phospholipid hydroperoxides. PSox was present in small amounts within but not on the surface of normal cells. Treatment with anti-Fas antibody increased PSox within the cells and caused PSox to appear on the cell surface. In contrast, PE on the surface of Fas-ligated cells was not oxidized. Thus, the present study demonstrates for the first time the presence of PSox both within and on the surface of apoptotic cells.
Collapse
Affiliation(s)
- Tatsuya Matsura
- Division of Medical Biochemistry, Department of Pathophysiological and Therapeutic Science, Tottori University Faculty of Medicine, 86 Nishi-cho, Yonago 683-8503, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Jiang J, Kini V, Belikova N, Serinkan BF, Borisenko GG, Tyurina YY, Tyurin VA, Kagan VE. Cytochrome c release is required for phosphatidylserine peroxidation during Fas-triggered apoptosis in lung epithelial A549 cells. Lipids 2005; 39:1133-42. [PMID: 15726829 DOI: 10.1007/s11745-004-1340-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Oxidation of phosphatidylserine (PtdSer) has been shown to play a pivotal role in signaling during cell apoptosis and subsequent recognition of apoptotic cells by phagocytes. However, the redox catalytic mechanisms involved in selective PtdSer oxidation during apoptosis remain poorly understood. Here we employed anti-Fas antibody CH-11-treated A549 cells as a physiologically relevant model to investigate the involvement of PtdSer oxidation and its potential mechanism during apoptosis. We demonstrated that ligation of CH-11 with its cognate receptor initiated execution of apoptotic program in interferon gamma-pretreated A549 cells as evidenced by activation of caspase and DNA fragmentation. A significant increase of cytochrome c (cyt c) content in the cytosol as early as 2 h after CH-11 exposure was detected indicating that Fas-induced apoptosis in A549 cells proceeds via extrinsic type II pathway and includes mitochondrial signaling. PtdSer was selectively oxidized 3 h after anti-Fas triggering while two more abundant phospholipids--phosphatidylcholine (PtdCho) and phosphatidylethanolamine (PtdEtn)--and the major intracellular antioxidant, glutathione, remained nonoxidized. A pan-caspase inhibitor, z-VAD, fully blocked cyt c release and oxidation of PtdSer in Fas-treated A549 cells. On the other hand, z-DQMD, a caspase-3 inhibitor, completely inhibited caspase-3 activity but did not fully block caspase-8 activation and release of cyt c. Importantly, z-DQMD failed to protect PtdSer from oxidation. In addition, in a model system, we demonstrated that peroxidase activity of cyt c was greatly enhanced in the presence of dioleoylphosphatidylserine containing liposomes by monitoring oxidation of 2',7'-dichlorodihydrofluorescein to 2',7'-dichlorofluorescein. We further showed that peroxidase activity of cyt c catalyzed oxidation of 1-palmitoyl-2-arachidonoyl-3-glycero-phosphoserine using a newly developed HPLC assay. MS analysis of 1-palmitoyl-2-arachidonoyl-3-glycero-phosphoserine revealed that in addition to its mono- and dihydroperoxides, several different PtdSer oxidation products can be formed. Overall, we concluded that cyt c acts as a catalyst of PtdSer oxidation during Fas-triggered A549 cell apoptosis.
Collapse
Affiliation(s)
- Jianfei Jiang
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Shidoji Y, Okamoto K, Muto Y, Komura S, Ohishi N, Yagi K. Prevention of geranylgeranoic acid-induced apoptosis by phospholipid hydroperoxide glutathione peroxidase gene. J Cell Biochem 2005; 97:178-87. [PMID: 16173080 DOI: 10.1002/jcb.20627] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Micromolar concentrations (0.5 approximately 5 microM) of all-trans geranylgeranoic acid (GGA) induced cell death in a guinea pig cell line, 104C1, whereas under the same conditions GGA was unable to kill 104C1/O4C, a clone established from 104C1 cells by transfection of them with the human phospholipid hydroperoxide glutathione peroxidase (PHGPx) gene. GGA (5 microM) induced a loss of the mitochondrial inner membrane potential (DeltaPsim) in 104C1 cells in 2 h, and their apoptotic cell death became evident in 6 h. On the other hand, 104C1/O4C cells were resistant to loss of DeltaPsim and showed intact morphology until at least 24 h after addition of 10 microM GGA. Dihydroethidine, superoxide-sensitive probe, was immediately oxidized 15 min after addition of GGA in both 104C1 and 104C1/O4C cells. The peroxide-sensitive probe 2',7'-dichlorofluorescin diacetate (H2-DCF-DA) was strongly oxidized in 104C1 cells 4 h after the addition of 2.5 microM GGA, but not in 104C1/O4C cells even in the presence of 10 microM GGA. The present results suggest that GGA induced a hyper-production of superoxide and subsequently peroxides, which in turn may have led to dissipation of the DeltaPsim and final apoptotic cell death in 104C1 cells.
Collapse
Affiliation(s)
- Yoshihiro Shidoji
- Molecular and Cellular Biology, Graduate School of Human Health Sciences, Siebold University of Nagasaki, Nagayo, Nagasaki 851-2195, Japan.
| | | | | | | | | | | |
Collapse
|
12
|
Song QX, Wei DZ, Zhou WY, Xu WQ, Yang SL. Enzymatic Synthesis and Antioxidant Properties of L-Ascorbyl Oleate and L-Ascorbyl Linoleate. Biotechnol Lett 2004; 26:1777-80. [PMID: 15672213 DOI: 10.1007/s10529-004-4607-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2004] [Accepted: 09/28/2004] [Indexed: 11/28/2022]
Abstract
L-Ascorbyl oleate and L-ascorbyl linoleate were synthesized by an immobilized lipase from Candida antarctica with yields of 38% and 44%, respectively. L-Ascorbyl oleate was stable in sterile culture medium over 12 h at 37 degrees C but L-ascorbyl linoleate degraded by 17%. Ascorbyl oleate had a better protective effect on human umbilical cord vein endothelial cells treated with H2O2 than of L-ascorbic acid-2-phosphate-6-palmitate (Asc2P6P).
Collapse
Affiliation(s)
- Qing-Xun Song
- State Key Laboratory of Bioreactor Engineering, Institute of Biochemistry, East China University of Science and Technology, Shanghai 200237, PR China
| | | | | | | | | |
Collapse
|
13
|
Fan S, Wei D, Liu J, Xin X, Tong W, Miwa N. Ascorbic acid-2-o-phosphate-6-o-palmitate protecting the human umbilical cord vein endothelial cells against hydrogen peroxide and tert-butyl hydroperoxide induced cytotoxicity. Biomed Pharmacother 2004; 58:205-11. [PMID: 15082344 DOI: 10.1016/j.biopha.2003.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2003] [Accepted: 09/17/2003] [Indexed: 11/28/2022] Open
Abstract
Reactive oxygen species are believed to play a role in the development of several diseases including vascular diseases and the aging process. It is reported that increased reactive oxygen species were implicated as an important mechanism that contributes to endothelial dysfunction. So, human umbilical cord vein endothelial cells were used to study the antioxidative effect of L-ascorbic acid and its derivative. The study indicated that L-ascorbic acid as a traditional antioxidant was instable and could protect the cells against hydrogen peroxide induced cytotoxicity as its concentration below 50 microg/ml, but hardly could protect the cells against tert-butyl hydroperoxide induced cytotoxicity. Ascorbic acid-2-o-phosphate-6-o-palmitate could effectively protect the cells against hydrogen peroxide and tert-butyl hydroperoxide induced cytotoxicity, and exhibited no cytotoxicity within the tested concentration range. The study indicated that ascorbic acid-2-o-phosphate-6-o-palmitate could not only significantly reduce the intracellular reactive oxygen species level in 3 h culture, but also increase the cell viability in 15 h culture. In addition, ascorbic acid-2-o-phosphate-6-o-palmitate could keep stable in RPMI-1640 medium and water for 4 days, permeate the cell membrane, which in turn may scavenge the intracellular reactive oxygen species, increase the cell viability and the plasminogen activators'activity. All the above results suggested that addition of some hydrophobic groups to the traditional antioxidants could form novel compounds with better properties.
Collapse
Affiliation(s)
- Shifen Fan
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, PR China
| | | | | | | | | | | |
Collapse
|
14
|
Drummen GPC, Makkinje M, Verkleij AJ, Op den Kamp JAF, Post JA. Attenuation of lipid peroxidation by antioxidants in rat-1 fibroblasts: comparison of the lipid peroxidation reporter molecules cis-parinaric acid and C11-BODIPY(581/591) in a biological setting. Biochim Biophys Acta Mol Cell Biol Lipids 2004; 1636:136-50. [PMID: 15164761 DOI: 10.1016/j.bbalip.2003.10.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Lipid peroxidation is a major factor in the pathogenesis of many disease states. To detect the initial stages of lipid peroxidation or evaluate antioxidant efficacy, cis-parinaric acid (cis-PnA) has been successfully used and thoroughly validated. However, cis-PnA is not very well suited for medium throughput screening of antioxidants in living cells. We recently introduced and validated a lipid peroxidation reporter molecule, C11-BODIPY(581/591). To further explore this probe, we evaluated the protective effect of 12 natural antioxidants in rat-1 fibroblasts subjected to 50 microM cumene-hydroperoxide using both probes. The same pecking order for the individual antioxidant efficacies was obtained: alpha-tocopherol approximately gamma-tocopherol > quercetin approximately lycopene > kaempferol > palm oil > hydroxy-tyrosol > > alpha-carotene = beta-carotene = lutein = tyrosol = chlorogenic acid. This validates the accuracy of the C11-BODIPY(581/591) method and shows that this assay is an accurate and highly flexible method for indexing lipid peroxidation or determining antioxidant efficacy in living cells in a medium throughput scenario. The antioxidant efficacy was compared with their one-electron reduction potential, hydrophobicity and Trolox C equivalent antioxidant capacity. Our results show that although these parameters are valuable for determining structure-function relationships, they have limited predictive value for antioxidant efficacy in vivo.
Collapse
Affiliation(s)
- Gregor P C Drummen
- Department of Biochemistry of Lipids, Institute and Graduate School of Biomembranes, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
15
|
Halliwell B, Whiteman M. Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol 2004; 142:231-55. [PMID: 15155533 PMCID: PMC1574951 DOI: 10.1038/sj.bjp.0705776] [Citation(s) in RCA: 1547] [Impact Index Per Article: 73.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Revised: 03/08/2004] [Accepted: 03/08/2004] [Indexed: 02/06/2023] Open
Abstract
Free radicals and other reactive species (RS) are thought to play an important role in many human diseases. Establishing their precise role requires the ability to measure them and the oxidative damage that they cause. This article first reviews what is meant by the terms free radical, RS, antioxidant, oxidative damage and oxidative stress. It then critically examines methods used to trap RS, including spin trapping and aromatic hydroxylation, with a particular emphasis on those methods applicable to human studies. Methods used to measure oxidative damage to DNA, lipids and proteins and methods used to detect RS in cell culture, especially the various fluorescent "probes" of RS, are also critically reviewed. The emphasis throughout is on the caution that is needed in applying these methods in view of possible errors and artifacts in interpreting the results.
Collapse
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, Faculty of Medicine, National University of Singapore, MD 7 #03-08, 8 Medical Drive, Singapore 117597, Singapore.
| | | |
Collapse
|
16
|
Borisenko GG, Martin I, Zhao Q, Amoscato AA, Tyurina YY, Kagan VE. Glutathione Propagates Oxidative Stress Triggered by Myeloperoxidase in HL-60 Cells. J Biol Chem 2004; 279:23453-62. [PMID: 15039448 DOI: 10.1074/jbc.m400119200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glutathione acts as a universal scavenger of free radicals at the expense of the formation of the glutathionyl radicals (GS*). Here we demonstrated that GS* radicals specifically interact with a reporter molecule, paramagnetic and non-fluorescent 4-((9-acridinecarbonyl)-amino)-2,2,6,6-tetramethylpiperidine-1-oxyl (Ac-Tempo), and convert it into a non-paramagnetic fluorescent product, identified as 4-((9-acridinecarbonyl)amino)-2,2,6,6-tetramethylpiperidine (Ac-piperidine). Horseradish peroxidase-, myeloperoxidase-, and cyclooxygenasecatalyzed oxidation of phenol in the presence of H2O2 and GSH caused the generation of phenoxyl radicals and GS* radicals, of which only the latter reacted with Ac-Tempo. Oxidation of several other phenolic compounds (e.g. etoposide and tyrosine) was accompanied by the formation of GS* radicals along with a characteristic fluorescence response from Ac-Tempo. In myeloperoxidase-rich HL-60 cells treated with H2O2 and phenol, fluorescence microscopic imaging of Ac-Tempo revealed the production of GS* radicals. A thiol-blocking reagent, N-ethylmaleimide, as well as myeloperoxidase inhibitors (succinyl acetone and azide), blocked formation of fluorescent acridine-piperidine. H2O2/phenolinduced peroxidation of major classes of phospholipids in HL-60 cells was completely inhibited by Ac-Tempo, indicating that GS* radicals were responsible for phospholipid peroxidation. Thus, GSH, commonly viewed as a universal free radical scavenger and major intracellular antioxidant, acts as a pro-oxidant during myeloperoxidase-catalyzed metabolism of phenol in HL-60 cells.
Collapse
Affiliation(s)
- Grigory G Borisenko
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Tyurina YY, Kawai K, Tyurin VA, Liu SX, Kagan VE, Fabisiak JP. The plasma membrane is the site of selective phosphatidylserine oxidation during apoptosis: role of cytochrome C. Antioxid Redox Signal 2004; 6:209-25. [PMID: 15025923 DOI: 10.1089/152308604322899288] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Phosphatidylserine (PS) externalization, a functional end point of apoptosis that triggers phagocytic recognition of dying cells, may be modulated by oxidative stress in biological membranes. We previously observed selective oxidation of PS during apoptosis, but the intracellular location and molecular mechanisms responsible for PS oxidation remain to be described. Peroxidation in individual classes of cellular phospholipids was monitored in whole cells and various subcellular fractions obtained from HL-60 cells undergoing apoptosis in response to tert-butyl hydroperoxide (t-BuOOH) after metabolic acylation of phospholipids with the oxidation-sensitive fluorescent fatty acid, cis-parinaric acid. Nonrandom selective oxidation of PS was observed in whole cells, as well as in plasma membrane. PS in mitochondria appeared selectively resistant to oxidation during apoptosis. All phospholipids in nuclear membranes appeared resistant to oxidation after t-BuOOH treatment. Selective PS oxidation was accompanied by cytochrome c release and PS externalization. PS oxidation and externalization were followed by caspase activation and other end points of apoptosis. HL-60 cells "loaded" with exogenous cytochrome c by mild sonication showed selective oxidation of PS in both the absence and presence of t-BuOOH. Cytochrome c/hydrogen peroxide could effectively oxidize purified PS but not phosphatidylcholine in a cell-free model system. Selective plasma membrane-based PS oxidation and subsequent externalization during oxidant-induced apoptosis may be mediated through the redox activity of cytochrome c.
Collapse
Affiliation(s)
- Yulia Y Tyurina
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | |
Collapse
|
18
|
Eto M, Bennouna J, Hunter OC, Hershberger PA, Kanto T, Johnson CS, Lotze MT, Amoscato AA. C16 ceramide accumulates following androgen ablation in LNCaP prostate cancer cells. Prostate 2003; 57:66-79. [PMID: 12886525 DOI: 10.1002/pros.10275] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Adenocarcinoma of the prostate is the most frequently diagnosed non-cutaneous cancer and the second leading cause of cancer-related deaths among men in the United States. The most successful therapies to date for this tumor have involved some form of androgen ablation. However, these therapies become ineffective as the tumor evolves to an androgen-insensitive state. Ceramide is a lipid second messenger that has been shown to mediate growth arrest or cell death when added exogenously to prostate cancer cells. As a first step toward understanding the events that lead to the transition of prostate cancer cells to an androgen-independent state, we considered investigating the effect of androgen ablation on endogenous ceramide levels in androgen-sensitive and androgen-insensitive prostate cancer cells. METHODS To investigate the mechanisms of growth arrest/apoptosis in androgen-sensitive (LNCaP) and insensitive (DU-145, PC-3) cells, we used various methods including nonyl acridine orange (NAO) staining, propidium iodide (PI) staining/cell-cycle analysis, lipid analysis, and Western blotting assays. RESULTS In this study, we demonstrate that androgen ablation drives G(0)/G(1)-phase cell-cycle arrest followed by progressive apoptosis in vitro, in LNCaP cells. Lipid analysis indicated an increase in C16 ceramide, which was generated via the de novo pathway as revealed by blockade of ceramide synthase by fumonisin B1. The addition of 5alpha-dihydrotestosterone (DHT) or fumonisin B1 rescued LNCaP cells from apoptosis induced by androgen ablation, and decreased levels of intracellular C16 ceramide. Neither apoptosis nor an increase in C16 ceramide was observed in androgen-independent cell lines following androgen ablation.
Collapse
Affiliation(s)
- Masatoshi Eto
- Department of Surgery/Division of Biological Therapeutics, University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15219, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Kagan VE, Borisenko GG, Serinkan BF, Tyurina YY, Tyurin VA, Jiang J, Liu SX, Shvedova AA, Fabisiak JP, Uthaisang W, Fadeel B. Appetizing rancidity of apoptotic cells for macrophages: oxidation, externalization, and recognition of phosphatidylserine. Am J Physiol Lung Cell Mol Physiol 2003; 285:L1-17. [PMID: 12788785 DOI: 10.1152/ajplung.00365.2002] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Programmed cell death (apoptosis) functions as a mechanism to eliminate unwanted or irreparably damaged cells ultimately leading to their orderly phagocytosis in the absence of calamitous inflammatory responses. Recent studies have demonstrated that the generation of free radical intermediates and subsequent oxidative stress are implicated as part of the apoptotic execution process. Oxidative stress may simply be an unavoidable yet trivial byproduct of the apoptotic machinery; alternatively, intermediates or products of oxidative stress may act as essential signals for the execution of the apoptotic program. This review is focused on the specific role of oxidative stress in apoptotic signaling, which is realized via phosphatidylserine-dependent pathways leading to recognition of apoptotic cells and their effective clearance. In particular, the mechanisms involved in selective phosphatidylserine oxidation in the plasma membrane during apoptosis and its association with disturbances of phospholipid asymmetry leading to phosphatidylserine externalization and recognition by macrophage receptors are at the center of our discussion. The putative importance of this oxidative phosphatidylserine signaling in lung physiology and disease are also discussed.
Collapse
Affiliation(s)
- V E Kagan
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Priault M, Bessoule JJ, Grelaud-Coq A, Camougrand N, Manon S. Bax-induced cell death in yeast depends on mitochondrial lipid oxidation. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:5440-50. [PMID: 12423342 DOI: 10.1046/j.1432-1033.2002.03234.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The oxidant function of pro-apoptotic protein Bax was investigated through heterologous expression in yeast. Direct measurements of fatty acid content show that Bax-expression induces oxidation of mitochondrial lipids. This effect is prevented by the coexpression of Bcl-xL. The oxidation actually could be followed on isolated mitochondria as respiration-induced peroxidation of polyunsaturated cis-parinaric acid and on whole cells as the increase in the amount of thiobarbituric acid-reactive products. Treatments that increase the unsaturation ratio of lipids, making them more sensitive to oxidation, increase kinetics of Bax-induced death. Conversely, inhibitors of lipid oxidation and treatments that decrease the unsaturation ratio of fatty acids decrease kinetics of Bax-induced death. Taken together, these results show that Bax-induced mitochondrial lipid oxidation is relevant to Bax-induced cell death. Conversely, lipid oxidation is poorly related to the massive Bax-induced superoxide and hydrogen peroxide accumulation, which occurs at the same time, as chemical or enzymatic scavenging of ROS does not prevent lipid oxidation nor has any effects on kinetics of Bax-induced cell death. Whatever the origin of mitochondrial lipid oxidation, these data show that it represents a major step in the cascade of events leading to Bax-induced cell death. These results are discussed in the light of the role of lipid oxidation both in mammalian apoptosis and in other forms of cell death in other organisms.
Collapse
Affiliation(s)
- Muriel Priault
- UMR5095 C.N.R.S./Université de Bordeaux 2, Bordeaux, France; UMR5544 C.N.R.S./Université de Bordeaux 2, Bordeaux, France
| | | | | | | | | |
Collapse
|
21
|
Drummen GPC, van Liebergen LCM, Op den Kamp JAF, Post JA. C11-BODIPY(581/591), an oxidation-sensitive fluorescent lipid peroxidation probe: (micro)spectroscopic characterization and validation of methodology. Free Radic Biol Med 2002; 33:473-90. [PMID: 12160930 DOI: 10.1016/s0891-5849(02)00848-1] [Citation(s) in RCA: 400] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
C11-BODIPY(581/591) is a fluorescent radio-probe for indexing lipid peroxidation and antioxidant efficacy in model membrane systems and living cells, with excellent characteristics: (i) emission in the visible range of the electromagnetic spectrum, with good spectral separation of the nonoxidized (595 nm) and oxidized (520 nm) forms; (ii) has a high quantum yield and because of this, low labeling concentrations can be used, ensuring minimal perturbation of the membrane whilst retaining favorable signal to noise ratios; (iii) has a good photo-stability and displays very few fluorescence artifacts; (iv) is virtually insensitive to environmental changes, i.e., pH or solvent polarity; (v) is lipophilic and as such easily enters membranes; (vi) once oxidized, C11-BODIPY(581/591) remains lipophilic and does not spontaneously leave the lipid bilayer; (vii) C11-BODIPY(581/591) localizes in two distinct pools within the lipid bilayer, a shallow pool at 18 A and a deep pool at < 7.5 A from the center of the bilayer; (viii) is not cytotoxic to rat-1 fibroblasts up to 50 microM; (ix) is sensitive to a variety of oxy-radicals and peroxynitrite, but not to superoxide, nitric oxide, transition metal ions, and hydroperoxides per se; (x) its sensitivity to oxidation is comparable to that of endogenous fatty acyl moieties.
Collapse
Affiliation(s)
- Gregor P C Drummen
- Department of Biochemistry of Lipids, Institute and Graduate School of Biomembranes, Utrecht University, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
22
|
Tyurina YY, Tyurin VA, Shvedova AA, Fabisiak JP, Kagan VE. Peroxidation of phosphatidylserine in mechanisms of apoptotic signaling. Methods Enzymol 2002; 352:159-74. [PMID: 12125344 DOI: 10.1016/s0076-6879(02)52016-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yulia Y Tyurina
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | | | |
Collapse
|
23
|
Matsura T, Serinkan BF, Jiang J, Kagan VE. Phosphatidylserine peroxidation/externalization during staurosporine-induced apoptosis in HL-60 cells. FEBS Lett 2002; 524:25-30. [PMID: 12135736 DOI: 10.1016/s0014-5793(02)02990-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although oxidative stress is commonly associated with apoptosis, its specific role in the execution of the apoptotic program has yet to be described. We hypothesized that catalytic redox interactions between negatively charged phosphatidylserine (PS) and positively charged cytochrome c released into the cytosol, along with the production of reactive oxygen species (ROS), results in pronounced oxidation and externalization of PS, and subsequent recognition of apoptotic cells by macrophages. By using staurosporine, a protein kinase inhibitor that does not act as a prooxidant, we were able to induce apoptosis in HL-60 cells without triggering the confounding effects of non-specific oxidation reactions. Through this approach, we demonstrated for the first time that PS underwent a statistically significant and pronounced oxidation at an early stage (2 h) of non-oxidant-induced apoptosis while the most abundant phospholipid, phosphatidylcholine, did not. Glutathione (GSH), the most abundant cytosolic thiol, also remained unoxidized at this time point. Furthermore, PS oxidation and the appearance of cytochrome c in the cytosol were concurrent; PS externalization was followed by phagocytosis of apoptotic cells. These findings are compatible with our proposed roles for oxidative PS-dependent signaling during apoptosis and phagocytosis.
Collapse
Affiliation(s)
- Tatsuya Matsura
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | |
Collapse
|
24
|
Shvedova AA, Tyurina JY, Kawai K, Tyurin VA, Kommineni C, Castranova V, Fabisiak JP, Kagan VE. Selective peroxidation and externalization of phosphatidylserine in normal human epidermal keratinocytes during oxidative stress induced by cumene hydroperoxide. J Invest Dermatol 2002; 118:1008-18. [PMID: 12060396 DOI: 10.1046/j.1523-1747.2002.01759.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Reactive oxygen species not only modulate important signal transduction pathways, but also induce DNA damage and cytotoxicity in keratinocytes. Hydrogen peroxide and organic peroxides are particularly important as these chemicals are widely used in dermally applied cosmetics and pharmaceuticals, and also represent endogenous metabolic intermediates. Lipid peroxidation is of fundamental interest in the cellular response to peroxides, as lipids are extremely sensitive to oxidation and lipid-based signaling systems have been implicated in a number of cellular processes, including apoptosis. Oxidation of specific phospholipid classes was measured in normal human epidermal keratinocytes exposed to cumene hydroperoxide after metabolic incorporation of the fluorescent oxidation-sensitive fatty acid, cis-parinaric acid, using a fluorescence high-performance liquid chromatography assay. In addition, lipid oxidation was correlated with changes in membrane phospholipid asymmetry and other markers of apoptosis. Although cumene hydroperoxide produced significant oxidation of cis-parinaric acid in all phospholipid classes, one phospholipid, phosphatidylserine, appeared to be preferentially oxidized above all other species. Using fluorescamine derivatization and annexin V binding it was observed that specific oxidation of phosphatidylserine was accompanied by phosphatidylserine translocation from the inner to the outer plasma membrane surface where it may serve as a recognition signal for interaction with phagocytic macrophages. These effects occurred much earlier than any detectable changes in other apoptotic markers such as caspase-3 activation, DNA fragmentation, or changes in nuclear morphology. Thus, normal human epidermal keratinocytes undergo profound lipid oxidation with preference for phosphatidylserine followed by phosphatidylserine externalization upon exposure to cumene hydroperoxide. It is therefore likely that normal human epidermal keratinocytes exposed to similar oxidative stress in vivo would under go phosphatidylserine oxidation/translocation. This would make them targets for macrophage recognition and phagocytosis, and thus limit their potential to invoke inflammation or give rise to neoplastic transformations.
Collapse
Affiliation(s)
- Anna A Shvedova
- Health Effects Laboratory Division, Pathology and Physiology Research Branch, NIOSH, Morgantown, West Virginia 26505, USA.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Angioni E, Lercker G, Frega NG, Carta G, Melis MP, Murru E, Spada S, Banni S. UV spectral properties of lipids as a tool for their identification. EUR J LIPID SCI TECH 2002. [DOI: 10.1002/1438-9312(200201)104:1<59::aid-ejlt59>3.0.co;2-i] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
Epperly MW, Kagan VE, Sikora CA, Gretton JE, Defilippi SJ, Bar-Sagi D, Greenberger JS. Manganese superoxide dismutase-plasmid/liposome (MnSOD-PL) administration protects mice from esophagitis associated with fractionated radiation. Int J Cancer 2001; 96:221-31. [PMID: 11474496 DOI: 10.1002/ijc.1023] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Intraesophageal administration of manganese superoxide dismutase-plasmid/liposome (MnSOD-PL) prior to single fraction radiation has been shown to protect mice from lethal esophagitis. In our study, C3H/HeNsd mice received fractionated radiation in two protocols: (i) 18 Gy daily for four days with MnSOD-PL administration 24 hr prior to the first and third fraction, or (ii) 12 Gy daily for six days with MnSOD-PL 24 hr prior to the first, third, and fifth fraction. Control radiated mice received either no liposomes only or LacZ (bacterial beta-galactosidase gene)-plasmid/liposome (LacZ-PL) by the same schedules. We measured thiol depletion and lipid peroxidation (LP) in whole esophagus and tested the effectiveness of a new plasmid, hemagglutinin (HA) epitope-tagged MnSOD (HA-MnSOD). In fractionation protocols, mice receiving MnSOD-PL, but not LacZ-PL (200 microl of plasmid/liposomes containing 200 microg of plasmid DNA), showed a significant reduction in morbidity, decreased weight loss, and improved survival. Four and seven days after 37 Gy single fraction radiation, the esophagus demonstrated a significant increase in peroxidized lipids and reduction in overall antioxidant levels, reduced thiols, and decreased glutathione (GSH). These reductions were modulated by MnSOD-PL administration. The HA-MnSOD plasmid product was detected in the basal layers of the esophageal epithelium 24 hr after administration and provided significant radiation protection compared to glutathione peroxidase-plasmid/liposome (GPX-PL), or liposomes containing MnSOD protein, vitamin E, co-enzyme Q10, or 21-aminosteroid. Thus, MnSOD-PL administration significantly improved tolerance to fractionated radiation and modulated radiation effects on levels of GSH and lipid peroxidation (LP). These studies provide further support for translation of MnSOD-PL treatment into human esophageal radiation protection.
Collapse
Affiliation(s)
- M W Epperly
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Takahashi M, Shibata M, Niki E. Estimation of lipid peroxidation of live cells using a fluorescent probe, diphenyl-1-pyrenylphosphine. Free Radic Biol Med 2001; 31:164-74. [PMID: 11440828 DOI: 10.1016/s0891-5849(01)00575-5] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Diphenyl-1-pyrenylphosphine (DPPP), which reacts with lipid hydroperoxides stoichiometrically to yield fluorescent product DPPP oxide, was used as a fluorescent probe for lipid peroxidation in live cells. DPPP was successfully incorporated into U937 cells. Incorporation of DPPP into the cell membrane was confirmed by fluorescence microscopy. Reaction of DPPP with hydroperoxides was examined by monitoring increase in fluorescence intensity of the cell. It was found that lipid-soluble hydroperoxides such as methyl linoleate hydroperoxide preferably react with DPPP, whereas hydrogen peroxide did not react with DPPP located in the membrane. Linear correlation between increase in fluorescence intensity and the amount of methyl linoleate hydroperoxide applied to the cell was observed. DPPP gave little effect on cell proliferation, cell viability or cell morphology for at least 3 d. DPPP oxide, fluorescent product of DPPP, was quite stable in the membrane of living cells for at least 2 d. Fluorescence of DPPP-labeled cells was measured after treating with diethylmaleate (DEM), or 2,2'-Azobis(2-amidinopropane) dihydrochloride (AAPH), or culturing with low serum content. These reagents and culture condition induced dose- and/or time-dependent increase in fluorescence. Addition of vitamin E effectively suppressed increase in fluorescence. When DPPP-labeled cells and DCFH-DA-labeled cells were treated with NO, H(2)O(2), AAPH, and DEM to compare the formation of hydoperoxides in the membrane and cytosol, distinct patterns of peroxide formation were observed. These results indicate that fluorescent probe DPPP is eligible for estimation of lipid peroxidation proceeding in the membrane of live cells, and use of this probe is especially advantageous in long-term peroxidation of the cell.
Collapse
Affiliation(s)
- M Takahashi
- Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan.
| | | | | |
Collapse
|
28
|
Greenberger JS, Kagan VE, Pearce L, Boriseniao G, Tyurina Y, Epperly MW. Modulation of redox signal transduction pathways in the treatment of cancer. Antioxid Redox Signal 2001; 3:347-59. [PMID: 11491649 DOI: 10.1089/15230860152409004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Reactive oxygen species (ROS)-mediated damage to DNA is associated with induction of stress-activated protein kinases leading to secondary and tertiary effects on the nuclear matrix, cytoplasmic transport mechanisms, and altered mitochondrial and cell membranes. The cellular defenses against ROS damage are associated with up-regulation of gene products that can significantly alter cell biology, including antiapoptotic Bax family proteins and inflammatory proteins. Altered cell integrity can occur either directly or by indirect paracrine and juxtacrine interactions within tissues. Previous approaches toward therapeutic intervention against ROS damage have included administration of radical scavenger compounds, use of novel drugs that increase cellular production of constitutive antioxidants, or pharmacologic agents that modify the intracellular transport of antioxidants. Strategies to modify the cellular effects of ROS in hyperbaric oxygen injury to the lung, reperfusion injury to transplanted organs, and cancer have led to novel approaches of gene therapy in which the transgenes for antioxidant proteins can be expressed in specific tissues. Reducing tissue-damaging effects of ROS may have relevance to cancer patients by ameliorating normal tissue damage from ionizing irradiation therapy, photodynamic therapy, and cancer chemotherapy.
Collapse
Affiliation(s)
- J S Greenberger
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, University of Pittsburgh Medical Center, PA 15213, USA.
| | | | | | | | | | | |
Collapse
|
29
|
van Gorp RM, Hornstra G, van Dam-Mieras MC, Heemskerk JW. Function of glutathione peroxidase in endothelial cell vitality. Arch Biochem Biophys 2000; 382:63-71. [PMID: 11051098 DOI: 10.1006/abbi.2000.1959] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The two human umbilical vein endothelial cell-derived lines, ECRF24 and ECV304, differ in responsiveness to oxidative stress. In confluent monolayers of ECRF24, but not in ECV304, peroxides induce stress responses such as plasma membrane blebbing and nuclear condensation. The peroxide effect on ECRF24 was preceded by oxidation of reduced glutathione (GSH) and of NAD(P)H, and by oxidation of the redox-sensitive probe, chloromethyl 2',7'-dichlorofluorescin (DCFH). In monolayers of ECV304, peroxides induced only minimal oxidation of GSH, NAD(P)H and DCFH, which was associated with a greatly reduced GSH peroxidase activity in these cells. However, in spite of the absence of a blebbing response, ECV304 were more susceptible than ECRF24 to membrane lipid peroxidation and peroxide-induced necrosis. Only for ECV304, the culturing with high levels of polyunsaturated fatty acids increased lipid peroxidation and cellular death. Treatment of these cells with the GSH peroxidase mimic ebselen effectively reversed their decreased vitality. We conclude that, in peroxide-treated endothelial cells, cell death (necrosis) can result from lipid peroxidation by peroxide that has not been removed by GSH peroxidases, whereas extensive peroxidase activity may cause a stress response (blebbing). The data further identify ECV304 as a stress-sensitive cell line, where peroxides exert their effects independently of GSH oxidation.
Collapse
Affiliation(s)
- R M van Gorp
- Department of Human Biology, Maastricht University, The Netherlands
| | | | | | | |
Collapse
|
30
|
Tyurina YY, Shvedova AA, Kawai K, Tyurin VA, Kommineni C, Quinn PJ, Schor NF, Fabisiak JP, Kagan VE. Phospholipid signaling in apoptosis: peroxidation and externalization of phosphatidylserine. Toxicology 2000; 148:93-101. [PMID: 10962127 DOI: 10.1016/s0300-483x(00)00199-2] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The role of phospholipids in apoptosis signaling and the relationship between oxidation of phosphatidylserine and its redistribution in the plasma membrane were studied. A novel method for detection of site-specific phospholipid peroxidation based on the use of cis-parinaric acid as a reporter molecule metabolically integrated into membrane phospholipids in living cells was employed. When several tissue culture cell lines and different exogenous oxidants were used, the relationship between the oxidation of phosphatidylserine and apoptosis has been revealed. The plasma membrane was the preferred site of phosphatidylserine oxidation in cells. It was shown that selective oxidation of phosphatidylserine precedes its translocation from the inside to the outside surface of the plasma membrane during apoptosis. A model is proposed in which cytochrome c released from mitochondria by oxidative stress binds to phosphatidylserine located at the cytoplasmic surface of the plasma membrane and induces its oxidation. Interaction of peroxidized phosphatidylserine with aminophospholipid translocase causes inhibition of the enzyme relevant to phosphatidylserine externalization.
Collapse
Affiliation(s)
- Y Y Tyurina
- Department of Environmental and Occupational Health, University of Pittsburgh, 260 Kappa Drive, RIDC Park, Pittsburgh, PA 15238, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Galang N, Sasaki H, Maulik N. Apoptotic cell death during ischemia/reperfusion and its attenuation by antioxidant therapy. Toxicology 2000; 148:111-8. [PMID: 10962129 DOI: 10.1016/s0300-483x(00)00201-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Apoptosis is a form of programmed cell death that can be induced in susceptible cells by a wide variety of normal physiological stimuli as well as by deleterious environmental conditions and cytotoxic agents. The common inducers of apoptosis include oxygen free radicals/oxidative stress and Ca(2+) which are also implicated in the pathogenesis of myocardial ischemic reperfusion injury. To examine how free radicals are directly involved in apoptosis, rats were divided into three groups. The first group of rat hearts were perfused for 15 min with KHB buffer, the second group of rat hearts were perfused with superoxide dismutase plus catalase, and the hearts were subjected to 30 min of ischemia and 120 min of reperfusion. The third group of rat hearts, served as control which were subjected to 165 min of perfusion with KHB buffer (where n=6 rats in each group). At the end of each experiment, hearts were saved (at -70 degrees C) and analysed for apoptosis, DNA laddening and MDA production. During the reperfusion continuous cardiac pressure measurements were recorded in real time with a data acquisition and analysis system (CORDAT II, Triton Technologies). Direct measurements of heart rate, developed pressure and the first derivative of the developed pressure were recorded before the intervention and during the reperfusion. Coronary flow was measured by timed collection of coronary effluent. The results of our study revealed apoptotic cells after 120 min of reperfusion as demonstrated by the intense fluorescence of the immunostained digoxigeninlabeled genomic DNA when observed under fluroscence microscopy. Evaluation of DNA fragmentation showed increased ladders of DNA bands in the same reperfused hearts representing integer multiples of the internucleosomal DNA, about 180 bp. The presence of apoptotic cells and DNA fragmentation in the myocardium were abolished by preperfusing the hearts in the presence of SOD and catalase, which also reduced the oxidative stress as evidenced by the MDA production. In concert, myocardial function was significantly better when compared with the ischemic control. Taken together, these results clearly demonstrate that oxidative stress developed in the ischemic reperfused myocardium induces apoptosis and free radical scavengers can play a crucial role in apoptotic cell death associated with ischemia/reperfusion.
Collapse
Affiliation(s)
- N Galang
- Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06030-1110, USA
| | | | | |
Collapse
|
32
|
Kagan VE, Fabisiak JP, Shvedova AA, Tyurina YY, Tyurin VA, Schor NF, Kawai K. Oxidative signaling pathway for externalization of plasma membrane phosphatidylserine during apoptosis. FEBS Lett 2000; 477:1-7. [PMID: 10899301 DOI: 10.1016/s0014-5793(00)01707-5] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Active maintenance of membrane phospholipid asymmetry is universal in normal cell membranes and its disruption with subsequent externalization of phosphatidylserine is a hallmark of apoptosis. Externalized phosphatidylserine appears to serve as an important signal for targeting recognition and elimination of apoptotic cells by macrophages, however, the molecular mechanisms responsible for phosphatidylserine translocation during apoptosis remain unresolved. Studies have focused on the function of aminophospholipid translocase and phospholipid scramblase as mediators of this process. Here we present evidence that unique oxidative events, represented by selective oxidation of phosphatidylserine, occur during apoptosis that could promote phosphatidylserine externalization. We speculate that selective phosphatidylserine oxidation could affect phosphatidylserine recognition by aminophospholipid translocase and/or directly result in enzyme inhibition. The potential interactions between the anionic phospholipid phosphatidylserine and the redox-active cationic protein effector of apoptosis, cytochrome c, are presented as a potential mechanism to account for selective oxidation of phosphatidylserine during apoptosis. Thus, cytochrome c-mediated phosphatidylserine oxidation may represent an important component of the apoptotic pathway.
Collapse
Affiliation(s)
- V E Kagan
- Department of Environmental and Occupational Health, University of Pittsburgh, 260 Kappa Drive, Pittsburgh, PA 15238, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Exposure of cells to ionizing radiation results in complex cellular responses resulting in cell death and altered proliferation states. The underlying cytotoxic, cytoprotective and cellular stress responses to radiation are mediated by existing signaling pathways, activation of which may be amplified by intrinsic cellular radical production systems. These signaling responses include the activation of plasma membrane receptors, the stimulation of cytoplasmic protein kinases, transcriptional activation, and altered cell cycle regulation. From the data presented, there is increasing evidence for the functional links between cellular signal transduction responses and DNA damage recognition and repair, cell survival, or cell death through apoptosis or reproductive mechanisms.
Collapse
Affiliation(s)
- R K Schmidt-Ullrich
- Department of Radiation Oncology Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | | | | | | | |
Collapse
|
34
|
Shvedova AA, Kommineni C, Jeffries BA, Castranova V, Tyurina YY, Tyurin VA, Serbinova EA, Fabisiak JP, Kagan VE. Redox cycling of phenol induces oxidative stress in human epidermal keratinocytes. J Invest Dermatol 2000; 114:354-64. [PMID: 10651998 DOI: 10.1046/j.1523-1747.2000.00865.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A variety of phenolic compounds are utilized for industrial production of phenol-formaldehyde resins, paints, lacquers, cosmetics, and pharmaceuticals. Skin exposure to industrial phenolics is known to cause skin rash, dermal inflammation, contact dermatitis, leucoderma, and cancer promotion. The biochemical mechanisms of cytotoxicity of phenolic compounds are not well understood. We hypothesized that enzymatic one-electron oxidation of phenolic compounds resulting in the generation of phenoxyl radicals may be an important contributor to the cytotoxic effects. Phenoxyl radicals are readily reduced by thiols, ascorbate, and other intracellular reductants (e.g., NADH, NADPH) regenerating the parent phenolic compound. Hence, phenolic compounds may undergo enzymatically driven redox-cycling thus causing oxidative stress. To test the hypothesis, we analyzed endogenous thiols, lipid peroxidation, and total antioxidant reserves in normal human keratinocytes exposed to phenol. Using a newly developed cis-parinaric acid-based procedure to assay site-specific oxidative stress in membrane phospholipids, we found that phenol at subtoxic concentrations (50 microM) caused oxidation of phosphatidylcholine and phosphatidylethanolamine (but not of phosphatidylserine) in keratinocytes. Phenol did not induce peroxidation of phospholipids in liposomes prepared from keratinocyte lipids labeled by cis-parinaric acid. Measurements with ThioGlo-1 showed that phenol depleted glutathione but did not produce thiyl radicals as evidenced by our high-performance liquid chromatography measurements of GS.-5, 5-dimethyl1pyrroline N-oxide nitrone. Additionally, phenol caused a significant decrease of protein SH groups. Luminol-enhanced chemiluminescence assay demonstrated a significant decrease in total antioxidant reserves of keratinocytes exposed to phenol. Incubation of ascorbate-preloaded keratinocytes with phenol produced an electron paramagnetic resonance-detectable signal of ascorbate radicals, suggesting that redox-cycling of one-electron oxidation products of phenol, its phenoxyl radicals, is involved in the oxidative effects. As no cytotoxicity was observed in keratinocytes exposed to 50 microM or 500 microM phenol, we conclude that phenol at subtoxic concentrations causes significant oxidative stress.
Collapse
Affiliation(s)
- A A Shvedova
- Health Effects Laboratory Division, Pathology and Physiology Research Branch, NIOSH, Morgantown, West Virginia, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Goldman R, Claycamp GH, Sweetland MA, Sedlov AV, Tyurin VA, Kisin ER, Tyurina YY, Ritov VB, Wenger SL, Grant SG, Kagan VE. Myeloperoxidase-catalyzed redox-cycling of phenol promotes lipid peroxidation and thiol oxidation in HL-60 cells. Free Radic Biol Med 1999; 27:1050-63. [PMID: 10569638 DOI: 10.1016/s0891-5849(99)00140-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Various types of cancer occur in peroxidase-rich target tissues of animals exposed to aryl alcohols and amines. Unlike biotransformation by cytochrome P450 enzymes, peroxidases activate most substrates by one-electron oxidation via radical intermediates. This work analyzed the peroxidase-dependent formation of phenoxyl radicals in HL-60 cells and its contribution to cytotoxicity and genotoxicity. The results showed that myeloperoxidase-catalyzed redox cycling of phenol in HL-60 cells led to intracellular formation of glutathionyl radicals detected as GS-DMPO nitrone. Formation of thiyl radicals was accompanied by rapid oxidation of glutathione and protein-thiols. Analysis of protein sulfhydryls by SDS-PAGE revealed a significant oxidation of protein SH-groups in HL-60 cells incubated in the presence of phenol/H2O2 that was inhibited by cyanide and azide. Additionally, cyanide- and azide-sensitive generation of EPR-detectable ascorbate radicals was observed during incubation of HL-60 cell homogenates in the presence of ascorbate and H2O2. Oxidation of thiols required addition of H2O2 and was inhibited by pretreatment of cells with the inhibitor of heme synthesis, succinylacetone. Radical-driven oxidation of thiols was accompanied by a trend toward increased content of 8-oxo-7,8-dihydro-2'-deoxyguanosine in the DNA of HL-60 cells. Membrane phospholipids were also sensitive to radical-driven oxidation as evidenced by a sensitive fluorescence HPLC-assay based on metabolic labeling of phospholipids with oxidation-sensitive cis-parinaric acid. Phenol enhanced H2O2-dependent oxidation of all classes of phospholipids including cardiolipin, but did not oxidize parinaric acid-labeled lipids without addition of H2O2. Induction of a significant hypodiploid cell population, an indication of apoptosis, was detected after exposure to H2O2 and was slightly but consistently and significantly higher after exposure to H2O2/phenol. The clonogenicity of HL-60 cells decreased to the same extent after exposure to H2O2 or H2O2/phenol. Treatment of HL-60 cells with either H2O2 or H2O2/phenol at concentrations adequate for lipid peroxidation did not cause a detectable increase in chromosomal breaks. Detection of thiyl radicals as well as rapid oxidation of thiols and phospholipids in viable HL-60 cells provide strong evidence for redox cycling of phenol in this bone marrow-derived cell line.
Collapse
Affiliation(s)
- R Goldman
- Department of Environmental & Occupational Health, University of Pittsburgh, PA 15238, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Thomas RL, Matsko CM, Lotze MT, Amoscato AA. Mass spectrometric identification of increased C16 ceramide levels during apoptosis. J Biol Chem 1999; 274:30580-8. [PMID: 10521441 DOI: 10.1074/jbc.274.43.30580] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A variety of molecular changes occur during the process of apoptosis. Much of the recent work has focused on changes in critical cellular proteins, proteins necessary for the initiation and continuation of the apoptotic process. Given the fact that numerous membrane changes occur throughout the apoptotic process, we initiated an investigation aimed at determining the major lipid changes that occurred during programmed cell death. When ionizing radiation was used to initiate the apoptotic process in Jurkat cells, one of the major changes that occurred within 24 h was an increase in a species with a m/z of 572 as determined by negative ion electrospray mass spectrometry. This particular mass ion displayed high performance liquid chromatography characteristics of a neutral lipid species. Further analysis by collision-induced-dissociation tandem mass spectrometry indicated only one daughter species indicative of a Cl adduct and therefore a parental mass of 537. Comparison to a commercial C16 ceramide yielded identical spectra by mass spectrometry (MS) and MS/MS analysis in the negative ion mode. Increases in C16 ceramide levels occurred 2 h after initiation of apoptosis by ionizing radiation, and its accumulation paralleled apoptosis as determined by cellular morphology. Interestingly, radiation-sensitive Jurkat cells displayed increased levels of long term C16 ceramide accumulation, whereas radiation-resistant K562 cells did not. These findings were supported by increases in caspase-3 activity in Jurkat cells, whereas caspase-3 activity in K562 cells remained unchanged. C16 ceramide accumulation and sensitivity to ionizing radiation was investigated further in a melanoma cell line. Only those cells that were radiation sensitive (approximately 70-75%) displayed increases in long term ceramide accumulation. Taken together, these results indicated a correlation between increases in C16 ceramide accumulation and radiation sensitivity. Increases in long term C16 ceramide accumulation were also seen in Fas-induced apoptosis, which occurred at time points greater than 2 h. Analysis of mitochondrial modifications using the mitochondrial probe nonyl acridine orange (NAO) indicated that initial increases in C16 ceramide levels closely paralleled the decrease in mitochondrial mass during Fas or radiation-induced apoptosis. Taken together, these results support a role for C16 ceramide in the effector (mitochondrial) phase of apoptosis.
Collapse
Affiliation(s)
- R L Thomas
- Department of Surgery, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | |
Collapse
|
37
|
Kagan VE, Yalowich JC, Borisenko GG, Tyurina YY, Tyurin VA, Thampatty P, Fabisiak JP. Mechanism-based chemopreventive strategies against etoposide-induced acute myeloid leukemia: free radical/antioxidant approach. Mol Pharmacol 1999; 56:494-506. [PMID: 10462537 DOI: 10.1124/mol.56.3.494] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Etoposide (VP-16) is extensively used to treat cancer, yet its efficacy is calamitously associated with an increased risk of secondary acute myelogenous leukemia. The mechanisms for the extremely high susceptibility of myeloid stem cells to the leukemogenic effects of etoposide have not been elucidated. We propose a mechanism to account for the etoposide-induced secondary acute myelogenous leukemia and nutritional strategies to prevent this complication of etoposide therapy. We hypothesize that etoposide phenoxyl radicals (etoposide-O(.)) formed from etoposide by myeloperoxidase are responsible for its genotoxic effects in bone marrow progenitor cells, which contain constitutively high myeloperoxidase activity. Here, we used purified human myeloperoxidase, as well as human leukemia HL60 cells with high myeloperoxidase activity and provide evidence of the following. 1) Etoposide undergoes one-electron oxidation to etoposide-O(.) catalyzed by both purified myeloperoxidase and myeloperoxidase activity in HL60 cells; formation of etoposide-O(.)radicals is completely blocked by myeloperoxidase inhibitors, cyanide and azide. 2) Intracellular reductants, GSH and protein sulfhydryls (but not phospholipids), are involved in myeloperoxidase-catalyzed etoposide redox-cycling that oxidizes endogenous thiols; pretreatment of HL60 cells with a maleimide thiol reagent, ThioGlo1, prevents redox-cycling of etoposide-O(.) radicals and permits their direct electron paramagnetic resonance detection in cell homogenates. VP-16 redox-cycling by purified myeloperoxidase (in the presence of GSH) or by myeloperoxidase activity in HL60 cells is accompanied by generation of thiyl radicals, GS(.), determined by HPLC assay of 5, 5-dimethyl-1-pyrroline glytathionyl N-oxide glytathionyl nitrone adducts. 3) Ascorbate directly reduces etoposide-O(.), thus competitively inhibiting etoposide-O(.)-induced thiol oxidation. Ascorbate also diminishes etoposide-induced topo II-DNA complex formation in myeloperoxidase-rich HL60 cells (but not in HL60 cells with myeloperoxidase activity depleted by pretreatment with succinyl acetone). 4) A vitamin E homolog, 2,2,5,7, 8-pentamethyl-6-hydroxychromane, a hindered phenolic compound whose phenoxyl radicals do not oxidize endogenous thiols, effectively competes with etoposide as a substrate for myeloperoxidase, thus preventing etoposide-O(.)-induced redox-cycling. We conclude that nutritional antioxidant strategies can be targeted at minimizing etoposide conversion to etoposide-O(.), thus minimizing the genotoxic effects of the radicals in bone marrow myelogenous progenitor cells, i.e., chemoprevention of etoposide-induced acute myelogenous leukemia.
Collapse
Affiliation(s)
- V E Kagan
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Schor NF, Tyurina YY, Tyurin VA, Kagan VE. Differential membrane antioxidant effects of immediate and long-term estradiol treatment of MCF-7 breast cancer cells. Biochem Biophys Res Commun 1999; 260:410-5. [PMID: 10403783 DOI: 10.1006/bbrc.1999.0937] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies have documented the direct antioxidant effects of estradiol, and it is tempting to ascribe the antiapoptosis effects of estradiol to its scavenging of reactive oxygen species. However, recent reports have also demonstrated that long-term exposure of MCF-7 human breast cancer cells to estradiol results in estrogen receptor- and estradiol dose-dependent overexpression of the antiapoptosis gene, bcl-2. We have used the pattern of protection of membrane phospholipids from oxidation as a probe to separate these direct and indirect effects of estradiol from one another. Immediate exposure to estradiol non-specifically protects all membrane phospholipids from oxidation by the diazo radical initiator, AMVN. This implies the direct antioxidant activity of estradiol in this system. In contrast, long-term exposure, with associated increased expression of bcl-2, protects only phosphatidylserine, the oxidation of which is a critical component of the final common pathway for apoptosis. This bcl-2-mediated indirect effect of estradiol is accompanied by prevention of apoptosis in MCF-7 cells.
Collapse
Affiliation(s)
- N F Schor
- School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
| | | | | | | |
Collapse
|
39
|
Schor NF, Tyurina YY, Fabisiak JP, Tyurin VA, Lazo JS, Kagan VE. Selective oxidation and externalization of membrane phosphatidylserine: Bcl-2-induced potentiation of the final common pathway for apoptosis. Brain Res 1999; 831:125-30. [PMID: 10411991 DOI: 10.1016/s0006-8993(99)01414-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The induction of apoptosis in PC12 cells by the enediyne neocarzinostatin (NCS) is paradoxically potentiated by overexpression of bcl-2. The enhanced activation of NCS seen in bcl-2-overexpressing cells cannot by itself be responsible for the potentiation of apoptosis, since Bcl-2 would be expected to block apoptosis at a point distal to NCS activation (e.g., in the apoptosis final common pathway). We now report that overexpression of bcl-2 in PC12 cells does not protect the cells from NCS-induced oxidation of membrane phosphatidylserine (PS), and results in potentiation of NCS-induced externalization of membrane PS, two events associated with the apoptosis final common pathway. The mechanism of potentiation of apoptosis by Bcl-2 is related to the enhanced reducing potential of bcl-2-overexpressing PC12 cells.
Collapse
Affiliation(s)
- N F Schor
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Korytowski W, Wrona M, Girotti AW. Radiolabeled cholesterol as a reporter for assessing one-electron turnover of lipid hydroperoxides. Anal Biochem 1999; 270:123-32. [PMID: 10328773 DOI: 10.1006/abio.1999.4070] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A novel approach for assessing the peroxidative chain initiation potency of lipid hydroperoxides has been developed, which involves use of 14C-labeled cholesterol (Ch) as a "reporter" lipid. Unilamellar liposomes containing 1-palmitoyl-2-oleoyl-phosphatidylcholine, [14C]Ch, and 3beta-hydroxy-5alpha-cholest-6-ene-5-hydroperoxide (5alpha-OOH) or 3beta-hydroxycholest-5-ene-7alpha-hydroperoxide (7alpha-OOH) [100:75:5, mol/mol] were used as a test system. Liposomes incubated in the presence of ascorbate and a lipophilic iron complex were analyzed for radiolabeled oxidation products/intermediates (ChOX) by means of silica gel high-performance thin layer chromatography with phosphorimaging detection. The following ChOX were detected and quantified: 7alpha-OOH, 7beta-OOH, 7alpha-OH, 7beta-OH, and 5, 6-epoxide. Total ChOX yield increased in essentially the same time- and [iron]-dependent fashion for initiating 5alpha-OOH and 7alpha-OOH. The initial rate of [14C]7alphabeta-OH formation was greatly diminished when GSH and ebselen (a selenoperoxidase mimetic) were present, consistent with the attenuation of one-electron peroxide turnover. [14C]Ch-labeled L1210 cells also accumulated ChOX when incubated with 5alpha-OOH-containing liposomes. The rate of accumulation was substantially greater for Se-deficient than Se-sufficient cells, indicating that peroxide-induced chain reactions were modulated by selenoperoxidase action. These results illustrate the advantages of the new approach for highly sensitive in situ monitoring of cellular peroxidative damage.
Collapse
Affiliation(s)
- W Korytowski
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | |
Collapse
|
41
|
Shvedova AA, Tyurina YY, Gorbunov NV, Tyurin VA, Castranova V, Kommineni C, Ojimba J, Gandley R, McLaughlin MK, Kagan VE. tert-butyl hydroperoxide/hemoglobin-induced oxidative stress and damage to vascular smooth muscle cells: different effects of nitric oxide and nitrosothiols. Biochem Pharmacol 1999; 57:989-1001. [PMID: 10796069 DOI: 10.1016/s0006-2952(99)00007-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The goal of the present work was to determine whether nitric oxide (NO) released from different donors (NONOates and nitrosothiols) can act as a protective antioxidant against oxidative stress and cytotoxicity induced by extracellular hemoglobin/tert-butyl hydroperoxide (Hb/tert-BuOOH) in vascular smooth muscle cells (VSMCs). No changes in phospholipid composition were found in VSMCs incubated with oxyhemoglobin (oxyHb)/tert-BuOOH. Using our newly developed HPLC-fluorescence technique for measurement of site-specific oxidative stress in membrane phospholipids, we produced VSMCs in which endogenous phospholipids were metabolically labeled with an oxidation-sensitive fluorescent fatty acid, cis-parinaric acid. In these cells, we were able to reliably quantitate oxidative stress in major phospholipid classes-phosphatidylethanolamine, phosphatidylcholine, phosphatidylserine, and phosphatidylinositol-induced by tert-BuOOH in the presence of oxyHb or methemoglobin (metHb). The oxidative stress was accompanied by cytotoxic effects of oxyHb/tert-BuOOH and metHb/tert-BuOOH on VSMCs. We further found that an NO donor, (Z)-1-[N-(3-ammoniopropyl)-N-(n-propyl)amino]diazen 1-ium-1,2-diolate (PAPANONO), but not nitrosothiols, protected VSMCs against oxidative stress and cytotoxicity induced by Hb/tert-BuOOH. The protective effect of PAPANONO was most likely due to its ability to form NO-heme Hb (detectable by low temperature EPR spectroscopy and visible spectrophotometry). These findings are important for further understanding the physiological antioxidant role of NO against oxidative stress induced by hemoproteins as well as for pathological hypertensive events induced by extracellular Hb via NO depletion.
Collapse
Affiliation(s)
- A A Shvedova
- Health Effects Laboratory Division, Pathology and Physiology Research Branch, NIOSH, Morgantown, WV 26505, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Fabisiak JP, Tyurin VA, Tyurina YY, Borisenko GG, Korotaeva A, Pitt BR, Lazo JS, Kagan VE. Redox regulation of copper-metallothionein. Arch Biochem Biophys 1999; 363:171-81. [PMID: 10049512 DOI: 10.1006/abbi.1998.1077] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Copper (Cu) is an essential element whose localization within cells must be carefully controlled to avoid Cu-dependent redox cycling. Metallothioneins (MTs) are cysteine-rich metal-binding proteins that exert cytoprotective effects during metal exposure and oxidative stress. The specific role of MTs, however, in modulating Cu-dependent redox cycling remains unresolved. Our studies utilized a chemically defined model system to study MT modulation of Cu-dependent redox cycling under reducing (Cu/ascorbate) and mild oxidizing (Cu/ascorbate + H2O2) conditions. In the presence of Cu and ascorbate, MT blocked Cu-dependent lipid oxidation and ascorbyl radical formation with a stoichiometry corresponding to Cu/MT ratios </=12. In the presence of H2O2 the degree of protection by MT was less and biological oxidations and radical formation were inhibited only up to Cu/MT ratios of 6. Physical interaction of MT and Cu was measured by using low-temperature EPR of free Cu2+ in solution. The maximal amount of EPR-silent Cu1+ (presumably in complex with MT) corresponded to 12 molar equivalents of Cu/MT under reducing conditions, but only 9 in the presence of H2O2. H2O2 modulated the ability of MT to protect HL-60 cells from Cu-induced cell death in a manner that correlated with the ability of MT to mitigate Cu-redox cycling in cell-free systems. Thus, optimal binding of Cu to MT is achieved under reducing conditions; however, a portion of this Cu appears releasable under oxidizing conditions. Release of free Cu from MT during oxidative stress could enhance the formation of reactive oxygen species and potentiate cellular damage.
Collapse
Affiliation(s)
- J P Fabisiak
- Department of Environmental and Occupational Health, School of Public Health, RIDC Park, 260 Kappa Drive, Pittsburgh, Pennsylvania 15238, USA. fabs+@pitt.edu
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Dubey RK, Tyurina YY, Tyurin VA, Gillespie DG, Branch RA, Jackson EK, Kagan VE. Estrogen and tamoxifen metabolites protect smooth muscle cell membrane phospholipids against peroxidation and inhibit cell growth. Circ Res 1999; 84:229-39. [PMID: 9933255 DOI: 10.1161/01.res.84.2.229] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The goal of this study was to test the hypothesis that antioxidant estrogens, by a mechanism independent of the estrogen receptor, protect phospholipids residing in the plasma membrane of vascular smooth muscle cells from peroxidation and peroxidation-induced cell growth and migration. Peroxidation of membrane phospholipids was assessed by HPLC analysis of phospholipids extracted from rat aortic vascular smooth muscle cells prelabeled with cis-parinaric acid (a fatty acid that is susceptible to peroxidation, which quenches its fluorescent properties). Incubation of cells for 2 hours with the peroxyl radical donor 2,2'-azobis-2,4-dimethylvaleronitrile (AMVN) caused peroxidation of all measured membrane phospholipids. This effect was attenuated by pretreating cells for 15 minutes with 50 to 5000 ng/mL of 2-hydroxyestradiol (strong antioxidant but weak estrogen-receptor ligand) or 4-hydroxytamoxifen (strong antioxidant and potent estrogen-receptor ligand), but not by estrone or droloxifene (both weak antioxidants but potent estrogen-receptor ligands). Moreover, pretreatment of cells for 20 hours with physiological concentrations (0.3 ng/mL) of 2-hydroxyestradiol or pharmacologically relevant concentrations of 4-hydroxytamoxifen (40 ng/mL) also decreased AMVN-induced phospholipid peroxidation. Both 2-hydroxyestradiol and 4-hydroxytamoxifen were as effective as 2,2,5, 7,8-pentamethyl-6-hydrochromane (an antioxidant homolog of vitamin E) in attenuating AMVN-induced peroxidation of membrane phospholipids. Also, physiological concentrations of 2-hydroxyestradiol, but not estrone, and pharmacologically relevant concentrations of 4-hydroxytamoxifen attenuated AMVM-induced DNA synthesis, cell proliferation, and cell migration. These studies demonstrate in vascular smooth muscle cells that antioxidant estrogens via a non-estrogen receptor-dependent mechanism attenuate peroxidation of membrane phospholipids and peroxidation-induced cell growth and migration.
Collapse
Affiliation(s)
- R K Dubey
- Center for Clinical Pharmacology, Department of Medicine, University Hospital, Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
44
|
Drummen GP, Op den Kamp JA, Post JA. Validation of the peroxidative indicators, cis-parinaric acid and parinaroyl-phospholipids, in a model system and cultured cardiac myocytes. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1436:370-82. [PMID: 9989268 DOI: 10.1016/s0005-2760(98)00142-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
cis-Parinaric acid is increasingly being used in eukaryotic cells as a very sensitive marker for the initial stages of lipid peroxidation. Despite the increased application of this probe, no extensive validation, especially in cellular systems, has been performed. cis-Parinaric acid can either be inserted freely into biomembranes or incorporated (bio)synthetically into lipids (parinaroyl-lipid). Therefore, a direct comparison was made between the peroxidative behaviour of the two parinaroyl probes and the endogenous polyunsaturated fatty acids arachidonic and linoleic acid, in both an artificial lipidic system and in cultured neonatal rat heart cells. Three different radical generating systems were used, i.e., hydrogen peroxide, cumene hydroperoxide and the thermo-labile 2,2'-azobis(2-amidinopropane hydrochloride) (AAPH). The data demonstrate that the peroxidation rate of cis-parinaric acid is higher than that of the parinaroyl, arachidonoyl and linoleoyl lipids. The latter three displayed comparable peroxidation rates, showing that the peroxidative decay of parinaroyl-lipid is a good marker for the degradation of endogenous polyunsaturated fatty acids. Experimental results using the freely inserted cis-parinaric acid could potentially lead to an overestimation of the inflicted damage and should be interpreted with care. In addition, a comparison was made with the measurement of conjugated dienes and malon dialdehyde as thiobarbituric acid reactive substances. The results demonstrate that measurement of conjugated dienes and malon dialdehyde only provide information on peroxidative processes in vitro, but are not suitable for in-depth studies in cultured cells. In contrast, the use of the parinaroyl probes is a suitable, straightforward, sensitive and reproducible method for detecting the initial stages of lipid peroxidation in living cells.
Collapse
Affiliation(s)
- G P Drummen
- Department of Biochemistry of Lipids, Utrecht University, The Netherlands.
| | | | | |
Collapse
|
45
|
Fabisiak JP, Pearce LL, Borisenko GG, Tyhurina YY, Tyurin VA, Razzack J, Lazo JS, Pitt BR, Kagan VE. Bifunctional anti/prooxidant potential of metallothionenin: redox signaling of copper binding and release. Antioxid Redox Signal 1999; 1:349-64. [PMID: 11229446 DOI: 10.1089/ars.1999.1.3-349] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Metallothioneins (MTs) are cysteine-rich metal-binding proteins that exert cytoprotection during metal exposure and oxidative stress. The roles of MT in copper (Cu) binding and release and modulation of redox cycling are unresolved. We hypothesized that Cu-binding to MT renders Cu redox inactive, but that oxidation of free thiols critical for metal binding can reduce MT/Cu interactions and potentiate Cu redox cycling. Overexpression of MT in cells by cadmium pretreatment or ectopic overexpression by gene transfer confers protection from Cu-dependent lipid oxidation and cytotoxicity. Using a chemically defined model system (Cu/ascorbate/H2O2) to study Cu/MT interactions, we observed that MT inhibited Cu-dependent oxidation of luminol. In the absence of H2O2, MT blocked Cu-dependent ascorbyl radical production with a stoichiometry corresponding to Cu/MT ratios < or = 12. In the presence of H2O2, Cu-dependent hydroxyl radical formation was inhibited only up to Cu/MT ratios < or = 6. Using low-temperature EPR of free Cu2+ to assess Cu/MT physical interactions, we observed that the maximal amount of Cu1+ bound to MT corresponded to 12 molar equivalents of Cu/MT with Cu and ascorbate alone and was reduced in the presence of H2O2. 2,2'-Dithiodipyridine titration of MT SH-groups revealed a 50% decrease after H2O2, which could be regenerated by dihydrolipoic acid (DHLA). DHLA regeneration of thiols in MT was accompanied by restoration of MT's ability to inhibit Cu-dependent oxidation of ascorbate. Thus, optimum ability of MT to inhibit Cu-redox cycling directly correlates with its ability to bind Cu. Some of this Cu, however, appears releasable following oxidation of the thiolate metal-binding clusters. We speculate that redox-dependent release of Cu from MT serves both as a mechanism for physiological delivery of Cu to specific target proteins, as well as potentiation of cellular damage during oxidative stress.
Collapse
Affiliation(s)
- J P Fabisiak
- Department of Environmental & Occupational Health, School of Public Health, University of Pittsburgh, Pennsylvania 15238, USA. fabs+@pitt edu
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Effectiveness of phenolic antioxidants in protecting against oxidative stress depends on their reactivity towards reactive oxygen species and the reactivity of the antioxidant phenoxyl radicals towards critical biomolecules. Reduction of phenoxyl radicals by intracellular reductant (ascorbate, thiols) as well as by enzymes or intermediates of electron transport (e.g., in mitochondria and the endoplasmic reticulum) recycles phenolic antioxidants, thus enhancing antioxidant protection. Several cascades may be involved in physiologically relevant recycling of vitamin E from its phenoxyl radicals. The two major ones are dihydrolipoic acid-->(GSH)-->ascorbate, and enzymes of electron transport-->coenzyme Q. Importantly, phenoxyl radicals of vitamin E are not directly reduced by intracellular thiols. By contrast, a number of natural phenolic compounds that act as very effective scavengers of reactive oxygen species and organic radicals, may generate reactive secondary radicals of antioxidants. These secondary radicals react and modify critical intracellular targets (lipids, proteins, and DNA). As a result, the role of these phenolic compounds as biological antioxidants may be limited because of their ability to cause cyto- and genotoxic effects. Typical examples are some estrogens and phenolic drugs (e.g., the antitumor drug, etoposide) that can protect lipids but oxidize GSH and protein sulfhydryls. Moreover, phenoxyl radicals produced in the course of radical scavenging by some phenolic compounds (e.g., phenol) are capable of oxidizing both proteins and lipids. Hence, reactivity of phenoxyl radicals should be considered as a critical factor in the development of new antioxidant protectants.
Collapse
Affiliation(s)
- V E Kagan
- Department of Environmental and Occupational Health, University of Pittsburgh, Pennsylvania 15238, USA.
| | | |
Collapse
|
47
|
Saragovi HU, Bhandoola A, Moreau JL, Lavine N, Gagnon M, Lemercier MM, Théze J. Functional and physical association of a cell surface phospholipid and interleukin-2 receptor p55(alpha) subunits. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1414:51-64. [PMID: 9804890 DOI: 10.1016/s0005-2736(98)00152-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
A phosphatidylcholine-like phospholipid expressed in the outer leaflet of the cell membrane shortly after mitogenic activation of T-cells is described, based on the binding of monoclonal antibody 90. 60.3. Expression of the 90.60.3 phospholipid antigen in T-cells is activation-dependent. Once expressed, the 90.60.3 phospholipid is in direct physical association with the interleukin-2 (IL-2) binding domain of IL-2 receptor alpha subunits, but does not affect IL-2 binding. The association is specific, because the 90.60.3 phospholipid is not found in association with other domains of IL-2 receptor alpha subunits, or near IL-2 receptor beta or gamma subunits. Culturing cytokine-dependent cell lines in the presence of monoclonal antibody 90.60.3 potentiates IL-2-dependent cell survival and proliferation in a dose-dependent manner. In contrast, IL-4-dependent responses are not potentiated. Taken together, the data suggest that specific plasma membrane phospholipids expressed in the outer leaflet after T-cell activation associate with the IL-2 binding domain of IL-2 receptor alpha subunits (and perhaps other cytokine receptors), and may play a role in regulating receptor mobility or signal transduction.
Collapse
Affiliation(s)
- H U Saragovi
- McGill University, Department of Pharmacology and Therapeutics, 3655 Drummond 1320; and McGill Cancer Center, Montreal, QC H3G1Y6, Canada.
| | | | | | | | | | | | | |
Collapse
|
48
|
Tyurin VA, Tyurina YY, Quinn PJ, Schor NF, Balachandran R, Day BW, Kagan VE. Glutamate-induced cytotoxicity in PC12 pheochromocytoma cells: role of oxidation of phospholipids, glutathione and protein sulfhydryls revealed by bcl-2 transfection. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 60:270-81. [PMID: 9757062 DOI: 10.1016/s0169-328x(98)00181-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Incubation of mock-transfected PC12 rat pheochromocytoma cells (PC12) for 2 h with increasing concentrations of glutamate caused progressive loss of viability (e.g., 67% with 15 mM glutamate). In contrast, the viability of bcl-2-transfected cells (PC12/bcl-2) was unaffected by glutamate. Neither PC12 nor PC12/bcl-2 cells showed a significant incidence of apoptosis in response to glutamate. Conventional phospholipid analysis by high-performance TLC and phosphorous determination showed no significant changes in the phospholipid composition of either cell line incubated with </=15 mM glutamate. Phospholipid peroxidation was quantified in the cells using our newly developed method based on fluorescence-HPLC analysis of metabolically incorporated oxidation-sensitive and fluorescent fatty acid, cis-parinaric acid. Unlike previous studies that measured total phospholipid oxidation, this novel technology permitted quantitation of oxidative stress in different classes of labeled phospholipids (the amount of labeled phospholipids in the cells did not exceed 1% of total phospholipids). Significant peroxidation of phosphatidylcholine and phosphatidylethanolamine occurred in PC12 cells treated with >5 mM glutamate. The peroxyl radical initiator 2,2'-azobis(2,4-dimethylvaleronitrile) caused a pronounced loss of all major phospholipid classes in PC12 cells, but no loss of cell viability. No phospholipid peroxidation was detected in PC12/bcl-2 cells incubated with </=15 mM glutamate or with 2, 2'-azobis(2,4-dimethylvaleronitrile). These results directly demonstrate that peroxidation of membrane phospholipids is not responsible for the cytotoxicity of glutamate in PC12 cells. Total cellular thiol, protein thiol and GSH reserves were quantified by a previously described electron paramagnetic resonance spectrometric method. Total thiols were ca. 1.5-fold greater in PC12/bcl-2 than in PC12 cells. Glutamate (</=5 mM) caused a progressive and equally significant decrease in total thiols and GSH in both PC12 and PC12/bcl-2 cells. High glutamate concentrations caused oxidation of protein sulfhydryls in PC12 cells, but not in PC12/bcl-2 cells. The results suggest that the changes in cellular milieu caused by bcl-2 gene transfection protect PC12 cells from the toxic effects of glutamate in a manner consistent with prevention of protein sulfhydryl oxidation.
Collapse
Affiliation(s)
- V A Tyurin
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15238, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Yagi K, Shidoji Y, Komura S, Kojima H, Ohishi N. Dissipation of mitochondrial membrane potential by exogenous phospholipid monohydroperoxide and protection against this effect by transfection of cells with phospholipid hydroperoxide glutathione peroxidase gene. Biochem Biophys Res Commun 1998; 245:528-33. [PMID: 9571189 DOI: 10.1006/bbrc.1998.8417] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two hours after its addition to cultures of a guinea pig cell line, 104C1, dilinoleoyl phosphatidylcholine monohydroperoxide (PCOOH) at concentrations of 5-160 microM induced a dissipation of the mitochondrial inner membrane potential (delta psi m), without any apparent morphological changes, in the cells. The PCOOH-induced loss of delta psi m was restored 4 hr after the replacement of the medium with PCOOH-free fresh medium. In contrast, 104C1/O4C cells, a stable clone from 104C1 cells transfected with the human phospholipid hydroperoxide glutathione peroxidase (PHGPx) gene encoding a sequence including a signal peptide towards mitochondria, were resistant to the loss of delta psi m after a 2-hr exposure to PCOOH at concentrations up to 160 microM. Even after an 8-hr exposure to 80 microM PCOOH, the transfected cells retained their delta psi m intact, though the parent cells were killed by the same treatment. The present results strongly suggest that the expression of PHGPx protected the host cells from PCOOH-mediated injury at least by protecting their mitochondria from lipid hydroperoxide-induced loss of delta psi m.
Collapse
Affiliation(s)
- K Yagi
- Gifu International Institute of Biotechnology, Japan.
| | | | | | | | | |
Collapse
|
50
|
Maulik N, Kagan VE, Tyurin VA, Das DK. Redistribution of phosphatidylethanolamine and phosphatidylserine precedes reperfusion-induced apoptosis. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:H242-8. [PMID: 9458873 DOI: 10.1152/ajpheart.1998.274.1.h242] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although cardiomyocyte death and infarction associated with ischemia-reperfusion are traditionally believed to be induced via necrosis, recent studies implicated apoptotic cell death in ischemic reperfused tissue. To examine whether myocardial ischemic reperfusion injury is mediated by apoptotic cell death, isolated perfused rat hearts were subjected to 15 and 30 min of ischemia as well as 15 min of ischemia followed by 30, 90, or 120 min of reperfusion. At the end of each experiment, hearts were processed for the evaluation of apoptosis and DNA laddering. Apoptosis was studied by visualizing the apoptotic cardiomyocytes by direct fluorescence detection of digoxigenin-labeled genomic DNA using APOPTAG in situ apoptosis detection kit. DNA laddering was evaluated by subjecting the DNA obtained from cardiomyocytes to 1.8% agarose gel electrophoresis and photographed under ultraviolet illumination. In addition, high-performance thin-layer chromatography (HPTLC) of aminophospholipids labeled with 2,4,6-trinitrobenzenesulfonate was performed to evaluate phospholipid topography in cardiomyocytes. The results of our study revealed apoptotic cells only in the 90- and 120-min reperfused hearts as demonstrated by the intense fluorescence of the immunostained digoxigenin-labeled genomic DNA when observed under fluorescence microscope. None of the ischemic hearts showed any evidence of apoptosis. These results corroborated with the findings of DNA fragmentation that showed increased ladders of DNA bands in the 120-min reperfused hearts, representing integer multiples of the internucleosomal DNA length (approximately 180 bp). Two-dimensional HPTLC of the phospholipids obtained from the cardiomyocytes and transbilayer organization of the phosphatidylethanolamine (PE) and phosphatidylserine (PS) in the myocytes indicated translocation of both PE and PS from the inner leaflet to the outer leaflet of the membrane as early as after 20 min of ischemia. These results demonstrate that the redistribution of PS and PE precedes the apototic cell death and DNA fragmentation associated with the reperfusion of ischemic myocardium, suggesting that ischemia may trigger the signal for apoptosis although it becomes evident during reperfusion.
Collapse
Affiliation(s)
- N Maulik
- Department of Surgery, University of Connecticut School of Medicine, Farmington 06030, USA
| | | | | | | |
Collapse
|