1
|
Yew WP, Humenick A, Chen BN, Wattchow DA, Costa M, Dinning PG, Brookes SJH. Electrophysiological and morphological features of myenteric neurons of human colon revealed by intracellular recording and dye fills. Neurogastroenterol Motil 2023; 35:e14538. [PMID: 36740821 DOI: 10.1111/nmo.14538] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/27/2022] [Accepted: 01/11/2023] [Indexed: 02/07/2023]
Abstract
BACKGROUND Ex vivo intracellular recordings and dye fills, combined with immunohistochemistry, are a powerful way to analyze the enteric nervous system of laboratory animals. METHODS Myenteric neurons were recorded in isolated specimens of human colon. A key determinant of successful recording was near-complete removal of circular muscle from the surface of ganglia. KEY RESULTS Treatment with a collagenase/neutral protease mix before dissection significantly improved recording success and reduced damage to the plexus. Carboxyfluorescein in microelectrodes allowed recorded neurons to be routinely labeled, analyzed, and subjected to multi-layer immunohistochemistry. Carboxyfluorescein revealed morphological details that were not detected by immunohistochemical methods. Of 54 dye-filled myenteric neurons (n = 22), 45 were uni-axonal and eight were multi-axonal. There was a significant bias toward recordings from large neural somata. The close association between morphology and electrophysiology (long after-hyperpolarizations and fast EPSPs) seen in mice and guinea pigs did not hold for human myenteric neuron recordings. No slow EPSPs were recorded; however, disruption to the myenteric plexus during dissection may have led the proportion of cells receiving synaptic potentials to be underestimated. Neurons immunoreactive for nitric oxide synthase were more excitable than non-immunoreactive neurons. Distinctive grooves were observed on the serosal and/or mucosal faces of myenteric neurons in 3D reconstructions. These had varicose axons running through them and may represent a preferential site of synaptic inputs. CONCLUSIONS Human enteric neurons share many features with laboratory animals, but the combinations of features in individual cells appear more variable.
Collapse
Affiliation(s)
- Wai Ping Yew
- Human Physiology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Adam Humenick
- Human Physiology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Bao Nan Chen
- Human Physiology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - David A Wattchow
- Department of Surgery, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Marcello Costa
- Human Physiology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Phil G Dinning
- Department of Surgery, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Simon J H Brookes
- Human Physiology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| |
Collapse
|
2
|
The role of enteric inhibitory neurons in intestinal motility. Auton Neurosci 2021; 235:102854. [PMID: 34329834 DOI: 10.1016/j.autneu.2021.102854] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/11/2021] [Indexed: 12/21/2022]
Abstract
The enteric nervous system controls much of the mixing and propulsion of nutrients along the digestive tract. Enteric neural circuits involve intrinsic sensory neurons, interneurons and motor neurons. While the role of the excitatory motor neurons is well established, the role of the enteric inhibitory motor neurons (IMNs) is less clear. The discovery of inhibitory transmission in the intestine in the 1960's in the laboratory of Geoff Burnstock triggered the search for the unknown neurotransmitter. It has since emerged that most neurons including the IMNs contain and may utilise more than one transmitter substances; for IMNs these include ATP, the neuropeptide VIP/PACAP and nitric oxide. This review distinguishes the enteric neural pathways underlying the 'standing reflexes' from the pathways operating physiologically during propulsive and non-propulsive movements. Morphological evidence in small laboratory animals indicates that the IMNs are located in the myenteric plexus and project aborally to the circular muscle, where they act by relaxing the muscle. There is ongoing 'tonic' activity of these IMNs to keep the intestinal muscle relaxed. Accommodatory responses to content further activate enteric pathways that involve the IMNs as the final neural element. IMNs are activated by mechanical and chemical stimulation induced by luminal contents, which activate intrinsic sensory enteric neurons and the polarised interneuronal ascending excitatory and descending inhibitory reflex pathways. The latter relaxes the muscle ahead of the advancing bolus, thus facilitating propulsion.
Collapse
|
3
|
Beaumont M, Blachier F. Amino Acids in Intestinal Physiology and Health. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1265:1-20. [PMID: 32761567 DOI: 10.1007/978-3-030-45328-2_1] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dietary protein digestion is an efficient process resulting in the absorption of amino acids by epithelial cells, mainly in the jejunum. Some amino acids are extensively metabolized in enterocytes supporting their high energy demand and/or production of bioactive metabolites such as glutathione or nitric oxide. In contrast, other amino acids are mainly used as building blocks for the intense protein synthesis associated with the rapid epithelium renewal and mucin production. Several amino acids have been shown to support the intestinal barrier function and the intestinal endocrine function. In addition, amino acids are metabolized by the gut microbiota that use them for their own protein synthesis and in catabolic pathways releasing in the intestinal lumen numerous metabolites such as ammonia, hydrogen sulfide, branched-chain amino acids, polyamines, phenolic and indolic compounds. Some of them (e.g. hydrogen sulfide) disrupts epithelial energy metabolism and may participate in mucosal inflammation when present in excess, while others (e.g. indole derivatives) prevent gut barrier dysfunction or regulate enteroendocrine functions. Lastly, some recent data suggest that dietary amino acids might regulate the composition of the gut microbiota, but the relevance for the intestinal health remains to be determined. In summary, amino acid utilization by epithelial cells or by intestinal bacteria appears to play a pivotal regulator role for intestinal homeostasis. Thus, adequate dietary supply of amino acids represents a key determinant of gut health and functions.
Collapse
Affiliation(s)
- Martin Beaumont
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Toulouse, France
| | - François Blachier
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Paris, France.
| |
Collapse
|
4
|
Wang R, Guo LY, Suo MY, Sun Y, Wu JY, Zhang XY, Liu CY. Role of the nitrergic pathway in motor effects of oxytocin in rat proximal colon. Neurogastroenterol Motil 2016; 28:1815-1823. [PMID: 27302181 DOI: 10.1111/nmo.12883] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 05/12/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND Oxytocin (OT) reduces rat duodenal tone and mouse intestinal transit; however, the underlying mechanisms are not totally understood. Consequently, this study was designed to investigate the influence of OT on spontaneous mechanical activity and neurally evoked responses, to characterize the mechanisms of the action, and to determine the distribution of the OT receptor (OTR) in rat proximal colonic muscle strips. METHODS The organ bath technique with electrical field stimulation, western blotting, and immunofluorescence were used. KEY RESULTS In rat proximal colon, exogenous OT induced a concentration-dependent reduction of the spontaneous mechanical activity without affecting the resting basal tone, which was abolished by atosiban, an OTR antagonist, by tetrodotoxin (TTX), a neural blocker or by Nω-propyl-l-arginine hydrochloride, an inhibitor of neuronal nitric oxide synthase (nNOS). The inhibitory effects of OT were not affected by atropine or the vasoactive intestinal peptide (VIP) receptor antagonist [Lys1, Pro2,5, Arg3,4, Tyr6]-VIP (VIPHyb). Proximal colon responses to electrical field stimulation were characterized by nonadrenergic, noncholinergic (NANC) relaxation, which was followed by an off-contraction. Oxytocin enhanced only NANC relaxation. Oxytocin stimulated spontaneous NO release from the longitudinal muscle myenteric plexus preparation of rat proximal colon. Western blot and immunohistochemistry experiments showing the presence of the OTR in proximal colon, and its co-localization with nNOS established that myenteric nitrergic neurons express OTR. CONCLUSIONS & INFERENCES The activation of OTR located on nitrergic neurons may negatively modulate colonic spontaneous contraction and enhance electrically evoked NANC relaxation through excitation of NO release.
Collapse
Affiliation(s)
- R Wang
- Department of Physiology, Shandong University School of Medicine, Jinan, China
| | - L Y Guo
- Department of Physiology, Shandong University School of Medicine, Jinan, China
| | - M Y Suo
- Department of Physiology, Shandong University School of Medicine, Jinan, China
| | - Y Sun
- Department of Physiology, Shandong University School of Medicine, Jinan, China
| | - J Y Wu
- Department of Physiology, Shandong University School of Medicine, Jinan, China
| | - X Y Zhang
- Department of Genetics, Shandong University School of Medicine, Jinan, China
| | - C Y Liu
- Department of Physiology, Shandong University School of Medicine, Jinan, China
| |
Collapse
|
5
|
Zhang Y, Paterson WG. Characterization of the peristaltic reflex in murine distal colon. Can J Physiol Pharmacol 2015; 94:190-198. [PMID: 26524247 DOI: 10.1139/cjpp-2015-0086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ascending and descending neuromuscular reflexes play an important role in gastrointestinal motility. However, the underlying mechanisms in colon are incompletely understood. Nerve stimulation (NS)- and balloon distention (BD)-mediated reflexes in distal colonic circular smooth muscle (CSM) and longitudinal smooth muscle (LSM) of mice were investigated using conventional intracellular recordings. In the CSM, NS evoked ascending purinergic inhibitory junction potentials (IJPs), whereas BD induced atropine-sensitive ascending depolarization with superimposed action potentials (APs). The ascending depolarization reached a peak ∼4-7 s after the onset of distention and gradually returned to baseline after termination of the distention. In the LSM, NS produced an ascending biphasic IJP followed by a train of atropine-sensitive APs. Both stimuli produced similar descending IJPs in CSM and LSM, which were blocked by MRS-2500 and MRS-2179, putative purinergic receptor blockers. These data indicate that in the murine distal colon, descending purinergic inhibition in both CSM and LSM occurs. Ascending responses are more complex, with NS producing both inhibition and excitation to CSM and LSM, and BD evoking only cholinergic excitation.
Collapse
Affiliation(s)
- Yong Zhang
- a Gastrointestinal Diseases Research Unit, Queen's University and Kingston General Hospital, Kingston, Ontario, Canada
| | - William G Paterson
- b Gastrointestinal Diseases Research Unit and the Departments of Biology, Biomedical and Molecular Sciences, and Medicine, Queen's University and Kingston General Hospital, Kingston, Ontario, Canada
| |
Collapse
|
6
|
|
7
|
Hamrouni AM, Gudka N, Broadley KJ. Investigation of the mechanism for the relaxation of rat duodenum mediated via M1 muscarinic receptors. ACTA ACUST UNITED AC 2006; 26:275-84. [PMID: 16879493 DOI: 10.1111/j.1474-8673.2006.00353.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1 Relaxation responses of the rat isolated duodenum to the putative M1 muscarinic receptor agonist, McN-A-343, were examined to determine whether the response was due to the release of known non-adrenergic, non-cholinergic relaxant neurotransmitters and to establish the involvement of M1 muscarinic receptors. 2 The role of ATP was examined with the P2 receptor antagonist, suramin, which at 30 mum antagonized the relaxant responses to alpha,beta-methylene ATP. The same dose, however, failed to inhibit the relaxation by McN-A-343. 3 The role of nitric oxide (NO) was examined with the NO synthase inhibitor, NG-nitro-L-arginine methyl ester (L-NAME; 100 microm), which failed to inhibit the responses to McN-A-343. As NO mediates relaxation of the duodenum via cGMP generation through guanylyl cyclase, whether the relaxation by McN-A-343 was also via cGMP was examined with the guanylyl cyclase inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ). The relaxation responses to the NO donor, S-nitroso-N-acetyl penicillamine, were inhibited in the presence of ODQ (3 microm), but not those by McN-A-343. 4 Release of gamma-aminobutyric acid (GABA) was examined with the GABAA receptor antagonist, bicuculline (10 microm), which shifted the concentration-response curves for the relaxation of the duodenum by GABA to the right. There was a similar degree of shift in the concentration-response curve for McN-A-343 by bicuculline indicating that release of GABA from enteric neurones of the duodenum could explain the relaxation response to McN-A-343. 5 To test whether the muscarinic receptors mediating the relaxation of the duodenum were of the M1 subtype, the susceptibility to the selective competitive antagonist, pirenzepine and the selective muscarinic toxin from green mamba, MT7, was examined. Pirenzepine (1 microm) shifted the concentration-response for McN-A-343 to the right in a parallel fashion with a dose ratio of 33.3 +/- 20.2. This yielded a pA2 value of 7.5, which concords with those for other responses reputed to be mediated via M1 muscarinic receptors. The toxin MT7 was used as an irreversible antagonist and following incubation with the duodenum was washed from the bath. An incubation time of 30 min with 100 nm of MT7 caused a significant parallel shift in the concentration-response to McN-A-343 confirming the involvement of M1 muscarinic receptors. 6 This study has confirmed that McN-A-343 relaxes the rat duodenum via muscarinic receptors of the M1 subtype and that these receptors are probably located on enteric neurones from which their stimulation releases GABA.
Collapse
Affiliation(s)
- A M Hamrouni
- Division of Pharmacology, Welsh School of Pharmacy, Cardiff University, King Edward VII Avenue, Cardiff CF10 3XF, UK
| | | | | |
Collapse
|
8
|
Mukai K, Takeuchi T, Toyoshima M, Satoh Y, Fujita A, Shintani N, Hashimoto H, Baba A, Hata F. PACAP- and PHI-mediated sustained relaxation in circular muscle of gastric fundus: findings obtained in PACAP knockout mice. ACTA ACUST UNITED AC 2005; 133:54-61. [PMID: 16229904 DOI: 10.1016/j.regpep.2005.09.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Revised: 09/09/2005] [Accepted: 09/12/2005] [Indexed: 12/31/2022]
Abstract
Mediators of neurogenic responses of the gastric fundus were studied in wild type and pituitary adenylate cyclase activating peptide (PACAP) knockout mice. Electrical field stimulation (EFS) to the circular muscle strips of the wild type mouse fundus induced a tri-phasic response, rapid transient contraction and relaxation, and sustained relaxation that was prolonged for an extended period after the end of EFS. The transient relaxation and contraction were completely inhibited by N(G)-nitro-L-arginine and atropine, respectively. The sustained relaxation was completely inhibited by a PACAP receptors antagonist, PACAP(6-38). The strips prepared from PACAP knockout mice exhibited a large contraction without rapid relaxation and unexpectedly, a sustained relaxation. However, the sustained relaxation was decreased to about a half of that observed in wild type mice. Anti-peptide histidine isoleucine (PHI) serum abolished the sustained relaxation in the knockout mice. The serum partially inhibited the sustained relaxation in wild type mice and PACAP(6-38) abolished the relaxation that remained after the antiserum-treatment. PHI relaxed the strips prepared from wild type mice. The relaxation was completely inhibited by PACAP(6-38). It was concluded that PACAP and PHI separately mediate the sustained relaxation in the mouse gastric fundus, and that nitric oxide and ACh mediate transient relaxation and contraction, respectively.
Collapse
Affiliation(s)
- Kazunori Mukai
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Okishio Y, Takeuchi T, Fujita A, Suenaga K, Fujinami K, Munakata S, Hata F. Examination of the role of cholinergic myenteric neurons with the impairment of neural reflexes in the ileum of c-kit mutant mice. J Smooth Muscle Res 2005; 41:49-60. [PMID: 15855739 DOI: 10.1540/jsmr.41.49] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Our previous study showed that impairment of ascending and descending neural reflexes in the ileum of the c-kit mutant, W/W(V), mice is due to a loss of interstitial cells of Cajal present at the myenteric plexus region (ICC-MY) in the mutant. In the present study, cholinergic interneurons were thought to be involved in these pathways, since hexamethonium, an antagonist of the nicotinic ACh receptor, significantly inhibited both neural reflexes in wild type mice. Therefore, we examined whether the loss of ICC-MY affects cholinergic interneurons involved in these pathways. Immunohistochemistry with anti-choline acetyltransferase revealed that there was no difference in the numbers of immunopositive cells in the myenteric plexus region between the wild type and mutant mice. In addition, there was no difference in the extent of spontaneous and EFS-evoked ACh release from longitudinal muscle with myenteric plexus preparations between the wild type and mutant mice. Exogenously added nicotine induced contraction or relaxation of ileal circular muscle in the absence or presence of atropine, respectively, to a similar extent in both the wild type and mutant mice. These results suggest that loss of ICC-MY resulted in an impairment of the ascending and descending reflex pathways at the step before activation of cholinergic interneurons.
Collapse
Affiliation(s)
- Yutaka Okishio
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, Osaka Prefecture University, Sakai, Japan
| | | | | | | | | | | | | |
Collapse
|
10
|
Okishio Y, Takeuchi T, Fujita A, Suenaga K, Fujinami K, Munakata S, Takewaki T, Hata F. Ascending contraction and descending relaxation in the distal colon of mice lacking interstitial cells of Cajal. J Smooth Muscle Res 2005; 41:163-74. [PMID: 16006749 DOI: 10.1540/jsmr.41.163] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recently an essential role of interstitial cells of Cajal (ICC) within myenteric plexus (ICC-MY) was suggested in ascending contraction and descending relaxation in the mouse ileum. The role of ICC in these neural reflexes was examined in the distal colonic segments prepared from the wild type and c-kit mutant, W/W(V) mice, in the present study. Localized distension of the segments from the wild type mice by using a small balloon resulted in ascending contraction and descending relaxation. In the segments from the mutant mice, localized distension also induced these neural reflexes similar to those observed in the wild type mice. Immunohistochemical examination demonstrated that ICC-MY and ICC present in muscle layers (ICC-IM) were severely disrupted in the mutant mouse, but only ICC, present within submucosal plexus (ICC-SMP), remained unchanged. In the small strips with ICC-SMP absent prepared from the mutant mouse, electrical field stimulation induced contraction or relaxation in the absence or presence of atropine, respectively. It was suggested that ICC have no important role in the ascending and descending neural reflexes in the mouse distal colon, this is in direct contrast to the role of ICC-MY in the ileum.
Collapse
Affiliation(s)
- Yutaka Okishio
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, Osaka Prefecture University, Osaka 599-8531, Japan
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Waseda K, Takeuchi T, Ohta M, Okishio Y, Fujita A, Hata F, Takewaki T. Participation of ATP in nonadrenergic, noncholinergic relaxation of longitudinal muscle of wistar rat jejunum. J Pharmacol Sci 2005; 97:91-100. [PMID: 15644591 DOI: 10.1254/jphs.fp0040486] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
A role of ATP in nonadrenergic, noncholinergic (NANC) relaxations was examined in the Wistar rat jejunum. Electrical field stimulation (EFS) induced NANC relaxation of longitudinal muscle of the jejunal segments in a frequency-dependent manner. A purinoceptor antagonist, adenosine 3'-phosphate 5'-phosphosulfate (A3P5PS, 100 muM) inhibited the relaxation: relaxations induced by EFS at lower or higher frequencies were either completely or partially inhibited, respectively. After the jejunal segments had been desensitized to ATP, the relaxations were decreased to the same extent as those inhibited by A3P5PS. An inhibitor of small conductance Ca(2+)-activated K(+) channels (SK channels), apamin (100 nM), completely inhibited EFS-induced relaxations. Treatment of the segments with an inhibitor of sarcoplasmic reticulum Ca(2+)-ATPase, thapsigargin (1 muM), significantly inhibited the relaxations. The exogenous ATP-induced relaxation of longitudinal muscle occurred with a concomitant decrease in intracellular Ca(2+) levels. Apamin and thapsigargin abolished these ATP-induced responses. A3P5PS significantly inhibited the inhibitory junction potentials which were induced in the longitudinal muscle cells. In addition, apamin significantly inhibited the hyperpolarization that was induced by exogenous ATP in the cells. These findings in the Wistar rat jejunum suggest that ATP participates in the NANC relaxation via activation of SK channels induced by Ca(2+) ions that are released from the thapsigargin-sensitive store site.
Collapse
Affiliation(s)
- Kaori Waseda
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, Osaka Prefecture University, Sakai, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Takeuchi T, Fujinami K, Fujita A, Okishio Y, Takewaki T, Hata F. Essential role of the interstitial cells of Cajal in nitric oxide-mediated relaxation of longitudinal muscle of the mouse ileum. J Pharmacol Sci 2005; 95:71-80. [PMID: 15153653 DOI: 10.1254/jphs.95.71] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The role of interstitial cells of Cajal (ICC) in electrical field stimulation (EFS)-induced neurogenic responses in ileum was studied by using the ICC-deficient mutant (SLC-W/W(V)) mouse and its wild type. In the immunohistochemical study with anti-c-Kit antibody, ICC was observed in the myenteric plexus (MY) and deep muscular plexus (DMP) region in the wild type. In the mutant, ICC-MY were lost, only ICC-DMP were present. EFS induced a rapid contraction of the ileal segments from the wild type mouse in the direction of longitudinal muscle. In the mutant mouse, onset of contraction was delayed and its rate was slowed. EFS induced nonadrenergic, noncholinergic (NANC) relaxation in the presence of atropine and guanethidine in the wild type. A nitric oxide synthase inhibitor inhibited the relaxation and L-arginine reversed it. In the mutant, EFS did not induce NANC relaxation. There was no difference between the responsiveness of the segments from wild type and mutant mice to exogenously added acetylcholine or Nor-1. Taking into account the selective loss of ICC-MY in the mutant mice, it seems likely that ICC-MY have an essential role in inducing nitric oxide-mediated relaxation of longitudinal muscle of the mouse ileum and that ICC-MY partly participate in EFS-induced contraction.
Collapse
Affiliation(s)
- Tadayoshi Takeuchi
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, Osaka Prefecture University, Sakai, Japan.
| | | | | | | | | | | |
Collapse
|
13
|
Fujita A, Okishio Y, Fujinami K, Nakagawa M, Takeuchi T, Takewaki T, Hata F. Role of the interstitial cells distributed in the myenteric plexus in neural reflexes in the mouse ileum. J Pharmacol Sci 2004; 96:483-92. [PMID: 15599097 DOI: 10.1254/jphs.fp0040499] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
We examined the role of interstitial cells of Cajal (ICC) in the ascending and descending neural reflexes in the ileal segments prepared from wild type mice and c-kit mutant W/WV mice. Localized distension of the ileal segments from wild type mice with a small balloon caused contraction or relaxation of the circular muscle on the oral or anal side of the distended region, respectively. However, these intestinal reflexes were not induced in the ileal segments from the mutant mice. In the small strips that include the step of the pathways from efferent motor neurons to smooth muscle cells, nerve stimulation induced contraction of circular muscle in the absence of atropine and relaxation in the presence of atropine. The extent of nerve stimulation-induced contractions and relaxations of the ileal circular muscle were similar in wild type and W/WV mice. The responsiveness of ileal circular muscle to exogenously added acetylcholine and Nor-1, a nitric oxide donor, was also unaffected in the mutant ileum. Since previous immunohistochemical study had revealed selective loss of ICC within the myenteric plexus (ICC-MY) in the mutant ileum, it was concluded that ICC-MY have an essential role in ascending and descending neural pathways in the mouse ileum.
Collapse
Affiliation(s)
- Akikazu Fujita
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, Osaka Prefecture University, Sakai 599-8531, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Yamaji M, Ohta M, Yamazaki Y, Fujinami K, Fujita A, Takeuchi T, Hata F, Takewaki T. A possible role of neurotensin in NANC relaxation of longitudinal muscle of the jejunum and ileum of Wistar rats. Br J Pharmacol 2002; 137:629-36. [PMID: 12381676 PMCID: PMC1573536 DOI: 10.1038/sj.bjp.0704914] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The mediators of nonadrenergic, noncholinergic (NANC) relaxation in longitudinal muscle of the jejunum and ileum of Wistar rats were examined in vitro. Treatment of the jejunal and ileal segments with alpha-chymotrypsin resulted in decreases in the NANC relaxations induced by electrical field stimulation (EFS) by about one half. The NANC relaxations were also decreased by about one half after the segments had been desensitized to neurotensin. A neurotensin receptor antagonist, SR48692 (10 microM) inhibited the NANC relaxation by 56 and 34% in the jejunal and ileal segments, respectively. An inhibitor of small conductance Ca2+ -activated K+ channel (SK channel), apamin (100 nM) also inhibited the NANC relaxation by 83 and 63%, respectively. Exogenous neurotensin-induced relaxations of the two segments were abolished by apamin. In the ileal segments, N(G)-nitro-L-arginine (L-NOARG, 100 micro M), inhibited the NANC relaxation by 43%. L-NOARG, but not apamin, further inhibited the relaxation which persisted after the desensitization to neurotensin. Apamin with SR48692 inhibited the relaxation only to the same extent as apamin alone. EFS induced inhibitory junction potentials (i.j.ps) in the longitudinal muscle cells of the ileum. I.j.ps consisted of a rapid and a delayed phase. L-NOARG significantly inhibited only the delayed phase. EFS induced only a rapid i.j.ps in the jejunum. SR48692 and apamin inhibited the i.j.ps. These findings suggest that neurotensin and unknown substance(s) mediate NANC relaxation via SK channels in the jejunum of Wistar rats, and that neurotensin via SK channels and nitric oxide not via SK channels separately mediate the relaxation in the ileum.
Collapse
Affiliation(s)
- Michiru Yamaji
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, Osaka Prefecture University, Sakai 599-8531, Japan
| | - Mayuko Ohta
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, Osaka Prefecture University, Sakai 599-8531, Japan
| | - Yasuko Yamazaki
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, Osaka Prefecture University, Sakai 599-8531, Japan
| | - Kaori Fujinami
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, Osaka Prefecture University, Sakai 599-8531, Japan
| | - Akikazu Fujita
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, Osaka Prefecture University, Sakai 599-8531, Japan
| | - Tadayoshi Takeuchi
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, Osaka Prefecture University, Sakai 599-8531, Japan
- Author for correspondence:
| | - Fumiaki Hata
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, Osaka Prefecture University, Sakai 599-8531, Japan
| | - Tadashi Takewaki
- United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193 Japan
| |
Collapse
|
15
|
Saksena S, Gill RK, Syed IA, Tyagi S, Alrefai WA, Ramaswamy K, Dudeja PK. Modulation of Cl-/OH- exchange activity in Caco-2 cells by nitric oxide. Am J Physiol Gastrointest Liver Physiol 2002; 283:G626-33. [PMID: 12181176 DOI: 10.1152/ajpgi.00395.2001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The present studies were undertaken to determine the direct effects of nitric oxide (NO) released from an exogenous donor, S-nitroso-N-acetyl pencillamine (SNAP) on Cl-/OH- exchange activity in human Caco-2 cells. Our results demonstrate that NO inhibits Cl-/OH- exchange activity in Caco-2 cells via cGMP-dependent protein kinases G (PKG) and C (PKC) signal-transduction pathways. Our data in support of this conclusion can be outlined as follows: 1) incubation of Caco-2 cells with SNAP (500 microM) for 30 min resulted in approximately 50% inhibition of DIDS-sensitive 36Cl uptake; 2) soluble guanylate cyclase inhibitors Ly-83583 and (1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one significantly blocked the inhibition of Cl-/OH- exchange activity by SNAP; 3) addition of 8-bromo-cGMP (8-BrcGMP) mimicked the effects of SNAP; 4) specific PKG inhibitor KT-5823 significantly inhibited the decrease in Cl-/OH- exchange activity in response to either SNAP or 8-BrcGMP; 5) Cl-/OH-exchange activity in Caco-2 cells in response to SNAP was not altered in the presence of protein kinase A (PKA) inhibitor (Rp-cAMPS), demonstrating that the PKA pathway was not involved; 6) the effect of NO on Cl-/OH- exchange activity was mediated by PKC, because each of the two PKC inhibitors chelerythrine chloride and calphostin C blocked the SNAP-mediated inhibition of Cl-/OH- exchange activity; 7) SO/OH- exchange in Caco-2 cells was unaffected by SNAP. Our results suggest that NO-induced inhibition of Cl-/OH- exchange may play an important role in the pathophysiology of diarrhea associated with inflammatory bowel diseases.
Collapse
Affiliation(s)
- Seema Saksena
- Section of Digestive and Liver Diseases, Department of Medicine, University of Illinois at Chicago and Chicago Veteran's Affairs System: West Side Division, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Li M, Johnson CP, Adams MB, Sarna SK. Cholinergic and nitrergic regulation of in vivo giant migrating contractions in rat colon. Am J Physiol Gastrointest Liver Physiol 2002; 283:G544-52. [PMID: 12181166 DOI: 10.1152/ajpgi.00114.2001] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The aim of this study was to characterize in vivo rat colonic motor activity in normal and inflamed states and determine its neural regulation. Circular muscle contractions were recorded by surgically implanted strain-gauge transducers. The rat colon exhibited predominantly giant migrating contractions (GMCs) whose frequency decreased distally. Only a small percentage of these GMCs propagated in the distal direction; the rest occurred randomly. Phasic contractions were present, but their amplitude was very small compared with that of GMCs. Inflammation induced by oral administration of dextran sodium sulfate suppressed the frequency of GMCs in the proximal and middle but not in the distal colon. Frequency of GMCs was suppressed by intraperitoneally administered atropine and 4-diphenylacetoxy-N-methyl-piperidine methiodide and was enhanced by N(w)-nitro-L-arginine methyl ester. Serotonin, tachykinin, and calcitonin gene-related peptide receptor or receptor subtype antagonists as well as guanethidine and suramin had no significant effect on the frequency of GMCs. Verapamil transiently suppressed the GMCs. In conclusion, unlike the canine and human colons, the rat colon exhibits frequent GMCs and their frequency is suppressed in inflammation. In vivo GMCs are stimulated by neural release of acetylcholine that acts on M3 receptors. Constitutive release of nitric oxide may partially suppress their frequency.
Collapse
Affiliation(s)
- Mona Li
- Departments of Surgery and Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | |
Collapse
|
17
|
Mancinelli R, Fabrizi A, Vargiu R, Morrone L, Bagetta G, Azzena GB. Functional role of inducible nitric oxide synthase on mouse colonic motility. Neurosci Lett 2001; 311:101-4. [PMID: 11567788 DOI: 10.1016/s0304-3940(01)02156-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A possible functional role of inducible isoform of nitric oxide synthase (iNOS) was explored in vitro on the motility of mouse distal colon. Using an isotonic - non-isovolumic technique, peristaltic activity and video images of the external wall of colonic segments were recorded before and after addition to the medium of Aminoguanidine (AG) and N-(3-(aminomethyl)benzyl) acetamidine (W1400) [10(-7) M-10(-4) M], two iNOS inhibitors. AG and W1400 induced an hyperexcitability of visceral smooth muscle characterised by an increase of basal tone and spontaneous phasic activity. As a consequence of these effects, the peristaltic activity declined and disappeared at the highest concentrations. These findings indicated a removal of inhibitory action performed by NO synthesised by iNOS in the colonic segment. The implications of results are discussed in term of tonic relaxation of intestinal smooth muscle to allow intraluminal content accommodation.
Collapse
Affiliation(s)
- R Mancinelli
- Department of Sciences Applied to Biosystem, Section of Human Physiology, University of Cagliari, Via Porcell 4, I- 09124, Cagliari, Italy
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
The rat middle colon spontaneously generates regularly occurring giant contractions (GCs) in vitro. We investigated the neurohumoral and intracellular regulation of these contractions in a standard muscle bath. cGMP content was measured in strips and single smooth muscle cells. The circular muscle strips generated spontaneous GCs. Their amplitude and frequency were significantly increased by tetrodotoxin (TTX), omega-conotoxin, N(omega)-nitro-L-arginine (L-NNA), and the dopamine D(1) receptor antagonist Sch-23390. The GCs were unaffected by hexamethonium, atropine, and antagonists of serotonergic (5-HT(1--4)), histaminergic (H(1--2)), and tachykininergic (NK(1--2)) receptors but enhanced by NK(3) receptor antagonism. The guanylate cyclase inhibitor 1H-[1,2,4]oxidiazolo[4,3-a]quinoxalin-1-one (ODQ) also enhanced GCs to the same extent as TTX and L-NNA, and each of the three agents prevented the effects of the others. GCs were abolished by electrical field stimulation, S-nitroso-N-acetyl-penicillamine, and 8-bromo-cGMP. BAY-K-8644 and apamin enhanced the GCs, but they were abolished by D-600. Basal cGMP content in strips was decreased by TTX, L-NNA, or ODQ, but these treatments had no effect on cGMP content of enzymatically dissociated single smooth muscle cells. We conclude that spontaneous contractions in the rat colonic muscle strips are not generated by cholinergic, serotonergic, or histaminergic input. Constitutive release of nitric oxide from enteric neurons sustains cGMP synthesis in the colonic smooth muscle to suppress spontaneous in vitro GCs.
Collapse
Affiliation(s)
- A Gonzalez
- Department of Surgery, Medical College of Wisconsin, Milwaukee 53266, USA
| | | |
Collapse
|
19
|
Kumano K, Fujimura M, Oshima S, Yamamoto H, Hayashi N, Nakamura T, Fujimiya M. Effects of VIP and NO on the motor activity of vascularly perfused rat proximal colon. Peptides 2001; 22:91-8. [PMID: 11179602 DOI: 10.1016/s0196-9781(00)00360-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The effects of vasoactive intestinal polypeptide (VIP) and nitric oxide (NO) on the motor activity of the rat proximal colon were examined in an ex vivo model of vascularly perfused rat proximal colon. VIP reduced motor activity and this inhibitory effect was not altered by either atropine, hexamethonium, tetrodotoxin (TTX) nor TTX plus acetylcholine (ACh), but was completely antagonized by NO synthase inhibitor N(G)-nitro-L-arginine (L-NA) and by VIP receptor antagonist, VIP(10-28). These results suggest that VIP may exert a direct inhibitory effect on the motor activity of the rat proximal colon via a VIP receptor located on the smooth muscle and this effect is mediated by NO but not by cholinergic pathways. Atropine and hexamethonium reduced but ACh stimulated motor activity and the effect of ACh was not changed by TTX, suggesting that the cholinergic pathway may exert a direct stimulatory effect on motor activity. Single injection of TTX, VIP(10-28) or L-NA induced a marked increase in motor activity, suggesting that the motor activity of rat proximal colon is tonically suppressed by VIP and NO generating pathways, and elimination of inhibitory neurotransmission by TTX may induce an abnormal increase of the motor activity. The interaction between VIP and NO in regulation of motor activity was further examined by a measurement of NO release from vascularly perfused rat proximal colon. Results showed that NO release was significantly increased during infusion of VIP and this response was reversed by L-NA. These results suggest that VIP generating neurons may inhibit colonic motility by stimulating endogenous NO production in either smooth muscle cells or nerve terminals.
Collapse
Affiliation(s)
- K Kumano
- Department of 2nd Surgery, Shiga University of Medical Science, Seta, Otsu, 520-2192, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
Hata F, Takeuchi T, Nishio H, Fujita A. Mediators and intracellular mechanisms of NANC relaxation of smooth muscle in the gastrointestinal tract. J Smooth Muscle Res 2000; 36:181-204. [PMID: 11398897 DOI: 10.1540/jsmr.36.181] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- F Hata
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Science, Osaka Prefecture University, Sakai, Japan.
| | | | | | | |
Collapse
|
21
|
Okishio Y, Niioka S, Yamaji M, Yamazaki Y, Nishio H, Takeuchi T, Hata F. Mediators of nonadrenergic, noncholinergic relaxation in Sprague Dawley rat intestine: comparison with the mediators of other strains. J Vet Med Sci 2000; 62:821-8. [PMID: 10993178 DOI: 10.1292/jvms.62.821] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Participation of nitric oxide, vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase activating peptide (PACAP) in nonadrenergic, noncholinergic (NANC) relaxation of longitudinal muscle of various intestinal regions in Sprague Dawley rats (8-week-old) was studied in vitro. Nitric oxide was suggested to participate in NANC relaxation of every intestinal region studied. But the participation was partial and its extent varied among the regions: significant in the proximal colon and rectum, and moderate in the jejunum, ileum and distal colon. Participation of PACAP in NANC relaxation was suggested only in the distal colon, while that of VIP was not detected in any of regions. Results obtained in the present study indicate that extent of participation of nitric oxide in NANC relaxation in Sprague Dawley rat intestine is more significant than those of other strains, Wistar and Wistar-ST.
Collapse
Affiliation(s)
- Y Okishio
- Department of Veterinary Pharmacology, College of Agriculture, Research Institute for Advanced Science and Technology, Osaka Prefecture University, Sakai, Japan
| | | | | | | | | | | | | |
Collapse
|
22
|
Okishio Y, Niioka S, Takeuchi T, Nishio H, Hata F, Takatsuji K. Differences in mediator of nonadrenergic, noncholinergic relaxation of the distal colon between Wistar-ST and Sprague-Dawley strains of rats. Eur J Pharmacol 2000; 388:97-105. [PMID: 10657552 DOI: 10.1016/s0014-2999(99)00856-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Participation of nitric oxide and vasoactive intestinal peptide (VIP) in electrical field stimulation-induced nonadrenergic, noncholinergic (NANC) relaxation of longitudinal muscle and in balloon distension-induced descending NANC relaxation of circular muscle were studied in the distal colon of Wistar-ST and Sprague-Dawley rats. The extent of the nitric oxide-mediated component was approximately 50% in longitudinal and circular muscle of Sprague-Dawley rats, whereas this component was absent in both muscles of Wistar-ST rats. The extent of the VIP-mediated component was approximately 40% in longitudinal muscle of Wistar-ST rats and circular muscle of Sprague-Dawley rats, whereas this component was absent in circular muscle of Wistar-ST rats and longitudinal muscle of Sprague-Dawley rats. In circular muscle of Sprague-Dawley rats, in which participation of both nitric oxide and VIP in the relaxation was suggested, inhibition of descending relaxation by N(G)-nitro-L-arginine (L-NOARG) together with VIP-(10-28) was similar to that by either of the antagonists, and exogenous VIP-induced relaxation was not affected by L-NOARG, but exogenous nitric oxide-induced relaxation was partly inhibited by VIP-(10-28). These results suggest a linkage of the pathways mediated by nitric oxide and VIP. In the immunohistochemical studies, nitric oxide synthase or VIP immunoreactive neurons were seen in the ganglia, primary internodal strands of the myenteric plexus and in the circular muscle layer. However, the overall appearance of immunoreactive cell bodies in the myenteric plexus and the numbers of immunoreactive fibers in the circular muscle layer appeared to be similar in Wistar-ST and Sprague-Dawley rats. These results suggest that mediators of NANC relaxation in the distal colon are different in different strains of rats, i.e., Wistar-ST and Sprague-Dawley, although no such difference was seen in immunohistochemical studies.
Collapse
Affiliation(s)
- Y Okishio
- Department of Veterinary Pharmacology, College of Agriculture, Sakai, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Mizuta Y, Takahashi T, Owyang C. Nitrergic regulation of colonic transit in rats. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:G275-9. [PMID: 10444440 DOI: 10.1152/ajpgi.1999.277.2.g275] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Nitric oxide has been shown to be an inhibitory neurotransmitter in the mammalian colon, although its role in colonic transit remains unclear. We investigated the effect of the nitric oxide biosynthesis inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) on colonic transit in conscious rats. Colonic transit was determined by calculating the geometric center of the distribution of radiochromium instilled into the proximal colon. We also studied the effect of L-NAME on colonic motility in vivo and on descending relaxation in vitro. L-NAME (10 mg/kg) significantly delayed colonic transit compared with saline. The inhibitory effect of L-NAME was prevented by L-arginine (100 mg/kg) but not by D-arginine (100 mg/kg). L-NAME (10 mg/kg) induced random and uncoordinated phasic contractions throughout the rat colon in vivo. Luminal distension evoked descending relaxation in the proximal and distal rat colon in vitro. L-NAME (10(-4) M) significantly inhibited this relaxation. It is suggested, therefore, that nitric oxide enhances transit in the rat colon by mediating descending relaxation, which, in turn, facilitates propulsion of the colonic contents.
Collapse
Affiliation(s)
- Y Mizuta
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
24
|
Mulè F, D'Angelo S, Serio R. Tonic inhibitory action by nitric oxide on spontaneous mechanical activity in rat proximal colon: involvement of cyclic GMP and apamin-sensitive K+ channels. Br J Pharmacol 1999; 127:514-20. [PMID: 10385253 PMCID: PMC1566019 DOI: 10.1038/sj.bjp.0702537] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. The cellular mechanisms by which endogenous nitric oxide (NO) modulates spontaneous motility were investigated in rat isolated proximal colon. The mechanical activity was detected as changes in intraluminal pressure. 2. Apamin (1-100 nM) produced a concentration-dependent increase in the amplitude of the spontaneous pressure waves. The maximal contractile effect was of the same degree as that produced by Nomega-nitro-L-arginine methyl ester (L-NAME) (100 microM) and the joint application of apamin plus L-NAME had no additive effects. Apamin (0.1 microM) reduced the inhibitory effects (i.e. reduction in the amplitude of the pressure waves) induced by sodium nitroprusside (SNP) (1 nM - 10 microM) or 8-Br-cyclic GMP (1-100 microM). 3. 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) (0.1-5 microM), inhibitor of NO-stimulated guanylate cyclase, produced a concentration-dependent increase of the spontaneous contractions. ODQ (1 microM) in the presence of apamin (0.1 microM) did not produce any further increase in the contraction amplitude, whereas after L-NAME (100 microM) it decreased the spontaneous contractions. ODQ (1 microM) reduced the SNP inhibitory effects. 4. Zaprinast (1-50 microM), inhibitor of cyclic GMP phosphodiesterase, produced a concentration-dependent decrease of the spontaneous contractions. The effects of zaprinast were significantly reduced in the presence of apamin (0.1 microM) or L-NAME (100 microM). 5. These results suggest that small conductance Ca2+-dependent K+ channels and cyclic GMP are involved in the modulation of the spontaneous contractile activity in rat proximal colon. Cyclic GMP production system and opening of apamin-sensitive K+ channels appear to work sequentially in transducing an endogenous NO signal.
Collapse
Affiliation(s)
- F Mulè
- Dipartimento di Biologia cellulare e dello Sviluppo, Università di Palermo, Italia.
| | | | | |
Collapse
|
25
|
Azzena GB, Mancinelli R. Nitric oxide regenerates the normal colonic peristaltic activity in mdx dystrophic mouse. Neurosci Lett 1999; 261:9-12. [PMID: 10081914 DOI: 10.1016/s0304-3940(98)00993-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We demonstrated in vitro that the colonic peristaltic activity is modified in dystrophin-deficient mdx mouse indicating a defect in the enteric nervous system (ENS). Since nitric oxide (NO) has been proposed as a putative inhibitory mediator of ENS, here we have examined the effects of both L-Arginine (L-Arg) and Nomega-nitro-L-arginine methyl ester (L-NAME) on the peristaltic activity of mdx mouse distal colon. The motor pattern of colonic segment showed irregular peristaltic waves. L-Arg (10(-7) - 10(-5) M) induced the peristaltic activity to slow down. At a concentration of 10(-5) M, L-Arg produced hypomotility, characterised by a decrease in amplitude, frequency and ejected fluid volume. Conversely, L-NAME elicited hypermotility, this effect being reversed once again by the subsequent addition of L-Arg. Interestingly the addition of 10(-5) M L-Arg to the organ bath led to the normal progression, in an oral to aboral direction, of 90% of the peristaltic waves. This last result strongly suggests that exogenous application of L-Arg restores the integrative circuits of the ENS responsible for programming and co-ordinating peristaltic activity in the distal colon of mdx mouse.
Collapse
Affiliation(s)
- G B Azzena
- Institute of Human Physiology, Catholic University of Sacred Heart, Rome, Italy.
| | | |
Collapse
|
26
|
Perner A, Rask-Madsen J. Review article: the potential role of nitric oxide in chronic inflammatory bowel disorders. Aliment Pharmacol Ther 1999; 13:135-44. [PMID: 10102942 DOI: 10.1046/j.1365-2036.1999.00453.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The aetiology of the chronic inflammatory bowel diseases-ulcerative colitis and Crohn's disease-as well as 'microscopic colitis'-both collagenous (COC) and lymphocytic colitis (LC)-remains unknown. Autoimmune mechanisms, cytokine polymorphism, commensal bacteria, infectious agents and vascular impairment have all been proposed as playing important roles in the pathogenesis of this spectrum of diseases. A variety of proinflammatory mediators, including tumour necrosis factor alpha, interleukin-1beta, interferon gamma, leukotriene B4 and platelet activating factor, promote the adherence of phagocytes to the venular endothelium and extravasation of these cells into the colonic mucosa. In addition to large amounts of nitric oxide (NO), injurious peroxynitrite may be formed in the epithelium by the inducible nitric oxide synthase (iNOS), which is considered to elicit cytotoxicity by the generation of superoxide with reduced L-arginine availability. In active ulcerative colitis, and to a lesser extent in Crohn's disease, a greatly increased production of NO has been demonstrated by indirect and direct measurements. Surprisingly, even higher rates of production have been observed in COC-a condition which is never associated with injurious inflammation. The latter observation favours the notion that NO promotes mucosal integrity. Further evidence for a protective role of NO in chronic inflammatory bowel disorders is provided by the observation of increased susceptibility to the induction of experi mental colitis in 'knock-out' mice deficient in iNOS. Selective inhibitors of iNOS activity, as well as topical L-arginine, may therefore prove beneficial in inflammatory bowel disease by reducing the production of superoxide by iNOS, while only the former option may be expected to reduce diarrhoea in chronic inflammatory bowel disorders. Clearly, further experimental work needs to be done before testing topical L-arginine in human inflammatory bowel disease.
Collapse
Affiliation(s)
- A Perner
- Department of Medical Gastroenterology, Hvidovre Hospital, University of Copenhagen, Denmark
| | | |
Collapse
|
27
|
Takeuchi T, Niioka S, Yamaji M, Okishio Y, Ishii T, Nishio H, Takatsuji K, Hata F. Decrease in participation of nitric oxide in nonadrenergic, noncholinergic relaxation of rat intestine with age. JAPANESE JOURNAL OF PHARMACOLOGY 1998; 78:293-302. [PMID: 9869263 DOI: 10.1254/jjp.78.293] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Participation of nitric oxide in the electrical field stimulation-induced nonadrenergic, noncholinergic (NANC) relaxation in various intestinal regions was studied in 2- to 50-week-old Wistar rats. In the jejunum of 2-week-old rats, the extent of the nitric oxide-mediated component of the relaxation of longitudinal muscle was approximately 60-70%, whereas the component was 40-50% in 4-week-old rats and was absent in 8- and 50-week-old rats. Thus, nitric oxide seems to be the most important mediator at young ages but its significance is lost with age. The same tendency as that in the jejunum was also shown in longitudinal muscle of the ileum, proximal and distal colon, and rectum. The tendency was also shown in the circular muscle of the rectum. Sensitivity of the longitudinal muscle of the jejunum and proximal colon to exogenously added nitric oxide was high in younger rats. Immunoreactive structures for nitric oxide synthase were observed in the circular muscle layer of the rectum. The population of the structures was denser in 4-week-old than that in 50-week-old. The results suggest that NANC relaxation in every region of the intestine at 2-week-old is almost solely mediated by nitric oxide, and its significance as an inhibitory mediator gradually or rapidly decreases with age.
Collapse
Affiliation(s)
- T Takeuchi
- Department of Veterinary Pharmacology, College of Agriculture, Research Institute for Advanced Science and Technology, Osaka Prefecture University, Sakai, Japan
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Wong LT, Er SS, Ning J, Christoff B, Carmichael FJ. Hemolink-induced effects on intestinal motor function and attenuation of these effects by selected agents. ARTIFICIAL CELLS, BLOOD SUBSTITUTES, AND IMMOBILIZATION BIOTECHNOLOGY 1998; 26:529-48. [PMID: 9844719 DOI: 10.3109/10731199809117473] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hemolink, an oxidized, ring-opened raffinose-crosslinked hemoglobin-based oxygen carrier produced by Hemosol Inc., stimulates esophageal peristalsis, possibly by interference with neural NO-mediated effects. The effects of Hemolink on jejunal tone and contractions, arterial pressure and heart rate were measured in anesthetized rats, and the effect of selected agents in attenuating or reversing these effects was studied. Infusion of L-NAME was used to validate the study model; it caused an immediate increase in tone and initiated phasic contractions indicating that the model was responsive to NO-mediated effects. Hemolink administration caused effects on intestinal motor function similar to those caused by L-NAME, including increases in basal tone and contraction amplitude. Rat whole blood caused none of these changes. The Hemolink-induced effects were less immediate in some animals compared to those observed after L-NAME. As well there was greater inter-animal variability on the effects. Hemolink administration also caused a mild increase in arterial blood pressure and a reciprocal decrease in heart rate in some animals. Co-administration of morphine, a common analgesic that has been reported to influence the motility of the GI tract; L-arginine, a substrate for NO synthesis; and glycopyrrolate, an anti-cholinergic agent, did not significantly modulate the Hemolink effects, whereas nitroglycerin, an NO donor; and nifedipine, a slow calcium-channel blocker, attenuated or reversed these effects.
Collapse
Affiliation(s)
- L T Wong
- Hemosol Inc., Etobicoke, Ontario, Canada
| | | | | | | | | |
Collapse
|
29
|
Abstract
Since its discovery in 1973, the neuropeptide neurotensin has been demonstrated to be involved in the control of a broad variety of physiological activities in both the central nervous system and in the periphery. Pharmacological studies have shown that the biological effects elicited by neurotensin result from its specific binding to cell membrane neurotensin receptors that have been characterized in various tissue and in cell preparations. In addition, it is now well documented that most of these responses are subject to rapid desensitization. Such desensitization results in transient responses to sustained peptide applications, or to tachyphylaxis during successive stimulations in the same conditions. More recently, desensitization of neurotensin signalling was investigated at the cellular and molecular levels. In cultured cells, regulation at the second messenger level, receptor internalization, and receptor down-regulation processes have been reported. These are proposed to play a critical role in the control of cell responsiveness to neurotensin. This review aims to compile recent data on the different biochemical processes involved in the regulation of the neurotensin receptor and to discuss the physiological consequences of this regulation in vivo.
Collapse
Affiliation(s)
- E Hermans
- Laboratory of Pharmacology, Université Catholique de Louvain, Brussels, Belgium
| | | |
Collapse
|
30
|
Takeuchi T, Niioka S, Kishi M, Ishii T, Nishio H, Hata F, Takewaki T, Takatsuji K. Nonadrenergic, noncholinergic relaxation mediated by nitric oxide with concomitant change in Ca2+ level in rectal circular muscle of rats. Eur J Pharmacol 1998; 353:67-74. [PMID: 9721041 DOI: 10.1016/s0014-2999(98)00351-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mediators of nonadrenergic, noncholinergic (NANC) relaxation of the circular muscle of rat rectum were examined in vitro. In the circular muscle of rat rectum, NG-nitro-L-arginine (L-NOARG) at 10 microM did not affect electrical field stimulation-induced relaxation but at 100 microM it inhibited electrical field stimulation-induced relaxation by about 75% and 1-mM L-arginine reversed the inhibition. Exogenous nitric oxide (NO) (1-10 microM) concentration dependently relaxed the circular muscle. Electrical field stimulation increased the cyclic GMP content of the circular muscle to about twice its resting level. L-NOARG, even at 10 microM, completely inhibited the electrical field stimulation-induced elevation of cyclic GMP content. However, L-arginine at 1 mM did not reverse the inhibition in cyclic GMP content. Inhibitory junction potentials (i.j.ps) induced by electrical field stimulation in the circular muscle cells were not affected by L-NOARG, 100 microM. Apamin ( < or = microM) did not affect the electrical field stimulation-induced relaxation, but almost completely inhibited electrical field stimulation-induced i.j.ps. NO (0.3-10 microM) induced relaxation of the circular muscle with a concomitant decrease in intracellular Ca2+ level ([Ca2+]i). Abundant immunoreactivity of NO synthase was found in the circular muscle layer, in addition to myenteric and submucosal plexus. The results suggest that NO induces NANC relaxation with a concomitant change in [Ca2+]i in the circular muscle of rat rectum. However, the involvement of changes in cyclic GMP level and in membrane potentials in the mechanism was not shown in the present experimental conditions.
Collapse
Affiliation(s)
- T Takeuchi
- Department of Veterinary Pharmacology, College of Agriculture, Osaka Prefecture University, Sakai, Japan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Olgart C, Hallén K, Wiklund NP, Iversen HH, Gustafsson LE. Blockade of nitrergic neuroeffector transmission in guinea-pig colon by a selective inhibitor of soluble guanylyl cyclase. ACTA PHYSIOLOGICA SCANDINAVICA 1998; 162:89-95. [PMID: 9492906 DOI: 10.1046/j.1365-201x.1998.0274f.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The role of soluble guanylyl cyclase in nitrergic inhibitory neuroeffector transmission was investigated in the longitudinal muscle from guinea-pig colon, by using an inhibitor of soluble guanylyl cyclase, 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ). In preparations precontracted with histamine, electrical field stimulation (EFS) or exogenous nitric oxide (NO) induced relaxations. The relaxation induced by NO-application was abolished by ODQ. Both ODQ and the NO-synthase inhibitor N omega-nitro-L-arginine (L-NOARG) partially inhibited the EFS-evoked relaxation to a similar extent. These effects were dose-dependent. The inhibition was more pronounced in the late phase of the EFS-induced relaxation. The inhibitory effect of ODQ on EFS-induced relaxation was not affected by additional application of L-NOARG. When NO-formation was blocked by L-NOARG, a subsequent addition of ODQ gave no further inhibition of the relaxation. These findings suggest that inhibitory non-adrenergic, non-cholinergic neurotransmission in guinea-pig colon is dependent on endogenous formation of NO, and that the NO-effect is exclusively mediated via the soluble guanylyl cyclase pathway. The existence of an NO-independent inhibitory transmission, which is not mediated through the cyclic GMP pathway, is also indicated. Furthermore, it is demonstrated that the NO/soluble guanylyl cyclase-independent transmission has an earlier onset as compared with the NO/soluble guanylyl cyclase-dependent pathway.
Collapse
Affiliation(s)
- C Olgart
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
32
|
Boeckxstaens GE, Pelckmans PA. Nitric oxide and the non-adrenergic non-cholinergic neurotransmission. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART A, PHYSIOLOGY 1997; 118:925-37. [PMID: 9505411 DOI: 10.1016/s0300-9629(97)00022-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the early 1960s, the first evidence was reported demonstrating neurally mediated responses in the presence of adrenergic and cholinergic antagonists, leading to the introduction of the concept of non-adrenergic non-cholinergic neurotransmission. The inhibitory component of this part of the autonomic nervous system has been illustrated in numerous organ systems mediating a wide range of physiological events. Since the discovery of these nerves, several substances have been proposed as putative neurotransmitter, with ATP and vasoactive intestinal polypeptide as main candidates. Finally, the ongoing research on the nature of the substance released by these nerves has generated the nitrergic theory proposing nitric oxide as putative neurotransmitter. By now, increasing evidence is reported to support the idea that inhibitory neurons release more neurotransmitters, interacting with each other at pre- and/or postsynaptic levels.
Collapse
Affiliation(s)
- G E Boeckxstaens
- Division of Gastroenterology, Academic Medical Center, Amsterdam, The Netherlands
| | | |
Collapse
|
33
|
Iversen HH, Wiklund NP, Olgart C, Gustafsson LE. Nerve stimulation-induced nitric oxide release as a consequence of muscarinic M1 receptor activation. Eur J Pharmacol 1997; 331:213-9. [PMID: 9274982 DOI: 10.1016/s0014-2999(97)01027-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The aim of the present study was to investigate whether nerve stimulation-induced nitric oxide (NO) release in the guinea-pig colon is affected by acetylcholine and to identify the muscarinic receptor subtype involved. Nerve-smooth muscle preparations were suspended in a superfusion chamber and NO/NO2- overflow in the superfusate was detected by chemiluminescence analysis. Transmural nerve stimulation evoked a significant increase in NO/NO2- release, which was inhibited by N(omega)-nitro-L-arginine methyl ester (L-NAME) and abolished by tetrodotoxin. Exogenous acetylcholine concentration-dependently increased NO/NO2- release and atropine reduced nerve stimulation-evoked NO/NO2- release. The muscarinic M1 receptor selective antagonist telenzepine (10(-8) M) was as effective as atropine (10(-6) M) in inhibiting NO/NO2- release. The muscarinic M3 receptor antagonists 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP) and para-fluoro-hexahydrosila-difenidol (p-F-HHSiD) markedly inhibited cholinergic contractions at 3 x 10(-8) M and 3 x 10(-7) M respectively, but did not affect NO/NO2- release. In conclusion, nerve-induced NO/NO2- release in the guinea-pig colon is to a substantial part due to muscarinic M1 receptor activation. Thus acetylcholine, a major contractile neurotransmitter in the gut, can release NO which could act as a negative feedback mechanism on intestinal smooth muscle or neuronal activity.
Collapse
Affiliation(s)
- H H Iversen
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | | | | | | |
Collapse
|
34
|
Matini P, Faussone-Pellegrini MS. Ultrastructural localization of neuronal nitric oxide synthase-immunoreactivity in the rat ileum. Neurosci Lett 1997; 229:45-8. [PMID: 9224798 DOI: 10.1016/s0304-3940(97)00414-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The location of neuronal nitric oxide synthase-immunoreactivity (NOS-IR) in whole mount preparations of muscularis externa of rat ileum was determined by using pre-embedding electron microscope immunocytochemistry. Several neurons, nerve fibers and nerve endings in the myenteric plexus (MP) and nerve endings within the muscle layers were found to be NOS-IR. These nerve endings were especially numerous in the deep muscular plexus (DMP) and much closer to interstitial cells of Cajal (ICC) than to smooth muscle cells. Some of the ICC-MP were NOS-IR. These findings indicate that ICC-MP are apparently able to produce NO and ICC-DMP are the ileal ICC type very richly innervated by the NO releasing nerves.
Collapse
Affiliation(s)
- P Matini
- Department of Human Anatomy and Histology, University of Florence, Italy
| | | |
Collapse
|
35
|
Machino H, Kobayashi H, Hayashi K, Tawara Y, Ito M, Kishimoto S. Nitric oxide is involved in the inhibitory action of cholecystokinin octapeptide (CCK-OP) on proximal colonic motility. REGULATORY PEPTIDES 1997; 69:47-52. [PMID: 9163582 DOI: 10.1016/s0167-0115(97)02128-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To determine whether nitric oxide (NO) is a possible mediator in the inhibitory action of CCK-octapeptide (CCK-OP) on circular muscle contractions of the rat proximal colon, contractile activities of the circular muscle were recorded in the proximal colon of unrestrained conscious rats in the fasting state using a miniature strain gauge force transducer and an implantable telemetry system. Regular and rhythmic phasic contractions were observed during the fasted condition, similar to the myoelectric migrating complex seen in intestinal contractions of the fasting dog. These phasic contractions were almost completely inhibited after intraperitoneal (i.p.) administration of CCK-OP at a dose of 15 microg/kg body weight. N(omega)-nitro-arginine, methyl ester (L-NAME), at doses of 20 and 200 mg/kg i.p. administered prior to i.p. injection of CCK-OP, prevented the inhibitory action on the fasting phasic contractions. The degree of prevention was dose-dependent. 100 mg/kg body weight i.p. injection of L-arginine inhibited the circular muscle contractions. The same dose of D-arginine had no action on contractions of the circular muscle of the proximal colon in the fasted rat. From these data, we conclude that NO is one possible mediator in the inhibitory mechanism of CCK-OP on smooth muscle motor activity of the rat proximal colon in vivo.
Collapse
Affiliation(s)
- H Machino
- First Department of Internal Medicine, Hiroshima University School of Medicine, Minami-ku, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Iversen HH, Celsing F, Leone AM, Gustafsson LE, Wiklund NP. Nerve-induced release of nitric oxide in the rabbit gastrointestinal tract as measured by in vivo microdialysis. Br J Pharmacol 1997; 120:702-6. [PMID: 9051311 PMCID: PMC1564517 DOI: 10.1038/sj.bjp.0700967] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
1. Nitric oxide (NO) has been suggested as a gastrointestinal neurotransmitter, mediating the gastric receptive relaxation and the relaxation in the peristaltic reflex. The aim of the present study was to measure nerve-induced NO formation in vivo in the gastrointestinal tract. 2. Formation of the nitric oxide oxidation products nitrite and nitrate during vagal nerve stimulation were measured in the anaesthetized rabbit. Microdialysis probes were inserted into the wall of the stomach and proximal colon, and nitrite and nitrate in dialysate measured by capillary electrophoresis. 3. During bilateral vagal nerve stimulation there was an increase in nitrite and nitrate formation at the level of the stomach and in nitrite formation at the level of the colon. This increase was inhibited by intravenous administration of the NO synthase inhibitor N omega-nitro-L-arginine methyl ester (L-NAME 30 mg kg-1). Furthermore, L-NAME significantly increased nerve-induced gastric and colonic contractions, as well as spontaneous colonic contractions. 4. In summary, we present a new methodological procedure for quantification of small changes in nitric oxide formation in vivo. This study provides evidence that nitric oxide is released in the stomach and colonic wall during vagal nerve activity, at concentrations able to cause inhibition of smooth muscle contractions in vivo.
Collapse
Affiliation(s)
- H H Iversen
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
37
|
Kishi M, Takeuchi T, Suthamnatpong N, Ishii T, Nishio H, Hata F, Takewaki T. VIP- and PACAP-mediated nonadrenergic, noncholinergic inhibition in longitudinal muscle of rat distal colon: involvement of activation of charybdotoxin- and apamin-sensitive K+ channels. Br J Pharmacol 1996; 119:623-30. [PMID: 8904634 PMCID: PMC1915760 DOI: 10.1111/j.1476-5381.1996.tb15719.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. The mediators of nonadrenergic, noncholinergic (NANC) inhibitory responses in longitudinal muscle of rat distal colon were studied. 2. An antagonist of pituitary adenylate cyclase activating peptide (PACAP) receptors, PACAP6-38, concentration-dependently inhibited the rapid relaxation of the longitudinal muscle induced by electrical field stimulation (EFS), resulting in a maximal inhibition of 47% at 3 microM. 3. PACAP6-38 inhibited the relaxation by 75% in the presence of the vasoactive intestinal peptide (VIP) receptor antagonist, VIP10-28 at 3 microM, which inhibited the relaxation by 44%. 4. An antagonist of large conductance Ca(2+)-activated K+ channels, charybdotoxin, concentration-dependently inhibited the rapid relaxation of the longitudinal muscle, resulting in a maximal inhibition of 58% at 100 nM. 5. An antagonist of small conductance Ca(2+)-activated K+ channels, apamin, concentration-dependently inhibited the relaxation (58% at 1 microM). 6. Treatment with both K+ channel antagonists resulted in 84% inhibition of the EFS-induced relaxation, which is comparable to the extent of inhibition induced by PACAP6-38 plus VIP10-28. 7. The inhibitory effect of VIP10-28 and of apamin, but not of charybdotoxin was additive: the same applied to PACAP6-38 and charybdotoxin, but not apamin. 8. Exogenously added VIP (100 nM 1 microM) induced a slow gradual relaxation of the longitudinal muscle. Charybdotoxin, but not apamin significantly inhibited the VIP-induced relaxation VIP10-28, but not PACAP6-38 selectively inhibited the VIP-induced relaxation. 9. Exogenously added PACAP (10-100 nM) also induced slow relaxation. Apamin and to a lesser extent, charybdotoxin, inhibited the PACAP-induced relaxation. PACAP6-38, but not VIP10-28 selectively inhibited the PACAP-induced relaxation. 10. Apamin at 100 nM inhibited inhibitory junction potentials (i.j.ps) induced by a single pulse of EFS Apamin also inhibited a rapid phase, but not a delayed phase of i.j.ps induced by two pulses at 10 Hz. VIP10-28 did not inhibit i.j.ps induced by a single pulse, but significantly inhibited the delayed phase at two pulses. A combination of apamin and VIP10-28 abolished the i.j.ps induced by two pulses. 11. Both VIP and PACAP induced slow hyperpolarization of the cell membrane of the longitudinal muscle. Apamin inhibited the PACAP-, but not VIP-induced hyperpolarization. 12. From these findings it is suggested that VIP and PACAP are involved in NANC inhibitory responses of longitudinal muscle of the rat distal colon via activation of charybdotoxin- and apamin-sensitive K+ channels, respectively.
Collapse
Affiliation(s)
- M Kishi
- Department of Veterinary Pharmacology, College of Agriculture, Osaka Prefecture University, Sakai, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
BACKGROUND Nitric oxide (NO) has been recently implicated as a possible mediator of bowel inflammation and has also been shown to stimulate electrogenic chloride secretion in rat and guinea pig intestine. This study therefore investigated the effect on two NO donors, sodium nitroprusside (SNP) and S-nitroso-N-acetylpenicillamine (SNAP) on human colonic ion transport. METHODS Changes in short circuit current (delta SCC) in response to nitric oxide donating compounds were measured in muscle stripped normal human colon mounted in Ussing chambers. The ion species and intracellular mechanisms responsible for delta SCC evoked by SNP were investigated. RESULTS Basolateral SNP caused a progressive rise in delta SCC over the range 10(-7) to 10(-4)M (ED50 = 2.5 x 10(-5)M). SNAP 10(-4)M also evoked a qualitatively similar delta SCC compared with SNP 10(-4)M. Basolateral SNP evoked a greater delta SCC than apical and this was significantly attenuated by bumetanide 10(-4)M (52.9 +/- 10.1%) and in chloride free media (68.3 +/- 7.3%). delta SCC response to SNP was not significantly changed by basolateral 4-acetamido-4'-isothio-cyano-2,2'disulphonic acid stillbene (SITS 10(-3)M) an inhibitor of sodium/bicarbonate exchange, or apical amiloride 10(-5)M an inhibitor of sodium absorption. SNP induced delta SCC was also significantly reduced by piroxicam (mean (SEM)) 10(-5)M (57.9 (11.9)%), nordihydroguaretic acid 10(-4)M (48.0 (12.9)%), tetrodotoxin (TTX 10(-6)M, 52.3 (9.1)%), and practically abolished by TTX and piroxicam together (96.8 (3.3)%). CONCLUSION NO donors stimulate human colonic ion transport in vitro. For SNP, increased delta SCC is at least due in part to chloride secretion, and the response seems to be transduced through enteric nerves and by local prostanoid synthesis. This study provides evidence that NO may be another important mediator of ion transport in human colon.
Collapse
Affiliation(s)
- W A Stack
- Division of Gastroenterology, University Hospital, Queens Medical Centre, Nottingham
| | | | | |
Collapse
|
39
|
Teramoto M, Domoto T, Tanigawa K, Yasui Y, Tamura K. Distribution of nitric oxide synthase-containing nerves in the aganglionic intestine of mutant rats: a histochemical study. J Gastroenterol 1996; 31:214-23. [PMID: 8680541 DOI: 10.1007/bf02389520] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We examined the distribution of nerves containing nitric oxide synthase in the intestine of congenitally aganglionic rats, using a reduced nicotinamide adenine dinucleotide phosphate diaphorase histochemical method for whole-mount and cryostat specimens. A constricted intestinal segment extends from the terminal ileum to the anus in this mutant. No nerve elements with the activity were found in the affected terminal ileum, cecum and proximal colon. Although intrinsic ganglionic neurons were absent along the constricted intestine, nerve fibers with the activity were found in both the submucous and intermuscular layers distal to the proximal colon. These fibers increased in density towards the rectum, forming hypertrophic nerve bundles and unusual fiber networks. However, positive fibers were never seen within the circular and longitudinal musculature of the constricted lesion. Some of these hypertrophic nerve bundles were continuous with ectopic ganglia that were situated in the adventitial connective tissue around the lower rectum and in the submucosa near the anus. The hypertrophic nerve bundles seemed to have an extrinsic origin; some of them may have originated from ectopic ganglia. These results suggest that the defective distribution of nerves containing nitric oxide synthase may be involved in the pathogenesis of congenital colonic aganglionosis.
Collapse
Affiliation(s)
- M Teramoto
- First Department of Surgery, Shimane Medical University, Izumo, Japan
| | | | | | | | | |
Collapse
|
40
|
Kolios G, Brown Z, Robson RL, Robertson DA, Westwick J. Inducible nitric oxide synthase activity and expression in a human colonic epithelial cell line, HT-29. Br J Pharmacol 1995; 116:2866-72. [PMID: 8680718 PMCID: PMC1909228 DOI: 10.1111/j.1476-5381.1995.tb15938.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
1 We have determined which cytokines regulate the expression of human inducible nitric oxide synthase (iNOS) mRNA and nitrite generation in the human colonic-epithelial cell line HT-29. 2 Growth arrested cell cultures were stimulated with the human recombinant cytokines interleukin-1 alpha (IL-1 alpha), tumour necrosisfactor-alpha (TNF-alpha), interferon gamma (IFN-gamma) or vehicle added alone or in combination. Human iNOS mRNA was determined by Northern blot analysis and nitrite generation by the use of a fluorometric assay. 3 Unstimulated cells produced a small time-dependent increase in nitrite generation of 50 +/- 4, 75 +/- 8, and 103 +/- 8 nM per 10(6) cells at 24 h, 48 h, and 72 h respectively. This nitrite generation was unaffected by cycloheximide (5 micrograms ml-1) pretreatment and iNOS mRNA was not detected. 4 None of cytokines alone induced either iNOS mRNA expression or an increase in nitrite generation. The combination of IL-1 alpha/IFN-gamma produced a highly significant (P < 0.001) 4 fold increase in nitrite production at 48 h, compared to basal values, while no other pair of cytokines was effective. 5 Time course studies with IL-1 alpha/IFN-gamma combination revealed significant (P < 0.001) increases in nitrite at 24 h (153 +/- 7), 48 h (306 +/- 24), and 72 h (384 +/- 15) compared to basal values of 50 +/- 4, 75 +/- 8, and 103 +/- 8 nM per 10(6) cells respectively. 6 Studies with IL-1 alpha/IFN-gamma combination demonstrated a time dependent expression of iNOS mRNA, first observed at 6 h, peaked at 24 h and was undetectable by 72 h. IL-1 alpha (0.3-10 ng ml-1) and IFN-gamma (10-300 u ml-1) in combination induced a concentration-dependent expression of iNOS mRNA at 24 h. 7 Pretreatment with cycloheximide before IL-1 alpha/IFN-gamma stimulation reduced nitrite levels to basal values. These data suggest that the IL-1 alpha/IFN-gamma-induced nitrite production by HT-29 cells is dependent on de novo protein synthesis, probably the iNOS enzyme. 8 The addition of TNF-alpha produced a significant (P < 0.001) 3 fold increase of IL-1 alpha/IFN-gamma-induced nitrite generation. In marked contrast the presence of TNF-alpha had no effect on IL-1 alpha/IFN-gamma-induced iNOS mRNA expression by HT-29 cells. These findings suggest that the up-regulation by TNF-alpha of IL-1 alpha/IFN-gamma-induced nitrite generation is at the post-transcriptional level. 9 These data suggest that pro-inflammatory cytokines induce NO production in colonic epithelial cells probably due to the induction of iNOS and these cells may be a major source of NO generation in inflammatory bowel disease.
Collapse
Affiliation(s)
- G Kolios
- Department of Pharmacology, University of Bath, Claverton Down
| | | | | | | | | |
Collapse
|
41
|
Keränen U, Vanhatalo S, Kiviluoto T, Kivilaakso E, Soinila S. Co-localization of NADPH diaphorase reactivity and vasoactive intestinal polypeptide in human colon. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1995; 54:177-83. [PMID: 7490419 DOI: 10.1016/0165-1838(95)00010-u] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Nitric oxide-containing nervous structures were localized in the human colon using NADPH diaphorase activity and nitric oxide synthase immunoreactivity. We found some, solitary NADPH diaphorase-reactive and nitric oxide synthase-immunoreactive neurons in the submucous plexus, while the myenteric plexus contained several neurons, often arranged in clusters, and nerve fibers showing these markers. The circular muscle layer contained a dense plexus of NADPH diaphorase-reactive nerves, which was greater than that in the longitudinal muscle layer. We report on co-localization of NADPH diaphorase activity and VIP immunoreactivity in several neurons of the myenteric ganglia. Such co-localization has not been reported previously for human colon. Localization of nitric oxide synthase and VIP in the myenteric plexus and in the nerves of circular muscle layer raises the possibility that nitric oxide contributes to the regulation of motility in the human colon.
Collapse
Affiliation(s)
- U Keränen
- Second Department of Surgery, Helsinki University Central Hospital, Finland
| | | | | | | | | |
Collapse
|
42
|
Balaskas C, Saffrey MJ, Burnstock G. Distribution and colocalization of NADPH-diaphorase activity, nitric oxide synthase immunoreactivity, and VIP immunoreactivity in the newly hatched chicken gut. Anat Rec (Hoboken) 1995; 243:10-8. [PMID: 8540623 DOI: 10.1002/ar.1092430103] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The distribution and colocalization of nitric oxide synthase and NADPH-diaphorase have been investigated quite extensively in the mammalian gut; however, no such study has been undertaken in the avian gut. In the present report, we have therefore studied the distribution and coexpression of nitric oxide synthase (NOS), NADPH-diaphorase, and vasoactive intestinal polypeptide (VIP) in enteric neurons of the newly hatched chicken gut. METHODS Immunohistochemical methods were used to detect NOS immunoreactivity (NOS-IR) and VIP immunoreactivity (VIP-IR). NADPH-diaphorase activity was detected using a histochemical technique. RESULTS Neurons expressing NADPH-diaphorase activity, NOS-IR, and VIP-IR were detected in both the myenteric and submucous plexus of all regions of the gastrointestinal tract examined. All NADPH-diaphorase positive neurons were also NOS-IR and all NOS-IR neurons were NADPH-diaphorase positive, in both plexuses, indicating that NADPH-diaphorase can be used as a marker for NOS containing neurons in the chicken gut. The majority of VIP-IR neurons also expressed NADPH-diaphorase activity. Only few neurons that expressed NADPH-diaphorase activity did not express VIP-IR. The proportion of VIP immunopositive neurons that were NADPH-diaphorase negative increased anally and these neurons were more prominent in the submucous than the myenteric plexus ganglia. NADPH-diaphorase positive, NOS-IR, and VIP-IR nerve fibres were detected in the circular muscle, but very few, if any, were present in the longitudinal muscle. VIP-IR, but not NOS-IR or NADPH-diaphorase activity, was detected in mucosal fibres, in contrast to the situation in the mammalian gut. CONCLUSIONS These results indicate that in birds, as in mammals, nitric oxide may play a role in the neural control of the gut musculature, but that it is unlikely to be involved in the nervous control of mucosal activity.
Collapse
Affiliation(s)
- C Balaskas
- Department of Anatomy and Developmental Biology, University College London, United Kingdom
| | | | | |
Collapse
|
43
|
Gwee MC, Gopalakrishnakone P, Cheah LS, Bowman WC. L-arginine-nitric oxide pathway involvement in the nerve-evoked relaxant responses of the 5-HT precontracted chick isolated upper oesophagus. JOURNAL OF AUTONOMIC PHARMACOLOGY 1995; 15:151-8. [PMID: 7673269 DOI: 10.1111/j.1474-8673.1995.tb00299.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
1. The effects of tetrodotoxin (TTx) and the selective nitric oxide synthase (NOS) inhibitor, NG-nitro-L-arginine methyl ester (L-NAME) on relaxant responses of the 5-HT precontracted chick isolated upper oesophagus to electrical field stimulation (EFS: 25-30V, 5 Hz for 10 s, 1 ms pulse width every 100 s) were investigated; the oesophagus was mounted under 1 g tension in Krebs solution containing 1 microM atropine. Appropriate tissue sections (30 microM thickness) of the chick oesophagus were also processed for NADPH-diaphorase histochemistry. 2. TTx (2 microM) and L-NAME (100-200 microM) inhibited the relaxant responses of the 5-HT precontracted chick oesophagus to EFS in a concentration-dependent manner; L-arginine (0.5-1 mM), but not D-arginine (0.5-1 mM), reversed the inhibition by L-NAME. In the absence of atropine and muscle tone, EFS produced contractile responses of the chick oesophagus that were completely abolished by 1 microM atropine, which also blocked the contractile response to acetylcholine (50 microM). 3. Under light microscopy, NADPH-diaphorase histochemistry confirmed the presence of nitric oxide synthase (NOS)-containing neurones and nerve fibres in the chick oesophagus. 4. The relaxant responses of the 5-HT precontracted chick isolated upper oesophagus to EFS are, therefore, mediated via the stimulation of non-adrenergic non-cholinergic nerves. These are likely to correspond to the histochemically identified NOS-containing neurones involved, presumably, in the synthesis and release of nitric oxide as the relaxant (inhibitory) neurotransmitter in this avian smooth muscle.
Collapse
Affiliation(s)
- M C Gwee
- Department of Pharmacology, Faculty of Medicine, National University of Singapore
| | | | | | | |
Collapse
|
44
|
Qian YM, Jones RL. Inhibition of rat colon contractility by prostacyclin (IP-) receptor agonists: involvement of NANC neurotransmission. Br J Pharmacol 1995; 115:163-71. [PMID: 7544196 PMCID: PMC1908760 DOI: 10.1111/j.1476-5381.1995.tb16334.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
1. The possibility that prostacyclin (IP-) receptor agonists inhibit spontaneous contractions of the rat isolated colon by activating enteric neurones has been investigated. Cicaprost was used as the test agonist because of its high stability, selectivity and potency (IC50 = 3.8 nM). 2. The Na+ channel blockers saxitoxin (STX, 1 nM) and tetrodotoxin (TTX, 1 microM), whilst having little effect on resting spontaneous activity, virtually abolished the inhibitory actions of cicaprost (10 nM) and nicotine (3 microM); inhibitory responses to isoprenaline (20 nM) were not affected. Phentolamine (1 microM), propranolol (1 microM) and atropine (1 microM) had no effect on cicaprost inhibition. These data are compatible with release of inhibitory NANC transmitter(s) by cicaprost. 3. A transmitter role for nitric oxide was investigated. The nitric oxide synthase (NOS) inhibitor N omega-nitro-L-arginine methyl ester (L-NAME, 100 microM) inhibited the actions of both cicaprost (10 nM) and nicotine (3 microM) by 50-60%, but did not affect responses to isoprenaline (20 nM) or sodium nitroprusside (1-5 microM). The enantiomeric D-NAME (100 microM), which has negligible NOS inhibitory activity, had no effect on the action of cicaprost. 4. The involvement of purinergic transmitters was also investigated. Desensitization to the inhibitory action of ATP did not affect cicaprost responses. The P2x/P2y-receptor antagonist, suramin, at 300 microM blocked ATP responses, but not those due to adenosine; it did not affect cicaprost inhibition. The selective adenosine A1-receptor antagonist, DPCPX, used at a sufficiently high concentration (5 microM) to block adenosine A2-receptors, did not affect cicaprost inhibition. Apamin (25 nM), a blocker of calcium activated K+ channels on smooth muscle, abolished or markedly reduced the inhibitory actions of ATP and adenosine, and partially inhibited cicaprost and nicotine responses. The combination of L-NAME(100 microM) and apamin (25 nM) abolished cicaprost and nicotine responses.5. Investigation of vasoactive intestinal peptide (VIP) as a potential transmitter showed that its inhibitory action on the colon (IC50 = 50 nM) was partially inhibited by TTX (1 microM). alpha-Chymotrypsin abolished the effect of VIP but had no effect on cicaprost inhibition. Attempts to inhibit VIP responses using peptide antagonists and by agonist desensitization were unsuccessful.6. KCI (40 mM) contracted the colon and abolished spontaneous activity. Under these conditions,isoprenaline, sodium nitroprusside and ATP induced relaxation, whereas cicaprost (10-3 10 nM) had no effect. Cicaprost inhibited both the tone and the spontaneous activity induced by the EP1/EP3-receptor agonist, sulprostone (8.6 nM) but not when either TTX (1 microM) or KC1 (40 mM) was also present. On KCl-treated preparations, the prostacyclin analogue, iloprost (10-500 nM), induced contraction,presumably due to activation of EP-receptors.7. It is concluded that IP-receptor agonists inhibit the contractility of rat colon by stimulating the release of at least two transmitters from NANC enteric neurones. Nitric oxide appears to be one of the transmitters. The second transmitter mechanism is apamin-sensitive; the experimental results do not support ATP, adenosine or VIP as transmitter candidates. However, further studies using more potent and selective receptor antagonists are required.
Collapse
Affiliation(s)
- Y M Qian
- Department of Pharmacology, Faculty of Medicine, Chinese University of Hong Kong, Shatin, NT
| | | |
Collapse
|
45
|
Abstract
Nitric oxide (NO) is becoming increasingly recognised as a signalling molecule in many organs, although its role in the liver remains to be fully elucidated. There is no doubt that liver cells can produce NO in response to a variety of stimuli including Corynebacterium parvum-infection, lipopolysaccharide (LPS) and a variety of cytokines. Within the liver, NO modulates some fundamental intracellular functions such as protein synthesis, mitochondrial electron transport and components of the citric acid cycle. Intercellular roles for NO in the liver may include drug metabolism and blood storage. Also, NO acts to protect the liver from immunological damage in models of hepatic inflammation. Understanding the role of NO in the liver may provide insight into the functioning of this organ in health and disease.
Collapse
Affiliation(s)
- E A Milbourne
- Division of Biochemistry and Molecular Biology, Faculty of Science, Australian National University, Canberra
| | | |
Collapse
|
46
|
Postorino A, Serio R, Mulè F. Nitric oxide is involved in non-adrenergic, non-cholinergic inhibitory neurotransmission in rat duodenum. JOURNAL OF AUTONOMIC PHARMACOLOGY 1995; 15:65-71. [PMID: 7542243 DOI: 10.1111/j.1474-8673.1995.tb00292.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
1. In rat duodenum, electrical field stimulation (EFS) induced a relaxation due to activation of non-adrenergic, non-cholinergic (NANC) inhibitory intramural neurones. 2. Nitric oxide synthase (NOS) inhibitors, N omega-nitro-L-arginine (L-NNA) and N omega-nitro-L-arginine methyl ester (L-NAME), caused a dose-dependent reduction in amplitude of the NANC relaxation. Responses to low frequencies of stimulation were more sensitive to NOS inhibitors than those to high frequencies. 3. Effects induced by NOS inhibitors were stereospecific since D-NNA and D-NAME did not affect NANC relaxation. L-arginine, but not D-arginine, partially prevented the effects induced by NOS inhibitors on NANC relaxation. 4. The nitrovasodilator drug, sodium nitroprusside, caused muscle relaxation which was not affected by preincubation with either tetrodotoxin (TTX), L-NNA or L-NAME. 5. alpha-Chymotrypsin reduced relaxations elicited by stimulation of NANC nerves, especially when high frequencies of stimulation were used. The residual NANC relaxation was further reduced by NOS inhibitors. In the same way, alpha-chymotrypsin was able to further reduce the relaxation observed after NOS inhibitors. 6. These results suggest that nitric oxide (NO) and a peptide are involved in NANC relaxation of rat duodenal smooth muscle. NO and peptidergic pathways act in parallel to produce muscle relaxation and they are preferentially activated by stimuli at low and high frequencies, respectively.
Collapse
Affiliation(s)
- A Postorino
- Dipartimento di Biologia cellulare e dello Sviluppo, Università degli Studi di Palermo, Corso Tukory, Italia
| | | | | |
Collapse
|
47
|
Timmermans JP, Barbiers M, Scheuermann DW, Stach W, Adriaensen D, Mayer B, De Groodt-Lasseel MH. Distribution pattern, neurochemical features and projections of nitrergic neurons in the pig small intestine. Ann Anat 1994; 176:515-25. [PMID: 7530411 DOI: 10.1016/s0940-9602(11)80387-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The presence and topographical distribution of nitrergic neurons in the enteric nervous system (ENS) of the pig small intestine have been investigated by means of nitric oxide synthase (NOS) immunocytochemistry and nicotinamide dinucleotide phosphate diaphorase (NADPHd) histochemistry. Both techniques yielded similar results, thus confirming that within the pig ENS the neuronal isoform of NOS corresponds to NADPHd. Intrinsic nitrergic neurons were not confined to the myenteric plexus; considerable numbers were also present in the outer submucous plexus. In the inner submucous plexus, NOS immunoreactivity or NADPHd staining was restricted to a few nerve fibres and nerve cell bodies. The nitrergic neurons displayed a wide variety in size and shape, but could all be characterized as being multidendritic uniaxonal. Nerve lesion experiments showed that the majority of the myenteric nitrergic neurons project in an anal direction. Evidence is at hand to show that a substantial proportion of these neurons contribute to the dense nitrergic innervation of the tertiary plexus and the circular smooth muscle layer. Some of the nitrergic neurons of the outer submucous plexus were equally found to send their axons towards the circular muscle layer. In some of the nitrergic enteric neurons, VIP, neuropeptide Y, galanin or protein 10 occurred colocalized, but not calbindin or serotonin. The present findings provide morphological evidence for the presence of NOS in a proportion of the enteric neurons in the small intestine of a large omnivorous mammal, i.e. the pig. The topographical features of the staining patterns of NOS and NADPHd are in accord with the results of neuropharmacological studies and argue for the existence of distinct nitrergic subpopulations acting either as interneurons or as motor neurons.
Collapse
Affiliation(s)
- J P Timmermans
- Department of Morphology, University of Antwerp (RUCA), Belgium
| | | | | | | | | | | | | |
Collapse
|
48
|
Slivka A, Chuttani R, Carr-Locke DL, Kobzik L, Bredt DS, Loscalzo J, Stamler JS. Inhibition of sphincter of Oddi function by the nitric oxide carrier S-nitroso-N-acetylcysteine in rabbits and humans. J Clin Invest 1994; 94:1792-8. [PMID: 7525649 PMCID: PMC294570 DOI: 10.1172/jci117527] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nitric oxide (NO) is an inhibitor of gastrointestinal smooth muscle. Model systems of the gut predict the NO will complex with biological thiol (SH) groups, yielding S-nitrosothiols (RS-NO), which may limit the propensity to form mutagenic nitrosamines. The inhibitory effects of NO and its biologically relevant adducts on sphincter of Oddi (SO) motility have been inferred from animal studies; however, their importance in regulating human SO is not known. The objectives of this study were to (a) provide histologic confirmation of nitric oxide synthase (NOS) in human SO; (b) characterize the pharmacology of S-nitroso-N-acetylcysteine (SNAC), an exemplary S-nitrosothiol, on SO motility in a rabbit model; and (c) study the effects of topical SNAC on SO motility in humans. Immunocytochemical and histochemical identification of NOS was performed in human SO. The pharmacologic response of SNAC was defined in isolated rabbit SO using a standard bioassay. Topical SNAC was then applied to the duodenal papilla in patients undergoing endoscopic retrograde cholangiopancreatography (ERCP) and biliary manometry. NOS was localized to nerve fibers and bundles of the SO in rabbits and humans. SNAC inhibited spontaneous motility (frequency and amplitude) as well as acetylcholine-induced elevations in SO basal pressure in the rabbit model. In patients undergoing ERCP and biliary manometry, topical SNAC inhibited SO contraction freqency, basal pressure, and duodenal motility. NOS is localized to neural elements in human SO, implicating a role for NO in regulating SO function. Supporting this concept, SNAC is an inhibitor of SO and duodenal motility when applied topically to humans during ERCP. Our data suggest a novel clinical approach using local NO donors to control gastrointestinal motility and regulate sphincteric function.
Collapse
Affiliation(s)
- A Slivka
- Division of Gastroenterology, Brigham and Women's Hospital, Boston, Massachusetts 02115
| | | | | | | | | | | | | |
Collapse
|
49
|
Browning KN, Lees GM. Reappraisal of the innervation of rat intestine by vasoactive intestinal polypeptide and neuropeptide Y-immunoreactive neurons. Neuroscience 1994; 62:1257-66. [PMID: 7845597 DOI: 10.1016/0306-4522(94)90357-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The occurrence and distribution of neurons and nerve fibres showing vasoactive intestinal polypeptide-like and neuropeptide Y-like immunoreactivity were re-examined in the enteric nervous system of the small and large intestine of the adult rat using dual-labelling indirect immunofluorescence histochemistry to detect the co-existence of these neuropeptides. In the myenteric plexus of both small and large intestine, a population of neuropeptide Y-immunoreactive neurons that did not contain vasoactive intestinal polypeptide was noted; it accounted for 29-53% of neuropeptide Y neurons. Such neurons were also found in the submucosa but there they constituted at most 2% of neuropeptide Y-immunoreactive neurons. In both myenteric and submucous plexuses, regional variations were observed in the number of immunoreactive neurons and in the proportion of dual-labelled neurons. In the myenteric plexus, for example, the density of neurons with immunoreactivity to these two neuropeptides was constant throughout the small intestine, whereas it progressively increased distally within the colon. In addition, a distinct but small subset of immunoreactive myenteric neurons was found to have a novel soma morphology, unclassifiable according to the criteria used for porcine or guinea-pig enteric neurons. Such neurons had one or more conspicuous processes, which were much longer than the short, lamellar somal processes of typical Dogiel Type 1 neurons; moreover, these protruded from an essentially smooth soma and terminated at distances of up to two cell diameters from their point of origin. Thus, our results suggest that the organization of the enteric nervous system of the rat differs from that of other species and indicate that investigation of the co-localizations of neuropeptides and biologically active mediators in the intestinal tract would be incomplete without reference to regional differences in the incidence and distribution of such neurochemicals.
Collapse
Affiliation(s)
- K N Browning
- Department of Biomedical Sciences, University of Aberdeen, Marischal College, U.K
| | | |
Collapse
|
50
|
Suthamnatpong N, Hosokawa M, Takeuchi T, Hata F, Takewaki T. Nitric oxide-mediated inhibitory response of rat proximal colon: independence from changes in membrane potential. Br J Pharmacol 1994; 112:676-82. [PMID: 7521262 PMCID: PMC1910383 DOI: 10.1111/j.1476-5381.1994.tb13129.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
1. We studied the relation of nitric oxide-mediated relaxation of smooth muscle to changes in membrane potential of cells in the proximal colon of rats. 2. The resting membrane potential and electrical field stimulation (EFS)-induced junction potentials were recorded from the circular and longitudinal muscle cells. 3. Localized distension with a small balloon caused relaxation of the circular muscle on the anal side of the distended region (descending relaxation). Relaxation of the longitudinal muscle was also induced by EFS. 4. Inhibitory junction potentials (i.j.ps) were recorded from all circular muscle cells tested, but rarely from the longitudinal muscle cells. 5. The i.j.ps were recorded only in the presence of atropine but relaxations of both muscles were induced even in the absence of atropine. 6. Apamin (100 nM) completely abolished the i.j.ps recorded in both circular and longitudinal muscle cells, but had no significant effect on the relaxations of either. 7. In contrast to apamin, Ng nitro-L-arginine (10 microM) inhibited the relaxations of both muscles, but did not affect the i.j.ps. 8. Exogenously added nitric oxide (0.1-10 microM) induced relaxations of both muscles concentration-dependently, but did not affect the membrane potentials at these concentrations. 9. These data strongly suggest that nitric oxide-mediated relaxation of rat proximal colon is not associated with the i.j.ps of the cell membrane.
Collapse
Affiliation(s)
- N Suthamnatpong
- Department of Veterinary Pharmacology, College of Agriculture, University of Osaka Prefecture, Sakai, Japan
| | | | | | | | | |
Collapse
|