1
|
Martínez FG, Moreno-Martin G, Pescuma M, Madrid-Albarrán Y, Mozzi F. Biotransformation of Selenium by Lactic Acid Bacteria: Formation of Seleno-Nanoparticles and Seleno-Amino Acids. Front Bioeng Biotechnol 2020; 8:506. [PMID: 32596220 PMCID: PMC7303280 DOI: 10.3389/fbioe.2020.00506] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 04/29/2020] [Indexed: 02/05/2023] Open
Abstract
Selenium (Se) is an essential micronutrient for the majority of living organisms, and it has been identified as selenocysteine in the active site of several selenoproteins such as glutathione peroxidase, thioredoxin reductase, and deiodinases. Se deficiency in humans is associated with viral infections, thyroid dysfunction, different types of cancer, and aging. In several European countries as well as in Argentina, Se intake is below the recommended dietary Intake (RDI). Some lactic acid bacteria (LAB) can accumulate and bio-transform selenite (toxic) into Se-nanoparticles (SeNPs) and Se-amino acids (non-toxic). The microbial growth, Se metabolite distribution, and the glutathione reductase (involved in selenite reduction) activity of Se-enriched LAB were studied in this work. The ninety-six assayed strains, belonging to the genera Lactococcus, Weissella, Leuconostoc, Lactobacillus, Enterococcus, and Fructobacillus could grow in the presence of 5 ppm sodium selenite. From the total, eight strains could remove more than 80% of the added Se from the culture medium. These bacteria accumulated intracellularly between 1.2 and 2.5 ppm of the added Se, from which F. tropaeoli CRL 2034 contained the highest intracellular amount. These strains produced only the seleno-amino acid SeCys as observed by LC-ICP-MS and confirmed by LC-ESI-MS/MS. The intracellular SeCys concentrations were between 0.015 and 0.880 ppm; Lb. brevis CRL 2051 (0.873 ppm), Lb. plantarum CRL 2030 (0.867 ppm), and F. tropaeoli CRL 2034 (0.625 ppm) were the strains that showed the highest concentrations. Glutathione reductase activity values were higher when the strains were grown in the presence of Se except for the F. tropaeoli CRL 2034 strain, which showed an opposite behavior. The cellular morphology of the strains was not affected by the presence of Se in the culture medium; interestingly, all the strains were able to form spherical SeNPs as determined by transmission electron microscopy (TEM). Only two Enterococcus strains produced the volatile Se compounds dimethyl-diselenide identified by GC-MS. Our results show that Lb. brevis CRL 2051, Lb. plantarum CRL 2030, and F. tropaeoli CRL 2034 could be used for the development of nutraceuticals or as starter cultures for the bio-enrichment of fermented fruit beverages with SeCys and SeNPs.
Collapse
Affiliation(s)
- Fernando Gabriel Martínez
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Tucumán, Argentina.,Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, España
| | - Gustavo Moreno-Martin
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, España
| | - Micaela Pescuma
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Tucumán, Argentina
| | - Yolanda Madrid-Albarrán
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, España
| | - Fernanda Mozzi
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Tucumán, Argentina
| |
Collapse
|
2
|
Jamwal A, Saibu Y, MacDonald TC, George GN, Niyogi S. The effects of dietary selenomethionine on tissue-specific accumulation and toxicity of dietary arsenite in rainbow trout (Oncorhynchus mykiss) during chronic exposure. Metallomics 2019; 11:643-655. [DOI: 10.1039/c8mt00309b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Selenomethionine facilitated arsenic deposition in the brain and likely in other tissues, possibly via bio-complexation. Elevated dietary selenomethionine can increase the tissue-specific accumulation and toxicity of As3+ in fish during chronic dietary exposure.
Collapse
Affiliation(s)
- Ankur Jamwal
- Department of Biology
- University of Saskatchewan
- Saskatoon
- Canada
| | - Yusuf Saibu
- Toxicology Centre
- University of Saskatchewan
- Saskatoon
- Canada
| | | | - Graham N. George
- Toxicology Centre
- University of Saskatchewan
- Saskatoon
- Canada
- Department of Geology
| | - Som Niyogi
- Department of Biology
- University of Saskatchewan
- Saskatoon
- Canada
- Toxicology Centre
| |
Collapse
|
3
|
Jamwal A, Lemire D, Driessnack M, Naderi M, Niyogi S. Interactive effects of chronic dietary selenomethionine and cadmium exposure in rainbow trout (Oncorhynchus mykiss): A preliminary study. CHEMOSPHERE 2018; 197:550-559. [PMID: 29407817 DOI: 10.1016/j.chemosphere.2018.01.087] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/08/2017] [Accepted: 01/16/2018] [Indexed: 06/07/2023]
Abstract
The present study investigated the interactive effects of dietary cadmium (Cd) and selenium (Se) on the tissue-specific (liver, kidney, and muscle) accumulation of these two elements, hepatic oxidative stress response, and morphometrics in rainbow trout (Oncorhynchus mykiss) during chronic exposure. Fish were exposed to elevated dietary Cd (45 μg g-1 dry wt.), and medium (10 μg g-1 dry wt.) or high (45 μg g-1 dry wt.) dietary selenium (added as selenomethionine), both alone and in combination, for 30 days. Exposure to dietary Cd alone caused oxidative stress in fish as reflected by reduced thiol redox (GSH:GSSG), increased lipid peroxidation, and induction of anti-oxidative enzymes (catalase, superoxide dismutase, and glutathione peroxidase) in the liver. Also, an increase in tissue-specific Cd burden and impaired morphometrics (hepato-somatic index and condition factor) were also recorded in fish following exposure to dietary Cd. In contrast, the dietary co-exposure to Cd and Se (at both medium and high doses) resulted in a decrease in Cd burden in the liver and kidney of fish. However, co-exposure to medium, but not high, dose of dietary Se completely alleviated Cd-induced oxidative stress and impaired morphometrics in fish, indicating that the reduced Cd tissue burden might not have been the primary factor behind the amelioration of Cd toxicity by Se. Overall, our study demonstrated that the protective effect of Se against the chronic Cd toxicity in fish is mainly mediated by the anti-oxidative properties of Se, but this protective effect is dose-specific and occurs only at a moderate exposure dose.
Collapse
Affiliation(s)
- Ankur Jamwal
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, Canada.
| | - Danielle Lemire
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, Canada
| | - Melissa Driessnack
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, Canada
| | - Mohammad Naderi
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, Canada
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, Canada; Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, Canada
| |
Collapse
|
4
|
Naderi M, Salahinejad A, Jamwal A, Chivers DP, Niyogi S. Chronic Dietary Selenomethionine Exposure Induces Oxidative Stress, Dopaminergic Dysfunction, and Cognitive Impairment in Adult Zebrafish (Danio rerio). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:12879-12888. [PMID: 28981273 DOI: 10.1021/acs.est.7b03937] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The present study was designed to investigate the effects of chronic dietary exposure to selenium (Se) on zebrafish cognition and also to elucidate possible mechanism(s) by which Se exerts its neurotoxicity. To this end, adult zebrafish were exposed to different concentrations of dietary l-selenomethionine (control, 2.3, 9.7, 32.5, or 57.7 μg Se/g dry weight) for 30 days. Cognitive performance of fish was tested using a latent learning paradigm in a complex maze. In addition, we also evaluated oxidative stress biomarkers and the expression of genes involved in dopaminergic neurotransmission in the zebrafish brain. Fish treated with higher dietary Se doses (32.5 and 57.5 μg Se/g) exhibited impaired performance in the latent learning task. The impaired learning was associated with the induction of oxidative stress and altered mRNA expression of dopamine receptors, tyrosine hydroxylase, and dopamine transporter genes in the zebrafish brain. Collectively, our results illustrate that cognitive impairment in zebrafish could be associated with Se-induced oxidative stress and altered dopaminergic neurotransmission in the brain.
Collapse
Affiliation(s)
- Mohammad Naderi
- Department of Biology, University of Saskatchewan , 112 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Arash Salahinejad
- Department of Biology, University of Saskatchewan , 112 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Ankur Jamwal
- Department of Biology, University of Saskatchewan , 112 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan , 112 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Som Niyogi
- Department of Biology, University of Saskatchewan , 112 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
- Toxicology Centre, University of Saskatchewan , 44 Campus Drive, Saskatoon, Saskatchewan S7N 5B3, Canada
| |
Collapse
|
5
|
Jamwal A, Niyogi S. Dose and chemical species-specific effects of selenium against arsenite toxicity in cultured hepatocytes of rainbow trout (Oncorhynchus mykiss). Metallomics 2017; 9:744-756. [DOI: 10.1039/c7mt00006e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
6
|
Jamwal A, Naderi M, Niyogi S. An in vitro examination of selenium–cadmium antagonism using primary cultures of rainbow trout (Oncorhynchus mykiss) hepatocytes. Metallomics 2016; 8:218-27. [DOI: 10.1039/c5mt00232j] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Se has antagonistic effects on Cd-induced cytotoxicityviaboth enzymatic and non-enzymatic antioxidative mechanisms and the effects are strictly dose dependent. Confocal fluorescent images of isolated rainbow trout hepatocytes exposed to 100 µM Cd, alone or in combination with low (25 µM) or high (250 µM) concentration of Se, show reduced ROS generation with low concentration of Se.
Collapse
Affiliation(s)
- Ankur Jamwal
- Department of Biology
- University of Saskatchewan
- Saskatoon, Canada
| | - Mohammad Naderi
- Department of Biology
- University of Saskatchewan
- Saskatoon, Canada
| | - Som Niyogi
- Department of Biology
- University of Saskatchewan
- Saskatoon, Canada
- Toxicology Centre
- University of Saskatchewan
| |
Collapse
|
7
|
Boadi WY, Amartey PK, Lo A. Effect of quercetin, genistein and kaempferol on glutathione and glutathione-redox cycle enzymes in 3T3-L1 preadipocytes. Drug Chem Toxicol 2015; 39:239-47. [PMID: 27063963 DOI: 10.3109/01480545.2015.1082135] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
CONTEXT AND OBJECTIVE Many studies have shown that cellular redox potential is largely determined by glutathione (GSH), which accounts for more than 90% of cellular nonprotein thiols. The aim of this study was to delineate the effect of three flavonoids - namely, quercetin, kaempferol and genistein - and exogenous GSH on oxidative damage by the Fenton's pathway through the GSH and GSH-redox cycle enzymes in 3T3-L1 cells. MATERIALS AND METHODS 3T3-L1 preadipocytes were exposed to each flavonoid and GSH at concentrations of 0, 5, 10, 15, 20 and 25 µM and then GSH levels and activities of glutathione peroxidase (GSH-Px), glutathione reductase (GSH-Rx) and superoxide dismutase (SOD) were measured. RESULTS Exogenous GSH did not have significant effect on intracellular GSH although slight decrease was observed at 15-25 µM doses. However, each of the three flavonoids sustained intracellular GSH levels in the cells as compared to the respective controls. Quercetin had the most profound effect, followed by kaempferol and genistein in that order. GSH-Px, GSH-Rx and SOD activities increased for all the doses tested compared to their respective controls. Again, quercetin had the maximum increase in enzyme activities followed by kaempferol and genistein for the enzymes tested. DISCUSSION AND CONCLUSION These findings suggest that the flavonoids play an important role in diminishing oxidation-induced biochemical damages. The enhancement of these enzymes may increase the resistance of the organism against oxidative damage by the Fenton's pathway.
Collapse
Affiliation(s)
- William Y Boadi
- a Department of Chemistry , Tennessee State University , Nashville , TN , USA
| | - Paul K Amartey
- a Department of Chemistry , Tennessee State University , Nashville , TN , USA
| | - Andrew Lo
- a Department of Chemistry , Tennessee State University , Nashville , TN , USA
| |
Collapse
|
8
|
Fu L, Yan X, Ruan X, Lin J, Wang Y. Differential protein expression of Caco-2 cells treated with selenium nanoparticles compared with sodium selenite and selenomethionine. NANOSCALE RESEARCH LETTERS 2014; 9:589. [PMID: 25426004 PMCID: PMC4241056 DOI: 10.1186/1556-276x-9-589] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 10/18/2014] [Indexed: 06/04/2023]
Abstract
The study was designed to determine the differential protein expression of Caco-2 cells treated with different forms of selenium including sodium selenite, selenomethionine (Se-Met), and selenium nanoparticles (nano-Se). Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and mass spectrometry (MS) were used to identify the differentially expressed proteins. The results indicated that seven protein spots, ubiquitin-conjugating enzyme E2 (E2), glutathione synthetases (GS), triosephosphate isomerase (TSP), T-complex protein 1 subunit zeta (TCPZ), lamin-B1, heterogeneous nuclear ribonucleoprotein F (hnRNP F), and superoxide dismutase [Cu-Zn] (Cu, Zn-SOD) were significantly different among all the groups. According to the order of control, sodium selenite, Se-Met, and Nano-Se, the expression levels of two proteins (E2 and GS) increased and the other differential proteins were reverse. Except for E2, there were no significant differences in other protein expressions between the groups treated with nano-Se and Se-Met.
Collapse
Affiliation(s)
- Linglin Fu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Food Quality and Safety Department of Zhejiang Gongshang University, 18 Xuezheng Road, Xiasha University Town, Hangzhou 310018, China
| | - Xuxia Yan
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Food Quality and Safety Department of Zhejiang Gongshang University, 18 Xuezheng Road, Xiasha University Town, Hangzhou 310018, China
| | - Xinming Ruan
- College of Life Sciences, Zhejiang University of Traditional Chinese Medicine, 548, Binwen Road, Binjiang District, Hangzhou 310053, China
| | - Junda Lin
- Department of Biological Sciences, Florida Institute of Technology, 150 W. University Blvd., Melbourne, FL 32901, USA
| | - Yanbo Wang
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Food Quality and Safety Department of Zhejiang Gongshang University, 18 Xuezheng Road, Xiasha University Town, Hangzhou 310018, China
| |
Collapse
|
9
|
Richie JP, Muscat JE, Ellison I, Calcagnotto A, Kleinman W, El-Bayoumy K. Association of selenium status and blood glutathione concentrations in blacks and whites. Nutr Cancer 2011; 63:367-75. [PMID: 21462082 PMCID: PMC3087599 DOI: 10.1080/01635581.2011.535967] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Selenium deficiency has been linked with increased cancer risk and, in some studies, selenium supplementation was protective against certain cancers. Previous studies have suggested that selenium chemoprevention may involve reduced oxidative stress through enhanced glutathione (GSH). Our objectives were to examine the relationships between selenium and GSH in the blood and the modifying effects of race and sex in free-living adults and individuals supplemented with selenium. Plasma selenium concentrations and free and bound GSH concentrations and γ-glutamyl cysteine ligase (GCL) activity in the blood were measured in 336 healthy adults (161 Blacks, 175 Whites). Plasma selenium and blood GSH were also measured in 36 healthy men from our previously conducted placebo-controlled trial of selenium-enriched yeast (247 μg/day for 9 mo). In free-living adults, selenium concentrations were associated with increased blood GSH concentration and GCL activity (P < 0.05). Further, selenium was significantly higher in Whites than in Blacks (P < 0.01). After 9 mo of supplementation, plasma selenium increased 114% in Whites and 50% in Blacks (P < 0.05), and blood GSH increased 35% in Whites (P < 0.05) but was unchanged in Blacks. These results indicate a direct association between selenium and GSH in the blood of both free-living and selenium-supplemented individuals, with race being an important modifying factor.
Collapse
Affiliation(s)
- John P Richie
- Department of Public Health Sciences, Penn State Hershey Cancer Institute, Penn State University College of Medicine, Hershey, Pennsylvania 17033, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Poirier J, Cockell KA, Ratnayake WMN, Scoggan KA, Hidiroglou N, Gagnon C, Rocheleau H, Gruber H, Griffin P, Madère R, Trick K, Kubow S. Antioxidant Supplements Improve Profiles of Hepatic Oxysterols and Plasma Lipids in Butter-fed Hamsters. Nutr Metab Insights 2010; 3:1-14. [PMID: 23966787 PMCID: PMC3736883 DOI: 10.4137/nmi.s3911] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Hypercholesterolemic diets are associated with oxidative stress that may contribute to hypercholesterolemia by adversely affecting enzymatically-generated oxysterols involved in cholesterol homeostasis. An experiment was conducted to examine whether the cholesterol-lowering effects of the antioxidants selenium and α-tocopherol were related to hepatic oxysterol concentrations. Four groups of male Syrian hamsters (n = 7-8) were fed high cholesterol and saturated fat (0.46% cholesterol, 14.3% fat) hypercholesterolemic semi-purified diets: 1) Control; 2) Control + α-tocopherol (67 IU all-racemic-α-tocopheryl-acetate/kg diet); 3) Control + selenium (3.4 mg selenate/kg diet); and 4) Control + α-tocopherol + selenium. Antioxidant supplementation was associated with lowered plasma cholesterol concentrations, decreased tissue lipid peroxidation and higher hepatic oxysterol concentrations. A second experiment examined the effect of graded selenium doses (0.15, 0.85, 1.7 and 3.4 mg selenate/kg diet) on mRNA expression of the oxysterol-generating enzyme, hepatic 27-hydroxylase (CYP27A1, EC 1.14.13.15), in hamsters (n = 8-9) fed the hypercholesterolemic diets. Supplementation of selenium at 3.4 mg selenate/kg diet was not associated with increased hepatic 27-hydroxylase mRNA. In conclusion, the cholesterol lowering effects of selenium and α-tocopherol were associated with increased hepatic enzymatically generated oxysterol concentrations, which appears to be mediated via improved antioxidant status rather than increased enzymatic production.
Collapse
Affiliation(s)
- Johanne Poirier
- School of Dietetics and Human Nutrition, Macdonald Campus of McGill University, Ste-Anne-de-Bellevue, Quebec, Canada H9X 3V9
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Davis RH, Elzubeir EA, Craston JS. Nutritional and biochemical factors influencing the biological effects of cyanide. CIBA FOUNDATION SYMPOSIUM 2007; 140:219-31. [PMID: 3073058 DOI: 10.1002/9780470513712.ch13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Investigation of the dietary interaction between cyanide and selenium in the chick, whereby cyanide alleviates selenium toxicity, suggests that cyanide alters metabolic reductive potential. Cyanide enhances the elimination of selenium as dimethyl selenide, the formation of which requires both reducing equivalents and methyl groups. Even when the methionine supply is adequate, meeting the need for the methyl groups, the interaction can be lost if there is a deficiency of certain micronutrients or an excess of vitamin K. Cyanide reduces liver glycogen, implying greater emphasis on anaerobic metabolism through inhibition of cytochrome oxidase. This may increase reductive potential but may also result in increased free radical production, processes that can be modified by levels of micronutrients. There is no evidence that an excess of sulphur amino acids can markedly enhance cyanide detoxification, although, for reasons that are not yet clear, cystine may be beneficial. However, the balance of dietary amino acids may be more critical than had been realized, because an excess of alanine appears to exacerbate cyanide toxicity.
Collapse
Affiliation(s)
- R H Davis
- Wye College, University of London, Ashford, Kent, UK
| | | | | |
Collapse
|
12
|
Rahman I. Regulation of glutathione in inflammation and chronic lung diseases. Mutat Res 2005; 579:58-80. [PMID: 16054171 DOI: 10.1016/j.mrfmmm.2005.02.025] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2004] [Accepted: 02/02/2005] [Indexed: 11/23/2022]
Abstract
Oxidant/antioxidant imbalance, a major cause of cell damage, is the hallmark for lung inflammation. Glutathione (GSH), a ubiquitous tripeptide thiol, is a vital intra- and extra-cellular protective antioxidant against oxidative stress, which plays a key role in the control of signaling and pro-inflammatory processes in the lungs. The rate-limiting enzyme in GSH synthesis is glutamylcysteine ligase (GCL). GSH is essential for development as GCL knock-out mouse died from apoptotic cell death. The promoter (5'-flanking) region of human GCL is regulated by activator protein-1 (AP-1) and antioxidant response element (ARE), and are modulated by oxidants, phenolic antioxidants, growth factors, inflammatory and anti-inflammatory agents in various cells. Recent evidences have indicated that Nrf2 protein, which binds to the erythroid transcription factor (NF-E2) binding sites, and its interaction with other oncoproteins such as c-Jun, Jun D, Fra1 and Maf play a key role in the regulation of GCL. Alterations in alveolar and lung GSH metabolism are widely recognized as a central feature of many chronic inflammatory lung diseases. Knowledge of the mechanisms of GSH regulation could lead to the pharmacological manipulation of the production and/or gene transfer of this important antioxidant in lung inflammation and injury. This article describes the role of AP-1 and ARE in the regulation of cellular GSH biosynthesis and assesses the potential protective and therapeutic role of glutathione in oxidant-induced lung injury and inflammation.
Collapse
Affiliation(s)
- Irfan Rahman
- Department of Environmental Medicine, Division of Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, NY 14642, USA.
| |
Collapse
|
13
|
Thirunavukkarasu C, Prince Vijeya Singh J, Thangavel M, Selvendiran K, Sakthisekaran D. Dietary influence of selenium on the incidence of N-nitrosodiethylamine-induced hepatoma with reference to drug and glutathione metabolizing enzymes. Cell Biochem Funct 2002; 20:347-56. [PMID: 12415570 DOI: 10.1002/cbf.979] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The dietary administration of selenium (sodium selenite; 4 p.p.m.) daily has been found to be highly effective in reducing the incidence of cancer induced by N-nitrosodiethylamine (DEN) in Wistar strain rats. Selenium treatment either before initiation, during initiation and selection/phenobarbital promotion phases of hepatocarcinogenesis has been found to be effective in elevating hepatic microsomal cytochrome b(5), NADPH-cytochrome C reductase and cytosolic aryl hydrocarbon hydroxylase activities to a statistically significant level measured either in the hyperplastic nodule or in the surrounding liver tissues compared to control animals. Moreover, selenium treatment throughout the study, decreases the cytosolic glutathione S-transferase and microsomal UDP-glucuronyl transferase activities by a significant degree when compared to control rats. Alterations in glutathione metabolizing enzyme activities (glutathione reductase, gamma-glutamyl transpeptidase, gamma-glutamylcysteine synthetase and glucose-6-phosphate dehydrogenase) were also observed in selenium-treated groups. Our results confirm the fact that selenium is particularly protective in limiting the action of DEN during the initiation phase of hepatocarcinogenesis.
Collapse
Affiliation(s)
- C Thirunavukkarasu
- Department of Medical Biochemistry, Dr ALM PG Institute of Basic Medical Sciences, University of Madras, Chennai-600 113, India
| | | | | | | | | |
Collapse
|
14
|
Thirunavukkarasu C, Singh JP, Selvendiran K, Sakthisekaran D. Chemopreventive efficacy of selenium against N-nitrosodiethylamine-induced hepatoma in albino rats. Cell Biochem Funct 2001; 19:265-71. [PMID: 11746207 DOI: 10.1002/cbf.924] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The chemopreventive/chemotherapeutic effect of sodium selenite on tricarboxylic acid cycle key enzymes was investigated against hepatoma induced by environmental carcinogen N-nitrosodiethylamine. Decreased activities of TCA cycle key enzymes such as isocitrate dehydrogenase (ICDH), succinate dehydrogenase (SDH), malate dehydrogenase (MDH) and alpha-ketoglutarate dehydrogenase (alpha-KGDH) in hepatoma and surrounding tissues of hepatoma-bearing rats were observed. Upon selenium supplementation the above biochemical changes were reverted in a dose- and duration-dependent manner. This study further confirms the chemopreventive/chemotherapeutic effect of sodium selenite which is found to be more effective in the initiation phase of carcinogenesis.
Collapse
Affiliation(s)
- C Thirunavukkarasu
- Department of Medical Biochemistry, Dr ALM Post-Graduate Institute of Basic Medical Sciences, University of Madras, India
| | | | | | | |
Collapse
|
15
|
Rahman I, MacNee W. Regulation of redox glutathione levels and gene transcription in lung inflammation: therapeutic approaches. Free Radic Biol Med 2000; 28:1405-20. [PMID: 10924859 DOI: 10.1016/s0891-5849(00)00215-x] [Citation(s) in RCA: 359] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glutathione (L-gamma-glutamyl-L-cysteinylglycine, GSH), is a vital intra- and extracellular protective antioxidant. Glutathione is synthesized from its constituent amino acids by the sequential action of gamma-glutamylcysteine synthetase (gamma-GCS) and GSH synthetase. The rate-limiting enzyme in GSH synthesis is gamma-GCS. Gamma-GCS expression is modulated by oxidants, phenolic antioxidants, and inflammatory and anti-inflammatory agents in various mammalian cells. The intracellular GSH redox homeostasis is strictly regulated to govern cell metabolism and protect cells against oxidative stress. Growing evidence has suggested that cellular oxidative processes have a fundamental role in inflammation through the activation of stress kinases (JNK, MAPK, p38) and redox-sensitive transcription factors such as NF-kappaB and AP-1, which differentially regulate the genes for proinflammatory mediators and protective antioxidant genes such as gamma-GCS, Mn-SOD, and heme oxygenase-1. The critical balance between the induction of proinflammatory mediators and antioxidant genes and the regulation of the levels of GSH in response to oxidative stress at the site of inflammation is not known. Knowledge of the mechanisms of redox GSH regulation and gene transcription in inflammation could lead to the development of novel therapies based on the pharmacological manipulation of the production of this important antioxidant in inflammation and injury. This FORUM article features the role of GSH levels in the regulation of transcription factors, whose activation and DNA binding leads to proinflammatory and antioxidant gene transcription. The potential role of thiol antioxidants as a therapeutic approach in inflammatory lung diseases is also discussed.
Collapse
Affiliation(s)
- I Rahman
- ELEGI and Colt Research Laboratories, Department of Respiratory Medicine, University of Edinburgh Medical School, Edinburgh, Scotland, UK.
| | | |
Collapse
|
16
|
Rahman I, MacNee W. Lung glutathione and oxidative stress: implications in cigarette smoke-induced airway disease. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:L1067-88. [PMID: 10600876 DOI: 10.1152/ajplung.1999.277.6.l1067] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Glutathione (GSH), a ubiquitous tripeptide thiol, is a vital intra- and extracellular protective antioxidant in the lungs. The rate-limiting enzyme in GSH synthesis is gamma-glutamylcysteine synthetase (gamma-GCS). The promoter (5'-flanking) region of the human gamma-GCS heavy and light subunits are regulated by activator protein-1 and antioxidant response elements. Both GSH and gamma-GCS expression are modulated by oxidants, phenolic antioxidants, and inflammatory and anti-inflammatory agents in lung cells. gamma-GCS is regulated at both the transcriptional and posttranscriptional levels. GSH plays a key role in maintaining oxidant-induced lung epithelial cell function and also in the control of proinflammatory processes. Alterations in alveolar and lung GSH metabolism are widely recognized as a central feature of many inflammatory lung diseases including chronic obstructive pulmonary disease (COPD). Cigarette smoking, the major factor in the pathogenesis of COPD, increases GSH in the lung epithelial lining fluid of chronic smokers, whereas in acute smoking, the levels are depleted. These changes in GSH may result from altered gene expression of gamma-GCS in the lungs. The mechanism of regulation of GSH in the epithelial lining fluid in the lungs of smokers and patients with COPD is not known. Knowledge of the mechanisms of GSH regulation in the lungs could lead to the development of novel therapies based on the pharmacological or genetic manipulation of the production of this important antioxidant in lung inflammation and injury. This review outlines 1) the regulation of cellular GSH levels and gamma-GCS expression under oxidative stress and 2) the evidence for lung oxidant stress and the potential role of GSH in the pathogenesis of COPD.
Collapse
Affiliation(s)
- I Rahman
- Department of Respiratory Medicine, Medical School, University of Edinburgh, Edinburgh EH8 9AG, United Kingdom.
| | | |
Collapse
|
17
|
Abstract
Glutathione (L-gamma-glutamyl-L-cysteinylglycine, GSH) is synthesized from its constituent amino acids by the sequential action of gamma-glutamylcysteine synthetase (gamma-GCS) and GSH synthetase. The intracellular GSH concentration, typically 1-8 mM, reflects a dynamic balance between the rate of GSH synthesis and the combined rate of GSH consumption within the cell and loss through efflux. The gamma-GCS reaction is rate limiting for GSH synthesis, and regulation of gamma-GCS expression and activity is critical for GSH homeostasis. Transcription of the gamma-GCS subunit genes is controlled by a variety of factors through mechanisms that are not yet fully elucidated. Glutathione synthesis is also modulated by the availability of gamma-GCS substrates, primarily L-cysteine, by feedback inhibition of gamma-GCS by GSH, and by covalent inhibition of gamma-GCS by phosphorylation or nitrosation. Because GSH plays a critical role in cellular defenses against electrophiles, oxidative stress and nitrosating species, pharmacologic manipulation of GSH synthesis has received much attention. Administration of L-cysteine precursors and other strategies allow GSH levels to be maintained under conditions that would otherwise result in GSH depletion and cytotoxicity. Conversely, inhibitors of gamma-GCS have been used to deplete GSH as a strategy for increasing the sensitivity of tumors and parasites to certain therapeutic interventions.
Collapse
Affiliation(s)
- O W Griffith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee 53226, USA.
| |
Collapse
|
18
|
Moinova HR, Mulcahy RT. An electrophile responsive element (EpRE) regulates beta-naphthoflavone induction of the human gamma-glutamylcysteine synthetase regulatory subunit gene. Constitutive expression is mediated by an adjacent AP-1 site. J Biol Chem 1998; 273:14683-9. [PMID: 9614065 DOI: 10.1074/jbc.273.24.14683] [Citation(s) in RCA: 218] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Exposure of HepG2 cells to beta-naphthoflavone (beta-NF) results in time- and dose-dependent increase in the steady-state mRNA levels for both the catalytic (GCSh) and regulatory (GCS1) subunits of gamma-glutamylcysteine synthetase (GCS) which catalyzes the rate-limiting step in the de novo synthesis of the cellular antioxidant glutathione (GSH) (Mulcahy, R. T., Wartman, M. A., Bailey, H. B., and Gipp, J. J. (1997) J. Biol. Chem. 272, 7445-7454). Cloning and sequencing of the GCS1 promoter region is reported. Regulatory sequences mediating basal and beta-NF induced expression of the GCSl gene were identified using a series of promoter/reporter fusion genes transfected into HepG2 cells. Sequences directing basal and beta-NF induced expression were localized between nucleotides -344 and -242 (numbered relative to the translation start site). Mutational analyses indicate that basal expression of the GCSl gene is directed by a consensus AP-1-binding site located 33 base pairs upstream of a consensus electrophile responsive element (EpRE) sequence; both cis-elements are capable of supporting beta-NF inducibility. Elimination of the inducible response requires simultaneous mutation of both sequences, however, in the presence of an intact EpRE the upstream AP-1 site is irrelevant to induction. Regulation of expression of both human GCS subunit genes in response to beta-NF is therefore mediated by cis-elements satisfying the consensus core EpRE motif.
Collapse
Affiliation(s)
- H R Moinova
- Department of Human Oncology, University of Wisconsin Medical School, Madison, Wisconsin 53792, USA
| | | |
Collapse
|
19
|
Marinho HS, Baptista M, Pinto RE. Glutathione metabolism in hepatomous liver of rats treated with diethylnitrosamine. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1360:157-68. [PMID: 9128181 DOI: 10.1016/s0925-4439(96)00075-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Glutathione metabolism was studied in rat liver during diethylnitrosamine (DEN) carcinogenesis. Some studies were also made in foetal rat liver. Endogenous GSH and non-protein thiols concentrations are increased in DEN-treated rats when compared to non-treated rats but no differences were found in cysteine, total thiols and protein thiols concentration. In foetal liver GSH concentration is only 35% of that in DEN-treated rat liver. The activities of several enzymes involved in glutathione metabolism are changed in DEN-treated rats. gamma-Glutamyl transferase activity and cysteine formation from GSH by liver homogenates is increased sevenfold. gamma-Glutamylcysteine synthetase activity, initial rate of [35S]cysteine incorporation in gamma-glutamylcysteine and initial rate of GSH formation from [35S]cysteine are increased two-fold. Cytosolic GSH S-transferase activity is increased twofold in DEN-treated rats and so GSH S-conjugates concentration is probably also increased. In foetal rat liver gamma-glutamyl transferase activity is about the same but gamma-glutamylcysteine synthetase activity is only 10% of that in DEN-treated rat liver. The increased GSH concentration in DEN-treated rat liver is probably due to the simultaneous increase in the activities of gamma-glutamyl transferase and gamma-glutamylcysteine synthetase. Blood plasma total glutathione is increased 1.4 times in DEN-treated rats, but no differences are found in GSH hepatic arteriovenous gradient. This associated with the increased gamma-glutamyl transferase activity suggests that sinusoidal GSH efflux is increased in DEN-treated rats.
Collapse
Affiliation(s)
- H S Marinho
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.
| | | | | |
Collapse
|
20
|
Mulcahy RT, Wartman MA, Bailey HH, Gipp JJ. Constitutive and beta-naphthoflavone-induced expression of the human gamma-glutamylcysteine synthetase heavy subunit gene is regulated by a distal antioxidant response element/TRE sequence. J Biol Chem 1997; 272:7445-54. [PMID: 9054446 DOI: 10.1074/jbc.272.11.7445] [Citation(s) in RCA: 373] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Glutathione (GSH) is an abundant cellular non-protein sulfhydryl that functions as an important protectant against reactive oxygen species and electrophiles, is involved in the detoxification of xenobiotics, and contributes to the maintenance of cellular redox balance. The rate-limiting enzyme in the de novo synthesis of glutathione is gamma-glutamylcysteine synthetase (GCS), a heterodimer consisting of heavy and light subunits expressing catalytic and regulatory functions, respectively. Exposure of HepG2 cells to beta-naphthoflavone (beta-NF) resulted in a time- and dose-dependent increase in the steady-state mRNA levels for both subunits. In order to identify sequences mediating the constitutive and induced expression of the heavy subunit gene, a series of deletion mutants created from the 5'-flanking region (-3802 to +465) were cloned into a luciferase reporter vector (pGL3-Basic) and transfected into HepG2 cells. Constitutive expression was maximally directed by sequences between -202 and +22 as well as by elements between -3802 to -2752. The former sequence contains a consensus TATA box. Increased luciferase expression following exposure to 10 microM beta-NF was only detected in cells transfected with a reporter vector containing the full-length -3802:+465 fragment. Hence, elements directing constitutive and induced expression of the GCS heavy subunit are present in the distal portion of the 5'-flanking region, between positions -3802 and -2752. Sequence analysis revealed the presence of several putative consensus response elements in this region, including two potential antioxidant response elements (ARE3 and ARE4), separated by 34 base pairs. When cloned into the thymidine kinase-luciferase vector, pT81-luciferase, and transfected into HepG2 cells, both ARE3 and ARE4 increased basal luciferase expression approximately 20-fold. When cloned in tandem in their native arrangement the increase in luciferase activity was in excess of 100-fold, suggesting a strong interaction between the two sequences. Luciferase expression was elevated in beta-NF-treated cells transfected with the ARE4-tk-luciferase vector and all DNA fragments containing ARE4. In contrast, ARE3 did not direct increased luciferase expression in response to beta-NF nor did it significantly modify the magnitude of induction directed by ARE4. The influence of the ARE4 oligonucleotide on constitutive and induced expression was eliminated by introduction of a single base mutation, converting the core ARE sequence in ARE4 from 5'-GTGACTCAGCG-3' to 5'-GGGACTCAGCG-3'. When introduced into the full-length -3802:+465 segment, the same single base mutation also eliminated both functions. Collectively the data indicate that the constitutive and beta-NF-induced expression of the human GCS heavy subunit gene is mediated by a distal ARE sequence containing an embedded tetradecanoylphorbol-13-acetate-responsive element.
Collapse
Affiliation(s)
- R T Mulcahy
- Department of Human Oncology, University of Wisconsin Medical School, Madison, Wisconsin 53792, USA.
| | | | | | | |
Collapse
|
21
|
Zhang ZH, Kimura M, Itokawa Y. Inhibitory effect of selenium and change of glutathione peroxidase activity on rat glioma. Biol Trace Elem Res 1996; 55:31-8. [PMID: 8971352 DOI: 10.1007/bf02784166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The inhibitory effect of selenium (Se) and change of glutathione peroxidase activity during the development of brain tumors was investigated in Wistar rats. Four rat groups classified to match by age and weight were fed a diet containing 0, 0.5, 2.0, and 4.0 micrograms Se/g. After 6 wk, the rats were injected with 3 x 10(6) C6 cells into the right frontal lobe parenchyma. Survival was significantly longer in the 0.5 and 2.0 micrograms Se/g groups than in the Se-free and 4.0 micrograms Se/g groups. The activity of glutathione peroxidase after development of tumors was significantly higher in the high Se group at 18 and 30 d.
Collapse
Affiliation(s)
- Z H Zhang
- Department of Social Medicine, Graduate School of Medicine, Kyoto University, Japan
| | | | | |
Collapse
|
22
|
Kuo PC, Abe KY, Schroeder RA. Interleukin-1-induced nitric oxide production modulates glutathione synthesis in cultured rat hepatocytes. THE AMERICAN JOURNAL OF PHYSIOLOGY 1996; 271:C851-62. [PMID: 8843715 DOI: 10.1152/ajpcell.1996.271.3.c851] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In cultured rat hepatocytes, we have previously demonstrated that inhibition of interleukin-1 (IL-1)-mediated nitric oxide (NO) synthesis is associated with depletion of intracellular reduced glutathione (GSH) in toxin-mediated oxidative injury. To further examine NO's effects on GSH metabolism in rat hepatocytes, IL-1-mediated NO synthesis was examined in the context of 1) cysteine, cystine, and methionine uptake; 2) gene transcription and enzyme activities for gamma-glutamylcysteine synthetase, the rate-limiting enzyme in GSH synthesis, glutathione reductase, and glutathione peroxidase; and 3) GSH and oxidized glutathione (GSSG) levels. Inhibition of NO synthesis decreased the GSH content and GSH/GSSG ratio in a guanylyl cyclase-independent fashion. Enzyme activity and steady-state levels of mRNA for gamma-glutamylcysteine synthetase were also depressed. Nuclear run-on analysis demonstrated ablation of gamma-glutamylcysteine synthetase gene transcription. Hepatocellular uptake of cysteine, cystine, and methionine was not altered. Activity and steady-state mRNA levels for glutathione reductase and glutathione peroxidase were not affected. These results indicate that IL-1-mediated NO synthesis regulates hepatocyte GSH synthesis through a mechanism that is dependent on transcriptional regulation of the rate-limiting enzyme in GSH synthesis. In the setting of oxidative stress and IL-1 exposure, hepatocyte synthesis of NO may be protective through regulation of GSH synthesis.
Collapse
Affiliation(s)
- P C Kuo
- Department of Surgery, University of Maryland, Baltimore 21201, USA
| | | | | |
Collapse
|
23
|
Chidambaram N, Baradarajan A. Influence of selenium on glutathione and some associated enzymes in rats with mammary tumor induced by 7,12-dimethylbenz(a)anthracene. Mol Cell Biochem 1996; 156:101-7. [PMID: 9095465 DOI: 10.1007/bf00426331] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A recent finding in epidemiological and laboratory studies suggests that the ratio of selenium to glutathione is lower in breast cancer subjects than its control counterparts. Selenium, an antioxidant and anticarcinogen, can modify the status of glutathione and some associated enzymes by blocking peroxidation of lipids in membranes of cancer subjects. Studies were conducted using female albino rats of Wistar strain bearing mammary tumor induced by 7,12-dimethylbenz(a) anthracene to assess the biological role of selenium on some antioxidant enzymes associated with the maintenance of glutathione status. For induction of mammary tumor, 25 mg DMBA in a 1 ml emulsion of sunflower oil and physiological saline was injected subcutaneously to each rat. One group in each of control and tumor bearing rats, were fed 5 mg sodium selenite/kg diet from the day of tumor induction for 24 weeks. Increase in the reduced glutathione concentration was preceded by significant increase in the oxidized glutathione as well as in the activities of gamma-glutamylcysteine synthetase, glutathione peroxidase, glutathione reductase, glutathione S-transferase, and glucose-6-phosphate dehydrogenase by selenium administration in rats bearing tumor. However, selenium administration to rats bearing tumor decreased the activity of gamma-glutamyl transpeptidase. These observations clearly demonstrate the influence of dietary selenium supplementation in correcting abnormal changes in glutathione turnover and some associated enzymes in tumor induced rats.
Collapse
Affiliation(s)
- N Chidambaram
- Centre for Biosciences and Biotechnology, Indian Institute of Technology, Madras, India
| | | |
Collapse
|
24
|
Mulcahy RT, Bailey HH, Gipp JJ. Up-regulation of gamma-glutamylcysteine synthetase activity in melphalan-resistant human multiple myeloma cells expressing increased glutathione levels. Cancer Chemother Pharmacol 1994; 34:67-71. [PMID: 7513621 DOI: 10.1007/bf00686114] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Levels of intracellular glutathione (GSH) and the GSH-related enzymes gamma-glutamylcysteine synthetase (gamma-GCS) and gamma-glutamyltranspeptidase (gamma-GT) were measured in the melphalan-resistant human multiple myeloma cell line 8226/LR-5 and were compared to those measured in the drug-sensitive 8226/S and doxorubicin-resistant 8226/Dox40 cell lines. Both GSH and gamma-GCS activity, the rate-limiting step in the de novo synthesis of GSH, were elevated by a factor of approximately 2 in the melphalan-resistant 8226/LR-5 cells relative to the other two lines. gamma-GT activity was not elevated significantly in the /LR-5 cells. Northern analysis with a probe specific for the large subunit of human liver gamma-GCS identified two bands (3.2 and 4.0 kb), both of which were increased by a factor of 2-3 in the 8226/LR-5 line. Levels of gamma-GCS mRNA expression were comparable in the /S and /Dox40 cell lines. Levels of gamma-GT mRNA were similar in the /S and /LR-5 lines but were reduced in the /Dox40 cells. These data suggest that the increased GSH levels associated with resistance to melphalan in the 8226/LR-5 myeloma cells is attributable to up-regulation of gamma-GCS. This observation is consistent with recent demonstrations of up-regulation of gamma-GCS in melphalan-resistant prostate carcinoma cells and cisplatinum-resistant ovarian carcinoma cells, suggesting that increased expression of gamma-GCS may be an important mediator of GSH-associated resistance mechanisms.
Collapse
Affiliation(s)
- R T Mulcahy
- Department of Human Oncology, University of Wisconsin Comprehensive Cancer Center, University of Wisconsin-Madison 53792
| | | | | |
Collapse
|
25
|
Kim YS, Combs GF. Effects of aurothioglucose and dietary Se on glutathione S-transferase activities and glutathione concentrations in chick tissues. Biol Trace Elem Res 1993; 37:165-77. [PMID: 7688530 DOI: 10.1007/bf02783792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Experiments were conducted to determine whether the increased glutathione S-transferase (GSH-T) activity associated with selenium (Se) deficiency is necessarily related to losses in the activity of Se-dependent glutathione peroxidase (SeGSHpx) in chicks. Nutritional Se status was altered in two ways: by treatment with an antagonist of Se utilization, aurothioglucose (AuTG), and by feeding diets containing excess Se. Chicks given AuTG (10-30 mg AU/kg, sc) had growth rates and hepatic GSH concentrations that were comparable to those of saline-treated controls; however, their plasma GSH levels exceeded those of either Se-deficient (6-fold) or -adequate (3-fold) saline-treated chicks. Hepatic SeGSHpx activities of AuTG-treated chicks were half those of controls under conditions of Se-adequacy; however, this effect was not detected when Se was deficient. Hepatic GSH-TCDNB (assayed with 1-chloro-2,4-dinitrobenzene) activities of AuTG-treated chicks were significantly greater than those of controls when Se was deficient (i.e., when SeGSHpx activity was 12% of the Se-adequate level); however, deprivation of Se did not affect GSH-TCDNB activity in the absence of AuTG. Chicks fed excess Se (6-20 ppm as Na2SeO3) in diets containing either low (2 IU/kg) or adequate (100 IU/kg) VE, showed hepatic GSH-TCDNB activities and GSH concentrations greater than those of Se-adequate (0.2 ppm Se) chicks by 100% and 40%, respectively. That increased hepatic GSH-TCDNB activity can occur because of either AuTG or excess Se status under conditions wherein SeGSHpx activity is not affected indicates that the transferase response is not directly related to changes in the peroxidase.
Collapse
Affiliation(s)
- Y S Kim
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853
| | | |
Collapse
|
26
|
Di Simplicio P, Gorelli M, Vignani R, Leonzio C. The differential modulation of the enzymes of glutathione metabolism. Indication of overlapping effects of toxicity and repair in mouse liver and kidney after dietary treatment with methyl mercury and sodium selenite. Biol Trace Elem Res 1993; 36:167-81. [PMID: 7681309 DOI: 10.1007/bf02783176] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The effect of methylmercury (MM) and MM plus sodium selenite (SE) on the activity of various GSH-dependent enzymes was studied in the liver and kidney of mice. Ten groups of mice were fed diets containing graded proportions of MM, alone or with graded quantities of SE. GST, GSH-Px, and GSSG-RED were assayed in the cytosolic fraction of liver and kidney homogenates. After treatment with MM, instead of the expected decrease in enzyme activities, an increase was observed in the kidney and a small decrease in the liver with no dose-response relation in either organ. In protected groups, a general pattern of induction was observed in both organs, but again there was little evidence of dose-response relationships. Detailed analysis of the results suggests that the effects observed were not directly caused by MM or SE but are the resultant of complex interactions presumably related to contemporaneous mechanisms of damage and repair.
Collapse
Affiliation(s)
- P Di Simplicio
- Department of Environmental Biology, Faculty of Science, Siena, Italy
| | | | | | | |
Collapse
|
27
|
Gipp JJ, Chang C, Mulcahy RT. Cloning and nucleotide sequence of a full-length cDNA for human liver gamma-glutamylcysteine synthetase. Biochem Biophys Res Commun 1992; 185:29-35. [PMID: 1350904 DOI: 10.1016/s0006-291x(05)80950-7] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We have cloned and sequenced a full-length cDNA for human liver gamma-glutamylcysteine synthetase (GCS), the rate-limiting enzyme in glutathione biosynthesis. The cDNA consists of 2634 bp containing an open reading frame encoding a protein of 367 amino acids and having a calculated M(r) = 72,773. The nucleotide sequence of the cDNA for human liver GCS shares an 84% overall similarity with the composite rat GCS sequence deduced from three overlapping partial cDNAs (Yan and Meister, JBC 265: 1588-1593, 1990). The deduced amino acid sequences are 94% similar. Comparison of Northern blots of total RNA isolated from rat kidney or liver with that from human kidney revealed the GCS mRNA to be larger in the human tissue (approximately 4.0 kb vs. approximately 3.7 kb). (The sequence for the human liver GCS cDNA has been assigned accession number M90656 in GenBank/EMBL databases.
Collapse
Affiliation(s)
- J J Gipp
- Department of Human Oncology, University of Wisconsin-Madison 53792
| | | | | |
Collapse
|
28
|
Davies MH, Schamber GJ, Schnell RC. Oltipraz-induced amelioration of acetaminophen hepatotoxicity in hamsters. I. Lack of dependence on glutathione. Toxicol Appl Pharmacol 1991; 109:17-28. [PMID: 2038746 DOI: 10.1016/0041-008x(91)90187-j] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
These studies were designed to test the hypothesis that oltipraz (OTP) provided protection against AAP intoxication in a sensitive species, the hamster; and further, to show that the sparing effect was related to the marked increase in hepatic reduced glutathione (GSH) levels. Dose-response and time-course experiments demonstrated that maximal increases in liver GSH occurred at 48 hr after an oltipraz dose of approximately 2.0 mmol/kg (po). Accompanying greater GSH levels were increased glutathione disulfide (GSSG) levels. Decreased indices of the oxidation state of glutathione and of hepatic pyridine nucleotides indicated a greater share of glutathione existed as GSH and that increased reducing equivalents were present, respectively. Additionally, glutathione disulfide reductase activity was greater in OTP-treated groups. Glutathione S-transferase activities were only marginally increased. OTP treatment did not elicit observable hepatotoxicity, whereas AAP (2.6 mmol/kg, ip) resulted in a reproducible model of liver damage. OTP-treated groups were protected from AAP-induced toxicity, as shown by decreased plasma appearance of liver enzymes and unremarkable histopathology. However, the degree of liver GSH depletion by AAP was fourfold greater in non-OTP treated groups compared to those which had received the dithiolthione. To test the importance of increased hepatic GSH, the biosynthesis of glutathione was interrupted. Buthionine sulfoximine (BSO) treatment decreased hepatic GSH, the biosynthesis of glutathione was interrupted. Buthionine sulfoximine (BSO) treatment decreased hepatic GSH content to 50% of control in hamsters which either had or had not received OTP. The groups receiving BSO and AAP incurred 83% lethality, while no lethality, unremarkable liver histopathology, and plasma enzyme levels consistent with control were found in the group receiving OTP, BSO, and AAP. Treatment with BSO only had no influence on hepatotoxicity parameters. These results indicate that the increased GSH levels in the OTP-treated hamster are coincidental to the sparing effect of OTP and are not central to the protection scheme in AAP-induced hepatotoxicity.
Collapse
Affiliation(s)
- M H Davies
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo 58105
| | | | | |
Collapse
|
29
|
Boadi WY, Thaire L, Kerem D, Yannai S. Effects of dietary supplementation with vitamin E, riboflavin and selenium on central nervous system oxygen toxicity. PHARMACOLOGY & TOXICOLOGY 1991; 68:77-82. [PMID: 1852722 DOI: 10.1111/j.1600-0773.1991.tb02039.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We attempted to modify the resistance of rats to hyperbaric oxygen (HBO)-induced central nervous system (CNS) toxicity, by increasing the tissue antioxidant potential through dietary factors. Groups of rats were fed excesses of vitamin E (VIT E) alone or in combinations with riboflavin (RIB), selenium (Se) or both, for 30 days. A control group was maintained on an unsupplemented diet. On the 23rd day animals to be exposed were implanted with chronic electrodes for electrocorticographic (ECoG) recording. Later, each group was divided into two subgroups, of which one was exposed to 4.5 atmospheres absolute (ATA) of 100% oxygen (O2) for 30 min., hereafter referred to as "exposed", noting the time of appearance of first electrical discharge (FED) in their ECoG. The remaining subgroups were left unexposed. Forty-eight hours later, all animals were sacrificed and some of their tissues were analyzed for glutathione (GSH). The GSH level in the liver, brain, lungs and blood of all experimental subgroups were significantly higher than in the control unexposed counterparts. Combinations of RIB and/or Se with VIT E failed to show a greater increase in GSH over VIT E alone. This increase was, however, not accompanied by a meaningful delay in the appearance of FED. Forty-eight hours post-exposure, the brain GSH levels of all exposed subgroups were still lower than the respective pre-exposure levels. Yet, in the treated exposed subgroups the GSH levels observed 48 hr after exposure were already higher than in the untreated unexposed controls.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- W Y Boadi
- Department of Food Engineering and Biotechnology, Technion-Israel Institute of Technology, Haifa
| | | | | | | |
Collapse
|
30
|
Bell RR, Nonavinakere VK, Soliman MR, Early JL. Effect of in vitro treatment of rat hepatocytes with selenium, and/or cadmium on cell viability, glucose output, and cellular glutathione. Toxicology 1991; 69:111-9. [PMID: 1949041 DOI: 10.1016/0300-483x(91)90224-o] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The effects of cadmium as cadmium acetate and selenium as sodium selenite on glucose output, cell viability, and glutathione levels in rat hepatocytes were evaluated. Isolated hepatocytes (200 mg wet wt cells) derived from naive male Sprague--Dawley rats (210-260 g) were incubated at 37 degrees C, with sodium acetate (C2H3NaO2; NaAc) 12.5 microM, 6.3 microM, 3.2 microM; cadmium acetate (C4H6CdO4; Cd) 12.5 microM, 6.3 microM, 3.2 microM; sodium selenite (Na2SeO3; Se) 25 microM, 12.5 microM, 6.3 microM; or Se (6.3 microM) and Cd (3.2 microM). After an incubation period of 2 h, glucose output, cell viability, and reduced glutathione (GSH) levels were determined. The results obtained indicate that incubation of hepatocytes with Se (12.5 or 25 microM) or Cd (3.2, 6.3, or 12.5 microM) resulted in a significant decrease in glucose output, cell viability, and glutathione levels (P less than 0.05) when compared to those incubated with NaAc (control). Selenium in concentrations of 6.3 microM decreased glutathione levels and cell viability only. The damaging effects induced by Cd on hepatocytes were significantly greater than those induced by Se. The decrease in glutathione levels observed following Cd treatment was considerably lowered when Se was concurrently added to the incubation medium. These findings suggest that Se may in part protect against the deleterious effects of Cd on hepatocytes.
Collapse
Affiliation(s)
- R R Bell
- Florida A&M University, College of Pharmacy and Pharmaceutical Sciences, Tallahassee, FL 32307
| | | | | | | |
Collapse
|
31
|
Abstract
Glutathione and glutathione-dependent enzymes are ubiquitously distributed through nature. These enzyme systems appear to have evolved to protect cells from toxic and mutagenic environmental chemicals. There is now unequivocal evidence demonstrating that these enzymes play a role in chemical resistance in a variety of phylogeny including, bacteria, plants and insects. There is also increasing circumstantial, as well as genetic evidence which indicates that these enzymes are also a determinant in the sensitivity of tumor cells to anticancer drugs, particularly alkylating agents and those drugs whose toxic effects are mediated by free radicals. In this review some of the experimental data which leads to these conclusions is discussed.
Collapse
Affiliation(s)
- S M Black
- Imperial Cancer Research Fund, Molecular Pharmacology Group, Edinburgh, U.K
| | | |
Collapse
|
32
|
Fernández-Checa JC, Kaplowitz N. The use of monochlorobimane to determine hepatic GSH levels and synthesis. Anal Biochem 1990; 190:212-9. [PMID: 2291468 DOI: 10.1016/0003-2697(90)90183-a] [Citation(s) in RCA: 178] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have used the specific reaction of monochlorobimane (mBCI) with GSH to analyze hepatic GSH, mBCI, itself nonfluorescent, forms a stable, fluorescent adduct with GSH in a reaction catalyzed by the GSH S-transferases (GST). When hepatocytes were labeled with mBC1 (100 microM) in Krebs-Henseleit buffer, the fluorescent signal recorded over time was directly proportional to the concentration of GSH. The HPLC analyses of hepatocytes that were preloaded with the dye indicated that GSH was the only thiol labeled. When the technique was applied to freshly isolated intact hepatocytes that contained different levels of GSH, a close correlation between the levels of GSH measured by the present method (mBC1) and the standard enzymatic recycling method was found. A similar agreement for the cytosolic and mitochondrial pools of GSH determined by the two methods was established. The fluorescent GSH-bimane adduct, once formed within the cell, was not released from the cell. In addition, we have applied this technique to determine directly the rate of synthesis of GSH in both cell-free conditions and in cell suspensions by monitoring the increase in fluorescent adduct when mBC1 is present in excess in the incubation.
Collapse
Affiliation(s)
- J C Fernández-Checa
- Division of Gastrointestinal and Liver Diseases, USC School of Medicine, Los Angeles
| | | |
Collapse
|
33
|
Misra M, Rodriguez RE, Kasprzak KS. Nickel induced lipid peroxidation in the rat: correlation with nickel effect on antioxidant defense systems. Toxicology 1990; 64:1-17. [PMID: 1977209 DOI: 10.1016/0300-483x(90)90095-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Lipid peroxidation (LPO) and alterations in cellular systems protecting against oxidative damage were determined in the liver, kidney and skeletal muscle of male F344/NCr rats, 1 h to 3 days after a single intraperitoneal (i.p.) injection of 107 mumol nickel(II)acetate per kg body weight. At 3 h, when tissue nickel concentrations were highest, the following significant (at least, P less than 0.05) effects were observed: in kidney, increased LPO (by 43%), increased renal iron (by 24%), decreased catalase (CAT) and glutathione peroxidase (GSH-Px) activities (both by 15%), decreased glutathione (GSH) concentration (by 20%), decreased glutathione reductase (GSSG-R) activity (by 10%), and increased glutathione-S-transferase (GST) activity (by 44%); the activity of superoxide dismutase (SOD) and gamma-glutamyl transferase (GGT), as well as copper concentration, were not affected. In the liver, nickel effects included increased LPO (by 30%), decreased CAT and GSH-Px activities (both by 15%), decreased GSH level (by 33%), decreased GSSG-R activity (by 10%) and decreased GST activity (by 35%); SOD, GGT, copper, and iron remained unchanged. In muscle, nickel treatment decreased copper content (by 43%) and the SOD activity (by 30%) with no effects on other parameters. In blood, nickel had no effect on CAT and GSH-Px, but increased the activities of alanine-(ALT) and aspartate-(AST) transaminases to 330% and 240% of the background level, respectively. In conclusion, nickel treatment caused profound cell damage as indicated by increased LPO in liver and kidney and leakage of intracellular enzymes, ALT and AST to the blood. The time pattern of the resulting renal and hepatic LPO indicated a possible contribution to its magnitude from an increased concentration of nickel and concurrent inhibition of CAT, GSH-Px and GSSG-R, but not from increased iron or copper levels. The oxidative damage expressed as LPO was highest in the kidney and lowest in the muscle, which concurs with the corresponding ranking of nickel uptake by these tissues.
Collapse
Affiliation(s)
- M Misra
- Laboratory of Comparative Carcinogenesis, National Cancer Institute, Frederick Cancer Research Facility, Frederick, MD 21701
| | | | | |
Collapse
|
34
|
Kuchan MJ, Fico Santoro M, Milner JA. Consequences of selenite supplementation on the growth and metabolism of cultures of canine mammary cells. J Nutr Biochem 1990; 1:478-83. [PMID: 15539239 DOI: 10.1016/0955-2863(90)90084-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/1990] [Accepted: 04/16/1990] [Indexed: 11/17/2022]
Abstract
Previous studies with cultures of canine mammary cells revealed differences in the degree of growth inhibition caused by selenite supplementation, with canine mammary tumor cell line 13 > 11 >> non-neoplastic canine mammary cells. The present studies show this variation in growth retardation cannot be explained by selenium retention. Intracellular glutathione related inversely to the degree of growth inhibition resulting from the addition of selenite. Dimethyl selenide formation by S-9 preparations corresponded to the sensitivity of the culture to supplemental selenite. DL-buthionine-SR-sulfoximine, a specific inhibitor of glutathione biosynthesis, accentuated the growth inhibition and prevented the increase in intracellular glutathione caused by supplemental selenite. Treatment of canine mammary tumor cell line 13 cultures with DL-buthionine-SR-sulfoximine resulted in a persistent depletion of intracellular glutathione without affecting growth. Glutathione reductase activity, before and following selenite, was inversely related to the degree of growth inhibition, with canine mammary tumor cell line 13 > 11 > non-neoplastic canine mammary tumor cell line. Selenite addition increased the activity of gamma-glutamylcysteine synthetase in canine mammary tumor cell line 11 and non-neoplastic canine mammary cells, but not in canine mammary tumor cell line 13 cells. The present data suggest the differences in the growth inhibition caused by selenite among these mammary cells is related to glutathione regulation and ultimately to selenium detoxification.
Collapse
Affiliation(s)
- M J Kuchan
- Department of Food Science and Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| | | | | |
Collapse
|
35
|
Ogino T, Kawabata T, Awai M. Stimulation of glutathione synthesis in iron-loaded mice. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 1006:131-5. [PMID: 2572272 DOI: 10.1016/0005-2760(89)90334-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have previously reported that the iron-loading of mice, by feeding them carbonyl iron, caused an elevation of hepatic glutathione concentration and an increase in glutathione excretion from the liver (Kawabata, T., Ogino, T. and Awai, M. (1989) Biochim. Biophys. Acta 1004, 89-94). To elucidate the mechanism of glutathione elevation, hepatic cysteine concentration and gamma-glutamylcysteine synthetase (L-glutamate: L-cysteine gamma-ligase (ADP-forming), EC 6.3.2.2) activity were measured and possible changes in cysteine metabolism were also compared between iron-loaded and control mice. Hepatic cysteine concentration was higher in iron-loaded mice (185 +/- 12 nmol/g wet wt.) than in the controls (164 +/- 8 nmol/g wet wt.), and gamma-glutamylcysteine synthetase activity was also elevated in iron-loaded mice (34.3 +/- 3.2 nmol/mg protein per min) compared with the controls (28.6 +/- 3.8 nmol/mg protein per min). A comparison of the metabolic pathways with intravenously injected [35S]cysteine showed that organ distribution of the isotope was not significantly different, and also the rate of [35S]cysteine uptake into the hepatic glutathione fraction exhibited no difference between the two groups of mice. This shows that hepatic cysteine turnover may not be different between the two groups of mice. Since hepatic cysteine concentration was higher in iron-loaded mice, the apparently equal turnover of hepatic cysteine suggests that GSH synthesis may be elevated in iron-loaded mice. The high gamma-glutamylcysteine synthetase activity is suggested to stimulate GSH synthesis in iron-loaded mice.
Collapse
Affiliation(s)
- T Ogino
- Department of Pathology, Okayama University Medical School, Japan
| | | | | |
Collapse
|
36
|
Kawabata T, Ogino T, Awai M. Protective effects of glutathione against lipid peroxidation in chronically iron-loaded mice. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 1004:89-94. [PMID: 2742877 DOI: 10.1016/0005-2760(89)90217-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
To elucidate the protective effects of glutathione against iron-induced peroxidative injury, changes in the hepatic glutathione metabolism were studied in chronically iron-loaded mice. When the diets of the mice were supplemented with carbonyl iron, iron deposition occurred primarily in the parenchymal cells of the liver. In addition, expiratory ethane production was elevated, suggesting an enhancement in lipid peroxidation. In iron-loaded mice, the total hepatic glutathione contents were higher (6.21 +/- 0.53 mumol/g wet wt.) than in control mice (4.61 +/- 0.31 mumol/g wet wt.), primarily due to an increase in the reduced glutathione contents. The value of oxidized glutathione was also higher (98.5 +/- 8.1 nmol/g wet wt.) than in the controls (60.8 +/- 9.5 nmol/g wet wt.), and the ratio of oxidized glutathione to total glutathione increased. The excretion rate of glutathione from the hepatocytes in iron-loaded mice also increased. These observations suggest that chronic iron-loading of mice stimulates lipid peroxidation and oxidation of glutathione and that peroxidized molecules may be catabolized using reduced glutathione.
Collapse
Affiliation(s)
- T Kawabata
- Department of Pathology, Okayama University Medical School, Japan
| | | | | |
Collapse
|
37
|
Schnell RC, Park KS, Davies MH, Merrick BA, Weir SW. Protective effects of selenium on acetaminophen-induced hepatotoxicity in the rat. Toxicol Appl Pharmacol 1988; 95:1-11. [PMID: 2901147 DOI: 10.1016/s0041-008x(88)80002-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Experiments were undertaken to examine the ability of selenium to protect against acetaminophen-induced hepatotoxicity and to examine possible mechanisms for this protective effect. Pretreatment of male, Sprague-Dawley rats with sodium selenite (12.5 mumol Se/kg, ip) 24 hr prior to acetaminophen administration produced a significant protection against the hepatotoxic effects of acetaminophen as assessed by a decrease in the plasma appearance of alanine aminotransferase and aspartate aminotransferase activities following acetaminophen. This was accompanied by an increase in the hepatic glutathione levels in selenium-treated animals and an inhibition in the decrease in hepatic glutathione content observed in animals receiving hepatotoxic doses of acetaminophen. Selenium pretreatment decreased the in vivo covalent binding of acetaminophen metabolites to hepatic protein, but did not alter hepatic microsomal cytochrome P-450 content or NADPH cytochrome c reductase activity, suggesting that selenium does not significantly alter the metabolism of acetaminophen to reactive electrophilic metabolites by the cytochrome P-450-dependent mixed-function oxidase enzyme system. Selenium produced an increase in the activity of gamma-glutamylcysteine synthetase which may account for the increased glutathione availability in selenium-treated animals and increased the activities of glutathione S-transferase and glucose-6-phosphate dehydrogenase. Examination of the urinary metabolite profile in selenium-treated animals revealed that the urinary excretion of acetaminophen and its metabolites was significantly increased over a 72-hr period. The increase occurred in the AAP-glucuronide metabolite while parent AAP and AAP-sulfate were actually decreased in selenium-treated rats. No change in recovery was observed in the AAP-glutathione or AAP-mercapturate urinary metabolites. While the glutathione conjugating system is enhanced by selenium treatment, amelioration of acetaminophen toxicity is most likely the result of enhanced glucuronidation which effectively diverts the amount of acetaminophen to be converted by the cytochrome P-450 system to the toxic metabolite.
Collapse
Affiliation(s)
- R C Schnell
- Department of Pharmaceutical Sciences, College of Pharmacy, North Dakota State University, Fargo 58105
| | | | | | | | | |
Collapse
|
38
|
Mayer RD, Cockett AT. Cyclosporin-mediated increase in kidney glutathione and effects on gamma-glutamyl-cycle enzymes. JOURNAL OF BIOCHEMICAL TOXICOLOGY 1988; 3:213-21. [PMID: 2904500 DOI: 10.1002/jbt.2570030307] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The unprecedented ability of cyclosporin A, when given for six days at a dose of 25 mg/kg/d or 50 mg/kg/d, to cause a marked and sustained increase in renal glutathione (GSH) concentration in rat kidney is described. This response was particular to the kidney insofar as the GSH concentration in the liver was not increased in response to a lower dose of cyclosporin and was decreased in the liver of animals treated with the higher dose of the drug. The increase in kidney GSH concentration did not appear to be due to an increased rate of production or to an inhibition of the degradation of the tripeptide. This suggestion is based on the finding that the activities of the GSH synthesis pathways, GSSG-reductase and gamma-glutamylcysteine synthetase, were unchanged or decreased, respectively, and those of the catabolic enzymes, GSH-peroxidase and gamma-glutamyltranspeptidase, were unchanged or increased, respectively. It is suggested that the elevation of renal GSH content in the face of diminished synthetic capacity and an apparent increased utilization may result from an enhanced uptake of GSH as the result of alterations caused by cyclosporin in the renal transport system.
Collapse
Affiliation(s)
- R D Mayer
- Department of Urology, University of Rochester School of Medicine, NY 14642
| | | |
Collapse
|
39
|
Parmar NS, Tariq M, Ageel AM. Gastric anti-ulcer and cytoprotective effect of selenium in rats. Toxicol Appl Pharmacol 1988; 92:122-30. [PMID: 2963405 DOI: 10.1016/0041-008x(88)90234-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Selenium, a trace element, in the form of sodium selenite has been studied for its ability to protect the gastric mucosa against the injuries caused by hypothermic restraint stress, aspirin, indomethacin, reserpine, dimaprit, and various other gastric mucosal-damaging (necrotizing) agents in rats. The results demonstrate that oral administration of sodium selenite produces a significant inhibition of the gastric mucosal damage induced by all the procedures used in this study. Selenium, in a nonantisecretory dose, produced a marked cytoprotective effect against all the necrotizing agents. The cytoprotective effect of selenium against the effects of 80% ethanol and 0.6 M HCl was significantly reversed by prior treatment with a dose of indomethacin that inhibits prostaglandin biosynthesis. These data indicate that sodium selenite inhibits the formation of these lesions by the mucosal generation of prostaglandins. The concentrations of nonprotein sulfhydryls (NP-SH) were significantly decreased in the gastric mucosa following the administration of necrotizing agents--80% ethanol and 0.6 M HCl. Treatment with sodium selenite, which significantly reduced the intensity of gastric lesions, did not replenish the reduced levels of gastric mucosal NP-SH, thus ruling out the mediation of its protective effect through sulfhydryls. The antisecretory effect of sodium selenite, which becomes evident only in the high dose of 20 mumol/kg, may be responsible for the inhibition of gastric lesions induced by aspirin, indomethacin, reserpine, and dimaprit. Our findings show that selenium possesses significant anti-ulcer and adaptive cytoprotective effects. However, further detailed studies are required to confirm these effects, to establish its mechanism(s) of action, and to determine its role in the prophylaxis and treatment of peptic ulcer disease.
Collapse
Affiliation(s)
- N S Parmar
- Research Centre, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | | |
Collapse
|
40
|
Meredith MJ. Cystathionase activity and glutathione metabolism in redifferentiating rat hepatocyte primary cultures. Cell Biol Toxicol 1987; 3:361-77. [PMID: 3507263 DOI: 10.1007/bf00119910] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Capacity to incorporate methionine sulfur into glutathione as well as cystathionase activity were lost in cultured hepatocytes in a biphasic manner with 75% of the total capacity disappearing with a half-life of about 10.6 hr, the remainder with a half-life of greater than 20 hr. Nicotinamide, 25 mM, produced a single phase loss with a t 1/2 of approximately 21 hr for both transsulfuration and cystathionase activity. Loss of both methionine sulfur incorporation and cystathionase activity occurred in transferrin/sodium selenite-supplemented Williams Medium E (TS-HWME) with a t 1/2 of about 96 hr through 72 hr in culture. Addition of the cystathionase inhibitor, propargylglycine, blocked glutathione synthesis in TS-HWME cells through 48 hr in culture, while propargylglycine blocked glutathione synthesis only at 4 hr in HWME cultured cells. Further, the accumulation of gamma-glutamyl transpeptidase was delayed by 48 hr in TS-HWME versus unsupplemented medium. Variation in the transport of sulfur amino acids was also found to occur with culture age. The Km values for cysteine and methionine transport were found to be approximately 150 and 100 microM, respectively, and were unaffected by culture age or the presence of TS-HWME. However, the Vmax for transport of methionine declined from 0.29 to 0.012 nmol/min/mg protein over 48 hr in culture. In TS medium, the Vmax at 48 hr for methionine transport had only decreased to 0.20 nmol/min/mg protein and increased for cysteine transport to 0.17 nmol/min/mg protein. These data suggest that during the redifferentiation of hepatocytes in culture, transsulfuration is regulated by control of the flow of substrate through cystathionase and that cystathionase is regulated by alteration of enzyme activity or content. Variations in the rate of transport of precursor sulfur amino acids are also an important component of the regulation of the net glutathione status of the redifferentiating hepatocyte.
Collapse
Affiliation(s)
- M J Meredith
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| |
Collapse
|
41
|
Chung AS, Maines MD. Differential effect of cadmium on GSH-peroxidase activity in the Leydig and the Sertoli cells of rat testis. Suppression by selenium and the possible relationship to heme concentration. Biochem Pharmacol 1987; 36:1367-72. [PMID: 3593423 DOI: 10.1016/0006-2952(87)90096-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In the testes of rats treated with cadmium acetate (7 or 20 mumoles/kg, 24 hr, s.c.), the activity of glutathione (GSH)-peroxidase was increased. At the same time, the activity of glutathione disulfide (GSSG)-reductase and the cellular GSH concentration were decreased significantly. The basal activity of peroxidase in the Leydig and the Sertoli cell populations was comparable. However, the magnitude of increases in the activities markedly differed in the two cell populations, with that of the Sertoli cells increasing to nearly 450% of the control value in response to treatment with 20 mumoles/kg Cd2+. In the Leydig cells, the enzyme activity in response to the same treatment increased to only about 170% of the control value. Cd2+ treatment increased the concentration of heme in the microsomal and the smooth and rough endoplasmic reticulum fractions of the whole testis, as well as in the microsomal fractions of the Leydig and the Sertoli cells. As with the peroxidase activity, the two cell populations vastly differed in their susceptibilities to Cd2+ treatment, with the Sertoli cells being more severely affected by the metal. In the Sertoli cells the microsomal heme concentration was increased by approximately 11-fold, whereas only a 2-fold increase in the Leydig cells was noted. The increase in GSH-peroxidase activity was not due to the peroxidase activity of GSH-S-transferases, insofar as an increase in transferase activity was not observed in the Leydig and the Sertoli cells. Treatment of rats with sodium selenite (10 mumoles/kg, s.c.) 30 min before Cd2+ treatment (20 mumoles/kg) fully suppressed the above-described spectrum of effects of Cd2+ in the testis. Also, sodium selenite at a lower dose of 5 mumoles/kg prevented an increase in GSH-peroxidase activity. It is hypothesized that increased GSH-peroxidase activity in the Leydig and the Sertoli cells constitutes an adaptive response to increased cellular levels of heme and to the free radicals generated by the heme molecule. Selenium prevents the increase in GSH-peroxidase activity by circumventing the increase in cellular heme concentration. The protection is believed to be related, at least in part, to increased production of cellular GSH.
Collapse
|
42
|
Abstract
Selenium (Se) affects all components of the immune system, i.e., the development and expression of nonspecific, humoral, and cell-mediated responses. In general, a deficiency in Se appears to result in immunosuppression, whereas supplementation with low doses of Se appears to result in augmentation and/or restoration of immunologic functions. A deficiency of Se has been shown to inhibit resistance to microbial and viral infections, neutrophil function, antibody production, proliferation of T and B lymphocytes in response to mitogens, and cytodestruction by T lymphocytes and NK cells. Supplementation with Se has been shown to stimulate the function of neutrophils, production of antibodies, proliferation of T and B lymphocytes in response to mitogens, production of lymphokines, NK cell-mediated cytodestruction, delayed-type hypersensitivity reactions and allograft rejection, and the ability of a host to reject transplanted malignant tumors. The mechanism(s) whereby Se affects the immune system is speculative. The effects of Se on the function of glutathione peroxidase and on the cellular levels of reduced glutathione and H2Se, as well as the ability of Se to interact with cell membranes, probably represent only a few of many regulatory mechanisms. The manipulation of cellular levels of Se may be significant for the maintenance of general health and for the control of immunodeficiency disorders and the chemoprevention of cancer.
Collapse
|
43
|
Abstract
Sodium selenite has been shown to inhibit Na,K-ATPase. Glutathione, at sufficient excess, is able to prevent or reverse the inhibition. Dithiothreitol can also reverse much of the inhibition, but KCN cannot. Selenomethionine does not inhibit Na,K-ATPase. The interactions of sodium selenite with Na,K-ATPase and glutathione may aid in understanding the early events in selenium cataractogenesis.
Collapse
|
44
|
Wheeler LA, Aswad A, Connor MJ, Lowe N. Depletion of cutaneous glutathione and the induction of inflammation by 8-methoxypsoralen plus UVA radiation. J Invest Dermatol 1986; 87:658-62. [PMID: 2877029 DOI: 10.1111/1523-1747.ep12456380] [Citation(s) in RCA: 37] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The purpose of this study was to examine the dose response and time course relationships between PUVA (psoralen + UVA) depletion of skin glutathione (GSH) and the induction of inflammation. Dorsal skin fold thickness (DSFT), an index of cutaneous edema, was used as a noninvasive measure of inflammation. Ornithine decarboxylase (ODC) was used as a measure of epidermal damage. Female hairless mice were given 8-methoxypsoralen (8-MOP) (dissolved in corn oil) by gavage at different doses, and 2 h later the mice were irradiated with 5 J/cm2 UVA. At 24 h, DSFT measurements were taken, the mice were killed, and reduced GSH, glutathione disulfide (GSSG), and glutathione-S-transferase were measured in the epidermis and dermis. Epidermal GSH was depleted 0, 11, 45, 87, and 98% from vehicle and/or UVA-treated levels (0.7 mM) after 0.1, 0.5, 5, 25, and 50 mg/kg, respectively. In the dermis GSH decreased from 0.3 mM by 47, 87, and 91% after 5, 25, and 50 mg/kg 8-MOP, respectively. Increases in DSFT of 20, 141, and 242% were observed after 5, 25, and 50 mg/kg doses, respectively. GSSG accounted for a small portion of total GSH in the skin after PUVA treatment. The maximal decreases in GSH were not observed until 24-48 h after PUVA treatment. PUVA treatment leads to dose-related increases in dermal edema, epidermal ODC, and depletion of GSH levels from both compartments in the skin. The time course of glutathione loss suggests that PUVA may interfere with its resynthesis or utilization from the circulation.
Collapse
|
45
|
|
46
|
McCarty MF. A practical prescription for cancer prevention--synergistic use of chemopreventive agents. Med Hypotheses 1984; 14:213-25. [PMID: 6472149 DOI: 10.1016/0306-9877(87)90121-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Enzyme inducers, selenium, and retinoids exert broad-spectrum chemopreventive actions in animal models of carcinogenesis. The mechanisms of action of these three categories of agents are clearly distinct and complementary. BHA, selenium, and beta-carotene are probably safe and non-toxic for humans in doses which, in light of animal studies, can be expected to provide significant cancer protection. The concurrent application of safe, appropriate doses of these three agents could exert a potent synergistic chemopreventive effect, and, if continued throughout life, would in all likelihood substantially reduce cancer risk.
Collapse
|
47
|
Abstract
The present study was designed to examine changes in glutathione metabolism in the liver of mice as influenced by supplementation of their diet with 1 of 4 antioxidants: butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), vitamin E and selenium. In addition to determination of the acid-soluble thiol levels, 5 different enzymes involved with glutathione utilization and synthesis were measured: glutathione transferase, gamma-glutamyl transpeptidase, selenium-dependent glutathione peroxidase, gamma-glutamylcysteine synthetase and glutathione reductase. All 4 antioxidants produced significant increases in glutathione transferase activity, with BHA and BHT being much more effective than the other two. With the exception of vitamin E, BHA, BHT and selenium all resulted in a slight enhancement in the activity of glutathione reductase as well as in the acid-soluble thiol level. On the other hand, the induction of gamma-glutamyl transpeptidase and gamma-glutamylcysteine synthetase was responsive to only vitamin E and selenium supplementation, respectively. Although the influence of each of these antioxidants in glutathione metabolism appears to be specific and somewhat compartmentalized, the overall impression is that of an increased capacity for glutathione-conjugate formation and recovery of reduced glutathione. These biochemical changes in glutathione metabolism may be relevant to the anticarcinogenic effects observed with BHA, BHT and selenium.
Collapse
|
48
|
Merrick BA, Davies MH, Johnson KL, Schnell RC. Selenite-induced protection of bromobenzene hepatotoxicity in male rats. Toxicol Appl Pharmacol 1984; 72:102-10. [PMID: 6710476 DOI: 10.1016/0041-008x(84)90253-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Acute treatment with sodium selenite effectively reduces bromobenzene hepatotoxicity in male, Sprague-Dawley rats. Hepatocellular damage was ameliorated as shown by marked decreases in plasma alanine and aspartate aminotransferase (ALT and AST) activities. A single dose of selenite (12.5 or 30 mumol Se/kg, ip) was administered to rats at 4, 24, 48, or 72 hr before injection of bromobenzene (7.5 mmol/kg, ip). Plasma ALT and AST activities and hepatic glutathione (GSH) content were measured 24 hr after bromobenzene treatment. As the length of time of selenite pretreatment increased, the extent of reduction of bromobenzene-induced elevation in plasma enzyme activities by selenite was enhanced, and generally, in a dose-related manner with optimal protection occurring in rats pretreated 72 hr prior with selenite. However, depletion of liver GSH by bromobenzene was not affected by selenite treatment. Hepatic GSH levels and GSH detoxication enzyme activities were measured at various intervals in rats treated with selenite alone. Selenite increased hepatic GSH content 20 to 25% at both 24 and 48 hr after injection, with a return to GSH control levels at 72 hr. Selenite treatment produced slight decreases in GSH peroxidase activity but did not alter GSH S-transferase activity. These studies suggest that the reduction of bromobenzene hepatotoxicity by selenite does not involve alterations in the activity of hepatic GSH detoxication enzymes; however, the data suggest that factors in addition to selenite-induced changes in hepatic glutathione levels are also involved.
Collapse
|
49
|
Abstract
Various endogenous and exogenous chemicals, such as hormones, drugs, and carcinogens and other environmental pollutants are enzymatically converted to polar metabolites as a result of their oxidative metabolism by the mixed-function oxidase system. This enzyme complex constitutes the major detoxifying system of man and utilizes the hemoprotein--cytochrome P-450--as the terminal oxidase. Recent studies with trace metals have revealed the potent ability of these elements to alter the synthesis and to enhance the degradation of heme moiety of cytochrome P-450. An important consequence of these metal actions is to greatly impair the ability of cells to oxidatively metabolize chemicals because of the heme dependence of this metabolic process. In this report the effects of exposure to trace metals on drug oxidations is reviewed within the framework of metal alterations of heme metabolism, including both its synthesis and degradation, since these newly discovered properties of metals have made it possible to define a major dimension of metal toxicity in terms of a unified cellular mechanism of action.
Collapse
|
50
|
Johansson E, Lindh U, Landström E. The incorporation of selenium and alterations of macro- and trace element levels in individual blood cells following supplementation with sodium selenite and vitamin E : A nuclear microprobe application. Biol Trace Elem Res 1983; 5:433-47. [PMID: 24263665 DOI: 10.1007/bf02988937] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/1982] [Accepted: 05/03/1983] [Indexed: 10/21/2022]
Abstract
Significant alterations in the selenium content of erythrocytes, thrombocytes, and neutrophil granulocytes were observed following a daily supplementation of 200 μg Se + 100 mg vitamin E during a period of 2 months. The neutrophil granulocytes incorporated more selenium than the thrombocytes. The iron content of the thrombocytes decreased on selenium supplementation, while the opposite was noted for the neutrophil granulocytes. The glutathione peroxidase activity was not significantly changed during the period of observation.
Collapse
Affiliation(s)
- E Johansson
- Gustaf Werner Institute, Uppsala University, Uppsala, Sweden
| | | | | |
Collapse
|