1
|
Alhalmi A, Amin S, Ralli T, Ali KS, Kohli K. Therapeutic role of naringin in cancer: molecular pathways, synergy with other agents, and nanocarrier innovations. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3595-3615. [PMID: 39614898 DOI: 10.1007/s00210-024-03672-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/24/2024] [Indexed: 04/10/2025]
Abstract
Naringin, a flavanone glycoside found abundantly in citrus fruits, is well-known for its various pharmacological properties, particularly its significant anticancer effects. Research, both in vitro and in vivo, has shown that naringin is effective against several types of cancer, including liver, breast, thyroid, prostate, colon, bladder, cervical, lung, ovarian, brain, melanoma, and leukemia. Its anticancer properties are mediated through multiple mechanisms, such as apoptosis induction, inhibition of cell proliferation, cell cycle arrest, and suppression of angiogenesis, metastasis, and invasion, all while exhibiting minimal toxicity and adverse effects. Naringin's molecular mechanisms involve the modulation of essential signaling pathways, including PI3K/Akt/mTOR, FAK/MMPs, FAK/bads, FAKp-Try397, IKKs/IB/NF-κB, JNK, ERK, β-catenin, p21CIPI/WAFI, and p38-MAPK. Additionally, it targets several signaling proteins, such as Bax, TNF-α, Zeb1, Bcl-2, caspases, VEGF, COX-2, VCAM-1, and interleukins, contributing to its wide-ranging antitumor effects. The remarkable therapeutic potential of naringin, along with its favorable safety profile, highlights its promise as a candidate for cancer treatment. This comprehensive review examines the molecular mechanisms behind naringin's chemopreventive and anticancer effects, including its pharmacokinetics and bioavailability. Furthermore, it discusses advancements in nanocarrier technologies designed to enhance these characteristics and explores the synergistic benefits of combining naringin with other anticancer agents, focusing on improved therapeutic efficacy and drug bioavailability.
Collapse
Affiliation(s)
- Abdulsalam Alhalmi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
- Department of Pharmaceutics, Faculty of Pharmacy, University of Aden, Aden, Yemen
| | - Saima Amin
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Tanya Ralli
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
- School of Pharmacy, COER University, Roorkee, 247667, India
| | - Khaled Saeed Ali
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Aden, Aden, Yemen
| | - Kanchan Kohli
- Faculty of Pharmacy, Lloyd Institute of Management and Technology, Greater Noida, 201308, India.
- Department of Pharmaceutical Sciences, Gurugram University, Haryana, 122003, India.
| |
Collapse
|
2
|
Rauf A, Rashid U, Akram Z, Ghafoor M, Muhammad N, Al Masoud N, Alomar TS, Naz S, Iriti M. In vitro and in silico antiproliferative potential of isolated flavonoids constitutes from Pistacia integerrima. Z NATURFORSCH C 2024; 79:187-193. [PMID: 38549290 DOI: 10.1515/znc-2023-0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/08/2024] [Indexed: 07/11/2024]
Abstract
Cancer is one of the most demanding domains for innovative, effective, safe, and affordable therapeutically active chemicals. The main aim of this study is to research new phytochemicals with anticancer activity. The current experiment identified and analyzed six compounds for anti-cancer potential supported by molecular simulation studies. The defatted methanolic extract underwent column chromatography, resulting in the isolation of six flavonoids. These include 3,5,7,4'-tetrahydroxy-flavanone (1), naringenin (2), 3,5,4'-trihydroxy-7-methoxy-flavanone (3), sakuranetin (4), spinacetin (5), and patuletin (6). The isolated compounds (1-6) were assessed for in vitro anti-cancer activity against various cell lines such as HepG2 (hepatoma G2), A498 (kidney), NCI-H226 (lungs), and MDR2780AD (human ovarian). The maximum antiproliferative effect was against HepG2 and MDR2780AD. When compounds 6, 5, and 1 were compared to a standard anti-cancer medicine (paclitaxel) with an IC50 of 7.32, it was shown that compounds 6, 5, and 1 exhibited significant activity against HepG2 with IC50 values of 14.65, 20.87, and 27.09 µM, respectively. All tested compounds showed an IC50 of less than 1 µM and had notable effects against MDR2780 AD cell lines. Compound 6 exhibited notable potency against the HepG2, A498, and MDR2780AD cell lines, among the six compounds that were evaluated. In contrast, compound 3 demonstrated the most pronounced impact on the NCI-H226 cell line. Docking investigations were performed using tubulin as the specific target concerning PDB ID 4O2B. The six compounds under investigation interact hydrophobically and hydrophilically with tubulin-binding site amino acid residues.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan
| | - Umer Rashid
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus 22060, Abbottabad, Pakistan
| | - Zuneera Akram
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Baqai Medical University, Karachi, Pakistan
| | - Momina Ghafoor
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus 22060, Abbottabad, Pakistan
| | - Naveed Muhammad
- Department of Pharmacy, 208933 Abdul Wali Khan University Mardan , Khyber Pakhtunkhwa, Pakistan
| | - Najla Al Masoud
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Taghrid S Alomar
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Saima Naz
- Department of Biotechnology, Bacha Khan University, Khyber Pakhtunkhwa, Pakistan
| | - Marcello Iriti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, via Celoria 2, 20133, Milan, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Firenze 50121, Italy
| |
Collapse
|
3
|
Figueira MI, Carvalho TMA, Macário-Monteiro J, Cardoso HJ, Correia S, Vaz CV, Duarte AP, Socorro S. The Pros and Cons of Estrogens in Prostate Cancer: An Update with a Focus on Phytoestrogens. Biomedicines 2024; 12:1636. [PMID: 39200101 PMCID: PMC11351860 DOI: 10.3390/biomedicines12081636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/14/2024] [Accepted: 07/20/2024] [Indexed: 09/01/2024] Open
Abstract
The role of estrogens in prostate cancer (PCa) is shrouded in mystery, with its actions going from angelic to devilish. The findings by Huggins and Hodges establishing PCa as a hormone-sensitive cancer have provided the basis for using estrogens in therapy. However, despite the clinical efficacy in suppressing tumor growth and the panoply of experimental evidence describing its anticarcinogenic effects, estrogens were abolished from PCa treatment because of the adverse secondary effects. Notwithstanding, research work over the years has continued investigating the effects of estrogens, reporting their pros and cons in prostate carcinogenesis. In contrast with the beneficial therapeutic effects, many reports have implicated estrogens in the disruption of prostate cell fate and tissue homeostasis. On the other hand, epidemiological data demonstrating the lower incidence of PCa in Eastern countries associated with a higher consumption of phytoestrogens support the beneficial role of estrogens in counteracting cancer development. Many studies have investigated the effects of phytoestrogens and the underlying mechanisms of action, which may contribute to developing safe estrogen-based anti-PCa therapies. This review compiles the existing data on the anti- and protumorigenic actions of estrogens and summarizes the anticancer effects of several phytoestrogens, highlighting their promising features in PCa treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sílvia Socorro
- CICS-UBI, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal; (M.I.F.)
| |
Collapse
|
4
|
Younes M, Aquilina G, Castle L, Degen G, Engel K, Fowler PJ, Frutos Fernandez MJ, Fürst P, Gundert‐Remy U, Gürtler R, Husøy T, Manco M, Moldeus P, Passamonti S, Shah R, Waalkens‐Berendsen I, Wright M, Benigni R, Bolognesi C, Chipman K, Cordelli E, Nørby K, Svendsen C, Carfí M, Dino B, Gagliardi G, Mech A, Multari S, Mennes W. Flavouring Group Evaluation 413 (FGE.413): Naringenin. EFSA J 2024; 22:e8747. [PMID: 38751504 PMCID: PMC11094580 DOI: 10.2903/j.efsa.2024.8747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024] Open
Abstract
The EFSA Panel on Food Additives and Flavourings (FAF) was requested to evaluate the safety of naringenin [FL-no: 16.132] as a new flavouring substance, in accordance with Regulation (EC) No 1331/2008. No other substances with sufficient structural similarity have been identified in existing FGEs that could be used to support a read-across approach. The information provided on the manufacturing process, the composition and the stability of [FL-no: 16.132] was considered sufficient. From studies carried out with naringenin, the Panel concluded that there is no concern with respect to genotoxicity. The use of naringenin as a flavouring substance at added portions exposure technique (APET) exposure levels is unlikely to pose a risk for drug interaction. For the toxicological evaluation of naringenin, the Panel requested an extended one-generation toxicity study on naringenin, in line with the requirements of the Procedure and to investigate the consequence of a possible endocrine-disrupting activity. The Panel considered that changes in thymus weight, litter size, post-implantation loss and a consistent reduced pup weight in the high-dose F2 generation could not be dismissed and selected therefore, the mid-dose of 1320 mg/kg body weight (bw) per day for the parental males as the no observed adverse effect level (NOAEL) of the study. The exposure estimates for [FL-no: 16.132] (31,500 and 50,000 μg/person per day for children and adults, respectively) were above the threshold of toxicological of concern (TTC) for its structural class (III). Using the NOAEL of 1320 mg/kg bw per day at step A4 of the procedure, margins of exposure (MoE) of 1590 and 630 could be calculated for adults and children, respectively. Based on the calculated MoEs, the Panel concluded that the use of naringenin as a flavouring substance does not raise a safety concern.
Collapse
|
5
|
Estrogenic flavonoids and their molecular mechanisms of action. J Nutr Biochem 2023; 114:109250. [PMID: 36509337 DOI: 10.1016/j.jnutbio.2022.109250] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Flavonoids are a major group of phytoestrogens associated with physiological effects, and ecological and social impacts. Although the estrogenic activity of flavonoids was reported by researchers in the fields of medical, environmental and food studies, their molecular mechanisms of action have not been comprehensively reviewed. The estrogenic activity of the respective classes of flavonoids, anthocyanidins/anthocyanins, 2-arylbenzofurans/3-arylcoumarins/α-methyldeoxybenzoins, aurones/chalcones/dihydrochalcones, coumaronochromones, coumestans, flavans/flavan-3-ols/flavan-4-ols, flavanones/dihydroflavonols, flavones/flavonols, homoisoflavonoids, isoflavans, isoflavanones, isoflavenes, isoflavones, neoflavonoids, oligoflavonoids, pterocarpans/pterocarpenes, and rotenone/rotenoids, was summarized through a comprehensive literature search, and their structure-activity relationship, biological activities, signaling pathways, and applications were discussed. Although the respective classes of flavonoids contained at least one chemical mimicking estrogen, the mechanisms varied, such as those with estrogenic, anti-estrogenic, non-estrogenic, and biphasic activities, and additional activities through crosstalk/bypassing, which exert biological activities through cell signaling pathways. Such mechanistic variations of estrogen action are not limited to flavonoids and are observed among other broad categories of chemicals, thus this group of chemicals can be termed as the "estrogenome". This review article focuses on the connection of estrogen action mainly between the outer and the inner environments, which represent variations of chemicals and biological activities/signaling pathways, respectively, and form the basis to understand their applications. The applications of chemicals will markedly progress due to emerging technologies, such as artificial intelligence for precision medicine, which is also true of the study of the estrogenome including estrogenic flavonoids.
Collapse
|
6
|
Alhalmi A, Amin S, Khan Z, Beg S, Al kamaly O, Saleh A, Kohli K. Nanostructured Lipid Carrier-Based Codelivery of Raloxifene and Naringin: Formulation, Optimization, In Vitro, Ex Vivo, In Vivo Assessment, and Acute Toxicity Studies. Pharmaceutics 2022; 14:1771. [PMID: 36145519 PMCID: PMC9500671 DOI: 10.3390/pharmaceutics14091771] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 11/19/2022] Open
Abstract
This work aimed to develop dual drug-loaded nanostructured lipid carriers of raloxifene and naringin (RLX/NRG NLCs) for breast cancer. RLX/NRG NLCs were prepared using Compritol 888 ATO and oleic acid using a hot homogenization-sonication method and optimized using central composite design (CCD). The optimized RLX/NRG NLCs were characterized and evaluated using multiple technological means. The optimized RLX/NRG NLCs exhibited a particle size of 137.12 nm, polydispersity index (PDI) of 0.266, zeta potential (ZP) of 25.9 mV, and entrapment efficiency (EE) of 91.05% (raloxifene) and 85.07% (naringin), respectively. In vitro release (81 ± 2.2% from RLX/NRG NLCs and 31 ± 1.9% from the RLX/NRG suspension for RLX and 93 ± 1.5% from RLX/NRG NLCs and 38 ± 2.01% from the RLX/NRG suspension for NRG within 24 h). Concurrently, an ex vivo permeation study exhibited nearly 2.3 and 2.1-fold improvement in the permeability profiles of RLX and NRG from RLX/NRG NLCs vis-à-vis the RLX/NRG suspension. The depth of permeation was proved with CLSM images which revealed significant permeation of the drug from the RLX/NRG NLCs formulation, 3.5-fold across the intestine, as compared with the RLX/NRG suspension. An in vitro DPPH antioxidant study displayed a better antioxidant potential of RLX/NRG in comparison to RLX and NRG alone due to the synergistic antioxidant effect of RLX and NRG. An acute toxicity study in Wistar rats showed the safety profile of the prepared nanoformulations and their excipients. Our findings shed new light on how poorly soluble and poorly permeable medicines can be codelivered using NLCs in an oral nanoformulation to improve their medicinal performance.
Collapse
Affiliation(s)
- Abdulsalam Alhalmi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Saima Amin
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Zafar Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Sarwar Beg
- School of Pharmacy & Biomedical Sciences, University of Central Lancashire, Flyde Road, Preston PR1 2HE, UK
| | - Omkulthom Al kamaly
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Kanchan Kohli
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
- Lloyd Institute of Management and Technology (Pharm.), Plot No 11, Knowledge Park-II, Greater Noida 201308, India
| |
Collapse
|
7
|
Chau Thuy Nguyen D, Dowling J, Ryan R, McLoughlin P, Fitzhenry L. Controlled release of naringenin from soft hydrogel contact lens: An investigation into lens critical properties and in vitro release. Int J Pharm 2022; 621:121793. [DOI: 10.1016/j.ijpharm.2022.121793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/16/2022]
|
8
|
Anti-estrogenic and anti-aromatase activities of citrus peels major compounds in breast cancer. Sci Rep 2021; 11:7121. [PMID: 33782546 PMCID: PMC8007834 DOI: 10.1038/s41598-021-86599-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/10/2021] [Indexed: 02/01/2023] Open
Abstract
Estrogen signaling is crucial for breast cancer initiation and progression. Endocrine-based therapies comprising estrogen receptor (ER) modulators and aromatase inhibitors remain the mainstay of treatment. This study aimed at investigating the antitumor potential of the most potent compounds in citrus peels on breast cancer by exploring their anti-estrogenic and anti-aromatase activities. The ethanolic extract of different varieties of citrus peels along with eight isolated flavonoids were screened against estrogen-dependent breast cancer cell lines besides normal cells for evaluating their safety profile. Naringenin, naringin and quercetin demonstrated the lowest IC50s and were therefore selected for further assays. In silico molecular modeling against ER and aromatase was performed for the three compounds. In vivo estrogenic and anti-estrogenic assays confirmed an anti-estrogenic activity for the isolates. Moreover, naringenin, naringin and quercetin demonstrated in vitro inhibitory potential against aromatase enzyme along with anticancer potential in vivo, as evidenced by decreased tumor volumes. Reduction in aromatase levels in solid tumors was also observed in treated groups. Overall, this study suggests an antitumor potential for naringenin, naringin and quercetin isolated from citrus peels in breast cancer via possible modulation of estrogen signaling and aromatase inhibition suggesting their use in pre- and post-menopausal breast cancer patients, respectively.
Collapse
|
9
|
Sahin Z, Ozkaya A, Cuce G, Uckun M, Yologlu E. Investigation of the effect of naringenin on oxidative stress-related alterations in testis of hydrogen peroxide-administered rats. J Biochem Mol Toxicol 2017; 31. [PMID: 28467669 DOI: 10.1002/jbt.21928] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/15/2017] [Accepted: 03/20/2017] [Indexed: 12/11/2022]
Abstract
Testis tissue is prone to oxidation because its plasma membrane contains many polyunsaturated fatty acids. Naringenin is a plant-derived natural flavonoid. We investigated the possible ameliorative role of naringenin on the hydrogen peroxide (H2 O2 )-induced testicular damage in Wistar rats. Animals received 12 mg/kg H2 O2 by intraperitoneal injection, and 50 mg/kg naringenin via orogastric gavage for 4 weeks. In the H2 O2 group, the testis malondialdehyde level increased, while the amount of reduced glutathione, glutathione transferase activities, and the testis weight decreased. There were severe testicular damages in the H2 O2 group otherwise their grade were less in the naringenin + H2 O2 group. However, the serum testosterone concentrations decreased in both the H2 O2 and the naringenin + H2 O2 groups. The testicular zinc and calcium levels reduced in the H2 O2 -treated rats. In conclusion, the administration of H2 O2 caused oxidative stress in the testes and naringenin supplementation decreased the H2 O2 -induced effects, except for changes in testosterone levels.
Collapse
Affiliation(s)
- Zafer Sahin
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Necmettin Erbakan University, Konya, Turkey.,KONÜDAM Experimental Medicine Application and Research Center, Necmettin Erbakan University, Konya, Turkey
| | - Ahmet Ozkaya
- Department of Chemistry, Faculty of Science and Art, Adiyaman University, Adiyaman, Turkey
| | - Gokhan Cuce
- Department of Histology and Embryology, Faculty of Meram Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Mirac Uckun
- Department of Food Engineering, Faculty of Engineering, Adiyaman University, Adiyaman, Turkey
| | - Ertan Yologlu
- Department of Science Education, Faculty of Education, Adiyaman University, Adiyaman, Turkey
| |
Collapse
|
10
|
The Citrus Flavanone Naringenin Protects Myocardial Cells against Age-Associated Damage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9536148. [PMID: 28386313 PMCID: PMC5366223 DOI: 10.1155/2017/9536148] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/06/2017] [Accepted: 02/28/2017] [Indexed: 12/21/2022]
Abstract
In recent years, the health-promoting effects of the citrus flavanone naringenin have been examined. The results have provided evidence for the modulation of some key mechanisms involved in cellular damage by this compound. In particular, naringenin has been revealed to have protective properties such as an antioxidant effect in cardiometabolic disorders. Very recently, beneficial effects of naringenin have been demonstrated in old rats. Because aging has been demonstrated to be directly related to the occurrence of cardiac disorders, in the present study, the ability of naringenin to prevent cardiac cell senescence was investigated. For this purpose, a cellular model of senescent myocardial cells was set up and evaluated using colorimetric, fluorimetric, and immunometric techniques. Relevant cellular senescence markers, such as X-gal staining, cell cycle regulator levels, and the percentage of cell cycle-arrested cells, were found to be reduced in the presence of naringenin. In addition, cardiac markers of aging-induced damage, including radical oxidative species levels, mitochondrial metabolic activity, mitochondrial calcium buffer capacity, and estrogenic signaling functions, were also modulated by the compound. These results suggested that naringenin has antiaging effects on myocardial cells.
Collapse
|
11
|
Chattopadhyay D, Sen S, Chatterjee R, Roy D, James J, Thirumurugan K. Context- and dose-dependent modulatory effects of naringenin on survival and development of Drosophila melanogaster. Biogerontology 2015; 17:383-93. [PMID: 26520643 DOI: 10.1007/s10522-015-9624-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 10/28/2015] [Indexed: 12/19/2022]
Abstract
Naringenin, the predominant bioflavonoid found in grapefruit and tomato has diverse bioactive properties that encompass anti-carcinogenic, anti-inflammatory, anti-atherogenic, anti-estrogenic, anti-hyperlipidemic and anti-hyperglycemic characteristics. Naringenin has not been explored for its pro-longevity traits in fruit flies. Therefore, the current study explores its influence on longevity, fecundity, feeding rate, larval development, resistance to starvation stress and body weight in male and female wild-type Drosophila melanogaster Canton-S flies. Flies were fed with normal and high fat diets respectively. The results implied hormetic effects of naringenin on longevity and development in flies. In flies fed with standard and high fat diets, lower concentrations of naringenin (200 and 400 µM) augmented mean lifespan while higher concentrations (600 and 800 µM) were consistently lethal. However, enhanced longevity seen at 400 µM of naringenin was at the expense of reduced fecundity and food intake in flies. Larvae reared on standard diet having 200 µM of naringenin exhibited elevated pupation and emergence as flies. Eclosion time was hastened in larvae reared on standard diet having 200 µM of naringenin. Female flies fed with a standard diet having 200 and 400 µM of naringenin were more resistant to starvation stress. Reduction in body weight was observed in male and female flies fed with a high fat diet supplemented with 200 and 400 µM of naringenin respectively. Collectively, the results elucidated a context- and dose-dependent hormetic efficacy of naringenin that varied with gender, diet and stage of lifecycle in flies.
Collapse
Affiliation(s)
- Debarati Chattopadhyay
- 206, Structural Biology Lab, Centre for Biomedical Research, VIT University, Vellore, Tamil Nadu, India
| | - Soumadeep Sen
- 206, Structural Biology Lab, Centre for Biomedical Research, VIT University, Vellore, Tamil Nadu, India
| | - Rishita Chatterjee
- 206, Structural Biology Lab, Centre for Biomedical Research, VIT University, Vellore, Tamil Nadu, India
| | - Debasish Roy
- 206, Structural Biology Lab, Centre for Biomedical Research, VIT University, Vellore, Tamil Nadu, India
| | - Joel James
- 206, Structural Biology Lab, Centre for Biomedical Research, VIT University, Vellore, Tamil Nadu, India
| | - Kavitha Thirumurugan
- 206, Structural Biology Lab, Centre for Biomedical Research, VIT University, Vellore, Tamil Nadu, India.
| |
Collapse
|
12
|
Kiyama R, Wada-Kiyama Y. Estrogenic endocrine disruptors: Molecular mechanisms of action. ENVIRONMENT INTERNATIONAL 2015; 83:11-40. [PMID: 26073844 DOI: 10.1016/j.envint.2015.05.012] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 05/20/2023]
Abstract
A comprehensive summary of more than 450 estrogenic chemicals including estrogenic endocrine disruptors is provided here to understand the complex and profound impact of estrogen action. First, estrogenic chemicals are categorized by structure as well as their applications, usage and effects. Second, estrogenic signaling is examined by the molecular mechanism based on the receptors, signaling pathways, crosstalk/bypassing and autocrine/paracrine/homeostatic networks involved in the signaling. Third, evaluation of estrogen action is discussed by focusing on the technologies and protocols of the assays for assessing estrogenicity. Understanding the molecular mechanisms of estrogen action is important to assess the action of endocrine disruptors and will be used for risk management based on pathway-based toxicity testing.
Collapse
Affiliation(s)
- Ryoiti Kiyama
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | - Yuko Wada-Kiyama
- Department of Physiology, Nippon Medical School, Bunkyo-ku, Tokyo 113-8602, Japan
| |
Collapse
|
13
|
Keiler AM, Dörfelt P, Chatterjee N, Helle J, Bader MI, Vollmer G, Kretzschmar G, Kuhlee F, Thieme D, Zierau O. Assessment of the effects of naringenin-type flavanones in uterus and vagina. J Steroid Biochem Mol Biol 2015; 145:49-57. [PMID: 25305411 DOI: 10.1016/j.jsbmb.2014.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 09/25/2014] [Accepted: 10/05/2014] [Indexed: 11/24/2022]
Abstract
The potential utilization of plant secondary metabolites possessing estrogenic properties as alternatives to the classical hormone replacement therapy (HRT) for the relief of postmenopausal complaints asks for an evaluation regarding the safety in reproductive organs. In order to contribute to the estimation of the safety profile of the flavanones naringenin (Nar), 8‑prenylnaringenin (8PN) and 6‑(1,1‑dimethylally) naringenin (6DMAN), we investigated uterus and vagina derived from a three‑day uterotrophic assay in rats. Also, we investigated the metabolite profile resulting from the incubation of the three substances with liver microsomes. While no metabolites were detectable for naringenin, hydroxylation products were observed for 8PN and 6DMAN after incubation with human as well as rat liver microsomes. The parent compound naringenin did not evoke any estrogenic responses in the investigated parameters. A significant increase of the uterine wet weight, uterine epithelial thickness and proliferating vaginal cells was observed in response to 8PN, questioning the safety of 8PN if applied in the human situation. In contrast, no estrogenic effects on the reproductive organs were observed for 6DMAN in the conducted study, rendering it the compound with a more promising safety profile, therefore justifying further investigations into its efficacy to alleviate postmenopausal discomforts.
Collapse
Affiliation(s)
- Annekathrin Martina Keiler
- Institute of Zoology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, 01062 Dresden, Germany.
| | - Peggy Dörfelt
- Institute of Zoology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, 01062 Dresden, Germany
| | - Namita Chatterjee
- Cancer Research Center, Department of Biomedical Sciences, School of Public Health, University at Albany, Rensselear, NY, USA
| | - Janina Helle
- Institute of Zoology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, 01062 Dresden, Germany
| | - Manuela I Bader
- Institute of Zoology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, 01062 Dresden, Germany
| | - Günter Vollmer
- Institute of Zoology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, 01062 Dresden, Germany
| | - Georg Kretzschmar
- Institute of Zoology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, 01062 Dresden, Germany
| | - Franziska Kuhlee
- Institute of Zoology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, 01062 Dresden, Germany
| | - Detlef Thieme
- Institute of Doping Analysis and Sports Biochemistry (IDAS), Kreischa, Dresden, Germany
| | - Oliver Zierau
- Institute of Zoology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
14
|
Mir IA, Tiku AB. Chemopreventive and therapeutic potential of "naringenin," a flavanone present in citrus fruits. Nutr Cancer 2014; 67:27-42. [PMID: 25514618 DOI: 10.1080/01635581.2015.976320] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cancer is one of the major causes of deaths in developed countries and is emerging as a major public health burden in developing countries too. Changes in cancer prevalence patterns have been noticed due to rapid urbanization and changing lifestyles. One of the major concerns is an influence of dietary habits on cancer rates. Approaches to prevent cancer are many and chemoprevention or dietary cancer prevention is one of them. Therefore, nutritional practices are looked at as effective types of dietary cancer prevention strategies. Attention has been given to identifying plant-derived dietary agents, which could be developed as a promising chemotherapeutic with minimal toxic side effects. Naringenin, a phytochemical mainly present in citrus fruits and tomatoes, is a frequent component of the human diet and has gained increasing interest because of its positive health effects not only in cancer prevention but also in noncancer diseases. In the last few years, significant progress has been made in studying the biological effects of naringenin at cellular and molecular levels. This review examines the cancer chemopreventive/therapeutic effects of naringenin in an organ-specific format, evaluating its limitations, and its considerable potential for development as a cancer chemopreventive/therapeutic agent.
Collapse
Affiliation(s)
- Irfan Ahmad Mir
- a Department of Clinical Biochemistry , University of Kashmir , Kashmir , India
| | | |
Collapse
|
15
|
Naringenin (NAR) and 8-prenylnaringenin (8-PN) reduce the developmental competence of porcine oocytes in vitro. Reprod Toxicol 2014; 49:1-11. [DOI: 10.1016/j.reprotox.2014.05.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/12/2014] [Accepted: 05/28/2014] [Indexed: 12/31/2022]
|
16
|
Pouchieu C, Galan P, Ducros V, Latino-Martel P, Hercberg S, Touvier M. Plasma carotenoids and retinol and overall and breast cancer risk: a nested case-control study. Nutr Cancer 2014; 66:980-8. [PMID: 25072980 DOI: 10.1080/01635581.2014.936952] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Experimental studies suggest that carotenoids and retinol may play a role in carcinogenesis, but epidemiological evidence is lacking. We investigated the prospective associations between plasma concentrations of major carotenoids and retinol, and overall and breast cancer risk. A nested case-control study included all first incident cancer cases diagnosed in the SU.VI.MAX cohort between 1994 and 2002 (n = 159 cases, 1 matched control/case). Baseline plasma concentrations of carotenoids and retinol were measured by high-performance liquid chromatography. Conditional logistic regression was used to assess odds ratios for an increase of 0.1 μmol/L [odds ratio (OR)] and 95% confidence intervals (CI). Plasma β-carotene (OR = 0.95, 95% CI = 0.90-0.99, Ptrend = 0.04) and β-cryptoxanthin concentrations (OR = 0.89, 95% CI = 0.81-0.99, Ptrend = 0.03) were inversely associated with overall cancer risk. Plasma β-cryptoxanthin concentration was inversely associated with breast cancer risk (OR = 0.83, 95% CI = 0.71-0.96, Ptrend = 0.02). The OR between plasma lycopene concentration and overall cancer risk was 1.07 (0.99-1.15), Ptrend = 0.06. This association turned significant (Ptrend = 0.01) when excluding cancer cases diagnosed during the first year of follow-up. This prospective study suggests an inverse association between plasma concentrations of β-cryptoxanthin and both overall and breast cancer risk, and an inverse association between β-carotene and overall cancer risk. The direct association between lycopene concentration and cancer risk deserves further investigation.
Collapse
Affiliation(s)
- Camille Pouchieu
- a Sorbonne Paris Cité Research Center, Nutritional Epidemiology Research Team, Inserm U557, Inra U1125, Cnam , Paris 13 University , Bobigny , France
| | | | | | | | | | | |
Collapse
|
17
|
Helle J, Kräker K, Bader MI, Keiler AM, Zierau O, Vollmer G, Welsh J, Kretzschmar G. Assessment of the proliferative capacity of the flavanones 8-prenylnaringenin, 6-(1.1-dimethylallyl)naringenin and naringenin in MCF-7 cells and the rat mammary gland. Mol Cell Endocrinol 2014; 392:125-35. [PMID: 24859648 DOI: 10.1016/j.mce.2014.05.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 04/09/2014] [Accepted: 05/08/2014] [Indexed: 11/23/2022]
Abstract
8-Prenylnaringenin (8-PN) and naringenin (Nar) are phytoestrogens found in food items and nutritional supplements, while 6-(1.1-dimethylallyl)naringenin (6-DMAN) is a component of an African plant. Besides their assumed beneficial effects they may promote mammary and endometrial cancer. We therefore assessed their proliferative and estrogenic potential on the mammary gland in vitro and in vivo. In competitive estrogen receptor (ER) ligand binding assays 8-PN displayed a high relative binding affinity for both ERs with a preference for ERα and had the strongest mitotic effect on MCF-7 cells among the test substances. In a three day exposure in young adult ovariectomized female rats 15 mg/kg 8-PN had the highest capacity to increase the number of terminal end buds (TEB) in the mammary gland and stimulated expression of proliferation markers in epithelial ductal cells, followed by 6-DMAN and Nar, but overall their capacity to stimulate proliferation was weak in comparison to 17β-Estradiol (E2).
Collapse
Affiliation(s)
- Janina Helle
- Institute of Zoology, Technische Universität Dresden, Zellescher Weg 20b, 01062 Dresden, Germany.
| | - Kristin Kräker
- Institute of Zoology, Technische Universität Dresden, Zellescher Weg 20b, 01062 Dresden, Germany
| | - Manuela I Bader
- Institute of Zoology, Technische Universität Dresden, Zellescher Weg 20b, 01062 Dresden, Germany
| | - Annekathrin M Keiler
- Institute of Zoology, Technische Universität Dresden, Zellescher Weg 20b, 01062 Dresden, Germany
| | - Oliver Zierau
- Institute of Zoology, Technische Universität Dresden, Zellescher Weg 20b, 01062 Dresden, Germany
| | - Günter Vollmer
- Institute of Zoology, Technische Universität Dresden, Zellescher Weg 20b, 01062 Dresden, Germany
| | - JoEllen Welsh
- Gen(*)NY(*)Sis Center for Excellence in Cancer Genomics (Cancer Research Center), University at Albany, One Discovery Drive, Rensselaer, NY 12144-2345, United States
| | - Georg Kretzschmar
- Institute of Zoology, Technische Universität Dresden, Zellescher Weg 20b, 01062 Dresden, Germany
| |
Collapse
|
18
|
Antiartherosclerotic effects of plant flavonoids. BIOMED RESEARCH INTERNATIONAL 2014; 2014:480258. [PMID: 24971331 PMCID: PMC4058282 DOI: 10.1155/2014/480258] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 05/11/2014] [Accepted: 05/11/2014] [Indexed: 12/13/2022]
Abstract
Atherosclerosis is the process of hardening and narrowing the arteries. Atherosclerosis is generally associated with cardiovascular diseases such as strokes, heart attacks, and peripheral vascular diseases. Since the usage of the synthetic drug, statins, leads to various side effects, the plants flavonoids with antiartherosclerotic activity gained much attention and were proven to reduce the risk of atherosclerosis in vitro and in vivo based on different animal models. The flavonoids compounds also exhibit lipid lowering effects and anti-inflammatory and antiatherogenic properties. The future development of flavonoids-based drugs is believed to provide significant effects on atherosclerosis and its related diseases. This paper discusses the antiatherosclerotic effects of selected plant flavonoids such as quercetin, kaempferol, myricetin, rutin, naringenin, catechin, fisetin, and gossypetin.
Collapse
|
19
|
Li P, Wang S, Guan X, Cen X, Hu C, Peng W, Wang Y, Su W. Six months chronic toxicological evaluation of naringin in Sprague-Dawley rats. Food Chem Toxicol 2014; 66:65-75. [PMID: 24462649 DOI: 10.1016/j.fct.2014.01.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 01/07/2014] [Accepted: 01/14/2014] [Indexed: 12/26/2022]
Abstract
Naringin is a flavonoid showing variable pharmacological properties and is distributed ubiquitously in plant foods. There is a paucity of reported data regarding its safety profile. In the present study, chronic toxicity studies of naringin was designed and conducted by oral gavage at doses of 0, 50, 250 and 1250 mg/kg in Sprague-Dawley (SD) rats for six months followed by 1-month recovery period. During the 6-month treatment period and one month recovery period, no mortality and toxicologically significant changes in clinical signs, opthalmoscopic examination, hematology, clinical biochemistry, serumsexhormone, macroscopic findings, organ weights and histopathological examination were noted and attributed to naringin administration. Although consecutive and/or isolated periods of significant body weights and food consumption decreases were relevant to naringin administration, they were not considered toxicologically significant. In addition, slight, non-pathological and reversible hair loss was noted during the 6-month treatment period and considered as a kind of change possibly relevant to naringin administration; however, it was not considered adverse change and to be of toxicological significance. Based on the results of this study, the no-observed-adverse-effect-level (NOAEL) of naringin in rats is greater than 1250 mg/kg/day when administered orally for 6 consecutive months.
Collapse
Affiliation(s)
- Peibo Li
- Guangdong Key Laboratory of Plant Resources, Guangzhou Quality R&D Center of Traditional Chinese Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Sheng Wang
- Guangdong Key Laboratory of Plant Resources, Guangzhou Quality R&D Center of Traditional Chinese Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Xiaolin Guan
- National Chengdu Center for Safety Evaluation of Drugs, Chengdu 610041, PR China
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, Chengdu 610041, PR China
| | - Chunyan Hu
- National Chengdu Center for Safety Evaluation of Drugs, Chengdu 610041, PR China
| | - Wei Peng
- Guangdong Key Laboratory of Plant Resources, Guangzhou Quality R&D Center of Traditional Chinese Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Yonggang Wang
- Guangdong Key Laboratory of Plant Resources, Guangzhou Quality R&D Center of Traditional Chinese Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China.
| | - Weiwei Su
- Guangdong Key Laboratory of Plant Resources, Guangzhou Quality R&D Center of Traditional Chinese Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China.
| |
Collapse
|
20
|
Li P, Wang S, Guan X, Liu B, Wang Y, Xu K, Peng W, Su W, Zhang K. Acute and 13weeks subchronic toxicological evaluation of naringin in Sprague-Dawley rats. Food Chem Toxicol 2013; 60:1-9. [DOI: 10.1016/j.fct.2013.07.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/25/2013] [Accepted: 07/09/2013] [Indexed: 01/06/2023]
|
21
|
Avior Y, Bomze D, Ramon O, Nahmias Y. Flavonoids as dietary regulators of nuclear receptor activity. Food Funct 2013; 4:831-44. [PMID: 23598551 PMCID: PMC3781338 DOI: 10.1039/c3fo60063g] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Metabolic diseases such as obesity, type II diabetes, and dyslipidemia are a rising cause of mortality worldwide. The progression of many metabolic diseases is fundamentally regulated on the transcriptional level by a family of ligand-activated transcription factors, called nuclear receptors, which detect and respond to metabolic changes. Their role in maintaining metabolic homeostasis makes nuclear receptors an important pharmaceutical and dietary target. This review will present the growing evidence that flavonoids, natural secondary plant metabolites, are important regulators of nuclear receptor activity. Structural similarities between flavonoids and cholesterol derivatives combined with the promiscuous nature of most nuclear receptors provide a wealth of possibilities for pharmaceutical and dietary modulation of metabolism. While the challenges of bringing flavonoid-derived therapeutics to the market are significant, we consider this rapidly growing field to be an essential aspect of the functional food initiative and an important mine for pharmaceutical compounds.
Collapse
Affiliation(s)
- Yishai Avior
- School of Computer Science and Engineering, Center for Bioengineering, The Hebrew University of Jerusalem, Edmond J. Safra Campus (Givat Ram), Silberman 3-512, Jerusalem 91904, Israel.
| | - David Bomze
- Department of Cell and Developmental Biology, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ory Ramon
- School of Computer Science and Engineering, Center for Bioengineering, The Hebrew University of Jerusalem, Edmond J. Safra Campus (Givat Ram), Silberman 3-512, Jerusalem 91904, Israel.
| | - Yaakov Nahmias
- School of Computer Science and Engineering, Center for Bioengineering, The Hebrew University of Jerusalem, Edmond J. Safra Campus (Givat Ram), Silberman 3-512, Jerusalem 91904, Israel.
- Department of Cell and Developmental Biology, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
22
|
Yang L, Allred KF, Geera B, Allred CD, Awika JM. Sorghum phenolics demonstrate estrogenic action and induce apoptosis in nonmalignant colonocytes. Nutr Cancer 2012; 64:419-27. [PMID: 22369068 DOI: 10.1080/01635581.2012.657333] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Evidence indicates sorghum may be protective against colon cancer; however, the mechanisms are unknown. Estrogen is believed to protect against colon cancer development by inducing apoptosis in damaged nonmalignant colonocytes. Three sorghum extracts (white, red, and black) were screened for estrogenic activity using cell models expressing estrogen receptor α (ER-α; MCF-7 breast cancer cells) and β [ER-β; nonmalignant young adult mouse colonocytes (YAMC)]. Black and white sorghum extracts had significant estrogenic activity mediated through both estrogen receptors at 1-5 and 5-10 μg/mL, respectively; but red sorghum did not. Activation of ER-β in YAMC reduced cell growth via induction of apoptosis. Only the black and red sorghums contained 3-deoxyanthocyanins; however, these compounds were non-estrogenic. Flavones with estrogenic properties, luteolin (0.41-2.12 mg/g) and apigenin (1.1-1.4 mg/g), and their O-methyl derivatives (0.70-0.95 mg/g) were detected in white and black sorghums, but not in the red sorghum. On the other hand, naringenin, a flavanone known to interfere with transcriptional activities of estrogen, was only detected in the red sorghum extract (as its 7-O-glycoside) at relatively high concentration (11.8 mg/g). Sorghum flavonoid composition has important implications on possible modes of chemoprotection by sorghum against colon carcinogenesis.
Collapse
Affiliation(s)
- Liyi Yang
- Cereal Quality Laboratory, Soil & Crop Science Department, Texas A&M University, College Station, Texas 77843-2474, USA
| | | | | | | | | |
Collapse
|
23
|
Guo D, Wang J, Wang X, Luo H, Zhang H, Cao D, Chen L, Huang N. Double directional adjusting estrogenic effect of naringin from Rhizoma drynariae (Gusuibu). JOURNAL OF ETHNOPHARMACOLOGY 2011; 138:451-457. [PMID: 21964193 DOI: 10.1016/j.jep.2011.09.034] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 09/04/2011] [Accepted: 09/18/2011] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chinese traditional medicine Rhizoma drynariae (Gusuibu) is widely used for clinically treating osteoporosis and bone non-union. Naringin and its active metabolite naringenin are the main active ingredients of Rhizoma drynariae total flavonoids. AIM OF THE STUDY The purpose of this paper is to confirm estrogenic and anti-estrogenic activity of naringin and naringenin, and provide the basic data to further study for the dose-effect relationship and the mechanism for Rhizoma drynariae in treatment of osteoporosis and other estrogen deficiency-related diseases. MATERIALS AND METHODS Naringin was extracted from Rhizoma drynariae. Naringin and its metabolin naringenin were tested estrogenic and anti-estrogenic activities through the experiment of cell proliferation and uterus weight gain in mice. Their estrogen-receptor binding abilities were tested by yeast two-hybrid experiment and nuclear receptor cofactor assays (RCAS) experiment, and their possible binding sites for ERβ were performed by computer aided molecular docking technology. RESULTS Naringin and naringenin showed significant effects on the proliferation of estrogen-sensitive ER(+) MCF-7 cells in the absence of estrogen. Induction increased proliferation as the drug concentration, and the strongest proliferation appeared at a concentration of 8.6×10(-5)M. When estradiol (10(-10)M) and the different concentrations of naringin or naringenin were treated at the same time, naringin and naringenin could result in antagonistic effects on estradiol-induced MCF-7 cell proliferation, but they did not significantly affect proliferation of estrogen-insensitive ER(-) MDA-MB-231 cells. Naringin and naringenin exhibited higher binding capacity to estrogen receptor β (ERβ) than estrogen receptor α (ERα) in yeast two-hybrid experiments and nuclear receptor cofactor assays (RCAS) experiment. Docking simulation between naringin/naringenin and ERβ were performed, and the corresponding binding free energies of naringin-receptor and naringenin-receptor docked complexes were -7.95 and -10.45kcal/mol. Hydrogen bonds were found between naringin and the amino acid residues Lys304 and His308. The oxygen atom (O11) of naringenin formed hydrogen bond to Arg346, and there may be hydrophobic space interactions between phenyl group (C13-C18) of naringenin and the amino acid residues Leu298, Met336, Met340, Phe356, Ile376 and Leu380. CONCLUSIONS Naringin and naringenin revealed a double directional adjusting function of estrogenic and anti-estrogenic activities. Both of them showed estrogenic agonist activity at low concentration or lack of endogenous estrogen. On the other hand, they also acted as estrogenic antagonists at high concentrations or too much endogenous estrogen. They produced estrogenic and anti-estrogenic effects primarily through selectively binding with ERβ, which could prevent and treat osteoporosis with the mechanism of estrogenic receptor agitation. This paper confirmed the estrogenic and anti-estrogenic activity of naringin and naringenin, and further studies were still essential to study their dose-effect relationship and the anti-osteoporosis mechanism for Rhizoma drynariae in the treatment of osteoporosis and other estrogen deficiency-related diseases.
Collapse
Affiliation(s)
- Dongyan Guo
- Hubei Key Laboratory of Natural Products Research and Development, College of Chemistry and Life Science, China Three Gorges University, Yichang 443002, China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Donato L, Chiappetta G, Drioli E. Surface Functionalization of PVDF Membrane with a Naringin-Imprinted Polymer Layer Using Photo-Polymerization Method. SEP SCI TECHNOL 2011. [DOI: 10.1080/01496395.2011.575429] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Mlynarczuk J, Wrobel MH, Kotwica J. The adverse effect of phytoestrogens on the synthesis and secretion of ovarian oxytocin in cattle. Reprod Domest Anim 2011; 46:21-8. [PMID: 19799752 DOI: 10.1111/j.1439-0531.2009.01529.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The current investigations were undertaken to study the mechanism of the adverse effect of phytoestrogens on the function of bovine granulosa (follicles >1< cm in diameter) and luteal cells from day 1-5, 6-10, 11-15, 16-19 of the oestrous cycle. The cells were incubated with genistein, daidzein or coumestrol (each at the dose of 1 × 10(-6) m). The viability and secretion of estradiol (E2), progesterone (P4) and oxytocin (OT) were measured after 72 h of incubation. Moreover, the expression of mRNA for neurophysin-I/OT (NP-I/OT; precursor of OT) and peptidyl-glycine-α-amidating monooxygenase (PGA, an enzyme responsible for post-translational OT synthesis) was determined after 8 h of treatment. None of the phytoestrogens used affected the viability of cells except for coumestrol. The increased secretion of E2 and P4 was only obtained by coumestrol (p<0.05) from granulosa cells from follicles <1cm in diameter and decreased from luteal cells on days 11-15 of the oestrous cycle, respectively. All three phytoestrogens stimulated (p<0.05) OT secretion from granulosa and luteal cells in all stages of the oestrous cycle and the expression of NP-I/OT mRNA in the both types of cells. The expression of mRNA for PGA was stimulated (p<0.05) by daidzein and coumestrol in granulosa cells, and by genistein and coumestrol in luteal cells. In conclusion, our results demonstrate that these phytoestrogens can impair the ovary function in cattle by adversely affecting the synthesis of OT in follicles and in corpus luteum. However, their influence on the ovarian steroids secretion was less evident.
Collapse
Affiliation(s)
- J Mlynarczuk
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| | | | | |
Collapse
|
26
|
Jin CY, Park C, Hwang HJ, Kim GY, Choi BT, Kim WJ, Choi YH. Naringenin up-regulates the expression of death receptor 5 and enhances TRAIL-induced apoptosis in human lung cancer A549 cells. Mol Nutr Food Res 2011; 55:300-9. [DOI: 10.1002/mnfr.201000024] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
27
|
Flavouring Group Evaluation 32 (FGE.32): Flavonoids (Flavanones and dihydrochalcones) from chemical groups 25 and 30. EFSA J 2010. [DOI: 10.2903/j.efsa.2010.1065] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
28
|
Amer DAM, Kretzschmar G, Müller N, Stanke N, Lindemann D, Vollmer G. Activation of transgenic estrogen receptor-beta by selected phytoestrogens in a stably transduced rat serotonergic cell line. J Steroid Biochem Mol Biol 2010; 120:208-17. [PMID: 20433925 DOI: 10.1016/j.jsbmb.2010.04.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 03/15/2010] [Accepted: 04/20/2010] [Indexed: 11/26/2022]
Abstract
Many flavonoids, a major group of phenolic plant-derived secondary metabolites, are known to possess estrogen-like bioactivities. However, little is known about their estrogenic properties in the central nervous system due to the lack of suitable cellular models expressing sufficient amounts of functional estrogen receptor beta (ERbeta). To overcome this deficit, we have created a cellular model, which is serotonergic in origin, to study properties of estrogenic substances by stably transducing RN46A-B14 cells derived from raphe nuclei region of the rat brain with a lentiviral vector encoding a human ERbeta. We clearly showed that the transgenic human ERbeta is a spontaneously expressed and a functional receptor. We have further assessed the estrogenicity of three different isoflavones and four different naringenin-type flavanones in this cell line utilizing a luciferase reporter gene assay. Genistein (GEN), Daidzein (DAI), Equol (EQ), Naringenin (NAR) and 8-prenylnaringenin (8-PN) showed strong estrogenic activity in a concentration-dependent manner as compared to 7-(O-prenyl)naringenin-4'-acetate (7-O-PN) which was only slightly estrogenic and 6-(1,1-dimethylallyl)naringenin (6-DMAN) that neither showed estrogenic nor anti-estrogenic activity in our model. All observed effects could be antagonized by the anti-estrogen fulvestrant. Moreover, co-treatment of cells with 17beta-estradiol (E2) and either GEN or DAI showed a slight additive effect as compared to EQ. On the other hand, 8-PN in addition to 7-O-PN, but not NAR and 6-DMAN, were able to slightly antagonize the responses triggered by E2. Our newly established cellular model may prove to be a useful tool in explicating basic physiological properties of ERbeta in the brain and may help unravel molecular and cellular mechanisms involved in serotonergic mood regulation by estrogen or potential plant-derived secondary metabolites.
Collapse
Affiliation(s)
- Dena A M Amer
- Section of Molecular Cell Physiology and Endocrinology, Institute of Zoology, Technische Universität Dresden, 01062 Dresden, Germany.
| | | | | | | | | | | |
Collapse
|
29
|
Bulzomi P, Bolli A, Galluzzo P, Leone S, Acconcia F, Marino M. Naringenin and 17beta-estradiol coadministration prevents hormone-induced human cancer cell growth. IUBMB Life 2010; 62:51-60. [PMID: 19960539 DOI: 10.1002/iub.279] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Flavonoids have been described as health-promoting, disease-preventing dietary components. In vivo and in vitro experiments also support a protective effect of flavonoids to reduce the incidence of certain hormone-responsive cancers. In particular, our previous results indicate that the flavanone naringenin (Nar), decoupling estrogen receptor alpha (ERalpha) action mechanisms, drives cancer cells to apoptosis. Because these studies were conducted in the absence of the endogenous hormone 17beta-estradiol (E2), the physiological relevance of these findings is not clear. We investigate whether the antiproliferative Nar effect persists in the presence of physiological E2 concentration (i.e. 10 nM), using both ERalpha-transfected (HeLa cells) and ERalpha-containing (HepG2 cells) cancer cell lines. Ligand saturation experiments indicate that Nar decreases the binding of E2 to ERalpha without impairing the estrogen response element (ERE)-driven reporter plasmid activity. In contrast, Nar stimulation prevents E2-induced extracellular regulated kinases (ERK1/2) and AKT activation and still induces the activation of p38, the proapoptotic member of mitogen-activating protein kinase (MAPK) family. As a consequence, Nar stimulation impedes the E2-induced transcription of cyclin D1 promoter and reverts the E2-induced cell proliferation, driving cancer cell to apoptosis. Thus, these results suggest that coexposure to this low-affinity, low-potency ligand for ERalpha specifically antagonizes the E2-induced ERalpha-dependent rapid signals by reducing the effect of the endogenous hormone in promoting cellular proliferation. As a whole, these data indicate that Nar is an excellent candidate as a chemopreventive agent in E2-dependent cancers.
Collapse
Affiliation(s)
- Pamela Bulzomi
- Department of Biology, University Roma Tre, Viale G. Marconi, I-00146 Roma, Italy
| | | | | | | | | | | |
Collapse
|
30
|
Kretzschmar G, Zierau O, Wober J, Tischer S, Metz P, Vollmer G. Prenylation has a compound specific effect on the estrogenicity of naringenin and genistein. J Steroid Biochem Mol Biol 2010; 118:1-6. [PMID: 19733663 DOI: 10.1016/j.jsbmb.2009.08.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 08/25/2009] [Accepted: 08/27/2009] [Indexed: 11/22/2022]
Abstract
A variety of plant derived substances, so-called phytoestrogens (PEs), although structurally not related to steroids, produce effects similar to the mammalian estradiol. However, little is known so far about the structural requirements which determine PE activities. Taking into consideration that prenylation reactions are relatively common in plant secondary metabolism, the activity of a set of three PE derivatives of genistein and naringenin, namely genistein, 8-prenylgenistein (8PG), 6-(1,1-dimethylallyl)genistein (6DMAG), naringenin, 8-prenylnaringenin (8PN) and 6-(1,1-dimethylallyl)naringenin (6DMAN) was compared regarding structure-estrogenicity relationships in three functionally different estrogen receptor assays. Strong estrogenic activities were recorded for 6DMAN and 8PN in all assays used, while the parent compound naringenin showed only very weak estrogenicity. In contrast, in the case of genistein derivatives, only genistein itself exhibited estrogenic activity in a yeast based assay. In MVLN breast cancer cells, a bioluminescent MCF-7-derived cell line, the estrogenic activity of all three genistein derivatives was similar. Studying alkaline phosphatase activity in Ishikawa endometrial cancer cells as an estrogenic response marker revealed a similar pattern of estrogenicity of the genistein derivatives compared to the yeast based assay although a slight estrogenic effect of 6DMAG and 8PG was apparent. In summary, this study demonstrates that prenylation often found in plant secondary metabolism differentially modifies estrogenic properties of PEs depending on the basic structure of the respective PE.
Collapse
Affiliation(s)
- Georg Kretzschmar
- Institute of Zoology, Technische Universität Dresden, Dresden, Germany.
| | | | | | | | | | | |
Collapse
|
31
|
Semalty A, Semalty M, Singh D, Rawat MSM. Preparation and characterization of phospholipid complexes of naringenin for effective drug delivery. J INCL PHENOM MACRO 2009. [DOI: 10.1007/s10847-009-9705-8] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Brunelli E, Minassi A, Appendino G, Moro L. 8-Prenylnaringenin, inhibits estrogen receptor-alpha mediated cell growth and induces apoptosis in MCF-7 breast cancer cells. J Steroid Biochem Mol Biol 2007; 107:140-8. [PMID: 17681752 DOI: 10.1016/j.jsbmb.2007.04.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Accepted: 04/04/2007] [Indexed: 12/31/2022]
Abstract
The discovery that the hop constituent 8-prenylnaringenin (8PN) shows potent estrogenic activity, higher than that of the known phytoestrogens coumestrol, genistein and daidzein, has spurred an intense activity aimed at elucidating its biological profile and its dietary relevance connected with the consumption of beer. We have investigated if 8PN can induce signal transduction pathways via rapid estrogen receptor (ER) activation. Under conditions of estrogen-dependent growth, treatment of MCF-7 human breast cancer cells with 8PN induced a rapid and transient activation of the MAP kinase Erk-1 and Erk-2, with kinetics similar to those induced by 17beta-estradiol (E2). 8PN could trigger the MAP kinase pathway via dual c-Src kinase activation and association with ERalpha. Co-treatment with the ER antagonist ICI 182,780 blocked each step of this transduction pathway, confirming its ER dependence. However, and in striking contrast with E2, 8PN could not induce the PI3K/Akt pathway, resulting in altered kinetics and levels of cyclin D1 expression. In accordance with these observations, flow cytometric and biochemical analysis showed that 8PN inhibited cell cycle progression and induced apoptosis in MCF-7 cells. Interference with an ER associated PI3K pathway is proposed as a possible mechanism underlying the inhibition of survival and proliferation of estrogen responsive cells by 8PN. Taken together, our finding show that 8PN is an interesting new chemotype to explore the biology of ERs.
Collapse
Affiliation(s)
- Elisa Brunelli
- Dipartimento di Scienze Chimiche, Alimentari, Farmaceutiche e Farmacologiche and Drug and Food Biotechnology Center, Università degli Studi del Piemonte Orientale Amedeo Avogadro, Via Bovio 6, 28100 Novara, Italy
| | | | | | | |
Collapse
|
33
|
Szkudelska K, Nogowski L, Nowicka E, Szkudelski T. In vivo metabolic effects of naringenin in the ethanol consuming rat and the effect of naringenin on adipocytes in vitro. J Anim Physiol Anim Nutr (Berl) 2007; 91:91-9. [PMID: 17355338 DOI: 10.1111/j.1439-0396.2006.00647.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Naringenin is a bioactive flavanone involved in the inhibition of drug metabolism which exhibits antioxidant, anti-inflammatory and anticancerogenic properties and which recently appeared to be a factor mitigating the hyperlipidaemic effects in rats and rabbits. In the performed experiment, the effect of naringenin, administered intragastrically (50 mg/kg) for 2 weeks to normal and ethanol drinking rats, on insulin and leptin levels and on some metabolic parameters was investigated. Naringenin did not change the hormone levels in any group of rats. Blood glucose, triglyceride, total, esterified and free cholesterol and high-density lipoprotein-cholesterol concentrations were also unaffected by this compound. Only free fatty acids were elevated after the naringenin treatment in the water-drinking rats. In spite of unchanged glucose and insulin concentrations in blood, the tested flavanone reduced the glucose/insulin ratio in ethanol-receiving rats. Liver triglycerides, elevated due to ethanol ingestion, were partially normalized by naringenin. Other tested parameters like liver glycogen and cholesterol, muscle triglycerides and glycogen were not altered in any group of rats. The influence of naringenin (62.5, 125, 250 and 500 microM) on basal and insulin-stimulated glucose conversion to lipids (lipogenesis) as well as on basal and epinephrine-stimulated glycerol release (lipolysis) in the isolated rat adipocytes was also tested. The basal and the stimulated lipogenesis tended to be decreased in the presence of the flavanone (250 microM). This inhibitory effect intensified and was statistically significant at the highest concentration of naringenin. The tested compound did not evoke any effect on basal lipolysis while the epinephrine-stimulated process was limited at the highest concentration of the flavanone. Naringenin (62.5, 125, 250 and 500 microM) had no effect on leptin secretion from the isolated rat adipocytes. Results obtained in our studies demonstrate that naringenin exerts a very weak influence on carbohydrate and lipid metabolism of normal and ethanol-consuming rats and on metabolism of isolated rat adipocytes.
Collapse
Affiliation(s)
- K Szkudelska
- Department of Animal Physiology and Biochemistry, University of Agriculture, Wołyńska, Poznań, Poland
| | | | | | | |
Collapse
|
34
|
Maiti K, Mukherjee K, Gantait A, Saha BP, Mukherjee PK. Enhanced therapeutic potential of naringenin-phospholipid complex in rats. J Pharm Pharmacol 2006; 58:1227-33. [PMID: 16945181 DOI: 10.1211/jpp.58.9.0009] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Naringenin is a naturally occurring flavanone, possessing a variety of biological activity. Due to its rapid elimination, naringenin needs frequent administration to maintain an effective plasma concentration. We have evaluated the therapeutic potential of naringenin-phospholipid complex under oxidative stress conditions compared with free naringenin. Naringenin-phospholipid complex was prepared and assessed for antioxidant activity in carbon tetrachloride intoxicated rats at a dose level of 100 mg kg-1 (p.o.). Liver function tests were studied by assessing serum glutamate oxaloacetate transaminase, serum glutamate pyruvate transaminase, serum alkaline phosphatase and total bilirubin. Marker enzymes of liver, namely glutathione peroxidase, superoxide dismutase, catalase and thiobarbituric acid reactive substances, were measured to evaluate the antioxidant potential at the same dose level. The plasma concentration of naringenin was also measured. It was observed that the naringenin-phospholipid complex enhanced the antioxidant activity of the biomolecule and protected the liver significantly for a longer time as compared with free naringenin at the same dose level. Phospholipid complex of naringenin produced better antioxidant activity than the free compound with a prolonged duration of action, which may be helpful in reducing the fast elimination of the molecule from body.
Collapse
Affiliation(s)
- Kuntal Maiti
- School of Natural Product Studies, Department of Pharmaceutical Technology, Faculty of Engineering and Technology, Jadavpur University, Kolkata - 700 032, India
| | | | | | | | | |
Collapse
|
35
|
Wilcox LJ, Borradaile NM, Huff MW. Antiatherogenic Properties of Naringenin, a Citrus Flavonoid. ACTA ACUST UNITED AC 2006. [DOI: 10.1111/j.1527-3466.1999.tb00011.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
36
|
Smith HJ, Nicholls PJ, Simons C, Lain RL. Inhibitors of steroidogenesis as agents for the treatment of hormone-dependent cancers. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.11.5.789] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
37
|
Zierau O, Hamann J, Tischer S, Schwab P, Metz P, Vollmer G, Gutzeit HO, Scholz S. Naringenin-type flavonoids show different estrogenic effects in mammalian and teleost test systems. Biochem Biophys Res Commun 2005; 326:909-16. [PMID: 15607756 DOI: 10.1016/j.bbrc.2004.11.124] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Indexed: 10/26/2022]
Abstract
The estrogenic activity of several intermediary plant compounds has raised concern about possible risks of unwanted interference with endocrine regulation, but on the other hand there are potential medical benefits, in particular in treatment of menopausal symptoms or cancer. In the present study, we compare the estrogenic effects of phytoestrogens naringenin, 8-prenylnaringenin, 6-(1,1-dimethylallyl)naringenin, and the synthetic 4'-acetyl-7-prenyloxynaringenin. Two mammalian in vitro systems and a fish in vivo system were used to study the estrogenic properties with reference to genistein, 17-beta-estradiol or ethynylestradiol. Strong differences were observed between the mammalian in vitro and the fish in vivo test system. In the medaka sex reversal/vtg gene expression assay no estrogenic effects of the naringenin-type flavonoids were observed, while mammalian in vitro systems showed a similar and graded response to the test compounds.
Collapse
Affiliation(s)
- Oliver Zierau
- Institute of Zoology, Dresden University of Technology, 01062 Dresden, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Erlund I. Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology. Nutr Res 2004. [DOI: 10.1016/j.nutres.2004.07.005] [Citation(s) in RCA: 608] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
39
|
Tommasini S, Calabrò ML, Raneri D, Ficarra P, Ficarra R. Combined effect of pH and polysorbates with cyclodextrins on solubilization of naringenin. J Pharm Biomed Anal 2004; 36:327-33. [PMID: 15496325 DOI: 10.1016/j.jpba.2004.06.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2004] [Revised: 06/17/2004] [Accepted: 06/17/2004] [Indexed: 11/29/2022]
Abstract
pH control and inclusion complex formation are commonly used as solubilization techniques in formulating ionizable drugs. Naringenin is a weakly acid compound with a low water solubility. The role of both ionized and unionized species of naringenin in solution by complexation with beta-cyclodextrin, 2-hydroxypropyl-beta-cyclodextrin and methyl-beta-cyclodextrin was investigated. This combined use of ionization and complexation increases not only the solubility of the unionized naringenin, but also that of the ionized one. This study puts on evidence the role of pH, pKa and complexation constants in increasing drug total aqueous solubility, determined by the single components in solution, as ionized and unionized naringenin both in free and complexed forms. Moreover, the presence of non-ionic surfactants in the media of complexation gives a positive contribution to the improvement of the solubility of naringenin, alone or in combination with beta-cyclodextrin.
Collapse
Affiliation(s)
- S Tommasini
- Dipartimento Farmaco-Chimico, Facoltà di Farmacia, Università di Messina, Viale Annunziata, 98168 Messina, Italy
| | | | | | | | | |
Collapse
|
40
|
Bugianesi R, Salucci M, Leonardi C, Ferracane R, Catasta G, Azzini E, Maiani G. Effect of domestic cooking on human bioavailability of naringenin, chlorogenic acid, lycopene and ?-carotene in cherry tomatoes. Eur J Nutr 2004; 43:360-6. [PMID: 15309458 DOI: 10.1007/s00394-004-0483-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2003] [Accepted: 01/05/2004] [Indexed: 10/26/2022]
Abstract
BACKGROUND Epidemiological data showed that tomato and tomato product (sauce, paste) consumption is associated with a protective effect against the development of some chronic-degenerative diseases. Tomato antioxidant bioactive molecules such as carotenoids and polyphenols could be responsible, at least in part, for the healthy effect observed. The bioavailability of these compounds is an essential requirement to sustain their in vivo role. While it is well known that many factors can influence the bioaccessibility of carotenoids from the food matrix, there is little information about the factors affecting phenolic compounds' bioaccessibility. AIM OF THE STUDY This investigation was carried out to evaluate the effect of domestic cooking on the bioavailability in humans of antioxidant molecules after the administration of a test meal containing cherry tomatoes. METHODS A cross-over design was conducted. Subjects (3 females and 2 males) consumed experimental meals containing fresh and cooked cherry tomatoes. Blood collection was performed at different time intervals (0, 2, 4, 6, 8 and 24 h). RESULTS Carotenoid and phenol plasma concentrations were measured. Plasma levels of lycopene and beta-carotene were not significantly different with respect to the baseline after ingestion of both the test meals, while plasma concentrations of naringenin and chlorogenic acid increased significantly with respect to the baseline (P<0.05) after administration of cooked cherry tomatoes, but not after administration of fresh cherry tomatoes. CONCLUSIONS The present study indicated that domestically cooked tomatoes significantly increase naringenin and chlorogenic acid plasma levels. Considering that both naringenin and chlorogenic acid are widely studied for their potential healthy properties, evidence of their bioavailability and of the factors influencing their bioaccessibility is an important tool to sustain the possibility that these polyphenols play a biological role in human physiology.
Collapse
Affiliation(s)
- R Bugianesi
- Antioxidant Research Laboratory, Unit of Human Nutrition, National Institute for Food and Nutrition Research (INRAN), Via Ardeatina 546, 00178 Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
41
|
Rice C, Birnbaum LS, Cogliano J, Mahaffey K, Needham L, Rogan WJ, vom Saal FS. Exposure assessment for endocrine disruptors: some considerations in the design of studies. ENVIRONMENTAL HEALTH PERSPECTIVES 2003; 111:1683-90. [PMID: 14527851 PMCID: PMC1241694 DOI: 10.1289/ehp.5798] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In studies designed to evaluate exposure-response relationships in children's development from conception through puberty, multiple factors that affect the generation of meaningful exposure metrics must be considered. These factors include multiple routes of exposure; the timing, frequency, and duration of exposure; need for qualitative and quantitative data; sample collection and storage protocols; and the selection and documentation of analytic methods. The methods for exposure data collection and analysis must be sufficiently robust to accommodate the a priori hypotheses to be tested, as well as hypotheses generated from the data. A number of issues that must be considered in study design are summarized here.
Collapse
Affiliation(s)
- Carol Rice
- Environmental and Industrial Hygiene Division, University of Cincinnati, Cincinnati, Ohio 45267, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Miniello VL, Moro GE, Tarantino M, Natile M, Granieri L, Armenio L. Soy-based formulas and phyto-oestrogens: a safety profile. Acta Paediatr 2003; 91:93-100. [PMID: 14599051 DOI: 10.1111/j.1651-2227.2003.tb00655.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phyto-oestrogens are non-steroidal plant-derived compounds that possess oestrogenic activity and act as selective oestrogen receptor modulators (SERMs). Among the dietary oestrogens, the isoflavone class enjoy a wide-spread distribution in most of the members of the Leguminosae family, including such prominent high-content representatives as soybean. Phyto-oestrogen research has grown rapidly in recent years owing to epidemiological studies suggesting that diets rich in soy may be associated with potential health benefits. There is a paucity of data on endocrine effects of soy phytochemicals during infancy, the most sensitive period of life for the induction of toxicity. The safety of isoflavones in infant formulas has been questioned recently owing to reports of possible hormonal effects. Infants fed soy formula receive high levels of phyto-oestrogens in the form of isoflavones (genistein, daidzein and their glycosides). To date, no adverse effects of short- or long-term use of soy proteins have been observed in humans and exposure to soy-based infant formulas does not appear to lead to different reproductive outcomes than exposure to cow milk formulas. Soy formula seems to be a safe feeding option for most infants. Nevertheless, much closer studies in experimental animals and human populations exposed to phyto-oestrogen-containing products, and particularly soy-based infant formulas, are necessary.
Collapse
Affiliation(s)
- V L Miniello
- Dipartimento di Biomedicina dell'Età Evolutiva, University of Bari, Italy.
| | | | | | | | | | | |
Collapse
|
43
|
Bernini R, Mincione E, Cortese M, Saladino R, Gualandi G, Belfiore MC. Conversion of naringenin and hesperetin by heterogeneous catalytic Baeyer–Villiger reaction into lactones exhibiting apoptotic activity. Tetrahedron Lett 2003. [DOI: 10.1016/s0040-4039(03)01139-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
44
|
Okubo T, Kano I. [Studies on estrogenic activities of food additives with human breast cancer MCF-7 cells and mechanism of estrogenicity by BHA and OPP]. YAKUGAKU ZASSHI 2003; 123:443-52. [PMID: 12822488 DOI: 10.1248/yakushi.123.443] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Estrogenic activities of more than 90 chemicals including food additives, foodstuffs of plant origin, and some chemicals, which could be orally ingested, were examined by assaying estrogen receptor (ER)-dependent proliferation of MCF-7 cells. Among 66 food additives, 17 compounds stimulated the proliferation, but their concentrations giving maximal cell yield were higher than that of 17 beta-estradiol and their estrogenic activities were weak. Flavonoids had relatively strong estrogenic activities. In the assay of ER competitive binding to human ER alpha and ER beta in vitro, the antioxidant t-butylhydroxyanisole (BHA) had the capacity to compete with 17 beta-estradiol, while the capacity of o-phenyl phenol (OPP) was too small to calculate. Both BHA and OPP induced a decrease in gene expression of ER alpha and an increase in that of progesterone receptor in a time-dependent manner. These effects were similar to that of 17 beta-estradiol, a though much higher concentrations were required for these compounds than 17 beta-estradiol. These results may suggest that we should be careful not to ingest excessive food additives.
Collapse
Affiliation(s)
- Tomoko Okubo
- Department of Environmental Health, The Tokyo Metropolitan Research Laboratory of Public Health, 3-24-1 Hyakunin-cho, Shinjuku-ku, Tokyo 169-0073, Japan.
| | | |
Collapse
|
45
|
Harmon AW, Patel YM. Naringenin inhibits phosphoinositide 3-kinase activity and glucose uptake in 3T3-L1 adipocytes. Biochem Biophys Res Commun 2003; 305:229-34. [PMID: 12745063 DOI: 10.1016/s0006-291x(03)00720-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Previous studies have shown that flavonoids inhibit glucose uptake in cultured cells. In this report, we show that the grapefruit flavanone naringenin inhibited insulin-stimulated glucose uptake in 3T3-L1 adipocytes in a dose-dependent manner. Naringenin acts by inhibiting the activity of phosphoinositide 3-kinase (PI3K), a key regulator of insulin-induced GLUT4 translocation. Although naringenin did not alter the phosphotyrosine status of the insulin receptor, insulin receptor substrate proteins, or PI3K, it did inhibit the phosphorylation of the downstream signaling molecule Akt. In an in vitro kinase assay, naringenin inhibited PI3K activity. A physiologically attainable dose of 6 microM naringenin reduced insulin-stimulated glucose uptake by approximately 20%. This inhibitory effect remained 24h after the removal of naringenin from the culture medium. Collectively, our findings suggest that the regular consumption of naringenin in grapefruit may exacerbate insulin resistance in susceptible individuals via impaired glucose uptake in adipose tissue.
Collapse
Affiliation(s)
- Anne W Harmon
- Department of Nutrition, University of North Carolina School of Public Health, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
46
|
Wober J, Weisswange I, Vollmer G. Stimulation of alkaline phosphatase activity in Ishikawa cells induced by various phytoestrogens and synthetic estrogens. J Steroid Biochem Mol Biol 2002; 83:227-33. [PMID: 12650720 DOI: 10.1016/s0960-0760(02)00252-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Xenoestrogens, phytoestrogens and synthetic estrogens, are able to bind to estrogen receptors, and to mimic estrogenic activities in a cell and tissue specific manner. For the characterization of environmental estrogens mainly mammary derived and yeast based models have been used. The aim of this study was therefore to assess selected natural and synthetic compounds in an endometrial derived model. We measured the relative estrogenic potency of phytoestrogens (genistein, daidzein, coumestrol, some naringenins), synthetic estrogens (bisphenol A, octylphenol, nonylphenol, o,p'-DDT), mycoestrogen (zearalanone) as well as extracts of Cimicifuga racemosa on alkaline phosphatase (AlkP) activity in the endometrial derived adenocarcinoma cell line Ishikawa. We used a modified multiwell plate in vitro bioassay based on the estrogen-specific and dose-dependent enhancement of AlkP activity in this cell line. Estradiol, which induced AlkP at levels as low as 10(-8)M, was used as positive control. Most of the compounds studied showed a clear dose-dependent estrogenic effect. Compared to the vehicle control (ethanol) all phyto- and mycoestrogens, stimulated the AlkP activity 2-4-fold at a concentration of 10(-6)M. The synthetic chemicals bisphenol A and nonylphenol showed an effect at 10(-6)M, octylphenol at 10(-5)M. Effects of o,p'-DTT could not be measured. ICI 182,780, a pure estrogen receptor antagonist, significantly inhibited these effects. The latter result demonstrated the estrogen receptor dependency of this process. In summary, most of the phytoestrogens and industrial chemicals tested, behaved as estrogen receptor agonists in terms of the stimulation of AlkP activity.
Collapse
Affiliation(s)
- Jannette Wober
- Molecular Cell Physiology and Endocrinology, Institute of Zoology, Dresden University of Technology, Mommsenstr. 13, 01062 Dresden, Germany.
| | | | | |
Collapse
|
47
|
Bugianesi R, Catasta G, Spigno P, D'Uva A, Maiani G. Naringenin from cooked tomato paste is bioavailable in men. J Nutr 2002; 132:3349-52. [PMID: 12421849 DOI: 10.1093/jn/132.11.3349] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Naringenin has been shown to exert antiestrogenic, cholesterol-lowering and antioxidant activities, as well as an indirect modulation on the metabolism of many xenobiotics. It is one of the most abundant polyphenols in tomato. Given the widespread consumption of tomato (Lycopersicum esculentum) and tomato-based products, this study was designed to determine whether plasma levels of naringenin were detectable in five men after consumption of a test meal containing 150 mg of cooked tomato paste. Naringenin intake with the test meal was 3.8 mg. Blood was drawn from fasting subjects and 2, 4, 6, 8 and 24 h after the meal. To compare the results with a control, the same meal without tomato paste (control meal) was administered to the same subjects 2 wk later. Analyses were performed using high-performance liquid chromatography coupled with a CoulArray electrochemical detector. The peak plasma concentration was 0.12 +/- 0.03 micro mol/L 2 h after the meal. Unconjugated naringenin was not detected. Naringenin was not detected in plasma at any time after consumption of the control meal. In addition to naringenin, we detected rutin and chlorogenic acid in tomato paste, but these polyphenols and their derivatives (quercetin and caffeic acid) were not detected in plasma at any time. To the best of our knowledge, this is the first study demonstrating naringenin bioavailability in humans after consumption of a meal containing cooked tomato paste.
Collapse
Affiliation(s)
- Rossana Bugianesi
- Antioxidant Research Laboratory, National Institute for Food and Nutrition Research, 546-00178 Rome, Italy.
| | | | | | | | | |
Collapse
|
48
|
Jungbauer A, Beck V. Yeast reporter system for rapid determination of estrogenic activity. J Chromatogr B Analyt Technol Biomed Life Sci 2002; 777:167-78. [PMID: 12270210 DOI: 10.1016/s1570-0232(02)00083-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An in vitro test system for the determination of estrogens, xeno- and phytoestrogens, based on the activation of human estrogen receptor-alpha, has been examined for ability in monitoring environmental estrogens. The system consists of an expression plasmid for the human estrogen receptor-alpha and a reporter plasmid containing the lacZ gene under the control of the vitellogenin hormone response element. These plasmids have been transformed into S. cerevisae. Cultivation of yeast in the presence of estrogenic substances leads to activation of the estrogen receptor and induces the expression of the reporter lacZ. beta-Galactosidase activity of the translated gene lacZ is a measure of the estrogenic activity of a compound. First, the selectivity of the system was compared to data available in the literature. Then the sensitivity of the system was checked. The detection limit is 0.1 ng 17-beta estradiol or an equivalent activity per liter, if a sample can be concentrated 1000-fold. The system has been further characterized by selected compounds with known and unknown estrogenic activity.
Collapse
Affiliation(s)
- Alois Jungbauer
- Institute for Applied Microbiology, University of Agricultural Sciences, Muthgasse 18 A-1190, Vienna, Austria.
| | | |
Collapse
|
49
|
Pocock VJ, Sales GD, Milligan SR. Comparison of the oestrogenic effects of infant milk formulae, oestradiol and the phytoestrogen coumestrol delivered continuously in the drinking water to ovariectomised mice. Food Chem Toxicol 2002; 40:643-51. [PMID: 11955670 DOI: 10.1016/s0278-6915(02)00009-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The potential oestrogenic effects of infant milk formulae, coumestrol and oestradiol delivered in the drinking water were investigated in ovariectomised mice. None of the infant formulae tested (three soya, two cow's milk) produced any uterotrophic or mitotic responses in the reproductive tract, although the soya milks displayed weak oestrogenic activity in vitro. Studies of the interactions between coumestrol and oestradiol were undertaken to investigate claims that phytoestrogens may act as oestrogen antagonists. The responses to coumestrol (100 g/ml drinking water) and 17-oestradiol (100 ng/ml) given separately were similar. Combined administration begun simultaneously produced only additive effects on uterine weight and cell proliferation in the vagina and uterus. While pretreatment with coumestrol for 24 h reduced the mitotic response of the uterus 48 h after placement of an oestradiol implant, the uterine weight increase was unaffected and the apparent reduction in mitoses reflected the natural fluctuations in the underlying cycle of cell proliferation. These studies indicate that coumestrol acts as a typical oestrogen and shows only additive effects with oestradiol. The results also indicate that infant soya milk formulae do not constitute a large enough source of oestrogenic compounds to invoke oestrogenic effects in the reproductive tract of mature mice.
Collapse
Affiliation(s)
- V J Pocock
- Endocrinology and Reproduction Research Group, School of Biomedical Sciences, Guy's Campus, King's College, London SE1 1UL, UK
| | | | | |
Collapse
|
50
|
Collins-Burow BM, Burow ME, Duong BN, McLachlan JA. Estrogenic and antiestrogenic activities of flavonoid phytochemicals through estrogen receptor binding-dependent and -independent mechanisms. Nutr Cancer 2002; 38:229-44. [PMID: 11525602 DOI: 10.1207/s15327914nc382_13] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Members of the flavonoid class of phytochemicals have previously been demonstrated to possess estrogenic activity in a number of hormonally responsive systems. We have performed the present study to characterize the estrogenic and antiestrogenic activity of flavonoids in the estrogen receptor (ER)-positive MCF-7 human breast cancer cell line. Using an ER-dependent reporter gene assay and an ER competition binding assay, we have identified phytochemicals possessing estrogenic and antiestrogenic activities, which appeared to correlate directly with their capacity to displace [3H]estradiol from ER. Several flavonoids, including kaempferide, apigenin, and flavone, were distinct, in that their antiestrogenic activity did not appear to correlate with binding to ER, and therefore their suppression of estrogen-mediated gene transactivation and proliferation may occur independent of direct antagonism of the receptor. Further examination in HEK-293 cells transfected with ERalpha or ERbeta demonstrated potent antagonism with kaempferide and apigenin, while flavone was weakly antagonistic only toward ERP. These results suggest that the receptor binding-independent antiestrogenic chemicals may function through alternate signaling pathways as indirect ER modulators in a receptor- and cell type-specific manner. We conclude that antiestrogenic activities of flavonoid phytochemicals may occur through ER binding-dependent and -independent mechanisms and that the binding-independent antiestrogen activity of certain flavonoids is biologically significant in regulation of breast cancer cell proliferation.
Collapse
MESH Headings
- Binding, Competitive
- Breast Neoplasms/metabolism
- Breast Neoplasms/prevention & control
- Cell Division/drug effects
- Cell Transformation, Neoplastic/drug effects
- Dose-Response Relationship, Drug
- Estradiol/metabolism
- Estrogen Antagonists/classification
- Estrogen Antagonists/metabolism
- Estrogen Antagonists/pharmacology
- Estrogens, Non-Steroidal/classification
- Estrogens, Non-Steroidal/metabolism
- Estrogens, Non-Steroidal/pharmacology
- Female
- Flavonoids/classification
- Flavonoids/metabolism
- Flavonoids/pharmacology
- Humans
- Isoflavones
- Luciferases
- Neoplasms, Hormone-Dependent/metabolism
- Neoplasms, Hormone-Dependent/prevention & control
- Phytoestrogens
- Plant Preparations
- Receptors, Estrogen/agonists
- Receptors, Estrogen/antagonists & inhibitors
- Receptors, Estrogen/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- B M Collins-Burow
- Tulane-Xavier Center for Bioenvironmental Research, Department of Pharmacology, Tulane University Medical Center, New Orleans, LA 70112, USA
| | | | | | | |
Collapse
|