1
|
Ignatavicius A, Matar E, Lewis SJG. Visual hallucinations in Parkinson's disease: spotlight on central cholinergic dysfunction. Brain 2025; 148:376-393. [PMID: 39252645 PMCID: PMC11788216 DOI: 10.1093/brain/awae289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/02/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
Visual hallucinations are a common non-motor feature of Parkinson's disease and have been associated with accelerated cognitive decline, increased mortality and early institutionalization. Despite their prevalence and negative impact on patient outcomes, the repertoire of treatments aimed at addressing this troubling symptom is limited. Over the past two decades, significant contributions have been made in uncovering the pathological and functional mechanisms of visual hallucinations, bringing us closer to the development of a comprehensive neurobiological framework. Convergent evidence now suggests that degeneration within the central cholinergic system may play a significant role in the genesis and progression of visual hallucinations. Here, we outline how cholinergic dysfunction may serve as a potential unifying neurobiological substrate underlying the multifactorial and dynamic nature of visual hallucinations. Drawing upon previous theoretical models, we explore the impact that alterations in cholinergic neurotransmission has on the core cognitive processes pertinent to abnormal perceptual experiences. We conclude by highlighting that a deeper understanding of cholinergic neurobiology and individual pathophysiology may help to improve established and emerging treatment strategies for the management of visual hallucinations and psychotic symptoms in Parkinson's disease.
Collapse
Affiliation(s)
- Anna Ignatavicius
- Faculty of Medicine and Health, Central Clinical School, University of Sydney, Sydney, NSW 2050, Australia
| | - Elie Matar
- Faculty of Medicine and Health, Central Clinical School, University of Sydney, Sydney, NSW 2050, Australia
- Centre for Integrated Research and Understanding of Sleep (CIRUS), Woolcock Institute of Medical Research, Sydney, NSW 2113, Australia
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - Simon J G Lewis
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
- Faculty of Medicine, Health and Human Sciences, Macquarie University Centre for Parkinson’s Disease Research, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
2
|
Gamage R, Zaborszky L, Münch G, Gyengesi E. Evaluation of eGFP expression in the ChAT-eGFP transgenic mouse brain. BMC Neurosci 2023; 24:4. [PMID: 36650430 PMCID: PMC9847127 DOI: 10.1186/s12868-023-00773-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND A historically definitive marker for cholinergic neurons is choline acetyltransferase (ChAT), a synthesizing enzyme for acetylcholine, (ACh), which can be found in high concentrations in cholinergic neurons, both in the central and peripheral nervous systems. ChAT, is produced in the body of the neuron, transported to the nerve terminal (where its concentration is highest), and catalyzes the transfer of an acetyl group from the coenzyme acetyl-CoA to choline, yielding ACh. The creation of bacterial artificial chromosome (BAC) transgenic mice that express promoter-specific fluorescent reporter proteins (green fluorescent protein-[GFP]) provided an enormous advantage for neuroscience. Both in vivo and in vitro experimental methods benefited from the transgenic visualization of cholinergic neurons. Mice were created by adding a BAC clone into the ChAT locus, in which enhanced GFP (eGFP) is inserted into exon 3 at the ChAT initiation codon, robustly and supposedly selectively expressing eGFP in all cholinergic neurons and fibers in the central and peripheral nervous systems as well as in non-neuronal cells. METHODS This project systematically compared the exact distribution of the ChAT-eGFP expressing neurons in the brain with the expression of ChAT by immunohistochemistry using mapping and also made comparisons with in situ hybridization (ISH). RESULTS We qualitatively described the distribution of ChAT-eGFP neurons in the mouse brain by comparing it with the distribution of immunoreactive neurons and ISH data, paying special attention to areas where the expression did not overlap, such as the cortex, striatum, thalamus and hypothalamus. We found a complete overlap between the transgenic expression of eGFP and the immunohistochemical staining in the areas of the cholinergic basal forebrain. However, in the cortex and hippocampus, we found small neurons that were only labeled with the antibody and not expressed eGFP or vice versa. Most importantly, we found no transgenic expression of eGFP in the lateral dorsal, ventral and dorsomedial tegmental nuclei cholinergic cells. CONCLUSION While the majority of the forebrain ChAT expression was aligned in the transgenic animals with immunohistochemistry, other areas of interest, such as the brainstem should be considered before choosing this particular transgenic mouse line.
Collapse
Affiliation(s)
- Rashmi Gamage
- grid.1029.a0000 0000 9939 5719Pharmacology Unit, Group of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW 2751 Australia
| | - Laszlo Zaborszky
- grid.430387.b0000 0004 1936 8796Center for Molecular and Behavioral Neuroscience, Rutgers The State University of New Jersey, Newark, NJ 07102 USA
| | - Gerald Münch
- grid.1029.a0000 0000 9939 5719Pharmacology Unit, Group of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW 2751 Australia
| | - Erika Gyengesi
- grid.1029.a0000 0000 9939 5719Pharmacology Unit, Group of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW 2751 Australia
| |
Collapse
|
3
|
Bohnen NI, Yarnall AJ, Weil RS, Moro E, Moehle MS, Borghammer P, Bedard MA, Albin RL. Cholinergic system changes in Parkinson's disease: emerging therapeutic approaches. Lancet Neurol 2022; 21:381-392. [PMID: 35131038 PMCID: PMC8985079 DOI: 10.1016/s1474-4422(21)00377-x] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/30/2021] [Accepted: 10/20/2021] [Indexed: 01/16/2023]
Abstract
In patients with Parkinson's disease, heterogeneous cholinergic system changes can occur in different brain regions. These changes correlate with a range of clinical features, both motor and non-motor, that are refractory to dopaminergic therapy, and can be conceptualised within a systems-level framework in which nodal deficits can produce circuit dysfunctions. The topographies of cholinergic changes overlap with neural circuitries involved in sleep and cognitive, motor, visuo-auditory perceptual, and autonomic functions. Cholinergic deficits within cognition network hubs predict cognitive deficits better than do total brain cholinergic changes. Postural instability and gait difficulties are associated with cholinergic system changes in thalamic, caudate, limbic, neocortical, and cerebellar nodes. Cholinergic system deficits can involve also peripheral organs. Hypercholinergic activity of mesopontine cholinergic neurons in people with isolated rapid eye movement (REM) sleep behaviour disorder, as well as in the hippocampi of cognitively normal patients with Parkinson's disease, suggests early compensation during the prodromal and early stages of Parkinson's disease. Novel pharmacological and neurostimulation approaches could target the cholinergic system to treat motor and non-motor features of Parkinson's disease.
Collapse
Affiliation(s)
- Nicolaas I Bohnen
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA; Department of Neurology, University of Michigan, Ann Arbor, MI, USA; Neurology Service, Ann Arbor, MI, USA; VA Geriatric Research Education and Clinical Center, Ann Arbor, MI, USA; Ann Arbor VAMC, Ann Arbor, MI, USA.
| | - Alison J Yarnall
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Rimona S Weil
- Dementia Research Centre, University College London, London, UK
| | - Elena Moro
- Division of Neurology, CHU of Grenoble, Grenoble, France; Grenoble Alpes University, and INSERM u1216, Grenoble, France
| | - Mark S Moehle
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Per Borghammer
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Marc-André Bedard
- Cognitive Pharmacology Research Unit, UQAM, Montreal, QC, Canada; McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada; Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada; Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Roger L Albin
- VA Geriatric Research Education and Clinical Center, Ann Arbor, MI, USA; Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Noftz WA, Beebe NL, Mellott JG, Schofield BR. Dense cholinergic projections to auditory and multisensory nuclei of the intercollicular midbrain. Hear Res 2021; 411:108352. [PMID: 34564033 DOI: 10.1016/j.heares.2021.108352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/03/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022]
Abstract
Cholinergic axons from the pedunculopontine tegmental nucleus (PPT) innervate the inferior colliculus where they are positioned to modulate both excitatory and inhibitory circuits across the central nucleus and adjacent cortical regions. More rostral regions of the auditory midbrain include the nucleus of the brachium of the inferior colliculus (NBIC), the intercollicular tegmentum (ICt) and the rostral pole of the inferior colliculus (ICrp). These regions appear especially important for multisensory integration and contribute to orienting behavior and many aspects of auditory perception. These regions appear to receive cholinergic innervation but little is known about the distribution of cholinergic axons in these regions or the cells that they contact. The present study used immunostaining to examine the distribution of cholinergic axons and then used chemically-specific viral tracing to examine cholinergic projections from the PPT to the intercollicular areas in male and female transgenic rats. Staining with antibodies against vesicular acetylcholine transporter revealed dense cholinergic innervation throughout the NBIC, ICt and ICrp. Deposits of viral vector into the PPT labeled cholinergic axons bilaterally in the NBIC, ICt and ICrp. In each area, the projections were denser on the ipsilateral side. The axons appeared morphologically similar across the three areas. In each area, en passant and terminal boutons from these axons appeared in the neuropil and also in close apposition to cell bodies. Immunostaining with a marker for GABAergic cells suggested that the cholinergic axons likely contact both GABAergic and non-GABAergic cells in the NBIC, ICt and ICrp. Thus, the cholinergic axons could affect multisensory processing by modulating excitatory and inhibitory circuits in the NBIC, ICt and ICrp. The similarity of axons and their targets suggests there may be a common function for cholinergic innervation across the three areas. Given what is known about the PPT, such functions could be associated with arousal, sleep-wake cycle, reward and plasticity.
Collapse
Affiliation(s)
- William A Noftz
- School of Biomedical Sciences, Kent State University, Kent, OH United States; Department of Anatomy and Neurobiology, Hearing Research Group, Northeast Ohio Medical University, Rootstown, OH, United States.
| | - Nichole L Beebe
- Department of Anatomy and Neurobiology, Hearing Research Group, Northeast Ohio Medical University, Rootstown, OH, United States.
| | - Jeffrey G Mellott
- Department of Anatomy and Neurobiology, Hearing Research Group, Northeast Ohio Medical University, Rootstown, OH, United States.
| | - Brett R Schofield
- School of Biomedical Sciences, Kent State University, Kent, OH United States; Department of Anatomy and Neurobiology, Hearing Research Group, Northeast Ohio Medical University, Rootstown, OH, United States.
| |
Collapse
|
5
|
Babić Leko M, Hof PR, Šimić G. Alterations and interactions of subcortical modulatory systems in Alzheimer's disease. PROGRESS IN BRAIN RESEARCH 2021; 261:379-421. [PMID: 33785136 DOI: 10.1016/bs.pbr.2020.07.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pathogenesis of Alzheimer's disease (AD) is not fully understood. Here we summarize current knowledge on the involvement of the serotonergic, noradrenergic, dopaminergic, cholinergic, and opioid systems in AD, emphasizing the importance of interactions between the serotonergic and the other subcortical modulatory systems during the progression of AD. In physiological conditions, all neurotransmitter systems function in concert and are interdependent at both the neuroanatomical and molecular levels. Through their early involvement in AD, cognitive and behavioral abilities that rely on their interactions also become disrupted. Considering that serotonin (5HT) regulates the release of noradrenaline (NA), dopamine (DA) and acetylcholine (ACh), any alteration in 5HT levels leads to disturbance of NA, DA, and ACh homeostasis in the brain. One of the earliest pathological changes during the prodromal phase of AD is a decrease of serotonergic transmission throughout the brain, with serotonergic receptors being also affected. Additionally, serotonergic and noradrenergic as well as serotonergic and dopaminergic nuclei are reciprocally interconnected. As the serotonergic dorsal raphe nucleus (DRN) is affected by pathological changes early in AD, and the noradrenergic locus coeruleus (LC) and dopaminergic ventral tegmental area (VTA) exhibit AD-related pathological changes, their connectivity also becomes altered in AD. Such disrupted interactions among neurotransmitter systems in AD can be used in the development of multi-target drugs. Some of the potential AD therapeutics (such as ASS234, RS67333, tropisetron) target multiple neurotransmitter systems to achieve the best possible improvement of cognitive and behavioral deficits observed in AD. Here, we review how serotonergic system interacts with other subcortical modulatory systems (noradrenergic, dopaminergic, cholinergic, and opioid systems) during AD.
Collapse
Affiliation(s)
- Mirjana Babić Leko
- Department for Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Friedman Brain Institute, and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Goran Šimić
- Department for Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia.
| |
Collapse
|
6
|
Tokuoka K, Kasai M, Kobayashi K, Isa T. Anatomical and electrophysiological analysis of cholinergic inputs from the parabigeminal nucleus to the superficial superior colliculus. J Neurophysiol 2020; 124:1968-1985. [PMID: 33085555 DOI: 10.1152/jn.00148.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Superior colliculus (SC) is a midbrain structure that integrates sensory inputs and generates motor commands to initiate innate motor behaviors. Its retinorecipient superficial layers (sSC) receive dense cholinergic projections from the parabigeminal nucleus (PBN). Our previous in vitro study revealed that acetylcholine induces fast inward current followed by prominent GABAergic inhibition within the sSC circuits (Endo T, Yanagawa Y, Obata K, Isa T. J Neurophysiol 94: 3893-3902, 2005). Acetylcholine-mediated facilitation of GABAergic inhibition may play an important role in visual signal processing in the sSC; however, both the anatomical and physiological properties of cholinergic inputs from PBN have not been studied in detail in vivo. In this study, we specifically visualized and optogenetically manipulated the cholinergic neurons in the PBN after focal injections of Cre-dependent viral vectors in mice that express Cre in cholinergic neurons. We revealed that the cholinergic projections terminated densely in the medial part of the mouse sSC. This suggests that the cholinergic inputs mediate visual processing in the upper visual field, which would be critical for predator detection. We further analyzed the physiological roles of the cholinergic inputs by recording looming-evoked visual responses from sSC neurons during optogenetic activation or inactivation of PBN cholinergic neurons in anesthetized mice. We found that optogenetic manipulations in either direction induced response suppression in most neurons, whereas response facilitation was observed in a few neurons after the optogenetic activation. These results support a circuit model that suggests that the PBN cholinergic inputs enhance functions of the sSC in detecting visual targets by facilitating the center excitation-surround inhibition.NEW & NOTEWORTHY The modulatory role of the cholinergic inputs from the parabigeminal nucleus in the visual responses in the superficial superior colliculus (sSC) remains unknown. Here we report that the cholinergic projections terminate densely in the medial sSC and optogenetic manipulations of the cholinergic inputs affect the looming-evoked response and enhance surround inhibition in the sSC. Our data suggest that cholinergic inputs to the sSC contribute to the visual detection of predators.
Collapse
Affiliation(s)
- Kota Tokuoka
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan.,Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Aichi, Japan.,School of Life Sciences, Graduate University of Advanced Studies (SOKENDAI), Hayama, Japan.,Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masatoshi Kasai
- Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Aichi, Japan.,Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kenta Kobayashi
- School of Life Sciences, Graduate University of Advanced Studies (SOKENDAI), Hayama, Japan.,Section of Viral Vector Development, National Institute for Physiological Sciences, Okazaki, Japan
| | - Tadashi Isa
- Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Aichi, Japan.,School of Life Sciences, Graduate University of Advanced Studies (SOKENDAI), Hayama, Japan.,Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Section of Viral Vector Development, National Institute for Physiological Sciences, Okazaki, Japan.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto, Japan.,Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
7
|
Gait variability is linked to the atrophy of the Nucleus Basalis of Meynert and is resistant to STN DBS in Parkinson's disease. Neurobiol Dis 2020; 146:105134. [PMID: 33045357 PMCID: PMC7711311 DOI: 10.1016/j.nbd.2020.105134] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/26/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022] Open
Abstract
Parkinson’s disease (PD) is a systemic brain disorder where the cortical cholinergic network begins to degenerate early in the disease process. Readily accessible, quantitative, and specific behavioral markers of the cortical cholinergic network are lacking. Although degeneration of the dopaminergic network may be responsible for deficits in cardinal motor signs, the control of gait is a complex process and control of higher-order aspects of gait, such as gait variability, may be influenced by cognitive processes attributed to cholinergic networks. We investigated whether swing time variability, a metric of gait variability that is independent from gait speed, was a quantitative behavioral marker of cortical cholinergic network integrity in PD. Twenty-two individuals with PD and subthalamic nucleus (STN) deep brain stimulation (PD-DBS cohort) and twenty-nine age-matched controls performed a validated stepping-in-place (SIP) task to assess swing time variability off all therapy. The PD-DBS cohort underwent structural MRI scans to measure gray matter volume of the Nucleus Basalis of Meynert (NBM), the key node in the cortical cholinergic network. In order to determine the role of the dopaminergic system on swing time variability, it was measured ON and OFF STN DBS in the PD-DBS cohort, and on and off dopaminergic medication in a second PD cohort of thirty-two individuals (PD-med). A subset of eleven individuals in the PD-DBS cohort completed the SIP task again off all therapy after three years of continuous DBS to assess progression of gait impairment. Swing time variability was significantly greater (i.e., worse) in PD compared to controls and greater swing time variability was related to greater atrophy of the NBM, as was gait speed. STN DBS significantly improved cardinal motor signs and gait speed but did not improve swing time variability, which was replicated in the second cohort using dopaminergic medication. Swing time variability continued to worsen in PD, off therapy, after three years of continuous STN DBS, and NBM atrophy showed a trend for predicting the degree of increase. In contrast, cardinal motor signs did not progress. These results demonstrate that swing time variability is a reliable marker of cortical cholinergic health, and support a framework in which higher-order aspects of gait control in PD are reliant on the cortical cholinergic system, in contrast to other motor aspects of PD that rely on the dopaminergic network.
Collapse
|
8
|
Nasirova N, Quina LA, Agosto-Marlin IM, Ramirez JM, Lambe EK, Turner EE. Dual recombinase fate mapping reveals a transient cholinergic phenotype in multiple populations of developing glutamatergic neurons. J Comp Neurol 2020; 528:283-307. [PMID: 31396962 PMCID: PMC6889053 DOI: 10.1002/cne.24753] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/16/2019] [Accepted: 08/02/2019] [Indexed: 01/13/2023]
Abstract
Cholinergic transmission shapes the maturation of glutamatergic circuits, yet the developmental sources of acetylcholine have not been systematically explored. Here, we have used Cre-recombinase-mediated genetic labeling to identify and map both mature and developing CNS neurons that express choline acetyltransferase (ChAT). Correction of a significant problem with a widely used ChatCre transgenic line ensures that this map does not contain expression artifacts. ChatCre marks all known cholinergic systems in the adult brain, but also identifies several brain areas not usually regarded as cholinergic, including specific thalamic and hypothalamic neurons, the subiculum, the lateral parabrachial nucleus, the cuneate/gracilis nuclei, and the pontocerebellar system. This ChatCre fate map suggests transient developmental expression of a cholinergic phenotype in areas important for cognition, motor control, and respiration. We therefore examined expression of ChAT and the vesicular acetylcholine transporter in the embryonic and early postnatal brain to determine the developmental timing of this transient cholinergic phenotype, and found that it mirrored the establishment of relevant glutamatergic projection pathways. We then used an intersectional genetic strategy combining ChatCre with Vglut2Flp to show that these neurons adopt a glutamatergic fate in the adult brain. The transient cholinergic phenotype of these glutamatergic neurons suggests a homosynaptic source of acetylcholine for the maturation of developing glutamatergic synapses. These findings thus define critical windows during which specific glutamatergic circuits may be vulnerable to disruption by nicotine in utero, and suggest new mechanisms for pediatric disorders associated with maternal smoking, such as sudden infant death syndrome.
Collapse
Affiliation(s)
- Nailyam Nasirova
- Center for Integrative Brain Research, Seattle Children’s Research Institute
| | - Lely A. Quina
- Center for Integrative Brain Research, Seattle Children’s Research Institute
| | | | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children’s Research Institute
| | - Evelyn K. Lambe
- Departments of Physiology, Obstetrics and Gynecology, and Psychiatry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Eric E. Turner
- Center for Integrative Brain Research, Seattle Children’s Research Institute
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle WA, 98101
| |
Collapse
|
9
|
Walker LC, Lawrence AJ. Allosteric modulation of muscarinic receptors in alcohol and substance use disorders. FROM STRUCTURE TO CLINICAL DEVELOPMENT: ALLOSTERIC MODULATION OF G PROTEIN-COUPLED RECEPTORS 2020; 88:233-275. [DOI: 10.1016/bs.apha.2020.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Ahmed NY, Knowles R, Dehorter N. New Insights Into Cholinergic Neuron Diversity. Front Mol Neurosci 2019; 12:204. [PMID: 31551706 PMCID: PMC6736589 DOI: 10.3389/fnmol.2019.00204] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022] Open
Abstract
Cholinergic neurons comprise a small population of cells in the striatum but have fundamental roles in fine tuning brain function, and in the etiology of neurological and psychiatric disorders such as Parkinson’s disease (PD) or schizophrenia. The process of developmental cell specification underlying neuronal identity and function is an area of great current interest. There has been significant progress in identifying the developmental origins, commonalities in molecular markers, and physiological properties of the cholinergic neurons. Currently, we are aware of a number of key factors that promote cholinergic fate during development. However, the extent of cholinergic cell diversity is still largely underestimated. New insights into the biological basis of their specification indicate that cholinergic neurons may be far more diverse than previously thought. This review article, highlights the physiological features and the synaptic properties that segregate cholinergic cell subtypes. It provides an accurate picture of cholinergic cell diversity underlying their organization and function in neuronal networks. This review article, also discusses current challenges in deciphering the logic of the cholinergic cell heterogeneity that plays a fundamental role in the control of neural processes in health and disease.
Collapse
Affiliation(s)
- Noorya Yasmin Ahmed
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Rhys Knowles
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Nathalie Dehorter
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
11
|
Byun H, Lee HL, Liu H, Forrest D, Rudenko A, Kim IJ. Rorβ regulates selective axon-target innervation in the mammalian midbrain. Development 2019; 146:146/14/dev171926. [PMID: 31332038 DOI: 10.1242/dev.171926] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 06/23/2019] [Indexed: 11/20/2022]
Abstract
Developmental control of long-range neuronal connections in the mammalian midbrain remains unclear. We explored the mechanisms regulating target selection of the developing superior colliculus (SC). The SC is a midbrain center that directs orienting behaviors and defense responses. We discovered that a transcription factor, Rorβ, controls establishment of axonal projections from the SC to two thalamic nuclei: the dorsal lateral geniculate nucleus (dLGN) and the lateral posterior nucleus (LP). A genetic strategy used to visualize SC circuits revealed that in control animals Rorβ+ neurons abundantly innervate the dLGN but barely innervate the LP. The opposite phenotype was observed in global and conditional Rorb mutants: projections to the dLGN were strongly decreased, and projections to the LP were increased. Furthermore, overexpression of Rorb in the wild type showed increased projections to the dLGN and decreased projections to the LP. In summary, we identified Rorβ as a key developmental mediator of colliculo-thalamic innervation. Such regulation could represent a general mechanism orchestrating long-range neuronal connections in the mammalian brain.
Collapse
Affiliation(s)
- Haewon Byun
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Hae-Lim Lee
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Hong Liu
- Laboratory of Endocrinology and Receptor Biology, National Institutes of Health, NIDDK, Bethesda, MD 20892, USA
| | - Douglas Forrest
- Laboratory of Endocrinology and Receptor Biology, National Institutes of Health, NIDDK, Bethesda, MD 20892, USA
| | - Andrii Rudenko
- Department of Biology and Graduate Program, The City College and City University of New York, New York, NY 10031, USA
| | - In-Jung Kim
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06511, USA .,Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06511, USA
| |
Collapse
|
12
|
Vieyra E, Ramírez DA, Linares R, Rosas G, Domínguez R, Morales‐Ledesma L. Stimulation of nicotinic receptors in the suprachiasmatic nucleus results in a higher number of growing follicles and ova shed. Exp Physiol 2019; 104:1179-1189. [DOI: 10.1113/ep087538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 06/24/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Elizabeth Vieyra
- Biology of Reproduction Research Unit, Physiology of Reproduction LaboratoryFacultad de Estudios Superiores Zaragoza UNAM, AP 9‐020 CP 15000 México D.F
- Biology of Reproduction Research Unit, Laboratorio de Investigación en Cronobiología y ReproducciónFacultad de Estudios Superiores Zaragoza UNAM, AP 9‐020 CP 15000 México D.F
| | - Deyra A. Ramírez
- Biology of Reproduction Research Unit, Physiology of Reproduction LaboratoryFacultad de Estudios Superiores Zaragoza UNAM, AP 9‐020 CP 15000 México D.F
| | - Rosa Linares
- Biology of Reproduction Research Unit, Physiology of Reproduction LaboratoryFacultad de Estudios Superiores Zaragoza UNAM, AP 9‐020 CP 15000 México D.F
| | - Gabriela Rosas
- Biology of Reproduction Research Unit, Physiology of Reproduction LaboratoryFacultad de Estudios Superiores Zaragoza UNAM, AP 9‐020 CP 15000 México D.F
| | - Roberto Domínguez
- Biology of Reproduction Research Unit, Laboratorio de Investigación en Cronobiología y ReproducciónFacultad de Estudios Superiores Zaragoza UNAM, AP 9‐020 CP 15000 México D.F
| | - Leticia Morales‐Ledesma
- Biology of Reproduction Research Unit, Physiology of Reproduction LaboratoryFacultad de Estudios Superiores Zaragoza UNAM, AP 9‐020 CP 15000 México D.F
| |
Collapse
|
13
|
Resende NR, Soares Filho PL, Peixoto PPA, Silva AM, Silva SF, Soares JG, do Nascimento ES, Cavalcante JC, Cavalcante JS, Costa MSMO. Nuclear organization and morphology of cholinergic neurons in the brain of the rock cavy (Kerodon rupestris) (Wied, 1820). J Chem Neuroanat 2018; 94:63-74. [PMID: 30293055 DOI: 10.1016/j.jchemneu.2018.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 09/20/2018] [Accepted: 09/20/2018] [Indexed: 11/19/2022]
Abstract
The aim of this study was to conduct cytoarchitectonic studies and choline acetyltransferase (ChAT) immunohistochemical analysis to delimit the cholinergic groups in the encephalon of the rock cavy (Kerodon rupestris), a crepuscular Caviidae rodent native to the Brazilian Northeast. Three young adult animals were anesthetized and transcardially perfused. The encephala were cut in the coronal plane using a cryostat. We obtained 6 series of 30-μm-thick sections. The sections from one series were subjected to Nissl staining. Those from another series were subjected to immunohistochemistry for the enzyme ChAT, which is used in acetylcholine synthesis, to visualize the different cholinergic neural centers of the rock cavy. The slides were analyzed using a light microscope and the results were documented by description and digital photomicrographs. ChAT-immunoreactive neurons were identified in the telencephalon (nucleus accumbens, caudate-putamen, globus pallidus, entopeduncular nucleus and ventral globus pallidus, olfactory tubercle and islands of Calleja, diagonal band of Broca nucleus, nucleus basalis, and medial septal nucleus), diencephalon (ventrolateral preoptic, hypothalamic ventrolateral, and medial habenular nuclei), and brainstem (parabigeminal, laterodorsal tegmental, and pedunculopontine tegmental nuclei). These findings are discussed through both a functional and phylogenetic perspective.
Collapse
Affiliation(s)
- N R Resende
- Department of Morphology, Laboratory of Neuroanatomy, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - P L Soares Filho
- Department of Morphology, Laboratory of Neuroanatomy, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - P P A Peixoto
- Department of Morphology, Laboratory of Neuroanatomy, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - A M Silva
- Department of Morphology, Laboratory of Neuroanatomy, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - S F Silva
- Department of Morphology, Laboratory of Neuroanatomy, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - J G Soares
- Department of Morphology, Laboratory of Neuroanatomy, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - E S do Nascimento
- Department of Morphology, Laboratory of Neuroanatomy, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - J C Cavalcante
- Department of Morphology, Laboratory of Neuroanatomy, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - J S Cavalcante
- Department of Physiology, Laboratory of Neurochemical Studies, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - M S M O Costa
- Department of Morphology, Laboratory of Neuroanatomy, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|
14
|
Ito S, Feldheim DA. The Mouse Superior Colliculus: An Emerging Model for Studying Circuit Formation and Function. Front Neural Circuits 2018; 12:10. [PMID: 29487505 PMCID: PMC5816945 DOI: 10.3389/fncir.2018.00010] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/22/2018] [Indexed: 11/30/2022] Open
Abstract
The superior colliculus (SC) is a midbrain area where visual, auditory and somatosensory information are integrated to initiate motor commands. The SC plays a central role in visual information processing in the mouse; it receives projections from 85% to 90% of the retinal ganglion cells (RGCs). While the mouse SC has been a long-standing model used to study retinotopic map formation, a number of technological advances in mouse molecular genetic techniques, large-scale physiological recordings and SC-dependent visual behavioral assays have made the mouse an even more ideal model to understand the relationship between circuitry and behavior.
Collapse
Affiliation(s)
- Shinya Ito
- Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - David A Feldheim
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| |
Collapse
|
15
|
Kosaka T, Kosaka K. Calcium-binding protein, secretagogin, specifies the microcellular tegmental nucleus and intermediate and ventral parts of the cuneiform nucleus of the mouse and rat. Neurosci Res 2018; 134:30-38. [PMID: 29366872 DOI: 10.1016/j.neures.2018.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 01/15/2018] [Accepted: 01/17/2018] [Indexed: 11/30/2022]
Abstract
Secretagogin (SCGN) is a recently discovered calcium binding protein of the EF hand family, cloned from β cells of pancreatic island of Langerhans and endocrine cells of the gastrointestinal gland. SCGN characterizes some particular neuron groups in various regions of the nervous system and is considered as one of the useful neuron subpopulation markers. In the present study we reported that SCGN specifically labelled a particular neuronal cluster in the brainstem of the mice and rats. The comparison of the SCGN immunostaining with the choline acetyltransferase immunostaining and acetylcholinesterase staining clearly indicated that the particular cluster of SCGN positive neurons corresponded to the microcellular tegmental nucleus (MiTg) and the ventral portion of the cuneiform nucleus (CnF), both of which are components of the isthmus. The analyses in mice indicated that SCGN positive neurons in the MiTg and CnF were homogeneous in size and shape, appearing to compose a single complex: their somata were small comparing with the adjacent cholinergic neurons in the pedunculotegmantal nucleus, 10.5 vs 16.0 μm in diameter, and extended 2-3 slender smooth processes. SCGN might be one of significant markers to reconsider the delineations of the structures of the mouse, and presumably rat, brainstem.
Collapse
Affiliation(s)
- Toshio Kosaka
- Department of Medical Science Technology, Faculty of Health and Welfare Sciences in Fukuoka, International University of Health and Welfare, 137-1 Enokizu, Okawa City, Fukuoka 831-8501, Japan.
| | - Katsuko Kosaka
- Department of Medical Science Technology, Faculty of Health and Welfare Sciences in Fukuoka, International University of Health and Welfare, 137-1 Enokizu, Okawa City, Fukuoka 831-8501, Japan
| |
Collapse
|
16
|
Pepeu G, Grazia Giovannini M. The fate of the brain cholinergic neurons in neurodegenerative diseases. Brain Res 2017; 1670:173-184. [PMID: 28652219 DOI: 10.1016/j.brainres.2017.06.023] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/21/2017] [Accepted: 06/22/2017] [Indexed: 01/03/2023]
Abstract
The aims of this review are: 1) to describe which cholinergic neurons are affected in brain neurodegenerative diseases leading to dementia; 2) to discuss the possible causes of the degeneration of the cholinergic neurons, 3) to summarize the functional consequences of the cholinergic deficit. The brain cholinergic system is basically constituted by three populations of phenotypically similar neurons forming a series of basal forebrain nuclei, the midpontine nuclei and a large population of striatal interneurons. In Alzheimer's disease there is an extensive loss of forebrain cholinergic neurons accompanied by a reduction of the cholinergic fiber network of the cortical mantel and hippocampus. The midpontine cholinergic nuclei are spared. The same situation occurs in the corticobasal syndrome and dementia following alcohol abuse and traumatic brain injury. Conversely, in Parkinson's disease, the midpontine nuclei degenerate, together with the dopaminergic nuclei, reducing the cholinergic input to thalamus and forebrain whereas the forebrain cholinergic neurons are spared. In Parkinson's disease with dementia, Lewis Body Dementia and Parkinsonian syndromes both groups of forebrain and midpontine cholinergic nuclei degenerate. In Huntington's disease a dysfunction of the striatal cholinergic interneurons without cell loss takes place. The formation and accumulation of misfolded proteins such as β-amyloid oligomers and plaques, tau protein tangles and α-synuclein clumps, and aggregated mutated huntingtin play a crucial role in the neuronal degeneration by direct cellular toxicity of the misfolded proteins and through the toxic compounds resulting from an extensive inflammatory reaction. Evidences indicate that β-amyloid disrupts NGF metabolism causing the degeneration of the cholinergic neurons which depend on NGF for their survival, namely the forebrain cholinergic neurons, sparing the midpontine and striatal neurons which express no specific NGF receptors. It is feasible that the latter cholinergic neurons may be damaged by direct toxicity of tau, α-synuclein and inflammations products through mechanisms not fully understood. Attention and learning and memory impairment are the functional consequences of the forebrain cholinergic neuron dysfunction, whereas the loss of midpontine cholinergic neurons results primarily in motor and sleep disturbances.
Collapse
Affiliation(s)
- Giancarlo Pepeu
- Department of Health Sciences, University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy.
| | - Maria Grazia Giovannini
- Department of Health Sciences, University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy.
| |
Collapse
|
17
|
Mahady LJ, Perez SE, Emerich DF, Wahlberg LU, Mufson EJ. Cholinergic profiles in the Goettingen miniature pig (Sus scrofa domesticus) brain. J Comp Neurol 2016; 525:553-573. [PMID: 27490949 DOI: 10.1002/cne.24087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 11/10/2022]
Abstract
Central cholinergic structures within the brain of the even-toed hoofed Goettingen miniature domestic pig (Sus scrofa domesticus) were evaluated by immunohistochemical visualization of choline acetyltransferase (ChAT) and the low-affinity neurotrophin receptor, p75NTR . ChAT-immunoreactive (-ir) perikarya were seen in the olfactory tubercle, striatum, medial septal nucleus, vertical and horizontal limbs of the diagonal band of Broca, and the nucleus basalis of Meynert, medial habenular nucleus, zona incerta, neurosecretory arcuate nucleus, cranial motor nuclei III and IV, Edinger-Westphal nucleus, parabigeminal nucleus, pedunculopontine nucleus, and laterodorsal tegmental nucleus. Cholinergic ChAT-ir neurons were also found within transitional cortical areas (insular, cingulate, and piriform cortices) and hippocampus proper. ChAT-ir fibers were seen throughout the dentate gyrus and hippocampus, in the mediodorsal, laterodorsal, anteroventral, and parateanial thalamic nuclei, the fasciculus retroflexus of Meynert, basolateral and basomedial amygdaloid nuclei, anterior pretectal and interpeduncular nuclei, as well as select laminae of the superior colliculus. Double immunofluorescence demonstrated that virtually all ChAT-ir basal forebrain neurons were also p75NTR -positive. The present findings indicate that the central cholinergic system in the miniature pig is similar to other mammalian species. Therefore, the miniature pig may be an appropriate animal model for preclinical studies of neurodegenerative diseases where the cholinergic system is compromised. J. Comp. Neurol. 525:553-573, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Laura J Mahady
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona.,Interdisciplinary Graduate Program in Neuroscience, Arizona State University, Tempe, Arizona
| | - Sylvia E Perez
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona
| | | | | | - Elliott J Mufson
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona
| |
Collapse
|
18
|
Dautan D, Hacioğlu Bay H, Bolam JP, Gerdjikov TV, Mena-Segovia J. Extrinsic Sources of Cholinergic Innervation of the Striatal Complex: A Whole-Brain Mapping Analysis. Front Neuroanat 2016; 10:1. [PMID: 26834571 PMCID: PMC4722731 DOI: 10.3389/fnana.2016.00001] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/02/2016] [Indexed: 11/19/2022] Open
Abstract
Acetylcholine in the striatal complex plays an important role in normal behavior and is affected in a number of neurological disorders. Although early studies suggested that acetylcholine in the striatum (STR) is derived almost exclusively from cholinergic interneurons (CIN), recent axonal mapping studies using conditional anterograde tracing have revealed the existence of a prominent direct cholinergic pathway from the pedunculopontine and laterodorsal tegmental nuclei to the dorsal striatum and nucleus accumbens. The identification of the importance of this pathway is essential for creating a complete model of cholinergic modulation in the striatum, and it opens the question as to whether other populations of cholinergic neurons may also contribute to such modulation. Here, using novel viral tracing technologies based on phenotype-specific fluorescent reporter expression in combination with retrograde tracing, we aimed to define other sources of cholinergic innervation of the striatum. Systematic mapping of the projections of all cholinergic structures in the brain (Ch1 to Ch8) by means of conditional tracing of cholinergic axons, revealed that the only extrinsic source of cholinergic innervation arises in the brainstem pedunculopontine and laterodorsal tegmental nuclei. Our results thus place the pedunculopontine and laterodorsal nuclei in a key and exclusive position to provide extrinsic cholinergic modulation of the activity of the striatal systems.
Collapse
Affiliation(s)
- Daniel Dautan
- MRC Anatomical Neuropharmacology Unit, Department of Pharmacology, University of OxfordOxford, UK; Department of Neuroscience, Psychology and Behaviour, University of LeicesterLeicester, UK
| | - Husniye Hacioğlu Bay
- MRC Anatomical Neuropharmacology Unit, Department of Pharmacology, University of OxfordOxford, UK; Department of Anatomy, School of Medicine, Marmara UniversityIstanbul, Turkey
| | - J Paul Bolam
- MRC Anatomical Neuropharmacology Unit, Department of Pharmacology, University of Oxford Oxford, UK
| | - Todor V Gerdjikov
- Department of Neuroscience, Psychology and Behaviour, University of Leicester Leicester, UK
| | - Juan Mena-Segovia
- MRC Anatomical Neuropharmacology Unit, Department of Pharmacology, University of OxfordOxford, UK; Center for Molecular and Behavioral Neuroscience, Rutgers UniversityNewark, NJ, USA
| |
Collapse
|
19
|
Grossberg S, Palma J, Versace M. Resonant Cholinergic Dynamics in Cognitive and Motor Decision-Making: Attention, Category Learning, and Choice in Neocortex, Superior Colliculus, and Optic Tectum. Front Neurosci 2016; 9:501. [PMID: 26834535 PMCID: PMC4718999 DOI: 10.3389/fnins.2015.00501] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 12/18/2015] [Indexed: 12/20/2022] Open
Abstract
Freely behaving organisms need to rapidly calibrate their perceptual, cognitive, and motor decisions based on continuously changing environmental conditions. These plastic changes include sharpening or broadening of cognitive and motor attention and learning to match the behavioral demands that are imposed by changing environmental statistics. This article proposes that a shared circuit design for such flexible decision-making is used in specific cognitive and motor circuits, and that both types of circuits use acetylcholine to modulate choice selectivity. Such task-sensitive control is proposed to control thalamocortical choice of the critical features that are cognitively attended and that are incorporated through learning into prototypes of visual recognition categories. A cholinergically-modulated process of vigilance control determines if a recognition category and its attended features are abstract (low vigilance) or concrete (high vigilance). Homologous neural mechanisms of cholinergic modulation are proposed to focus attention and learn a multimodal map within the deeper layers of superior colliculus. This map enables visual, auditory, and planned movement commands to compete for attention, leading to selection of a winning position that controls where the next saccadic eye movement will go. Such map learning may be viewed as a kind of attentive motor category learning. The article hereby explicates a link between attention, learning, and cholinergic modulation during decision making within both cognitive and motor systems. Homologs between the mammalian superior colliculus and the avian optic tectum lead to predictions about how multimodal map learning may occur in the mammalian and avian brain and how such learning may be modulated by acetycholine.
Collapse
Affiliation(s)
- Stephen Grossberg
- Graduate Program in Cognitive and Neural Systems, Boston UniversityBoston, MA, USA
- Center for Adaptive Systems, Boston UniversityBoston, MA, USA
- Departments of Mathematics, Psychology, and Biomedical Engineering, Boston UniversityBoston, MA, USA
- Center for Computational Neuroscience and Neural Technology, Boston UniversityBoston, MA, USA
| | - Jesse Palma
- Center for Computational Neuroscience and Neural Technology, Boston UniversityBoston, MA, USA
| | - Massimiliano Versace
- Graduate Program in Cognitive and Neural Systems, Boston UniversityBoston, MA, USA
- Center for Computational Neuroscience and Neural Technology, Boston UniversityBoston, MA, USA
| |
Collapse
|
20
|
González-Cabrera C, Garrido-Charad F, Mpodozis J, Bolam JP, Marín GJ. Axon terminals from the nucleus isthmi pars parvocellularis control the ascending retinotectofugal output through direct synaptic contact with tectal ganglion cell dendrites. J Comp Neurol 2015. [PMID: 26224333 DOI: 10.1002/cne.23860] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The optic tectum in birds and its homologue the superior colliculus in mammals both send major bilateral, nontopographic projections to the nucleus rotundus and caudal pulvinar, respectively. These projections originate from widefield tectal ganglion cells (TGCs) located in layer 13 in the avian tectum and in the lower superficial layers in the mammalian colliculus. The TGCs characteristically have monostratified arrays of brush-like dendritic terminations and respond mostly to bidimensional motion or looming features. In birds, this TGC-mediated tectofugal output is controlled by feedback signals from the nucleus isthmi pars parvocellularis (Ipc). The Ipc neurons display topographically organized axons that densely ramify in restricted columnar terminal fields overlapping various neural elements that could mediate this tectofugal control, including the retinal terminals and the TGC dendrites themselves. Whether the Ipc axons make synaptic contact with these or other tectal neural elements remains undetermined. We double labeled Ipc axons and their presumptive postsynaptic targets in the tectum of chickens (Gallus gallus) with neural tracers and performed an ultrastructural analysis. We found that the Ipc terminal boutons form glomerulus-like structures in the superficial and intermediate tectal layers, establishing asymmetric synapses with several dendritic profiles. In these glomeruli, at least two of the postsynaptic dendrites originated from TGCs. We also found synaptic contacts between retinal terminals and TGC dendrites. These findings suggest that, in birds, Ipc axons control the ascending tectal outflow of retinal signals through direct synaptic contacts with the TGCs.
Collapse
Affiliation(s)
- Cristian González-Cabrera
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Región Metropolitana, Chile
| | - Florencia Garrido-Charad
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Región Metropolitana, Chile
| | - Jorge Mpodozis
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Región Metropolitana, Chile
| | - J Paul Bolam
- Medical Research Council Anatomical Neuropharmacology Unit, Department of Pharmacology, University of Oxford, Oxford, OX1 2JA, United Kingdom
| | - Gonzalo J Marín
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Región Metropolitana, Chile.,Facultad de Medicina, Universidad Finis Terrae, Providencia, Santiago, Región Metropolitana, Chile
| |
Collapse
|
21
|
Wolf AB, Lintz MJ, Costabile JD, Thompson JA, Stubblefield EA, Felsen G. An integrative role for the superior colliculus in selecting targets for movements. J Neurophysiol 2015. [PMID: 26203103 DOI: 10.1152/jn.00262.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A fundamental goal of systems neuroscience is to understand the neural mechanisms underlying decision making. The midbrain superior colliculus (SC) is known to be central to the selection of one among many potential spatial targets for movements, which represents an important form of decision making that is tractable to rigorous experimental investigation. In this review, we first discuss data from mammalian models-including primates, cats, and rodents-that inform our understanding of how neural activity in the SC underlies the selection of targets for movements. We then examine the anatomy and physiology of inputs to the SC from three key regions that are themselves implicated in motor decisions-the basal ganglia, parabrachial region, and neocortex-and discuss how they may influence SC activity related to target selection. Finally, we discuss the potential for methodological advances to further our understanding of the neural bases of target selection. Our overarching goal is to synthesize what is known about how the SC and its inputs act together to mediate the selection of targets for movements, to highlight open questions about this process, and to spur future studies addressing these questions.
Collapse
Affiliation(s)
- Andrew B Wolf
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado; Neuroscience Program, University of Colorado School of Medicine, Aurora, Colorado; Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, Colorado; and
| | - Mario J Lintz
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado; Neuroscience Program, University of Colorado School of Medicine, Aurora, Colorado; Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, Colorado; and
| | - Jamie D Costabile
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado
| | - John A Thompson
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, Colorado
| | - Elizabeth A Stubblefield
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado
| | - Gidon Felsen
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado; Neuroscience Program, University of Colorado School of Medicine, Aurora, Colorado; Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, Colorado; and
| |
Collapse
|
22
|
Stubblefield EA, Thompson JA, Felsen G. Optogenetic cholinergic modulation of the mouse superior colliculus in vivo. J Neurophysiol 2015; 114:978-88. [PMID: 26019317 DOI: 10.1152/jn.00917.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 05/26/2015] [Indexed: 11/22/2022] Open
Abstract
The superior colliculus (SC) plays a critical role in orienting movements, in part by integrating modulatory influences on the sensorimotor transformations it performs. Many species exhibit a robust brain stem cholinergic projection to the intermediate and deep layers of the SC arising mainly from the pedunculopontine tegmental nucleus (PPTg), which may serve to modulate SC function. However, the physiological effects of this input have not been examined in vivo, preventing an understanding of its functional role. Given the data from slice experiments, cholinergic input may have a net excitatory effect on the SC. Alternatively, the input could have mixed effects, via activation of inhibitory neurons within or upstream of the SC. Distinguishing between these possibilities requires in vivo experiments in which endogenous cholinergic input is directly manipulated. Here we used anatomical and optogenetic techniques to identify and selectively activate brain stem cholinergic terminals entering the intermediate and deep layers of the awake mouse SC and recorded SC neuronal responses. We first quantified the pattern of the cholinergic input to the mouse SC, finding that it was predominantly localized to the intermediate and deep layers. We then found that optogenetic stimulation of cholinergic terminals in the SC significantly increased the activity of a subpopulation of SC neurons. Interestingly, cholinergic input had a broad range of effects on the magnitude and timing of SC responses, perhaps reflecting both monosynaptic and polysynaptic innervation. These findings begin to elucidate the functional role of this cholinergic projection in modulating the processing underlying sensorimotor transformations in the SC.
Collapse
Affiliation(s)
- Elizabeth A Stubblefield
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado;
| | - John A Thompson
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, Colorado
| | - Gidon Felsen
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado; Neuroscience Program, University of Colorado School of Medicine, Aurora, Colorado; and
| |
Collapse
|
23
|
Machold RP. Loss of rostral brainstem cholinergic activity results in decreased ultrasonic vocalization behavior and altered sensorimotor gating. Behav Brain Res 2013; 256:51-5. [PMID: 23810416 DOI: 10.1016/j.bbr.2013.06.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 06/19/2013] [Accepted: 06/24/2013] [Indexed: 11/29/2022]
Abstract
The parabigeminal (PBG), pedunculopontine (PPTg), and laterodorsal tegmental (LDTg) nuclei located in the rostral brainstem are the primary sources of the neurotransmitter acetylcholine (ACh) for the midbrain and thalamus, and as part of the ascending reticular activating system, these cholinergic signaling pathways regulate mouse behavioral responses to sensory stimuli. Here, I report that mice harboring a conditional deletion of ACh synthesis specifically within these nuclei (ChAT(En1 KO)) exhibit decreased ultrasonic vocalizations both as pups and adults, consistent with their previously reported hypoactivity when exploring the novel environment of the open field arena. Furthermore, in prepulse inhibition (PPI) tests, ChAT(En1 KO) animals exhibited increased sensorimotor gating in comparison to control littermates. These data suggest that ACh signaling arising from the rostral brainstem modulates animal behavior in part by tuning the levels of sensorimotor gating. Thus, the net effect of this cholinergic activity is to increase sensitivity to environmental stimuli, and loss of this pathway contributes to the hypoactivity in these mutants by raising the sensory threshold for eliciting exploratory behaviors.
Collapse
Affiliation(s)
- Robert P Machold
- New York University School of Medicine, Smilow Neuroscience Program, 522 First Avenue, Smilow 506, New York, NY 10016, United States.
| |
Collapse
|
24
|
López JM, Perlado J, Morona R, Northcutt RG, González A. Neuroanatomical organization of the cholinergic system in the central nervous system of a basal actinopterygian fish, the senegal bichir Polypterus senegalus. J Comp Neurol 2013; 521:24-49. [PMID: 22628072 DOI: 10.1002/cne.23155] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 05/09/2012] [Accepted: 05/18/2012] [Indexed: 11/10/2022]
Abstract
Polypterid bony fishes are believed to be basal to other living ray-finned fishes, and their brain organization is therefore critical in providing information as to primitive neural characters that existed in the earliest ray-finned fishes. The cholinergic system has been characterized in more advanced ray-finned fishes, but not in polypterids. In order to establish which cholinergic neural centers characterized the earliest ray-finned fishes, the distribution of choline acetyltransferase (ChAT) is described in Polypterus and compared with the distribution of this molecule in other ray-finned fishes. Cell groups immunoreactive for ChAT were observed in the hypothalamus, the habenula, the optic tectum, the isthmus, the cranial motor nuclei, and the spinal motor column. Cholinergic fibers were observed in both the telencephalic pallium and the subpallium, in the thalamus and pretectum, in the optic tectum and torus semicircularis, in the mesencephalic tegmentum, in the cerebellar crest, in the solitary nucleus, and in the dorsal column nuclei. Comparison of the data within a segmental neuromeric context indicates that the cholinergic system in polypterid fishes is generally similar to that in other ray-finned fishes, but cholinergic-positive neurons in the pallium and subpallium, and in the thalamus and cerebellum, of teleosts appear to have evolved following the separation of polypterids and other ray-finned fishes.
Collapse
Affiliation(s)
- Jesús M López
- Department of Cell Biology, University Complutense, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
25
|
Ma R, Cui H, Lee SH, Anastasio TJ, Malpeli JG. Predictive encoding of moving target trajectory by neurons in the parabigeminal nucleus. J Neurophysiol 2013; 109:2029-43. [PMID: 23365185 DOI: 10.1152/jn.01032.2012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Intercepting momentarily invisible moving objects requires internally generated estimations of target trajectory. We demonstrate here that the parabigeminal nucleus (PBN) encodes such estimations, combining sensory representations of target location, extrapolated positions of briefly obscured targets, and eye position information. Cui and Malpeli (Cui H, Malpeli JG. J Neurophysiol 89: 3128-3142, 2003) reported that PBN activity for continuously visible tracked targets is determined by retinotopic target position. Here we show that when cats tracked moving, blinking targets the relationship between activity and target position was similar for ON and OFF phases (400 ms for each phase). The dynamic range of activity evoked by virtual targets was 94% of that of real targets for the first 200 ms after target offset and 64% for the next 200 ms. Activity peaked at about the same best target position for both real and virtual targets. PBN encoding of target position takes into account changes in eye position resulting from saccades, even without visual feedback. Since PBN response fields are retinotopically organized, our results suggest that activity foci associated with real and virtual targets at a given target position lie in the same physical location in the PBN, i.e., a retinotopic as well as a rate encoding of virtual-target position. We also confirm that PBN activity is specific to the intended target of a saccade and is predictive of which target will be chosen if two are offered. A Bayesian predictor-corrector model is presented that conceptually explains the differences in the dynamic ranges of PBN neuronal activity evoked during tracking of real and virtual targets.
Collapse
Affiliation(s)
- Rui Ma
- Neuroscience Program, University of Illinois, Urbana, Illinois 61820, USA
| | | | | | | | | |
Collapse
|
26
|
Morona R, López JM, Northcutt RG, González A. Comparative Analysis of the Organization of the Cholinergic System in the Brains of Two Holostean Fishes, the Florida GarLepisosteus platyrhincusand the BowfinAmia calva. BRAIN, BEHAVIOR AND EVOLUTION 2013; 81:109-42. [DOI: 10.1159/000347111] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 01/12/2013] [Indexed: 11/19/2022]
|
27
|
Hibi M, Shimizu T. Development of the cerebellum and cerebellar neural circuits. Dev Neurobiol 2012; 72:282-301. [DOI: 10.1002/dneu.20875] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
28
|
López JM, Domínguez L, Morona R, Northcutt RG, González A. Organization of the cholinergic systems in the brain of two lungfishes, Protopterus dolloi and Neoceratodus forsteri. Brain Struct Funct 2011; 217:549-76. [DOI: 10.1007/s00429-011-0341-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 07/23/2011] [Indexed: 01/29/2023]
|
29
|
Caudill MS, Eggebrecht AT, Gruberg ER, Wessel R. Electrophysiological properties of isthmic neurons in frogs revealed by in vitro and in vivo studies. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2010; 196:249-62. [PMID: 20179943 PMCID: PMC2860605 DOI: 10.1007/s00359-010-0511-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2009] [Revised: 02/03/2010] [Accepted: 02/04/2010] [Indexed: 11/26/2022]
Abstract
The frog nucleus isthmi (parabigeminal nucleus in mammals) is a visually responsive, cholinergic and anatomically well-defined group of neurons in the midbrain. It shares reciprocal topographic projections with the ipsilateral optic tectum (superior colliculus in mammals) and strongly influences visual processing. Anatomical and biochemical information indicates the existence of distinct neural populations within the frog nucleus isthmi, which raises the question: are there electrophysiological distinctions between neurons that are putatively classified by their anatomical and biochemical properties? To address this question, we measured frog nucleus isthmi neuron cellular properties in vitro and visual response properties in vivo. No evidence for distinct electrophysiological classes of neurons was found. We thus conclude that, despite the anatomical and biochemical differences, the cells of the frog nucleus isthmi respond homogeneously to both current injections and simple visual stimuli.
Collapse
Affiliation(s)
- Matthew S Caudill
- Department of Physics, Washington University in St. Louis, St. Louis, MO 63130-4899, USA.
| | | | | | | |
Collapse
|
30
|
Abreu-Villaça Y, Filgueiras CC, Manhães AC. Developmental aspects of the cholinergic system. Behav Brain Res 2010; 221:367-78. [PMID: 20060019 DOI: 10.1016/j.bbr.2009.12.049] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 12/26/2009] [Indexed: 01/19/2023]
Abstract
Beyond its importance in sustaining or modulating different aspects of the activity of the central nervous system (CNS), the cholinergic system plays important roles during development. In the current review, we focus on the developmental aspects associated with major components of the cholinergic system: Acetylcholine, choline acetyltransferase, vesicular acetylcholine transporter, high-affinity choline transporter, acetylcholinesterase, nicotinic and muscarinic receptors. We describe when and where each one of these components is first identified in the CNS and the changes in their levels that occur during the course of prenatal and postnatal development. We also describe how these components are relevant to many events that occur during the development of the CNS, including progenitor cells proliferation and differentiation, neurogenesis, gliogenesis, neuronal maturation and plasticity, axonal pathfinding, regulation of gene expression and cell survival. It will be noticed that evidence regarding the developmental aspects of the cholinergic system comes mostly from studies that used agonists, such as nicotine, and antagonists, such as hemicholinium-3. Studies using immunohistochemistry and genetically altered mice also provided valuable information.
Collapse
Affiliation(s)
- Yael Abreu-Villaça
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar, Vila Isabel, Rio de Janeiro, RJ 20550-170, Brazil.
| | | | | |
Collapse
|
31
|
Goddard CA, Knudsen EI, Huguenard JR. Intrinsic excitability of cholinergic neurons in the rat parabigeminal nucleus. J Neurophysiol 2007; 98:3486-93. [PMID: 17898138 DOI: 10.1152/jn.00960.2007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cholinergic neurons in the parabigeminal nucleus of the rat midbrain were studied in an acute slice preparation. Spontaneous, regular action potentials were observed both with cell-attached patch recordings as well as with whole cell current-clamp recordings. The spontaneous activity of parabigeminal nucleus (PBN) neurons was not due to synaptic input as it persisted in the presence of the pan-ionotropic excitatory neurotransmitter receptor blocker, kynurenic acid, and the cholinergic blockers dihydro-beta-erythroidine (DHbetaE) and atropine. This result suggests the existence of intrinsic currents that enable spontaneous activity. In voltage-clamp recordings, I(H) and I(A) currents were observed in most PBN neurons. I(A) had voltage-dependent features that would permit it to contribute to spontaneous firing. In contrast, I(H) was significantly activated at membrane potentials lower than the trough of the spike afterhyperpolarization, suggesting that I(H) does not contribute to spontaneous firing of PBN neurons. Consistent with this interpretation, application of 25 microM ZD-7288, which blocked I(H), did not affect the rate of spontaneous firing in PBN neurons. Counterparts to I(A) and I(H) were observed in current-clamp recordings: I(A) was reflected as a slow voltage ramp observed between action potentials and on release from hyperpolarization, and I(H) was reflected as a depolarizing sag often accompanied by rebound spikes in response to hyperpolarizing current injections. In response to depolarizing current injections, PBN neurons fired at high frequencies, with relatively little accommodation. Ultimately, the spontaneous activity in PBN neurons could be used to modulate cholinergic drive in the superior colliculus in either positive or negative directions.
Collapse
Affiliation(s)
- C Alex Goddard
- Department of Neurobiology, Stanford University, Stanford, CA, 94305, USA.
| | | | | |
Collapse
|
32
|
Takahashi M, Sugiuchi Y, Shinoda Y. Commissural mirror-symmetric excitation and reciprocal inhibition between the two superior colliculi and their roles in vertical and horizontal eye movements. J Neurophysiol 2007; 98:2664-82. [PMID: 17728384 DOI: 10.1152/jn.00696.2007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The functional roles of commissural excitation and inhibition between the two superior colliculi (SCs) are not yet well understood. We previously showed the existence of strong excitatory commissural connections between the rostral SCs, although commissural connections had been considered to be mainly inhibitory. In this study, by recording intracellular potentials, we examined the topographical distribution of commissural monosynaptic excitation and inhibition from the contralateral medial and lateral SC to tectoreticular neurons (TRNs) in the medial or lateral SC of anesthetized cats. About 85% of TRNs examined projected to both the ipsilateral Forel's field H and the contralateral inhibitory burst neuron region where the respective premotor neurons for vertical and horizontal saccades reside. Medial TRNs received strong commissural excitation from the medial part of the opposite SC, whereas lateral TRNs received excitation mainly from its lateral part. Injection of wheat germ agglutinin-horseradish peroxidase into the lateral or medial SC retrogradely labeled many larger neurons in the lateral or medial part of the contralateral SC, respectively. These results indicated that excitatory commissural connections exist between the medial and medial parts and between the lateral and lateral parts of the rostral SCs. These may play an important role in reinforcing the conjugacy of upward and downward saccades, respectively. In contrast, medial SC projections to lateral SC TRNs and lateral SC projections to medial TRNs mainly produce strong inhibition. This shows that regions representing upward saccades inhibit contralateral regions representing downward saccades and vice versa.
Collapse
Affiliation(s)
- M Takahashi
- Department of Systems Neurophysiology, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | | | | |
Collapse
|
33
|
Dudkin EA, Sheffield JB, Gruberg ER. Combining visual information from the two eyes: the relationship between isthmotectal cells that project to ipsilateral and to contralateral optic tectum using fluorescent retrograde labels in the frog, Rana pipiens. J Comp Neurol 2007; 502:38-54. [PMID: 17335048 DOI: 10.1002/cne.21308] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The frog nucleus isthmi (homolog of the mammalian parabigeminal nucleus) is a visually responsive tegmental structure that is reciprocally connected with the ipsilateral optic tectum; cells in nucleus isthmi also project to the contralateral optic tectum. We investigated the location of the isthmotectal cells that project ipsilaterally and contralaterally using three retrograde fluorescent label solutions: Alexa Fluor 488 10,000 mw dextran conjugate; Rhodamine B isothiocyanate; and Nuclear Yellow. Dye solutions were pressure-injected into separate sites in the superficial optic tectum. Following a 6-day survival, brains were fixed, sectioned, and then photographed. Injection of the different labels at separate, discrete locations in the optic tectum result in retrograde filling of singly labeled clusters of cells in both the ipsilateral and contralateral nucleus isthmi. Generally, ipsilaterally projecting cells are dorsal to the contralaterally projecting cells, but there is a slight overlap between the two sets of cells. Nonetheless, when different retrograde labels are injected into opposite tecta, there is no indication that individual cells project to both tecta. The set of cells that project to the ipsilateral tectum and the set of cells that project to the contralateral tectum form a visuotopic map in a roughly vertical, transverse slab. Our results suggest that nucleus isthmi can be separated into two regions with cells in the dorsolateral portion projecting primarily to the ipsilateral optic tectum and cells in the ventrolateral nucleus isthmi projecting primarily to the contralateral optic tectum.
Collapse
Affiliation(s)
- Elizabeth A Dudkin
- Division of Science, Pennsylvania State University, Media, Pennsylvania 19063, USA.
| | | | | |
Collapse
|
34
|
de Arriba MDC, Pombal MA. Afferent Connections of the Optic Tectum in Lampreys: An Experimental Study. BRAIN, BEHAVIOR AND EVOLUTION 2007; 69:37-68. [PMID: 16926536 DOI: 10.1159/000095272] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Accepted: 03/27/2006] [Indexed: 11/19/2022]
Abstract
Tectal afferents were studied in adult lampreys of three species (Ichthyomyzon unicuspis, Lampetra fluviatilis, and Petromyzon marinus) following unilateral BDA injections into the optic tectum (OT). In the secondary prosencephalon, neurons projecting to the OT were observed in the pallium, the subhipoccampal lobe, the striatum, the preoptic area and the hypothalamus. Following tectal injections, backfilled diencephalic cells were found bilaterally in: prethalamic eminence, ventral geniculate nucleus, periventricular prethalamic nucleus, periventricular pretectal nucleus, precommissural nucleus, magnocellular and parvocellular nuclei of the posterior commissure and pretectal nucleus; and ipsilaterally in: nucleus of Bellonci, periventricular thalamic nucleus, nucleus of the tuberculum posterior, and the subpretectal tegmentum, as well as in the pineal organ. At midbrain levels, retrogradely labeled cells were seen in the ipsilateral torus semicircularis, the contralateral OT, and bilaterally in the mesencephalic reticular formation and inside the limits of the retinopetal nuclei. In the hindbrain, tectal projecting cells were also bilaterally labeled in the dorsal and lateral isthmic nuclei, the octavolateral area, the sensory nucleus of the descending trigeminal tract, the dorsal column nucleus and the reticular formation. The rostral spinal cord also exhibited a few labeled cells. These results demonstrate a complex pattern of connections in the lamprey OT, most of which have been reported in other vertebrates. Hence, the lamprey OT receives a large number of nonvisual afferents from all major brain areas, and so is involved in information processing from different somatic sensory modalities.
Collapse
Affiliation(s)
- María del Carmen de Arriba
- Neurolam Group, Department of Functional Biology and Health Sciences, Faculty of Biology, University of Vigo, Vigo, Spain
| | | |
Collapse
|
35
|
Sooksawate T, Isa T. Properties of cholinergic responses in neurons in the intermediate grey layer of rat superior colliculus. Eur J Neurosci 2006; 24:3096-108. [PMID: 17156371 DOI: 10.1111/j.1460-9568.2006.05190.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The intermediate grey layer (SGI) of superior colliculus (SC) receives cholinergic innervation from brainstem parabrachial region. To clarify the action of cholinergic inputs to local circuits in the SGI, we investigated the effect of cholinergic agonists and antagonists on a large number of randomly sampled neurons in Wistar rat SGI (n=246) using whole-cell patch clamp technique in slices of the rat SC. Responses of the recorded cells (n=98) to bath application of carbachol were classified into five patterns: (i) nicotinic inward only (n=14); (ii) nicotinic inward+muscarinic inward (n=26); (iii) nicotinic inward+muscarinic inward+muscarinic outward (n=39); (iv) nicotinic inward+muscarinic outward (n=13) and (v) muscarinic outward only (n=4). Among these, a majority of morphologically identified projection neurons exhibited either response pattern (ii) (9/28) or (iii) (15/28), which suggested that the primary action of cholinergic inputs on the SGI output is excitatory. Nicotinic receptor subtypes involved in the nicotinic current were examined by testing the effects of antagonists on the currents induced by bath application of 1,1-dimethyl-4-phenyl-piperazinium or transient pressure application of acetylcholine (ACh). Muscarinic receptor subtypes involved in the muscarinic inward and outward currents were investigated by examining the effects of antagonists on muscarine-induced currents. The results showed that nicotinic inward currents are mediated mainly by alpha4beta2 and partly by alpha7 nicotinic receptors and that muscarinic inward and outward currents are mediated by M3 (plus M1) and M2 muscarinic receptors, respectively.
Collapse
Affiliation(s)
- Thongchai Sooksawate
- Department of Developmental Physiology, National Institute for Physiological Sciences, Myodaiji, Okazaki 444-8585, Japan
| | | |
Collapse
|
36
|
Robertson B, Saitoh K, Ménard A, Grillner S. Afferents of the lamprey optic tectum with special reference to the GABA input: combined tracing and immunohistochemical study. J Comp Neurol 2006; 499:106-19. [PMID: 16958107 DOI: 10.1002/cne.21078] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The optic tectum in the lamprey midbrain, homologue of the superior colliculus in mammals, is important for eye movement control and orienting responses. There is, however, only limited information regarding the afferent input to the optic tectum except for that from the eyes. The objective of this study was to define specifically the gamma-aminobutyric acid (GABA)-ergic projections to the optic tectum in the river lamprey (Lampetra fluviatilis) and also to describe the tectal afferent input in general. The origin of afferents to the optic tectum was studied by using the neuronal tracer neurobiotin. Injection of neurobiotin into the optic tectum resulted in retrograde labelling of cell groups in all major subdivisions of the brain. The main areas shown to project to the optic tectum were the following: the caudoventral part of the medial pallium, the area of the ventral thalamus and dorsal thalamus, the nucleus of the posterior commissure, the torus semicircularis, the mesencephalic M5 nucleus of Schober, the mesencephalic reticular area, the ishtmic area, and the octavolateral nuclei. GABAergic projections to the optic tectum were identified by combining neurobiotin tracing and GABA immunohistochemistry. On the basis of these double-labelling experiments, it was shown that the optic tectum receives a GABAergic input from the caudoventral part of the medial pallium, the dorsal and ventral thalamus, the nucleus of M5, and the torus semicircularis. The afferent input to the optic tectum in the lamprey brain is similar to that described for other vertebrate species, which is of particular interest considering its position in phylogeny.
Collapse
Affiliation(s)
- Brita Robertson
- The Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | | | | | | |
Collapse
|
37
|
Usunoff KG, Itzev DE, Rolfs A, Schmitt O, Wree A. Brain stem afferent connections of the amygdala in the rat with special references to a projection from the parabigeminal nucleus: a fluorescent retrograde tracing study. ACTA ACUST UNITED AC 2006; 211:475-96. [PMID: 16763808 DOI: 10.1007/s00429-006-0099-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2006] [Indexed: 02/04/2023]
Abstract
A recently revealed important function of the amygdala (Am) is that it acts as the brain's "lighthouse", which constantly monitors the environment for stimuli which signal a threat to the organism. The data from patients with extensive lesions of the striate cortex indicate that "unseen" fearful and fear-conditioned faces elicit increased Am responses. Thus, also extrageniculostriate pathways are involved. A multisynaptic pathway from the retina to the Am via the superior colliculus (SC) and the pulvinar was recently suggested. We here present data based on retrograde neuronal labeling following injection of the fluorescent tracer Fluoro-Gold in the rat Am that the parabigeminal nucleus (Pbg) emits a substantial, bilateral projection to the Am. This small cholinergic nucleus (Ch8 group) in the midbrain tegmentum is a subcortical relay visual center that is reciprocally connected with the SC. We suggest the existence of a second extrageniculostriate multisynaptic connection to Am: retina-SC-Pbg-Am, that might be very effective since all tracts listed above are bilateral. In addition, we present hodological details on other brainstem afferent connections of the Am, some of which are only recently described, and some others that still remain equivocal. Following selective injections of Fluoro-Gold in the Am, retrogradely labeled neurons were observed in parasubthalamic nucleus, peripeduncular nucleus, periaqueductal gray, dopaminergic nuclear complex (substantia nigra pars lateralis and pars compacta, paranigral, parabrachial pigmented and interfascicular nuclei, rostral and caudal linear nuclei, retrorubral area), deep mesencephalic nucleus, serotoninergic structures (dorsal, median and pontine raphe nuclei), laterodorsal and pedunculopontine tegmental nuclei (Ch6 and Ch5 groups), parabrachial nuclear complex, locus coeruleus, nucleus incertus, ventrolateral pontine tegmentum (A5 group), dorsomedial medulla (nucleus of the solitary tract, A2 group), ventrolateral medulla (A1/C1 group), and pars caudalis of the spinal trigeminal nucleus. A bilateral labeling of the upper cervical spinal cord was also observed.
Collapse
Affiliation(s)
- K G Usunoff
- Department of Anatomy and Histology, Faculty of Medicine, Medical University, Sofia 1431, Bulgaria
| | | | | | | | | |
Collapse
|
38
|
Wang Y, Luksch H, Brecha NC, Karten HJ. Columnar projections from the cholinergic nucleus isthmi to the optic tectum in chicks (Gallus gallus): a possible substrate for synchronizing tectal channels. J Comp Neurol 2006; 494:7-35. [PMID: 16304683 DOI: 10.1002/cne.20821] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The cholinergic division of the avian nucleus isthmi, the homolog of the mammalian nucleus parabigeminalis, is composed of the pars parvocellularis (Ipc) and pars semilunaris (SLu). Ipc and SLu were studied with in vivo and in vitro tracing and intracellular filling methods. 1) Both nuclei have reciprocal homotopic connections with the ipsilateral optic tectum. The SLu connection is more diffuse than that of Ipc. 2) Tectal inputs to Ipc and SLu are Brn3a-immunoreactive neurons in the inner sublayer of layer 10. Tectal neurons projecting on Ipc possess "shepherd's crook" axons and radial dendritic fields in layers 2-13. 3) Neurons in the mid-portion of Ipc possess a columnar spiny dendritic field. SLu neurons have a large, nonoriented spiny dendritic field. 4) Ipc terminals form a cylindrical brush-like arborization (35-50 microm wide) in layers 2-10, with extremely dense boutons in layers 3-6, and a diffuse arborization in layers 11-13. SLu neurons terminate in a wider column (120-180 microm wide) lacking the dust-like boutonal features of Ipc and extend in layers 4c-13 with dense arborizations in layers 4c, 6, and 9-13. 5) Ipc and SLu contain specialized fast potassium ion channels. We propose that dense arborizations of Ipc axons may be directed to the distal dendritic bottlebrushes of motion detecting tectal ganglion cells (TGCs). They may provide synchronous activation of a group of adjacent bottlebrushes of different TGCs of the same type via their intralaminar processes, and cross channel activation of different types of TGCs within the same column of visual space.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, 92093-0608, USA
| | | | | | | |
Collapse
|
39
|
Marín G, Mpodozis J, Mpdozis J, Sentis E, Ossandón T, Letelier JC. Oscillatory bursts in the optic tectum of birds represent re-entrant signals from the nucleus isthmi pars parvocellularis. J Neurosci 2006; 25:7081-9. [PMID: 16049185 PMCID: PMC6724834 DOI: 10.1523/jneurosci.1379-05.2005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fast oscillatory bursts (OBs; 500-600 Hz) are the most prominent response to visual stimulation in the optic tectum of birds. To investigate the neural mechanisms generating tectal OBs, we compared local recordings of OBs with simultaneous intracellular and extracellular single-unit recordings in the tectum of anesthetized pigeons. We found a specific population of units that responded with burst discharges that mirrored the burst pattern of OBs. Intracellular filling with biocytin of some of these bursting units demonstrated that they corresponded to the paintbrush axon terminals from the nucleus isthmi pars parvocellularis (Ipc). Direct recordings in the Ipc confirmed the high correlation between Ipc cell firing and tectal OBs. After injecting micro-drops of lidocaine in the Ipc, the OBs of the corresponding tectal locus disappeared completely. These results identify the paintbrush terminals as the neural elements generating tectal OBs. These terminals are presumably cholinergic and ramify across tectal layers in a columnar manner. Because the optic tectum and the Ipc are reciprocally connected such that each Ipc neuron sends a paintbrush axon to the part of the optic tectum from which its visual inputs come, tectal OBs represent re-entrant signals from the Ipc, and the spatial-temporal pattern of OBs across the tectum is the mirror representation of the spatial-temporal pattern of bursting neurons in the Ipc. We propose that an active location in the Ipc may act, via bursting paintbrushes in the tectum, as a focal "beam of attention" across tectal layers, enhancing the saliency of stimuli in the corresponding location in visual space.
Collapse
Affiliation(s)
- Gonzalo Marín
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Casilla 653, Chile.
| | | | | | | | | | | |
Collapse
|
40
|
Da Silva JN, Fuxe K, Manger PR. Nuclear parcellation of certain immunohistochemically identifiable neuronal systems in the midbrain and pons of the Highveld molerat (Cryptomys hottentotus). J Chem Neuroanat 2006; 31:37-50. [PMID: 16289497 DOI: 10.1016/j.jchemneu.2005.08.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Accepted: 08/06/2005] [Indexed: 11/28/2022]
Abstract
The present paper details our findings following immunohistochemical examination of the midbrain and pons of the Highveld molerat (Cryptomys hottentotus) using antibodies for vesicular acetylcholine transporter (cholinergic neurons), tyrosine hydroxylase (dopaminergic and noradrenergic neurons), and serotonin (serotonergic neurons). The aim was to see if, in this microphthalmic rodent that lacks a distinct circadian rhythm, the nuclei involved in aspects of visual processing and the sleep-wake cycle exhibited specific loss or morphological alteration. For all of the neural systems investigated we found nuclei that can be considered direct homologues of those found in the laboratory rat. There was no specific loss of any nuclear group of any of the systems investigated, but there was significant reduction (as judged qualitatively) in the number of neurons in the visual associated nuclei. The fact that we could identify all nuclear groupings from three systems in this species is suggestive of an evolutionary constraint acting at the level of the organization of the neural system.
Collapse
Affiliation(s)
- Jessica N Da Silva
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown 2193, Johannesburg, South Africa
| | | | | |
Collapse
|
41
|
Endo T, Yanagawa Y, Obata K, Isa T. Nicotinic Acetylcholine Receptor Subtypes Involved in Facilitation of GABAergic Inhibition in Mouse Superficial Superior Colliculus. J Neurophysiol 2005; 94:3893-902. [PMID: 16107532 DOI: 10.1152/jn.00211.2005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The superficial superior colliculus (sSC) is a key station in the sensory processing related to visual salience. The sSC receives cholinergic projections from the parabigeminal nucleus, and previous studies have revealed the presence of several different nicotinic acetylcholine receptor (nAChR) subunits in the sSC. In this study, to clarify the role of the cholinergic inputs to the sSC, we examined current responses induced by ACh in GABAergic and non-GABAergic sSC neurons using in vitro slice preparations obtained from glutamate decarboxylase 67-green fluorescent protein (GFP) knock-in mice in which GFP is specifically expressed in GABAergic neurons. Brief air pressure application of acetylcholine (ACh) elicited nicotinic inward current responses in both GABAergic and non-GABAergic neurons. The inward current responses in the GABAergic neurons were highly sensitive to a selective antagonist for α3β2- and α6β2-containing receptors, α-conotoxin MII (αCtxMII). A subset of these neurons exhibited a faster α-bungarotoxin-sensitive inward current component, indicating the expression of α7-containing nAChRs. We also found that the activation of presynaptic nAChRs induced release of GABA, which elicited a burst of miniature inhibitory postsynaptic currents mediated by GABAA receptors in non-GABAergic neurons. This ACh-induced GABA release was mediated mainly by αCtxMII-sensitive nAChRs and resulted from the activation of voltage-dependent calcium channels. Morphological analysis revealed that recorded GFP-positive neurons are interneurons and GFP-negative neurons include projection neurons. These findings suggest that nAChRs are involved in the regulation of GABAergic inhibition and modulate visual processing in the sSC.
Collapse
Affiliation(s)
- Toshiaki Endo
- Department of Developmental Physiology, National Institute for Physiological Sciences, Myodaiji, Okazaki, Japan.
| | | | | | | |
Collapse
|
42
|
Clemente D, Porteros A, Weruaga E, Alonso JR, Arenzana FJ, Aijón J, Arévalo R. Cholinergic elements in the zebrafish central nervous system: Histochemical and immunohistochemical analysis. J Comp Neurol 2004; 474:75-107. [PMID: 15156580 DOI: 10.1002/cne.20111] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Recently, the zebrafish has been extensively used for studying the development of the central nervous system (CNS). However, the zebrafish CNS has been poorly analyzed in the adult. The cholinergic/cholinoceptive system of the zebrafish CNS was analyzed by using choline acetyltransferase (ChAT) immunohistochemistry and acetylcholinesterase (AChE) histochemistry in the brain, retina, and spinal cord. AChE labeling was more abundant and more widely distributed than ChAT immunoreactivity. In the telencephalon, ChAT-immunoreactive (ChAT-ir) cells were absent, whereas AChE-positive neurons were observed in both the olfactory bulb and the telencephalic hemispheres. The diencephalon was the region with the lowest density of AChE-positive cells, mainly located in the pretectum, whereas ChAT-ir cells were exclusively located in the preoptic region. ChAT-ir cells were restricted to the periventricular stratum of the optic tectum, but AChE-positive neurons were observed throughout the whole extension of the lamination except in the marginal stratum. Although ChAT immunoreactivity was restricted to the rostral tegmental, oculomotor, and trochlear nuclei within the mesencephalic tegmentum, a widespread distribution of AChE reactivity was observed in this region. The isthmic region showed abundant AChE-positive and ChAT-ir cells in the isthmic, secondary gustatory and superior reticular nucleus and in the nucleus lateralis valvulae. ChAT immunoreactivity was absent in the cerebellum, although AChE staining was observed in Purkinje and granule cells. The medulla oblongata showed a widespread distribution of AChE-positive cells in all main subdivisions, including the octavolateral area, reticular formation, and motor nuclei of the cranial nerves. ChAT-ir elements in this area were restricted to the descending octaval nucleus, the octaval efferent nucleus and the motor nuclei of the cranial nerves. Additionally, spinal cord motoneurons appeared positive to both markers. Substantial differences in the ChAT and AChE distribution between zebrafish and other fish species were observed, which could be important because zebrafish is widely used as a genetic or developmental animal model.
Collapse
Affiliation(s)
- Diego Clemente
- Departamento de Biología Celular y Patología, Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, E-37007 Salamanca, Spain
| | | | | | | | | | | | | |
Collapse
|
43
|
Cui H, Malpeli JG. Activity in the parabigeminal nucleus during eye movements directed at moving and stationary targets. J Neurophysiol 2003; 89:3128-42. [PMID: 12611992 DOI: 10.1152/jn.01067.2002] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The parabigeminal nucleus (PBN) is a small satellite of the superior colliculus located on the edge of the midbrain. To identify activity related to visuomotor behavior, we recorded from PBN cells in cats trained to fixate moving and stationary targets. Cats tracked moving targets primarily with small catch-up saccades, and for target speeds of 2-6 degrees /s, they did so with sufficient accuracy to keep targets within 2.5 degrees of the visual axis most of the time. During intersaccade intervals of such close-order tracking, PBN cells fired at rates related to retinal position error (RPE), the distance between the center of the retina and the saccade target. Each cell was characterized by a best direction of RPE. Most commonly, activity rose rapidly with increasing RPE, peaked at a small RPE within the area centralis, and dropped off gradually with increasing target distance. For some cells, the range over which activity was monotonically related to RPE was considerably larger, but because the PBN was not systematically sampled, the maximum range of RPE encoded is presently unknown. During saccades, activity began to change at about peak saccade velocity and then rapidly reached a level appropriate to the RPE achieved at saccade end. Most response fields were large, and stationary saccade targets presented anywhere within them evoked brisk responses that terminated abruptly on saccade offset. Spontaneous saccades in the dark had little effect on PBN activity. These data suggest that the PBN is an integral part of a midbrain circuit generating target location information.
Collapse
Affiliation(s)
- He Cui
- Neuroscience Program, University of Illinois, Champaign, Illinois 61820, USA
| | | |
Collapse
|
44
|
Wang SR. The nucleus isthmi and dual modulation of the receptive field of tectal neurons in non-mammals. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2003; 41:13-25. [PMID: 12505645 DOI: 10.1016/s0165-0173(02)00217-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The nucleus isthmi in the dorsolateral tegmentum had been one of the most obscure structures in the nonmammalian midbrain for eight decades. Recent studies have shown that this nucleus and its mammalian homologue, the parabigeminal nucleus, are all visual centers, which receive information from the ipsilateral tectum and project back either ipsilaterally or bilaterally depending on species, but not an auditory center as suggested before. On the other hand, the isthmotectal pathways exert dual, both excitatory and inhibitory, actions on tectal cells in amphibians and reptiles. In birds, the magnocellular and parvocellular subdivisions of this nucleus produce excitatory and inhibitory effects on tectal cells, respectively. The excitatory pathway is mediated by glutamatergic synapses with AMPA and NMDA receptors and/or cholinergic synapses with muscarinic receptors, whereas the inhibitory pathway is mediated by GABAergic synapses via GABA(A) receptors. Further studies have shown that the magnocellular and parvocellular subdivisions can differentially modulate the excitatory and inhibitory regions of the receptive field of tectal neurons, respectively. Both the positive and the negative feedback pathways may work together in a winner-take-all manner, so that the animal could attend to only one of several competing visual targets simultaneously present in the visual field. Some behavioral tests seem to be consistent with this hypothesis. The present review indicates that the tecto-isthmic system in birds is an excellent model for further studying tectal modulation and possibly winner-take-all mechanisms.
Collapse
Affiliation(s)
- Shu-Rong Wang
- Laboratory for Visual Information Processing, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
| |
Collapse
|
45
|
Abstract
Stratum griseum superficiale (SGS) of the superior colliculus receives a dense cholinergic input from the parabigeminal nucleus. In this study, we examined in vitro the modulatory influence of acetylcholine (ACh) on the responses of SGS neurons that project to the visual thalamus in the rat. We used whole-cell patch-clamp recording to measure the responses of these projection neurons to electrical stimulation of their afferents in the stratum opticum (SO) before and during local pressure injections of ACh. These colliculothalamic projection neurons (CTNs) were identified during the in vitro experiments by prelabeling them from the thalamus with the retrograde axonal tracer wheat germ agglutinin-apo-HRP-gold. In a group of cells that included the prelabeled neurons, EPSCs evoked by SO stimulation were significantly reduced by the application of ACh, whereas IPSC amplitudes were significantly enhanced. Similar effects were observed when the nicotinic ACh receptor agonist lobeline was used. Application of the selective GABA(B) receptor antagonist 3-[[(3,4-dichlorophenyl)-methyl]amino]propyl](diethoxymethyl)phosphinic acid blocked ACh-induced reduction in the evoked response. In contrast, the ACh-induced reduction was insensitive to application of the GABA(A) receptor antagonist bicuculline. The ACh-induced reduction was also diminished by bath application of muscimol at the low concentrations that selectively activate GABA(C) receptors. Because GABA(C) receptors may be specifically expressed by GABAergic SGS interneurons (Schmidt et al., 2001), our results support the hypothesis that ACh reduces CTN activity by nicotinic receptor-mediated excitation of local GABAergic interneurons. These interneurons in turn use GABA(B) receptors to inhibit the CTNs.
Collapse
|
46
|
Abstract
The distribution of cholinergic neurons and fibers was studied immunohistochemically in the brain of two species of lampreys (Petromyzon marinus and Lampetra fluviatilis), by using an antiserum against choline acetyltransferase (ChAT). The results obtained in both species were similar, but there appeared some interspecies differences. In the forebrain, cholinergic cells were present in the striatum, preoptic region, paraventricular nucleus, pineal and parapineal organs, habenula, and pretectum. The cranial nerve motoneurons (III, IV, V, VI, VII, IX, and X), the first and second spino-occipital nerves (so), and the ventral horn of the spinal cord showed a strong ChAT immunoreactivity. Additional cholinergic neurons were observed: the mesencephalic M5 nucleus of Schober, two different cell populations in the isthmic region, the efferent component of the eighth nerve, putative preganglionic parasympathetic cells, cells in the solitary tract nucleus, and the rhombencephalic reticular formation. Cholinergic fibers were widely distributed in the brain. Comparison with previous studies in other vertebrates suggests that major cholinergic pathways, like tectal innervation from the isthmic region, are also present in lampreys. Of particular interest was the prominent projection to the neurohypophysis from cholinergic neurons in the preoptic region and paraventricular nucleus. Present data were analyzed within the segmental paradigm, as was previously done in other vertebrates. Our results reveal that the organization of many cholinergic systems in the lamprey as, for example, in the striatal, preoptic, and isthmic regions, comprises features of the anamniote brain that remain common to all living amniotes studied so far, thus being conservative to a surprisingly high degree. Therefore, the distribution of ChAT-immunoreactive structures in the lamprey brain is, in general, comparable to that previously described in other vertebrate species.
Collapse
Affiliation(s)
- M A Pombal
- Departamento de Biología Funcional y Ciencias de la Salud, Facultad de Ciencias, Universidad de Vigo, 36200 Vigo, Spain.
| | | | | |
Collapse
|
47
|
Butt CM, Pauly JR, Wilkins LH, Dwoskin LP, Debski EA. Pharmacology, distribution and development of muscarinic acetylcholine receptor subtypes in the optic tectum of Rana pipiens. Neuroscience 2001; 104:161-79. [PMID: 11311540 PMCID: PMC2266691 DOI: 10.1016/s0306-4522(01)00048-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Visually evoked behaviors mediated by the frog optic tectum require cholinergic activity, but the receptor subtypes through which acetylcholine acts are not yet identified. Using quantitative autoradiography and scintillation spectrometry, we examined the binding of [3H]pirenzepine and [3H]AF-DX 384 in the laminated optic tectum of the frog. In mammalian systems, these substances bind excitatory (m1 and m3 subtypes) and inhibitory (m2 and m4 subtypes) muscarinic acetylcholine receptors, respectively. Pharmacological analyses, including the use of specific muscarinic toxins, confirmed the subtype selectivity of the radioligands in the frog brain. Binding sites for [3H]pirenzepine were distinct from those for [3H]AF-DX 384. In the adult tectum, [3H]pirenzepine demonstrated specific binding in tectal layers 5-9. [3H]Pirenzepine binding was also present in tadpoles as young as stage V, but all sampled stages of tadpole tectum had significantly less binding when compared to adults. Lesioning of the optic nerve had no effect on [3H]pirenzepine binding. Specific [3H]AF-DX 384 binding was found in all layers of the adult tectum. All sampled tadpole stages exhibited binding sites for [3H]AF-DX 384, but the densities of these sites were also significantly higher in adults than they were in developing stages. Short-term lesions of the optic nerve reduced [3H]AF-DX 384 binding in all tectal layers of the deafferented lobe when compared to the afferented one. Long-term lesions decreased [3H]AF-DX 384 sites in both lobes.These results indicate that multiple muscarinic acetylcholine receptor binding sites reside in the frog optic tectum at all stages of development, and their pharmacology resembles that of mammalian m1/m3, m2 and m4 subtypes. Our data indicate that few, if any, of these receptors are likely to be located on retinal ganglion cell terminals. Furthermore, the expression of inhibitory muscarinic subtypes seems to be regulated by different mechanisms than that for excitatory subtypes.
Collapse
Affiliation(s)
- C. M. Butt
- School of Biological Sciences, University of Kentucky, 101 T. H. Morgan Building, Lexington, KY 40506-0225, USA
| | - J. R. Pauly
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40506-0082, USA
| | - L. H. Wilkins
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40506-0082, USA
| | - L. P. Dwoskin
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40506-0082, USA
| | - E. A. Debski
- School of Biological Sciences, University of Kentucky, 101 T. H. Morgan Building, Lexington, KY 40506-0225, USA
- Corresponding author. Tel.: +1-859-323-9537; fax: +1-859-257-1717. E-mail address: (E. A. Debski)
| |
Collapse
|
48
|
Pérez SE, Yáñez J, Marín O, Anadón R, González A, Rodríguez-Moldes I. Distribution of choline acetyltransferase (ChAT) immunoreactivity in the brain of the adult trout and tract-tracing observations on the connections of the nuclei of the isthmus. J Comp Neurol 2000; 428:450-74. [PMID: 11074445 DOI: 10.1002/1096-9861(20001218)428:3<450::aid-cne5>3.0.co;2-t] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The distribution of cholinergic neurons and fibers was studied in the brain and rostral spinal cord of the brown trout and rainbow trout by using an antiserum against the enzyme choline acetyltransferase (ChAT). Cholinergic neurons were observed in the ventral telencephalon, preoptic region, habenula, thalamus, hypothalamus, magnocellular superficial pretectal nucleus, optic tectum, isthmus, cranial nerve motor nuclei, and spinal cord. In addition, new cholinergic groups were detected in the vascular organ of the lamina terminalis, the parvocellular and magnocellular parts of the preoptic nucleus, the anterior tuberal nucleus, and a mesencephalic tegmental nucleus. The presence of ChAT in the magnocellular neurosecretory system of trout suggests that acetylcholine is involved in control of hormone release by neurosecretory terminals. In order to characterize the several cholinergic nuclei observed in the isthmus of trout, their projections were studied by application of 1,1;-dioctadecyl-3,3,3;, 3;-tetramethylindocarbocyanine perchlorate (DiI) to selected structures of the brain. The secondary gustatory nucleus projected mainly to the lateral hypothalamic lobes, whereas the nucleus isthmi projected to the optic tectum and parvocellular superficial pretectal nucleus, as previously described in other teleost groups. In addition, other isthmic cholinergic nuclei of trout may be homologs of the mesopontine system of mammals. We conclude that the cholinergic systems of teleosts show many primitive features that have been preserved during evolution, together with characteristics exclusive to the group.
Collapse
Affiliation(s)
- S E Pérez
- Department of Cell and Molecular Biology, Faculty of Sciences, University of A Coruña, 15071-A Coruña, Spain
| | | | | | | | | | | |
Collapse
|
49
|
Adrio F, Anadón R, Rodríguez-Moldes I. Distribution of choline acetyltransferase (ChAT) immunoreactivity in the central nervous system of a chondrostean, the siberian sturgeon (Acipenser baeri). J Comp Neurol 2000; 426:602-21. [PMID: 11027402 DOI: 10.1002/1096-9861(20001030)426:4<602::aid-cne8>3.0.co;2-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
All studies to date of cholinergic systems of bony fishes have been done in teleosts. To gain further insight into the evolution of the cholinergic systems of bony fishes, we have studied the brain of a chondrostean fish, the Siberian sturgeon (Acipenser baeri, Brandt), by using an antibody against choline acetyltransferase (ChAT). This study showed the presence of ChAT-immunoreactive (ChAT-ir) neurons in the preoptic region (parvocellular and magnocellular preoptic nuclei and suprachiasmatic nucleus), the periventricular and tuberal hypothalamus, the saccus vasculosus, the dorsal thalamus, and the habenula. The mesencephalic tegmentum contained ChAT-ir cells in the torus semicircularis and torus lateralis. The isthmus contained several cholinergic populations: the nucleus isthmi, the lateral nucleus of the valvula, the secondary visceral nucleus, and the dorsal tegmental nucleus. The motor neurons of the cranial nerves and the spinal motor column were strongly immunoreactive. The medial (sensory) trigeminal nucleus also contained a ChAT-ir neuronal population. The distribution of ChAT-ir neurons in the sturgeon brain showed some notable differences with that observed in teleosts, such as the absence of cholinergic cells in the telencephalon and the optic tectum. Several brain regions were richly innervated by ChAT-ir fibers, particularly the telencephalon, optic tectum, thalamus, posterior tubercle, and interpeduncular nucleus. The hypothalamo-hypophyseal tract, the tract of the saccus vasculosus, the fasciculus retroflexus, and an isthmo-mesencephalo-thalamic tract were the most conspicuous cholinergic bundles. Comparative analysis of these results suggests that teleosts have conserved most traits of the cholinergic system of the sturgeon, having acquired new cholinergic populations during evolution.
Collapse
Affiliation(s)
- F Adrio
- Department of Fundamental Biology, Faculty of Biology, University of Santiago de Compostela, 15706-Santiago de Compostela, Spain
| | | | | |
Collapse
|
50
|
Butt CM, Pauly JR, Debski EA. Distribution and development of nicotinic acetylcholine receptor subtypes in the optic tectum of Rana pipiens. J Comp Neurol 2000; 423:603-18. [PMID: 10880991 PMCID: PMC2265082 DOI: 10.1002/1096-9861(20000807)423:4<603::aid-cne6>3.0.co;2-f] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Acetylcholine allows the elicitation of visually evoked behaviors mediated by the frog optic tectum, but the mechanisms behind its effects are unknown. Although nicotinic acetylcholine receptors (nAChRs) exist in the tectum, their subtype has not been assessed. By using quantitative autoradiography, we examined the binding of [(3)H]cytisine and [(125)I]alpha-bungarotoxin in the laminated tectum. In mammalian systems, these radioligands bind with high affinity to alpha4 nAChR subunits and alpha7 nAChR subunits, respectively. [(3)H]Cytisine demonstrated high specific binding in adult frogs in retinorecipient layer 9, intermediate densities in layer 8, and low binding in layers 1-7 of the tectum. [(3)H]Cytisine binding was significantly higher in the tecta of adults than in those of tadpoles. Lesioning the optic nerve for 6 weeks decreased [(3)H]cytisine binding in layers 8/9 by 70+/-1%, whereas 6-month lesions decreased binding by 76+/-3%. Specific binding of [(125)I]alpha-bungarotoxin in adults was present only at intermediate levels in tectal layers 8 and 9, and undetectable in the deeper tectal layers. However, the nucleus isthmi, a midbrain structure reciprocally connected to the tectum, exhibited high levels of binding. There were no significant differences in tectal [(125)I]alpha-bungarotoxin binding between tadpoles and adults. Six-week lesions of the optic nerve decreased tectal [(125)I]alpha-bungarotoxin binding by 33+/-10%, but 6-month lesions had no effect. The pharmacokinetic characteristics of [(3)H]cytisine and [(125)I]alpha-bungarotoxin binding in the frog brain were similar to those demonstrated in several mammalian species. These results indicate that [(3)H]cytisine and [(125)I]alpha-bungarotoxin identify distinct nAChR subtypes in the tectum that likely contain non-alpha7 and alpha7 subunits, respectively. The majority of non-alpha7 receptors are likely associated with retinal ganglion cell terminals, whereas alpha7-containing receptors appear to have a different localization.
Collapse
Affiliation(s)
- Christopher M. Butt
- School of Biological Sciences, University of Kentucky, Lexington, Kentucky 40506-0225
| | - James R. Pauly
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40506-0082
| | - Elizabeth A. Debski
- School of Biological Sciences, University of Kentucky, Lexington, Kentucky 40506-0225
- Correspondence to: Dr. Elizabeth A. Debski, School of Biological Sciences, 101 T.H. Morgan Building, University of Kentucky, Lexington, KY 40506-0225. E-mail:
| |
Collapse
|