1
|
Batten SR, Matveeva EA, Whiteheart SW, Vanaman TC, Gerhardt GA, Slevin JT. Linking kindling to increased glutamate release in the dentate gyrus of the hippocampus through the STXBP5/tomosyn-1 gene. Brain Behav 2017; 7:e00795. [PMID: 28948088 PMCID: PMC5607557 DOI: 10.1002/brb3.795] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/29/2017] [Accepted: 07/02/2017] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION In kindling, repeated electrical stimulation of certain brain areas causes progressive and permanent intensification of epileptiform activity resulting in generalized seizures. We focused on the role(s) of glutamate and a negative regulator of glutamate release, STXBP5/tomosyn-1, in kindling. METHODS Stimulating electrodes were implanted in the amygdala and progression to two successive Racine stage 5 seizures was measured in wild-type and STXBP5/tomosyn-1-/- (Tom-/-) animals. Glutamate release measurements were performed in distinct brain regions using a glutamate-selective microelectrode array (MEA). RESULTS Naïve Tom-/- mice had significant increases in KCl-evoked glutamate release compared to naïve wild type as measured by MEA of presynaptic release in the hippocampal dentate gyrus (DG). Kindling progression was considerably accelerated in Tom-/- mice, requiring fewer stimuli to reach a fully kindled state. Following full kindling, MEA measurements of both kindled Tom+/+ and Tom-/- mice showed significant increases in KCl-evoked and spontaneous glutamate release in the DG, indicating a correlation with the fully kindled state independent of genotype. Resting glutamate levels in all hippocampal subregions were significantly lower in the kindled Tom-/- mice, suggesting possible changes in basal control of glutamate circuitry in the kindled Tom-/- mice. CONCLUSIONS Our studies demonstrate that increased glutamate release in the hippocampal DG correlates with acceleration of the kindling process. Although STXBP5/tomosyn-1 loss increased evoked glutamate release in naïve animals contributing to their prokindling phenotype, the kindling process can override any attenuating effect of STXBP5/tomosyn-1. Loss of this "braking" effect of STXBP5/tomosyn-1 on kindling progression may set in motion an alternative but ultimately equally ineffective compensatory response, detected here as reduced basal glutamate release.
Collapse
Affiliation(s)
- Seth R. Batten
- Department of PsychologyUniversity of KentuckyCollege of Arts and SciencesLexingtonKYUSA
| | - Elena A. Matveeva
- Department of Molecular & Cellular BiochemistryUniversity of Kentucky Medical CenterLexingtonKYUSA
| | - Sidney W. Whiteheart
- Department of Molecular & Cellular BiochemistryUniversity of Kentucky Medical CenterLexingtonKYUSA
| | - Thomas C. Vanaman
- Department of Molecular & Cellular BiochemistryUniversity of Kentucky Medical CenterLexingtonKYUSA
| | - Greg A. Gerhardt
- Department of NeuroscienceUniversity of Kentucky Medical CenterLexingtonKYUSA
- Department of NeurologyUniversity of Kentucky Medical CenterLexingtonKYUSA
| | - John T. Slevin
- Neurology ServiceVeterans Affairs Medical CenterLexingtonKYUSA
- Department of NeurologyUniversity of Kentucky Medical CenterLexingtonKYUSA
- Department of Pharmacology and Nutritional SciencesUniversity of Kentucky Medical CenterLexingtonKYUSA
| |
Collapse
|
2
|
Matveeva EA, Price DA, Whiteheart SW, Vanaman TC, Gerhardt GA, Slevin JT. Reduction of vesicle-associated membrane protein 2 expression leads to a kindling-resistant phenotype in a murine model of epilepsy. Neuroscience 2011; 202:77-86. [PMID: 22183055 DOI: 10.1016/j.neuroscience.2011.11.055] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 11/23/2011] [Accepted: 11/24/2011] [Indexed: 11/13/2022]
Abstract
Our previous work has correlated permanent alterations in the rat neurosecretory machinery with epileptogenesis. Such findings highlighted the need for a greater understanding of the molecular mechanisms underlying epilepsy so that novel therapeutic regimens can be designed. To this end, we examined kindling in transgenic mice with a defined reduction of a key element of the neurosecretory machinery: the v-SNARE (vesicle-bound SNAP [soluble NSF attachment protein] receptor), synaptobrevin/vesicle-associated membrane protein 2 (VAMP2). Initial analysis of biochemical markers, which previously displayed kindling-dependent alterations in rat hippocampal synaptosomes, showed similar trends in both wild-type and VAMP2(+/-) mice, demonstrating that kindled rat and mouse models are comparable. This report focuses on the effects that a ~50% reduction of synaptosomal VAMP2 has on the progression of electrical kindling and on glutamate release in hippocampal subregions. Our studies show that epileptogenesis is dramatically attenuated in VAMP2(+/-) mice, requiring both higher current and more stimulations to reach a fully kindled state (two successive Racine stage 5 seizures). Progression through the five identifiable Racine stages was slower and more variable in the VAMP2(+/-) animals compared with the almost linear progression seen in wild-type littermates. Consistent with the expected effects of reducing a major neuronal v-SNARE, glutamate-selective, microelectrode array (MEA) measurements in specific hippocampal subregions of VAMP2(+/-) mice showed significant reductions in potassium-evoked glutamate release. Taken together these studies demonstrate that manipulating the levels of the neurosecretory machinery not only affects neurotransmitter release but also mitigates kindling-induced epileptogenesis.
Collapse
Affiliation(s)
- E A Matveeva
- Department of Molecular and Cellular Biochemistry, University of Kentucky Medical Center, Lexington, KY, USA
| | | | | | | | | | | |
Collapse
|
3
|
Matveeva EA, Davis VA, Whiteheart SW, Vanaman TC, Gerhardt GA, Slevin JT. Kindling-induced asymmetric accumulation of hippocampal 7S SNARE complexes correlates with enhanced glutamate release. Epilepsia 2011; 53:157-67. [PMID: 22150629 DOI: 10.1111/j.1528-1167.2011.03345.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
PURPOSE To correlate kindling-associated alterations of the neurotransmitter secretory machinery, glutamate release in the trisynaptic hippocampal excitatory pathway, and the behavioral evolution of kindling-induced epileptogenesis. METHOD Neurotransmitter release requires the fusion of vesicle and plasma membranes; it is initiated by formation of a stable, ternary complex (7SC) of SNARE [soluble N-ethylmaleimide sensitive factor (NSF) attachment protein receptor] proteins. Quantitative Western blotting was used to monitor levels of 7SC and SNARE regulators [NSF, SV2 (synaptic vesicle protein 2)] in hippocampal synaptosomes from amygdala-kindled animals. Hippocampal synaptic glutamate release was measured in vivo with a unique microelectrode array (MEA) that uses glutamate oxidase to catalyze the breakdown of glutamate into a reporter molecule. KEY FINDINGS Ipsilateral hippocampal accumulation of 7SC developed with onset of amygdalar kindling, but became permanent only in animals stimulated to at least Racine stage 3; the ratio peaked and did not increase with more than two consecutive stage 5 seizures. Chronic 7SC asymmetry was seen in entorhinal cortex and the hippocampal formation, particularly in dentate gyrus (DG) and CA1, but not in the other brain areas examined. There was a strong correlation between asymmetric 7SC accumulation and increased total hippocampal SV2. Following a 30-day latent period, amplitudes of spontaneous synaptic glutamate release were enhanced in ipsilateral DG and reduced in ipsilateral CA3 of kindled animals; increased volleys of synaptic glutamate activity were seen in ipsilateral CA1. SIGNIFICANCE Amygdalar kindling is associated with chronic changes in the flow of glutamate signaling in the excitatory trisynaptic pathway and with early but permanent changes in the mechanics of vesicular release in ipsilateral hippocampal formation.
Collapse
Affiliation(s)
- Elena A Matveeva
- Departments of Molecular & Cellular Biochemistry, University of Kentucky Medical Center, Lexington, Kentucky, USA
| | | | | | | | | | | |
Collapse
|
4
|
Corcoran ME, Kroes RA, Burgdorf JS, Moskal JR. Regional changes in gene expression after limbic kindling. Cell Mol Neurobiol 2011; 31:819-34. [PMID: 21424270 PMCID: PMC11498424 DOI: 10.1007/s10571-011-9672-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 03/02/2011] [Indexed: 11/24/2022]
Abstract
Repeated electrical stimulation results in development of seizures and a permanent increase in seizure susceptibility (kindling). The permanence of kindling suggests that chronic changes in gene expression are involved. Kindling at different sites produces specific effects on interictal behaviors such as spatial cognition and anxiety, suggesting that causal changes in gene expression might be restricted to the stimulated site. We employed focused microarray analysis to characterize changes in gene expression associated with amygdaloid and hippocampal kindling. Male Long-Evans rats received 1 s trains of electrical stimulation to either the amygdala or hippocampus once daily until five generalized seizures had been kindled. Yoked control rats carried electrodes but were not stimulated. Rats were euthanized 14 days after the last seizures, both amygdala and hippocampus dissected, and transcriptome profiles compared. Of the 1,200 rat brain-associated genes evaluated, 39 genes exhibited statistically significant expression differences between the kindled and non-kindled amygdala and 106 genes exhibited statistically significant differences between the kindled and non-kindled hippocampus. In the amygdala, subsequent ontological analyses using the GOMiner algorithm demonstrated significant enrichment in categories related to cytoskeletal reorganization and cation transport, as well as in gene families related to synaptic transmission and neurogenesis. In the hippocampus, significant enrichment in gene expression within categories related to cytoskeletal reorganization and cation transport was similarly observed. Furthermore, unique to the hippocampus, enrichment in transcription factor activity and GTPase-mediated signal transduction was identified. Overall, these data identify specific and unique neurochemical pathways chronically altered following kindling in the two sites, and provide a platform for defining the molecular basis for the differential behaviors observed in the interictal period.
Collapse
Affiliation(s)
- M E Corcoran
- Neural Systems and Plasticity Research Group and Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK S7N 3R2, Canada.
| | | | | | | |
Collapse
|
5
|
Scott BW, Park H, Han H, Wahidie A, Burnham WM. Extrafocal threshold reductions in amygdala-kindled rats. Epilepsia 2010; 51:1729-35. [PMID: 20196793 DOI: 10.1111/j.1528-1167.2010.02524.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE Racine's classic study suggested that after discharge thresholds were reduced in the primary stimulation site (amygdala) of kindled rats, but that that they were not reduced in secondary (nonstimulated) sites. However, recent reports of neurochemical changes related to excitation and inhibition in nonstimulated sites in kindled brains would be expected to cause reductions in afterdischarge thresholds in these sites. More recently Sanei et al. have reported a significant threshold reduction in the piriform cortex of amygdala- and hippocampus-kindled cats, but not in the entorhinal cortex. The present study was designed to determine whether the results of Sanei et al. in cats could be replicated in rats kindled in the amygdala-a model commonly used in studies of seizure mechanisms and anticonvulsant drug development. METHODS Adult, male Long-Evans rats were kindled in the amygdala or given matched handling. Beginning 48 h following the last stimulation, afterdischarge thresholds were determined in the ipsilateral piriform and entorhinal cortices. Amygdala thresholds were determined 24 h later. RESULTS Afterdischarge thresholds were significantly reduced in both the amygdala and the ipsilateral entorhinal cortex of amygdala-kindled rats. Afterdischarge thresholds in the piriform cortex did not differ significantly between kindled and control subjects. DISCUSSION These data suggest that threshold reduction occurs outside the primary kindling site in rats as well as in cats. Extrafocal changes in afterdischarge threshold may be functionally important, and might possibly relate to extrafocal neurochemical changes and progressive generalization of seizure discharge from discrete focal sites.
Collapse
Affiliation(s)
- Brian W Scott
- Department of Pharmacology and University of Toronto Epilepsy Research Program, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | |
Collapse
|
6
|
Matveeva EA, Vanaman TC, Whiteheart SW, Slevin JT. Levetiracetam prevents kindling-induced asymmetric accumulation of hippocampal 7S SNARE complexes. Epilepsia 2008; 49:1749-58. [PMID: 18513349 PMCID: PMC2577123 DOI: 10.1111/j.1528-1167.2008.01687.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE Understanding the molecular mechanisms underlying epilepsy is crucial to designing novel therapeutic regimens. This report focuses on alterations in the secretory machinery responsible for neurotransmitter (NT) release. Soluble N-ethylmaleimide sensitive factor (NSF) attachment protein receptor (SNARE) complexes mediate the fusion of synaptic vesicle and active zone membranes, thus mediating NT secretion. SNARE regulators control where and when SNARE complexes are formed. Previous studies showed an asymmetric accumulation of 7S SNARE complexes (7SC) in the ipsilateral hippocampus of kindled animals. The present studies probe the persistence of 7SC accumulation and the effect of the anticonvulsant, levetiracetam (LEV), on 7SC and SNARE regulators. METHOD Quantitative Western blotting was used to monitor levels of 7SC and SNARE regulators in hippocampal synaptosomes from kindled animals both before and after LEV treatment. RESULTS The asymmetric accumulation of 7SC is present 1-year postamygdalar kindling. The synaptic vesicle protein, synaptic vesicle protein 2 (SV2), a primary LEV-binding protein, and the SNARE regulator Tomosyn increase, whereas NSF decreases in association with this accumulation. Treatment with LEV prevented kindling-induced accumulation of SV2, but did not affect the transient increase of Tomosyn or the long-term decrease NSF. LEV treatment retarded the electrical and behavioral concomitants of amygdalar kindling coincident with a decrease in accumulation of 7SC. CONCLUSIONS The ipsilateral hippocampal accumulation of SNARE complexes is an altered molecular process associated with kindling that appears permanent. Kindling epileptogenesis alters synaptosomal levels of the SNARE regulators: NSF, SV2, and Tomosyn. Concomitant treatment with LEV reverses the kindling-induced 7SC accumulation and increase of SV2.
Collapse
Affiliation(s)
- Elena A. Matveeva
- Dept. Molecular & Cellular Biochemistry, University of Kentucky Medical Center
| | - Thomas C. Vanaman
- Dept. Molecular & Cellular Biochemistry, University of Kentucky Medical Center
| | | | - John T. Slevin
- Neurology Service Veterans Affairs Medical Center, Lexington, KY
- Departments of Neurology and Molecular & Biomedical Pharmacology, University of Kentucky Medical Center
| |
Collapse
|
7
|
Low-frequency stimulation reverses kindling-induced neocortical motor map expansion. Neuroscience 2008; 153:300-7. [PMID: 18358627 DOI: 10.1016/j.neuroscience.2008.01.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 01/05/2008] [Accepted: 01/12/2008] [Indexed: 11/22/2022]
Abstract
Repeated application of low-frequency stimulation can interrupt the development and progression of seizures. Low-frequency stimulation applied to the corpus callosum can also induce long-term depression in the neocortex of awake freely moving rats as well as reduce the size of neocortical movement representations (motor maps). We have previously shown that seizures induced through electrical stimulation of the corpus callosum, amygdala or hippocampus can expand the topographical expression of neocortical motor maps. The purpose of the present study was to determine if low-frequency stimulation administered to the corpus callosum could reverse the expansion of neocortical motor maps induced by seizures propagating from the hippocampus. Adult Long-Evans hooded rats were electrically stimulated in the right ventral hippocampus, twice daily until 30 neocortical seizures were recorded. Subsequently, low-frequency stimulation was administered to the corpus callosum once daily for 20 sessions. High-resolution intracortical microstimulation was then utilized to derive forelimb-movement representations in the left (un-implanted) sensorimotor neocortex. Our results show that hippocampal seizures result in expanded motor maps and that subsequent low-frequency application can reduce the size of the expanded motor maps. Low-frequency stimulation may be an effective treatment for reversing seizure-induced reorganization of brain function.
Collapse
|
8
|
Merlo D, Mollinari C, Inaba Y, Cardinale A, Rinaldi AM, D'Antuono M, D'Arcangelo G, Tancredi V, Ragsdale D, Avoli M. Reduced GABAB receptor subunit expression and paired-pulse depression in a genetic model of absence seizures. Neurobiol Dis 2007; 25:631-41. [PMID: 17207629 DOI: 10.1016/j.nbd.2006.11.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 10/17/2006] [Accepted: 11/05/2006] [Indexed: 10/23/2022] Open
Abstract
Neocortical networks play a major role in the genesis of generalized spike-and-wave (SW) discharges associated with absence seizures in humans and in animal models, including genetically predisposed WAG/Rij rats. Here, we tested the hypothesis that alterations in GABA(B) receptors contribute to neocortical hyperexcitability in these animals. By using Real-Time PCR we found that mRNA levels for most GABA(B(1)) subunits are diminished in epileptic WAG/Rij neocortex as compared with age-matched non-epileptic controls (NEC), whereas GABA(B(2)) mRNA is unchanged. Next, we investigated the cellular distribution of GABA(B(1)) and GABA(B(2)) subunits by confocal microscopy and discovered that GABA(B(1)) subunits fail to localize in the distal dendrites of WAG/Rij neocortical pyramidal cells. Intracellular recordings from neocortical cells in an in vitro slice preparation demonstrated reduced paired-pulse depression of pharmacologically isolated excitatory and inhibitory responses in epileptic WAG/Rij rats as compared with NECs; moreover, paired-pulse depression in NEC slices was diminished by a GABA(B) receptor antagonist to a greater extent than in WAG/Rij rats further suggesting GABA(B) receptor dysfunction. In conclusion, our data identify changes in GABA(B) receptor subunit expression and distribution along with decreased paired-pulse depression in epileptic WAG/Rij rat neocortex. We propose that these alterations may contribute to neocortical hyperexcitability and thus to SW generation in absence epilepsy.
Collapse
Affiliation(s)
- D Merlo
- Istituto Superiore di Sanità, Dipartimento di Biologia Cellulare e Neuroscienze, 00161 Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Matveeva EA, Vanaman TC, Whiteheart SW, Slevin JT. Asymmetric accumulation of hippocampal 7S SNARE complexes occurs regardless of kindling paradigm. Epilepsy Res 2007; 73:266-74. [PMID: 17174072 PMCID: PMC1868484 DOI: 10.1016/j.eplepsyres.2006.11.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2006] [Revised: 10/24/2006] [Accepted: 11/10/2006] [Indexed: 01/25/2023]
Abstract
Modifications of neurotransmission may contribute to the synchronization of neuronal networks that are a hallmark of epileptic seizures. In this study we examine the synaptosomal proteins involved in neurotransmitter release to determine if alterations in their interactions correlate with the chronic epileptic state. Using quantitative western blotting, we measured the levels of 7S SNARE complexes and SNARE effectors in the effected hippocampi from animals that were electrically kindled through stimulation from one of three different foci. All three kindling paradigms, amygdalar, entorhinal, and septal, were associated with an accumulation of 7S SNARE complexes in the ipsilateral hippocampus, measured 1 month after completion of kindling. Of the eight SNARE effectors examined (alpha-SNAP, NSF, SV2A/B, Munc18a/nSec1, Munc13-1, Complexins 1 and 2, and synaptotagmin I), there was a statistically significant bihemispheric increase of hippocampal SV2 and decrease of NSF upon kindling; neither by itself would be expected to account for the asymmetry of SNARE complex distribution. These data suggest that an ipsilateral hippocampal accumulation of SNARE complexes is a permanent alteration of kindling-induced epilepsy, regardless of stimulation pathway. The significance of these findings toward a molecular understanding of epilepsy will be discussed.
Collapse
Affiliation(s)
- Elena A. Matveeva
- Elena A. Matveeva, Ph. D., Dept. Molecular & Cellular Biochemistry, University of Kentucky Medical Center, Lexington, Kentucky 40536-0509, Tel: 859 323-6702 Ext 245, FAX: 859 257-2283,
| | - Thomas C. Vanaman
- Thomas C. Vanaman, Ph.D., Dept. Molecular & Cellular Biochemistry, University of Kentucky Medical Center, Lexington, Kentucky 40536-0509, Tel: 859 257-1347, FAX: 859 257-9670,
| | - Sidney W. Whiteheart
- Sidney W. Whiteheart, Ph.D., Dept. Molecular & Cellular Biochemistry, University of Kentucky Medical Center, Lexington, Kentucky 40536, Tel: 859 323-6702, Ext 245 FAX: 859 257-2283,
| | - John T. Slevin
- John T. Slevin, MD, Neurology Service Veterans Affairs Medical Center, Lexington, KY 40511 and Departments of Neurology and Molecular & Biomedical Pharmacology, University of Kentucky Medical Center, Tel: 859 323-6702 Ext 245, FAX: 859 281-4817,
| |
Collapse
|
10
|
Ghijsen WEJM, Zuiderwijk M, Lopes da Silva FH. Electrically evoked GABA release in rat hippocampus CA1 region and its changes during kindling epileptogenesis. Brain Res 2007; 1135:69-76. [PMID: 17198692 DOI: 10.1016/j.brainres.2006.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Revised: 11/23/2006] [Accepted: 12/01/2006] [Indexed: 11/25/2022]
Abstract
Previous findings on changes in K+-induced GABA release from hippocampal slices during kindling epileptogenesis were reinvestigated using physiological electrical stimulation. For that purpose, a procedure was developed enabling neurochemical monitoring of GABA release locally in the CA1 region of rat hippocampal slices upon tetanic stimulation of Schaffer-collateral fibers. In the presence of a GABA reuptake blocker, subsequent application of short (3 s) pulses of 50-Hz stimuli induced a local transient increase in GABA release. In slices from fully kindled animals, 24 h after the last generalized seizure, tetanically stimulated GABA release was increased in comparison to control slices. In slices from long-term kindled animals, 4-5 weeks after the last seizure, tetanically stimulated GABA release had returned to control levels. Application of the broad low-affinity GABAB receptor antagonist saclofen increased the tetanically stimulated GABA release in control slices, but had no effect in fully kindled slices. In slices from long-term kindled animals, however, saclofen enhanced GABA release similarly as in control slices. We conclude that the transient increase in tetanus-induced GABA release during kindling epileptogenesis is seizure-related, and probably caused by temporarily impaired presynaptic GABAB receptors. The possible relevance of this finding for GABA transmission in epilepsy is discussed.
Collapse
Affiliation(s)
- Wim E J M Ghijsen
- Swammerdam Institute for Life Sciences, Centre for Neuroscience, University of Amsterdam, Kruislaan 320, 1090 GB Amsterdam, The Netherlands.
| | | | | |
Collapse
|
11
|
Abstract
PURPOSE To determine whether seizure activity, repeatedly elicited in the hippocampus, could alter the functional organization of neocortical movement representations (motor maps) and whether a relation exists between the number of afterdischarges recorded in the sensorimotor neocortex and the size of the motor maps. METHODS We electrically kindled the right ventral hippocampus of Long-Evans hooded rats, twice daily, for 40 sessions and recorded the afterdischarges in the stimulated hippocampus and right sensorimotor neocortex. Between 3 and 7 days after the last seizure, we used high-resolution intracortical microstimulation to derive the forelimb-movement representations in the left (un-implanted) sensorimotor neocortex. RESULTS In the hippocampal kindled rats, we observed a dramatic expansion of the area of neocortex that would elicit forelimb movements compared with sham-kindled controls. The number of afterdischarges recorded in the neocortex was significantly and positively correlated with the size of the motor maps. CONCLUSIONS Seizures propagating from the hippocampus have long-distance effects on the functional organization of motor maps.
Collapse
Affiliation(s)
- Francine van Rooyen
- Behavioural Neuroscience Research Group, Department of Psychology, and Calgary Epilepsy Program, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
12
|
Benini R, Avoli M. Altered Inhibition in Lateral Amygdala Networks in a Rat Model of Temporal Lobe Epilepsy. J Neurophysiol 2006; 95:2143-54. [PMID: 16381802 DOI: 10.1152/jn.01217.2005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Clinical and experimental evidence indicates that the amygdala is involved in limbic seizures observed in patients with temporal lobe epilepsy. Here, we used simultaneous field and intracellular recordings from horizontal brain slices obtained from pilocarpine-treated rats and age-matched nonepileptic controls (NECs) to shed light on the electrophysiological changes that occur within the lateral nucleus (LA) of the amygdala. No significant differences in LA neuronal intrinsic properties were observed between pilocarpine-treated and NEC tissue. However, spontaneous field activity could be recorded in the LA of 21% of pilocarpine-treated slices but never from NECs. At the intracellular level, this network activity was characterized by robust neuronal firing and was abolished by glutamatergic antagonists. In addition, we could identify in all pilocarpine-treated LA neurons: 1) large amplitude depolarizing postsynaptic potentials (PSPs) and 2) a lower incidence of spontaneous hyperpolarizing PSPs as compared with NECs. Single-shock stimulation of LA networks in the presence of glutamatergic antagonists revealed a biphasic inhibitory PSP (IPSP) in both NECs and pilocarpine-treated tissue. The reversal potential of the early GABAA receptor–mediated component, but not of the late GABAB receptor–mediated component, was significantly more depolarized in pilocarpine-treated slices. Furthermore, the peak conductance of both fast and late IPSP components had significantly lower values in pilocarpine-treated LA cells. Finally, paired-pulse stimulation protocols in the presence of glutamatergic antagonists revealed a less pronounced depression of the second IPSP in pilocarpine-treated slices compared with NECs. Altogether, these findings suggest that alterations in both pre- and postsynaptic inhibitory mechanisms contribute to synaptic hyperexcitability of LA networks in epileptic rats.
Collapse
Affiliation(s)
- Ruba Benini
- Montreal Neurological Institute and Department of Neurology, McGill University, Montreal, Canada
| | | |
Collapse
|
13
|
Shen L, Nam HS, Song P, Moore H, Anderson SA. FoxG1 haploinsufficiency results in impaired neurogenesis in the postnatal hippocampus and contextual memory deficits. Hippocampus 2006; 16:875-90. [PMID: 16941454 DOI: 10.1002/hipo.20218] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
FoxG1 (formerly BF-1) encodes a transcription factor that regulates neurogenesis in the embryonic telencephalon. The current study suggests that FoxG1 also regulates neurogenesis in the postnatal hippocampus. FoxG1 continues to be strongly expressed in areas of known postnatal neurogenesis, including the subventricular zone of the lateral ventricle and the dentate gyrus (DG) of the hippocampus. Remarkably, FoxG1+/- mice have a 60% decrease in the total number of hippocampal dentate granule cells that is related to a loss of DG neurogenesis. Comparison of acute and chronic BrdU labeling, and PSA-NCAM staining suggests that the stage at which this loss of neurogenesis occurs progresses with age. Juvenile mice FoxG1+/- primarily show failed apparent survival of postnatally born DG neurons, whereas adult FoxG1+/- mice also show impairment of proliferation and initial DG neuron differentiation. Consistent with this process predominantly affecting postnatal hippocampal neurogenesis, BrdU pulses at embryonic days 16, 17, and 18 labels a higher percentage of DG cells in 6-week-old FoxG1+/- mice than in littermate controls. In contrast to the marked effect of FoxG1 haploinsufficiency on postnatal hippocampal neurogenesis, postnatal neurogenesis of olfactory bulb interneurons is grossly unaffected. Behaviorally, FoxG1+/- mice show hyperlocomotion and impaired habituation in the open field, and a severe deficit in contextual fear conditioning that are suggestive of impaired hippocampal function. Although mechanistic connections between FoxG1 haploinsufficiency and either failed postnatal DG neurogenesis or the behavioral deficits remain to be elucidated, these results present a new model system for impaired postnatal neurogenesis in the DG of adult mice.
Collapse
Affiliation(s)
- Lijian Shen
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
14
|
Morimoto K, Fahnestock M, Racine RJ. Kindling and status epilepticus models of epilepsy: rewiring the brain. Prog Neurobiol 2004; 73:1-60. [PMID: 15193778 DOI: 10.1016/j.pneurobio.2004.03.009] [Citation(s) in RCA: 628] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Accepted: 03/24/2004] [Indexed: 01/09/2023]
Abstract
This review focuses on the remodeling of brain circuitry associated with epilepsy, particularly in excitatory glutamate and inhibitory GABA systems, including alterations in synaptic efficacy, growth of new connections, and loss of existing connections. From recent studies on the kindling and status epilepticus models, which have been used most extensively to investigate temporal lobe epilepsy, it is now clear that the brain reorganizes itself in response to excess neural activation, such as seizure activity. The contributing factors to this reorganization include activation of glutamate receptors, second messengers, immediate early genes, transcription factors, neurotrophic factors, axon guidance molecules, protein synthesis, neurogenesis, and synaptogenesis. Some of the resulting changes may, in turn, contribute to the permanent alterations in seizure susceptibility. There is increasing evidence that neurogenesis and synaptogenesis can appear not only in the mossy fiber pathway in the hippocampus but also in other limbic structures. Neuronal loss, induced by prolonged seizure activity, may also contribute to circuit restructuring, particularly in the status epilepticus model. However, it is unlikely that any one structure, plastic system, neurotrophin, or downstream effector pathway is uniquely critical for epileptogenesis. The sensitivity of neural systems to the modulation of inhibition makes a disinhibition hypothesis compelling for both the triggering stage of the epileptic response and the long-term changes that promote the epileptic state. Loss of selective types of interneurons, alteration of GABA receptor configuration, and/or decrease in dendritic inhibition could contribute to the development of spontaneous seizures.
Collapse
Affiliation(s)
- Kiyoshi Morimoto
- Department of Neuropsychiatry, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | | | | |
Collapse
|
15
|
Rodi D, Mazzuferi M, Bregola G, Dumont Y, Fournier A, Quirion R, Simonato M. Changes in NPY-mediated modulation of hippocampal [3H]D-aspartate outflow in the kindling model of epilepsy. Synapse 2003; 49:116-24. [PMID: 12740867 DOI: 10.1002/syn.10216] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The anticonvulsant effect of NPY may depend on Y(2) and/or Y(5) receptor-mediated inhibition of glutamate release in critical areas, such as the hippocampus. However, Y(2) and Y(5) receptor levels have been reported to increase and decrease, respectively, in the epileptic hippocampus, implicating that the profile of NPY effects may change accordingly. The aim of this study was to evaluate the differential effects of NPY on glutamate release in the normal and in the epileptic hippocampus. Thus, we pharmacologically characterized the effects of NPY on the release of [(3)H]D-aspartate, a valid marker of endogenous glutamate, from synaptosomes prepared from the whole hippocampus and from the three hippocampal subregions (dentate gyrus and CA1 and CA3 subfields) of control and kindled rats, killed 1 week after the last stimulus-evoked seizure. In the whole hippocampus, NPY does not significantly affect stimulus-evoked [(3)H]D-aspartate overflow. In synaptosomes prepared from control rats, NPY significantly inhibited 15 mM K(+)-evoked [(3)H]D-aspartate overflow only in the CA1 subfield (approx. -30%). Both Y(2) and Y(5) receptor antagonists (respectively, 1 microM BIIE0246 and 1 microM CGP71683A) prevented this effect, suggesting the involvement of both receptor types. In contrast, in synaptosomes prepared from kindled rats NPY significantly inhibited 15 mM K(+)-evoked [(3)H]D-aspartate overflow in the CA1 subfield and in the dentate gyrus (approx. -30%). Only the Y(2) (not the Y(5)) antagonist prevented these effects. These data indicate a critical role for the Y(2) receptor in the inhibitory control of glutamate release in the kindled hippocampus and, thus, suggest that the anticonvulsant effect of NPY in the epileptic brain is most likely Y(2), but not Y(5), receptor-mediated.
Collapse
Affiliation(s)
- Donata Rodi
- Department of Clinical and Experimental Medicine (Section of Pharmacology), University of Ferrara, 44100 Ferrara, Italy
| | | | | | | | | | | | | |
Collapse
|
16
|
Möykkynen T, Korpi ER, Lovinger DM. Ethanol inhibits alpha-amino-3-hydyroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor function in central nervous system neurons by stabilizing desensitization. J Pharmacol Exp Ther 2003; 306:546-55. [PMID: 12734392 DOI: 10.1124/jpet.103.050666] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ethanol actions on alpha-amino-3-hydyroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors were studied using voltage-clamp recordings from mouse cortical and hippocampal neurons. During whole-cell recordings ethanol (EtOH) inhibited AMPA receptor-mediated currents in a dose-dependent manner at concentrations from 10 to 500 mM. The steady-state component of AMPA-activated current was more sensitive to EtOH than the peak component. To examine the effect of EtOH on a well resolved peak current component, patches were excised from cultured cortical neurons, to which AMPA and EtOH were applied using a piezoelectric solution application system. Under this condition, the peak current was not inhibited significantly by EtOH. To further study possible mechanisms of EtOH inhibition, kainate and AMPA were used to evoke currents in the absence and presence of cyclothiazide. Ethanol inhibition was stronger when receptors were activated by low than high kainate concentrations. Cyclothiazide reduced inhibition by EtOH regardless of the agonist used to activate the receptor. Finally, EtOH inhibition was reduced in a point mutated (L497Y) GluRAi receptor that lacks desensitization. These findings suggest that EtOH inhibits AMPA receptors by stabilizing the desensitized state. Our results can explain some of the variation observed in EtOH inhibition in previous studies, and support the idea that physiologically relevant concentrations of EtOH can have a strong effect on AMPA receptor function.
Collapse
Affiliation(s)
- Tommi Möykkynen
- Department of Molecular Physiology and Biophysics,Vanderbilt University School of Medicine, Nashville, Tenessee, USA
| | | | | |
Collapse
|
17
|
Matveeva EA, Whiteheart SW, Slevin JT. Accumulation of 7S SNARE complexes in hippocampal synaptosomes from chronically kindled rats. J Neurochem 2003; 84:621-4. [PMID: 12558983 DOI: 10.1046/j.1471-4159.2003.01589.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Kindling is a model of complex partial epilepsy wherein periodic application of an initially subconvulsive stimulus leads to first limbic and then generalized tonic-clonic seizures. Several laboratories have reported that augmented neurotransmitter release of l-glutamate is associated with the chronically kindled state. Neurotransmitter release requires membrane proteins called SNAREs, which form transmembrane complexes that participate in vesicle docking and are required for membrane fusion. We show here that kindling by entorhinal stimulation is associated with an accumulation of 7S SNARE complexes in the ipsilateral hippocampus. This increase of 7S SNARE complexes appears to begin early in the kindling process, achieves a peak with full kindling, and remains at this level for at least a month following cessation of further kindling stimuli. The increase is focal and permanently limited to the ipsilateral hippocampus despite progression to generalized electrographic and behavioral seizures. It is not seen in animals that receive electroconvulsive seizures, suggesting it is related to the kindling process itself. The duration and focality of increased 7S SNARE complexes with entorhinal kindling suggest that this is an altered molecular process associated with epileptogenesis.
Collapse
Affiliation(s)
- E A Matveeva
- Department of Molecular and Cellular Biochemistry, University of Kentucky Medical Center, Lexington, Kentucky, USA
| | | | | |
Collapse
|
18
|
Matveeva EA, Whiteheart SW, Vanaman TC, Slevin JT. Phosphorylation of the N-ethylmaleimide-sensitive factor is associated with depolarization-dependent neurotransmitter release from synaptosomes. J Biol Chem 2001; 276:12174-81. [PMID: 11278345 DOI: 10.1074/jbc.m007394200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Critical to SNARE protein function in neurotransmission are the accessory proteins, soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (SNAP), and NSF, that play a role in activation of the SNAREs for membrane fusion. In this report, we demonstrate the depolarization-induced, calcium-dependent phosphorylation of NSF in rat synaptosomes. Phosphorylation of NSF is coincident with neurotransmitter release and requires an influx of external calcium. Phosphoamino acid analysis of the radiolabeled NSF indicates a role for a serine/threonine-specific kinase. Synaptosomal phosphorylation of NSF is stimulated by phorbol esters and is inhibited by staurosporine, chelerythrine, bisindolylmaleimide I, calphostin C, and Ro31-8220 but not the calmodulin kinase II inhibitor, Kn-93, suggesting a role for protein kinase C (PKC). Indeed, NSF is phosphorylated by PKC in vitro at Ser-237 of the catalytic D1 domain. Mutation of this residue to glutamic acid or to alanine eliminates in vitro phosphorylation. Molecular modeling studies suggest that Ser-237 is adjacent to an inter-subunit interface at a position where its phosphorylation could affect NSF activity. Consistently, mutation of Ser-237 to Glu, to mimic phosphorylation, results in a hexameric form of NSF that does not bind to SNAP-SNARE complexes, whereas the S237A mutant does form complex. These data suggest a negative regulatory role for PKC phosphorylation of NSF.
Collapse
Affiliation(s)
- E A Matveeva
- Neurology Service, Department of Veterans Affairs Medical Center, Lexington, Kentucky 40511, USA
| | | | | | | |
Collapse
|
19
|
Blalock EM, Chen KC, Vanaman TC, Landfield PW, Slevin JT. Epilepsy-induced decrease of L-type Ca2+ channel activity and coordinate regulation of subunit mRNA in single neurons of rat hippocampal 'zipper' slices. Epilepsy Res 2001; 43:211-26. [PMID: 11248533 DOI: 10.1016/s0920-1211(00)00199-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
L-type voltage-sensitive Ca2+ channels (VSCCs) preferentially modulate several neuronal processes that are thought to be important in epileptogenesis, including the slow afterhyperpolarization (AHP), LTP, and trophic factor gene expression. However, little is yet known about the roles of L-type VSCCs in the epileptogenic process. Here, we used cell-attached patch recording techniques and single cell mRNA analyses to study L-type VSCCs in CA1 neurons from partially dissociated (zipper) hippocampal slices from entorhinally-kindled rats. L-type Ca2+-channel activity was reduced by >50% at 1.5-3 months after kindling. Following recording, the same single neurons were extracted and collected for mRNA analysis using a recently developed method that does not amputate major dendritic processes. Therefore, neurons contained essentially full complements of mRNA. For each collected neuron, mRNA contents for the L-type pore-forming alpha1D/Ca(v)1.3-subunit and for calmodulin were then analyzed by semiquantitative kinetic RT-PCR. L-type alpha1D-subunit mRNA was correlated with L-type Ca2+-channel activity across single cells, whereas calmodulin mRNA was not. Thus, these results appear to provide the first direct evidence at the single channel and gene expression levels that chronic expression of an identified Ca2+-channel type is modulated by epileptiform activity. Moreover, the present data suggest the hypothesis that down regulation of alpha1D-gene expression by kindling may contribute to the long-term maintenance of epileptiform activity, possibly through reduced Ca2+-dependent AHP and/or altered expression of other relevant genes.
Collapse
Affiliation(s)
- E M Blalock
- Department of Pharmacology, College of Medicine, University of Kentucky, MS-310 UKMC, Lexington, KY 40536, USA.
| | | | | | | | | |
Collapse
|
20
|
Ueda Y, Doi T, Tokumaru J, Mitsuyama Y, Willmore LJ. Kindling phenomena induced by the repeated short-term high potassium stimuli in the ventral hippocampus of rats: on-line monitoring of extracellular glutamate overflow. Exp Brain Res 2000; 135:199-203. [PMID: 11131504 DOI: 10.1007/s002210000509] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We observed in this study that transient periodic stimuli in response to high potassium (40 mM, 5 min at 40-min intervals, 13-15 stimuli) perfusion in the ventral hippocampus of rats led to the appearance of a kindling-like phenomenon. In this kindling-like phenomenon, we confirmed the augmentation of glutamate release and the prolongation of spike discharge. Changes in the extracellular glutamate levels before and after the stimuli were monitored by the application of in vivo microdialysis combined with on-line enzyme fluorometric detection of glutamate. This kindling-like phenomenon was not observed when microdialysis was carried out using a Ca++-free medium. The augmentation of glutamate release and the prolongation of spike discharge with epileptic convulsions are completely Ca++ dependent. These data show that repeated short-term increases in extracellular glutamate levels results in the enhancement of excitatory neuronal systems, causing an excessive propagation of seizure activity and culminating in secondary generalized seizures.
Collapse
Affiliation(s)
- Y Ueda
- Miyazaki Medical College, Department of Psychiatry, Miyazaki-gun, Japan.
| | | | | | | | | |
Collapse
|
21
|
Marti M, Bregola G, Morari M, Gemignani A, Simonato M. Somatostatin release in the hippocampus in the kindling model of epilepsy: a microdialysis study. J Neurochem 2000; 74:2497-503. [PMID: 10820211 DOI: 10.1046/j.1471-4159.2000.0742497.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Somatostatin biosynthesis in the hippocampus is activated during and following kindling epileptogenesis. The aim of this study was to investigate whether this phenomenon is associated with enhanced somatostatin release in vivo. Experiments have been run in awake, freely moving rats, implanted with a bipolar electrode in the right amygdala (for kindling stimulation), and with a recording electrode and a microdialysis probe in the left hippocampus. Basal somatostatin-like immunoreactivity (-LI) release was significantly greater in kindled than naive rats. In naive rats, a 2-min perfusion with 100 mM K(+) did not affect behavior and EEG recordings and nonsignificantly increased somatostatin-LI release; a 10-min K(+) perfusion evoked numerous wet dog shakes, electrical seizures (class 0; latency congruent with 8 min, duration congruent with 8 min), and somatostatin-LI release ( congruent with 350% of basal); and a single kindling after-discharge (4 +/- 3-s duration in the hippocampus) also evoked somatostatin-LI release ( congruent with 200% of basal). In kindled rats, a 2-min 100 mM K(+) perfusion evoked hippocampal discharges in three of seven animals (latency congruent with 2 min, mean duration congruent with 1.5 min) and increased somatostatin-LI release ( congruent with 250% of basal); a 10-min K(+) perfusion evoked behavioral seizures (class 1 to 5, latency congruent with 4 min, mean duration congruent with 12 min) with numerous wet dog shakes and robust somatostatin-LI release ( congruent with 350% of basal); and a kindling stimulation evoked generalized seizures (class 4 or 5, 77 +/- 15-s duration in the hippocampus) with remarkable somatostatin-LI release ( congruent with 300% of basal). These data demonstrate that hippocampal somatostatin release is increased in the kindling model in vivo.
Collapse
Affiliation(s)
- M Marti
- Dipartimento di Medicina Clinica e Sperimentale, Sezione di Farmacologia, Università di Ferrara, Italy
| | | | | | | | | |
Collapse
|
22
|
Pfund Z, Chugani DC, Juhász C, Muzik O, Chugani HT, Wilds IB, Seraji-Bozorgzad N, Moore GJ. Evidence for coupling between glucose metabolism and glutamate cycling using FDG PET and 1H magnetic resonance spectroscopy in patients with epilepsy. J Cereb Blood Flow Metab 2000; 20:871-8. [PMID: 10826538 DOI: 10.1097/00004647-200005000-00014] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The purpose of this study was to examine the relation between glucose metabolism and glutamate concentration in the human brain, in both the normal and diseased state. Regional values of glucose metabolism measured with 2-deoxy-2[F-18]fluoro-D-glucose positron emission tomography (FDG PET) studies and single-voxel proton magnetic resonance spectroscopy (1H MRS) measurements of the glutamate/ glutamine/gamma-aminobutyric acid (Glx) tissue concentration were determined in multiple brain regions in 11 patients (5 girls and 6 boys, mean age 7.5 years) with medically intractable partial epilepsy. FDG PET and 1H MRS studies were performed in the interictal state in seven patients and in the ictal/periictal state in four patients. Regions of interest were identified in epileptic cortex (determined by intracranial and/or scalp electroencephalography) and in contralateral normal brain regions. Lower glucose metabolism and lower Glx concentrations were found in the epileptic focus than in the contralateral normal cortex in all seven patients examined in the interictal state, whereas higher glucose metabolism and higher Glx concentrations were observed in the epileptic focus in the four patients who had ictal/periictal studies. Significant correlations were found between the values of cerebral glucose utilization and Glx concentration in epileptic brain region, in nonepileptic brain regions, and in epileptic and nonepileptic regions combined. These results demonstrate a significant relation between glucose metabolism and glutamate/glutamine concentration in normal and epileptic cerebral cortex. This relation is maintained in both the interictal and ictal states.
Collapse
Affiliation(s)
- Z Pfund
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University School of Medicine, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Nishiyama M, Hori N, Watanabe T, Hori T, Ogata K, Watanabe K, Maru E, Shimizu T. Lipid peroxides and neuronal plasticity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 469:43-8. [PMID: 10667308 DOI: 10.1007/978-1-4615-4793-8_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Affiliation(s)
- M Nishiyama
- Division of Neurosurgery, Tottori University, Faculty of Medicine, Yonago
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Rauca C, Pohle W, Grunenberg K, Franze S. Hypothermia inhibits pentylenetetrazol kindling and prevents kindling-induced deficit in shuttle-box avoidance. Pharmacol Biochem Behav 2000; 65:23-30. [PMID: 10638631 DOI: 10.1016/s0091-3057(99)00132-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In this study, we evaluated the effects of hypothermic exposure on pentylenetetrazol (PTZ) kindling and the resulting deficit of shuttle-box avoidance learning in rats. Additionally, to acknowledge neuronal cell loss, we estimated the number of toluidine blue-positive cells in different brain regions after PTZ kindling and hypothermia exposure in comparison to different normothermic and hypothermic controls. To obtain hypothermic conditions over a period of up to about 3 h, 30 min after PTZ application the animals were treated with 5 mg/kg chlorpromazine (CP) and 25 min later exposed to 15 degrees C cold water for 5 min. Under these conditions the rectal and the striatal temperature were reduced up to a maximum of 5 degrees C. The additional injection of CP did not influence the development of PTZ kindling. Animals treated with PTZ/CP and exposed to hypothermia did not reach the criterion for kindling. Furthermore, this group of animals did not demonstrate any learning deficit. Forty-eight hours after the last kindling application the number of toluidine blue-stained cells was decreased in the investigated brain regions (hippocampal CA1 and CA3 sector, hilus, and cingular cortex) of kindled rats. Hypothermia protected from cell damage in the hippocampal CA3 sector and in the hilus. Results suggest that the inhibiting effect of hypothermia on the development of kindling and the following learning deficit possibly resulted from the suppression of cell damage in distinct brain structures on PTZ-kindled rats.
Collapse
Affiliation(s)
- C Rauca
- Department of Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke-University Magdeburg, Germany
| | | | | | | |
Collapse
|
25
|
Abstract
Recent evidence shows that neuropeptide expression in the CNS is markedly affected by seizure activity, particularly in the limbic system. Changes in neuropeptides in specific neuronal populations depend on the type and intensity of seizures and on their chronic sequelae (i.e. neurodegeneration and spontaneous convulsions). This paper reviews the effects of seizures on somatostatin-containing neurons, somatostatin mRNA and immunoreactivity, the release of this peptide and its receptor subtypes in the CNS. Differences between kindling and status epilepticus in rats are emphasized and discussed in the light of an inhibitory role of somatostatin on hippocampal excitability. Pharmacological studies show that somatostatin affects electrophysiological properties of neurons, modulates classical neurotransmission and has anticonvulsant properties in experimental models of seizures. This peptidergic system may be an interesting target for pharmacological attempts to control pathological hyperactivity in neurons, thus providing new directions for the development of novel anticonvulsant treatments.
Collapse
Affiliation(s)
- A Vezzani
- Department of Neuroscience, Istituto di Recerche Farmacologiche, 'Mario Negri', Via Eritrea 62, 20157, Milano, Italy.
| | | |
Collapse
|
26
|
Meldrum BS, Akbar MT, Chapman AG. Glutamate receptors and transporters in genetic and acquired models of epilepsy. Epilepsy Res 1999; 36:189-204. [PMID: 10515165 DOI: 10.1016/s0920-1211(99)00051-0] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glutamate, the principal excitatory neurotransmitter in the brain, acts on three families of ionotropic receptor--AMPA (alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid), kainate and NMDA (N-methyl-D-aspartate) receptors and three families of metabotropic receptor (Group I: mGlu1 and mGlu5; Group II: mGlu2 and mGlu3; Group III: mGlu4, mGlu6, mGlu7 and mGlu8). Glutamate is removed from the synaptic cleft and the extracellular space by Na+-dependent transporters (GLAST/EAAT1, GLT/EAAT2, EAAC/EAAT3, EAAT4, EAAT5). In rodents, genetic manipulations relating to the expression or function of glutamate receptor proteins can induce epilepsy syndromes or raise seizure threshold. Decreased expression of glutamate transporters (EAAC knockdown, GLT knockout) can lead to seizures. In acquired epilepsy syndromes, a wide variety of changes in receptors and transporters have been described. Electrically-induced kindling in the rat is associated with functional potentiation of NMDA receptor-mediated responses at various limbic sites. Group I metabotropic responses are enhanced in the amygdala. To date, no genetic epilepsy in man has been identified in which the primary genetic defect involves glutamate receptors or transporters. Changes are found in some acquired syndromes, including enhanced NMDA receptor responses in dentate granule cells in patients with hippocampal sclerosis.
Collapse
Affiliation(s)
- B S Meldrum
- Department of Clinical Neurosciences, Institute of Psychiatry, De Crespigny Park, London, UK.
| | | | | |
Collapse
|
27
|
De Sarro A, Naccari F, De Sarro G. Enhanced susceptibility of pentylenetetrazole kindled mice to quinolone effects. Int J Antimicrob Agents 1999; 12:239-44. [PMID: 10461842 DOI: 10.1016/s0924-8579(99)00067-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The present study was designed to examine the ability of different quinolones to affect the seizure severity and the latency of development of chemical kindling produced by repeated treatment using a subconvulsant dose of pentylenetetrazole (PTZ). A group of mice (kindled control) were treated subcutaneously (s.c.) with vehicle + PTZ (30 mg/kg, three times a week) for 6 consecutive weeks and the changes in excitability associated with the kindling state were observed over the following 2 h. A second group of mice were injected intraperitoneally (i.p.) with the following quinolone derivatives, ciprofloxacin (ciprox), pefloxacin (peflox), ofloxacin (oflox), cinoxacin (cinox), nalidixic acid (nalidixic), 1-cyclopropyl-6-amino-7-tetrahydroisoquinoline-8-methyl-4-oxo-1,4-dihydr oquinoline-3-carboxylic acid (M5) and 1-cyclopropyl-7-tetrahydro-isoquinoline-8-methyl-4-oxo-1,4-dihydroquinol ine-3-carboxylic acid (MH5) at a dose of 20 mg/kg 15 min before receiving a subconvulsant dose of PTZ (30 mg/kg, s.c.). The results showed that pretreatment with some of the quinolones tested facilitated the development of kindling to PTZ-induced seizures. In particular, ciprox, peflox, oflox, M5 and MH5 derivatives variously increased the development of kindling to PTZ induced seizures, whilst cinox and nalidix did not significantly affect it. Additionally we determined whether the enhanced susceptibility of kindled mice only occurred after relatively short intervals following the last seizure or whether it was a more permanent phenomenon. For the study of the persistence of kindling, the animals were rechallenged with the kindling stimulus (PTZ 25 mg/kg, s.c.) 15 and 30 days after the last injection of the chronic treatment with PTZ (30 mg/kg, s.c.) and the behavioural changes in the kindled mice were compared with the control ones (chronically treated with vehicle). The present data demonstrated that kindling produced long-lasting alterations, substantiating that epileptogenesis initiated by kindling renders the brain more susceptible to central nervous system (CNS) side effects of quinolones. An interaction between PTZ and quinolone derivatives which involves either an inhibition of gamma-aminobutyric acid (GABA) neurotransmission or/and an increase in the function of the excitatory amino acid (EAA) system is suggested.
Collapse
Affiliation(s)
- A De Sarro
- Institute of Pharmacology, School of Medicine, Policlinico Universitario, Messina, Italy.
| | | | | |
Collapse
|
28
|
Abstract
Glutamatergic synapses play a critical role in all epileptic phenomena. Broadly enhanced activation of post-synaptic glutamate receptors (ionotropic and metabotropic) is proconvulsant. Antagonists of NMDA receptors and AMPA receptors are powerful anticonvulsants in many animal models of epilepsy. A clinical application of pure specific glutamate antagonists has not yet been established. Many different alterations in glutamate receptors or transporters can potentially contribute to epileptogenesis. Several genetic alterations have been shown to be epileptogenic in animal models but no specific mutation relating to glutamatergic function has yet been linked to a human epilepsy syndrome. There is clear evidence for altered NMDA receptor function in acquired epilepsy in animal models and in man. Changes in metabotropic receptor function may also play a key role in epileptogenesis.
Collapse
Affiliation(s)
- A G Chapman
- Department of Clinical Neuroscience, Institute of Psychiatry, London, UK
| |
Collapse
|
29
|
|
30
|
Hendriksen H, Kamphuis W, Lopes da Silva FH. Changes in voltage-dependent calcium channel alpha1-subunit mRNA levels in the kindling model of epileptogenesis. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 50:257-66. [PMID: 9406942 DOI: 10.1016/s0169-328x(97)00196-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The establishment of a focus of epileptiform activity in the hippocampus of the rat, using the kindling paradigm, leads to enhanced voltage-dependent calcium conductance of CA1 pyramidal neurones (G.C. Faas, M. Vreugdenhil, W.J. Wadman, Calcium currents in pyramidal CA1 neurones in vitro after kindling epileptogenesis in the hippocampus of the rat, Neuroscience 75 (1996) 57-67; M. Vreugdenhil, W.J. Wadman, Kindling-induced long-lasting enhancement of calcium in hippocampal CA1 area of the rat: relation to calcium-dependent inactivation, Neuroscience 59 (1994) 105-114). Using semi-quantitative in situ hybridization techniques, we investigated whether these changes were associated with an altered expression of the genes that encode for the alpha1A-E-subunits of the voltage-dependent calcium channels (VDCC). Kindling epileptogenesis was induced in rats that received an electrical tetanic stimulation of the Schaffer collateral/commissural fibre pathway in the hippocampus twice daily. Two groups of rats were studied before the appearance of generalized seizures, one group after at least 5 generalized seizures (fully kindled) and one group was investigated at long-term (28 days) after the last seizure. During the initial stages of epileptogenesis, the alpha1A-, alpha1D- and alpha1E-subunit mRNA levels were significantly increased in the different hippocampal subareas in comparison to the levels in control animals. In contrast, alpha1B-subunit gene expression decreased in the CA area and dentate gyrus. No significant change was observed in the alpha1C-I and alpha1C-II expression. At the fully kindled stage, the only significant change was an up-regulation of the alpha1B-subunit mRNA levels in the CA3 area, 24 h after the last seizure. No change in VDCC alpha1-subunit gene expression was found in animals investigated long-term after the establishment of the fully kindled state. Thus, the VDCC alpha1-subunit gene expression is altered in a subclass-specific manner during the early stages of kindling and may play a role in the establishment of a kindled focus, possibly caused by an alteration of the population of VDCCs involved in neurotransmitter release. The absence of long-lasting changes suggests that the maintenance of a kindled focus is not due to persisting alterations in VDCC alpha1 mRNA levels.
Collapse
Affiliation(s)
- H Hendriksen
- Graduate School for the Neurosciences, Institute of Neurobiology, University of Amsterdam, The Netherlands.
| | | | | |
Collapse
|
31
|
Akbar MT, Torp R, Danbolt NC, Levy LM, Meldrum BS, Ottersen OP. Expression of glial glutamate transporters GLT-1 and GLAST is unchanged in the hippocampus in fully kindled rats. Neuroscience 1997; 78:351-9. [PMID: 9145792 DOI: 10.1016/s0306-4522(96)00570-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In situ hybridization techniques and quantitative western blotting were used to study the expression of the glial glutamate transporter GLT-1 and GLAST in the brains of normal (implanted, non-kindled) and fully kindled rats. Wistar rats were implanted with stimulating electrodes in the basolateral amygdala, and killed 28 days after the stimulated group had shown stage 5 seizures on five occasions. The brains were processed for in situ hybridization of messenger RNA for GLT-1 using 35S-labelled oligonucleotide probes or digoxigenin-labelled riboprobes. Paired (kindled and non-kindled) sections were used for qualitative and quantitative analyses. Image analysis of autoradiograms showed no change in expression of GLT-1 messenger RNA in any region of the hippocampus or in the cortex. An increase in expression of GLT-1 messenger RNA (expressed as percentage difference of control) was observed bilaterally in the striatum in kindled animals (16-21%, P<0.05). Nuclear emulsion-dipped sections showed predominant glial cell labelling in the hippocampus. Particle density analysis revealed reduced cell labelling in some kindled vs control pairs but overall there was no significant reduction in labelling in CA1. Equivalent results were found in CA1 using digoxigenin-labelled riboprobes. Quantitative immunoblotting also revealed no change in GLT-1 or GLAST transporter protein in the hippocampus of kindled animals. From these data we conclude that the enduring seizure susceptibility associated with the fully kindled state is unlikely to involve alterations in hippocampal GLT-1 messenger RNA or GLT-1 and GLAST transporter protein expression.
Collapse
Affiliation(s)
- M T Akbar
- Department of Neurology, Institute of Psychiatry, London, U.K
| | | | | | | | | | | |
Collapse
|
32
|
Croucher MJ, Ruffle KL, Bradford HF. The effects of focal N-methyl-D-aspartate pretreatment on the parameters of amygdaloid electrical kindling. Eur J Pharmacol 1997; 319:207-13. [PMID: 9042592 DOI: 10.1016/s0014-2999(96)00868-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Evidence is accumulating for a role of glutamate in both the development (epileptogenesis) and spread of epileptic neuronal hyperactivity in the brain. In the present investigation we examined the influence of daily focal pretreatment with the selective glutamate receptor agonist N-methyl-D-aspartate (NMDA) on the parameters of amygdaloid electrical kindling, an animal model of human complex partial and secondary generalised focal seizures. Pretreatment with NMDA significantly increased the electrical afterdischarge threshold in this model. With subsequent daily suprathreshold electrical stimulation, however, NMDA pretreatment enhanced the kindling process as shown by both electroencephalographic and motor seizure responses. Marked reductions in the number of stimulations required to reach each distinct stage of kindling development were evident. The number of stimulations required to achieve the fully kindled state was approximately halved by pretreatment with NMDA (6.8 +/- 1.6 stimulations) compared with control, buffer-pretreated animals (11.6 +/- 1.4 stimulations; mean +/- S.E.M.; P < 0.05). Consistent with this, the mean durations of the electrically-evoked afterdischarges on most NMDA pretreatment days were significantly increased compared to those recorded in control animals. Importantly, fully kindled animals showed a markedly enhanced sensitivity to focally applied NMDA. The results of the present experiments provide strong in vivo evidence to support the concept that ion fluxes through NMDA receptor-linked cation channels play a major role in the mechanisms of kindling epileptogenesis. Extracellular glutamate at abnormally raised levels, acting at least in part via NMDA receptors, may be the principal agent triggering many forms of epilepsy.
Collapse
Affiliation(s)
- M J Croucher
- Department of Pharmacology, Charing Cross and Westminster Medical School, London, UK
| | | | | |
Collapse
|
33
|
Abstract
Seizures are the most frequent neurological event in newborns (NBs), provoked often by noxae not apt to cause them in later life. This is because receptor families of excitatory amino acids (EAA) are overexpressed at this stage of brain ontogenesis, which is also why most neonatal seizures rapidly abate, even when neurological deficits persist. The brain's immaturities dictate distinct seizure phenotypes. A classification proposed in the late 1960s has been criticized, and a new one has been advocated, based on correlations between EEGs and behaviors, leading to a classification of seizures into 'epileptic' and 'non-epileptic'. The taxonomic pitfalls of these classifications are discussed, and the notion advanced that many seizures fail to fulfil the criteria to label them as epileptic. While etiological factors have changed in time, the striking dichotomy in outcome has persisted. Many etiologies, often multifactorial, are unique in NBs, and they are discussed with reference to diagnosis and therapies. Four syndromes of NB seizures, accepted into the International Classification of the Epilepsies, are critically analyzed, some appearing to rest on fragile grounds. Controversies persist whether seizures per se are injurious to the immature brain. Clinical studies suggest that neither duration in days or length of seizure phenotypes correlates with outcomes, the most valid prognostic indices being offered by etiologies and by patterns of EEG polygraphy. However, because most seizures are symptomatic, it may be difficult to distinguish morbidity due to underlying pathology from that possibly added by seizures. Animal experiments suggested that they are injurious. The theory of energy failure, postulated to cause a cascade of events leading to inhibitions of DNA, proteins, lipids and disrupted neuronal proliferation, synaptogenesis, myelination, has largely been disproved. Brains of immature animals have been shown to have the oxidative machinery needed to fulfill energy demands, even during status convulsivus. They are also capable of using anaerobic metabolism and require less ATP when aerobic energy production ceases. Recent explanations for the injurious consequences of hypoxic ischemia and of prolonged convulsions postulate that neuronal damage occurs from excessive release of EAA which, by binding to their ligand-gated ionic receptors, cause a large influx of Ca2+, resulting in cell death. Because of the overabundance of EAA receptors in early ontogenesis, the excitotoxic hypothesis would appear attractive, but some observations militate against it. Among these is the dissociation found between the focal neurotoxicities induced by EAA injected into the brain and their absence following the concomitant convulsions. The latter are not blocked by pretreatment with EAA antagonists, while these prevent injuries caused by the injected EAA. There is no convincing evidence that excessive release of EAA occurs during NBs' seizures. Even if it does occur, it has been shown that immature neurons have a better capacity to self-protect from increased Ca2+ influx, and also that direct application of glutamate to immature neurons leads to significantly lower Ca2+ influx. These data raise doubts about the postulated excitotoxicity caused by NBs' seizures, being consistent with the fact that no one, so far, has observed neuronal damage from drug-induced convulsive states in NBs. Lack of overt neuronal injuries does not preclude that long-term subtle changes might be induced by noxae apt to provoke transient ictal events. Thus models developed in our laboratories demonstrate that long-term epileptogenicity results following postnatal O2 deprivation without evidence of neuronal injuries or of long-term behavioral or electrophysiological alteration. However, both age at which hypoxia occurs and specific proconvulsant methods used strictly determine whether increased epileptogenicity will occur.
Collapse
|
34
|
Abstract
The nature and value of various animal models of epilepsy for the study and understanding of the human epilepsies are reviewed, with special reference to the ILAE classification of seizures. Kindling as a model of complex-partial seizures with secondary generalisation is treated in detail, dwelling principally on the evidence that the neurotransmitters glutamate and GABA are centrally involved in the kindling process. Kindling in the entorhinal cortex-hippocampus system and its relationship to LTP are analysed in detail. Changes in amino acid content in animal and human brain tissue following onset of the epileptic state are reviewed with special reference to glutamate and GABA. Studies of changes in the extent of basal and stimulus-evoked release of glutamate and GABA both in vivo (microdialysis) and in vitro (brain slices) are evaluated. This includes both kindling and other models of epilepsy, and microdialysis of human patients with epilepsy. Experiments which study the influence of pre-synaptic metabotropic glutamate receptors on glutamate release, and consequently on the extent of electrical kindling, are described. This pre-synaptic control of glutamate release can be studied using synaptosomes. The significance of the ability of focal intracerebrally injected glutamate and NMDA to cause (chemical) kindling and the strong sensitivity of this process to pre-treatment with NMDA receptor antagonists is analysed. Electrical and chemical kindling effects are additive, indicating the existence of mechanisms in common. They are both sensitive to NMDA antagonists and the common mechanism is probably NMDA receptor activation due to the presence of exogenous (chemical) or endogenous (electrically-released) extracellular glutamate. The participation of the NMDA receptor in the generation of the spontaneous hyperactivity which characterises the chronic epileptic state is reviewed. This includes the entry of Ca2+ to stimulate various post-synaptic phosphorylation processes, and possible modulation of NMDA receptor population size and sensitivity. The question of whether neurotransmitter glutamate is involved in initiation and/or spread of seizures is discussed.
Collapse
Affiliation(s)
- H F Bradford
- Department of Biochemistry, Imperial College of Science, Technology and Medicine, South Kensington, London, U.K
| |
Collapse
|
35
|
Dalby NO, Rondouin G, Lerner-Natoli M. Increase in GAP-43 and GFAP immunoreactivity in the rat hippocampus subsequent to perforant path kindling. J Neurosci Res 1995; 41:613-9. [PMID: 7563241 DOI: 10.1002/jnr.490410507] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Kindling is an animal model of epilepsy which is accompanied by morphological and biochemical changes in the brain, including sprouting of fibers and increased transmitter release. Here we have examined the immunocytochemical expression of 1) GAP-43, a growth-associated protein, which is a neuron-specific PKC substrate, particularly expressed in development and regeneration and 2) glial fibrillary acidic protein (GFAP), part of the astrocytic cytoskeleton, after perforant path kindling. Subsequent to kindling, GAP-43 immunoreactivity was increased in CA1 stratum lacunosum-moleculare and the inner and outer molecular layer of the fascia dentata. Other hippocampal subregions showed a lower increase. GFAP immunoreactivity was increased in the entire hippocampus, but especially in stratum lacunosum-moleculare of the CA1 and the hilus of fascia dentata. The difference between the number of GFAP-positive profiles in the hippocampus of control rats and in fully kindled rats was found to be non-significant. We interpret these findings as being related to both plastic neuronal changes and possible neuronal degeneration.
Collapse
Affiliation(s)
- N O Dalby
- Institut de Biologie, CNRS UPR9008, INSERMU249, Montpellier, France
| | | | | |
Collapse
|
36
|
Akiyama K, Ono M, Kohira I, Daigen A, Ishihara T, Kuroda S. Long-lasting increase in protein kinase C activity in the hippocampus of amygdala-kindled rat. Brain Res 1995; 679:212-20. [PMID: 7633882 DOI: 10.1016/0006-8993(95)00221-b] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Previous studies have demonstrated that membrane-associated protein kinase C (PKC) activities in the right and left hippocampus of rats kindled from the left hippocampus increased significantly at 4 weeks [9] and 4 months [22] after the last seizure compared with those in matched control rats. In this study, we investigated the effect of kindling from the left amygdala on PKC activities in the amygdala/pyriform cortex and hippocampus at long seizure-free intervals (4 and 16 weeks) from the last amygdala-kindled seizure. Membrane-associated PKC activity of the kindled group increased significantly only in the left hippocampus compared with the left side control (the left hippocampus of rats subjected to a sham operation) at 4 weeks (by 34%, P < 0.03) and 16 weeks (by 24%, P < 0.05) after the last seizure. There was no significant alteration in the membrane-associated PKC activity of the kindled group in the right hippocampus or amygdala/pyriform cortex in any seizure-free interval after the last amygdala seizure. Cytosolic PKC activity did not differ between the kindled and control groups in any brain region examined in any seizure-free interval. At 16 weeks after the last seizure, the PKC activity in the P1 fraction of the kindled group increased significantly only in the left hippocampus (by 49%, P < 0.005), but not in the right hippocampus. Neither PKC activity in the P2 fraction nor that in the cytosolic fraction was altered in the kindled group after this seizure-free interval.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- K Akiyama
- Department of Neuropsychiatry, Okayama University Medical School, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Ueda Y, Tsuru N. Simultaneous monitoring of the seizure-related changes in extracellular glutamate and gamma-aminobutyric acid concentration in bilateral hippocampi following development of amygdaloid kindling. Epilepsy Res 1995; 20:213-9. [PMID: 7796793 DOI: 10.1016/0920-1211(94)00081-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We simultaneously monitored the seizure-related changes in extracellular hippocampal glutamate (Glu) and gamma-aminobutyric acid (GABA) concentration in brain dialysates in order to clarify the role of Glu and GABA in the development of kindling. Brain dialysates were collected every 5 min from 10 min prior to 80 min after stimulus in the three developing conditions consisting of pre-kindling state, stage 3 (C-3), and five consecutive stage 5 (5*C-5) following kindling in the same rat. Extracellular Glu level increased rapidly, lasting for only 5 min after stimulus. The post-stimulus ratio of Glu increase in partially kindled rats (C-3) was 2.5-3.5 times of the baseline, and in fully kindled rats it was about 5 times of the baseline. Extracellular GABA concentration enhanced gradually, reaching a plateau level at 15-20 min and lasting for several hours after stimulus at each stage. The enhancement of GABA level was about 1.5 times of the baseline in partially kindled stage, and was about 2.5 times of the baseline in fully kindled stage. There was no significant difference between the two hemispheres with respect to either the time-course or the magnitude of Glu and GABA increase respectively. These data show that progressive, transient and stimulus-induced enhancement of extracellular Glu levels combined with long-lasting elevation of extracellular GABA levels in the bilateral ventral hippocampi results in imbalance between the excitatory and inhibitory neuronal systems, causing excessive propagation of seizure activity, culminating in the secondary generalized seizure of amygdaloid kindling.
Collapse
Affiliation(s)
- Y Ueda
- Department of Psychiatry, Miyazaki Medical College, Japan
| | | |
Collapse
|
38
|
Yamagata Y, Obata K, Greengard P, Czernik AJ. Increase in synapsin I phosphorylation implicates a presynaptic component in septal kindling. Neuroscience 1995; 64:1-4. [PMID: 7708197 DOI: 10.1016/0306-4522(94)00492-n] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Synaptic plasticity in the CNS is thought to be an important component of learning and memory. Kindling is an animal model of synaptic plasticity in which repetitive local electrical stimulation eventually leads to a generalized motor seizure. Once established, the sensitivity of kindled animals to this epileptic condition is long-lasting. An increase in synaptic efficacy appears to underlie the plastic changes observed in kindling but the molecular mechanisms involved remain unknown. Here we demonstrate that the phosphorylation state of synapsin I, a synaptic vesicle-associated protein which has been implicated in the regulation of neurotransmitter release, is significantly increased in hippocampus and parietal cortex of rats two weeks after the establishment of septal kindling. Furthermore, K(+)-evoked release of L-glutamate is significantly increased in synaptosomes prepared from cerebral cortex of kindled animals. Thus, changes within the presynaptic nerve terminal may contribute, at least in part, to the long-lasting modification in neuronal function induced by kindling.
Collapse
Affiliation(s)
- Y Yamagata
- Laboratory of Neurochemistry, National Institute for Physiological Sciences, Okazaki, Japan
| | | | | | | |
Collapse
|
39
|
Kamphuis W, De Rijk TC, Talamini LM, Lopes da Silva FH. Rat hippocampal kindling induces changes in the glutamate receptor mRNA expression patterns in dentate granule neurons. Eur J Neurosci 1994; 6:1119-27. [PMID: 7952292 DOI: 10.1111/j.1460-9568.1994.tb00609.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The expression level of the mRNAs encoding the Flip and Flop versions of the AMPA-selective glutamate receptor subunits A, B, C and D was studied using in situ hybridization in the hippocampus of rats kindled by Schaffer collateral/commissural fibre stimulation. The expression levels of the Flip variant of GluR-A, B and C mRNAs were bilaterally enhanced in the dentate granule neurons of fully kindled animals 24 h after the last seizure. These changes were already observed after the sixth kindling stimulation (preconvulsive-stage), but not after a single afterdischarge. Four weeks after the last seizure, when the animals were still hypersensitive to kindling stimulations, only GluR-A Flip expression was enhanced. These results suggest that kindling epileptogenesis is accompanied by an increased number and enhanced sensitivity of the expressed AMPA type glutamate receptors in the fascia dentata, leading to an enhanced excitatory synaptic transmission which may contribute to the process of kindling epileptogenesis.
Collapse
Affiliation(s)
- W Kamphuis
- Graduate School for the Neurosciences, University of Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
40
|
Ueda Y, Tsuru N. Bilateral seizure-related changes of extracellular glutamate concentration in hippocampi during development of amygdaloid kindling. Epilepsy Res 1994; 18:85-8. [PMID: 7916288 DOI: 10.1016/0920-1211(94)90036-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
To monitor the seizure-related changes of extracellular hippocampal glutamate (Glu) concentration during the development of amygdaloid kindling, we used brain dialysates and an enzymatic cycling technique for Glu determination with a highly sensitive assay and high time resolution (1 min). The extracellular Glu level was transiently (for 3 min) enhanced after stimulus and returned rapidly to baseline. In partially kindled rats (stage 3), the extracellular Glu level during the first minute post stimulus was 2.5-3.5-fold that of baseline, while fully kindled rats exhibited about a 5-fold increase in Glu level. Amygdaloid kindling is accompanied by a progressive, transient, stimulus-induced enhancement of extracellular Glu levels during the first minute post stimulus in both hippocampi.
Collapse
Affiliation(s)
- Y Ueda
- Department of Psychiatry, Miyazaki Medical College, Japan
| | | |
Collapse
|
41
|
Zharikova AD, Arkhipov VI. Reversible activation of GABA and L-glutamate uptake into synaptosomes isolated from the rat brain in response to a single carbacholine injection into hippocampus. BEHAVIORAL AND NEURAL BIOLOGY 1994; 61:214-7. [PMID: 8067976 DOI: 10.1016/s0163-1047(05)80003-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In the present investigation the functional activity of transport systems mediating the GABA and L-glutamate uptake into nerve terminals of the rat brain cortex and hippocampus in response to a single carbacholine administration to hippocampus was studied. It has been established that synaptosomes isolated from the brain cortex and hippocampus of rats used in the experiments 24 h after a single carbacholine injection possess an increased capability of GABA and L-glutamate accumulation, and 48 h later the GABA and L-glutamate uptake begins to return to its control level and was equal to it on seventh day after injection.
Collapse
Affiliation(s)
- A D Zharikova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region
| | | |
Collapse
|
42
|
Nitsch C, Maly IP, Möri D, Scotti AL. Evidence for the colocalization of parvalbumin and glutamate, but not GABA, in the perforant path of the gerbil hippocampal formation: a combined immunocytochemical and microquantitative analysis. J Neurochem 1994; 62:1276-84. [PMID: 7907649 DOI: 10.1046/j.1471-4159.1994.62041276.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Gerbils (Meriones unguiculatus) are known for their seizure sensitivity, which is dependent on an intact perforant path from the entorhinal cortex to the hippocampus. In contrast with other species, the perforant path in gerbils contains parvalbumin, a cytosolic high-affinity calcium-binding protein. Parvalbumin is known to be present in a subpopulation of GABA-containing neurons and is thought to be responsible for their physiological characteristics of fast spiking activity and lack of spike adaptation. Therefore, the question arose of whether this projection in gerbils is GABAergic or glutamatergic as in other species. In a first approach to this question, the effect of lesioning the origin of the perforant path, the entorhinal cortex, on levels of GABA and glutamate was determined by enzymatic-luminometric assay in single layers of the dentate gyrus of lyophilized brain sections. Parallel sections were cryofixed using an acidified acetone-formaldehyde mixture at -20 degrees C for 48 h, and subsequently stained for parvalbumin immunocytochemistry. Seven days after ablation of the entorhinal cortex, parvalbumin staining was undetectable in the termination zone of the perforant path, the outer two-thirds of the stratum moleculare. In parallel, glutamate content was reduced to 80% of controls (and of the unoperated contralateral side) but unchanged in the inner third of the stratum moleculare and in stratum granulare. GABA content was not significantly altered by the lesion. From these results, we conclude that in the gerbil as in other species, the perforant path contains glutamate.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- C Nitsch
- Institute of Anatomy, University of Basel, Switzerland
| | | | | | | |
Collapse
|
43
|
Yamamoto Y, Itano T, Miyamoto O, Tokuda M, Matsui H, Janjua NA, Suwaki H, Okada Y, Negi T, Murakami TH. Effect of ceruletide on epileptogenesis in amygdaloid kindled rats. Brain Res 1993; 630:353-6. [PMID: 8118705 DOI: 10.1016/0006-8993(93)90678-g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The inhibitory effects of ceruletide (CLT), a cholecystokinin-8 (CCK)-like peptide, were investigated in the epileptogenesis in the amygdaloid kindled rats. Lower doses of CLT (20-80 micrograms/kg) inhibited the progression of kindling process. After acquiring C5 stage, a higher dose (160 micrograms/kg) was required to suppress the seizure susceptibility. These results, in light of several previous studies showing no serious side effects, suggest that CLT might be useful as an anti-epileptogenic agent for clinical usage.
Collapse
Affiliation(s)
- Y Yamamoto
- Department of Physiology, Kagawa Medical School, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Bendotti C, Vezzani A, Tarizzo G, Samanin R. Increased expression of GAP-43, somatostatin and neuropeptide Y mRNA in the hippocampus during development of hippocampal kindling in rats. Eur J Neurosci 1993; 5:1312-20. [PMID: 7903891 DOI: 10.1111/j.1460-9568.1993.tb00917.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The expression and distribution of the mRNA coding for the growth-associated protein-43 (GAP-43), a putative marker for neuritic growth, for preprosomatostatin and the preproneuropeptide Y (ppNPY) were analysed in the rat hippocampus during the development of hippocampal kindling by an in situ hybridization technique and computer-assisted grain counting in the cell. The levels of GAP-43 mRNA increased significantly in the CA3 pyramidal neurons and hilar polymorphic neurons of the dentate gyrus 2 days after stage 2 of kindling (preconvulsive stage) but not stage 5 (full seizure expression) in the stimulated hippocampus. The distribution of GAP-43 mRNA was the same in the hippocampus of kindled rats as in sham-stimulated animals. Preprosomatostatin mRNA and ppNPY mRNA contents rose significantly in the hilar polymorphic neurons of the dentate gyrus of the stimulated and contralateral hippocampus at both stages of kindling, with the greatest effect at stage 5. In addition, the number of ppNPY mRNA neurons in the fascia dentata was significantly higher in kindled rats than in controls, but there were no differences in the number of preprosomatostatin mRNA-positive cells. Preprosomatostatin and ppNPY mRNAs were also increased in the neurons of the stratum oriens of the CA1-CA3 subfield of fully kindled animals, whereas at stage 2 only neurons of the CA1 stratum oriens showed a significant increase of preprosomatostatin mRNA. No changes in preprosomatostatin and ppNPY mRNA expression were observed in the various regions of the hippocampus after a single afterdischarge or 1 month after stage 5.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- C Bendotti
- Laboratory of Neuropharmacology, Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | | | | | | |
Collapse
|
45
|
Díez-Guerra FJ, Avila J. Rapid dephosphorylation of microtubule-associated protein 2 in the rat brain hippocampus after pentylenetetrazole-induced seizures. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 215:181-7. [PMID: 8344279 DOI: 10.1111/j.1432-1033.1993.tb18021.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We have studied the effect of Pentylenetetrazole (PTZ)-induced seizures on the state of phosphorylation of microtubule-associated protein 2 (MAP-2) from rat hippocampus. A method for the in vivo 32P-labeling of hippocampal proteins has been established, consisting of intracerebro-ventricular injection of 32PO4 of high specific activity. The results obtained indicate that PTZ induces a rapid and transient dephosphorylation of high-molecular-mass MAP-2, which is prevented when the N-methyl-D-aspartate receptor antagonist MK-801 is previously administered. Phosphopeptide mapping of 32P-labeled MAP-2 obtained from hippocampi of PTZ-treated rats reveals a pattern of phosphorylation distinct from that obtained from control saline-treated rats or MK-801 plus PTZ treated rats. We discuss the possible implications of N-methyl-D-aspartate-receptor activation and MAP-2 dephosphorylation on the plastic changes induced in rat brain hippocampus after induced epileptiform activity.
Collapse
Affiliation(s)
- F J Díez-Guerra
- Centro de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, Spain
| | | |
Collapse
|
46
|
Miyamoto O, Itano T, Yamamoto Y, Tokuda M, Matsui H, Janjua NA, Suwaki H, Okada Y, Murakami TH, Negi T. Effect of embryonic hippocampal transplantation in amygdaloid kindled rat. Brain Res 1993; 603:143-7. [PMID: 8453471 DOI: 10.1016/0006-8993(93)91312-g] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Embryonic neural tissue was transplanted into previously kindled rats. A thirteen- to fourteen-day embryonic hippocampal cell suspension was grafted in the stratum oriens near the CA2 area of the hippocampus. Almost 80% of the animals had a good recovery and became seizure-free. Injection of neocortical cells or saline did not show any positive effect on the kindling susceptibility. Although 20 day embryonic cell transplantation was also effective, the effect did not last as long as the 13- to 14-day embryonic transplantation. These observations open the possibility that the neural grafts may be used for therapy of medically intractable epilepsies.
Collapse
Affiliation(s)
- O Miyamoto
- Dept of Physiology, Kagawa Medical School, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Vezzani A, Monno A, Rizzi M, Galli A, Barrios M, Samanin R. Somatostatin release is enhanced in the hippocampus of partially and fully kindled rats. Neuroscience 1993; 51:41-6. [PMID: 1361218 DOI: 10.1016/0306-4522(92)90468-h] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The release of somatostatin (somatostatin-like immunoreactivity) from hippocampal slices during the development of hippocampal kindling in rats was measured under resting and depolarizing conditions. Preliminary experiments in naive rats showed that the spontaneous efflux of somatostatin (4.0 +/- 0.3 fmol/ml every 10 min) was independent of external Ca2+ but was reduced to 71.5 +/- 6% of baseline (P < 0.05) during 20 min incubation with 5 microM tetrodotoxin. Neuronal depolarization with 25, 50 and 100 mM KCl induced a Ca(2+)-dependent somatostatin release, respectively 4.3 +/- 0.4, 16.7 +/- 1.6 and 22.0 +/- 1.3 times baseline (P < 0.01). Veratridine caused a dose-dependent Ca2+ and tetrodotoxin (5 microM) sensitive release ranging from 6.5 +/- 0.1 to 13.0 +/- 1.4 times baseline at 1.4 microM and 50 microM respectively (P < 0.01). One week after the last of three consecutive stage 5 seizures (full seizure expression) or 48 h after the last stage 2 stimulation (preconvulsive stage), 50 mM KCl-induced somatostatin release was significantly higher (1.8 +/- 0.1, P < 0.01) than in shams (animals implanted with electrodes but not stimulated) in the stimulated and contralateral hippocampus. Somatostatin release measured under resting conditions was increased by 1.5 times in the stimulated hippocampus at stage 2 (P < 0.05) and by 2.2 and 1.7 times in both hippocampi at stage 5 (P < 0.01). Forty-eight hours after the induction of a single afterdischarge no significant changes were found in either spontaneous or 50 mM KCl-induced release of somatostatin.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A Vezzani
- Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | | | | | | | | | | |
Collapse
|
48
|
Hikiji M, Tomita H, Ono M, Fujiwara Y, Akiyama K. Increase of kainate receptor mRNA in the hippocampal CA3 of amygdala-kindled rats detected by in situ hybridization. Life Sci 1993; 53:857-64. [PMID: 8394966 DOI: 10.1016/0024-3205(93)90508-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
To investigate whether lasting changes in excitatory amino acid (EAA) receptor subtypes occurred at their mRNA levels as a result of kindling, we carried out in situ hybridization of rat brain sections using synthetic oligonucleotide probes, which were complementary to cloned EAA receptor subunits, namely NMDAR1 for N-methyl-D-aspartate (NMDA), GluR-2 for alpha-amino-3-hydroxy-5-methylisoxazole 4-propionic acid (AMPA), KA-1 for kainate (KA) and mGluR1 for metabotropic EAA receptors. Rats in which left-amygdala-kindling had been established were decapitated 28 days after the last kindled seizure along with the matched controls, which had been subjected to electrode implantation but not to kindling, and the brain sections were hybridized with the probes. The amount of KA receptor mRNA detected with the KA-1 probe increased (25%) on both the left and right sides of the hippocampal CA3 region in the kindled rats, but in no other brain areas (hippocampal CA1, dentate gyrus, amygdala nuclei and pyriform cortex). There was no significant modification of NMDAR1, GluR-2 or mGluR1 receptor mRNAs in any brain area examined. The increase of KA receptor mRNA in the CA3 of amygdala-kindled rats may indicate that the excitability of the neural circuits mediated by KA receptors increased in the hippocampus as a consequence of kindling.
Collapse
Affiliation(s)
- M Hikiji
- Department of Neuropsychiatry, Okayama University Medical School, Japan
| | | | | | | | | |
Collapse
|
49
|
Akiyama K, Yoneda Y, Ogita K, Itoh T, Daigen A, Sora I, Kohira I, Ujike H, Otsuki S. Ionotropic excitatory amino acid receptors in discrete brain regions of kindled rats. Brain Res 1992; 587:73-82. [PMID: 1326375 DOI: 10.1016/0006-8993(92)91429-i] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A study was performed to examine the specific binding of excitatory amino acid (EAA) receptor subtypes in 5 brain regions of rats kindled from the amygdala or hippocampus, using extensively washed and Triton X-100-treated membranes. Seven days after the last amygdala kindled seizure, [3H](+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10- imine maleate ([3H]MK-801) binding, which labels N-methyl-D-aspartate (NMDA)-sensitive receptor-linked cation channels, decreased significantly only in the amygdala of kindled rats compared to that of controls under equilibrium assay conditions. There was no significant change in [3H]MK-801 binding in the amygdala or hippocampus 7 days after the last hippocampal kindled seizure, or 28 days after the last amygdala kindled seizure. Nor was there a significant change in NMDA-sensitive [3H]glutamate, strychnine-insensitive [3H]glycine, [3H]spermidine, [3H]kainate or [3H]alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid ([3H]AMPA) binding in any brain region 7 days after the last amygdala kindled seizure, or in the hippocampus 28 days after the last amygdala kindled seizure. These results indicate that [3H]MK-801 binding sites labeling NMDA-sensitive receptor-linked cation channels in the amygdala undergo downregulation only transiently, but that none of the subcomponents of the NMDA receptor macromolecular complex exhibit enduring changes at steady state following the completion of amygdala kindling.
Collapse
Affiliation(s)
- K Akiyama
- Department of Neuropsychiatry, Okayama University Medical School, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Affiliation(s)
- S Bernath
- University of Pittsburgh, Department of Behavioral Neuroscience, PA 15260
| |
Collapse
|