1
|
Pranjol MZI, Gutowski NJ, Hannemann M, Whatmore JL. Cathepsin L Induces Proangiogenic Changes in Human Omental Microvascular Endothelial Cells via Activation of the ERK1/2 Pathway. Curr Cancer Drug Targets 2020; 19:231-242. [PMID: 30173647 DOI: 10.2174/1568009618666180831123951] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/09/2018] [Accepted: 08/16/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Metastasis still remains the major cause of therapeutic failure, poor prognosis and high mortality in epithelial ovarian cancer (EOC) patients. Previously, we showed that EOC cells secrete a range of factors with potential pro-angiogenic activity, in disease-relevant human omental microvascular endothelial cells (HOMECs), including the lysosomal protease cathepsin L (CathL). Thus, the aim of this study was to examine potential pro-proliferative and pro-migratory effects of CathL in HOMECs and the activated signalling pathways, and whether these proangiogenic responses are dependent on CathL-catalytic activity. METHODS HOMECs proliferation was investigated using WST-1, BrdU and CyQUANT assays. Cell migration was examined using a Cultrex Cell 96 transwell migration assay. Enzyme activity was assayed at various pHs using the CathL-specific fluorogenic substrate FY-CHO. Activation of cell signalling pathways was tested using a commercially available phosphokinase array and intact cellbased ELISAs. RESULTS We showed for the first time that CathL has a potent pro-proliferative and pro-migratory effect on HOMECs. For instance, CathL significantly increases HOMEC proliferation (134.8±14.7% vs control 100%) and migration (146.6±17.3% vs control 100%). Our data strongly suggest that these proangiogenic effects of CathL are mediated via a non-proteolytic mechanism. Finally, we show that CathL-induced activation of the ERK1/2 pathway is involved in inducing these cellular effects in HOMECs. CONCLUSION These data suggest that CathL acts as an extracellular ligand and plays an important pro-angiogenic, and thus pro-metastatic, role during EOC metastasis to the omentum, by activating the omental microvasculature, and thus can potentially be targeted therapeutically in the future.
Collapse
Affiliation(s)
- Md Zahidul I Pranjol
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, Devon EX1 2LU, United Kingdom.,William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, United Kingdom
| | - Nicholas J Gutowski
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, Devon EX1 2LU, United Kingdom.,Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon EX2 7JU, United Kingdom
| | - Michael Hannemann
- Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon EX2 7JU, United Kingdom
| | - Jacqueline L Whatmore
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, Devon EX1 2LU, United Kingdom
| |
Collapse
|
2
|
Tabish TA, Pranjol MZI, Whatmore JL, Zhang S. Status and Future Directions of Anti-metastatic Cancer Nanomedicines for the Inhibition of Cathepsin L. FRONTIERS IN NANOTECHNOLOGY 2020. [DOI: 10.3389/fnano.2020.00001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
3
|
Zhao Y, Shen X, Zhu Y, Wang A, Xiong Y, Wang L, Fei Y, Wang Y, Wang W, Lin F, Liang Z. Cathepsin L-mediated resistance of paclitaxel and cisplatin is mediated by distinct regulatory mechanisms. J Exp Clin Cancer Res 2019; 38:333. [PMID: 31370861 PMCID: PMC6670178 DOI: 10.1186/s13046-019-1299-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/28/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Cathepsin L (CTSL) is a cysteine protease known to have important roles in regulating cancer cellular resistance to chemotherapy. However mechanism underlying which regulates CTSL-mediated drug resistance remain largely unknown. METHODS We used NSCLC cell lines: A549, A549/TAX (paclitaxel-resistant), A549/DDP (cisplatin-resistant), H460 and PC9 cells, to evaluate CTSL and drug resistance changes. Tumor specimens from 53 patients with NSCLC and Xenograft models was also utilized to explore the regulatory relationship of CTSL, TGF-β, Egr-1 and CREB. RESULTS TGF-β and smad3 were overexpressed only in A549/TAX cells, silencing TGF-β or smad3 in A549/TAX cells decreased the expression of CTSL and enhanced their sensitivity to paclitaxel. Smad3 binds to the Smad-binding-element(SBE) of the CTSL promoter, resulting in increased activity of the CTSL promoter and subsequent CTSL. Egr-1 and CREB were overexpressed only in A549/DDP cells, and silencing Egr-1 or CREB reduced the expression of CTSL and increased cisplatin cytotoxicity. CREB could affect the activity of the CTSL promoter by binding to it. And the potential regulatory factors of CTSL were consistent in vivo and in human lung cancer. These different regulatory mechanisms of CTSL-mediated drug resistance exist in two other NSCLC cell lines. CONCLUSION CTSL-mediated drug resistance to paclitaxel and cisplatin may be modulated by different mechanisms. The results of our study identified different mechanisms regulating CTSL-mediated drug resistance and identified smad3 as a novel regulator of CTSL.
Collapse
Affiliation(s)
- Yifan Zhao
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Ren’ai Road 199, Suzhou, 215000 China
- Department of neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, 215000 China
| | - Xiao Shen
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Ren’ai Road 199, Suzhou, 215000 China
| | - Ying Zhu
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Ren’ai Road 199, Suzhou, 215000 China
| | - Anqi Wang
- Department of neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, 215000 China
| | - Yajie Xiong
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Ren’ai Road 199, Suzhou, 215000 China
| | - Long Wang
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Ren’ai Road 199, Suzhou, 215000 China
| | - Yao Fei
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Ren’ai Road 199, Suzhou, 215000 China
| | - Yan Wang
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Ren’ai Road 199, Suzhou, 215000 China
| | - Wenjuan Wang
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Ren’ai Road 199, Suzhou, 215000 China
- Department of Pharmacy, Children’s Hospital of Soochow University, Suzhou, 215000 China
| | - Fang Lin
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Ren’ai Road 199, Suzhou, 215000 China
| | - Zhongqin Liang
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Ren’ai Road 199, Suzhou, 215000 China
| |
Collapse
|
4
|
Cianni L, Feldmann CW, Gilberg E, Gütschow M, Juliano L, Leitão A, Bajorath J, Montanari CA. Can Cysteine Protease Cross-Class Inhibitors Achieve Selectivity? J Med Chem 2019; 62:10497-10525. [DOI: 10.1021/acs.jmedchem.9b00683] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lorenzo Cianni
- Medicinal Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo, Avenue Trabalhador Sancarlense, 400, 23566-590 São Carlos, SP, Brazil
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
- Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Endenicher Allee 19c, D-53115 Bonn, Germany
| | - Christian Wolfgang Feldmann
- Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Endenicher Allee 19c, D-53115 Bonn, Germany
| | - Erik Gilberg
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
- Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Endenicher Allee 19c, D-53115 Bonn, Germany
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Luiz Juliano
- A. C. Camargo Cancer Center and São Paulo Medical School of Federal University of São Paulo, Rua Professor Antônio Prudente, 211, 01509-010 São Paulo, SP, Brazil
| | - Andrei Leitão
- Medicinal Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo, Avenue Trabalhador Sancarlense, 400, 23566-590 São Carlos, SP, Brazil
| | - Jürgen Bajorath
- Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Endenicher Allee 19c, D-53115 Bonn, Germany
| | - Carlos A. Montanari
- Medicinal Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo, Avenue Trabalhador Sancarlense, 400, 23566-590 São Carlos, SP, Brazil
| |
Collapse
|
5
|
Batkulwar K, Godbole R, Banarjee R, Kassaar O, Williams RJ, Kulkarni MJ. Advanced Glycation End Products Modulate Amyloidogenic APP Processing and Tau Phosphorylation: A Mechanistic Link between Glycation and the Development of Alzheimer's Disease. ACS Chem Neurosci 2018; 9:988-1000. [PMID: 29384651 DOI: 10.1021/acschemneuro.7b00410] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Advanced glycation end products (AGEs) are implicated in the pathology of Alzheimer's disease (AD), as they induce neurodegeneration following interaction with the receptor for AGE (RAGE). This study aimed to establish a mechanistic link between AGE-RAGE signaling and AD pathology. AGE-induced changes in the neuro2a proteome were monitored by SWATH-MS. Western blotting and cell-based reporter assays were used to investigate AGE-RAGE regulated APP processing and tau phosphorylation in primary cortical neurons. Selected protein expression was validated in brain samples affected by AD. The AGE-RAGE axis altered proteome included increased expression of cathepsin B and asparagine endopeptidase (AEP), which mediated an increase in Aβ1-42 formation and tau phosphorylation, respectively. Elevated cathepsin B, AEP, RAGE, and pTau levels were found in human AD brain, coincident with enhanced AGEs. This study demonstrates that the AGE-RAGE axis regulates Aβ1-42 formation and tau phosphorylation via increased cathepsin B and AEP, providing a new molecular link between AGEs and AD pathology.
Collapse
Affiliation(s)
- Kedar Batkulwar
- Proteomics Facility, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune-411008, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-National Chemical Laboratory, Pune-411008, India
| | - Rashmi Godbole
- Proteomics Facility, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune-411008, India
| | - Reema Banarjee
- Proteomics Facility, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune-411008, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-National Chemical Laboratory, Pune-411008, India
| | - Omar Kassaar
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, U.K
| | - Robert J. Williams
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, U.K
| | - Mahesh J. Kulkarni
- Proteomics Facility, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune-411008, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-National Chemical Laboratory, Pune-411008, India
| |
Collapse
|
6
|
Ananthi S, Gayathri V, Malarvizhi R, Bhardwaj M, Vasanthi HR. Anti-arthritic potential of marine macroalgae Turbinaria ornata in Complete Freund's Adjuvant induced rats. EXPERIMENTAL AND TOXICOLOGIC PATHOLOGY : OFFICIAL JOURNAL OF THE GESELLSCHAFT FUR TOXIKOLOGISCHE PATHOLOGIE 2017; 69:672-680. [PMID: 28684087 DOI: 10.1016/j.etp.2017.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 04/22/2017] [Accepted: 06/19/2017] [Indexed: 01/05/2023]
Abstract
T. ornata a macroalgae rich in bioactive molecules possess various biological activities. Herein, the aim of the study is to evaluate the aqueous extract and the sulphated polysaccharide isolated from T. ornata for its anti-arthritic potential in Complete Freund's Adjuvant (CFA) induced arthritis in rats. Anti-arthritic potential of aqueous T. ornata (ATO) and T. ornata sulphated polysaccharide (TSP) was evidenced by the significant reduction in paw volume and arthritic score. Inflammatory and antioxidant markers were found to be restored in the drug treated groups which was found to be in line with dexamethasone a standard anti-inflammatory drug. The histopathological and radiological examination adds on the support to the above findings confirming the anti-arthritic potential of ATO and TSP. It is interesting to note that the sulphated polysaccharide inhibits inflammation and bone damage at very low dose itself. Hence, TSP could be considered as a better candidate in the management of chronic inflammatory diseases like rheumatoid arthritis.
Collapse
Affiliation(s)
- S Ananthi
- Herbal and Indian Medicine Research Laboratory, Department of Biochemistry, Sri Ramachandra University, Porur, Chennai 600 116, India
| | - V Gayathri
- Herbal and Indian Medicine Research Laboratory, Department of Biochemistry, Sri Ramachandra University, Porur, Chennai 600 116, India
| | - R Malarvizhi
- Natural Products Research Laboratory, Department of Biotechnology, Pondicherry University, Puducherry 605014, India
| | - Meenakshi Bhardwaj
- Natural Products Research Laboratory, Department of Biotechnology, Pondicherry University, Puducherry 605014, India
| | - Hannah R Vasanthi
- Herbal and Indian Medicine Research Laboratory, Department of Biochemistry, Sri Ramachandra University, Porur, Chennai 600 116, India; Natural Products Research Laboratory, Department of Biotechnology, Pondicherry University, Puducherry 605014, India.
| |
Collapse
|
7
|
Vidoni C, Follo C, Savino M, Melone MAB, Isidoro C. The Role of Cathepsin D in the Pathogenesis of Human Neurodegenerative Disorders. Med Res Rev 2016; 36:845-70. [DOI: 10.1002/med.21394] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 03/29/2016] [Accepted: 03/29/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Chiara Vidoni
- Laboratory of Molecular Pathology, Department of Health Sciences; Università del Piemonte Orientale “A. Avogadro,”; Novara Italy
| | - Carlo Follo
- Laboratory of Molecular Pathology, Department of Health Sciences; Università del Piemonte Orientale “A. Avogadro,”; Novara Italy
| | - Miriam Savino
- Laboratory of Molecular Pathology, Department of Health Sciences; Università del Piemonte Orientale “A. Avogadro,”; Novara Italy
| | - Mariarosa A. B. Melone
- Division of Neurology, Department of Clinic and Experimental Medicine and Surgery; Second University of Naples; Naples Italy
- InterUniversity Center for Research in Neurosciences; Second University of Naples; Naples Italy
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences; Università del Piemonte Orientale “A. Avogadro,”; Novara Italy
- InterUniversity Center for Research in Neurosciences; Second University of Naples; Naples Italy
| |
Collapse
|
8
|
The Potential Role of the Proteases Cathepsin D and Cathepsin L in the Progression and Metastasis of Epithelial Ovarian Cancer. Biomolecules 2015; 5:3260-79. [PMID: 26610586 PMCID: PMC4693277 DOI: 10.3390/biom5043260] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 11/13/2015] [Indexed: 02/08/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is the leading cause of death from gynecologic malignancies and has a poor prognosis due to relatively unspecific early symptoms, and thus often advanced stage, metastasized cancer at presentation. Metastasis of EOC occurs primarily through the transcoelomic route whereby exfoliated tumor cells disseminate within the abdominal cavity, particularly to the omentum. Primary and metastatic tumor growth requires a pool of proangiogenic factors in the microenvironment which propagate new vasculature in the growing cancer. Recent evidence suggests that proangiogenic factors other than the widely known, potent angiogenic factor vascular endothelial growth factor may mediate growth and metastasis of ovarian cancer. In this review we examine the role of some of these alternative factors, specifically cathepsin D and cathepsin L.
Collapse
|
9
|
Tarang S, Doi SMSR, Gurumurthy CB, Harms D, Quadros R, Rocha-Sanchez SM. Generation of a Retinoblastoma (Rb)1-inducible dominant-negative (DN) mouse model. Front Cell Neurosci 2015; 9:52. [PMID: 25755634 PMCID: PMC4337335 DOI: 10.3389/fncel.2015.00052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 02/03/2015] [Indexed: 11/13/2022] Open
Abstract
Retinoblastoma 1 (Rb1) is an essential gene regulating cellular proliferation, differentiation, and homeostasis. To exert these functions, Rb1 is recruited and physically interacts with a growing variety of signaling pathways. While Rb1 does not appear to be ubiquitously expressed, its expression has been confirmed in a variety of hematopoietic and neuronal-derived cells, including the inner ear hair cells (HCs). Studies in transgenic mice demonstrate that complete germline or conditional Rb1 deletion leads to abnormal cell proliferation, followed by massive apoptosis; making it difficult to fully address Rb1's biochemical activities. To overcome these limitations, we developed a tetracycline-inducible TetO-CB-myc6-Rb1 (CBRb) mouse model to achieve transient and inducible dominant-negative (DN) inhibition of the endogenous RB1 protein. Our strategy involved fusing the Rb1 gene to the lysosomal protease pre-procathepsin B (CB), thus allowing for further routing of the DN-CBRb fusion protein and its interacting complexes for proteolytic degradation. Moreover, reversibility of the system is achieved upon suppression of doxycycline (Dox) administration. Preliminary characterization of DN-CBRb mice bred to a ubiquitous rtTA mouse line demonstrated a significant inhibition of the endogenous RB1 protein in the inner ear and in a number of other organs where RB1 is expressed. Examination of the postnatal (P) DN-CBRb mice inner ear at P10 and P28 showed the presence of supernumerary inner HCs (IHCs) in the lower turns of the cochleae, which corresponds to the described expression domain of the endogenous Rb1 gene. Selective and reversible suppression of gene expression is both an experimental tool for defining function and a potential means to medical therapy. Given the limitations associated with Rb1-null mice lethality, this model provides a valuable resource for understanding RB1 activity, relative contribution to HC regeneration and its potential therapeutic application.
Collapse
Affiliation(s)
- Shikha Tarang
- Department of Oral Biology, Creighton University School of Dentistry Omaha, NE,USA
| | - Songila M S R Doi
- Department of Oral Biology, Creighton University School of Dentistry Omaha, NE,USA
| | - Channabasavaiah B Gurumurthy
- Mouse Genome Engineering Core Facility, Department of Genetics Cell Biology and Anatomy, University of Nebraska Medical Center Omaha, NE, USA
| | - Donald Harms
- Mouse Genome Engineering Core Facility, Department of Genetics Cell Biology and Anatomy, University of Nebraska Medical Center Omaha, NE, USA
| | - Rolen Quadros
- Mouse Genome Engineering Core Facility, Department of Genetics Cell Biology and Anatomy, University of Nebraska Medical Center Omaha, NE, USA
| | | |
Collapse
|
10
|
Cloning, Heterologous Expression, and Enzymatic Characterization of Cathepsin L from Starfish (Asterina pectinifera). Biosci Biotechnol Biochem 2014; 76:2342-6. [DOI: 10.1271/bbb.120568] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Single particle assay of coronavirus membrane fusion with proteinaceous receptor-embedded supported bilayers. Biomaterials 2013; 34:7895-904. [PMID: 23886734 PMCID: PMC7111216 DOI: 10.1016/j.biomaterials.2013.06.034] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 06/20/2013] [Indexed: 01/21/2023]
Abstract
Total internal reflection microscopy combined with microfluidics and supported bilayers is a powerful, single particle tracking (SPT) platform for host-pathogen membrane fusion studies. But one major inadequacy of this platform has been capturing the complexity of the cell membrane, including membrane proteins. Because of this, viruses requiring proteinaceous receptors, or other unknown cellular co-factors, have been precluded from study. Here we describe a general method to integrate proteinaceous receptors and cellular components into supported bilayers for SPT fusion studies. This method is general to any enveloped virus-host cell pair, but demonstrated here for feline coronavirus (FCoV). Supported bilayers are formed from mammalian cell membrane vesicles that express feline aminopeptidase N (the viral receptor) using a cell blebbing technique. SPT is then used to identify fusion intermediates and measure membrane fusion kinetics for FCoV. Overall, the fusion results recapitulate what is observed in vivo, that coronavirus entry requires binding to specific receptors, a low-pH environment, and that membrane fusion is receptor- and protease-dependent. But this method also provides quantitative kinetic rate parameters for intermediate steps in the coronavirus fusion pathway, which to our knowledge have not been obtained before. Moreover, the platform offers versatile, precise control over the sequence of triggers for fusion; these triggers may define the fusion pathway, tissue tropism, and pathogenicity of coronaviruses. Systematically varying these triggers in this platform provides a new route to study how viruses rapidly adapt to other hosts, and to identify factors that led to the emergence of zoonotic viruses, such as human SARS-CoV and the newly emerging human MERS-CoV.
Collapse
|
12
|
Rajamurugan R, Suyavaran A, Selvaganabathy N, Ramamurthy CH, Reddy GP, Sujatha V, Thirunavukkarasu C. Brassica nigra plays a remedy role in hepatic and renal damage. PHARMACEUTICAL BIOLOGY 2012; 50:1488-1497. [PMID: 22978659 DOI: 10.3109/13880209.2012.685129] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
CONTEXT Black mustard [Brassica nigra (L.) Koch] of the Brassicaceae (Cruciferae) family is commonly used as a spice and a cheap source of antimicrobial agents for bacterial infections. OBJECTIVES The present investigation was to demonstrate the protective effect of the methanol extract of B. nigra leaves against D-galactosamine (D-GalN)-induced hepatic and nephrotoxicity in Wistar rats. METHODS Activity of the methanol extract of B. nigra at doses of 200 and 400 mg/kg b.wt. against D-GalN (500 mg/kg b.wt.) induced toxicity, with silymarin used as the standard. Histological damage, activities of serum marker enzyme, hematological changes, metabolites such as bilirubin, urea, uric acid, and creatinine levels, tissue thiobarbutric acid reactive substance, enzymic and non-enzymic antioxidants and inflammatory marker enzymes such as myeloperoxidase, cathepsin D, and acid phosphatase were assessed. RESULTS The D-GalN-induced toxicity was evident from a significant increase (p < 0.001) in the serum and tissue inflammatory markers in toxic rats, when compared with the control (saline alone treated animals). The B. nigra pretreated groups (200 and 400 mg/kg b.wt.) showed significant (p < 0.001) reduction in the D-GalN-induced toxicity as obvious from biochemical parameters. Histopathological observations confirm the protective effect of B. nigra leaf extract by reduction in hepatic and renal tissue damage. Experimentals extract showed a similar effect as the standard. CONCLUSIONS The crude methanol extract of B. nigra leaf lacks inherent toxicity and exhibits hepatic and nephroprotective effects against D-GalN-induced toxicity in Wistar rats.
Collapse
Affiliation(s)
- R Rajamurugan
- PG & Research Department of Biochemistry, M.G.R. College, Hosur, India
| | | | | | | | | | | | | |
Collapse
|
13
|
Ahn SJ, Sung JH, Kim NY, Lee AR, Jeon SJ, Lee JS, Kim JK, Chung JK, Lee HH. Molecular Cloning, Expression, and Characterization of Cathepsin L from Mud Loach (Misgurnus mizolepis). Appl Biochem Biotechnol 2010; 162:1858-71. [DOI: 10.1007/s12010-010-8964-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 04/05/2010] [Indexed: 12/01/2022]
|
14
|
Takahashi K, Ueno T, Tanida I, Minematsu-Ikeguchi N, Murata M, Kominami E. Characterization of CAA0225, a Novel Inhibitor Specific for Cathepsin L, as a Probe for Autophagic Proteolysis. Biol Pharm Bull 2009; 32:475-9. [DOI: 10.1248/bpb.32.475] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Katsuyuki Takahashi
- Clinical Laboratory Department, Nihon University School of Medicine
- Department of Biochemistry, Juntendo University School of Medicine
| | - Takashi Ueno
- Department of Biochemistry, Juntendo University School of Medicine
| | - Isei Tanida
- Department of Biochemistry and Cell Biology, National Institute of Infectious Disease
| | | | | | - Eiki Kominami
- Department of Biochemistry, Juntendo University School of Medicine
| |
Collapse
|
15
|
Proteolytic cleavage in an endolysosomal compartment is required for activation of Toll-like receptor 9. Nat Immunol 2008; 9:1407-14. [PMID: 18931679 DOI: 10.1038/ni.1669] [Citation(s) in RCA: 360] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 09/26/2008] [Indexed: 11/08/2022]
Abstract
Toll-like receptors (TLRs) activate the innate immune system in response to pathogens. Here we show that TLR9 proteolytic cleavage is a prerequisite for TLR9 signaling. Inhibition of lysosomal proteolysis rendered TLR9 inactive. The carboxy-terminal fragment of TLR9 thus generated included a portion of the TLR9 ectodomain, as well as the transmembrane and cytoplasmic domains. This cleavage fragment bound to the TLR9 ligand CpG DNA and, when expressed in Tlr9(-/-) dendritic cells, restored CpG DNA-induced cytokine production. Although cathepsin L generated the requisite TLR9 cleavage products in a cell-free in vitro system, several proteases influenced TLR9 cleavage in intact cells. Lysosomal proteolysis thus contributes to innate immunity by facilitating specific cleavage of TLR9.
Collapse
|
16
|
Abstract
A literature survey was performed of human cathepsin D gene, cathepsin D biosynthesis, posttranslatory modifications, transport within the cell, substrate specificity and catalytic effect. Methods used to determine the activity and level of this proteinase as well as its role in the biochemistry and pathobiochemistry of cells, tissues and organs were considered.
Collapse
|
17
|
Polla BS, Gabert F, Peyrusse BMN, Jacquier-Sarlin MR. Increased proteolysis of diphtheria toxin by human monocytes after heat shock: a subsidiary role for heat-shock protein 70 in antigen processing. Immunology 2006; 120:230-41. [PMID: 17116171 PMCID: PMC2265859 DOI: 10.1111/j.1365-2567.2006.02494.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The expression of heat-shock proteins (hsp) increases after exposure to various stresses including elevated temperatures, oxidative injury, infection and inflammation. As molecular chaperones, hsp have been shown to participate in antigen processing and presentation, in part through increasing the stability and expression of major histocompatibility complex molecules. Heat shock selectively increases human T-cell responses to processed antigen, but does not affect T-cell proliferation induced by non-processed antigens. Here, we have analysed the mechanisms by which stress such as heat shock, and the ensuing hsp over-expression affect the processing of diphtheria toxin (DT) in peripheral blood monocytes. We found that heat shock increased DT proteolysis in endosomes and lysosomes while the activities of the cathepsins B and D, classically involved in DT proteolysis, were decreased. These effects correlated with the heat-shock-mediated increase in hsp 70 expression observed in endosomes and lysosomes. Actinomycin D or blocking anti-hsp 70 antibodies abolished the heat-shock-mediated increase in DT proteolysis. These data indicate that the increased expression of hsp 70 constitutes a subsidiary mechanism that facilitates antigen proteolysis in stressed cells. Confirming these data, presentation by formaldehyde-fixed cells of DT proteolysates that were obtained with endosomes and lysosomes from heat-shocked peripheral blood monocytes showed higher stimulation of T cells than those generated with endosomes and lysosomes from control peripheral blood monocytes.
Collapse
|
18
|
Taha TA, El-Alwani M, Hannun YA, Obeid LM. Sphingosine kinase-1 is cleaved by cathepsin B in vitro: identification of the initial cleavage sites for the protease. FEBS Lett 2006; 580:6047-54. [PMID: 17064696 PMCID: PMC1732625 DOI: 10.1016/j.febslet.2006.09.070] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Revised: 09/21/2006] [Accepted: 09/27/2006] [Indexed: 11/29/2022]
Abstract
Previous work has identified sphingosine kinase-1 (SK1) as a substrate for the cysteine protease cathepsin B in vitro. In this study, the mechanism of SK1 cleavage by cathepsin B was investigated. We identified two initial cleavage sites for the protease, the first at histidine 122 and the second at arginine 199. Mutation analysis showed that replacement of histidine 122 with a tyrosine maintained the activity of SK1 while significantly reducing cleavage by cathepsin B at the initial cleavage site. The efficacy of cleavage of SK1 at arginine 199, however, was not affected. These studies demonstrate that SK1 is cleaved by cathepsin B in a sequential manner after basic amino acids, and that the initial cleavages at the two identified sites occur independently of each other.
Collapse
Affiliation(s)
- Tarek A. Taha
- Division of General Internal Medicine, Ralph H. Johnson Veterans Administration Hospital, Charleston, South Carolina 29401, and ¶ Department of Medicine and
| | - Mazen El-Alwani
- Division of General Internal Medicine, Ralph H. Johnson Veterans Administration Hospital, Charleston, South Carolina 29401, and ¶ Department of Medicine and
| | - Yusuf A. Hannun
- Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Lina M. Obeid
- Division of General Internal Medicine, Ralph H. Johnson Veterans Administration Hospital, Charleston, South Carolina 29401, and ¶ Department of Medicine and
- Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425
- Corresponding Author: Lina M. Obeid, M.D., Department of Medicine, Medical University of South Carolina, 114 Doughty St., P.O.Box 250779, Charleston, South Carolina 29425, USA, Tel: +1-843-876-5169, Fax: +1-843-876-5172,
| |
Collapse
|
19
|
Wang Y, Zhang S, Liu Z, Li H, Wang L. Characterization and expression of AmphiCL encoding cathepsin l proteinase from amphioxus Branchiostoma belcheri tsingtauense. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2005; 7:279-286. [PMID: 15776312 DOI: 10.1007/s10126-004-4084-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Accepted: 10/16/2004] [Indexed: 05/24/2023]
Abstract
An amphioxus complementary DNA, AmphiCL, encoding cathepsin L proteinase was isolated from the gut cDNA library of Branchiostoma belcheri tsingtauense. It is 1480 bp long, and its longest open reading frame codes for a precursor protein, which consists of 327 amino acid residues including a signal peptide (preregion), a propeptide, and a mature proteinase. Northern blot showed that AmphiCL was expressed in the gill, testis, hepatic cecum, and hind-gut with a molecular size of about 1480 bp. AmphiCL was also expressed at low level in the muscle, notochord, and ovary as revealed by the more sensitive reverse transcriptase polymerase chain reaction techniques. Semiquantitative RT-PCR also showed that although AmphiCL expression in the gut was significantly downregulated by feeding Arthrospira platensis powder, a protein-rich food, its expression in the same tissue was upregulated by exposure to lipopolysaccharide, an integral component of the outer membrane of gram-negative bacteria. This suggests that although the involvement of AmphiCL in food digestion remains to be confirmed, AmphiCL may play a role in inflammatory reaction in amphioxus.
Collapse
Affiliation(s)
- Yongjun Wang
- Department of Marine Biology, Ocean University of China, 5 Yushan Road, 266003 Qingdao, PR, China
| | | | | | | | | |
Collapse
|
20
|
Ohkubo M, Miyagawa K, Osatomi K, Hara K, Nozaki Y, Ishihara T. A novel serine protease complexed with α2-macroglobulin from skeletal muscle of lizard fish (Saurida undosquamis). Comp Biochem Physiol B Biochem Mol Biol 2004; 139:637-47. [PMID: 15581796 DOI: 10.1016/j.cbpc.2004.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Revised: 08/05/2004] [Accepted: 08/06/2004] [Indexed: 11/20/2022]
Abstract
A novel fish muscle serine protease named muscle soluble serine protease (MSSP) was purified from the soluble fraction of lizard fish (Saurida undosquamis: Synodontidae) muscle by ammonium sulfate fractionation followed by four steps of column chromatographies. In native-PAGE, the purified enzyme appeared as a single band with an estimated mol. mass of approximately 380 kDa by gel filtration. In SDS-PAGE under reducing conditions, the purified enzyme migrated as two protein bands at 110 and 100 kDa, named subunits A and B, respectively. The 20 residues of N-terminal amino acid sequence of subunit B showed 70% of homology to beta-chain of carp alpha(2)-macroglobulin-1. Moreover, both subunits A and B showed immunoreactivity with anti carp alpha(2)-macroglobulin antibody. Purified MSSP was inactivated by Pefabloc SC, aprotinin, benzamidine and TLCK, but not by alpha(1)-antitrypsin. After acid treatment (pH 2, 24 h), however, the enzyme activity eluted at 14 kDa from Sephacryl S-200 carried out under acidic conditions was inhibited by alpha(1)-antitrypsin. Lizard fish MSSP most rapidly hydrolyzed Boc-Val-Pro-Arg-MCA and Boc-Gln-Arg-Arg-MCA, but did not hydrolyzed Suc-Leu-Leu-Val-Tyr-MCA and Suc-Ala-Ala-Pro-Phe-MCA, and was not suppressed either by E-64, pepstatin A and ethylenediaminetetraacetic acid (EDTA). These results indicate that the purified MSSP is a serine protease complexed with alpha(2)-macroglobulin, and the entrapped protease was dissociated by the acid treatment. Purified and free MSSPs were most active at pH 10.0 and 9.0, respectively. Purified MSSP degraded myofibrillar proteins and casein but time courses of degradation of these substrates by the enzyme differed.
Collapse
Affiliation(s)
- Makoto Ohkubo
- Graduate School of Science and Technology, Nagasaki University, Bunkyo Machi 1-14, Nagasaki 852-8521, Japan.
| | | | | | | | | | | |
Collapse
|
21
|
Tsunemoto K, Osatomi K, Nozaki Y, Hara K, Ishihara T. Molecular characterization of cathepsin L from hepatopancreas of the carp Cyprinus carpio. Comp Biochem Physiol B Biochem Mol Biol 2004; 137:107-14. [PMID: 14698917 DOI: 10.1016/j.cbpc.2003.10.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Purified cathepsin L from carp, Cyprinus carpio, consists of a 28 kDa single-chain form that is different from the 24 and 5 kDa mammalian two-chain form. We cloned cathepsin L from carp hepatopancreas. The sequence consisted of a 1490 bp cDNA and a 1014 bp open reading frame, encoding a deduced protein of 337 amino acids that is likely processed to an active enzyme (single-chain form) with 222 amino acids. Its similarity to other types of vertebrate cathepsin L is less than 69%. Mammalian cathepsin L is further processed to a two-chain form, but possibly this is not the case with carp cathepsin L: the P1 site where cleavage occurred in the two-chain form of mammalian cathepsin L contains a serine, while carp cathepsin L processes a valine. Therefore, carp cathepsin L may have a different mechanism of action from mammalian cathepsin L.
Collapse
Affiliation(s)
- Kazunobu Tsunemoto
- Graduate School of Science and Technology, Nagasaki University, Bunkyo, Nagasaki, Nagasaki 852-8521, Japan
| | | | | | | | | |
Collapse
|
22
|
Hermo L, Andonian S. Regulation of sulfated glycoprotein-1 and cathepsin D expression in adult rat epididymis. JOURNAL OF ANDROLOGY 2003; 24:408-22. [PMID: 12721218 DOI: 10.1002/j.1939-4640.2003.tb02690.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Endocytosis, whereby proteins are internalized from the epididymal lumen to be eventually degraded in lysosomes, is one of the major functions of the epididymal epithelial cells in maintaining a proper luminal milieu conducive for sperm maturation. In the present study, using light microscope immunocytochemical methods, we examined the regulation of 2 lysosomal enzymes, sulfated glycoprotein-1 (SGP-1) and cathepsin D, in adult rat epididymides fixed in Bouin fixative and embedded in paraffin. After orchidectomy (O) with or without testosterone (T) supplementation, efferent duct ligation (EDL), or hypophysectomy (H), lysosomes of principal cells were intensely reactive with the anti-SGP-1 antibody, as were narrow, clear, and basal cells, with staining patterns similar to that of control animals. These experimental procedures also had no effect on cathepsin D expression in all cell types, except for clear cells of the corpus and cauda epididymidis, which after orchiedectomy and hypophysectomy, became intensely reactive, unlike their completely unreactive state in control animals. In O+T animals, as well as in EDL animals, clear cells remained unreactive. These data taken together suggest that expression of SGP-1 is not under the control of testicular or pituitary factors, as is also the case for cathepsin D expression by principal, narrow, and basal cells. However, specific inhibition of cathepsin D expression by testosterone or one of its metabolites appears to occur in clear cells of the corpus and cauda epididymidis. Furthermore, in addition to small, typical lysosomes, principal cells also revealed large supranuclear and infranuclear spherical structures that were immunoreactive with both anti-SGP-1 and anti-cathepsin D antibodies, suggesting their lysosomal nature. With electron microscopy, these structures appeared electron-lucent and contained membranous profiles embedded in an electron-dense, granular background. Such images suggest that the various experimental procedures adversely affect the expression of several other lysosomal enzymes in principal cells, leading to a lysosomal phenotype similar to that observed in various lysosomal storage diseases.
Collapse
Affiliation(s)
- Louis Hermo
- Department of Anatomy and Cell Biology, McGill University, Montréal, Québec, Canada.
| | | |
Collapse
|
23
|
Castino R, Pace D, Démoz M, Gargiulo M, Ariatta C, Raiteri E, Isidoro C. Lysosomal proteases as potential targets for the induction of apoptotic cell death in human neuroblastomas. Int J Cancer 2002; 97:775-9. [PMID: 11857353 DOI: 10.1002/ijc.10139] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Neuroblastoma is the most common type of cancer in infants. In children this tumor is particularly aggressive; despite various new therapeutic approaches, it is associated with poor prognosis. Given the importance of endosomal-lysosomal proteolysis in cellular metabolism, we hypothesized that inhibition of lysosomal protease would impact negatively on neuroblastoma cell survival. Treatment with E-64 or CA074Me (2 specific inhibitors of cathepsin B) or with pepstatin A (a specific inhibitor of cathepsin D) was cytotoxic for 2 neuroblastoma cell lines having different degrees of malignancy. Cell death was associated with condensation and fragmentation of chromatin and externalization of plasma membrane phosphatidylserine, 2 hallmarks of apoptosis. Concomitant inhibition of the caspase cascade protected neuroblastoma cells from cathepsin inhibitor-induced cytotoxicity. These data indicate that prolonged inhibition of the lysosomal proteolytic pathway is incompatible with cell survival, leading to apoptosis of neuroblastoma cells, and that the cathepsin-mediated and caspase-mediated proteolytic systems are connected and cooperate in the regulation of such an event. Since modern antitumor chemotherapy is aimed at restoring the normal rate of apoptosis in neoplastic tissues, the demonstration that endosomal-lysosomal cathepsins are involved in this process may constitute a basis for novel strategies that include cathepsin inhibitors in the therapeutic regimen.
Collapse
Affiliation(s)
- Roberta Castino
- Dipartimento di Scienze Mediche, Laboratorio di Patologia Molecolare, Università A. Avogadro, Novara, Italy
| | | | | | | | | | | | | |
Collapse
|
24
|
Zhang T, Maekawa Y, Sakai T, Nakano Y, Ishii K, Hisaeda H, Kominami E, Katunuma N, Asao T, Himeno K. Splenic cathepsin L is maturated from the proform by interferon-gamma after immunization with exogenous antigens. Biochem Biophys Res Commun 2001; 283:499-506. [PMID: 11327729 DOI: 10.1006/bbrc.2001.4795] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The processing of foreign protein antigens into peptides requires the participation of various endo/lysosomal proteases in antigen-presenting cells (APCs). In this study, a proenzyme of cathepsin L, procathepsin L, was found to be present in the spleens of naive mice, as demonstrated by immunoblotting. Interestingly, the maturation of cathepsin L from procathepsin L was strongly induced when the host BALB/c mice were immunized with ovalbumin or soluble leishmanial antigen, despite the fact that mouse albumin, a kind of self-antigen, did not have such a potential. Furthermore, foreign antigens, but not self-antigens, could increase the activity of cathepsin L, probably being mediated by interferon-gamma, as demonstrated by in vivo and in vitro experiments. As cathepsin L matured, the efficiency of antigen processing was increased in APCs. These results suggest that endo/lysosomal cathepsin L plays an important role in the immune regulation via antigen processing even in peripheral lymphoid tissues as well as in the thymus.
Collapse
Affiliation(s)
- T Zhang
- Department of Parasitology and Immunology, University of Tokushima, School of Medicine, Kuramoto-cho 3, Tokushima, 770-8503, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Krondahl E, von Euler-Chelpin H, Orzechowski A, Ekström G, Lennernäs H. In vitro metabolism of opioid tetrapeptide agonists in various tissues and subcellular fractions from rats. Peptides 2001; 22:613-21. [PMID: 11311732 DOI: 10.1016/s0196-9781(01)00328-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The metabolism of three mu-selective opioid tetrapeptide agonists, Tyr-D-Arg-Phe-Nva-NH(2) (TArPN), Tyr-D-Arg-Phe-Phe-NH(2) (TArPP), and Tyr-D-Ala-Phe-Phe-NH(2) (TAPP), was investigated in different rat tissues. High metabolic activity (<20% peptide remaining after 30 min) was found against the three peptides in the kidney homogenate and against TArPN in spleen homogenate. Low metabolic activity (>80% peptide remaining after 30 min) was found for all peptides in brain homogenate and plasma, and for TArPN and TArPP in blood. The other tissue homogenates, prepared from the small and large intestine, liver and lung, all exhibited intermediate metabolic activity (20-80% peptide remaining after 30 min) against the peptides. In all tissues investigated, the tetrapeptides were metabolized at the C-terminal amide by deamidation.A further in depth metabolic investigation was performed in subcellular fractions isolated from three tissues (small intestine, liver and kidney). In the liver, the deamidation was predominantly localized to the mitochondrial/lysosomal fraction, while hydrolysis at the N-terminal Tyr residue was the major metabolic pathway in the microsomal/brush-border membrane fraction from the kidney and small intestine.
Collapse
Affiliation(s)
- E Krondahl
- Department of Pharmacy, Division of Pharmaceutics, Box 580, BMC, SE-751 23, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
26
|
Turk B, Turk D, Turk V. Lysosomal cysteine proteases: more than scavengers. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1477:98-111. [PMID: 10708852 DOI: 10.1016/s0167-4838(99)00263-0] [Citation(s) in RCA: 568] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lysosomal cysteine proteases were believed to be mainly involved in intracellular protein degradation. Under special conditions they have been found outside lysosomes resulting in pathological conditions. With the discovery of a series of new cathepsins with restricted tissue distributions, it has become evident that these enzymes must be involved in a range of specific cellular tasks much broader than as simple housekeeping enzymes. It is therefore timely to review and discuss the various physiological roles of mammalian lysosomal papain-like cysteine proteases as well as their mechanisms of action and the regulation of their activity.
Collapse
Affiliation(s)
- B Turk
- Department of Biochemistry and Molecular Biology, J. Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia.
| | | | | |
Collapse
|
27
|
Nagata E, Tanaka K, Suzuki S, Dembo T, Fukuuchi Y, Futatsugi A, Mikoshiba K. Selective inhibition of inositol 1,4,5-triphosphate-induced Ca2+ release in the CA1 region of the hippocampus in the ischemic gerbil. Neuroscience 1999; 93:995-1001. [PMID: 10473264 DOI: 10.1016/s0306-4522(99)00198-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We examined the effect of ischemia on inositol 1,4,5-trisphosphate receptor-induced Ca2+ release by functional and morphological approaches, using the gerbil model after 6-h unilateral occlusion of the common carotid artery. Autoradiographic study revealed that the basal uptake of 45Ca2+ into the endoplasmic reticulum and caffeine-induced 45Ca2+ release from the endoplasmic reticulum were normal in the presence of ATP in each ischemic brain region, whereas inositol 1,4,5-trisphosphate receptor-induced 45Ca2+ release from the endoplasmic reticulum was inhibited only in the CA1 region of the hippocampus on the ischemic side. In moderately ischemic gerbils, electron microscopic study demonstrated aggregation of swollen endoplasmic reticulum in the CA1 region of the hippocampus, so that abundant endoplasmic reticulum assembled in close contact to form endoplasmic reticulum cisternal stacks. In severely ischemic gerbils, immunohistochemical analysis of the hippocampus showed loss of type 1 inositol 1,4,5-trisphosphate receptor protein with preservation of immunoreactivity for type 2 and 3 inositol 1,4,5-trisphosphate receptor proteins, which was confirmed by western blot analysis. Such selective inhibition of inositol 1,4,5-trisphosphate receptor-induced Ca2+ release and the loss of type 1 inositol 1,4,5-trisphosphate receptor in the CA1 region of the hippocampus in cerebral ischemia may be associated with its region-specific vulnerability to ischemia.
Collapse
Affiliation(s)
- E Nagata
- Department of Neurology, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Larocca MC, Pellegrino JM, Rodriguez Garay EA, Marinelli RA. Taurocholate-induced inhibition of hepatic lysosomal degradation of horseradish peroxidase. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1428:341-7. [PMID: 10434053 DOI: 10.1016/s0304-4165(99)00077-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Endocytosed proteins in hepatocytes are transported to lysosomes for degradation. Metabolites accumulating in these organelles are released into bile by exocytosis, a process that seems to be regulated by the bile salt taurocholate (TC). In this study we examined if TC is also involved in the control of the lysosomal degradation of endocytosed proteins. We used [(14)C]sucrose-labeled horseradish peroxidase ([(14)C]S-HRP), a probe suitable to evaluate lysosomal proteolysis. TC-infused rats as well as isolated rat hepatocytes exposed to TC showed a significant inhibition in the lysosomal degradation of [(14)C]S-HRP (approximately 30%), with no change in either the uptake or the amount of protein reaching lysosomes. Under these conditions, the in vitro assay of lysosomal cathepsins B, L, H, and D revealed no change in their activities, suggesting that a reversible inhibition (lysosomal alkalinization?) was taking place in hepatocytes. Nevertheless, lysosomal pH measured using fluorescein isothiocyanate-dextran was shown not to be altered by TC. In addition, TC was unable to inhibit proteolysis in [(14)C]S-HRP loaded lysosomes or interfere in cathepsin assays. The results suggest that TC inhibits the lysosomal degradation of endocytosed proteins in hepatocytes and that the mechanism does not involve an effect of the bile salt per se or a rise in lysosomal pH.
Collapse
Affiliation(s)
- M C Larocca
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 570, 2000, Rosario, Argentin
| | | | | | | |
Collapse
|
29
|
Tsuchiya K, Kohda Y, Yoshida M, Zhao L, Ueno T, Yamashita J, Yoshioka T, Kominami E, Yamashima T. Postictal blockade of ischemic hippocampal neuronal death in primates using selective cathepsin inhibitors. Exp Neurol 1999; 155:187-94. [PMID: 10072294 DOI: 10.1006/exnr.1998.6988] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This paper is to study the participation of cathepsin in ischemic neuronal death of the monkey hippocampal cornu ammonis (CA) 1 sector and also to clarify whether its selective inhibitor epoxysuccinyl peptides such as CA-074 and E-64c can inhibit the neuronal death or not. In the preceding reports, we demonstrated mu-calpain activation and subsequent rupturing of the lysosomal membrane of postischemic CA1 neurons and also increase of enzyme activity of cathepsins B and L in monkeys undergoing a complete 20-min whole brain ischemia. Here, morphological, immunohistochemical and enzymatical analyses were performed to examine the efficacy of two selective cathepsin inhibitors in the postictal blockade of delayed neuronal death in the monkey hippocampus. Both inhibitors could significantly decrease enzyme activities of cathepsins B and L in all hippocampal sectors. When CA-074 was intravenously administered immediately after the ischemic insult, approximately 67% of CA1 neurons were saved from delayed neuronal death on day 5 after ischemia. In contrast, when E-64c was similarly administered, approximately 84% of CA1 neurons were saved from delayed neuronal death on day 5. The surviving neurons showed mild central chromatolysis and negligible immunoreactivity for cathepsins B and L. These observations indicate that the use of cathepsin inhibitors may become novel strategy for prevention of ischemic delayed neuronal death in the primate hippocampus.
Collapse
Affiliation(s)
- K Tsuchiya
- Department of Neurosurgery, Kanazawa University School of Medicine, Takaramachi 13-1, Kanazawa, 920-8641, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ishidoh K, Saido TC, Kawashima S, Hirose M, Watanabe S, Sato N, Kominami E. Multiple processing of procathepsin L to cathepsin L in vivo. Biochem Biophys Res Commun 1998; 252:202-7. [PMID: 9813170 DOI: 10.1006/bbrc.1998.9613] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Three amino-terminal-specific peptidic antibodies against cathepsin L were generated. These antibodies recognize in vitro processing products of procathepsin L in time-course-dependent fashion. Immunoblot analyses with these antibodies followed by immunoprecipitation with anti-cathepsin L antibody showed that the amino terminal amino acid sequences of intracellular cathepsin L are heterogeneous: the single chain form of cathepsin L starts with either EPLML, LKIPK or IPKSV, and the heavy chain of the two chain form with IPKSV. Percoll density gradient and fluorescence immunohistochemistry suggested that these three species of cathepsin L localize in the lysosomes where procathepsin L processing occurs.
Collapse
Affiliation(s)
- K Ishidoh
- Department of Biochemistry, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113, Japan.
| | | | | | | | | | | | | |
Collapse
|
31
|
Hernández-Vidal G, Jeffcott LB, Davies ME. Immunolocalization of cathepsin B in equine dyschondroplastic articular cartilage. Vet J 1998; 156:193-201. [PMID: 9883087 DOI: 10.1016/s1090-0233(98)80122-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A polyclonal antiserum raised in sheep against human cathepsin B was tested for specificity and cross-reactivity with the horse homologue by SDS-PAGE and Western blotting, prior to being used for immunolocalization of the enzyme in equine articular cartilage. In Western blots, the antiserum recognized the 30 kDa single chain and 25 kDa heavy chain of the mature enzyme in purified bovine cathepsin B, and corresponding bands at 32 and 27 kDa in equine chondrocyte and fibroblast lysates. This antiserum was then used to compare the expression and distribution of cathepsin B in normal and dyschondroplastic cartilage of young horses. In normal articular cartilage (n = 6 animals), significant amounts of enzyme were detected only in hypertrophic chondrocytes in the deep zone. The enzyme was intracellular, located in the lysosomal granules. No extracellular matrix staining was observed. Levels of cathepsin B were increased slightly above normal in the deep zone in age-matched dyschondroplastic cartilage (n = 5 animals). The most striking finding, however, was the abundance of the enzyme in chondrocyte clonal clusters associated with the lesions. Cathepsin B levels were low in chondrocytes isolated from normal cartilage (n = 6), but increased progressively during serial subculture, reaching a maximum at passage 5-6. In contrast, primary cultures of dyschondroplastic chondrocytes (n = 3) expressed abundant cathepsin B.
Collapse
|
32
|
Makita Y, Ishidoh K, Kominami E, Funabiki K, Koide H, Tomino Y. Expression of cysteine proteinases and their inhibitor, cystatin beta, in cultured rat mesangial cells. J Diabetes Complications 1998; 12:328-36. [PMID: 9877467 DOI: 10.1016/s1056-8727(98)00008-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Matrix expansion in the glomerular mesangial area is observed in diabetic nephropathy. Intracellular breakdown of long-lived proteins was lower in mesangial cells in the high glucose medium than that in the control medium. Enzymatic activity of cathepsin L increased 1.4-fold after 6 h of treatment with the high glucose, and then declined gradually to 72% of control cells after treatment for 36 h. Change in the enzyme activity of cathepsin B showed a similar time course but less magnitude than that of cathepsin L. Immunoblot analysis with anti-cathepsin L antibody showed that change in the enzyme activity of cathepsin L was due to the change in the amount of cathepsin L, and that with anti-cathepsin B antibody showed no change in the amount of cathepsin B in the mesangial cells treated with high glucose. Intracellular cathepsin activities were controlled not only by the amounts but also by the inhibitor cystatin beta. Immunoblot analysis with anti-cystatin beta antibody showed that intracellular levels of cystatin beta increased slightly after 24 h of treatment with high glucose. These changes were derived from changes in mRNA level. These results, therefore, demonstrated that the decrease of intracellular protein breakdown in mesangial cells treated with high glucose medium was due to both suppression of cathepsins and increase of cystatin beta.
Collapse
Affiliation(s)
- Y Makita
- Department of Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
33
|
Jerala R, Zerovnik E, Kidric J, Turk V. pH-induced conformational transitions of the propeptide of human cathepsin L. A role for a molten globule state in zymogen activation. J Biol Chem 1998; 273:11498-504. [PMID: 9565563 DOI: 10.1074/jbc.273.19.11498] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synthesis of proteases as inactive zymogens is a very important mechanism for the regulation of their activity. For lysosomal proteases proteolytic cleavage of the propeptide is triggered by the acidic pH. By using fluorescence, circular dichroism, and NMR spectroscopy, we show that upon decreasing the pH from 6.5 to 3 the propeptide of cathepsin L loses most of the tertiary structure, but almost none of the secondary structure is lost. Another partially structured intermediate, prone to aggregation, was identified between pH 6.5 and 4. The conformation, populated below pH 4, where the activation of cathepsin L occurs, is not completely unfolded and has the properties of molten globule, including characteristic binding of the 1-anilinonaphthalene-8-sulfonic acid. This pH unfolding of the propeptide parallels a decrease of its affinity for cathepsin L and suggests the mechanism for the acidic zymogen activation. Addition of anionic polysaccharides that activate cathepsin L already at pH 5.5 unfolds the tertiary structure of the propeptide at this pH. Propeptide of human cathepsin L which is able to fold independently represents an evolutionary intermediate in the emergence of novel inhibitors originating from the enzyme proregions.
Collapse
Affiliation(s)
- R Jerala
- Laboratory for Molecular Modeling and NMR Spectroscopy, National Institute of Chemistry, Hajdrihova 19, Slovenia.
| | | | | | | |
Collapse
|
34
|
Suppression of cathepsins B and L causes a proliferation of lysosomes and the formation of meganeurites in hippocampus. J Neurosci 1997. [PMID: 9151717 DOI: 10.1523/jneurosci.17-11-04006.1997] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cultured hippocampal slices exhibited prominent ultrastructural features of brain aging after exposure to an inhibitor of cathepsins B and L. Six days of treatment with N-CBZ-L-phenylalanyl-L-alanine-diazomethylketone (ZPAD) resulted in a dramatic increase in the number of lysosomes in the perikarya of neurons and glial cells throughout the slices. Furthermore, lysosomes in CA1 and CA3 pyramidal cells were not restricted to the soma but instead were located throughout dendritic processes. Clusters of lysosomes were commonly found within bulging segments of proximal dendrites that were notable for an absence of microtubules and neurofilaments. Although pyknotic nuclei were sometimes encountered, most of the cells in slices exposed to ZPAD for 6 d appeared relatively normal. Slices given 7 d of recovery contained several unique features, compared with those processed immediately after incubation with the inhibitor. Cell bodies of CA1 neurons were largely cleared of the excess lysosomes but had gained fusiform, somatic extensions that were filled with fused lysosomes and related complex, dense bodies. These appendages, similar in form and content to structures previously referred to as "meganeurites," were not observed in CA3 neurons or granule cells. Because meganeurites were often interposed between cell body and axon, they have the potential to interfere with processes requiring axonal transport. It is suggested that inactivation of cathepsins B and L results in a proliferation of lysosomes and that meganeurite generation provides a means of storing residual catabolic organelles. The accumulated material could be eliminated by pinching off the meganeurite but, at least in some cases, this action would result in axotomy. Reduced cathepsin L activity, increased numbers of lysosomes, and the formation of meganeurites are all reported to occur during brain aging; thus, it is possible that the infusion of ZPAD into cultured slices sets in motion a greatly accelerated gerontological sequence.
Collapse
|
35
|
Yee ST, Okada Y, Ogasawara K, Omura S, Takatsuki A, Kakiuchi T, Muno D, Kominami E, Mizuochi T. MHC class I presentation of an exogenous polypeptide antigen encoded by the murine AIDS defective virus. Microbiol Immunol 1997; 41:563-70. [PMID: 9272702 DOI: 10.1111/j.1348-0421.1997.tb01892.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Peptides derived from endogenous proteins are presented by MHC class I molecules, whereas those derived from exogenous proteins are presented by MHC class II molecules. This strict segregation has been reconsidered in recent reports in which exogenous antigens are shown to be presented by MHC class I molecules in the phagocytic pathway. In this report, the presentation pathway of an exogenously added highly antigenic polypeptide encoded by the murine AIDS (MAIDS) defective virus gag p12 gene is investigated. A 25-mer polypeptide (P12-25) encoded within the gag p12 region of the MAIDS defective virus was found to be effective in stimulating unprimed B6 (H-2b) CD8+ T cells in vitro. The presentation of P12-25 is sensitive to cytochalasin B and D, brefeldin A and gelonin, a ribosome-inactivating protein synthesis inhibitor, but less sensitive or resistant to lactacystin, a highly specific inhibitor of the proteasome. Interestingly, CA-074, a selective inhibitor of cathepsin B, inhibited presentation of the polypeptide, indicating its involvement in the degradation of the P12-25 polypeptide. In fact, when P12-25 was digested with purified cathepsin B in vitro, a highly antigenic 11-mer peptide containing the class I (H-2Db)-binding motif was obtained. Our results favor the phagosome/macropinosome-to-cytosol-to-endoplasmic reticulum (ER)-to-cell surface pathway for exogenous antigens presented by MHC class I molecules. These findings may be relevant to exploiting peptide vaccines that specifically elicit CD8+ T cell immunity in vivo.
Collapse
Affiliation(s)
- S T Yee
- Department of Bacterial and Blood Products, National Institute of Infectious Diseases, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Le Boulay C, Van Wormhoudt A, Sellos D. Cloning and expression of cathepsin L-like proteinases in the hepatopancreas of the shrimp Penaeus vannamei during the intermolt cycle. J Comp Physiol B 1996; 166:310-8. [PMID: 8870262 DOI: 10.1007/bf02439917] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cysteine protease activities have been characterized with benzyloxycarbonyl-lysine p-nitrophenyl ester as a synthetic substrate and E64 as a specific inhibitor in the hepatopancreas of the shrimp Penaeus vannamei. An optimum pH of 5.1 has been measured. To characterize these cysteine proteases, a hepatopancreas cDNA library was screened by hybridization to a Norway lobster cysteine protease cDNA fragment. Two cDNAs encoding P. vannamei cysteine protease precursors have been cloned and sequenced. The encoded polypeptides have 326 and 322 amino acid residues, respectively, each consisting of partial signal sequences (15 and 10 residues), a pro-region (93 and 94 residues), and a mature enzyme polypeptide (218 residues). Cys25, His159 and Asn175 form the catalytic triad in the putative active site of the mature enzymes. Compared with invertebrate cysteine proteases (Homarus and Fasciola), each of the two shrimp enzymes shows 70 and 52% amino acid sequence identity, respectively; 63% identity is shown with rat cathepsin L. Northern hybridization analysis showed the same size for the different cysteine protease transcripts in hepatopancreas tissue (approximately 1.1 kb). During intermolt cycles, variations in cysteine protease activity were correlated with the variations in the levels of specific mRNA.
Collapse
Affiliation(s)
- C Le Boulay
- Laboratoire de Biologie marine URM IFREMER-Collège de France, Concarneau, France
| | | | | |
Collapse
|
37
|
Henskens YM, Veerman EC, Nieuw Amerongen AV. Cystatins in health and disease. BIOLOGICAL CHEMISTRY HOPPE-SEYLER 1996; 377:71-86. [PMID: 8868064 DOI: 10.1515/bchm3.1996.377.2.71] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Proteolytic enzymes have many physiological functions in plants, bacteria, viruses, protozoa and mammals. They play a role in processes such as food digestion, complement activation or blood coagulation. The action of proteolytic enzymes is biologically controlled by proteinase inhibitors and increasing attention is being paid to the physiological significance of these natural inhibitors in pathological processes. The reason for this growing interest is that uncontrolled proteolysis can lead to irreversible damage e.g. in chronic inflammation or tumor metastasis. This review focusses on the possible role of the cystatins, natural and specific inhibitors of the cysteine proteinases, in pathological processes.
Collapse
Affiliation(s)
- Y M Henskens
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), Netherlands
| | | | | |
Collapse
|
38
|
Marinelli RA, Pellegrino JM, Larocca MC. Assessment of the in vivo hepatic lysosomal processing of horseradish peroxidase. Can J Physiol Pharmacol 1996. [DOI: 10.1139/y95-228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
Ezaki J, Wolfe LS, Ishidoh K, Muno D, Ueno T, Kominami E. Lysosomal proteinosis based on decreased degradation of a specific protein, mitochondrial ATP synthase subunit C: Batten disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1996; 389:121-8. [PMID: 8861001 DOI: 10.1007/978-1-4613-0335-0_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- J Ezaki
- Department of Biochemistry, Juntendo University of Scool of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Kominami E, Ezaki J, Wolfe LS. New insight into lysosomal protein storage disease: delayed catabolism of ATP synthase subunit c in Batten disease. Neurochem Res 1995; 20:1305-9. [PMID: 8786816 DOI: 10.1007/bf00992505] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Subunit c is normally present as an inner mitochondrial membrane component of the Fo sector of the ATP synthase complex, but in the late infantile form of neuronal ceroid lipofuscinosis (NCL) it was also found in lysosomes in high concentrations. Mechanism for specific accumulation of subunit c in lysosomes is not known. The rate of degradation of subunit c as measured by pulsechase and immunoprecipitation showed a marked delay of degradation in patients fibroblasts with late infantile form of NCL. There were no significant differences between control cells and cells with disease in the degradation of cytochrome oxidase subunit IV, an inner membrane protein of mitochondria. Measurement of labeled subunit c in mitochondrial and lysosomal fractions showed that the accumulation of labeled subunit c in the mitochondrial fraction can be detected before lysosomal appearance of radioactive subunit c, suggesting that subunit c accumulated as a consequence of abnormal catabolism in the mitochondrion and is transferred to lysosomes, through an autophagic process. There were no large differences of various lysosomal protease activities between control and patient cells. In patient cells sucrose loading caused a marked shift of lysosomal density, but did not a shift of subunit c containing storage body. The biosynthetic rate of subunit c and mRNA levels for P1 and P2 genes that code for it were almost the same in both control and patient cells. These findings suggest that a specific failure in the degradation of subunit c after its normal inclusion in mitochondria and its consequent accumulation in lysosomes.
Collapse
Affiliation(s)
- E Kominami
- Department of Biochemistry, Juntendo University of School of Medicine, Tokyo, Japan
| | | | | |
Collapse
|
41
|
O'Donoghue AE, Poller DN, Bell JA, Galea MH, Elston CW, Blamey RW, Ellis IO. Cathepsin D in primary breast carcinoma: adverse prognosis is associated with expression of cathepsin D in stromal cells. Breast Cancer Res Treat 1995; 33:137-45. [PMID: 7749141 DOI: 10.1007/bf00682721] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The immunohistochemical expression of the aspartyl protease enzyme cathepsin D was examined in a consecutive series of 103 primary operable breast carcinomas with the polyclonal antibody NCL-CDp. Expression of cathepsin D was identified within the epithelial and stromal components of all tumours examined. No significant associations of increased cathepsin D expression in the epithelial tumour component with conventional prognostic indices such as tumour size, grade, lymph node stage, or patient survival were identified. However, significant associations of increased stromal cathepsin D expression and high tumour grade, chi 2 = 11.40 (df = 2), p = 0.003; increased tendency to local recurrence, chi 2 = 6.87 (df = 1), p = 0.009; regional recurrence, chi 2 = 7.44 (df = 1), p = 0.006; poorer disease free survival, chi 2 = 14.9 (df = 1), p = 0.0001; and poorer overall patient survival, chi 2 = 6.90 (df = 1), p = 0.0086, were identified. Cathepsin D expression is present in all breast tumours. Stromal cathepsin D expression is a neglected immunohistochemical prognostic parameter which could explain some of the previous apparently conflicting reports concerning the effect on patient prognosis of biochemical (i.e. total) and immunohistochemical estimations of cathepsin D in breast cancers.
Collapse
Affiliation(s)
- A E O'Donoghue
- Department of Histopathology, City Hospital, Nottingham, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
42
|
Katunuma N, Kominami E. Structure, properties, mechanisms, and assays of cysteine protease inhibitors: cystatins and E-64 derivatives. Methods Enzymol 1995; 251:382-97. [PMID: 7651220 DOI: 10.1016/0076-6879(95)51142-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- N Katunuma
- Institute for Health Sciences, Tokushima Bunri University, Japan
| | | |
Collapse
|
43
|
Abstract
The proteolytic processes involved in the conversion of procathepsin L to cathepsin L on a negatively charged surface, dextran sulfate, were studied. Upon incubation for 30 min at 37 degrees C, pH 5.5 with dextran-sulfate and dithiothreitol, purified procathepsin L showed maximal activation and, correspondingly, the complete conversion to the 30 kDa, single chain mature form of enzyme was observed. In contrast, incubation under the same conditions on ice rather than at 37 degrees C for 30 or 60 min resulted in partial proteolysis to produce a 31 kDa form without a significant increase in activity. Amino terminal amino acid sequence analyses showed that the 30 kDa form obtained by incubation at 37 degrees C corresponds to the purified form of mature cathepsin L with a 2 amino acid extension at the amino terminal, and that the 31 kDa form generated by incubation on ice possesses a 6 amino acid amino terminal extension, suggesting that the activation and processing of procathepsin L are different processes, and that 4 amino acid residues (Glu-Pro-Leu-Met) at the carboxyterminal in the propeptide function to prevent the activation of processed cathepsin L.
Collapse
Affiliation(s)
- K Ishidoh
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan
| | | |
Collapse
|
44
|
Jerala R, Kroon-Zitko L, Popovic T, Turk V. Elongation on the amino-terminal part of stefin B decreases inhibition of cathepsin H. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 224:797-802. [PMID: 7925405 DOI: 10.1111/j.1432-1033.1994.00797.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Two mutants of the cysteine proteinase inhibitor, stefin B, were prepared by ligating the amino-terminal region from cystatin C and kininogen, members of two other families of cystatin superfamily. The mutant proteins were expressed in Escherichia coli and purified to homogeneity. Inhibition and kinetic constants were determined for authentic and mutated stefins against the four different cysteine proteinases, papain and human cathepsins B, L and H. Inhibition of both amino-terminal elongated stefin B mutants was decreased particularly for cathepsin H. A model of the tertiary structure of cathepsin H and its complex with stefin B was constructed. The framework for the model of cathepsin H consisted of structurally conserved regions from tertiary structures of three cysteine proteinases. Variable regions were selected from fragments of other proteins from the protein data base. We suggest that reduced binding of stefins with elongated amino termini is caused by the mini chain of cathepsin H which is probably in close proximity to the amino termini in the complexes. This mini chain is bridged to Cys214 and has already been proposed to be responsible for the aminopeptidase activity of cathepsin H. We conclude that the amino-terminal region of stefin B plays an important role in determining the strength of inhibition of cathepsin H.
Collapse
Affiliation(s)
- R Jerala
- Department of Biochemistry and Molecular Biology, Jozef Stefan Institute, Ljubljana, Slovenija
| | | | | | | |
Collapse
|
45
|
Bai JP. Subcellular distribution of proteolytic activities degrading bioactive peptides and analogues in the rat small intestinal and colonic enterocytes. J Pharm Pharmacol 1994; 46:671-5. [PMID: 7815282 DOI: 10.1111/j.2042-7158.1994.tb03880.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The objective of this study was to compare, in rat small intestinal and colonic enterocytes, subcellular distributions of activities degrading the large peptides, neurotensin, acetylneurotensin (8-13), GRF(1-29)NH2 (human growth hormone releasing factor fragment), (desNH2Tyr1,D-Ala2,Ala15)-GRF(1-29)NH2, insulin, and insulin B-chain. Proteolytic activities degrading individual peptides in the 10,000-g pellet, rich in intracellular organelles, 27,000-g pellet, rich in brush-border membrane, 100,000-g pellet, and 100,000-g supernatant, rich in cytosol, were determined and compared for both the small intestine and colon. In colonic fractions, the cytosol had highest activity (g protein)-1 degrading three out of four peptides tested, while in small intestinal fractions, the 27,000-g pellet had the highest activity (g protein)-1, degrading four out of five peptides tested. In both small intestine and colon, the cytosol had a higher percentage of total proteolytic activity degrading each of the above polypeptides and the highest insulin-degrading activity (g protein)-1. The results suggest that at pH 7.5, proteolytic activities (g protein)-1 in the fraction of subcellular organelles are much lower than those in cytosol and that cytosolic proteolytic activities degrading polypeptides and analogues are significant.
Collapse
Affiliation(s)
- J P Bai
- College of Pharmacy, University of Minnesota, Minneapolis 55455
| |
Collapse
|
46
|
Santoro L, Reboul A, Journet AM, Colomb MG. Major involvement of cathepsin B in the intracellular proteolytic processing of exogenous IgGs in U937 cells. Mol Immunol 1993; 30:1033-9. [PMID: 8350873 DOI: 10.1016/0161-5890(93)90128-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Monoclonal antibodies used for diagnostic and therapeutic purposes behave as antigens when injected into patients. They are recognized by T cells in a processed form and in a major histocompatibility complex class II restricted fashion. Monoclonal murine IgG2a were used as a model to analyse the early phase of antigen processing in U937 cells. IgG2a prebound to cell surface Fc receptors were rapidly internalized in the cells. During internalization, they were proteolysed with a time-dependent intracellular accumulation of 26, 25, 24, 22 and 14 kDa fragments. Comparison of in vitro IgG2a proteolysis by U937 subcellular fractions or by purified cathepsin B and their intracellular processing indicated that a major cathepsin B like protease is responsible for IgG2a intracellular processing in endo-lysosomal compartments of U937 cells.
Collapse
Affiliation(s)
- L Santoro
- DBMS/ICH, Unité INSERM 238, Grenoble, France
| | | | | | | |
Collapse
|
47
|
Takahashi H, Ishidoh K, Muno D, Ohwada A, Nukiwa T, Kominami E, Kira S. Cathepsin L activity is increased in alveolar macrophages and bronchoalveolar lavage fluid of smokers. THE AMERICAN REVIEW OF RESPIRATORY DISEASE 1993; 147:1562-8. [PMID: 8503570 DOI: 10.1164/ajrccm/147.6_pt_1.1562] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Elastinolytic enzymes derived from alveolar macrophages (AM) are considered to play an important role in the development of emphysema associated with cigarette smoking. In this study, the enzyme activity and mRNA expression of cathepsin L were quantitated in AM and bronchoalveolar lavage (BAL) fluid obtained from current smokers and compared with those from nonsmokers. Activity was measured with the synthetic substrate Z-Phe-Arg-MCA combined with a novel cathepsin B inhibitor, CA-074. We found that the specific activity of cathepsin L was significantly elevated in BAL cells from smokers (7.1 +/- 0.7 mumol/mg protein/h, mean +/- SEM) compared with cells from nonsmokers (2.9 +/- 0.3) (p < 0.01). The expression of cathepsin L mRNA in BAL cells as determined by dot-blot analysis was also higher in BAL cells from smokers, which was comparable to the increase in the enzyme activity. About 5 to 6% of the specific activity of cathepsin L in BAL cell lysates was detected in unconcentrated BAL fluid; specific activity was also significantly higher in samples from smokers (0.38 +/- 0.04 mumol/mg protein/h) than from nonsmokers (0.14 +/- 0.02). In addition, procathepsin L (42 kD) and the mature form of cathepsin L (33 kD) were demonstrated in BAL fluid by immunoblot analyses. These data suggest that cigarette smoking induces mRNA expression and the synthesis of cathepsin L in AM and the release of procathepsin from AM into extracellular milieu. Furthermore, increased activity levels of cathepsin L in extracellular compartments may contribute to the proteolysis of elastin in the process of lung destruction associated with cigarette smoking.
Collapse
Affiliation(s)
- H Takahashi
- Department of Respiratory Disease, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Katunuma N, Kakegawa H, Matsunaga Y, Nikawa T, Kominami E. Different functional share of individual lysosomal cathepsins in normal and pathological conditions. AGENTS AND ACTIONS. SUPPLEMENTS 1993; 42:195-210. [PMID: 8356925 DOI: 10.1007/978-3-0348-7397-0_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Affiliation(s)
- N Katunuma
- Tokushima Bunri University, Institute for Health Sciences, Japan
| | | | | | | | | |
Collapse
|
49
|
Ohshita T, Nikawa T, Towatari T, Katunuma N. Effects of selective inhibition of cathepsin B and general inhibition of cysteine proteinases on lysosomal proteolysis in rat liver in vivo and in vitro. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 209:223-31. [PMID: 1382984 DOI: 10.1111/j.1432-1033.1992.tb17280.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Intraperitoneal administration of N-(L-trans-propylcarbamoyloxirane-2-carbonyl)-L-isoleucyl-L-prolin e (CA-074) to rats at a dose of 4 mg/100 g greatly inhibited cathepsin-B activity in both liver and kidney for at least 4 h. Its inhibitory effect was selective for cathepsin-B activity in the liver but not in the kidney. The effects of selective inhibition of cathepsin-B activity by CA-074 treatment, and general inhibition of cysteine proteinases by N-(L-3-trans-carboxyoxirane-2-carbonyl)-L-leucyl-3-methylbutylamid e (E-64-c) on the degradation of fluorescein isothiocyanate (FITC)-labeled asialofetuin in liver lysosomes, were examined in vivo. Undegraded or partially degraded FITC-labeled asialofetuin and its FITC-labeled degradation products were both found in the lysosomes and were easily separated by Sephadex G-25' column chromatography. The FITC-labeled degradation products were mainly lysine with an FITC-labeled epsilon-amino group. Accumulation of undegraded or partially degraded FITC-labeled asialofetuin in the lysosomes was marked after E-64-c treatment, but slight after CA-074 treatment. Under the marked inhibition of general lysosomal cysteine-proteinase activity by E-64-c or marked selective inhibition of cathepsin-B activity by CA-074 in vitro, degradation of FITC-labeled asialofetuin by disrupted lysosomes was analyzed on the basis of measurement of FITC-labeled degradation products by Sephadex G-25 column chromatography. It was suppressed markedly but incompletely by E-64-c as well as by CA-074, but more weakly than by E-64-c. These results shows that E-64-sensitive cysteine proteinases are important in lysosomal protein degradation, but cathepsin B has only a role in part and that an E-64-resistant proteinase(s) may also be important.
Collapse
Affiliation(s)
- T Ohshita
- Division of Enzyme Chemistry, University of Tokushima, Japan
| | | | | | | |
Collapse
|