1
|
He Q, Liu C, Liu Q, Wang L, Song L. CgADAR1 involved in regulating the synthesis of interferon-like protein in Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2024; 150:109620. [PMID: 38740229 DOI: 10.1016/j.fsi.2024.109620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/24/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Adenosine deaminases acting on RNA 1 (ADAR1) is a dsRNA adenosine (A)-to-inosine (I) editing enzyme that regulates the innate immune response against virus invasion. In the present study, a novel CgADAR1 was identified from the oyster Crassostrea gigas. The open reading frame (ORF) of CgADAR1 was of 3444 bp encoding a peptide of 1147 amino acid residues with two Zα domains, one dsRNA binding motif (DSRM) and one RNA adenosine deaminase domain (ADEAMc). The mRNA transcripts of CgADAR1 were detected in all the examined tissues, with higher expression levels in mantle and gill, which were 7.11-fold and 4.90-fold (p < 0.05) of that in labial palp, respectively. The mRNA transcripts of CgADAR1 in haemocytes were significantly induced at 24 h and 36 h after Poly (A: U) stimulation, which were 6.03-fold (p < 0.01) and 1.37-fold (p < 0.001) of that in control group, respectively. At 48 h after Poly (A:U) stimulation, the mRNA expression of CgRIG-Ⅰ, CgIRF8 and CgIFNLP significantly increased, which were 4.36-fold (p < 0.001), 1.82-fold (p < 0.05) and 1.92-fold (p < 0.05) of that in control group. After CgADAR1 expression was inhibited by RNA interference (RNAi), the mRNA expression levels of CgMDA5, CgRIG-Ⅰ, CgTBK1, CgIRF8 and CgIFNLP were significantly increased, which were 11.88-fold, 11.51-fold, 2.22-fold, 2.85-fold and 2.52-fold of that in control group (p < 0.001), and the phosphorylation level of CgTBK1 was also significantly increased. These results suggested that CgADAR1 played a regulation role in the early stages of viral infection by inhibiting the synthesis of interferon-like protein.
Collapse
Affiliation(s)
- Qianqian He
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Chang Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.
| | - Qian Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering, Guangdong, Zhuhai, 519000, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering, Guangdong, Zhuhai, 519000, China.
| |
Collapse
|
2
|
Zhang K, Wang S, Chen T, Tu Z, Huang X, Zang G, Wu C, Fan X, Liu J, Tian Y, Cheng Y, Lu N, Zhang G. ADAR1p110 promotes Enterovirus D68 replication through its deaminase domain and inhibition of PKR pathway. Virol J 2022; 19:222. [PMID: 36550502 PMCID: PMC9773460 DOI: 10.1186/s12985-022-01952-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Severe respiratory and neurological diseases caused by human enterovirus D68 (EV-D68) pose a serious threat to public health, and there are currently no effective drugs and vaccines. Adenosine deaminase acting on RNA1 (ADAR1) has diverse biological functions in various viral infections, but its role in EV-D68 infections remains undetermined. METHODS Rhabdomyosarcoma (RD) and human embryonic kidney 293 T (293 T) cells, and HeLa cells were used to evaluate the expression level of ADAR1 upon EV-D68 (Fermon strain) and human parainfluenza virus type 3 (HPIV3; NIH47885) infection, respectively. Knockdown through silencing RNA (siRNA) and overexpression of either ADAR1p110 or ADAR1p150 in cells were used to determine the function of the two proteins after viral infection. ADAR1p110 double-stranded RNA binding domains (dsRBDs) deletion mutation was generated using a seamless clone kit. The expression of ADAR1, EV-D68 VP1, and HPIV3 hemagglutinin-neuraminidase (HN) proteins was identified using western blotting. The median tissue culture infectious dose (TCID50) was applied to detect viral titers. The transcription level of EV-D68 mRNA was analyzed using reverse transcription-quantitative PCR (RT-qPCR) and the viral 5'-untranslated region (5'-UTR)-mediated translation was analyzed using a dual luciferase reporter system. CONCLUSION We found that the transcription and expression of ADAR1 was inhibited upon EV-D68 infection. RNA interference of endogenous ADAR1 decreased VP1 protein expression and viral titers, while overexpression of ADAR1p110, but not ADAR1p150, facilitated viral replication. Immunofluorescence assays showed that ADAR1p110 migrated from the nucleus to the cytoplasm after EV-D68 infection. Further, ADAR1p110 lost its pro-viral ability after mutations of the active sites in the deaminase domain, and 5'-UTR sequencing of the viral genome revealed that ADAR1p110 likely plays a role in EV-D68 RNA editing. In addition, after ADAR1 knockdown, the levels of both phosphorylated double-stranded RNA dependent protein kinase (p-PKR) and phosphorylated eukaryotic initiation factor 2α (p-eIF2α) increased. Attenuated translation activity of the viral genome 5'-UTR was also observed in the dual-luciferase reporter assay. Lastly, the deletion of ADAR1p110 dsRBDs increased the level of p-PKR, which correlated with a decreased VP1 expression, indicating that the promotion of EV-D68 replication by ADAR1p110 is also related to the inhibition of PKR activation by its dsRBDs. Our study illustrates that ADAR1p110 is a novel pro-viral factor of EV-D68 replication and provides a theoretical basis for EV-D68 antiviral research.
Collapse
Affiliation(s)
- Kehan Zhang
- grid.203458.80000 0000 8653 0555Pathogen Biology and Immunology Laboratory and Laboratory of Tissue and Cell Biology, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, China ,grid.203458.80000 0000 8653 0555Department of the First Clinical Medicine, Chongqing Medical University, Chongqing, China
| | - Siyuan Wang
- grid.203458.80000 0000 8653 0555Department of the First Clinical Medicine, Chongqing Medical University, Chongqing, China
| | - Tingting Chen
- grid.203458.80000 0000 8653 0555Pathogen Biology and Immunology Laboratory and Laboratory of Tissue and Cell Biology, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, China
| | - Zeng Tu
- grid.203458.80000 0000 8653 0555Department of Pathogen Biology, Basic Medical School, Chongqing Medical University, Chongqing, China
| | - Xia Huang
- grid.203458.80000 0000 8653 0555Department of the First Clinical Medicine, Chongqing Medical University, Chongqing, China
| | - Guangchao Zang
- grid.203458.80000 0000 8653 0555Pathogen Biology and Immunology Laboratory and Laboratory of Tissue and Cell Biology, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, China
| | - Chun Wu
- Chongqing Better Biotechnology LLC, Chongqing, China
| | - Xinyue Fan
- grid.203458.80000 0000 8653 0555Department of the First Clinical Medicine, Chongqing Medical University, Chongqing, China
| | - Jia Liu
- grid.203458.80000 0000 8653 0555Pathogen Biology and Immunology Laboratory and Laboratory of Tissue and Cell Biology, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, China
| | - Yunbo Tian
- Quality Management Section, Chongqing Blood Center, Chongqing, China
| | - Yong Cheng
- Monitoring On Terrestrial Wildlife-Borne Infectious Diseases, Jinggangshan National Nature Reserve of Jiangxi Province, Ji’an, Jiangxi China
| | - Nan Lu
- grid.203458.80000 0000 8653 0555Department of Pathogen Biology, Basic Medical School, Chongqing Medical University, Chongqing, China
| | - Guangyuan Zhang
- grid.203458.80000 0000 8653 0555Pathogen Biology and Immunology Laboratory and Laboratory of Tissue and Cell Biology, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Piontkivska H, Wales-McGrath B, Miyamoto M, Wayne ML. ADAR Editing in Viruses: An Evolutionary Force to Reckon with. Genome Biol Evol 2021; 13:evab240. [PMID: 34694399 PMCID: PMC8586724 DOI: 10.1093/gbe/evab240] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2021] [Indexed: 02/06/2023] Open
Abstract
Adenosine Deaminases that Act on RNA (ADARs) are RNA editing enzymes that play a dynamic and nuanced role in regulating transcriptome and proteome diversity. This editing can be highly selective, affecting a specific site within a transcript, or nonselective, resulting in hyperediting. ADAR editing is important for regulating neural functions and autoimmunity, and has a key role in the innate immune response to viral infections, where editing can have a range of pro- or antiviral effects and can contribute to viral evolution. Here we examine the role of ADAR editing across a broad range of viral groups. We propose that the effect of ADAR editing on viral replication, whether pro- or antiviral, is better viewed as an axis rather than a binary, and that the specific position of a given virus on this axis is highly dependent on virus- and host-specific factors, and can change over the course of infection. However, more research needs to be devoted to understanding these dynamic factors and how they affect virus-ADAR interactions and viral evolution. Another area that warrants significant attention is the effect of virus-ADAR interactions on host-ADAR interactions, particularly in light of the crucial role of ADAR in regulating neural functions. Answering these questions will be essential to developing our understanding of the relationship between ADAR editing and viral infection. In turn, this will further our understanding of the effects of viruses such as SARS-CoV-2, as well as many others, and thereby influence our approach to treating these deadly diseases.
Collapse
Affiliation(s)
- Helen Piontkivska
- Department of Biological Sciences, Kent State University, Ohio, USA
- School of Biomedical Sciences, Kent State University, Ohio, USA
- Brain Health Research Institute, Kent State University, Ohio, USA
| | | | - Michael Miyamoto
- Department of Biology, University of Florida, Gainesville, Florida, USA
| | - Marta L Wayne
- Department of Biology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
4
|
Vogel OA, Han J, Liang CY, Manicassamy S, Perez JT, Manicassamy B. The p150 Isoform of ADAR1 Blocks Sustained RLR signaling and Apoptosis during Influenza Virus Infection. PLoS Pathog 2020; 16:e1008842. [PMID: 32898178 PMCID: PMC7500621 DOI: 10.1371/journal.ppat.1008842] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/18/2020] [Accepted: 07/28/2020] [Indexed: 12/24/2022] Open
Abstract
Signaling through retinoic acid inducible gene I (RIG-I) like receptors (RLRs) is tightly regulated, with activation occurring upon sensing of viral nucleic acids, and suppression mediated by negative regulators. Under homeostatic conditions aberrant activation of melanoma differentiation-associated protein-5 (MDA5) is prevented through editing of endogenous dsRNA by RNA editing enzyme Adenosine Deaminase Acting on RNA (ADAR1). In addition, ADAR1 is postulated to play pro-viral and antiviral roles during viral infections that are dependent or independent of RNA editing activity. Here, we investigated the importance of ADAR1 isoforms in modulating influenza A virus (IAV) replication and revealed the opposing roles for ADAR1 isoforms, with the nuclear p110 isoform restricting versus the cytoplasmic p150 isoform promoting IAV replication. Importantly, we demonstrate that p150 is critical for preventing sustained RIG-I signaling, as p150 deficient cells showed increased IFN-β expression and apoptosis during IAV infection, independent of RNA editing activity. Taken together, the p150 isoform of ADAR1 is important for preventing sustained RIG-I induced IFN-β expression and apoptosis during viral infection.
Collapse
Affiliation(s)
- Olivia A. Vogel
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
| | - Julianna Han
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
| | - Chieh-Yu Liang
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Santhakumar Manicassamy
- Cancer Immunology, Inflammation, and Tolerance Program, GRU Cancer Center, Augusta University, Augusta, Georgia
| | - Jasmine T. Perez
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
| | - Balaji Manicassamy
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
5
|
Human Type I Interferon Antiviral Effects in Respiratory and Reemerging Viral Infections. J Immunol Res 2020; 2020:1372494. [PMID: 32455136 PMCID: PMC7231083 DOI: 10.1155/2020/1372494] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/17/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022] Open
Abstract
Type I interferons (IFN-I) are a group of related proteins that help regulate the activity of the immune system and play a key role in host defense against viral infections. Upon infection, the IFN-I are rapidly secreted and induce a wide range of effects that not only act upon innate immune cells but also modulate the adaptive immune system. While IFN-I and many IFN stimulated genes are well-known for their protective antiviral role, recent studies have associated them with potential pathogenic functions. In this review, we summarize the current knowledge regarding the complex effects of human IFN-I responses in respiratory as well as reemerging flavivirus infections of public health significance and the molecular mechanisms by which viral proteins antagonize the establishment of an antiviral host defense. Antiviral effects and immune modulation of IFN-stimulated genes is discussed in resisting and controlling pathogens. Understanding the mechanisms of these processes will be crucial in determining how viral replication can be effectively controlled and in developing safe and effective vaccines and novel therapeutic strategies.
Collapse
|
6
|
Sanjuán R, Domingo-Calap P. Mechanisms of viral mutation. Cell Mol Life Sci 2016; 73:4433-4448. [PMID: 27392606 PMCID: PMC5075021 DOI: 10.1007/s00018-016-2299-6] [Citation(s) in RCA: 526] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/20/2016] [Accepted: 06/22/2016] [Indexed: 02/08/2023]
Abstract
The remarkable capacity of some viruses to adapt to new hosts and environments is highly dependent on their ability to generate de novo diversity in a short period of time. Rates of spontaneous mutation vary amply among viruses. RNA viruses mutate faster than DNA viruses, single-stranded viruses mutate faster than double-strand virus, and genome size appears to correlate negatively with mutation rate. Viral mutation rates are modulated at different levels, including polymerase fidelity, sequence context, template secondary structure, cellular microenvironment, replication mechanisms, proofreading, and access to post-replicative repair. Additionally, massive numbers of mutations can be introduced by some virus-encoded diversity-generating elements, as well as by host-encoded cytidine/adenine deaminases. Our current knowledge of viral mutation rates indicates that viral genetic diversity is determined by multiple virus- and host-dependent processes, and that viral mutation rates can evolve in response to specific selective pressures.
Collapse
Affiliation(s)
- Rafael Sanjuán
- Department of Genetics and Institute for Integrative Systems Biology (I2SysBio), Universitat de València, C/Catedrático José Beltrán 2, 46980, Paterna, Valencia, Spain.
| | - Pilar Domingo-Calap
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx Transplantex, Centre de Recherche d'Immunologie et d'Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Fédération Hospitalo-Universitaire OMICARE, Centre de Recherche d'Immunologie et d'Hématologie, Strasbourg, France
| |
Collapse
|
7
|
Cuevas JM, Combe M, Torres-Puente M, Garijo R, Guix S, Buesa J, Rodríguez-Díaz J, Sanjuán R. Human norovirus hyper-mutation revealed by ultra-deep sequencing. INFECTION GENETICS AND EVOLUTION 2016; 41:233-239. [PMID: 27094861 PMCID: PMC7172324 DOI: 10.1016/j.meegid.2016.04.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/11/2016] [Accepted: 04/15/2016] [Indexed: 02/02/2023]
Abstract
Human noroviruses (NoVs) are a major cause of gastroenteritis worldwide. It is thought that, similar to other RNA viruses, high mutation rates allow NoVs to evolve fast and to undergo rapid immune escape at the population level. However, the rate and spectrum of spontaneous mutations of human NoVs have not been quantified previously. Here, we analyzed the intra-patient diversity of the NoV capsid by carrying out RT-PCR and ultra-deep sequencing with 100,000-fold coverage of 16 stool samples from symptomatic patients. This revealed the presence of low-frequency sequences carrying large numbers of U-to-C or A-to-G base transitions, suggesting a role for hyper-mutation in NoV diversity. To more directly test for hyper-mutation, we performed transfection assays in which the production of mutations was restricted to a single cell infection cycle. This confirmed the presence of sequences with multiple U-to-C/A-to-G transitions, and suggested that hyper-mutation contributed a large fraction of the total NoV spontaneous mutation rate. The type of changes produced and their sequence context are compatible with ADAR-mediated editing of the viral RNA. Norovirus U-to-C hyper-mutants are present in patient samples. Analysis of hyper-mutants in cell culture suggests ADAR-mediated RNA edition. Hyper-mutation may contribute to norovirus diversity and evolution.
Collapse
Affiliation(s)
- José M Cuevas
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, Valencia, Spain
| | - Marine Combe
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, Valencia, Spain
| | - Manoli Torres-Puente
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, Valencia, Spain
| | - Raquel Garijo
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, Valencia, Spain
| | - Susana Guix
- Departament de Microbiologia, Universitat de Barcelona, Barcelona, Spain
| | - Javier Buesa
- Departament de Microbiologia, Universitat de València, Valencia, Spain
| | | | - Rafael Sanjuán
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, Valencia, Spain; Departament de Genètica, Universitat de València, Valencia, Spain.
| |
Collapse
|
8
|
Abstract
The family Arenaviridae currently comprises over 20 viral species, each of them associated with a main rodent species as the natural reservoir and in one case possibly phyllostomid bats. Moreover, recent findings have documented a divergent group of arenaviruses in captive alethinophidian snakes. Human infections occur through mucosal exposure to aerosols or by direct contact of abraded skin with infectious materials. Arenaviruses merit interest both as highly tractable experimental model systems to study acute and persistent infections and as clinically important human pathogens including Lassa (LASV) and Junin (JUNV) viruses, the causative agents of Lassa and Argentine hemorrhagic fevers (AHFs), respectively, for which there are no FDA-licensed vaccines, and current therapy is limited to an off-label use of ribavirin (Rib) that has significant limitations. Arenaviruses are enveloped viruses with a bi-segmented negative strand (NS) RNA genome. Each genome segment, L (ca 7.3 kb) and S (ca 3.5 kb), uses an ambisense coding strategy to direct the synthesis of two polypeptides in opposite orientation, separated by a noncoding intergenic region (IGR). The S genomic RNA encodes the virus nucleoprotein (NP) and the precursor (GPC) of the virus surface glycoprotein that mediates virus receptor recognition and cell entry via endocytosis. The L genome RNA encodes the viral RNA-dependent RNA polymerase (RdRp, or L polymerase) and the small (ca 11 kDa) RING finger protein Z that has functions of a bona fide matrix protein including directing virus budding. Arenaviruses were thought to be relatively stable genetically with intra- and interspecies amino acid sequence identities of 90-95 % and 44-63 %, respectively. However, recent evidence has documented extensive arenavirus genetic variability in the field. Moreover, dramatic phenotypic differences have been documented among closely related LCMV isolates. These data provide strong evidence of viral quasispecies involvement in arenavirus adaptability and pathogenesis. Here, we will review several aspects of the molecular biology of arenaviruses, phylogeny and evolution, and quasispecies dynamics of arenavirus populations for a better understanding of arenavirus pathogenesis, as well as for the development of novel antiviral strategies to combat arenavirus infections.
Collapse
Affiliation(s)
- Esteban Domingo
- Campus de Cantoblanco, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Peter Schuster
- The Santa Fe Institute, Santa Fe, NM, USA and Institut f. Theoretische Chemie, Universität Wien, Vienna, Austria
| |
Collapse
|
9
|
Liddicoat BJ, Chalk AM, Walkley CR. ADAR1, inosine and the immune sensing system: distinguishing self from non-self. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 7:157-72. [PMID: 26692549 DOI: 10.1002/wrna.1322] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/09/2015] [Accepted: 11/10/2015] [Indexed: 11/10/2022]
Abstract
The conversion of genomically encoded adenosine to inosine in dsRNA is termed as A-to-I RNA editing. This process is catalyzed by two of the three mammalian ADAR proteins (ADAR1 and ADAR2) both of which have essential functions for normal organismal homeostasis. The phenotype of ADAR2 deficiency can be primarily ascribed to a lack of site-selective editing of a single transcript in the brain. In contrast, the biology and substrates responsible for the Adar1(-/-) phenotype have remained more elusive. Several recent studies have identified that a feature of absence or reductions of ADAR1 activity, conserved across human and mouse models, is a profound activation of interferon-stimulated gene signatures and innate immune responses. Further analysis of this observation has lead to the conclusion that editing by ADAR1 is required to prevent activation of the cytosolic innate immune system, primarily focused on the dsRNA sensor MDA5 and leading to downstream signaling via MAVS. The delineation of this mechanism places ADAR1 at the interface between the cells ability to differentiate self- from non-self dsRNA. Based on MDA5 dsRNA recognition requisites, the mechanism indicates that the type of dsRNA must fulfil a particular structural characteristic, rather than a sequence-specific requirement. While additional studies are required to molecularly verify the genetic model, the observations to date collectively identify A-to-I editing by ADAR1 as a key modifier of the cellular response to endogenous dsRNA.
Collapse
Affiliation(s)
- Brian J Liddicoat
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.,Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - Alistair M Chalk
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.,Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - Carl R Walkley
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.,Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| |
Collapse
|
10
|
Cuevas JM, Geller R, Garijo R, López-Aldeguer J, Sanjuán R. Extremely High Mutation Rate of HIV-1 In Vivo. PLoS Biol 2015; 13:e1002251. [PMID: 26375597 PMCID: PMC4574155 DOI: 10.1371/journal.pbio.1002251] [Citation(s) in RCA: 251] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 08/10/2015] [Indexed: 11/18/2022] Open
Abstract
Rates of spontaneous mutation critically determine the genetic diversity and evolution of RNA viruses. Although these rates have been characterized in vitro and in cell culture models, they have seldom been determined in vivo for human viruses. Here, we use the intrapatient frequency of premature stop codons to quantify the HIV-1 genome-wide rate of spontaneous mutation in DNA sequences from peripheral blood mononuclear cells. This reveals an extremely high mutation rate of (4.1 ± 1.7) × 10−3 per base per cell, the highest reported for any biological entity. Sequencing of plasma-derived sequences yielded a mutation frequency 44 times lower, indicating that a large fraction of viral genomes are lethally mutated and fail to reach plasma. We show that the HIV-1 reverse transcriptase contributes only 2% of mutations, whereas 98% result from editing by host cytidine deaminases of the A3 family. Hypermutated viral sequences are less abundant in patients showing rapid disease progression compared to normal progressors, highlighting the antiviral role of A3 proteins. However, the amount of A3-mediated editing varies broadly, and we find that low-edited sequences are more abundant among rapid progressors, suggesting that suboptimal A3 activity might enhance HIV-1 genetic diversity and pathogenesis. The rate of spontaneous mutation of the HIV-1 genome within its human host is exceptionally high, is mostly driven by host cytidine deaminases, and probably plays a role in disease progression. The high levels of genetic diversity of the HIV-1 virus grant it the ability to escape the immune system, to rapidly evolve drug resistance, and to circumvent vaccination strategies. However, our knowledge of HIV-1 mutation rates has been largely restricted to in vitro and cell culture studies because of the inherent complexity of measuring these rates in vivo. Here, by analyzing the frequency of premature stop codons, we show that the HIV-1 mutation rate in vivo is two orders of magnitude higher than that predicted by in vitro studies, making it the highest reported mutation rate for any biological system. A large component of this rate is from host cellular cytidine deaminases, which induce mutations in the viral DNA as a defense mechanism. While the HIV-1 genome is hypermutated in blood cells, only a very small fraction of these mutations reach the plasma, indicating that many viruses are defective as a result of the extremely high mutation load. In addition, we find that the HIV-1 mutation rate tends to be higher in patients showing normal disease progression than in those undergoing rapid progression, emphasizing the negative impact on viral fitness of hypermutation by host cytidine deaminases. However, we also observe subpopulations of weakly-mutated viral genomes whose sequence diversity may influence viral pathogenesis. Our work highlights the fine balance for HIV-1 between enough mutation to evade host responses and too much mutation that can inactivate the virus.
Collapse
Affiliation(s)
- José M. Cuevas
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Valencia, Spain
| | - Ron Geller
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Valencia, Spain
| | - Raquel Garijo
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Valencia, Spain
| | - José López-Aldeguer
- Hospital Universitario La Fe, Valencia, Spain
- CoRIS and HIV Biobank, Spanish AIDS Research Network, Spain
| | - Rafael Sanjuán
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Valencia, Spain
- Departament de Genètica, Universitat de València, Valencia, Spain
- * E-mail:
| |
Collapse
|
11
|
Double-stranded RNA-specific adenosine deaminase 1 (ADAR1) promotes EIAV replication and infectivity. Virology 2015; 476:364-371. [PMID: 25589239 DOI: 10.1016/j.virol.2014.12.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 10/23/2014] [Accepted: 12/23/2014] [Indexed: 12/23/2022]
Abstract
Adenosine deaminases that act on RNA (ADARs) have been reported to be functional on various viruses. ADAR1 may exhibit antiviral or proviral activity depending on the type of virus. Human immunodeficiency virus (HIV)-1 is the most well-studied lentivirus with respect to its interaction with ADAR1, and variable results have been reported. In this study, we demonstrated that equine ADAR1 (eADAR1) was a positive regulator of equine infectious anemia virus (EIAV), another lentivirus of the Retroviridae family. First, eADAR1 significantly promoted EIAV replication, and the enhancement of viral protein expression was associated with the long terminal repeat (LTR) and Rev response element (RRE) regions. Second, the RNA binding domain 1 of eADAR1 was essential only for enhancing LTR-mediated gene expression. Third, in contrast with APOBEC proteins, which have been shown to reduce lentiviral infectivity, eADAR1 increased the EIAV infectivity. This study indicated that eADAR1 was proviral rather than antiviral for EIAV.
Collapse
|
12
|
Abstract
Deep sequencing of RNAs produced by Zaire ebolavirus (EBOV) or the Angola strain of Marburgvirus (MARV-Ang) identified novel viral and cellular mechanisms that diversify the coding and noncoding sequences of viral mRNAs and genomic RNAs. We identified previously undescribed sites within the EBOV and MARV-Ang mRNAs where apparent cotranscriptional editing has resulted in the addition of non-template-encoded residues within the EBOV glycoprotein (GP) mRNA, the MARV-Ang nucleoprotein (NP) mRNA, and the MARV-Ang polymerase (L) mRNA, such that novel viral translation products could be produced. Further, we found that the well-characterized EBOV GP mRNA editing site is modified at a high frequency during viral genome RNA replication. Additionally, editing hot spots representing sites of apparent adenosine deaminase activity were found in the MARV-Ang NP 3′-untranslated region. These studies identify novel filovirus-host interactions and reveal production of a greater diversity of filoviral gene products than was previously appreciated. This study identifies novel mechanisms that alter the protein coding capacities of Ebola and Marburg virus mRNAs. Therefore, filovirus gene expression is more complex and diverse than previously recognized. These observations suggest new directions in understanding the regulation of filovirus gene expression.
Collapse
|
13
|
Adenosine deaminase acting on RNA-1 (ADAR1) inhibits HIV-1 replication in human alveolar macrophages. PLoS One 2014; 9:e108476. [PMID: 25272020 PMCID: PMC4182706 DOI: 10.1371/journal.pone.0108476] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 08/29/2014] [Indexed: 11/20/2022] Open
Abstract
While exploring the effects of aerosol IFN-γ treatment in HIV-1/tuberculosis co-infected patients, we observed A to G mutations in HIV-1 envelope sequences derived from bronchoalveolar lavage (BAL) of aerosol IFN-γ-treated patients and induction of adenosine deaminase acting on RNA 1 (ADAR1) in the BAL cells. IFN-γ induced ADAR1 expression in monocyte-derived macrophages (MDM) but not T cells. ADAR1 siRNA knockdown induced HIV-1 expression in BAL cells of four HIV-1 infected patients on antiretroviral therapy. Similar results were obtained in MDM that were HIV-1 infected invitro. Over-expression of ADAR1 in transformed macrophages inhibited HIV-1 viral replication but not viral transcription measured by nuclear run-on, suggesting that ADAR1 acts post-transcriptionally. The A to G hyper-mutation pattern observed in ADAR1 over-expressing cells invitro was similar to that found in the lungs of HIV-1 infected patients treated with aerosol IFN-γ suggesting the model accurately represented alveolar macrophages. Together, these results indicate that ADAR1 restricts HIV-1 replication post-transcriptionally in macrophages harboring HIV-1 provirus. ADAR1 may therefore contribute to viral latency in macrophages.
Collapse
|
14
|
Ko NL, Birlouez E, Wain-Hobson S, Mahieux R, Vartanian JP. Hyperediting of human T-cell leukemia virus type 2 and simian T-cell leukemia virus type 3 by the dsRNA adenosine deaminase ADAR-1. J Gen Virol 2012; 93:2646-2651. [PMID: 22993189 DOI: 10.1099/vir.0.045146-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
RNA editing mediated by adenosine deaminases acting on RNA (ADARs) converts adenosine (A) to inosine (I) residues in dsRNA templates. While ADAR-1-mediated editing was essentially described for RNA viruses, the present work addresses the issue for two δ-retroviruses, human T-cell leukemia virus type 2 and simian T-cell leukemia virus type 3 (HTLV-2 and STLV-3). We examined whether ADAR-1 could edit HTLV-2 and STLV-3 virus genomes in cell culture and in vivo. Using a highly sensitive PCR-based method, referred to as 3DI-PCR, we showed that ADAR-1 could hypermutate adenosine residues in HTLV-2. STLV-3 hypermutation was obtained without using 3DI-PCR, suggesting a higher mutation frequency for this virus. Detailed analysis of the dinucleotide editing context showed preferences for 5' ArA and 5' UrA. In conclusion, the present observations demonstrate that ADAR-1 massively edits HTLV-2 and STLV-3 retroviruses in vitro, but probably remains a rare phenomenon in vivo.
Collapse
Affiliation(s)
- Nga Ling Ko
- Epidemiology and Physiopathology of Oncogenic Viruses, Institut Pasteur, CNRS URA 3015, 28 rue du Dr Roux, 75724 Paris cedex 15, France
| | - Emmanuel Birlouez
- Molecular Retrovirology Unit, Institut Pasteur, CNRS URA 3015, 28 rue du Dr Roux, 75724 Paris cedex 15, France
| | - Simon Wain-Hobson
- Molecular Retrovirology Unit, Institut Pasteur, CNRS URA 3015, 28 rue du Dr Roux, 75724 Paris cedex 15, France
| | - Renaud Mahieux
- Retroviral Oncogenesis, U758 Human virology, ENS Lyon, UMS3444/US8 Biosciences Gerland-Lyon Sud, 46 allée d'Italie, 69007 Lyon, France.,Epidemiology and Physiopathology of Oncogenic Viruses, Institut Pasteur, CNRS URA 3015, 28 rue du Dr Roux, 75724 Paris cedex 15, France
| | - Jean-Pierre Vartanian
- Molecular Retrovirology Unit, Institut Pasteur, CNRS URA 3015, 28 rue du Dr Roux, 75724 Paris cedex 15, France
| |
Collapse
|
15
|
Abstract
Double-stranded RNA (dsRNA) functions both as a substrate of ADARs and also as a molecular trigger of innate immune responses. ADARs, adenosine deaminases that act on RNA, catalyze the deamination of adenosine (A) to produce inosine (I) in dsRNA. ADARs thereby can destablize RNA structures, because the generated I:U mismatch pairs are less stable than A:U base pairs. Additionally, I is read as G instead of A by ribosomes during translation and by viral RNA-dependent RNA polymerases during RNA replication. Members of several virus families have the capacity to produce dsRNA during viral genome transcription and replication. Sequence changes (A-G, and U-C) characteristic of A-I editing can occur during virus growth and persistence. Foreign viral dsRNA also mediates both the induction and the action of interferons. In this chapter our current understanding of the role and significance of ADARs in the context of innate immunity, and as determinants of the outcome of viral infection, will be considered.
Collapse
Affiliation(s)
- Charles E Samuel
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
16
|
Liao JY, Thakur SA, Zalinger ZB, Gerrish KE, Imani F. Inosine-containing RNA is a novel innate immune recognition element and reduces RSV infection. PLoS One 2011; 6:e26463. [PMID: 22028885 PMCID: PMC3196583 DOI: 10.1371/journal.pone.0026463] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 09/27/2011] [Indexed: 12/24/2022] Open
Abstract
During viral infections, single- and double-stranded RNA (ssRNA and dsRNA) are recognized by the host and induce innate immune responses. The cellular enzyme ADAR-1 (adenosine deaminase acting on RNA-1) activation in virally infected cells leads to presence of inosine-containing RNA (Ino-RNA). Here we report that ss-Ino-RNA is a novel viral recognition element. We synthesized unmodified ssRNA and ssRNA that had 6% to16% inosine residues. The results showed that in primary human cells, or in mice, 10% ss-Ino-RNA rapidly and potently induced a significant increase in inflammatory cytokines, such as interferon (IFN)-β (35 fold), tumor necrosis factor (TNF)-α (9.7 fold), and interleukin (IL)-6 (11.3 fold) (p<0.01). Flow cytometry data revealed a corresponding 4-fold increase in influx of neutrophils into the lungs by ss-Ino-RNA treatment. In our in vitro experiments, treatment of epithelial cells with ss-Ino-RNA reduced replication of respiratory syncytial virus (RSV). Interestingly, RNA structural analysis showed that ss-Ino-RNA had increased formation of secondary structures. Our data further revealed that extracellular ss-Ino-RNA was taken up by scavenger receptor class-A (SR-A) which activated downstream MAP Kinase pathways through Toll-like receptor 3 (TLR3) and dsRNA-activated protein kinase (PKR). Our data suggests that ss-Ino-RNA is an as yet undescribed virus-associated innate immune stimulus.
Collapse
Affiliation(s)
- Jie-ying Liao
- Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina, United States of America
| | - Sheetal A. Thakur
- Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina, United States of America
| | - Zachary B. Zalinger
- Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina, United States of America
| | - Kevin E. Gerrish
- Gene Array Core Facility, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina, United States of America
| | - Farhad Imani
- ViraSource Laboratories, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
17
|
Innate antiviral response: role in HIV-1 infection. Viruses 2011; 3:1179-203. [PMID: 21994776 PMCID: PMC3185785 DOI: 10.3390/v3071179] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 06/28/2011] [Accepted: 06/29/2011] [Indexed: 12/14/2022] Open
Abstract
As an early response to infection, cells induce a profile of the early inflammatory proteins including antiviral cytokines and chemokines. Two families of transcriptional factors play a major role in the transcriptional activation of the early inflammatory genes: The well-characterized family of NFkB factors and the family of interferon regulatory factors (IRF). The IRFs play a critical role in the induction of type I interferon (IFN) and chemokine genes, as well as genes mediating antiviral, antibacterial, and inflammatory responses. Type I IFNs represent critical components of innate antiviral immunity. These proteins not only exert direct antiviral effects, but also induce maturation of dendritic cells (DC), and enhance functions of NK, T and B cells, and macrophages. This review will summarize the current knowledge of the mechanisms leading to the innate antiviral response with a focus on its role in the regulation of HIV-1 infection and pathogenicity. We would like this review to be both historical and a future perspective.
Collapse
|
18
|
Enhancement of replication of RNA viruses by ADAR1 via RNA editing and inhibition of RNA-activated protein kinase. J Virol 2011; 85:8460-6. [PMID: 21490091 DOI: 10.1128/jvi.00240-11] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Adenosine deaminase acting on RNA 1 (ADAR1) is a double-stranded RNA binding protein and RNA-editing enzyme that modifies cellular and viral RNAs, including coding and noncoding RNAs. This interferon (IFN)-induced protein was expected to have an antiviral role, but recent studies have demonstrated that it promotes the replication of many RNA viruses. The data from these experiments show that ADAR1 directly enhances replication of hepatitis delta virus, human immunodeficiency virus type 1, vesicular stomatitis virus, and measles virus. The proviral activity of ADAR1 occurs through two mechanisms: RNA editing and inhibition of RNA-activated protein kinase (PKR). While these pathways have been found independently, the two mechanisms can act in concert to increase viral replication and contribute to viral pathogenesis. This novel type of proviral regulation by an IFN-induced protein, combined with some antiviral effects of hyperediting, sheds new light on the importance of ADAR1 during viral infection and transforms our overall understanding of the innate immune response.
Collapse
|
19
|
Samuel CE. Adenosine deaminases acting on RNA (ADARs) are both antiviral and proviral. Virology 2011; 411:180-93. [PMID: 21211811 DOI: 10.1016/j.virol.2010.12.004] [Citation(s) in RCA: 245] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 12/04/2010] [Indexed: 12/18/2022]
Abstract
A-to-I RNA editing, the deamination of adenosine (A) to inosine (I) that occurs in regions of RNA with double-stranded character, is catalyzed by a family of Adenosine Deaminases Acting on RNA (ADARs). In mammals there are three ADAR genes. Two encode proteins that possess demonstrated deaminase activity: ADAR1, which is interferon-inducible, and ADAR2 which is constitutively expressed. ADAR3, by contrast, has not yet been shown to be an active enzyme. The specificity of the ADAR1 and ADAR2 deaminases ranges from highly site-selective to non-selective, dependent on the duplex structure of the substrate RNA. A-to-I editing is a form of nucleotide substitution editing, because I is decoded as guanosine (G) instead of A by ribosomes during translation and by polymerases during RNA-dependent RNA replication. Additionally, A-to-I editing can alter RNA structure stability as I:U mismatches are less stable than A:U base pairs. Both viral and cellular RNAs are edited by ADARs. A-to-I editing is of broad physiologic significance. Among the outcomes of A-to-I editing are biochemical changes that affect how viruses interact with their hosts, changes that can lead to either enhanced or reduced virus growth and persistence depending upon the specific virus.
Collapse
Affiliation(s)
- Charles E Samuel
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
20
|
George CX, Gan Z, Liu Y, Samuel CE. Adenosine deaminases acting on RNA, RNA editing, and interferon action. J Interferon Cytokine Res 2010; 31:99-117. [PMID: 21182352 DOI: 10.1089/jir.2010.0097] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Adenosine deaminases acting on RNA (ADARs) catalyze adenosine (A) to inosine (I) editing of RNA that possesses double-stranded (ds) structure. A-to-I RNA editing results in nucleotide substitution, because I is recognized as G instead of A both by ribosomes and by RNA polymerases. A-to-I substitution can also cause dsRNA destabilization, as I:U mismatch base pairs are less stable than A:U base pairs. Three mammalian ADAR genes are known, of which two encode active deaminases (ADAR1 and ADAR2). Alternative promoters together with alternative splicing give rise to two protein size forms of ADAR1: an interferon-inducible ADAR1-p150 deaminase that binds dsRNA and Z-DNA, and a constitutively expressed ADAR1-p110 deaminase. ADAR2, like ADAR1-p110, is constitutively expressed and binds dsRNA. A-to-I editing occurs with both viral and cellular RNAs, and affects a broad range of biological processes. These include virus growth and persistence, apoptosis and embryogenesis, neurotransmitter receptor and ion channel function, pancreatic cell function, and post-transcriptional gene regulation by microRNAs. Biochemical processes that provide a framework for understanding the physiologic changes following ADAR-catalyzed A-to-I ( = G) editing events include mRNA translation by changing codons and hence the amino acid sequence of proteins; pre-mRNA splicing by altering splice site recognition sequences; RNA stability by changing sequences involved in nuclease recognition; genetic stability in the case of RNA virus genomes by changing sequences during viral RNA replication; and RNA-structure-dependent activities such as microRNA production or targeting or protein-RNA interactions.
Collapse
Affiliation(s)
- Cyril X George
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106, USA
| | | | | | | |
Collapse
|
21
|
Abstract
Hepatitis C virus (HCV) is a small, enveloped RNA virus that is often capable of establishing a persistent infection, which may lead to chronic liver disease, cirrhosis, hepatocellular carcinoma, and eventually death. For more than 20 years, hepatitis C patients have been treated with interferon-alpha (IFN-α). Current treatment usually consists of polyethylene glycol-conjugated IFN-α that is combined with ribavirin, but even the most advanced IFN-based therapies are still ineffective in eliminating the virus from a large proportion of individuals. Therefore, a better understanding of the IFN-induced innate immune response is urgently needed. By using selectable self-replicating RNAs (replicons) and, more recently, recombinant full-length genomes, many groups have tried to elucidate the mechanism(s) by which IFNs inhibit HCV replication. This chapter attempts to summarize the current state of knowledge in this interesting field of HCV research.
Collapse
|
22
|
Nolan SM, Skiadopoulos MH, Bradley K, Kim OS, Bier S, Amaro-Carambot E, Surman SR, Davis S, St. Claire M, Elkins R, Collins PL, Murphy BR, Schaap-Nutt A. Recombinant human parainfluenza virus type 2 vaccine candidates containing a 3' genomic promoter mutation and L polymerase mutations are attenuated and protective in non-human primates. Vaccine 2007; 25:6409-22. [PMID: 17658669 PMCID: PMC2040028 DOI: 10.1016/j.vaccine.2007.06.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Revised: 05/31/2007] [Accepted: 06/04/2007] [Indexed: 11/22/2022]
Abstract
Previously, we identified several attenuating mutations in the L polymerase protein of human parainfluenza virus type 2 (HPIV2) and genetically stabilized those mutations using reverse genetics [Nolan SM, Surman S, Amaro-Carambot E, Collins PL, Murphy BR, Skiadopoulos MH. Live-attenuated intranasal parainfluenza virus type 2 vaccine candidates developed by reverse genetics containing L polymerase protein mutations imported from heterologous paramyxoviruses. Vaccine 2005;39(23):4765-74]. Here we describe the discovery of an attenuating mutation at nucleotide 15 (15(T-->C)) in the 3' genomic promoter that was also present in the previously characterized mutants. We evaluated the properties of this promoter mutation alone and in various combinations with the L polymerase mutations. Amino acid substitutions at L protein positions 460 (460A or 460P) or 948 (948L), or deletion of amino acids 1724 and 1725 (Delta1724), each conferred a temperature sensitivity (ts) phenotype whereas the 15(T-->C) mutation did not. The 460A and 948L mutations each contributed to restricted replication in the lower respiratory tract of African green monkeys, but the Delta1724 mutation increased attenuation only in certain combinations with other mutations. We constructed two highly attenuated viruses, rV94(15C)/460A/948L and rV94(15C)/948L/Delta1724, that were immunogenic and protective against challenge with wild-type HPIV2 in African green monkeys and, therefore, appear to be suitable for evaluation in humans.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Anne Schaap-Nutt
- *Corresponding author. Mailing address: NIH, 50 South Drive, Bldg 50, Room 6509, MSC 8007, Bethesda, MD 20892. Phone (301) 594-1650. Fax: (301) 480-1268.
| |
Collapse
|
23
|
Affiliation(s)
- Andrea Paun
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland 21231, USA
| | | |
Collapse
|
24
|
Toth AM, Zhang P, Das S, George CX, Samuel CE. Interferon action and the double-stranded RNA-dependent enzymes ADAR1 adenosine deaminase and PKR protein kinase. ACTA ACUST UNITED AC 2007; 81:369-434. [PMID: 16891177 DOI: 10.1016/s0079-6603(06)81010-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ann M Toth
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California 93106, USA
| | | | | | | | | |
Collapse
|
25
|
Hallegger M, Taschner A, Jantsch MF. RNA aptamers binding the double-stranded RNA-binding domain. RNA (NEW YORK, N.Y.) 2006; 12:1993-2004. [PMID: 17000903 PMCID: PMC1624906 DOI: 10.1261/rna.125506] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Specific RNA recognition of proteins containing the double-strand RNA-binding domain (dsRBD) is essential for several biological pathways such as ADAR-mediated adenosine deamination, localization of RNAs by Staufen, or RNA cleavage by RNAse III. Structural analysis has demonstrated the lack of base-specific interactions of dsRBDs with either a perfect RNA duplex or an RNA hairpin. We therefore asked whether in vitro selections performed in parallel with individual dsRBDs could yield RNAs that are specifically recognized by the dsRBD on which they were selected . To this end, SELEX experiments were performed using either the second dsRBD of the RNA-editing enzyme ADAR1 or the second dsRBD of Xlrbpa, a homolog of TRBP that is involved in RISC formation. Several RNA families with high binding capacities for dsRBDs were isolated from either SELEX experiment, but no discrimination of these RNAs by different dsRBDs could be detected. The selected RNAs are highly structured, and binding regions map to two neighboring stem-loops that presumably form stacked helices and are interrupted by mismatches and bulges. Despite the lack of selective binding of SELEX RNAs to individual dsRBDS, selected RNAs can efficiently interfere with RNA editing in vivo.
Collapse
Affiliation(s)
- Martina Hallegger
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
26
|
Zahn RC, Schelp I, Utermöhlen O, von Laer D. A-to-G hypermutation in the genome of lymphocytic choriomeningitis virus. J Virol 2006; 81:457-64. [PMID: 17020943 PMCID: PMC1797460 DOI: 10.1128/jvi.00067-06] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The interferon-inducible adenosine deaminase that acts on double-stranded RNA (ADAR1-L) has been proposed to be one of the antiviral effector proteins within the complex innate immune response. Here, the potential role of ADAR1-L in the innate immune response to lymphocytic choriomeningitis virus (LCMV), a widely used virus model, was studied. Infection with LCMV clearly upregulated ADAR1-L expression and activity. The editing activity of ADAR1-L on an RNA substrate was not inhibited by LCMV replication. Accordingly, an adenosine-to-guanosine (A-to-G) and uracil-to-cytidine (U-to-C) hypermutation pattern was found in the LCMV genomic RNA in infected cell lines and in mice. In addition, two hypermutated clones with a high level of A-to-G or U-to-C mutations within a short stretch of the viral genome were isolated. Analysis of the functionality of viral glycoprotein revealed that A-to-G- and U-to-C-mutated LCMV genomes coded for nonfunctional glycoprotein at a surprisingly high frequency. Approximately half the GP clones with an amino acid mutation lacked functionality. These results suggest that ADAR1-L-induced mutations in the viral RNA lead to a loss of viral protein function and reduced viral infectivity. This study therefore provides strong support for the contribution of ADAR1-L to the innate antiviral immune response.
Collapse
Affiliation(s)
- Roland C Zahn
- Georg-Speyer-Haus, Paul-Ehrlich-Str. 42-44, 60596 Frankfurt, Germany
| | | | | | | |
Collapse
|
27
|
Okahira S, Nishikawa F, Nishikawa S, Akazawa T, Seya T, Matsumoto M. Interferon-beta induction through toll-like receptor 3 depends on double-stranded RNA structure. DNA Cell Biol 2005; 24:614-23. [PMID: 16225392 DOI: 10.1089/dna.2005.24.614] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Type I interferons (IFN-alpha/beta) play an essential role in both innate and adaptive antiviral immune responses. IFN- beta is produced by fibroblasts and myeloid dendritic cells (DCs) upon viral infection or in response to doublestranded RNA (dsRNA). Several intracellular molecules having a dsRNA-binding motif such as dsRNA-dependent protein kinase recognize dsRNA in a sequence-independent manner and induce antiviral innate responses. Toll-like receptor (TLR) 3, a member of TLR family proteins, recognizes extracellular dsRNA and activates NF- kappaB and the IFN-beta promoter leading to the induction of IFN-beta production. Here we analyzed the dsRNA structure capable of inducing TLR3-mediated IFN-beta production using various synthetic RNA duplexes. In contrast to the recognition of dsRNA by intracellular molecules, TLR3 preferentially recognizes polyriboinocinic:polyribocytidylic acid (poly(I:C)) rather than synthetic virus-derived dsRNAs. 2'-O-methyl or 2'-fluoro modification of cytidylic acid abolished the IFN-beta-inducing ability of the poly(I:C) duplex, and these modified dsRNAs inhibited poly(I:C)-induced TLR3-mediated IFN-beta production by fibroblasts and DCs. In addition, poly(dI:dC), a non-IFN inducer, also blocked poly(I:C)-induced IFN-beta induction. Since TLR3 is localized in the intracellular compartment of DCs where signaling occurs, modified dsRNAs may compete with poly(I:C) for binding to the cell-surface receptor that transfers dsRNA into TLR3-enriched vesicles. Thus, TLR3 recognizes a unique dsRNA structure that largely differs from those recognized by other dsRNA-binding proteins.
Collapse
Affiliation(s)
- Satoyo Okahira
- Department of Immunology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Higashinari-ku, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Grande-Pérez A, Gómez-Mariano G, Lowenstein PR, Domingo E. Mutagenesis-induced, large fitness variations with an invariant arenavirus consensus genomic nucleotide sequence. J Virol 2005; 79:10451-9. [PMID: 16051837 PMCID: PMC1182645 DOI: 10.1128/jvi.79.16.10451-10459.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Accepted: 05/09/2005] [Indexed: 11/20/2022] Open
Abstract
Enhanced mutagenesis may result in RNA virus extinction, but the molecular events underlying this process are not well understood. Here we show that 5-fluorouracil (FU)-induced mutagenesis of the arenavirus lymphocytic choriomeningitis virus (LCMV) resulted in preextinction populations whose consensus genomic nucleotide sequence remained unaltered. Furthermore, fitness recovery passages in the absence of FU, or alternate virus passages in the presence and absence of FU, led to profound differences in the capacity of LCMV to produce progeny, without modification of the consensus genomic sequence. Molecular genetic analysis failed to produce evidence of hypermutated LCMV genomes. The results suggest that low-level mutagenesis to enrich the viral population with defector, interfering genomes harboring limited numbers of mutations may mediate the loss of infectivity that accompanies viral extinction.
Collapse
Affiliation(s)
- Ana Grande-Pérez
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | | | | | | |
Collapse
|
29
|
Abstract
HIV-1 and other retroviruses exhibit mutation rates that are 1,000,000-fold greater than their host organisms. Error-prone viral replication may place retroviruses and other RNA viruses near the threshold of "error catastrophe" or extinction due to an intolerable load of deleterious mutations. Strategies designed to drive viruses to error catastrophe have been applied to HIV-1 and a number of RNA viruses. Here, we review the concept of extinguishing HIV infection by "lethal mutagenesis" and consider the utility of this new approach in combination with conventional antiretroviral strategies.
Collapse
Affiliation(s)
- Robert A Smith
- Department of Pathology, University of Washington, Seattle, WA 18195, USA.
| | | | | |
Collapse
|
30
|
Wong SK, Sato S, Lazinski DW. Elevated activity of the large form of ADAR1 in vivo: very efficient RNA editing occurs in the cytoplasm. RNA (NEW YORK, N.Y.) 2003; 9:586-98. [PMID: 12702817 PMCID: PMC1370424 DOI: 10.1261/rna.5160403] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2003] [Accepted: 02/11/2003] [Indexed: 05/21/2023]
Abstract
Mammalian cells express small and large forms of the RNA editing enzyme ADAR1, referred to as ADAR1-S and ADAR1-L, respectively. Here we observed that ADAR1-L was >70-fold more active than was ADAR1-S when assayed with a substrate that could be edited in either the nucleus or cytoplasm, and was also much more active when assayed with a substrate that was generated in the cytoplasm during viral replication. In contrast, when a substrate that could only be edited within the nucleus was assayed, the activity of ADAR1-S was found to be somewhat higher than that of ADAR1-L. We show here not only that editing could occur in the cytoplasm but also that the process was extremely efficient, occurred rapidly, and could occur in the absence of translation. Consistent with the observation that editing in the cytoplasm can be very efficient, deletion of the nuclear localization signal from ADAR2 resulted in a protein with 15-fold higher activity when tested with a substrate that contained an editing site in the mature message. In addition to its potential role in an antiviral response, we propose that ADAR1-L is the form primarily responsible for editing mRNAs in which the editing site is retained after processing.
Collapse
Affiliation(s)
- Swee Kee Wong
- Department of Molecular Biology and Microbiology, Raymond and Beverly Sackler Research Foundation Laboratory, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
31
|
Abstract
Human parainfluenza viruses (HPIV) were first discovered in the late 1950s. Over the last decade, considerable knowledge about their molecular structure and function has been accumulated. This has led to significant changes in both the nomenclature and taxonomic relationships of these viruses. HPIV is genetically and antigenically divided into types 1 to 4. Further major subtypes of HPIV-4 (A and B) and subgroups/genotypes of HPIV-1 and HPIV-3 have been described. HPIV-1 to HPIV-3 are major causes of lower respiratory infections in infants, young children, the immunocompromised, the chronically ill, and the elderly. Each subtype can cause somewhat unique clinical diseases in different hosts. HPIV are enveloped and of medium size (150 to 250 nm), and their RNA genome is in the negative sense. These viruses belong to the Paramyxoviridae family, one of the largest and most rapidly growing groups of viruses causing significant human and veterinary disease. HPIV are closely related to recently discovered megamyxoviruses (Hendra and Nipah viruses) and metapneumovirus.
Collapse
Affiliation(s)
- Kelly J Henrickson
- Department of Pediatrics Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| |
Collapse
|
32
|
Abstract
RNA editing is defined as a post-transcriptional change of a gene-encoded sequence at the RNA level, excluding alterations due to processes such as pre-mRNA splicing and 3'-end formation. RNA editing is found in many organisms and can occur either by the insertion or deletion of nucleotides or by the substitution of bases by modification. The nucleoside inosine (I) was first detected in cytoplasmic tRNA and was later found in messenger RNA precursors (pre-mRNAs) and in viral transcripts. It is formed by hydrolytic deamination of a genomically encoded adenosine (A) at C6 of the base and this reaction is catalysed by a family of related enzymes. ADARs (for adenosine deaminases acting on RNA) catalyse A to I conversion either promiscuously or site-specifically in pre-mRNAs, viral RNAs and synthetic double-stranded RNAs (dsRNAs), whereas ADATs (for adenosine deaminases acting on tRNA) are involved in inosine formation in tRNAs. ADAT1 generates I at position 37 (3' of the anticodon) in eukaryotic tRNA(Ala). ADAT2 and ADAT3 function as a heterodimer which catalyses inosine formation at the wobble position (position 34) in eukaryotic tRNAs. Here, we review the state of knowledge on ADARs and ADATs and their RNA substrates, with an emphasis on the developments over the past few years that have increased the understanding of the mechanism of action of these enzymes and of the functional consequences of the widespread modification they catalyse.
Collapse
Affiliation(s)
- Myriam Schaub
- Department of Cell Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056, Basel, Switzerland
| | | |
Collapse
|
33
|
Martínez I, Melero JA. A model for the generation of multiple A to G transitions in the human respiratory syncytial virus genome: predicted RNA secondary structures as substrates for adenosine deaminases that act on RNA. J Gen Virol 2002; 83:1445-1455. [PMID: 12029160 DOI: 10.1099/0022-1317-83-6-1445] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human respiratory syncytial virus (HRSV) escape mutants selected with antibodies specific for the attachment (G) protein contain diverse genetic alterations, including point mutations, premature stop codons, frame shift changes and A to G hypermutations. The latter changes have only been found in mutants selected with antibodies directed against the conserved central region of the G protein. This gene segment fulfils substrate requirements for adenosine deaminases that act on RNA (ADARs): i.e. it is an A+U rich region of 137 residues, and 98 or 106 of them--for A/Mon/3/88 or Long HRSV strains, respectively--are predicted to form intramolecular base pairs leading to a stable RNA secondary structure. In addition, when sequences of the G gene from natural isolates are compared in terms of pairwise substitutions, A to G+G to A changes are preferentially observed in regions where stable intramolecular dsRNA secondary structures are predicted to occur. In this study, a model is proposed in which, in addition to nucleotide misincorporations, reiterative A to G changes in HRSV are generated by ADAR activity operating in short segments (100-200 ribonucleotide residues) of the HRSV genome with high tendency for intramolecular base pairing.
Collapse
Affiliation(s)
- Isidoro Martínez
- Centro Nacional de Biología Fundamental, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain1
| | - José A Melero
- Centro Nacional de Biología Fundamental, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain1
| |
Collapse
|
34
|
Abstract
ADARs are RNA editing enzymes that target double-stranded regions of nuclear-encoded RNA and viral RNA. These enzymes are particularly abundant in the nervous system, where they diversify the information encoded in the genome, for example, by altering codons in mRNAs. The functions of ADARs in known substrates suggest that the enzymes serve to fine-tune and optimize many biological pathways, in ways that we are only starting to imagine. ADARs are also interesting in regard to the remarkable double-stranded structures of their substrates and how enzyme specificity is achieved with little regard to sequence. This review summarizes ongoing investigations of the enzyme family and their substrates, focusing on biological function as well as biochemical mechanism.
Collapse
Affiliation(s)
- Brenda L Bass
- Department of Biochemistry and Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, Utah 84132, USA.
| |
Collapse
|
35
|
Abstract
Tremendous progress has been made in understanding the molecular basis of the antiviral actions of interferons (IFNs), as well as strategies evolved by viruses to antagonize the actions of IFNs. Furthermore, advances made while elucidating the IFN system have contributed significantly to our understanding in multiple areas of virology and molecular cell biology, ranging from pathways of signal transduction to the biochemical mechanisms of transcriptional and translational control to the molecular basis of viral pathogenesis. IFNs are approved therapeutics and have moved from the basic research laboratory to the clinic. Among the IFN-induced proteins important in the antiviral actions of IFNs are the RNA-dependent protein kinase (PKR), the 2',5'-oligoadenylate synthetase (OAS) and RNase L, and the Mx protein GTPases. Double-stranded RNA plays a central role in modulating protein phosphorylation and RNA degradation catalyzed by the IFN-inducible PKR kinase and the 2'-5'-oligoadenylate-dependent RNase L, respectively, and also in RNA editing by the IFN-inducible RNA-specific adenosine deaminase (ADAR1). IFN also induces a form of inducible nitric oxide synthase (iNOS2) and the major histocompatibility complex class I and II proteins, all of which play important roles in immune response to infections. Several additional genes whose expression profiles are altered in response to IFN treatment and virus infection have been identified by microarray analyses. The availability of cDNA and genomic clones for many of the components of the IFN system, including IFN-alpha, IFN-beta, and IFN-gamma, their receptors, Jak and Stat and IRF signal transduction components, and proteins such as PKR, 2',5'-OAS, Mx, and ADAR, whose expression is regulated by IFNs, has permitted the generation of mutant proteins, cells that overexpress different forms of the proteins, and animals in which their expression has been disrupted by targeted gene disruption. The use of these IFN system reagents, both in cell culture and in whole animals, continues to provide important contributions to our understanding of the virus-host interaction and cellular antiviral response.
Collapse
Affiliation(s)
- C E Samuel
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106-9610, USA.
| |
Collapse
|
36
|
Abstract
Extended double-stranded DNA (dsRNA) duplexes can be hyper-edited by adenosine deaminases that act on RNA (ADARs). Long uninterrupted dsRNA is relatively uncommon in cells, and is frequently associated with infection by DNA or RNA viruses. Moreover, extensive adenosine to inosine editing has been reported for various viruses. A number of cellular antiviral defence strategies are stimulated by dsRNA. An additional mechanism to remove dsRNA from cells may involve hyper-editing of dsRNA by ADARs, followed by targeted cleavage. We describe here a cytoplasmic endonuclease activity that specifically cleaves hyper-edited dsRNA. Cleavage occurs at specific sites consisting of alternating IU and UI base pairs. In contrast, unmodified dsRNA and even deaminated dsRNAs that contain four consecutive IU base pairs are not cleaved. Moreover, dsRNAs in which alternating IU and UI base pairs are replaced by isomorphic GU and UG base pairs are not cleaved. Thus, the cleavage of deaminated dsRNA appears to require an RNA structure that is unique to hyper-edited RNA, providing a molecular target for the disposal of hyper-edited viral RNA.
Collapse
Affiliation(s)
| | - Christopher W.J. Smith
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
Corresponding author e-mail:
| |
Collapse
|
37
|
Valentine MR, Termini J. Kinetics of formation of hypoxanthine containing base pairs by HIV-RT: RNA template effects on the base substitution frequencies. Nucleic Acids Res 2001; 29:1191-9. [PMID: 11222769 PMCID: PMC29738 DOI: 10.1093/nar/29.5.1191] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Hypoxanthine (H), the deamination product of adenine, has been implicated in the high frequency of A to G transitions observed in retroviral and other RNA genomes. Although H.C base pairs are thermodynamically more stable than other H.N pairs, polymerase selection may be determined in part by kinetic factors. Therefore, the hypoxanthine induced substitution pattern resulting from replication by viral polymerases may be more complex than that predicted from thermodynamics. We have examined the steady-state kinetics of formation of base pairs opposite template H in RNA by HIV-RT, and for the incorporation of dITP during first- and second-strand synthesis. Hypoxanthine in an RNA template enhances the k(2app) for pairing with standard dNTPs by factors of 10-1000 relative to adenine at the same sequence position. The order of base pairing preferences for H in RNA was observed to be H.C >> H.T > H.A > H.G. Steady-state kinetics of insertion for all possible mispairs formed with dITP were examined on RNA and DNA templates of identical sequence. Insertion of dITP opposite all bases occurs 2-20 times more frequently on RNA templates. This bias for higher insertion frequencies on RNA relative to DNA templates is also observed for formation of mispairs at template A. This kinetic advantage afforded by RNA templates for mismatches and pairing involving H suggests a higher induction of mutations at adenines during first-strand synthesis by HIV-RT.
Collapse
Affiliation(s)
- M R Valentine
- Division of Biology, Beckman Research Institute of the City of Hope, 1450 East Duarte Road, Duarte, CA 91010, USA
| | | |
Collapse
|
38
|
Kumar M, Carmichael GG. Antisense RNA: function and fate of duplex RNA in cells of higher eukaryotes. Microbiol Mol Biol Rev 1998; 62:1415-34. [PMID: 9841677 PMCID: PMC98951 DOI: 10.1128/mmbr.62.4.1415-1434.1998] [Citation(s) in RCA: 222] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
There is ample evidence that cells of higher eukaryotes express double-stranded RNA molecules (dsRNAs) either naturally or as the result of viral infection or aberrant, bidirectional transcriptional readthrough. These duplex molecules can exist in either the cytoplasmic or nuclear compartments. Cells have evolved distinct ways of responding to dsRNAs, depending on the nature and location of the duplexes. Since dsRNA molecules are not thought to exist naturally within the cytoplasm, dsRNA in this compartment is most often associated with viral infections. Cells have evolved defensive strategies against such molecules, primarily involving the interferon response pathway. Nuclear dsRNA, however, does not induce interferons and may play an important posttranscriptional regulatory role. Nuclear dsRNA appears to be the substrate for enzymes which deaminate adenosine residues to inosine residues within the polynucleotide structure, resulting in partial or full unwinding. Extensively modified RNAs are either rapidly degraded or retained within the nucleus, whereas transcripts with few modifications may be transported to the cytoplasm, where they serve to produce altered proteins. This review summarizes our current knowledge about the function and fate of dsRNA in cells of higher eukaryotes and its potential manipulation as a research and therapeutic tool.
Collapse
Affiliation(s)
- M Kumar
- Department of Microbiology, University of Connecticut Health Center, Farmington, Connecticut 06030-3205, USA.
| | | |
Collapse
|
39
|
Haydon D, Knowles N, McCauley J. Methods for the detection of non-random base substitution in virus genes: models of synonymous nucleotide substitution in picornavirus genes. Virus Genes 1998; 16:253-66. [PMID: 9654679 DOI: 10.1023/a:1008018403582] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A substantial fraction of phylogenetic divergence between closely related RNA virus genes is generally accounted for by synonymous (non-amino acid changing) point mutation. Viral evolution may be a complicated phenomena, governed by many different processes. However in this study we ask whether there are any properties in the patterns of synonymous nucleotide substitutions in three different Picornavirus genes that permit the process of accumulation of synonymous point mutation in these genes to be distinguished from some of the simplest most basic evolutionary models. We conclude that while the observed patterns in the occurrence of synonymous point substitution are consistent with those predicted by a model in which base mutation is equi-probable along a gene, and the probability of synonymous substitution determined only by local codon usage, some patterns in the actual nucleotides exchanged remain to be explained.
Collapse
Affiliation(s)
- D Haydon
- Institute for Animal Health, Pirbright Laboratory, Woking, UK.
| | | | | |
Collapse
|
40
|
Patterson JB, Samuel CE. Expression and regulation by interferon of a double-stranded-RNA-specific adenosine deaminase from human cells: evidence for two forms of the deaminase. Mol Cell Biol 1995; 15:5376-88. [PMID: 7565688 PMCID: PMC230787 DOI: 10.1128/mcb.15.10.5376] [Citation(s) in RCA: 456] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A 6,474-nucleotide human cDNA clone designated K88, which encodes double-stranded RNA (dsRNA)-specific adenosine deaminase, was isolated in a screen for interferon (IFN)-regulated cDNAs. Northern (RNA) blot analysis revealed that the K88 cDNA hybridized to a single major transcript of approximately 6.7 kb in human cells which was increased about fivefold by IFN treatment. Polyclonal antisera prepared against K88 cDNA products expressed in Escherichia coli as glutathione S-transferase (GST) fusion proteins recognized two proteins by Western (immunoblot) analysis. An IFN-induced 150-kDa protein and a constitutively expressed 110-kDa protein whose level was not altered by IFN treatment were detected in human amnion U and neuroblastoma SH-SY5Y cell lines. Only the 150-kDa protein was detected in mouse fibroblasts with antiserum raised against the recombinant human protein; the mouse 150-kDa protein was IFN inducible. Immunofluorescence microscopy and cell fractionation analyses showed that the 110-kDa protein was exclusively nuclear, whereas the 150-kDa protein was present in both the cytoplasm and nucleus of human cells. The amino acid sequence deduced from the K88 cDNA includes three copies of the highly conserved R motif commonly found in dsRNA-binding proteins. Both the 150-kDa and the 110-kDa proteins prepared from human nuclear extracts bound to double-stranded but not to single-stranded RNA affinity columns. Furthermore, E. coli-expressed GST-K88 fusion proteins that included the R motif possessed dsRNA-binding activity. Extracts prepared either from K88 cDNA-transfected cells or from IFN-treated cells contained increased dsRNA-specific adenosine deaminase enzyme activity. These results establish that K88 encodes an IFN-inducible dsRNA-specific adenosine deaminase and suggest that at least two forms of dsRNA-specific adenosine deaminase occur in human cells.
Collapse
Affiliation(s)
- J B Patterson
- Department of Biological Sciences, University of California, Santa Barbara 93106, USA
| | | |
Collapse
|
41
|
Abstract
It has been postulated that the cellular double-stranded (ds) RNA adenosine deaminase enzyme is responsible for biased hypermutation during persistent SSPE measles infections in humans. As a test of this hypothesis we studied the effect of negative-strand RNA virus infection on enzyme activity. The adenosine deaminase activity was found in nuclear extracts of both uninfected CV-1 and A549 cells and in cytoplasmic extracts of A549, but not CV-1, cells. During measles or Sendai virus infection of either CV-1 or A549 cells the adenosine deaminase activity in the nucleus remained fairly constant up to 24 h post infection, and there was no apparent re-partitioning of the enzyme between the nucleus and the cytoplasm. Transcription complexes of Sendai virus in vitro or measles virus in vivo did not serve as substrates for the enzyme. These data suggest that even though some portion of the adenosine deaminase enzyme may be present in the cytoplasm of at least some cells during virus infection, modification of the viral RNAs by this enzyme, if it occurs at all, must be at a very low level not directly detectable by biochemical analysis.
Collapse
Affiliation(s)
- S M Horikami
- Department of Immunology and Medical Microbiology, University of Florida College of Medicine, Gainesville 32610, USA
| | | |
Collapse
|
42
|
Abstract
RNA genomes evolve largely on the basis of single point mutations introduced by imprecise RNA polymerases, or by recombination. Clusters of certain transitions (biased hypermutations) were detected first in the genomes of persistent viruses, and in the past year have also been found in the genomes of lytic RNA viruses. A cellular RNA-modifying enzyme probably introduces the clustered transitions and thus contributes to the evolution of RNA viruses.
Collapse
Affiliation(s)
- R Cattaneo
- Institut für Molekularbiologie I, Universität Zürich, Switzerland
| |
Collapse
|
43
|
Polson AG, Bass BL. Preferential selection of adenosines for modification by double-stranded RNA adenosine deaminase. EMBO J 1994; 13:5701-11. [PMID: 7527340 PMCID: PMC395536 DOI: 10.1002/j.1460-2075.1994.tb06908.x] [Citation(s) in RCA: 220] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Double-stranded RNA adenosine deaminase (dsRAD), previously called the double-stranded RNA (dsRNA) unwinding/modifying activity, modifies adenosines to inosines within dsRNA. We used ribonuclease U2 and a mutant of ribonuclease T1 to map the sites of modification in several RNA duplexes. We found that dsRAD had a 5' neighbor preference (A = U > C > G) but no apparent 3' neighbor preference. Further, the proximity of the strand termini affected whether an adenosine was modified. Most importantly, dsRAD exhibited selectivity, modifying a minimal number of adenosines in short dsRNAs. Our results suggest that the specific editing of glutamate receptor subunit B mRNA could be performed in vivo by dsRAD without the aid of specificity factors, and support the hypothesis that dsRAD is responsible for hypermutations in certain RNA viruses.
Collapse
Affiliation(s)
- A G Polson
- Howard Hughes Medical Institute, Department of Biochemistry, University of Utah, Salt Lake City 84132
| | | |
Collapse
|
44
|
Billeter MA, Cattaneo R, Spielhofer P, Kaelin K, Huber M, Schmid A, Baczko K, ter Meulen V. Generation and properties of measles virus mutations typically associated with subacute sclerosing panencephalitis. Ann N Y Acad Sci 1994; 724:367-77. [PMID: 8030963 DOI: 10.1111/j.1749-6632.1994.tb38934.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Subacute sclerosing panencephalitis (SSPE), a very rare but lethal disease caused by measles viruses (MV) persisting in the human central nervous system (CNS) is characterized by lack of viral budding, reduced expression of the viral envelope proteins and spread of MV genomes through the CNS despite massive immune responses. The five major MV genes from several SSPE cases were cloned and sequenced, the two transmembrane envelope glycoproteins hemagglutinin (H) and fusion protein (F) were expressed and their maturation, cellular localization and functionality analyzed. We conclude that 1) mutations in the MV genes arise not only individually, by errors of the MV polymerase, but also in clusters as hypermutations, presumably due to RNA unwinding/modifying activity altering accidentally formed double-stranded RNA regions, 2) MVs spread in SSPE brains after clonal selection, 3) the MV matrix (M) gene is most heavily mutated and dispensable, 4) the two genes encoding envelope transmembrane proteins give rise to functional but altered proteins (typically F is heavily altered in its cytoplasmic domain), 5) H protein is transported poorly to the cell surface, 6) F and H proteins maintain tightly interdepending fusion functions, presumably to allow local cell fusion and MV ribonucleoprotein (RNP) spread through the CNS.
Collapse
Affiliation(s)
- M A Billeter
- Institut für Molekularbiologie I, Universität Zürich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
This paper discusses a novel theory of senescence: the community of pathogens within each host individual evolves during the life-time of the host, and in doing so progressively reduces host vigour. I marshal evidence that asymptomatic host individuals maintain persistent populations of viral pathogens; that these pathogens replicate; that they are often extremely variable; that selection within hosts causes the evolution of pathogens better able to exploit the host; that selection is host-specific; and that such evolving infections cause appreciable and progressive deterioration. Experimental approaches to testing the theory are discussed.
Collapse
Affiliation(s)
- G Bell
- Biology Department, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
46
|
Cattaneo R, Billeter MA. Mutations and A/I hypermutations in measles virus persistent infections. Curr Top Microbiol Immunol 1992; 176:63-74. [PMID: 1600755 DOI: 10.1007/978-3-642-77011-1_5] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- R Cattaneo
- Institut für Molekularbiologie I, Universität Zürich, Switzerland
| | | |
Collapse
|