1
|
Zhen J, Chen J, Huang H, Liao S, Liu S, Yuan Y, Sun R, Longnecker R, Wu TT, Zhou ZH. Structures of Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus virions reveal species-specific tegument and envelope features. J Virol 2024; 98:e0119424. [PMID: 39470208 PMCID: PMC11575322 DOI: 10.1128/jvi.01194-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/26/2024] [Indexed: 10/30/2024] Open
Abstract
Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are classified into the gammaherpesvirus subfamily of Herpesviridae, which stands out from its alpha- and betaherpesvirus relatives due to the tumorigenicity of its members. Although structures of human alpha- and betaherpesviruses by cryogenic electron tomography (cryoET) have been reported, reconstructions of intact human gammaherpesvirus virions remain elusive. Here, we structurally characterize extracellular virions of EBV and KSHV by deep learning-enhanced cryoET, resolving both previously known monomorphic capsid structures and previously unknown pleomorphic features beyond the capsid. Through subtomogram averaging and subsequent tomogram-guided sub-particle reconstruction, we determined the orientation of KSHV nucleocapsids from mature virions with respect to the portal to provide spatial context for the tegument within the virion. Both EBV and KSHV have an eccentric capsid position and polarized distribution of tegument. Tegument species span from the capsid to the envelope and may serve as scaffolds for tegumentation and envelopment. The envelopes of EBV and KSHV are less densely populated with glycoproteins than those of herpes simplex virus 1 (HSV-1) and human cytomegalovirus (HCMV), representative members of alpha- and betaherpesviruses, respectively. Also, we observed fusion protein gB trimers exist within triplet arrangements in addition to standalone complexes, which is relevant to understanding dynamic processes such as fusion pore formation. Taken together, this study reveals nuanced yet important differences in the tegument and envelope architectures among human herpesviruses and provides insights into their varied cell tropism and infection. IMPORTANCE Discovered in 1964, Epstein-Barr virus (EBV) is the first identified human oncogenic virus and the founding member of the gammaherpesvirus subfamily. In 1994, another cancer-causing virus was discovered in lesions of AIDS patients and later named Kaposi's sarcoma-associated herpesvirus (KSHV), the second human gammaherpesvirus. Despite the historical importance of EBV and KSHV, technical difficulties with isolating large quantities of these viruses and the pleiomorphic nature of their envelope and tegument layers have limited structural characterization of their virions. In this study, we employed the latest technologies in cryogenic electron microscopy (cryoEM) and tomography (cryoET) supplemented with an artificial intelligence-powered data processing software package to reconstruct 3D structures of the EBV and KSHV virions. We uncovered unique properties of the envelope glycoproteins and tegument layers of both EBV and KSHV. Comparison of these features with their non-tumorigenic counterparts provides insights into their relevance during infection.
Collapse
Affiliation(s)
- James Zhen
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California, USA
- California NanoSystems Institute, UCLA, Los Angeles, California, USA
- Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Jia Chen
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Haigen Huang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Shiqing Liao
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California, USA
- California NanoSystems Institute, UCLA, Los Angeles, California, USA
| | - Shiheng Liu
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California, USA
- California NanoSystems Institute, UCLA, Los Angeles, California, USA
| | - Yan Yuan
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ren Sun
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Richard Longnecker
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ting-Ting Wu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Z Hong Zhou
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California, USA
- California NanoSystems Institute, UCLA, Los Angeles, California, USA
- Molecular Biology Institute, UCLA, Los Angeles, California, USA
| |
Collapse
|
2
|
Wan J, Wang M, Cheng A, Zhang W, Yang Q, Tian B, Ou X, Sun D, He Y, Zhao X, Wu Y, Zhang S, Huang J, Wu Z, Yu Y, Zhang L, Zhu D, Liu M, Chen S, Jia R. Multiple functions of the herpesvirus UL14 gene product in viral infection. Front Microbiol 2024; 15:1483022. [PMID: 39507342 PMCID: PMC11537914 DOI: 10.3389/fmicb.2024.1483022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024] Open
Abstract
Herpesviruses are a family of double-stranded DNA viruses with a tegument structure and a genome composed of a single sequence and terminal repeat (TR) sequences. The herpesvirus UL14 gene encodes the protein UL14 (pUL14), which has various subcellular localizations and plays a vital role in regulating immediate-early (IE) gene transcription and expression, influences the intracellular localization patterns of several proteins belonging to the capsid and the DNA packaging machinery, participates in secondary envelopment, and influences viral particle release. Additionally, pUL14 has roles in maintaining cellular homeostasis and preventing apoptosis. This review discusses how pUL14 engages in the life cycle of herpesviruses and provides new ideas for further research on pUL14's function in viral infection.
Collapse
Affiliation(s)
- Jieyu Wan
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- Sichuan Agricultural University, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- Sichuan Agricultural University, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- Sichuan Agricultural University, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Wei Zhang
- Sinopharm Yangzhou VAC Biological Engineering Co., Ltd., Yangzhou, China
| | - Qiao Yang
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- Sichuan Agricultural University, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- Sichuan Agricultural University, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- Sichuan Agricultural University, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- Sichuan Agricultural University, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yu He
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- Sichuan Agricultural University, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- Sichuan Agricultural University, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- Sichuan Agricultural University, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- Sichuan Agricultural University, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- Sichuan Agricultural University, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhen Wu
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- Sichuan Agricultural University, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanling Yu
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- Sichuan Agricultural University, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
| | - Ling Zhang
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- Sichuan Agricultural University, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
| | - Dekang Zhu
- Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- Sichuan Agricultural University, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- Sichuan Agricultural University, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- Sichuan Agricultural University, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- Sichuan Agricultural University, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
3
|
Zhen J, Chen J, Huang H, Liao S, Liu S, Yuan Y, Sun R, Longnecker R, Wu TT, Zhou ZH. Structures of Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus virions reveal species-specific tegument and envelope features. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.602672. [PMID: 39026862 PMCID: PMC11257568 DOI: 10.1101/2024.07.09.602672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are classified into the gammaherpesvirus subfamily of Herpesviridae , which stands out from its alpha- and betaherpesvirus relatives due to the tumorigenicity of its members. Although structures of human alpha- and betaherpesviruses by cryogenic electron tomography (cryoET) have been reported, reconstructions of intact human gammaherpesvirus virions remain elusive. Here, we structurally characterize extracellular virions of EBV and KSHV by deep learning-enhanced cryoET, resolving both previously known monomorphic capsid structures and previously unknown pleomorphic features beyond the capsid. Through subtomogram averaging and subsequent tomogram-guided sub-particle reconstruction, we determined the orientation of KSHV nucleocapsids from mature virions with respect to the portal to provide spatial context for the tegument within the virion. Both EBV and KSHV have an eccentric capsid position and polarized distribution of tegument. Tegument species span from the capsid to the envelope and may serve as scaffolds for tegumentation and envelopment. The envelopes of EBV and KSHV are less densely populated with glycoproteins than those of herpes simplex virus 1 and human cytomegalovirus, representative members of alpha- and betaherpesviruses, respectively. This population density of glycoproteins correlates with their relative infectivity against HEK293T cells. Also, we observed fusion protein gB trimers exist within triplet arrangements in addition to standalone complexes, which is relevant to understanding dynamic processes such as fusion pore formation. Taken together, this study reveals nuanced yet important differences in the tegument and envelope architectures among human herpesviruses and provides insights into their varied cell tropism and infection. Importance Discovered in 1964, Epstein-Barr virus (EBV) is the first identified human oncogenic virus and the founding member of the gammaherpesvirus subfamily. In 1994, another cancer-causing virus was discovered in lesions of AIDS patients and later named Kaposi's sarcoma-associated herpesvirus (KSHV), the second human gammaherpesvirus. Despite the historical importance of EBV and KSHV, technical difficulties with isolating large quantities of these viruses and the pleiomorphic nature of their envelope and tegument layers have limited structural characterization of their virions. In this study, we employed the latest technologies in cryogenic electron microscopy (cryoEM) and tomography (cryoET) supplemented with an artificial intelligence-powered data processing software package to reconstruct 3D structures of the EBV and KSHV virions. We uncovered unique properties of the envelope glycoproteins and tegument layers of both EBV and KSHV. Comparison of these features with their non-tumorigenic counterparts provides insights into their relevance during infection.
Collapse
|
4
|
Iwaisako Y, Fujimuro M. The Terminase Complex of Each Human Herpesvirus. Biol Pharm Bull 2024; 47:912-916. [PMID: 38692868 DOI: 10.1248/bpb.b23-00717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
The human herpesviruses (HHVs) are classified into the following three subfamilies: Alphaherpesvirinae, Betaherpesvirinae, and Gammaherpesvirinae. These HHVs have distinct pathological features, while containing a highly conserved viral replication pathway. Among HHVs, the basic viral particle structure and the sequential processes of viral replication are nearly identical. In particular, the capsid formation mechanism has been proposed to be highly similar among herpesviruses, because the viral capsid-organizing proteins are highly conserved at the structural and functional levels. Herpesviruses form capsids containing the viral genome in the nucleus of infected cells during the lytic phase, and release infectious virus (i.e., virions) to the cell exterior. In the capsid formation process, a single-unit-length viral genome is encapsidated into a preformed capsid. The single-unit-length viral genome is produced by cleavage from a viral genome precursor in which multiple unit-length viral genomes are tandemly linked. This encapsidation and cleavage is carried out by the terminase complex, which is composed of viral proteins. Since the terminase complex-mediated encapsidation and cleavage is a virus-specific mechanism that does not exist in humans, it may be an excellent inhibitory target for anti-viral drugs with high virus specificity. This review provides an overview of the functions of the terminase complexes of HHVs.
Collapse
Affiliation(s)
- Yuki Iwaisako
- Department of Cell Biology, Kyoto Pharmaceutical University
| | | |
Collapse
|
5
|
Zhao Z, Liu X, Zong Y, Shi X, Sun Y. Cellular Processes Induced by HSV-1 Infections in Vestibular Neuritis. Viruses 2023; 16:12. [PMID: 38275947 PMCID: PMC10819745 DOI: 10.3390/v16010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Herpesvirus is a prevalent pathogen that primarily infects human epithelial cells and has the ability to reside in neurons. In the field of otolaryngology, herpesvirus infection primarily leads to hearing loss and vestibular neuritis and is considered the primary hypothesis regarding the pathogenesis of vestibular neuritis. In this review, we provide a summary of the effects of the herpes virus on cellular processes in both host cells and immune cells, with a focus on HSV-1 as illustrative examples.
Collapse
Affiliation(s)
- Zhengdong Zhao
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Z.Z.); (X.L.); (Y.Z.); (X.S.)
| | - Xiaozhou Liu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Z.Z.); (X.L.); (Y.Z.); (X.S.)
| | - Yanjun Zong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Z.Z.); (X.L.); (Y.Z.); (X.S.)
| | - Xinyu Shi
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Z.Z.); (X.L.); (Y.Z.); (X.S.)
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Z.Z.); (X.L.); (Y.Z.); (X.S.)
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| |
Collapse
|
6
|
Lata K, Charles S, Mangala Prasad V. Advances in computational approaches to structure determination of alphaviruses and flaviviruses using cryo-electron microscopy. J Struct Biol 2023; 215:107993. [PMID: 37414374 DOI: 10.1016/j.jsb.2023.107993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/15/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Advancements in the field of cryo-electron microscopy (cryo-EM) have greatly contributed to our current understanding of virus structures and life cycles. In this review, we discuss the application of single particle cryo-electron microscopy (EM) for the structure elucidation of small enveloped icosahedral viruses, namely, alpha- and flaviviruses. We focus on technical advances in cryo-EM data collection, image processing, three-dimensional reconstruction, and refinement strategies for obtaining high-resolution structures of these viruses. Each of these developments enabled new insights into the alpha- and flavivirus architecture, leading to a better understanding of their biology, pathogenesis, immune response, immunogen design, and therapeutic development.
Collapse
Affiliation(s)
- Kiran Lata
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Sylvia Charles
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Vidya Mangala Prasad
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India; Center for Infectious Disease Research, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| |
Collapse
|
7
|
Iwaisako Y, Watanabe T, Suzuki Y, Nakano T, Fujimuro M. Kaposi's Sarcoma-Associated Herpesvirus ORF67.5 Functions as a Component of the Terminase Complex. J Virol 2023; 97:e0047523. [PMID: 37272800 PMCID: PMC10308961 DOI: 10.1128/jvi.00475-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/09/2023] [Indexed: 06/06/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a double-stranded DNA (dsDNA) gammaherpesvirus with a poorly characterized lytic replication cycle. However, the lytic replication cycle of the alpha- and betaherpesviruses are well characterized. During lytic infection of alpha- and betaherpesviruses, the viral genome is replicated as a precursor form, which contains tandem genomes linked via terminal repeats (TRs). One genomic unit of the precursor form is packaged into a capsid and is cleaved at the TR by the terminase complex. While the alpha- and betaherpesvirus terminases are well characterized, the KSHV terminase remains poorly understood. KSHV open reading frame 7 (ORF7), ORF29, and ORF67.5 are presumed to be components of the terminase complex based on their homology to other terminase proteins. We previously reported that ORF7-deficient KSHV formed numerous immature soccer ball-like capsids and failed to cleave the TRs. ORF7 interacted with ORF29 and ORF67.5; however, ORF29 and ORF67.5 did not interact with each other. While these results suggested that ORF7 is important for KSHV terminase function and capsid formation, the function of ORF67.5 was completely unknown. Therefore, to analyze the function of ORF67.5, we constructed ORF67.5-deficient BAC16. ORF67.5-deficient KSHV failed to produce infectious virus and cleave the TRs, and numerous soccer ball-like capsids were observed in ORF67.5-deficient KSHV-harboring cells. Furthermore, ORF67.5 promoted the interaction between ORF7 and ORF29, and ORF29 increased the interaction between ORF67.5 and ORF7. Thus, our data indicated that ORF67.5 functions as a component of the KSHV terminase complex by contributing to TR cleavage, terminase complex formation, capsid formation, and virus production. IMPORTANCE Although the formation and function of the alpha- and betaherpesvirus terminase complexes are well understood, the Kaposi's sarcoma-associated herpesvirus (KSHV) terminase complex is still largely uncharacterized. This complex presumably contains KSHV open reading frame 7 (ORF7), ORF29, and ORF67.5. We were the first to report the presence of soccer ball-like capsids in ORF7-deficient KSHV-harboring lytic-induced cells. Here, we demonstrated that ORF67.5-deficient KSHV also formed soccer ball-like capsids in lytic-induced cells. Moreover, ORF67.5 was required for terminal repeat (TR) cleavage, infectious virus production, and enhancement of the interaction between ORF7 and ORF29. ORF67.5 has several highly conserved regions among its human herpesviral homologs. These regions were necessary for virus production and for the interaction of ORF67.5 with ORF7, which was supported by the artificial intelligence (AI)-predicted structure model. Importantly, our results provide the first evidence showing that ORF67.5 is essential for terminase complex formation and TR cleavage.
Collapse
Affiliation(s)
- Yuki Iwaisako
- Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Tadashi Watanabe
- Department of Virology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Youichi Suzuki
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Takashi Nakano
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Masahiro Fujimuro
- Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| |
Collapse
|
8
|
The Contribution of Kaposi's Sarcoma-Associated Herpesvirus ORF7 and Its Zinc-Finger Motif to Viral Genome Cleavage and Capsid Formation. J Virol 2022; 96:e0068422. [PMID: 36073924 PMCID: PMC9517700 DOI: 10.1128/jvi.00684-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During Kaposi’s sarcoma-associated herpesvirus (KSHV) lytic infection, lytic-related proteins are synthesized, viral genomes are replicated as a tandemly repeated form, and subsequently, capsids are assembled. The herpesvirus terminase complex is proposed to package an appropriate genome unit into an immature capsid, by cleavage of terminal repeats (TRs) flanking tandemly linked viral genomes. Although the mechanism of capsid formation in alpha- and betaherpesviruses are well-studied, in KSHV, it remains largely unknown. It has been proposed that KSHV ORF7 is a terminase subunit, and ORF7 harbors a zinc-finger motif, which is conserved among other herpesviral terminases. However, the biological significance of ORF7 is unknown. We previously reported that KSHV ORF17 is essential for the cleavage of inner scaffold proteins in capsid maturation, and ORF17 knockout (KO) induced capsid formation arrest between the procapsid and B-capsid stages. However, it remains unknown if ORF7-mediated viral DNA cleavage occurs before or after ORF17-mediated scaffold collapse. We analyzed the role of ORF7 during capsid formation using ORF7-KO-, ORF7&17-double-KO (DKO)-, and ORF7-zinc-finger motif mutant-KSHVs. We found that ORF7 acted after ORF17 in the capsid formation process, and ORF7-KO-KSHV produced incomplete capsids harboring nonspherical internal structures, which resembled soccer balls. This soccer ball-like capsid was formed after ORF17-mediated B-capsid formation. Moreover, ORF7-KO- and zinc-finger motif KO-KSHV failed to appropriately cleave the TR on replicated genome and had a defect in virion production. Interestingly, ORF17 function was also necessary for TR cleavage. Thus, our data revealed ORF7 contributes to terminase-mediated viral genome cleavage and capsid formation. IMPORTANCE In herpesviral capsid formation, the viral terminase complex cleaves the TR sites on newly synthesized tandemly repeating genomes and inserts an appropriate genomic unit into an immature capsid. Herpes simplex virus 1 (HSV-1) UL28 is a subunit of the terminase complex that cleaves the replicated viral genome. However, the physiological importance of the UL28 homolog, KSHV ORF7, remains poorly understood. Here, using several ORF7-deficient KSHVs, we found that ORF7 acted after ORF17-mediated scaffold collapse in the capsid maturation process. Moreover, ORF7 and its zinc-finger motif were essential for both cleavage of TR sites on the KSHV genome and virus production. ORF7-deficient KSHVs produced incomplete capsids that resembled a soccer ball. To our knowledge, this is the first report showing ORF7-KO-induced soccer ball-like capsids production and ORF7 function in the KSHV capsid assembly process. Our findings provide insights into the role of ORF7 in KSHV capsid formation.
Collapse
|
9
|
Aho V, Salminen S, Mattola S, Gupta A, Flomm F, Sodeik B, Bosse JB, Vihinen-Ranta M. Infection-induced chromatin modifications facilitate translocation of herpes simplex virus capsids to the inner nuclear membrane. PLoS Pathog 2021; 17:e1010132. [PMID: 34910768 PMCID: PMC8673650 DOI: 10.1371/journal.ppat.1010132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/19/2021] [Indexed: 01/04/2023] Open
Abstract
Herpes simplex virus capsids are assembled and packaged in the nucleus and move by diffusion through the nucleoplasm to the nuclear envelope for egress. Analyzing their motion provides conclusions not only on capsid transport but also on the properties of the nuclear environment during infection. We utilized live-cell imaging and single-particle tracking to characterize capsid motion relative to the host chromatin. The data indicate that as the chromatin was marginalized toward the nuclear envelope it presented a restrictive barrier to the capsids. However, later in infection this barrier became more permissive and the probability of capsids to enter the chromatin increased. Thus, although chromatin marginalization initially restricted capsid transport to the nuclear envelope, a structural reorganization of the chromatin counteracted that to promote capsid transport later. Analyses of capsid motion revealed that it was subdiffusive, and that the diffusion coefficients were lower in the chromatin than in regions lacking chromatin. In addition, the diffusion coefficient in both regions increased during infection. Throughout the infection, the capsids were never enriched at the nuclear envelope, which suggests that instead of nuclear export the transport through the chromatin is the rate-limiting step for the nuclear egress of capsids. This provides motivation for further studies by validating the importance of intranuclear transport to the life cycle of HSV-1.
Collapse
Affiliation(s)
- Vesa Aho
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Sami Salminen
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Salla Mattola
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Alka Gupta
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Felix Flomm
- HPI, Leibniz-Institute for Experimental Virology, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- Hannover Medical School, Institute of Virology, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Beate Sodeik
- Hannover Medical School, Institute of Virology, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Jens B. Bosse
- HPI, Leibniz-Institute for Experimental Virology, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- Hannover Medical School, Institute of Virology, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Maija Vihinen-Ranta
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
10
|
Alandijany T. Host Intrinsic and Innate Intracellular Immunity During Herpes Simplex Virus Type 1 (HSV-1) Infection. Front Microbiol 2019; 10:2611. [PMID: 31781083 PMCID: PMC6856869 DOI: 10.3389/fmicb.2019.02611] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/28/2019] [Indexed: 12/20/2022] Open
Abstract
When host cells are invaded by viruses, they deploy multifaceted intracellular defense mechanisms to control infections and limit the damage they may cause. Host intracellular antiviral immunity can be classified into two main branches: (i) intrinsic immunity, an interferon (IFN)-independent antiviral response mediated by constitutively expressed cellular proteins (so-called intrinsic host restriction factors); and (ii) innate immunity, an IFN-dependent antiviral response conferred by IFN-stimulated gene (ISG) products, which are (as indicated by their name) upregulated in response to IFN secretion following the recognition of pathogen-associated molecular patterns (PAMPs) by host pattern recognition receptors (PRRs). Recent evidence has demonstrated temporal regulation and specific viral requirements for the induction of these two arms of immunity during herpes simplex virus type 1 (HSV-1) infection. Moreover, they exert differential antiviral effects to control viral replication. Although they are distinct from one another, the words "intrinsic" and "innate" have been interchangeably and/or simultaneously used in the field of virology. Hence, the aims of this review are to (1) elucidate the current knowledge about host intrinsic and innate immunity during HSV-1 infection, (2) clarify the recent advances in the understanding of their regulation and address the distinctions between them with respect to their induction requirements and effects on viral infection, and (3) highlight the key roles of the viral E3 ubiquitin ligase ICP0 in counteracting both aspects of immunity. This review emphasizes that intrinsic and innate immunity are temporally and functionally distinct arms of host intracellular immunity during HSV-1 infection; the findings are likely pertinent to other clinically important viral infections.
Collapse
Affiliation(s)
- Thamir Alandijany
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
11
|
McElwee M, Vijayakrishnan S, Rixon F, Bhella D. Structure of the herpes simplex virus portal-vertex. PLoS Biol 2018; 16:e2006191. [PMID: 29924793 PMCID: PMC6028144 DOI: 10.1371/journal.pbio.2006191] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/02/2018] [Accepted: 06/06/2018] [Indexed: 12/04/2022] Open
Abstract
Herpesviruses include many important human pathogens such as herpes simplex virus, cytomegalovirus, varicella-zoster virus, and the oncogenic Epstein-Barr virus and Kaposi sarcoma-associated herpesvirus. Herpes virions contain a large icosahedral capsid that has a portal at a unique 5-fold vertex, similar to that seen in the tailed bacteriophages. The portal is a molecular motor through which the viral genome enters the capsid during virion morphogenesis. The genome also exits the capsid through the portal-vertex when it is injected through the nuclear pore into the nucleus of a new host cell to initiate infection. Structural investigations of the herpesvirus portal-vertex have proven challenging, owing to the small size of the tail-like portal-vertex-associated tegument (PVAT) and the presence of the tegument layer that lays between the nucleocapsid and the viral envelope, obscuring the view of the portal-vertex. Here, we show the structure of the herpes simplex virus portal-vertex at subnanometer resolution, solved by electron cryomicroscopy (cryoEM) and single-particle 3D reconstruction. This led to a number of new discoveries, including the presence of two previously unknown portal-associated structures that occupy the sites normally taken by the penton and the Ta triplex. Our data revealed that the PVAT is composed of 10 copies of the C-terminal domain of pUL25, which are uniquely arranged as two tiers of star-shaped density. Our 3D reconstruction of the portal-vertex also shows that one end of the viral genome extends outside the portal in the manner described for some bacteriophages but not previously seen in any eukaryote viruses. Finally, we show that the viral genome is consistently packed in a highly ordered left-handed spool to form concentric shells of DNA. Our data provide new insights into the structure of a molecular machine critical to the biology of an important class of human pathogens.
Collapse
Affiliation(s)
- Marion McElwee
- Medical Research Council, University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Swetha Vijayakrishnan
- Medical Research Council, University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Frazer Rixon
- Medical Research Council, University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - David Bhella
- Medical Research Council, University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| |
Collapse
|
12
|
Abstract
The assembly and egress of herpes simplex virus (HSV) is a complicated multistage process that involves several different cellular compartments and the activity of many viral and cellular proteins. The process begins in the nucleus, with capsid assembly followed by genome packaging into the preformed capsids. The DNA-filled capsids (nucleocapsids) then exit the nucleus by a process of envelopment at the inner nuclear membrane followed by fusion with the outer nuclear membrane. In the cytoplasm nucleocapsids associate with tegument proteins, which form a complicated protein network that links the nucleocapsid to the cytoplasmic domains of viral envelope proteins. Nucleocapsids and associated tegument then undergo secondary envelopment at intracellular membranes originating from late secretory pathway and endosomal compartments. This leads to assembled virions in the lumen of large cytoplasmic vesicles, which are then transported to the cell periphery to fuse with the plasma membrane and release virus particles from the cell. The details of this multifaceted process are described in this chapter.
Collapse
|
13
|
Zühlsdorf M, Hinrichs W. Assemblins as maturational proteases in herpesviruses. J Gen Virol 2017; 98:1969-1984. [PMID: 28758622 DOI: 10.1099/jgv.0.000872] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
During assembly of herpesvirus capsids, a protein scaffold self-assembles to ring-like structures forming the scaffold of the spherical procapsids. Proteolytic activity of the herpesvirus maturational protease causes structural changes that result in angularization of the capsids. In those mature icosahedral capsids, the packaging of viral DNA into the capsids can take place. The strictly regulated protease is called assemblin. It is inactive in its monomeric state and activated by dimerization. The structures of the dimeric forms of several assemblins from all herpesvirus subfamilies have been elucidated in the last two decades. They revealed a unique serine-protease fold with a catalytic triad consisting of a serine and two histidines. Inhibitors that disturb dimerization by binding to the dimerization area were found recently. Additionally, the structure of the monomeric form of assemblin from pseudorabies virus and some monomer-like structures of Kaposi's sarcoma-associated herpesvirus assemblin were solved. These findings are the proof-of-principle for the development of new anti-herpesvirus drugs. Therefore, the most important information on this fascinating and unique class of proteases is summarized here.
Collapse
Affiliation(s)
- Martin Zühlsdorf
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Straße 4, 17489 Greifswald, Germany
| | - Winfried Hinrichs
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Straße 4, 17489 Greifswald, Germany
| |
Collapse
|
14
|
Assembly and Egress of an Alphaherpesvirus Clockwork. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2017; 223:171-193. [PMID: 28528444 PMCID: PMC5768427 DOI: 10.1007/978-3-319-53168-7_8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
All viruses produce infectious particles that possess some degree of stability in the extracellular environment yet disassemble upon cell contact and entry. For the alphaherpesviruses, which include many neuroinvasive viruses of mammals, these metastable virions consist of an icosahedral capsid surrounded by a protein matrix (referred to as the tegument) and a lipid envelope studded with glycoproteins. Whereas the capsid of these viruses is a rigid structure encasing the DNA genome, the tegument and envelope are dynamic assemblies that orchestrate a sequential series of events that ends with the delivery of the genome into the nucleus. These particles are adapted to infect two different polarized cell types in their hosts: epithelial cells and neurons of the peripheral nervous system. This review considers how the virion is assembled into a primed state and is targeted to infect these cell types such that the incoming particles can subsequently negotiate the diverse environments they encounter on their way from plasma membrane to nucleus and thereby achieve their remarkably robust neuroinvasive infectious cycle.
Collapse
|
15
|
Herpesvirus Capsid Assembly and DNA Packaging. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2017; 223:119-142. [PMID: 28528442 DOI: 10.1007/978-3-319-53168-7_6] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Herpes simplex virus type I (HSV-1) is the causative agent of several pathologies ranging in severity from the common cold sore to life-threatening encephalitic infection. During productive lytic infection, over 80 viral proteins are expressed in a highly regulated manner, resulting in the replication of viral genomes and assembly of progeny virions. The virion of all herpesviruses consists of an external membrane envelope, a proteinaceous layer called the tegument, and an icosahedral capsid containing the double-stranded linear DNA genome. The capsid shell of HSV-1 is built from four structural proteins: a major capsid protein, VP5, which forms the capsomers (hexons and pentons), the triplex consisting of VP19C and VP23 found between the capsomers, and VP26 which binds to VP5 on hexons but not pentons. In addition, the dodecameric pUL6 portal complex occupies 1 of the 12 capsid vertices, and the capsid vertex specific component (CVSC), a heterotrimer complex of pUL17, pUL25, and pUL36, binds specifically to the triplexes adjacent to each penton. The capsid is assembled in the nucleus where the viral genome is packaged into newly assembled closed capsid shells. Cleavage and packaging of replicated, concatemeric viral DNA requires the seven viral proteins encoded by the UL6, UL15, UL17, UL25, UL28, UL32, and UL33 genes. Considerable advances have been made in understanding the structure of the herpesvirus capsid and the function of several of the DNA packaging proteins by applying biochemical, genetic, and structural techniques. This review is a summary of recent advances with respect to the structure of the HSV-1 virion capsid and what is known about the function of the seven packaging proteins and their interactions with each other and with the capsid shell.
Collapse
|
16
|
Roller RJ, Baines JD. Herpesvirus Nuclear Egress. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2017; 223:143-169. [PMID: 28528443 DOI: 10.1007/978-3-319-53168-7_7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Herpesviruses assemble and package their genomes into capsids in the nucleus, but complete final assembly of the mature virion in the cell cytoplasm. This requires passage of the genome-containing capsid across the double-membrane nuclear envelope. Herpesviruses have evolved a mechanism that relies on a pair of conserved viral gene products to shuttle the capsids from the nucleus to the cytoplasm by way of envelopment and de-envelopment at the inner and outer nuclear membranes, respectively. This complex process requires orchestration of the activities of viral and cellular factors to alter the architecture of the nuclear membrane, select capsids at the appropriate stage for egress, and accomplish efficient membrane budding and fusion events. The last few years have seen major advances in our understanding of the membrane budding mechanism and helped clarify the roles of viral and cellular proteins in the other, more mysterious steps. Here, we summarize and place into context this recent research and, hopefully, clarify both the major advances and major gaps in our understanding.
Collapse
Affiliation(s)
- Richard J Roller
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Joel D Baines
- Kenneth F. Burns Chair in Veterinary Medicine, School of Veterinary Medicine, Skip Bertman Drive, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
17
|
Kämmer E, Götz I, Bocklitz T, Stöckel S, Dellith A, Cialla-May D, Weber K, Zell R, Dellith J, Deckert V, Popp J. Single particle analysis of herpes simplex virus: comparing the dimensions of one and the same virions via atomic force and scanning electron microscopy. Anal Bioanal Chem 2016; 408:4035-41. [PMID: 27052775 DOI: 10.1007/s00216-016-9492-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/12/2016] [Accepted: 03/15/2016] [Indexed: 10/22/2022]
Abstract
Currently, two types of direct methods to characterize and identify single virions are available: electron microscopy (EM) and scanning probe techniques, especially atomic force microscopy (AFM). AFM in particular provides morphologic information even of the ultrastructure of viral specimens without the need to cultivate the virus and to invasively alter the sample prior to the measurements. Thus, AFM can play a critical role as a frontline method in diagnostic virology. Interestingly, varying morphological parameters for virions of the same type can be found in the literature, depending on whether AFM or EM was employed and according to the respective experimental conditions during the AFM measurements. Here, an inter-methodological proof of principle is presented, in which the same single virions of herpes simplex virus 1 were probed by AFM previously and after they were measured by scanning electron microscopy (SEM). Sophisticated chemometric analyses then allowed a calculation of morphological parameters of the ensemble of single virions and a comparison thereof. A distinct decrease in the virions' dimensions was found during as well as after the SEM analyses and could be attributed to the sample preparation for the SEM measurements. Graphical abstract The herpes simplex virus is investigated with scanning electron and atomic force microscopy in view of varying dimensions.
Collapse
Affiliation(s)
- Evelyn Kämmer
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany.,Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745, Jena, Germany.,InfectoGnostics Forschungscampus Jena e.V., Zentrum für Angewandte Forschung, Philosophenweg 7, 07743, Jena, Germany
| | - Isabell Götz
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745, Jena, Germany.,InfectoGnostics Forschungscampus Jena e.V., Zentrum für Angewandte Forschung, Philosophenweg 7, 07743, Jena, Germany
| | - Thomas Bocklitz
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany. .,Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745, Jena, Germany. .,InfectoGnostics Forschungscampus Jena e.V., Zentrum für Angewandte Forschung, Philosophenweg 7, 07743, Jena, Germany.
| | - Stephan Stöckel
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany.,InfectoGnostics Forschungscampus Jena e.V., Zentrum für Angewandte Forschung, Philosophenweg 7, 07743, Jena, Germany
| | - Andrea Dellith
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745, Jena, Germany
| | - Dana Cialla-May
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany.,Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745, Jena, Germany.,InfectoGnostics Forschungscampus Jena e.V., Zentrum für Angewandte Forschung, Philosophenweg 7, 07743, Jena, Germany
| | - Karina Weber
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany.,Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745, Jena, Germany.,InfectoGnostics Forschungscampus Jena e.V., Zentrum für Angewandte Forschung, Philosophenweg 7, 07743, Jena, Germany
| | - Roland Zell
- Department of Virology and Antiviral Therapy, Jena University Hospital, Friedrich Schiller University Jena, Hans-Knöll-Str. 2, 07745, Jena, Germany
| | - Jan Dellith
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745, Jena, Germany
| | - Volker Deckert
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany.,Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745, Jena, Germany.,InfectoGnostics Forschungscampus Jena e.V., Zentrum für Angewandte Forschung, Philosophenweg 7, 07743, Jena, Germany
| | - Jürgen Popp
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany.,Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745, Jena, Germany.,InfectoGnostics Forschungscampus Jena e.V., Zentrum für Angewandte Forschung, Philosophenweg 7, 07743, Jena, Germany
| |
Collapse
|
18
|
Owen DJ, Crump CM, Graham SC. Tegument Assembly and Secondary Envelopment of Alphaherpesviruses. Viruses 2015; 7:5084-114. [PMID: 26393641 PMCID: PMC4584305 DOI: 10.3390/v7092861] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/22/2015] [Accepted: 08/26/2015] [Indexed: 02/07/2023] Open
Abstract
Alphaherpesviruses like herpes simplex virus are large DNA viruses characterized by their ability to establish lifelong latent infection in neurons. As for all herpesviruses, alphaherpesvirus virions contain a protein-rich layer called "tegument" that links the DNA-containing capsid to the glycoprotein-studded membrane envelope. Tegument proteins mediate a diverse range of functions during the virus lifecycle, including modulation of the host-cell environment immediately after entry, transport of virus capsids to the nucleus during infection, and wrapping of cytoplasmic capsids with membranes (secondary envelopment) during virion assembly. Eleven tegument proteins that are conserved across alphaherpesviruses have been implicated in the formation of the tegument layer or in secondary envelopment. Tegument is assembled via a dense network of interactions between tegument proteins, with the redundancy of these interactions making it challenging to determine the precise function of any specific tegument protein. However, recent studies have made great headway in defining the interactions between tegument proteins, conserved across alphaherpesviruses, which facilitate tegument assembly and secondary envelopment. We summarize these recent advances and review what remains to be learned about the molecular interactions required to assemble mature alphaherpesvirus virions following the release of capsids from infected cell nuclei.
Collapse
Affiliation(s)
- Danielle J Owen
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Colin M Crump
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| | - Stephen C Graham
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| |
Collapse
|
19
|
Structural analysis of herpes simplex virus by optical super-resolution imaging. Nat Commun 2015; 6:5980. [PMID: 25609143 PMCID: PMC4338551 DOI: 10.1038/ncomms6980] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/27/2014] [Indexed: 12/31/2022] Open
Abstract
Herpes simplex virus type-1 (HSV-1) is one of the most widespread pathogens among humans. Although the structure of HSV-1 has been extensively investigated, the precise organization of tegument and envelope proteins remains elusive. Here we use super-resolution imaging by direct stochastic optical reconstruction microscopy (dSTORM) in combination with a model-based analysis of single-molecule localization data, to determine the position of protein layers within virus particles. We resolve different protein layers within individual HSV-1 particles using multi-colour dSTORM imaging and discriminate envelope-anchored glycoproteins from tegument proteins, both in purified virions and in virions present in infected cells. Precise characterization of HSV-1 structure was achieved by particle averaging of purified viruses and model-based analysis of the radial distribution of the tegument proteins VP16, VP1/2 and pUL37, and envelope protein gD. From this data, we propose a model of the protein organization inside the tegument.
Collapse
|
20
|
Homa FL, Huffman JB, Toropova K, Lopez HR, Makhov AM, Conway JF. Structure of the pseudorabies virus capsid: comparison with herpes simplex virus type 1 and differential binding of essential minor proteins. J Mol Biol 2013; 425:3415-28. [PMID: 23827137 DOI: 10.1016/j.jmb.2013.06.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/12/2013] [Accepted: 06/25/2013] [Indexed: 10/26/2022]
Abstract
The structure of pseudorabies virus (PRV) capsids isolated from the nucleus of infected cells and from PRV virions was determined by cryo-electron microscopy (cryo-EM) and compared to herpes simplex virus type 1 (HSV-1) capsids. PRV capsid structures closely resemble those of HSV-1, including distribution of the capsid vertex specific component (CVSC) of HSV-1, which is a heterodimer of the pUL17 and pUL25 proteins. Occupancy of CVSC on all PRV capsids is near 100%, compared to ~50% reported for HSV-1 C-capsids and 25% or less that we measure for HSV-1 A- and B-capsids. A PRV mutant lacking pUL25 does not produce C-capsids and lacks visible CVSC density in the cryo-EM-based reconstruction. A reconstruction of PRV capsids in which green fluorescent protein was fused within the N-terminus of pUL25 confirmed previous studies with a similar HSV-1 capsid mutant localizing pUL25 to the CVSC density region that is distal to the penton. However, comparison of the CVSC density in a 9-Å-resolution PRV C-capsid map with the available crystal structure of HSV-1 pUL25 failed to find a satisfactory fit, suggesting either a different fold for PRV pUL25 or a capsid-bound conformation for pUL25 that does not match the X-ray model determined from protein crystallized in solution. The PRV capsid imaged within virions closely resembles C-capsids with the addition of weak but significant density shrouding the pentons that we attribute to tegument proteins. Our results demonstrate significant structure conservation between the PRV and HSV capsids.
Collapse
Affiliation(s)
- F L Homa
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | | | |
Collapse
|
21
|
Differential protein partitioning within the herpesvirus tegument and envelope underlies a complex and variable virion architecture. Proc Natl Acad Sci U S A 2013; 110:E1613-20. [PMID: 23569236 DOI: 10.1073/pnas.1221896110] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The herpesvirus virion is a multilayered structure consisting of a DNA-filled capsid, tegument, and envelope. Detailed reconstructions of the capsid are possible based on its icosahedral symmetry, but the surrounding tegument and envelope layers lack regular architecture. To circumvent limitations of symmetry-based ultrastructural reconstruction methods, a fluorescence approach was developed using single-particle imaging combined with displacement measurements at nanoscale resolution. An analysis of 11 tegument and envelope proteins defined the composition and plasticity of symmetric and asymmetric elements of the virion architecture. The resulting virion protein map ascribes molecular composition to density profiles previously acquired by traditional ultrastructural methods, and provides a way forward to examine the dynamics of the virion architecture during infection.
Collapse
|
22
|
Nuclear egress of pseudorabies virus capsids is enhanced by a subspecies of the large tegument protein that is lost upon cytoplasmic maturation. J Virol 2012; 86:6303-14. [PMID: 22438563 DOI: 10.1128/jvi.07051-11] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Herpesviruses morphogenesis occurs stepwise both temporally and spatially, beginning in the nucleus and concluding with the emergence of an extracellular virion. The mechanisms by which these viruses interact with and penetrate the nuclear envelope and subsequent compartments of the secretory pathway remain poorly defined. In this report, a conserved viral protein (VP1/2; pUL36) that directs cytoplasmic stages of egress is identified to have multiple isoforms. Of these, a novel truncated VP1/2 species translocates to the nucleus and assists the transfer of DNA-containing capsids to the cytoplasm. The capsids are handed off to full-length VP1/2, which replaces the nuclear isoform on the capsids and is required for the final cytoplasmic stages of viral particle maturation. These results document that distinct VP1/2 protein species serve as effectors of nuclear and cytoplasmic egress.
Collapse
|
23
|
Ibiricu I, Huiskonen JT, Döhner K, Bradke F, Sodeik B, Grünewald K. Cryo electron tomography of herpes simplex virus during axonal transport and secondary envelopment in primary neurons. PLoS Pathog 2011; 7:e1002406. [PMID: 22194682 PMCID: PMC3240593 DOI: 10.1371/journal.ppat.1002406] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 10/13/2011] [Indexed: 11/23/2022] Open
Abstract
During herpes simplex virus 1 (HSV1) egress in neurons, viral particles travel from the neuronal cell body along the axon towards the synapse. Whether HSV1 particles are transported as enveloped virions as proposed by the ‘married’ model or as non-enveloped capsids suggested by the ‘separate’ model is controversial. Specific viral proteins may form a recruitment platform for microtubule motors that catalyze such transport. However, their subviral location has remained elusive. Here we established a system to analyze herpesvirus egress by cryo electron tomography. At 16 h post infection, we observed intra-axonal transport of progeny HSV1 viral particles in dissociated hippocampal neurons by live-cell fluorescence microscopy. Cryo electron tomography of frozen-hydrated neurons revealed that most egressing capsids were transported independently of the viral envelope. Unexpectedly, we found not only DNA-containing capsids (cytosolic C-capsids), but also capsids lacking DNA (cytosolic A-/B-capsids) in mid-axon regions. Subvolume averaging revealed lower amounts of tegument on cytosolic A-/B-capsids than on C-capsids. Nevertheless, all capsid types underwent active axonal transport. Therefore, even few tegument proteins on the capsid vertices seemed to suffice for transport. Secondary envelopment of capsids was observed at axon terminals. On their luminal face, the enveloping vesicles were studded with typical glycoprotein-like spikes. Furthermore, we noted an accretion of tegument density at the concave cytosolic face of the vesicle membrane in close proximity to the capsids. Three-dimensional analysis revealed that these assembly sites lacked cytoskeletal elements, but that filamentous actin surrounded them and formed an assembly compartment. Our data support the ‘separate model’ for HSV1 egress, i.e. progeny herpes viruses being transported along axons as subassemblies and not as complete virions within transport vesicles. Herpes simplex virus 1 (HSV1) establishes lifelong latent infections in the peripheral nervous system. After reactivation, progeny viral particles travel within sensory neurons towards sites of initial infection. There are conflicting reports what type of viral structures are transported: some studies observed non-enveloped capsids traveling while others reported transport of fully enveloped viruses within vesicles. Here, we used cryo electron tomography to analyze the three-dimensional architecture of HSV1 in axons of hippocampal neurons. In mid-axonal regions we found predominantly non-enveloped capsids. Interestingly, we observed both genome-containing and empty capsids that differed significantly in the amount of bound proteins. Viral protein recruitment thus varied between the different cytosolic capsid types, but effective transport occurred despite these differences. Furthermore, we observed three-dimensional snapshots of secondary capsid envelopment in axon terminals. Altogether, this study provides valuable structural detail on axonal HSV1 particles supporting the notion that viral subassemblies are conveyed along the axons to be assembled only after axonal transport.
Collapse
Affiliation(s)
- Iosune Ibiricu
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Juha T. Huiskonen
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Katinka Döhner
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Frank Bradke
- Research Group Axonal Growth and Regeneration, Max Planck Institute of Neurobiology, Martinsried, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Beate Sodeik
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Kay Grünewald
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
- Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
24
|
Baines JD. Herpes simplex virus capsid assembly and DNA packaging: a present and future antiviral drug target. Trends Microbiol 2011; 19:606-13. [DOI: 10.1016/j.tim.2011.09.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 08/30/2011] [Accepted: 09/13/2011] [Indexed: 10/16/2022]
|
25
|
Rossmann MG, Rao VB. Principles of virus structural organization. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 726:17-47. [PMID: 22297509 PMCID: PMC3767311 DOI: 10.1007/978-1-4614-0980-9_3] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Viruses, the molecular nanomachines infecting hosts ranging from prokaryotes to eukaryotes, come in different sizes, shapes, and symmetries. Questions such as what principles govern their structural organization, what factors guide their assembly, how these viruses integrate multifarious functions into one unique structure have enamored researchers for years. In the last five decades, following Caspar and Klug's elegant conceptualization of how viruses are constructed, high-resolution structural studies using X-ray crystallography and more recently cryo-EM techniques have provided a wealth of information on structures of a variety of viruses. These studies have significantly -furthered our understanding of the principles that underlie structural organization in viruses. Such an understanding has practical impact in providing a rational basis for the design and development of antiviral strategies. In this chapter, we review principles underlying capsid formation in a variety of viruses, emphasizing the recent developments along with some historical perspective.
Collapse
Affiliation(s)
- Michael G. Rossmann
- grid.169077.e0000000419372197Dept. Biological Sciences, Purdue University, W. State St. 915, West Lafayette, 47907-2054 Indiana USA
| | - Venigalla B. Rao
- grid.39936.360000000121746686Dept. Biology, Catholic University of America, Washington, 20064 District of Columbia USA
| |
Collapse
|
26
|
Yu X, Shah S, Lee M, Dai W, Lo P, Britt W, Zhu H, Liu F, Zhou ZH. Biochemical and structural characterization of the capsid-bound tegument proteins of human cytomegalovirus. J Struct Biol 2011; 174:451-60. [PMID: 21459145 DOI: 10.1016/j.jsb.2011.03.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 02/24/2011] [Accepted: 03/11/2011] [Indexed: 01/25/2023]
Abstract
Human cytomegalovirus (HCMV) is the most genetically and structurally complex human herpesvirus and is composed of an envelope, a tegument, and a dsDNA-containing capsid. HCMV tegument plays essential roles in HCMV infection and assembly. Using cryo electron tomography (cryoET), here we show that HCMV tegument compartment can be divided into two sub-compartments: an inner and an outer tegument. The inner tegument consists of densely-packed proteins surrounding the capsid. The outer tegument contains those components that are loosely packed in the space between the inner tegument and the pleomorphic glycoprotein-containing envelope. To systematically characterize the inner tegument proteins interacting with the capsid, we used chemical treatment to strip off the entire envelope and most tegument proteins to obtain a tegumented capsid with inner tegument proteins. SDS-polyacrylamide gel electrophoresis analyses show that only two tegument proteins, UL32-encoded pp150 and UL48-encoded high molecular weight protein (HMWP), remains unchanged in their abundance in the tegumented capsids as compared to their abundance in the intact particles. Three-dimensional reconstructions by single particle cryo electron microscopy (cryoEM) reveal that the net-like layer of icosahedrally-ordered tegument densities are also the same in the tegumented capsid and in the intact particles. CryoET reconstruction of the tegumented capsid labeled with an anti-pp150 antibody is consistent with the biochemical and cryoEM data in localizing pp150 within the ordered tegument. Taken together, these results suggest that pp150, a betaherpesvirus-specific tegument protein, is a constituent of the net-like layer of icosahedrally-ordered capsid-bound tegument densities, a structure lacking similarities in alpha and gammaherpesviruses.
Collapse
Affiliation(s)
- Xuekui Yu
- Department of Microbiology, Immunology and Molecular Genetics, University of California at Los Angeles, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Effects of major capsid proteins, capsid assembly, and DNA cleavage/packaging on the pUL17/pUL25 complex of herpes simplex virus 1. J Virol 2009; 83:12725-37. [PMID: 19812148 DOI: 10.1128/jvi.01658-09] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The U(L)17 and U(L)25 proteins (pU(L)17 and pU(L)25, respectively) of herpes simplex virus 1 are located at the external surface of capsids and are essential for DNA packaging and DNA retention in the capsid, respectively. The current studies were undertaken to determine whether DNA packaging or capsid assembly affected the pU(L)17/pU(L)25 interaction. We found that pU(L)17 and pU(L)25 coimmunoprecipitated from cells infected with wild-type virus, whereas the major capsid protein VP5 (encoded by the U(L)19 gene) did not coimmunoprecipitate with these proteins under stringent conditions. In addition, pU(L)17 (i) coimmunoprecipitated with pU(L)25 in the absence of other viral proteins, (ii) coimmunoprecipitated with pU(L)25 from lysates of infected cells in the presence or absence of VP5, (iii) did not coimmunoprecipitate efficiently with pU(L)25 in the absence of the triplex protein VP23 (encoded by the U(L)18 gene), (iv) required pU(L)25 for proper solubilization and localization within the viral replication compartment, (v) was essential for the sole nuclear localization of pU(L)25, and (vi) required capsid proteins VP5 and VP23 for nuclear localization and normal levels of immunoreactivity in an indirect immunofluorescence assay. Proper localization of pU(L)25 in infected cell nuclei required pU(L)17, pU(L)32, and the major capsid proteins VP5 and VP23, but not the DNA packaging protein pU(L)15. The data suggest that VP23 or triplexes augment the pU(L)17/pU(L)25 interaction and that VP23 and VP5 induce conformational changes in pU(L)17 and pU(L)25, exposing epitopes that are otherwise partially masked in infected cells. These conformational changes can occur in the absence of DNA packaging. The data indicate that the pU(L)17/pU(L)25 complex requires multiple viral proteins and functions for proper localization and biochemical behavior in the infected cell.
Collapse
|
28
|
Proline and tyrosine residues in scaffold proteins of herpes simplex virus 1 critical to the interaction with portal protein and its incorporation into capsids. J Virol 2009; 83:8076-81. [PMID: 19474093 DOI: 10.1128/jvi.00655-09] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous results showed that amino acids 449 to 457 of pU(L)26, a component of the scaffold of herpes simplex virus 1 capsids, were critical for interaction with the portal protein encoded by U(L)6 and for incorporation of the portal into capsids. To identify residues in this scaffold domain critical for the interaction with pU(L)6, the two proteins were coexpressed in the absence of other viral proteins and subjected to immunoprecipitation with scaffold-specific antibody. Coimmunoprecipitation of pU(L)6 was precluded by pU(L)26 mutations Y451A, P452A, and E454A but not by P449A, R456A, or Y450A. In infected cells, Y451A and P452A diminished solubilization of pU(L)6, reduced incorporation of the portal into the capsid, and precluded viral replication and DNA packaging. In contrast, E454A did not affect these parameters despite the fact that E454 is invariant in a number of different alphaherpesvirus scaffold proteins. These data suggest that the interaction between the scaffold E454A mutant and portal protein is rescued by other viral functions. Finally, we show that amino acids 448 to 459 of pU(L)26 are sufficient to interact with pU(L)6 in a glutathione S-transferase pulldown assay in the absence of other viral proteins and that this interaction is inhibited with excess peptide containing pU(L)26 amino acids 443 to 462. Together, these observations suggest that a direct interaction between this scaffold domain and portal protein mediates incorporation of the portal into the capsid.
Collapse
|
29
|
Lander GC, Evilevitch A, Jeembaeva M, Potter CS, Carragher B, Johnson JE. Bacteriophage lambda stabilization by auxiliary protein gpD: timing, location, and mechanism of attachment determined by cryo-EM. Structure 2008; 16:1399-406. [PMID: 18786402 DOI: 10.1016/j.str.2008.05.016] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 05/23/2008] [Accepted: 05/28/2008] [Indexed: 10/21/2022]
Abstract
We report the cryo-EM structure of bacteriophage lambda and the mechanism for stabilizing the 20-A-thick capsid containing the dsDNA genome. The crystal structure of the HK97 bacteriophage capsid fits most of the T = 7 lambda particle density with only minor adjustment. A prominent surface feature at the 3-fold axes corresponds to the cementing protein gpD, which is necessary for stabilization of the capsid shell. Its position coincides with the location of the covalent cross-link formed in the docked HK97 crystal structure, suggesting an evolutionary replacement of this gene product in lambda by autocatalytic chemistry in HK97. The crystal structure of the trimeric gpD, in which the 14 N-terminal residues required for capsid binding are disordered, fits precisely into the corresponding EM density. The N-terminal residues of gpD are well ordered in the cryo-EM density, adding a strand to a beta-sheet formed by the capsid proteins and explaining the mechanism of particle stabilization.
Collapse
Affiliation(s)
- Gabriel C Lander
- National Resource for Automated Molecular Microscopy, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
30
|
Differing roles of inner tegument proteins pUL36 and pUL37 during entry of herpes simplex virus type 1. J Virol 2008; 83:105-16. [PMID: 18971278 DOI: 10.1128/jvi.01032-08] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Studies with herpes simplex virus type 1 (HSV-1) have shown that secondary envelopment and virus release are blocked in mutants deleted for the tegument protein gene UL36 or UL37, leading to the accumulation of DNA-containing capsids in the cytoplasm of infected cells. The failure to assemble infectious virions has meant that the roles of these genes in the initial stages of infection could not be investigated. To circumvent this, cells infected at a low multiplicity were fused to form syncytia, thereby allowing capsids released from infected nuclei access to uninfected nuclei without having to cross a plasma membrane. Visualization of virus DNA replication showed that a UL37-minus mutant was capable of transmitting infection to all the nuclei within a syncytium as efficiently as the wild-type HSV-1 strain 17(+) did, whereas infection by UL36-minus mutants failed to spread. Thus, these inner tegument proteins have differing functions, with pUL36 being essential during both the assembly and uptake stages of infection, while pUL37 is needed for the formation of virions but is not required during the initial stages of infection. Analysis of noninfectious enveloped particles (L-particles) further showed that pUL36 and pUL37 are dependent on each other for incorporation into tegument.
Collapse
|
31
|
Loomis JS, Courtney RJ, Wills JW. Packaging determinants in the UL11 tegument protein of herpes simplex virus type 1. J Virol 2006; 80:10534-41. [PMID: 16928743 PMCID: PMC1641780 DOI: 10.1128/jvi.01172-06] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The UL11 gene of herpes simplex virus type 1 encodes a 96-amino-acid tegument protein that is myristylated, palmitylated, and phosphorylated and is found on the cytoplasmic faces of nuclear, Golgi apparatus-derived, and plasma membranes of infected cells. Although this protein is thought to play a role in virus budding, its specific function is unknown. Purified virions were found to contain approximately 700 copies of the UL11 protein per particle, making it an abundant component of the tegument. Moreover, comparisons of cell-associated and virion-associated UL11 showed that packaging is selective for underphosphorylated forms, as has been reported for several other tegument proteins. Although the mechanism by which UL11 is packaged is unknown, previous studies have identified several sequence motifs in the protein that are important for membrane binding, intracellular trafficking, and interaction with UL16, another tegument protein. To ascertain whether any of these motifs are needed for packaging, a transfection/infection-based assay was used in which mutant forms of the protein must compete with the wild type. In this assay, the entire C-terminal half of UL11 was found to be dispensable. In the N-terminal half, the sites of myristylation and palmitylation, which enable membrane-binding and Golgi apparatus-specific targeting, were found to be essential for efficient packaging. The acidic cluster motif, which is not needed for Golgi apparatus-specific targeting but is involved in recycling the protein from the plasma membrane and for the interaction with UL16, was found to be essential, too. Thus, something other than mere localization of UL11 to Golgi apparatus-derived membranes is needed for packaging. The critical factor is unlikely to be the interaction with UL16 because other mutants that fail to bind this protein (due to removal of the dileucine-like motif or substitutions with foreign acidic clusters) were efficiently packaged. Collectively, these results suggest that UL11 packaging is not driven by a passive mechanism but instead requires trafficking through a specific pathway.
Collapse
Affiliation(s)
- Joshua S Loomis
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, 500 University Dr., P.O. Box 850, Hershey, PA 17033, USA
| | | | | |
Collapse
|
32
|
Wills E, Scholtes L, Baines JD. Herpes simplex virus 1 DNA packaging proteins encoded by UL6, UL15, UL17, UL28, and UL33 are located on the external surface of the viral capsid. J Virol 2006; 80:10894-9. [PMID: 16920825 PMCID: PMC1641750 DOI: 10.1128/jvi.01364-06] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies to localize the herpes simplex virus 1 portal protein encoded by UL6, the putative terminase components encoded by UL15, UL 28, and UL33, the minor capsid proteins encoded by UL17, and the major scaffold protein ICP35 were conducted. ICP35 in B capsids was more resistant to trypsin digestion of intact capsids than pUL6, pUL15, pUL17, pUL28, or pUL33. ICP35 required sectioning of otherwise intact embedded capsids for immunoreactivity, whereas embedding and/or sectioning decreased the immunoreactivities of pUL6, pUL17, pUL28, and pUL33. Epitopes of pUL15 were recognized roughly equally well in both sectioned and unsectioned capsids. These data indicate that pUL6, pUL17, pUL28, pUL33, and at least some portion of pUL15 are located at the external surface of the capsid.
Collapse
Affiliation(s)
- Elizabeth Wills
- Department of Microbiology and Immunology, Cornell University, C5132 Veterinary Education Center, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
33
|
Jensen HL. Herpes simplex virus type 1 morphogenesis and virus-cell interactions: significance of cytoskeleton and methodological aspects. APMIS 2006:7-55. [PMID: 16930175 DOI: 10.1111/j.1600-0463.2006.apm_v114_s119.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
34
|
Singer GP, Newcomb WW, Thomsen DR, Homa FL, Brown JC. Identification of a region in the herpes simplex virus scaffolding protein required for interaction with the portal. J Virol 2005; 79:132-9. [PMID: 15596809 PMCID: PMC538710 DOI: 10.1128/jvi.79.1.132-139.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The herpes simplex virus type 1 capsid is a protective shell that acts as a container for the genetic material of the virus. After assembly of the capsid, the viral DNA is translocated into the capsid interior through a channel formed by the portal. The portal is composed of a dodecamer of UL6 molecules which form a ring-like structure found at a single vertex within the icosahedron. Formation of portal-containing capsids minimally requires the four structural proteins (VP5, VP19C, VP23, and UL6) and a scaffolding protein (UL26.5). Recently, an interaction between UL26.5 and the portal has been identified, suggesting the scaffold functions by delivering the portal to the growing capsid shell. The aim of this study was to identify regions within UL26.5 required for its interaction with the portal. A specific region was identified by mutational analysis. Deletion of scaffold amino acids (aa) 143 to 151 was found to be sufficient to inhibit formation of the scaffold-portal complex as assayed in vitro. The aa 143 to 151 contain the sequence YYPGE, which is highly conserved among alpha herpesviruses. Although it did not bind to the portal, the Delta143-151 mutant was found to retain the ability to support assembly of morphologically normal capsids in vitro. Such capsids, however, did not contain the portal. The results suggest assembly of portal-containing capsids requires formation of a scaffold-portal complex in which intermolecular contact is dependent on scaffold aa 143 to 151.
Collapse
Affiliation(s)
- Gregory P Singer
- Department of Microbiology and Cancer Center, University of Virginia Health System, Charlottesville, Virginia 22908, USA
| | | | | | | | | |
Collapse
|
35
|
Cheng L, Chen S, Brannan JM, Jakana J, Zhang Q, Zhou ZH, Zhang J. Three-dimensional structure determination of capsid of Aedes albopictus C6/36 cell densovirus. SCIENCE IN CHINA. SERIES C, LIFE SCIENCES 2004; 47:224-8. [PMID: 15524279 DOI: 10.1007/bf03182767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The three-dimensional structure of capsid of Aedes albopictus C6/36 densovirus was determined to 14-A resolution by electron cryomicroscopy and computer reconstruction. The triangulation number of the capsid is 1. There are 12 holes in each triangular face and a spike on each 5-fold vertex. The validity of the capsid and nucleic acid densities in the reconstructions was discussed.
Collapse
Affiliation(s)
- Lingpeng Cheng
- State Key Laboratory for Bio-control, Zhongshan University, Guangzhou 510275, China
| | | | | | | | | | | | | |
Collapse
|
36
|
Wendt JL, Feiss M. A fragile lattice: replacing bacteriophage λ's head stability gene D with the shp gene of phage 21 generates the Mg2+-dependent virus, λ shp. Virology 2004; 326:41-6. [PMID: 15262493 DOI: 10.1016/j.virol.2004.05.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Revised: 04/05/2004] [Accepted: 05/24/2004] [Indexed: 10/26/2022]
Abstract
Phage lambda DNA packaging is accompanied by prohead expansion, due to structural changes in gpE, the major capsid protein. Rearrangement of the gpE lattice creates binding sites for trimers of gpD, the head stabilization protein. lambda-Like phage 21's shp gene is homologous to lambda's D gene. gpD and gpShp share 49% amino acid identity. To ask whether gpShp could stabilize the lambda head shell, we replaced lambda's D gene with shp, creating lambda shp. Unlike lambda or 21, lambda shp was strictly dependent on the presence of 10(-2) M Mg2+, and lambda shp virions were very sensitive to chelating agents. Density gradient studies indicated that the lambda gpE lattice was underpopulated with gpShp. gpD's N-terminus has been proposed to contact gpE, and we found that lambda D/shp, which produces a chimeric protein with the N-terminus of gpD and the C-terminus of gpShp, was Mg2+-independent and more stable than lambda shp.
Collapse
Affiliation(s)
- Jennifer L Wendt
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA.
| | | |
Collapse
|
37
|
Yu XK, O'Connor CM, Atanasov I, Damania B, Kedes DH, Zhou ZH. Three-dimensional structures of the A, B, and C capsids of rhesus monkey rhadinovirus: insights into gammaherpesvirus capsid assembly, maturation, and DNA packaging. J Virol 2004; 77:13182-93. [PMID: 14645575 PMCID: PMC296048 DOI: 10.1128/jvi.77.24.13182-13193.2003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhesus monkey rhadinovirus (RRV) exhibits high levels of sequence homology to human gammaherpesviruses, such as Kaposi's sarcoma-associated herpesvirus, and grows to high titers in cell cultures, making it a good model system for studying gammaherpesvirus capsid structure and assembly. We have purified RRV A, B, and C capsids, thus for the first time allowing direct structure comparisons by electron cryomicroscopy and three-dimensional reconstruction. The results show that the shells of these capsids are identical and are each composed of 12 pentons, 150 hexons, and 320 triplexes. Structural differences were apparent inside the shells and through the penton channels. The A capsid is empty, and its penton channels are open. The B capsid contains a scaffolding core, and its penton channels are closed. The C capsid contains a DNA genome, which is closely packaged into regularly spaced density shells (25 A apart), and its penton channels are open. The different statuses of the penton channels suggest a functional role of the channels during capsid maturation, and the overall structural similarities of RRV capsids to alphaherpesvirus capsids suggest a common assembly and maturation pathway. The RRV A capsid reconstruction at a 15-A resolution, the best achieved for gammaherpesvirus particles, reveals overall structural similarities to alpha- and betaherpesvirus capsids. However, the outer regions of the capsid, including densities attributed to the Ta triplex and the small capsomer-interacting protein (SCIP or ORF65), exhibit prominent differences from their structural counterparts in alphaherpesviruses. This structural disparity suggests that SCIP and the triplex, together with tegument and envelope proteins, confer structural and potentially functional specificities to alpha-, beta-, and gammaherpesviruses.
Collapse
Affiliation(s)
- Xue-Kui Yu
- Department of PathologyLaboratory Medicine, University of Texas at Houston Medical School, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
38
|
Garner JA. Herpes simplex virion entry into and intracellular transport within mammalian cells. Adv Drug Deliv Rev 2003; 55:1497-513. [PMID: 14597143 DOI: 10.1016/j.addr.2003.07.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Alphaherpesviruses, membrane-enveloped DNA viruses that are responsible for a host of human ailments, bind to, enter and are directly targeted to specific intracellular domains within their mammalian host cells. This review emphasizes recent work on the best studied of the alphaherpesviruses, Herpes simplex virus type 1 (HSV1). One area of focus is on recent work that has identified viral glycoproteins that are important in binding and internalization of the virus to the host cell. Complementary work on the receptors for those viral glycoproteins that reside on the host cell surface is also presented, with some discussion of how receptor variety might lead to the tissue tropism demonstrated by alphaherpes viruses. An additional area of focus in this review is how HSV uses the host cell transport systems to achieve intracellular targeting of the incoming virion toward the cell nucleus, and, after production of newly synthesized and assembled viral progeny, targeting them toward the plasma membrane for release.
Collapse
Affiliation(s)
- Judy A Garner
- Department of Cell and Neurobiology, BMT 401, Keck School of Medicine at USC, 1333 San Pablo St., Los Angeles, CA 90089, USA.
| |
Collapse
|
39
|
Alemañ N, Quiroga MI, López-Peña M, Vázquez S, Guerrero FH, Nieto JM. L-particle production during primary replication of pseudorabies virus in the nasal mucosa of swine. J Virol 2003; 77:5657-67. [PMID: 12719558 PMCID: PMC154012 DOI: 10.1128/jvi.77.10.5657-5667.2003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2002] [Accepted: 02/19/2003] [Indexed: 01/14/2023] Open
Abstract
Different tissue culture cell lines infected with a number of alphaherpesviruses produce, in addition to virions, light particles (L particles). L particles are composed of the envelope and tegument components of the virion but totally lack the proteins of the capsid and the virus genome; therefore, they are noninfectious. In this electron microscopy report, we show that L particles are produced during primary replication of the alphaherpesvirus pseudorabies virus (PRV) in the nasal mucosa of experimentally infected swine, its natural host. Although PRV infected different types of cells of the respiratory and olfactory mucosae, PRV L particles were found to be produced exclusively by epithelial cells and fibroblasts. We observed that formation of noninfectious particles occurred by budding of condensed tegument at the inner nuclear membrane and at membranes of cytoplasmic vesicles, resulting in intracisternal and intravesicular L particles, respectively. Both forms of capsidless particles were clearly distinguishable by the presence of prominent surface projections on the envelope and the higher electron density of the tegument, morphological features which were only observed in intravesicular L particles. Moreover, intravesicular but not intracisternal L particles were found to be released by exocytosis and were also identified extracellularly. Comparative analysis between PRV virion and L-particle morphogenesis indicates that both types of virus particles share a common intracellular pathway of assembly and egress but that they show different production patterns during the replication cycle of PRV.
Collapse
Affiliation(s)
- Nuria Alemañ
- Departamento de Anatomía y Producción Animal, Facultad de Veterinaria, Universidad de Santiago de Compostela, E-27002 Lugo, Spain.
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
In this article we have attempted to describe some structural aspects of large viruses. Although this may seem a straightforward task, it is complicated by the fact that large viruses do not represent a distinctive class of organisms and any grouping under this heading will include a range of unrelated viruses with different structures, replication strategies, and host types. To simplify matters we limited our definition to dsDNA viruses with genomes of 100 kbp or larger. However, even this restricted grouping includes viruses with diverse and seemingly unrelated structures. Furthermore, few if any structural features are exclusive to large viruses and most of what appears distinctive about their structure or assembly can also be found in smaller, and usually better characterized, viruses. Therefore we have not attempted to provide a comprehensive catalog of the properties of large viruses but have tried to illustrate particular structural points with examples from a few of the better known forms, notably herpes simplex virus (HSV) and phage T4. The two techniques used to provide rigorous analyses of virus structures are X-ray crystallography and electron cryomicroscopy with computer-assisted reconstruction. To date, X-ray crystallography has been successful only with smaller viruses, and what is known about the structures of these large viruses has come primarily from electron cryomicroscopy. However, with the notable exception of the HSV capsid, such studies have been limited in extent and of relatively low resolution, and the information obtained has been confined largely to describing the spatial distributions and relationships between the subunits. Nevertheless, these studies have given us our clearest insights into the biology of these complex particles and increases in resolution promise to extend these insights by bridging the gap between gross and atomic structures, as exemplified by the identification and mapping of secondary structural elements in the HSV capsid.
Collapse
Affiliation(s)
- Frazer J Rixon
- MRC Virology Unit, Institute of Virology, Glasgow G11 5JR, United Kingdom
| | | |
Collapse
|
41
|
Cheng N, Trus BL, Belnap DM, Newcomb WW, Brown JC, Steven AC. Handedness of the herpes simplex virus capsid and procapsid. J Virol 2002; 76:7855-9. [PMID: 12097597 PMCID: PMC136369 DOI: 10.1128/jvi.76.15.7855-7859.2002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The capsid of herpes simplex virus has an icosahedral surface lattice with a nonskew triangulation number, T=16. Nevertheless, the proteins arrayed on this lattice necessarily have an intrinsic handedness. We have determined the handedness of both the herpes simplex virus type 1 capsid and its precursor procapsid by a cryoelectron microscopic tilting method.
Collapse
Affiliation(s)
- Naiqian Cheng
- Laboratory of Structural Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
42
|
Enquist LW, Tomishima MJ, Gross S, Smith GA. Directional spread of an alpha-herpesvirus in the nervous system. Vet Microbiol 2002; 86:5-16. [PMID: 11888685 DOI: 10.1016/s0378-1135(01)00486-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pseudorabies virus (PRV), an alpha-herpesvirus, is capable of spreading between synaptically connected neurons in diverse hosts. In this report, two lines of experimentation are summarized that provide insight into the mechanism of virus spread in neurons. First, techniques were developed to measure the transport dynamics of capsids in infected neurons. Individual viral capsids labeled with green fluorescent protein (GFP) were visualized and tracked as they moved in axons away from infected neuronal cell bodies in culture during egress. Second, the effects of three viral membrane proteins (gE, gI and Us9) on the localization of envelope, tegument, and capsid proteins in infected, cultured sympathetic neurons were determined. These three proteins are necessary for spread of infection from pre-synaptic neurons to post-synaptic neurons in vivo (anterograde spread). Us9 mutants apparently are defective in anterograde spread in neural circuits because essential viral membrane proteins such as gB are not transported to axon terminals to facilitate spread to the connected neuron. By contrast, gE and gI mutants manifest their phenotype because these proteins most likely function at the axon terminal of the infected neuron to promote spread. These two sets of experiments are consistent with a model for herpesvirus spread in neurons first suggested by Cunningham and colleagues where capsids and envelope proteins, but not whole virions, are transported separately into the axon.
Collapse
Affiliation(s)
- L W Enquist
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA.
| | | | | | | |
Collapse
|
43
|
Chen DH, Jakana J, McNab D, Mitchell J, Zhou ZH, Dougherty M, Chiu W, Rixon FJ. The pattern of tegument-capsid interaction in the herpes simplex virus type 1 virion is not influenced by the small hexon-associated protein VP26. J Virol 2001; 75:11863-7. [PMID: 11689667 PMCID: PMC114772 DOI: 10.1128/jvi.75.23.11863-11867.2001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Examination of the three-dimensional structure of intact herpes simplex virus type 1 (HSV-1) virions had revealed that the icosahedrally symmetrical interaction between the tegument and capsid involves the pentons but not the hexons (Z. H. Zhou, D. H. Chen, J. Jakana, F. J. Rixon, and W. Chiu, J. Virol. 73:3210-3218, 1999). To account for this, we postulated that the presence of the small capsid protein, VP26, on top of the hexons was masking potential binding sites and preventing tegument attachment. We have now tested this hypothesis by determining the structure of virions lacking VP26. Apart from the obvious absence of VP26 from the capsids, the structures of the VP26 minus and wild-type virions were essentially identical. Notably, they showed the same tegument attachment patterns, thereby demonstrating that VP26 is not responsible for the divergent tegument binding properties of pentons and hexons.
Collapse
Affiliation(s)
- D H Chen
- Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Zhu Y, Carragher B, Kriegman DJ, Milligan RA, Potter CS. Automated identification of filaments in cryoelectron microscopy images. J Struct Biol 2001; 135:302-12. [PMID: 11722170 DOI: 10.1006/jsbi.2001.4415] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Since the foundation for the three-dimensional image reconstruction of helical objects from electron micrographs was laid more than 30 years ago, there have been sustained developments in specimen preparation, data acquisition, image analysis, and interpretation of results. However, the boxing of filaments in large numbers of images--one of the critical steps toward the reconstruction at high resolution--is still constrained by manual processing even though interactive interfaces have been built to aid the tedious and sometimes inaccurate boxing process. This article describes an accurate approach for automated detection of filamentous structures in low-contrast images acquired in defocus pairs using cryoelectron microscopy. The performance of the approach has been evaluated across various magnifications and at a series of defocus values using tobacco mosaic virus (TMV) preserved in vitreous ice as a test specimen. By integrating the proposed approach into our automated data acquisition and reconstruction system, we are now able to generate a three-dimensional map of TMV to approximately 10-A resolution within 24 h of inserting the specimen grid into the microscope.
Collapse
Affiliation(s)
- Y Zhu
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
45
|
Abstract
The alpha herpesviruses, a subfamily of the herpesviruses, are neurotropic pathogens found associated with most mammalian species. The prototypic member of this subfamily is herpes simplex virus type 1, the causative agent of recurrent cold sores in humans. The mild nature of this disease is a testament to the complex and highly regulated life cycle of the alpha herpesviruses. The cellular mechanisms used by these viruses to disseminate infection in the nervous system are beginning to be understood. Here, we overview the life cycle of alpha herpesviruses with an emphasis on assembly and transport of viral particles in neurons.
Collapse
Affiliation(s)
- M J Tomishima
- Department of Molecular Biology, Princeton University, Princeton New Jersey 08540, USA
| | | | | |
Collapse
|
46
|
Trus BL, Heymann JB, Nealon K, Cheng N, Newcomb WW, Brown JC, Kedes DH, Steven AC. Capsid structure of Kaposi's sarcoma-associated herpesvirus, a gammaherpesvirus, compared to those of an alphaherpesvirus, herpes simplex virus type 1, and a betaherpesvirus, cytomegalovirus. J Virol 2001; 75:2879-90. [PMID: 11222713 PMCID: PMC115914 DOI: 10.1128/jvi.75.6.2879-2890.2001] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The capsid of Kaposi's sarcoma-associated herpesvirus (KSHV) was visualized at 24-A resolution by cryoelectron microscopy. Despite limited sequence similarity between corresponding capsid proteins, KSHV has the same T=16 triangulation number and much the same capsid architecture as herpes simplex virus (HSV) and cytomegalovirus (CMV). Its capsomers are hexamers and pentamers of the major capsid protein, forming a shell with a flat, close-packed, inner surface (the "floor") and chimney-like external protrusions. Overlying the floor at trigonal positions are (alpha beta(2)) heterotrimers called triplexes. The floor structure is well conserved over all three viruses, and the most variable capsid features reside on the outer surface, i.e., in the shapes of the protrusions and triplexes, in which KSHV resembles CMV and differs from HSV. Major capsid protein sequences from the three subfamilies have some similarity, which is closer between KSHV and CMV than between either virus and HSV. The triplex proteins are less highly conserved, but sequence analysis identifies relatively conserved tracts. In alphaherpesviruses, the alpha-subunit (VP19c in HSV) has a 100-residue N-terminal extension and an insertion near the C terminus. The small basic capsid protein sequences are highly divergent: whereas the HSV and CMV proteins bind only to hexons, difference mapping suggests that the KSHV protein, ORF65, binds around the tips of both hexons and pentons.
Collapse
Affiliation(s)
- B L Trus
- Laboratory of Structural Biology, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Ogasawara M, Suzutani T, Yoshida I, Azuma M. Role of the UL25 gene product in packaging DNA into the herpes simplex virus capsid: location of UL25 product in the capsid and demonstration that it binds DNA. J Virol 2001; 75:1427-36. [PMID: 11152516 PMCID: PMC114049 DOI: 10.1128/jvi.75.3.1427-1436.2001] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2000] [Accepted: 11/06/2000] [Indexed: 11/20/2022] Open
Abstract
Recent studies have suggested that the herpes simplex type 1 (HSV-1) UL25 gene product, a minor capsid protein, is required for encapsidation but not cleavage of replicated viral DNA. This study set out to investigate the potential interactions of UL25 protein with other virus proteins and determine what properties it has for playing a role in DNA encapsidation. The UL25 protein is found in 42 +/- 17 copies per B capsid and is present in both pentons and hexons. We introduced green fluorescent protein (GFP) as a fluorescent tag into the N terminus of UL25 protein to identify its location in HSV-1-infected cells and demonstrated the relocation of UL25 protein from the cytoplasm into the nucleus at the late stage of HSV-1 infection. To clarify the cause of this relocation, we analyzed the interactions of UL25 protein with other virus proteins. The UL25 protein associates with VP5 and VP19C of virus capsids, especially of the penton structures, and the association with VP19C causes its relocation into the nucleus. Gel mobility shift analysis shows that UL25 protein has the potential to bind DNA. Moreover, the amino-terminal one-third of the UL25 protein is particularly important in DNA binding and forms a homo-oligomer. In conclusion, the UL25 gene product forms a tight connection with the capsid being linked with VP5 and VP19C, and it may play a role in anchoring the genomic DNA.
Collapse
Affiliation(s)
- M Ogasawara
- Department of Microbiology, Asahikawa Medical College, 2-1-1-1, Midorigaoka-Higashi, Asahikawa 078-8510, Japan.
| | | | | | | |
Collapse
|
48
|
Thuman-Commike PA, Chiu W. Reconstruction principles of icosahedral virus structure determination using electron cryomicroscopy. Micron 2000; 31:687-711. [PMID: 10838029 DOI: 10.1016/s0968-4328(99)00077-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Electron cryomicroscopy is a useful tool for studying the three-dimensional structure of icosahedral viruses. This review is intended to provide beginners with an understanding of icosahedral virus structure determination focusing on the data processing aspects. We begin with an overview of the entire structure determination process and a brief summary of the sample preparation and imaging aspects. Next, we provide detailed descriptions of each data processing step leading to three-dimensional reconstruction, including application of image corrections, resolution assessment, and structure visualization. To aid in understanding this reconstruction process we provide a variety of illustrative examples. Last, we summarize future prospects for icosahedral virus structural studies.
Collapse
Affiliation(s)
- P A Thuman-Commike
- Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
49
|
Wu L, Lo P, Yu X, Stoops JK, Forghani B, Zhou ZH. Three-dimensional structure of the human herpesvirus 8 capsid. J Virol 2000; 74:9646-54. [PMID: 11000237 PMCID: PMC112397 DOI: 10.1128/jvi.74.20.9646-9654.2000] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2000] [Accepted: 07/13/2000] [Indexed: 11/20/2022] Open
Abstract
Human herpesvirus 8 (HHV-8), or Kaposi's sarcoma-associated herpesvirus, is a gammaherpesvirus implicated in all forms of Kaposi's sarcoma and certain lymphomas. HHV-8 has been extensively characterized, both biochemically and immunologically, since its first description in 1994. However, its three-dimensional (3D) structure remained heretofore undetermined largely due to difficulties in viral purification. We have used log-phase cultures of body cavity-based lymphoma 1 cells induced with 12-O-tetradecanoylphorbol-13-acetate to obtain HHV-8 capsids for electron cryomicroscopy and computer reconstruction. The 3D structure of the HHV-8 capsids revealed a capsid shell composed of 12 pentons, 150 hexons, and 320 triplexes arranged on a T=16 icosahedral lattice. This structure is similar to those of herpes simplex virus type 1 (HSV-1) and human cytomegalovirus (HCMV), which are prototypical members of alpha- and betaherpesviruses, respectively. The inner radius of the HHV-8 capsid is identical to that of the HSV-1 capsid but is smaller than that of the HCMV capsid, which is consistent with the relative sizes of the genomes they enclose. While the HHV-8 capsid exhibits many structural similarities to the HSV-1 capsid, our reconstruction shows two major differences: its hexons lack the "horn-shaped" VP26 densities bound to the HSV-1 hexon subunits, and the HHV-8 triplexes appear smaller and less elongated than those of HSV-1. These differences are in excellent agreement with our sequence comparisons of HHV-8 and HSV-1 capsid proteins. This gammaherpesvirus capsid structure complements previous structural studies on alpha- and betaherpesviruses in providing an account of structural similarities and differences among capsids representing all human herpesvirus subfamilies.
Collapse
Affiliation(s)
- L Wu
- Viral and Rickettsial Disease Laboratory, Division of Communicable Disease Control, California Department of Health Services, Berkeley, California 94720, USA
| | | | | | | | | | | |
Collapse
|
50
|
Bhella D, Rixon FJ, Dargan DJ. Cryomicroscopy of human cytomegalovirus virions reveals more densely packed genomic DNA than in herpes simplex virus type 1. J Mol Biol 2000; 295:155-61. [PMID: 10623515 DOI: 10.1006/jmbi.1999.3344] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
All members of the herpesvirus family have a characteristic virion structure, comprising a DNA containing, icosahedral capsid, embedded in a proteinaceous layer (tegument) and surrounded by a lipid envelope. Human cytomegalovirus (HCMV, the prototypic beta-herpesvirus) has a genome that is significantly larger (>50 %) than that of the alpha-herpesvirus HSV-1. Although the internal volume of the HCMV capsid is approximately 17 % larger than that of HSV-1, this slight increase in volume does not provide adequate space to encapsidate the full length HCMV genome at the same packing density as HSV-1. We have investigated the nature of DNA packing in HCMV and HSV-1 virions by electron-cryomicroscopy and image processing. Radial density profiles calculated from projection images of HCMV and HSV-1 capsids suggest that there is no increase in the volume of the HCMV capsid upon DNA packaging. Packing density of the viral DNA was assessed for both HCMV and HSV-1 by image analysis of both full and empty particles. Our results for packing density in HSV-1 are in good agreement with previously published measurements, showing an average inter-layer spacing of approximately 26 A. Measurements taken from our HCMV images, however, suggest that the viral genomic DNA is more densely packed, with an average inter-layer spacing of approximately 23 A. We propose therefore, that the combination of greater volume in HCMV capsids and increased packing density of viral DNA accounts for its ability to encapsidate a large genome.
Collapse
Affiliation(s)
- D Bhella
- Medical Research Council Virology Unit, Church Street, Glasgow, G11 5JR, United Kingdom.
| | | | | |
Collapse
|