1
|
Doucette L, Turnbill V, Carlin K, Cavanagh A, Sollinger B, Kuter N, Flock DL, Robinson S, Chavez-Valdez R, Jantzie L, Martin LJ, Northington FJ. Neocortical cholinergic pathology after neonatal brain injury is increased by Alzheimer's disease-related genes in mice. Neurobiol Dis 2024; 200:106629. [PMID: 39111704 DOI: 10.1016/j.nbd.2024.106629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/18/2024] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) in neonates causes mortality and neurologic morbidity, including poor cognition with a complex neuropathology. Injury to the cholinergic basal forebrain and its rich innervation of cerebral cortex may also drive cognitive pathology. It is uncertain whether genes associated with adult cognition-related neurodegeneration worsen outcomes after neonatal HIE. We hypothesized that neocortical damage caused by neonatal HI in mice is ushered by persistent cholinergic innervation and interneuron (IN) pathology that correlates with cognitive outcome and is exacerbated by genes linked to Alzheimer's disease. We subjected non-transgenic (nTg) C57Bl6 mice and mice transgenically (Tg) expressing human mutant amyloid precursor protein (APP-Swedish variant) and mutant presenilin (PS1-ΔE9) to the Rice-Vannucci HI model on postnatal day 10 (P10). nTg and Tg mice with sham procedure were controls. Visual discrimination (VD) was tested for cognition. Cortical and hippocampal cholinergic axonal and IN pathology and Aβ plaques, identified by immunohistochemistry for choline acetyltransferase (ChAT) and 6E10 antibody respectively, were counted at P210. Simple ChAT+ axonal swellings were present in all sham and HI groups; Tg mice had more than their nTg counterparts, but HI did not affect the number of axonal swellings in APP/PS1 Tg mice. In contrast, complex ChAT+ neuritic clusters (NC) occurred only in Tg mice; HI increased that burden. The abundance of ChAT+ clusters in specific regions correlated with decreased VD. The frequency of attritional ChAT+ INs in the entorhinal cortex (EC) was increased in Tg shams relative to their nTg counterparts, but HI obviated this difference. Cholinergic IN pathology in EC correlated with NC number. The Aβ deposition in APP/PS1 Tg mice was not exacerbated by HI, nor did it correlate with other metrics. Adult APP/PS1 Tg mice have significant cortical cholinergic axon and EC ChAT+ IN pathologies; some pathology was exacerbated by neonatal HI and correlated with VD. Mechanisms of neonatal HI induced cognitive deficits and cortical neuropathology may be modulated by genetic risk, perhaps accounting for some of the variability in outcomes.
Collapse
Affiliation(s)
- Leslie Doucette
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Victoria Turnbill
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Katherine Carlin
- US Air Force Medical Corps, US Naval Hospital Okinawa, Okinawa, Japan
| | - Andrew Cavanagh
- Department of Neuroscience, Undergraduate Education, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Benjamin Sollinger
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Nazli Kuter
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Debra L Flock
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Shenandoah Robinson
- Phelps Center for Cerebral Palsy and Neurodevelopmental Medicine, Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD 21287, USA; Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Raul Chavez-Valdez
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Lauren Jantzie
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; Phelps Center for Cerebral Palsy and Neurodevelopmental Medicine, Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD 21287, USA; Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Lee J Martin
- Department of Neuroscience, Pathology, and Anesthesiology & Critical Care Medicine, and the Pathobiology Graduate Training Program, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Frances J Northington
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
2
|
Pastor V, Medina JH. α7 nicotinic acetylcholine receptor in memory processing. Eur J Neurosci 2024; 59:2138-2154. [PMID: 36634032 DOI: 10.1111/ejn.15913] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
Information storage in the brain involves different memory types and stages that are processed by several brain regions. Cholinergic pathways through acetylcholine receptors actively participate on memory modulation, and their disfunction is associated with cognitive decline in several neurological disorders. During the last decade, the role of α7 subtype of nicotinic acetylcholine receptors in different memory stages has been studied. However, the information about their role in memory processing is still scarce. In this review, we attempt to identify brain areas where α7 nicotinic receptors have an essential role in different memory types and stages. In addition, we discuss recent work implicating-or not-α7 nicotinic receptors as promising pharmacological targets for memory impairment associated with neurological disorders.
Collapse
Affiliation(s)
- Verónica Pastor
- Instituto de Biología Celular y Neurociencia "Prof. Eduardo De Robertis" (IBCN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
- Facultad de Medicina, Departamento de Ciencias Fisiológicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jorge H Medina
- Instituto de Biología Celular y Neurociencia "Prof. Eduardo De Robertis" (IBCN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires, Argentina
| |
Collapse
|
3
|
Daher A, Payne S. The conducted vascular response as a mediator of hypercapnic cerebrovascular reactivity: A modelling study. Comput Biol Med 2024; 170:107985. [PMID: 38245966 DOI: 10.1016/j.compbiomed.2024.107985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/29/2023] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
It is well established that the cerebral blood flow (CBF) shows exquisite sensitivity to changes in the arterial blood partial pressure of CO2 ( [Formula: see text] ), which is reflected by an index termed cerebrovascular reactivity. In response to elevations in [Formula: see text] (hypercapnia), the vessels of the cerebral microvasculature dilate, thereby decreasing the vascular resistance and increasing CBF. Due to the challenges of access, scale and complexity encountered when studying the microvasculature, however, the mechanisms behind cerebrovascular reactivity are not fully understood. Experiments have previously established that the cholinergic release of the Acetylcholine (ACh) neurotransmitter in the cortex is a prerequisite for the hypercapnic response. It is also known that ACh functions as an endothelial-dependent agonist, in which the local administration of ACh elicits local hyperpolarization in the vascular wall; this hyperpolarization signal is then propagated upstream the vascular network through the endothelial layer and is coupled to a vasodilatory response in the vascular smooth muscle (VSM) layer in what is known as the conducted vascular response (CVR). Finally, experimental data indicate that the hypercapnic response is more strongly correlated with the CO2 levels in the tissue than in the arterioles. Accordingly, we hypothesize that the CVR, evoked by increases in local tissue CO2 levels and a subsequent local release of ACh, is responsible for the CBF increase observed in response to elevations in [Formula: see text] . By constructing physiologically grounded dynamic models of CBF and control in the cerebral vasculature, ones that integrate the available knowledge and experimental data, we build a new model of the series of signalling events and pathways underpinning the hypercapnic response, and use the model to provide compelling evidence that corroborates the aforementioned hypothesis. If the CVR indeed acts as a mediator of the hypercapnic response, the proposed mechanism would provide an important addition to our understanding of the repertoire of metabolic feedback mechanisms possessed by the brain and would motivate further in-vivo investigation. We also model the interaction of the hypercapnic response with dynamic cerebral autoregulation (dCA), the collection of mechanisms that the brain possesses to maintain near constant CBF despite perturbations in pressure, and show how the dCA mechanisms, which otherwise tend to be overlooked when analysing experimental results of cerebrovascular reactivity, could play a significant role in shaping the CBF response to elevations in [Formula: see text] . Such in-silico models can be used in tandem with in-vivo experiments to expand our understanding of cerebrovascular diseases, which continue to be among the leading causes of morbidity and mortality in humans.
Collapse
Affiliation(s)
- Ali Daher
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, United Kingdom.
| | - Stephen Payne
- Institute of Applied Mechanics, National Taiwan University, Taiwan
| |
Collapse
|
4
|
Gamage R, Zaborszky L, Münch G, Gyengesi E. Evaluation of eGFP expression in the ChAT-eGFP transgenic mouse brain. BMC Neurosci 2023; 24:4. [PMID: 36650430 PMCID: PMC9847127 DOI: 10.1186/s12868-023-00773-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND A historically definitive marker for cholinergic neurons is choline acetyltransferase (ChAT), a synthesizing enzyme for acetylcholine, (ACh), which can be found in high concentrations in cholinergic neurons, both in the central and peripheral nervous systems. ChAT, is produced in the body of the neuron, transported to the nerve terminal (where its concentration is highest), and catalyzes the transfer of an acetyl group from the coenzyme acetyl-CoA to choline, yielding ACh. The creation of bacterial artificial chromosome (BAC) transgenic mice that express promoter-specific fluorescent reporter proteins (green fluorescent protein-[GFP]) provided an enormous advantage for neuroscience. Both in vivo and in vitro experimental methods benefited from the transgenic visualization of cholinergic neurons. Mice were created by adding a BAC clone into the ChAT locus, in which enhanced GFP (eGFP) is inserted into exon 3 at the ChAT initiation codon, robustly and supposedly selectively expressing eGFP in all cholinergic neurons and fibers in the central and peripheral nervous systems as well as in non-neuronal cells. METHODS This project systematically compared the exact distribution of the ChAT-eGFP expressing neurons in the brain with the expression of ChAT by immunohistochemistry using mapping and also made comparisons with in situ hybridization (ISH). RESULTS We qualitatively described the distribution of ChAT-eGFP neurons in the mouse brain by comparing it with the distribution of immunoreactive neurons and ISH data, paying special attention to areas where the expression did not overlap, such as the cortex, striatum, thalamus and hypothalamus. We found a complete overlap between the transgenic expression of eGFP and the immunohistochemical staining in the areas of the cholinergic basal forebrain. However, in the cortex and hippocampus, we found small neurons that were only labeled with the antibody and not expressed eGFP or vice versa. Most importantly, we found no transgenic expression of eGFP in the lateral dorsal, ventral and dorsomedial tegmental nuclei cholinergic cells. CONCLUSION While the majority of the forebrain ChAT expression was aligned in the transgenic animals with immunohistochemistry, other areas of interest, such as the brainstem should be considered before choosing this particular transgenic mouse line.
Collapse
Affiliation(s)
- Rashmi Gamage
- grid.1029.a0000 0000 9939 5719Pharmacology Unit, Group of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW 2751 Australia
| | - Laszlo Zaborszky
- grid.430387.b0000 0004 1936 8796Center for Molecular and Behavioral Neuroscience, Rutgers The State University of New Jersey, Newark, NJ 07102 USA
| | - Gerald Münch
- grid.1029.a0000 0000 9939 5719Pharmacology Unit, Group of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW 2751 Australia
| | - Erika Gyengesi
- grid.1029.a0000 0000 9939 5719Pharmacology Unit, Group of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW 2751 Australia
| |
Collapse
|
5
|
Obesity-Related Brain Cholinergic System Impairment in High-Fat-Diet-Fed Rats. Nutrients 2022; 14:nu14061243. [PMID: 35334899 PMCID: PMC8948807 DOI: 10.3390/nu14061243] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 12/11/2022] Open
Abstract
A link between obesity and cerebral health is receiving growing recognition. Here, we investigate in the frontal cortex and hippocampus the potential involvement of cholinergic markers in brain alterations previously reported in rats with obesity induced by diet (DIO) after long-term exposure (17 weeks) to a high-fat diet (HFD) in comparison with animals fed with a standard diet (CHOW). The obesity developed after 5 weeks of HFD. Bodyweight, systolic blood pressure, glycemia, and insulin levels were increased in DIO rats compared to the CHOW group. Measurements of malondialdehyde (MDA) provided lipid peroxidation in HFD-fed rats. Western blot and immunohistochemical techniques were performed. Our results showed a higher expression of choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT) in obese rats but not the VAChT expression in the frontal cortex after 17 weeks of HFD. Furthermore, the acetylcholinesterase (AChE) enzyme was downregulated in HFD both in the frontal cortex and hippocampus. In the brain regions analyzed, it was reported a modulation of certain cholinergic receptors expressed pre- and post-synaptically (alpha7 nicotinic receptor and muscarinic receptor subtype 1). Collectively, these findings point out precise changes of cholinergic markers that can be targeted to prevent cerebral injuries related to obesity.
Collapse
|
6
|
Dudai A, Yayon N, Soreq H, London M. Cortical VIP
+
/ChAT
+
interneurons: From genetics to function. J Neurochem 2021; 158:1320-1333. [DOI: 10.1111/jnc.15263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/05/2020] [Accepted: 11/30/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Amir Dudai
- The Edmond and Lily Safra Center for Brain Sciences (ELSC) The Department of Neurobiology The Life Sciences Institute The Hebrew University of Jerusalem Jerusalem Israel
| | - Nadav Yayon
- The Edmond and Lily Safra Center for Brain Sciences (ELSC) The Department of Biological Chemistry The Life Sciences Institute The Hebrew University of Jerusalem Jerusalem Israel
| | - Hermona Soreq
- The Edmond and Lily Safra Center for Brain Sciences (ELSC) The Department of Biological Chemistry The Life Sciences Institute The Hebrew University of Jerusalem Jerusalem Israel
| | - Michael London
- The Edmond and Lily Safra Center for Brain Sciences (ELSC) The Department of Neurobiology The Life Sciences Institute The Hebrew University of Jerusalem Jerusalem Israel
| |
Collapse
|
7
|
Granger AJ, Wang W, Robertson K, El-Rifai M, Zanello AF, Bistrong K, Saunders A, Chow BW, Nuñez V, Turrero García M, Harwell CC, Gu C, Sabatini BL. Cortical ChAT + neurons co-transmit acetylcholine and GABA in a target- and brain-region-specific manner. eLife 2020; 9:57749. [PMID: 32613945 PMCID: PMC7360370 DOI: 10.7554/elife.57749] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/01/2020] [Indexed: 01/15/2023] Open
Abstract
The mouse cerebral cortex contains neurons that express choline acetyltransferase (ChAT) and are a potential local source of acetylcholine. However, the neurotransmitters released by cortical ChAT+ neurons and their synaptic connectivity are unknown. We show that the nearly all cortical ChAT+ neurons in mice are specialized VIP+ interneurons that release GABA strongly onto other inhibitory interneurons and acetylcholine sparsely onto layer 1 interneurons and other VIP+/ChAT+ interneurons. This differential transmission of ACh and GABA based on the postsynaptic target neuron is reflected in VIP+/ChAT+ interneuron pre-synaptic terminals, as quantitative molecular analysis shows that only a subset of these are specialized to release acetylcholine. In addition, we identify a separate, sparse population of non-VIP ChAT+ neurons in the medial prefrontal cortex with a distinct developmental origin that robustly release acetylcholine in layer 1. These results demonstrate both cortex-region heterogeneity in cortical ChAT+ interneurons and target-specific co-release of acetylcholine and GABA.
Collapse
Affiliation(s)
- Adam J Granger
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Wengang Wang
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Keiramarie Robertson
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Mahmoud El-Rifai
- Neurobiology Imaging Facility, Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Andrea F Zanello
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Karina Bistrong
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Arpiar Saunders
- Department of Genetics, Harvard Medical School, Boston, United States
| | - Brian W Chow
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Vicente Nuñez
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | | | - Corey C Harwell
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Chenghua Gu
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Bernardo L Sabatini
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, United States
| |
Collapse
|
8
|
de Girolamo P, Leggieri A, Palladino A, Lucini C, Attanasio C, D’Angelo L. Cholinergic System and NGF Receptors: Insights from the Brain of the Short-Lived Fish Nothobranchius furzeri. Brain Sci 2020; 10:brainsci10060394. [PMID: 32575701 PMCID: PMC7348706 DOI: 10.3390/brainsci10060394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 01/01/2023] Open
Abstract
Nerve growth factor (NGF) receptors are evolutionary conserved molecules, and in mammals are considered necessary for ensuring the survival of cholinergic neurons. The age-dependent regulation of NTRK1/NTRKA and p75/NGFR in mammalian brain results in a reduced response of the cholinergic neurons to neurotrophic factors and is thought to play a role in the pathogenesis of neurodegenerative diseases. Here, we study the age-dependent expression of NGF receptors (NTRK1/NTRKA and p75/NGFR) in the brain of the short-lived teleost fish Nothobranchius furzeri. We observed that NTRK1/NTRKA is more expressed than p75/NGFR in young and old animals, although both receptors do not show a significant age-dependent change. We then study the neuroanatomical organization of the cholinergic system, observing that cholinergic fibers project over the entire neuroaxis while cholinergic neurons appear restricted to few nuclei situated in the equivalent of mammalian subpallium, preoptic area and rostral reticular formation. Finally, our experiments do not confirm that NTRK1/NTRKA and p75/NGFR are expressed in cholinergic neuronal populations in the adult brain of N. furzeri. To our knowledge, this is the first study where NGF receptors have been analyzed in relation to the cholinergic system in a fish species along with their age-dependent modulation. We observed differences between mammals and fish, which make the African turquoise killifish an attractive model to further investigate the fish specific NGF receptors regulation.
Collapse
Affiliation(s)
- Paolo de Girolamo
- Department Veterinary Medicine and Animal Production, University of Naples Federico II, Naples I-80137, Italy; (A.L.); (C.L.); (C.A.); (L.D.)
- Correspondence: ; Tel.: +39-081-2536099
| | - Adele Leggieri
- Department Veterinary Medicine and Animal Production, University of Naples Federico II, Naples I-80137, Italy; (A.L.); (C.L.); (C.A.); (L.D.)
| | - Antonio Palladino
- CESMA—Centro Servizi metereologici e Tecnologici Avanzati, University of Naples Federico II, I-80126 Naples, Italy;
| | - Carla Lucini
- Department Veterinary Medicine and Animal Production, University of Naples Federico II, Naples I-80137, Italy; (A.L.); (C.L.); (C.A.); (L.D.)
| | - Chiara Attanasio
- Department Veterinary Medicine and Animal Production, University of Naples Federico II, Naples I-80137, Italy; (A.L.); (C.L.); (C.A.); (L.D.)
| | - Livia D’Angelo
- Department Veterinary Medicine and Animal Production, University of Naples Federico II, Naples I-80137, Italy; (A.L.); (C.L.); (C.A.); (L.D.)
| |
Collapse
|
9
|
Yang D, Ding C, Qi G, Feldmeyer D. Cholinergic and Adenosinergic Modulation of Synaptic Release. Neuroscience 2020; 456:114-130. [PMID: 32540364 DOI: 10.1016/j.neuroscience.2020.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 01/14/2023]
Abstract
In this review we will discuss the effect of two neuromodulatory transmitters, acetylcholine (ACh) and adenosine, on the synaptic release probability and short-term synaptic plasticity. ACh and adenosine differ fundamentally in the way they are released into the extracellular space. ACh is released mostly from synaptic terminals and axonal bouton of cholinergic neurons in the basal forebrain (BF). Its mode of action on synaptic release probability is complex because it activate both ligand-gated ion channels, so-called nicotinic ACh receptors and G-protein coupled muscarinic ACh receptors. In contrast, adenosine is released from both neurons and glia via nucleoside transporters or diffusion over the cell membrane in a non-vesicular, non-synaptic fashion; its receptors are exclusively G-protein coupled receptors. We show that ACh and adenosine effects are highly specific for an identified synaptic connection and depend mostly on the presynaptic but also on the postsynaptic receptor type and discuss the functional implications of these differences.
Collapse
Affiliation(s)
- Danqing Yang
- Research Centre Juelich, Institute of Neuroscience and Medicine 10, Leo-Brandt-Strasse, Juelich, Germany
| | - Chao Ding
- Research Centre Juelich, Institute of Neuroscience and Medicine 10, Leo-Brandt-Strasse, Juelich, Germany
| | - Guanxiao Qi
- Research Centre Juelich, Institute of Neuroscience and Medicine 10, Leo-Brandt-Strasse, Juelich, Germany
| | - Dirk Feldmeyer
- Research Centre Juelich, Institute of Neuroscience and Medicine 10, Leo-Brandt-Strasse, Juelich, Germany; RWTH Aachen University Hospital, Pauwelsstrasse 30, Aachen, Germany; Jülich-Aachen Research Alliance Brain - JARA Brain, Germany.
| |
Collapse
|
10
|
Dudai A, Yayon N, Lerner V, Tasaka GI, Deitcher Y, Gorfine K, Niederhoffer N, Mizrahi A, Soreq H, London M. Barrel cortex VIP/ChAT interneurons suppress sensory responses in vivo. PLoS Biol 2020; 18:e3000613. [PMID: 32027647 PMCID: PMC7029879 DOI: 10.1371/journal.pbio.3000613] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/19/2020] [Accepted: 01/16/2020] [Indexed: 02/06/2023] Open
Abstract
Cortical interneurons expressing vasoactive intestinal polypeptide (VIP) and choline acetyltransferase (ChAT) are sparsely distributed throughout the neocortex, constituting only 0.5% of its neuronal population. The co-expression of VIP and ChAT suggests that these VIP/ChAT interneurons (VChIs) can release both γ-aminobutyric acid (GABA) and acetylcholine (ACh). In vitro physiological studies quantified the response properties and local connectivity patterns of the VChIs; however, the function of VChIs has not been explored in vivo. To study the role of VChIs in cortical network dynamics and their long-range connectivity pattern, we used in vivo electrophysiology and rabies virus tracing in the barrel cortex of mice. We found that VChIs have a low spontaneous spiking rate (approximately 1 spike/s) in the barrel cortex of anesthetized mice; nevertheless, they responded with higher fidelity to whisker stimulation than the neighboring layer 2/3 pyramidal neurons (Pyrs). Analysis of long-range inputs to VChIs with monosynaptic rabies virus tracing revealed that direct thalamic projections are a significant input source to these cells. Optogenetic activation of VChIs in the barrel cortex of awake mice suppresses the sensory responses of excitatory neurons in intermediate amplitudes of whisker deflections while increasing the evoked spike latency. The effect of VChI activation on the response was similar for both high-whisking (HW) and low-whisking (LW) conditions. Our findings demonstrate that, despite their sparsity, VChIs can effectively modulate sensory processing in the cortical microcircuit.
Collapse
Affiliation(s)
- Amir Dudai
- The Edmond and Lily Safra Center for Brain Sciences (ELSC) and The Department of Neurobiology, The Life Sciences Institute, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nadav Yayon
- The Edmond and Lily Safra Center for Brain Sciences (ELSC) and The Department of Biological Chemistry, The Life Sciences Institute, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Vitaly Lerner
- The Edmond and Lily Safra Center for Brain Sciences (ELSC) and The Department of Neurobiology, The Life Sciences Institute, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gen-ichi Tasaka
- The Edmond and Lily Safra Center for Brain Sciences (ELSC) and The Department of Neurobiology, The Life Sciences Institute, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yair Deitcher
- The Edmond and Lily Safra Center for Brain Sciences (ELSC) and The Department of Neurobiology, The Life Sciences Institute, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Karin Gorfine
- The Edmond and Lily Safra Center for Brain Sciences (ELSC) and The Department of Neurobiology, The Life Sciences Institute, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Naomi Niederhoffer
- The Edmond and Lily Safra Center for Brain Sciences (ELSC) and The Department of Biological Chemistry, The Life Sciences Institute, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Adi Mizrahi
- The Edmond and Lily Safra Center for Brain Sciences (ELSC) and The Department of Neurobiology, The Life Sciences Institute, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hermona Soreq
- The Edmond and Lily Safra Center for Brain Sciences (ELSC) and The Department of Biological Chemistry, The Life Sciences Institute, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michael London
- The Edmond and Lily Safra Center for Brain Sciences (ELSC) and The Department of Neurobiology, The Life Sciences Institute, The Hebrew University of Jerusalem, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
11
|
Obermayer J, Luchicchi A, Heistek TS, de Kloet SF, Terra H, Bruinsma B, Mnie-Filali O, Kortleven C, Galakhova AA, Khalil AJ, Kroon T, Jonker AJ, de Haan R, van de Berg WDJ, Goriounova NA, de Kock CPJ, Pattij T, Mansvelder HD. Prefrontal cortical ChAT-VIP interneurons provide local excitation by cholinergic synaptic transmission and control attention. Nat Commun 2019; 10:5280. [PMID: 31754098 PMCID: PMC6872593 DOI: 10.1038/s41467-019-13244-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 10/29/2019] [Indexed: 12/17/2022] Open
Abstract
Neocortical choline acetyltransferase (ChAT)-expressing interneurons are a subclass of vasoactive intestinal peptide (ChAT-VIP) neurons of which circuit and behavioural function are unknown. Here, we show that ChAT-VIP neurons directly excite neighbouring neurons in several layers through fast synaptic transmission of acetylcholine (ACh) in rodent medial prefrontal cortex (mPFC). Both interneurons in layers (L)1-3 as well as pyramidal neurons in L2/3 and L6 receive direct inputs from ChAT-VIP neurons mediated by fast cholinergic transmission. A fraction (10-20%) of postsynaptic neurons that received cholinergic input from ChAT-VIP interneurons also received GABAergic input from these neurons. In contrast to regular VIP interneurons, ChAT-VIP neurons did not disinhibit pyramidal neurons. Finally, we show that activity of these neurons is relevant for behaviour and they control attention behaviour distinctly from basal forebrain ACh inputs. Thus, ChAT-VIP neurons are a local source of cortical ACh that directly excite neurons throughout cortical layers and contribute to attention.
Collapse
Affiliation(s)
- Joshua Obermayer
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit, Amsterdam Neuroscience, The Netherlands
| | - Antonio Luchicchi
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit, Amsterdam Neuroscience, The Netherlands
- Department of Anatomy and Neurosciences, Clinical Neuroscience, Amsterdam UMC, Vrije Universiteit, Amsterdam Neuroscience, The Netherlands
| | - Tim S Heistek
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit, Amsterdam Neuroscience, The Netherlands
| | - Sybren F de Kloet
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit, Amsterdam Neuroscience, The Netherlands
| | - Huub Terra
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit, Amsterdam Neuroscience, The Netherlands
| | - Bastiaan Bruinsma
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit, Amsterdam Neuroscience, The Netherlands
| | - Ouissame Mnie-Filali
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit, Amsterdam Neuroscience, The Netherlands
| | - Christian Kortleven
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit, Amsterdam Neuroscience, The Netherlands
| | - Anna A Galakhova
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit, Amsterdam Neuroscience, The Netherlands
| | - Ayoub J Khalil
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit, Amsterdam Neuroscience, The Netherlands
| | - Tim Kroon
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit, Amsterdam Neuroscience, The Netherlands
- MRC Centre-Developmental Neurobiology, King's College London, London, UK
| | - Allert J Jonker
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit, Amsterdam Neuroscience, The Netherlands
| | - Roel de Haan
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit, Amsterdam Neuroscience, The Netherlands
| | - Wilma D J van de Berg
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit, Amsterdam Neuroscience, The Netherlands
| | - Natalia A Goriounova
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit, Amsterdam Neuroscience, The Netherlands
| | - Christiaan P J de Kock
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit, Amsterdam Neuroscience, The Netherlands
| | - Tommy Pattij
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit, Amsterdam Neuroscience, The Netherlands.
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit, Amsterdam Neuroscience, The Netherlands.
| |
Collapse
|
12
|
Faiq MA, Wollstein G, Schuman JS, Chan KC. Cholinergic nervous system and glaucoma: From basic science to clinical applications. Prog Retin Eye Res 2019; 72:100767. [PMID: 31242454 PMCID: PMC6739176 DOI: 10.1016/j.preteyeres.2019.06.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 02/08/2023]
Abstract
The cholinergic system has a crucial role to play in visual function. Although cholinergic drugs have been a focus of attention as glaucoma medications for reducing eye pressure, little is known about the potential modality for neuronal survival and/or enhancement in visual impairments. Citicoline, a naturally occurring compound and FDA approved dietary supplement, is a nootropic agent that is recently demonstrated to be effective in ameliorating ischemic stroke, traumatic brain injury, Parkinson's disease, Alzheimer's disease, cerebrovascular diseases, memory disorders and attention-deficit/hyperactivity disorder in both humans and animal models. The mechanisms of its action appear to be multifarious including (i) preservation of cardiolipin, sphingomyelin, and arachidonic acid contents of phosphatidylcholine and phosphatidylethanolamine, (ii) restoration of phosphatidylcholine, (iii) stimulation of glutathione synthesis, (iv) lowering glutamate concentrations and preventing glutamate excitotoxicity, (v) rescuing mitochondrial function thereby preventing oxidative damage and onset of neuronal apoptosis, (vi) synthesis of myelin leading to improvement in neuronal membrane integrity, (vii) improving acetylcholine synthesis and thereby reducing the effects of mental stress and (viii) preventing endothelial dysfunction. Such effects have vouched for citicoline as a neuroprotective, neurorestorative and neuroregenerative agent. Retinal ganglion cells are neurons with long myelinated axons which provide a strong rationale for citicoline use in visual pathway disorders. Since glaucoma is a form of neurodegeneration involving retinal ganglion cells, citicoline may help ameliorate glaucomatous damages in multiple facets. Additionally, trans-synaptic degeneration has been identified in humans and experimental models of glaucoma suggesting the cholinergic system as a new brain target for glaucoma management and therapy.
Collapse
Affiliation(s)
- Muneeb A Faiq
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, United States
| | - Gadi Wollstein
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, United States
| | - Joel S Schuman
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, United States
| | - Kevin C Chan
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, United States; Department of Radiology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, United States; Center for Neural Science, Faculty of Arts and Science, New York University, New York, NY, United States.
| |
Collapse
|
13
|
Resende NR, Soares Filho PL, Peixoto PPA, Silva AM, Silva SF, Soares JG, do Nascimento ES, Cavalcante JC, Cavalcante JS, Costa MSMO. Nuclear organization and morphology of cholinergic neurons in the brain of the rock cavy (Kerodon rupestris) (Wied, 1820). J Chem Neuroanat 2018; 94:63-74. [PMID: 30293055 DOI: 10.1016/j.jchemneu.2018.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 09/20/2018] [Accepted: 09/20/2018] [Indexed: 11/19/2022]
Abstract
The aim of this study was to conduct cytoarchitectonic studies and choline acetyltransferase (ChAT) immunohistochemical analysis to delimit the cholinergic groups in the encephalon of the rock cavy (Kerodon rupestris), a crepuscular Caviidae rodent native to the Brazilian Northeast. Three young adult animals were anesthetized and transcardially perfused. The encephala were cut in the coronal plane using a cryostat. We obtained 6 series of 30-μm-thick sections. The sections from one series were subjected to Nissl staining. Those from another series were subjected to immunohistochemistry for the enzyme ChAT, which is used in acetylcholine synthesis, to visualize the different cholinergic neural centers of the rock cavy. The slides were analyzed using a light microscope and the results were documented by description and digital photomicrographs. ChAT-immunoreactive neurons were identified in the telencephalon (nucleus accumbens, caudate-putamen, globus pallidus, entopeduncular nucleus and ventral globus pallidus, olfactory tubercle and islands of Calleja, diagonal band of Broca nucleus, nucleus basalis, and medial septal nucleus), diencephalon (ventrolateral preoptic, hypothalamic ventrolateral, and medial habenular nuclei), and brainstem (parabigeminal, laterodorsal tegmental, and pedunculopontine tegmental nuclei). These findings are discussed through both a functional and phylogenetic perspective.
Collapse
Affiliation(s)
- N R Resende
- Department of Morphology, Laboratory of Neuroanatomy, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - P L Soares Filho
- Department of Morphology, Laboratory of Neuroanatomy, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - P P A Peixoto
- Department of Morphology, Laboratory of Neuroanatomy, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - A M Silva
- Department of Morphology, Laboratory of Neuroanatomy, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - S F Silva
- Department of Morphology, Laboratory of Neuroanatomy, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - J G Soares
- Department of Morphology, Laboratory of Neuroanatomy, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - E S do Nascimento
- Department of Morphology, Laboratory of Neuroanatomy, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - J C Cavalcante
- Department of Morphology, Laboratory of Neuroanatomy, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - J S Cavalcante
- Department of Physiology, Laboratory of Neurochemical Studies, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - M S M O Costa
- Department of Morphology, Laboratory of Neuroanatomy, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|
14
|
Casini A, Vaccaro R, Toni M, Cioni C. Distribution of choline acetyltransferase (ChAT) immunoreactivity in the brain of the teleost Cyprinus carpio. Eur J Histochem 2018; 62:2932. [PMID: 30043595 PMCID: PMC6060486 DOI: 10.4081/ejh.2018.2932] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/06/2018] [Indexed: 02/01/2023] Open
Abstract
Cholinergic systems play a role in basic cerebral functions and its dysfunction is associated with deficit in neurodegenerative disease. Mechanisms involved in human brain diseases, are often approached by using fish models, especially cyprinids, given basic similarities of the fish brain to that of mammals. In the present paper, the organization of central cholinergic systems have been described in the cyprinid Cyprinus carpio, the common carp, by using specific polyclonal antibodies against ChAT, the synthetic enzyme of acetylcholine, that is currently used as a specific marker for cholinergic neurons in all vertebrates. In this work, serial transverse sections of the brain and the spinal cord were immunostained for ChAT. Results showed that positive neurons are present in several nuclei of the forebrain, the midbrain, the hindbrain and the spinal cord. Moreover, ChAT-positive neurons were detected in the synencephalon and in the cerebellum. In addition to neuronal bodies, afferent varicose fibers were stained for ChAT in the ventral telencephalon, the preoptic area, the hypothalamus and the posterior tuberculum. No neuronal cell bodies were present in the telencephalon. The comparison of cholinergic distribution pattern in the Cyprinus carpio central nervous system has revealed similarities but also some interesting differences with other cyprinids. Our results provide additional information on the cholinergic system from a phylogenetic point of view and may add new perspectives to physiological roles of cholinergic system during evolution and the neuroanatomical basis of neurological diseases.
Collapse
Affiliation(s)
- Arianna Casini
- Sapienza University of Rome, Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences.
| | | | | | | |
Collapse
|
15
|
Coppola JJ, Disney AA. Is There a Canonical Cortical Circuit for the Cholinergic System? Anatomical Differences Across Common Model Systems. Front Neural Circuits 2018; 12:8. [PMID: 29440996 PMCID: PMC5797555 DOI: 10.3389/fncir.2018.00008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/17/2018] [Indexed: 11/13/2022] Open
Abstract
Acetylcholine (ACh) is believed to act as a neuromodulator in cortical circuits that support cognition, specifically in processes including learning, memory consolidation, vigilance, arousal and attention. The cholinergic modulation of cortical processes is studied in many model systems including rodents, cats and primates. Further, these studies are performed in cortical areas ranging from the primary visual cortex to the prefrontal cortex and using diverse methodologies. The results of these studies have been combined into singular models of function-a practice based on an implicit assumption that the various model systems are equivalent and interchangeable. However, comparative anatomy both within and across species reveals important differences in the structure of the cholinergic system. Here, we will review anatomical data including innervation patterns, receptor expression, synthesis and release compared across species and cortical area with a focus on rodents and primates. We argue that these data suggest no canonical cortical model system exists for the cholinergic system. Further, we will argue that as a result, care must be taken both in combining data from studies across cortical areas and species, and in choosing the best model systems to improve our understanding and support of human health.
Collapse
Affiliation(s)
- Jennifer J. Coppola
- Department of Psychology, Vanderbilt University, Nashville, TN, United States
| | - Anita A. Disney
- Department of Psychology, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
16
|
Maruska KP, Butler JM, Field KE, Porter DT. Localization of glutamatergic, GABAergic, and cholinergic neurons in the brain of the African cichlid fish, Astatotilapia burtoni. J Comp Neurol 2016; 525:610-638. [PMID: 27507772 DOI: 10.1002/cne.24092] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/19/2016] [Accepted: 07/23/2016] [Indexed: 01/17/2023]
Abstract
Neural communication depends on release and reception of different neurotransmitters within complex circuits that ultimately mediate basic biological functions. We mapped the distribution of glutamatergic, GABAergic, and cholinergic neurons in the brain of the African cichlid fish Astatotilapia burtoni using in situ hybridization to label vesicular glutamate transporters (vglut1, vglut2.1, vglut3), glutamate decarboxylases (gad1, gad2), and choline acetyltransferase (chat). Cells expressing the glutamatergic markers vgluts 1-3 show primarily nonoverlapping distribution patterns, with the most widespread expression observed for vglut2.1, and more restricted expression of vglut1 and vglut3. vglut1 is prominent in granular layers of the cerebellum, habenula, preglomerular nuclei, and several other diencephalic, mesencephalic, and rhombencephalic regions. vglut2.1 is widely expressed in many nuclei from the olfactory bulbs to the hindbrain, while vglut3 is restricted to the hypothalamus and hindbrain. GABAergic cells show largely overlapping gad1 and gad2 expression in most brain regions. GABAergic expression dominates nuclei of the subpallial ventral telencephalon, while glutamatergic expression dominates nuclei of the pallial dorsal telencephalon. chat-expressing cells are prominent in motor cranial nerve nuclei, and some scattered cells lie in the preoptic area and ventral part of the ventral telencephalon. A localization summary of these markers within regions of the conserved social decision-making network reveals a predominance of either GABAergic or glutamatergic cells within individual nuclei. The neurotransmitter distributions described here in the brain of a single fish species provide an important resource for identification of brain nuclei in other fishes, as well as future comparative studies on circuit organization and function. J. Comp. Neurol. 525:610-638, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Karen P Maruska
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Julie M Butler
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Karen E Field
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Danielle T Porter
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
17
|
Herrera-Rincon C, Panetsos F. Substitution of natural sensory input by artificial neurostimulation of an amputated trigeminal nerve does not prevent the degeneration of basal forebrain cholinergic circuits projecting to the somatosensory cortex. Front Cell Neurosci 2014; 8:385. [PMID: 25452715 PMCID: PMC4231972 DOI: 10.3389/fncel.2014.00385] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 10/29/2014] [Indexed: 11/13/2022] Open
Abstract
Peripheral deafferentation downregulates acetylcholine (ACh) synthesis in sensory cortices. However, the responsible neural circuits and processes are not known. We irreversibly transected the rat infraorbital nerve and implanted neuroprosthetic microdevices for proximal stump stimulation, and assessed cytochrome-oxidase and choline- acetyl-transferase (ChAT) in somatosensory, auditory and visual cortices; estimated the number and density of ACh-neurons in the magnocellular basal nucleus (MBN); and localized down-regulated ACh-neurons in basal forebrain using retrograde labeling from deafferented cortices. Here we show that nerve transection, causes down regulation of MBN cholinergic neurons. Stimulation of the cut nerve reverses the metabolic decline but does not affect the decrease in cholinergic fibers in cortex or cholinergic neurons in basal forebrain. Artifical stimulation of the nerve also has no affect of ACh-innervation of other cortices. Cortical ChAT depletion is due to loss of corticopetal MBN ChAT-expressing neurons. MBN ChAT downregulation is not due to a decrease of afferent activity or to a failure of trophic support. Basalocortical ACh circuits are sensory specific, ACh is provided to each sensory cortex "on demand" by dedicated circuits. Our data support the existence of a modality-specific cortex-MBN-cortex circuit for cognitive information processing.
Collapse
Affiliation(s)
- Celia Herrera-Rincon
- Neurocomputing and Neurorobotics Research Group, Universidad Complutense de Madrid Madrid, Spain ; Biomathematics Department, Faculty of Biology and Faculty of Optics, Universidad Complutense de Madrid Madrid, Spain ; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos Madrid, Spain
| | - Fivos Panetsos
- Neurocomputing and Neurorobotics Research Group, Universidad Complutense de Madrid Madrid, Spain ; Biomathematics Department, Faculty of Biology and Faculty of Optics, Universidad Complutense de Madrid Madrid, Spain ; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos Madrid, Spain ; Department of Industrial Engineering and Management Systems, University of Central Florida Orlando, FL, USA
| |
Collapse
|
18
|
Cholinergic markers in the cortex and hippocampus of some animal species and their correlation to Alzheimer's disease. NEUROLOGÍA (ENGLISH EDITION) 2014. [DOI: 10.1016/j.nrleng.2012.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
19
|
Zhang Y, Kaneko R, Yanagawa Y, Saito Y. The vestibulo- and preposito-cerebellar cholinergic neurons of a ChAT-tdTomato transgenic rat exhibit heterogeneous firing properties and the expression of various neurotransmitter receptors. Eur J Neurosci 2014; 39:1294-313. [PMID: 24593297 DOI: 10.1111/ejn.12509] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 12/11/2013] [Accepted: 01/10/2014] [Indexed: 02/02/2023]
Abstract
Cerebellar function is regulated by cholinergic mossy fiber inputs that are primarily derived from the medial vestibular nucleus (MVN) and prepositus hypoglossi nucleus (PHN). In contrast to the growing evidence surrounding cholinergic transmission and its functional significance in the cerebellum, the intrinsic and synaptic properties of cholinergic projection neurons (ChPNs) have not been clarified. In this study, we generated choline acetyltransferase (ChAT)-tdTomato transgenic rats, which specifically express the fluorescent protein tdTomato in cholinergic neurons, and used them to investigate the response properties of ChPNs identified via retrograde labeling using whole-cell recordings in brainstem slices. In response to current pulses, ChPNs exhibited two afterhyperpolarisation (AHP) profiles and three firing patterns; the predominant AHP and firing properties differed between the MVN and PHN. Morphologically, the ChPNs were separated into two types based on their soma size and dendritic extensions. Analyses of the firing responses to time-varying sinusoidal current stimuli revealed that ChPNs exhibited different firing modes depending on the input frequencies. The maximum frequencies in which each firing mode was observed were different between the neurons that exhibited distinct firing patterns. Analyses of the current responses to the application of neurotransmitter receptor agonists revealed that the ChPNs expressed (i) AMPA- and NMDA-type glutamate receptors, (ii) GABAA and glycine receptors, and (iii) muscarinic and nicotinic acetylcholine receptors. The current responses mediated by these receptors of MVN ChPNs were not different from those of PHN ChPNs. These findings suggest that ChPNs receive various synaptic inputs and encode those inputs appropriately across different frequencies.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | | | | | | |
Collapse
|
20
|
López JM, Perlado J, Morona R, Northcutt RG, González A. Neuroanatomical organization of the cholinergic system in the central nervous system of a basal actinopterygian fish, the senegal bichir Polypterus senegalus. J Comp Neurol 2013; 521:24-49. [PMID: 22628072 DOI: 10.1002/cne.23155] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 05/09/2012] [Accepted: 05/18/2012] [Indexed: 11/10/2022]
Abstract
Polypterid bony fishes are believed to be basal to other living ray-finned fishes, and their brain organization is therefore critical in providing information as to primitive neural characters that existed in the earliest ray-finned fishes. The cholinergic system has been characterized in more advanced ray-finned fishes, but not in polypterids. In order to establish which cholinergic neural centers characterized the earliest ray-finned fishes, the distribution of choline acetyltransferase (ChAT) is described in Polypterus and compared with the distribution of this molecule in other ray-finned fishes. Cell groups immunoreactive for ChAT were observed in the hypothalamus, the habenula, the optic tectum, the isthmus, the cranial motor nuclei, and the spinal motor column. Cholinergic fibers were observed in both the telencephalic pallium and the subpallium, in the thalamus and pretectum, in the optic tectum and torus semicircularis, in the mesencephalic tegmentum, in the cerebellar crest, in the solitary nucleus, and in the dorsal column nuclei. Comparison of the data within a segmental neuromeric context indicates that the cholinergic system in polypterid fishes is generally similar to that in other ray-finned fishes, but cholinergic-positive neurons in the pallium and subpallium, and in the thalamus and cerebellum, of teleosts appear to have evolved following the separation of polypterids and other ray-finned fishes.
Collapse
Affiliation(s)
- Jesús M López
- Department of Cell Biology, University Complutense, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
21
|
Orta-Salazar E, Cuellar-Lemus CA, Díaz-Cintra S, Feria-Velasco AI. Cholinergic markers in the cortex and hippocampus of some animal species and their correlation to Alzheimer's disease. Neurologia 2013; 29:497-503. [PMID: 23433740 DOI: 10.1016/j.nrl.2012.10.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 10/04/2012] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION The cholinergic system includes neurons located in the basal forebrain and their long axons that reach the cerebral cortex and the hippocampus. This system modulates cognitive function. In Alzheimer's disease (AD) and ageing, cognitive impairment is associated with progressive damage to cholinergic fibres, which leads us to the cholinergic hypothesis for AD. DEVELOPMENT The AD produces alterations in the expression and activity of acetyltransferase (ChAT) and acetyl cholinesterase (AChE), enzymes specifically related to cholinergic system function. Both proteins play a role in cholinergic transmission, which is altered in both the cerebral cortex and the hippocampus due to ageing and AD. Dementia disorders are associated with the severe destruction and disorganisation of the cholinergic projections extending to both structures. Specific markers, such as anti-ChAT and anti-AChE antibodies, have been used in light immunohistochemistry and electron microscopy assays to study this system in adult members of certain animal species. CONCLUSIONS This paper reviews the main immunomorphological studies of the cerebral cortex and hippocampus in some animal species with particular emphasis on the cholinergic system and its relationship with the AD.
Collapse
Affiliation(s)
- E Orta-Salazar
- Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan, México
| | - C A Cuellar-Lemus
- Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan, México
| | - S Díaz-Cintra
- Instituto de Neurobiología (INB), Campus UNAM-Juriquilla, Juriquilla, Querétaro, México
| | - A I Feria-Velasco
- Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan, México.
| |
Collapse
|
22
|
Morona R, López JM, Northcutt RG, González A. Comparative Analysis of the Organization of the Cholinergic System in the Brains of Two Holostean Fishes, the Florida GarLepisosteus platyrhincusand the BowfinAmia calva. BRAIN, BEHAVIOR AND EVOLUTION 2013; 81:109-42. [DOI: 10.1159/000347111] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 01/12/2013] [Indexed: 11/19/2022]
|
23
|
Dong CY, Cho KH. An optimally evolved connective ratio of neural networks that maximizes the occurrence of synchronized bursting behavior. BMC SYSTEMS BIOLOGY 2012; 6:23. [PMID: 22462685 PMCID: PMC3359270 DOI: 10.1186/1752-0509-6-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 03/31/2012] [Indexed: 11/10/2022]
Abstract
Background Synchronized bursting activity (SBA) is a remarkable dynamical behavior in both ex vivo and in vivo neural networks. Investigations of the underlying structural characteristics associated with SBA are crucial to understanding the system-level regulatory mechanism of neural network behaviors. Results In this study, artificial pulsed neural networks were established using spike response models to capture fundamental dynamics of large scale ex vivo cortical networks. Network simulations with synaptic parameter perturbations showed the following two findings. (i) In a network with an excitatory ratio (ER) of 80-90%, its connective ratio (CR) was within a range of 10-30% when the occurrence of SBA reached the highest expectation. This result was consistent with the experimental observation in ex vivo neuronal networks, which were reported to possess a matured inhibitory synaptic ratio of 10-20% and a CR of 10-30%. (ii) No SBA occurred when a network does not contain any all-positive-interaction feedback loop (APFL) motif. In a neural network containing APFLs, the number of APFLs presented an optimal range corresponding to the maximal occurrence of SBA, which was very similar to the optimal CR. Conclusions In a neural network, the evolutionarily selected CR (10-30%) optimizes the occurrence of SBA, and APFL serves a pivotal network motif required to maximize the occurrence of SBA.
Collapse
Affiliation(s)
- Chao-Yi Dong
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
| | | |
Collapse
|
24
|
López JM, Domínguez L, Morona R, Northcutt RG, González A. Organization of the cholinergic systems in the brain of two lungfishes, Protopterus dolloi and Neoceratodus forsteri. Brain Struct Funct 2011; 217:549-76. [DOI: 10.1007/s00429-011-0341-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 07/23/2011] [Indexed: 01/29/2023]
|
25
|
Eytan D. Representation and learning in neuronal networks: a conceptual nervous system approach. Rambam Maimonides Med J 2011; 2:e0054. [PMID: 23908812 PMCID: PMC3678800 DOI: 10.5041/rmmj.10054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The work presented in this review describes the use of large cortical networks developing ex vivo, in a culture dish, to study principles underlying synchronization, adaptation, learning, and representation in neuronal assemblies. The motivation to study neuronal networks ex vivo is outlined together with a short description of recent results in this field. Following a short description of the experimental system, a set of basic results will be presented that concern self-organization of activity, dynamical and functional properties of neurons and networks in response to external stimulation. This short review ends with an outline of future questions and research directions.
Collapse
|
26
|
Asmus SE, Cocanougher BT, Allen DL, Boone JB, Brooks EA, Hawkins SM, Hench LA, Ijaz T, Mayfield MN. Increasing proportions of tyrosine hydroxylase-immunoreactive interneurons colocalize with choline acetyltransferase or vasoactive intestinal peptide in the developing rat cerebral cortex. Brain Res 2011; 1383:108-19. [PMID: 21295554 DOI: 10.1016/j.brainres.2011.01.101] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 01/26/2011] [Accepted: 01/27/2011] [Indexed: 12/26/2022]
Abstract
Cortical interneurons are critical for information processing, and their dysfunction has been implicated in neurological disorders. One subset of this diverse cell population expresses tyrosine hydroxylase (TH) during postnatal rat development. Cortical TH-immunoreactive neurons appear at postnatal day (P) 16. The number of TH cells sharply increases between P16 and P20 and subsequently decreases to adult values. The absence of apoptotic markers in these cells suggests that the reduction in cell number is not due to cell death but is due to a decline in TH production. Cortical TH cells lack all additional catecholaminergic enzymes, and many coexpress GABA and calretinin, but little else is known about their phenotype or function. Because interneurons containing choline acetyltransferase (ChAT) or vasoactive intestinal peptide (VIP) share characteristics with cortical TH neurons, the coexpression of TH with ChAT or VIP was examined throughout the neocortex at P16, P20, and P30. The proportions of TH cell profiles double-labeled for ChAT or VIP significantly increased between P16 and P30. Based on their proximity to blood vessels, intrinsic cholinergic and VIPergic cells have been hypothesized to regulate cortical microcirculation. Labeling with the gliovascular marker aquaporin-4 revealed that at least half of the TH cells were apposed to microvessels at these ages, and many of these cells contained ChAT or VIP. Cortical TH neurons did not coproduce nitric oxide synthase. These results suggest that increasing proportions of cortical TH neurons express ChAT or VIP developmentally and that a subset of these TH neurons may regulate local blood flow.
Collapse
Affiliation(s)
- Stephen E Asmus
- Biochemistry and Molecular Biology and Biology Programs, Centre College, Danville, KY 40422, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Localization of pre- and postsynaptic cholinergic markers in rodent forebrain: a brief history and comparison of rat and mouse. Behav Brain Res 2010; 221:356-66. [PMID: 21129407 DOI: 10.1016/j.bbr.2010.11.051] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 11/23/2010] [Indexed: 11/23/2022]
Abstract
Rat and mouse models are widely used for studies in cognition and pathophysiology, among others. Here, we sought to determine to what extent these two model species differ for cholinergic and cholinoceptive features. For this purpose, we focused on cholinergic innervation patterns based on choline acetyltransferase (ChAT) immunostaining, and the expression of muscarinic acetylcholine receptors (mAChRs) detected immunocytochemically. In this brief review we first place cholinergic and cholinoceptive markers in a historic perspective, and then provide an overview of recent publications on cholinergic studies and techniques to provide a literature survey of current research. Next, we compare mouse (C57Bl/J6) and rat (Wistar) cholinergic and cholinoceptive systems simultaneously stained, respectively, for ChAT (analyzed qualitatively) and mAChRs (analyzed qualitatively and quantitatively). In general, the topographic cholinergic innervation patterns of both rodent species are highly comparable, with only considerable (but region specific) differences in number of detectable cholinergic interneurons, which are more numerous in rat. In contrast, immunolabeling for mAChRs, detected by the monoclonal antibody M35, differs markedly in the forebrain between the two species. In mouse brain, basal levels of activated and/or internalized mAChRs (as a consequence of cholinergic neurotransmission) are significantly higher. This suggests a higher cholinergic tone in mouse than rat, and hence the animal model of choice may have consequences for cholinergic drug testing experiments.
Collapse
|
28
|
von Engelhardt J, Eliava M, Meyer AH, Rozov A, Monyer H. Functional characterization of intrinsic cholinergic interneurons in the cortex. J Neurosci 2007; 27:5633-42. [PMID: 17522308 PMCID: PMC6672773 DOI: 10.1523/jneurosci.4647-06.2007] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Acetylcholine is a major neurotransmitter that modulates cortical functions. In addition to basal forebrain neurons that give rise to the principal cholinergic input into the cortex, a second source constituted by intrinsic cholinergic interneurons has been identified. Although these cells have been characterized anatomically, little is known about their functional role in cortical microcircuits. The paucity of this cell population has been a major hindrance for detailed electrophysiological investigations. To facilitate functional studies, we generated transgenic mice that express enhanced green fluorescent protein (EGFP) in choline acetyltransferase (ChAT)-positive neurons. Aided by the transgene expression, the characterization of distinct cholinergic interneurons was possible. These cells were located in layer 2-3, had a bipolar morphology, were calretinin- and vasoactive intestinal peptide positive, but had a non-GABAergic phenotype. Paired recordings showed that EGFP/ChAT-positive neurons receive excitatory and inhibitory input from adjacent principal cells and various types of interneurons. However, EGFP/ChAT-positive neurons do not exert direct postsynaptic responses in neighboring neurons. Interestingly, prolonged activation of EGFP-labeled cholinergic neurons induces an increase in spontaneous EPSCs in adjacent pyramidal neurons. This indirect effect is mediated by nicotinic receptors that are presumably presynaptically localized. Thus, intrinsic bipolar cholinergic neurons can modulate cortical function locally.
Collapse
Affiliation(s)
- Jakob von Engelhardt
- Department Clinical Neurobiology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Marina Eliava
- Department of Physiology, Northwestern University, Chicago, Illinois 60611, and
| | - Axel H. Meyer
- Neuroscience Research, Abbott GmbH and Company KG, 67061 Ludwigshafen, Germany
| | - Andrei Rozov
- Department Clinical Neurobiology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Hannah Monyer
- Department Clinical Neurobiology, University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
29
|
Bhagwandin A, Fuxe K, Manger PR. Choline acetyltransferase immunoreactive cortical interneurons do not occur in all rodents: A study of the phylogenetic occurrence of this neural characteristic. J Chem Neuroanat 2006; 32:208-16. [PMID: 17049807 DOI: 10.1016/j.jchemneu.2006.09.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Revised: 09/13/2006] [Accepted: 09/14/2006] [Indexed: 11/18/2022]
Abstract
The present study was designed to provide results aimed at testing whether the interneurons with choline acetyltransferase immunoreactivity (ChAT), probably representing GABA interneurons, found in the cerebral cortex of the rat represent a common feature of the order Rodentia. Initially we verified the presence of ChAT immunoreactive bipolar cell bodies, axons and terminal-like fibres in pigmented (Long-Evans) and non-pigmented (Sprague-Dawley) strains of Rattus norvegicus, confirming that the ChAT polyclonal antibodies (AB144P and AB143, Chemicon; VChAT, Sigma) with the immunohistochemical techniques used provided the same staining as previously described for this species. We then examined pigmented (AKR3) and non-pigmented (C3H) strains of Mus musculus, wild caught striped mice (Rhabdomys pumilio), bushveld gerbil (Tatera brantsii), greater canerat (Thryonomys swinderianus) and common molerat (Cryptomys hottentotus). The AB144P antibody revealed cortical interneurons in both strains of M. musculus and in R. pumilio, but not in the other species. In all species/strains cortical ChAT immunoreactive axons and terminal-like fibres were localized with the AB144P antibody. In the non-Rattus species/strains there was no evidence for localization of ChAT immunoreactivity in any cortical cell bodies using the AB143 and vesicular acetylcholine transporter (VChAT) antibodies despite extensive localization in axons and terminal-like fibres. It is concluded that bipolar cortical GABA interneurons in certain rodent species may develop ChAT immunoreactivity but not VChAT immunoreactivity making the cholinergic relevance of ChAT in the GABA interneurons uncertain and may exclude these neurons from being part of the traditionally defined cholinergic system.
Collapse
Affiliation(s)
- Adhil Bhagwandin
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown 2193, Johannesburg, South Africa
| | | | | |
Collapse
|
30
|
Hasegawa K, Ogawa H. Effects of acetylcholine on coding of taste information in the primary gustatory cortex in rats. Exp Brain Res 2006; 179:97-109. [PMID: 17109107 DOI: 10.1007/s00221-006-0772-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Accepted: 10/18/2006] [Indexed: 10/23/2022]
Abstract
Acetylcholine (ACh) receptors are widely distributed throughout the cerebral cortex in rats. Recently, cholinergic innervation of the gustatory cortex (GC) was reported to be involved in certain taste learning in rats. Here, the effects of iontophoretic application of ACh on the response properties of GC neurons were studied in urethane-anesthetized rats. ACh affected spontaneous discharges in a small fraction of taste neurons (11 of 86 neurons tested), but influenced taste responses in 27 of 43 neurons tested. No correlations with ACh susceptibility were noted for spontaneous discharges and taste responses. Among the 27 neurons, ACh facilitated taste responses in 13, inhibited taste responses in 13 and either facilitated or inhibited taste responses depending on the stimuli in 1. Furthermore, ACh affected the responses to best stimuli that produced the largest responses among four basic tastants (best responses) in 7 of 27 taste neurons, to non-best responses in 9, and to both best and non-best responses in 11. ACh mostly inhibited the best responses (13 of 18 neurons). Thus, ACh often decreased the response selectivity to the four basic tastants and changed the response profile. Atropine, a general antagonist of muscarinic receptors, antagonized ACh actions on taste responses or displayed the opposite effects on taste responses to ACh actions in two-thirds of the neurons tested. These findings indicate that ACh mostly modulates taste responses through muscarinic receptors, and suggest that ACh shifts the state of the neuron network in the GC, in terms of the response selectivities and response profiles.
Collapse
Affiliation(s)
- Kayoko Hasegawa
- Department of Sensory and Cognitive Physiology, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto 860-8556, Japan.
| | | |
Collapse
|
31
|
Marom S, Eytan D. Learning in ex-vivo developing networks of cortical neurons. PROGRESS IN BRAIN RESEARCH 2005; 147:189-99. [PMID: 15581706 DOI: 10.1016/s0079-6123(04)47014-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This contribution describes the use of multi-site interaction with large cortical networks in the study of learning. The general physiological properties of the network are described, and the concept of learning is mapped to the experimental network preparation. Learning is then analyzed in terms of exploration (defined as changes in the configuration of associations within the biological network) and recognition (the stabilization of "worthy" associations).
Collapse
Affiliation(s)
- Shimon Marom
- Department of Physiology and Biophysics, Faculty of Medicine, Technion--Israel Institute of Technology, Haifa, 32000, Israel.
| | | |
Collapse
|
32
|
Clemente D, Porteros A, Weruaga E, Alonso JR, Arenzana FJ, Aijón J, Arévalo R. Cholinergic elements in the zebrafish central nervous system: Histochemical and immunohistochemical analysis. J Comp Neurol 2004; 474:75-107. [PMID: 15156580 DOI: 10.1002/cne.20111] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Recently, the zebrafish has been extensively used for studying the development of the central nervous system (CNS). However, the zebrafish CNS has been poorly analyzed in the adult. The cholinergic/cholinoceptive system of the zebrafish CNS was analyzed by using choline acetyltransferase (ChAT) immunohistochemistry and acetylcholinesterase (AChE) histochemistry in the brain, retina, and spinal cord. AChE labeling was more abundant and more widely distributed than ChAT immunoreactivity. In the telencephalon, ChAT-immunoreactive (ChAT-ir) cells were absent, whereas AChE-positive neurons were observed in both the olfactory bulb and the telencephalic hemispheres. The diencephalon was the region with the lowest density of AChE-positive cells, mainly located in the pretectum, whereas ChAT-ir cells were exclusively located in the preoptic region. ChAT-ir cells were restricted to the periventricular stratum of the optic tectum, but AChE-positive neurons were observed throughout the whole extension of the lamination except in the marginal stratum. Although ChAT immunoreactivity was restricted to the rostral tegmental, oculomotor, and trochlear nuclei within the mesencephalic tegmentum, a widespread distribution of AChE reactivity was observed in this region. The isthmic region showed abundant AChE-positive and ChAT-ir cells in the isthmic, secondary gustatory and superior reticular nucleus and in the nucleus lateralis valvulae. ChAT immunoreactivity was absent in the cerebellum, although AChE staining was observed in Purkinje and granule cells. The medulla oblongata showed a widespread distribution of AChE-positive cells in all main subdivisions, including the octavolateral area, reticular formation, and motor nuclei of the cranial nerves. ChAT-ir elements in this area were restricted to the descending octaval nucleus, the octaval efferent nucleus and the motor nuclei of the cranial nerves. Additionally, spinal cord motoneurons appeared positive to both markers. Substantial differences in the ChAT and AChE distribution between zebrafish and other fish species were observed, which could be important because zebrafish is widely used as a genetic or developmental animal model.
Collapse
Affiliation(s)
- Diego Clemente
- Departamento de Biología Celular y Patología, Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, E-37007 Salamanca, Spain
| | | | | | | | | | | | | |
Collapse
|
33
|
Semba K. Phylogenetic and ontogenetic aspects of the basal forebrain cholinergic neurons and their innervation of the cerebral cortex. PROGRESS IN BRAIN RESEARCH 2003; 145:3-43. [PMID: 14650904 DOI: 10.1016/s0079-6123(03)45001-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Affiliation(s)
- Kazue Semba
- Department of Anatomy and Neurobiology, Faculty of Medicine, Dalhousie University, Tupper Medical Building, 6850 College Street, Halifax, NS B3H 1X5, Canada.
| |
Collapse
|
34
|
Kus L, Borys E, Ping Chu Y, Ferguson SM, Blakely RD, Emborg ME, Kordower JH, Levey AI, Mufson EJ. Distribution of high affinity choline transporter immunoreactivity in the primate central nervous system. J Comp Neurol 2003; 463:341-57. [PMID: 12820166 DOI: 10.1002/cne.10759] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A mouse monoclonal antibody (clone 62-2E8) raised against a human recombinant high-affinity choline transporter (CHT)-glutathione-S-transferase fusion protein was used to determine the distribution of immunoreactive profiles containing this protein in the monkey central nervous system (CNS). Within the monkey telencephalon, CHT-immunoreactive perikarya were found in the striatum, nucleus accumbens, medial septum, vertical and horizontal limb nuclei of the diagonal band, nucleus basalis complex, and the bed nucleus of the stria terminalis. Dense fiber staining was observed within the islands of Calleja, olfactory tubercle, hippocampal complex, amygdala; moderate to light fiber staining was seen in iso- and limbic cortices. CHT-containing fibers were also present in sensory and limbic thalamic nuclei, preoptic and hypothalamic areas, and the floccular lobe of the cerebellum. In the brainstem, CHT-immunoreactive profiles were observed in the pedunculopontine and dorsolateral tegmental nuclei, the Edinger-Westphal, oculomotor, trochlear, trigeminal, abducens, facial, ambiguus, dorsal vagal motor, and hypoglossal nuclei. In the spinal cord, CHT-immunoreactive ventral horn motoneurons were seen in close apposition to intensely immunoreactive C-terminals at the level of the cervical spinal cord. CHT immunostaining revealed a similar distribution of labeled profiles in the aged human brain and spinal cord. Dual fluorescent confocal microscopy revealed that the majority of CHT immunoreactive neurons contained the specific cholinergic marker, choline acetyltransferase, at all levels of the monkey CNS. The present observations indicate that the present CHT antibody labels cholinergic structures within the primate CNS and provides an additional marker for the investigation of cholinergic neuronal function in aging and disease.
Collapse
Affiliation(s)
- Laura Kus
- Department of Neurological Sciences, Rush Presbyterian-St. Luke's Medical Center, Chicago, Illinois 60612
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Lucas-Meunier E, Fossier P, Baux G, Amar M. Cholinergic modulation of the cortical neuronal network. Pflugers Arch 2003; 446:17-29. [PMID: 12690458 DOI: 10.1007/s00424-002-0999-2] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2002] [Indexed: 01/15/2023]
Abstract
Acetylcholine (ACh) is an important neurotransmitter of the CNS that binds both nicotinic and muscarinic receptors to exert its action. However, the mechanisms underlying the effects of cholinergic receptors have still not been completely elucidated. Central cholinergic neurons, mainly located in basal forebrain, send their projections to different structures including the cortex. The cortical innervation is diffuse and roughly topographic, which has prompted some authors to suspect a modulating role of ACh on the activity of the cortical network rather than a direct synaptic role. The cholinergic system is implicated in functional, behavioural and pathological states including cognitive function, nicotine addiction, Alzheimer's disease, Tourette's syndrome, epilepsies and schizophrenia. As these processes depend on the activation of glutamatergic and GABAergic systems, the cholinergic terminals must exert their effects via the modulation of excitatory and/or inhibitory neurotransmission. However, the understanding of cholinergic modulation is complex because it is the result of a mixture of positive and negative modulation, implying that there are various types, or even subtypes, of cholinergic receptors. In this review, we summarize the current knowledge on central cholinergic systems (projections and receptors) and then aim to focus on the implications for ACh in the modulation of cortical neuronal activity.
Collapse
Affiliation(s)
- E Lucas-Meunier
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, INAF-CNRS, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France.
| | | | | | | |
Collapse
|
36
|
Abstract
Cortical neuromodulatory transmitter systems refer to those classical neurotransmitters such as acetylcholine and monoamines, which share a number of common features. For instance, their centers are located in subcortical regions and send long projection axons to innervate the cortex. The same transmitter can either excite or inhibit cortical neurons depending on the composition of postsynaptic transmitter receptor subtypes. The overall functions of these transmitters are believed to serve as chemical bases of arousal, attention and motivation. The anatomy and physiology of neuromodulatory transmitter systems and their innervations in the cerebral cortex have been well characterized. In addition, ample evidence is available indicating that neuromodulatory transmitters also play roles in development and plasticity of the cortex. In this article, the anatomical organization and physiological function of each of the following neuromodulatory transmitters, acetylcholine, noradrenaline, serotonin, dopamine, and histamine, in the cortex will be described. The involvement of these transmitters in cortical plasticity will then be discussed. Available data suggest that neuromodulatory transmitters can modulate the excitability of cortical neurons, enhance the signal-to-noise ratio of cortical responses, and modify the threshold for activity-dependent synaptic modifications. Synaptic transmissions of these neuromodulatory transmitters are mediated via numerous subtype receptors, which are linked to multiple signal transduction mechanisms. Among the neuromodulatory transmitter receptor subtypes, cholinergic M(1), noradrenergic beta(1) and serotonergic 5-HT(2C) receptors appear to be more important than other receptor subtypes for cortical plasticity. In general, the contribution of neuromodulatory transmitter systems to cortical plasticity may be made through a facilitation of NMDA receptor-gated processes.
Collapse
Affiliation(s)
- Q Gu
- Brain Research Center, and Department of Ophthalmology, University of British Columbia, and Vancouver Hospital and Health Sciences Center, 2550 Willow Street, Vancouver, BC, Canada V5Z 3N9.
| |
Collapse
|
37
|
González A, López JM, Sánchez-Camacho C, Marín O. Localization of choline acetyltransferase (ChAT) immunoreactivity in the brain of a caecilian amphibian, Dermophis mexicanus (Amphibia: Gymnophiona). J Comp Neurol 2002; 448:249-67. [PMID: 12115707 DOI: 10.1002/cne.10233] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The organization of the cholinergic system in the brain of anuran and urodele amphibians was recently studied, and significant differences were noted between both amphibian orders. However, comparable data are not available for the third order of amphibians, the limbless gymnophionans (caecilians). To further assess general and derived features of the cholinergic system in amphibians, we have investigated the distribution of choline acetyltransferase immunoreactive (ChAT-ir) cell bodies and fibers in the brain of the gymnophionan Dermophis mexicanus. This distribution showed particular features of gymnophionans such as the existence of a particularly large cholinergic population in the striatum, the presence of ChAT-ir cells in the mesencephalic tectum, and the organization of the cranial nerve motor nuclei. These peculiarities probably reflect major adaptations of gymnophionans to a fossorial habit. Comparison of our results with those in other vertebrates, including a segmental approach to correlate cell populations across species, shows that the general pattern of organization of cholinergic systems in vertebrates can be modified in certain species in response to adaptative processes that lead to morphological and behavioral modifications of members of a given class of vertebrates, as shown for gymnophionans.
Collapse
Affiliation(s)
- Agustín González
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040 Madrid, Spain.
| | | | | | | |
Collapse
|
38
|
Pajolla GP, Crippa GE, Corrêa SA, Moreira KB, Tavares RF, Corrêa FM. The lateral hypothalamus is involved in the pathway mediating the hypotensive response to cingulate cortex-cholinergic stimulation. Cell Mol Neurobiol 2001; 21:341-56. [PMID: 11775065 PMCID: PMC11533853 DOI: 10.1023/a:1012650021137] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
1. The injection of acetylcholine (ACh) into the medial prefrontal cortex (MPFC) caused marked hypotensive response in either unanesthetized or anesthetized rats. 2. The present experiment was designed to investigate anatomical connections of the ACh injection site in the MPFC with putative autonomic-related brain nuclei, as well as their possible involvement in the mediation of the hypotensive response to ACh. 3. For the above purpose, the bidirectional neuronal tracer biotinylated dextran amine (BDA) was injected into Cg1 and Cg3 areas, within the MPFC of male Wistar rats. Five days later the animals were sacrificed and brain slices were processed and analyzed to determine neuronal projections efferent from as well afferent to the MPFC. 4. Neuronal staining was more prominent in regions ipsilateral to the BDA injection site. Prominent efferent projections of the MPFC were observed in the contralateral MPFC: ipsi- and contralateral amygdala and hypothalamus; ipsilateral septal area, diagonal band, and zona incerta. 5. Similar but not equal patterns of neuronal labeling were observed when BDA injections were performed within the two adjacent MPFC areas. BDA injections centered in the ACh injection site in the Cg3 area caused strong labeling in the septal area and diagonal band as well as an overall hypothalamic labeling. Within the hypothalamus an intense cortical projection was observed in the lateral hypothalamus (LH). BDA injections into the Cg1 area caused a more evident labeling of the amygdaloid complex. 6. Neuronal cell bodies were evident throughout the MPFC as well as in the sensory-motor cortex when BDA was injected into the LH, thus indicating a massive ipsilateral cortical projection from the Cg3 to the LH. 7. Bilateral NMDA-induced lesions within the LH caused a significant attenuation of the depressor responses to ACh injection in the MPFC, whereas unilateral lesions were marginally effective. These results indicate the involvement of the LH in the mediation of the hypotensive response to ACh injection into the MPFC as well as the bilateral distribution of the hypotensive pathway.
Collapse
Affiliation(s)
- G P Pajolla
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
39
|
Descarries L, Mechawar N. Ultrastructural evidence for diffuse transmission by monoamine and acetylcholine neurons of the central nervous system. PROGRESS IN BRAIN RESEARCH 2001; 125:27-47. [PMID: 11098652 DOI: 10.1016/s0079-6123(00)25005-x] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- L Descarries
- Département de pathologie, Centre de recherche en sciences neurologiques, Faculté de médecine, Université de Montréal, Canada.
| | | |
Collapse
|
40
|
Mechawar N, Cozzari C, Descarries L. Cholinergic innervation in adult rat cerebral cortex: a quantitative immunocytochemical description. J Comp Neurol 2000; 428:305-18. [PMID: 11064369 DOI: 10.1002/1096-9861(20001211)428:2<305::aid-cne9>3.0.co;2-y] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A method for determining the length of acetylcholine (ACh) axons and number of ACh axon varicosities (terminals) in brain sections immunostained for choline acetyltransferase (ChAT) was used to estimate the areal and laminar densities of this innervation in the frontal (motor), parietal (somatosensory), and occipital (visual) cortex of adult rat. The number of ACh varicosities per length of axon (4 per 10 microm) appeared constant in the different layers and areas. The mean density of ACh axons was the highest in the frontal cortex (13.0 m/mm(3) vs. 9.9 and 11.0 m/mm(3) in the somatosensory and visual cortex, respectively), as was the mean density of ACh varicosities (5.4 x 10(6)/mm(3) vs. 3.8 and 4.6 x 10(6)/mm(3)). In all three areas, layer I displayed the highest laminar densities of ACh axons and varicosities (e.g., 13.5 m/mm(3) and 5.4 x 10(6)/mm(3) in frontal cortex). The lowest were those of layer IV in the parietal cortex (7.3 m/mm(3) and 2.9 x 10(6)/mm(3)). The lengths of ACh axons under a 1 mm(2) surface of cortex were 26.7, 19.7, and 15.3 m in the frontal, parietal, and occipital areas, respectively, for corresponding numbers of 11.1, 7.7, and 6.4 x 10(6) ACh varicosities. In the parietal cortex, this meant a total of 1.2 x 10(6) synaptic ACh varicosities under a 1 mm(2) surface, 48% of which in layer V alone, according to previous electron microscopic estimates of synaptic incidence. In keeping with the notion that the synaptic component of ACh transmission in cerebral cortex is preponderant in layer V, these quantitative data suggest a role for this innervation in the processing of cortical output as well as input. Extrapolation of particular features of this system in terms of total axon length and number of varicosities in whole cortex, length of axons and number of varicosities per cortically projecting neuron, and concentration of ACh per axon varicosity, should also help in arriving at a better definition of its roles and functional properties in cerebral cortex.
Collapse
Affiliation(s)
- N Mechawar
- Département de pathologie et biologie cellulaire, Faculté de médecine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | | | | |
Collapse
|
41
|
Adrio F, Anadón R, Rodríguez-Moldes I. Distribution of choline acetyltransferase (ChAT) immunoreactivity in the central nervous system of a chondrostean, the siberian sturgeon (Acipenser baeri). J Comp Neurol 2000; 426:602-21. [PMID: 11027402 DOI: 10.1002/1096-9861(20001030)426:4<602::aid-cne8>3.0.co;2-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
All studies to date of cholinergic systems of bony fishes have been done in teleosts. To gain further insight into the evolution of the cholinergic systems of bony fishes, we have studied the brain of a chondrostean fish, the Siberian sturgeon (Acipenser baeri, Brandt), by using an antibody against choline acetyltransferase (ChAT). This study showed the presence of ChAT-immunoreactive (ChAT-ir) neurons in the preoptic region (parvocellular and magnocellular preoptic nuclei and suprachiasmatic nucleus), the periventricular and tuberal hypothalamus, the saccus vasculosus, the dorsal thalamus, and the habenula. The mesencephalic tegmentum contained ChAT-ir cells in the torus semicircularis and torus lateralis. The isthmus contained several cholinergic populations: the nucleus isthmi, the lateral nucleus of the valvula, the secondary visceral nucleus, and the dorsal tegmental nucleus. The motor neurons of the cranial nerves and the spinal motor column were strongly immunoreactive. The medial (sensory) trigeminal nucleus also contained a ChAT-ir neuronal population. The distribution of ChAT-ir neurons in the sturgeon brain showed some notable differences with that observed in teleosts, such as the absence of cholinergic cells in the telencephalon and the optic tectum. Several brain regions were richly innervated by ChAT-ir fibers, particularly the telencephalon, optic tectum, thalamus, posterior tubercle, and interpeduncular nucleus. The hypothalamo-hypophyseal tract, the tract of the saccus vasculosus, the fasciculus retroflexus, and an isthmo-mesencephalo-thalamic tract were the most conspicuous cholinergic bundles. Comparative analysis of these results suggests that teleosts have conserved most traits of the cholinergic system of the sturgeon, having acquired new cholinergic populations during evolution.
Collapse
Affiliation(s)
- F Adrio
- Department of Fundamental Biology, Faculty of Biology, University of Santiago de Compostela, 15706-Santiago de Compostela, Spain
| | | | | |
Collapse
|
42
|
Anadón R, Molist P, Rodríguez-Moldes I, López JM, Quintela I, Cerviño MC, Barja P, González A. Distribution of choline acetyltransferase immunoreactivity in the brain of an elasmobranch, the lesser spotted dogfish (Scyliorhinus canicula). J Comp Neurol 2000; 420:139-70. [PMID: 10753304 DOI: 10.1002/(sici)1096-9861(20000501)420:2<139::aid-cne1>3.0.co;2-t] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although the distribution of cholinergic cells is remarkably similar across the vertebrate species, no data are available on more primitive species, such as cartilaginous fishes. To extend the evolutionary analysis of the cholinergic systems, we studied the distribution of cholinergic neurons in the brain and rostral spinal cord of Scyliorhinus canicula by immunocytochemistry using an antibody against the enzyme choline acetyltransferase (ChAT). Western blot analysis of brain extracts of dogfish, sturgeon, trout, and rat showed that this antibody recognized similar bands in the four species. Putative cholinergic neurons were observed in most brain regions, including the telencephalon, diencephalon, cerebellum, and brainstem. In the retrobulbar region and superficial dorsal pallium of the telencephalon, numerous small pallial cells were ChAT-like immunoreactive. In addition, tufted cells of the olfactory bulb and some cells in the lateral pallium showed faint immunoreactivity. In the preoptic-hypothalamic region, ChAT-immunoreactive (ChAT-ir) cells were found in the preoptic nucleus, the vascular organ of the terminal lamina, and a small population in the caudal tuber. In the epithalamus, the pineal photoreceptors were intensely positive. Many cells of the habenula were faintly ChAT-ir, but the neuropil of the interpeduncular nucleus showed intense ChAT immunoreactivity. In the pretectal region, ChAT-ir cells were observed only in the superficial pretectal nucleus. In the brainstem, the somatomotor and branchiomotor nuclei, the octavolateral efferent nucleus, and a cell group just rostral to the Edinger-Westphal (EW) nucleus contained ChAT-ir neurons. In addition, the trigeminal mesencephalic nucleus, the nucleus G of the isthmus, some locus coeruleus cells, and some cell populations of the vestibular nuclei and of the electroreceptive nucleus of the octavolateral region exhibited ChAT immunoreactivity. In the reticular areas of the brainstem, the nucleus of the medial longitudinal fascicle, many reticular neurons of the rhombencephalon, and cells of the nucleus of the lateral funiculus were immunoreactive to this antibody. In the cerebellum, Golgi cells of the granule cell layer and some cells of the cerebellar nucleus were also ChAT-ir. In the rostral spinal cord, ChAT immunoreactivity was observed in cells of the motor column, the dorsal horn, the marginal nucleus (a putative stretch-receptor organ), and in interstitial cells of the ventral funiculus. These results demonstrate for the first time that cholinergic neurons are distributed widely in the central nervous system of elasmobranchs and that their cholinergic systems have evolved several characteristics that are unique to this group.
Collapse
Affiliation(s)
- R Anadón
- Department of Fundamental Biology, University of Santiago de Compostela, 15706-Santiago de Compostela, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Besides the noradrenergic sympathetic system originating from the superior cervical ganglion, a cholinergic innervation of the mammalian pineal gland has been studied over the past three decades. In 1961, it was shown that lesion of the parasympathetic greater superficial petrosal nerve of the monkey resulted in degeneration of nerve fibers in the pineal gland. This was supported by ultrastructural studies of nerve terminals within the pineal gland, demonstrating the presence of cholinergic terminals containing small clear transmitter vesicles. Biochemical studies further showed the presence of the enzyme acetylcholinesterase in several mammalian species. During the last decade, several advanced and more elaborate technologies have been developed, allowing pinealogists to establish the presence of cholinergic fibers and their receptors. Thus, choline acetyltransferase was shown in bovine pineal by immunohistochemistry. Muscarinic and nicotinic receptors were identified, characterized, and localized. Gene expression of receptors was visualized, and the receptor-mediated effector systems and functions were elucidated. Taken together, the present data suggest the presence of a cholinergic innervation of the mammalian pineal gland originating in peripheral parasympathetic ganglia. However, some of the neuronal projections to the pineal gland with origin in the brain (the central innervation) might also be cholinergic. The cholinergic nerve fibers enter the gland, where they are located both in the perivascular spaces and between the pinealocytes. Some of the terminals make synapses on pinealocytes or intrapineal neurons. The released acetylcholine from the terminals interacts with the receptors, then alters the cascade of receptor-mediated events, which results in decreased N-acetyltransferase enzyme activity, thus leading to decreased melatonin synthesis. This counterbalance mechanism between the sympathetic noradrenergic and the cholinergic systems maintains the homeostasis of pineal functions.
Collapse
Affiliation(s)
- P Phansuwan-Pujito
- Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| | | | | |
Collapse
|
44
|
Valousková V, Gschanes A. Effects of NGF, b-FGF, and cerebrolysin on water maze performance and on motor activity of rats: short- and long-term study. Neurobiol Learn Mem 1999; 71:132-49. [PMID: 10082636 DOI: 10.1006/nlme.1998.3877] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of 14-day treatments with nerve growth factor (NGF), basic fibroblast growth factor (b-FGF), or the peptidergic drug Cerebrolysin on postlesion acquisition of a water maze task and on motor activity were evaluated. Rats were tested in the Morris water maze 14 days (early test) and 7 to 8 months (delayed test) after a bilateral lesion of the frontoparietal (sensorimotor) cortex. Only the rats treated with Cerebrolysin performed the water maze task at the level of the nonlesioned controls in the early test. No short-term effect of NGF (6.5 ng/14 days; 38 ng/ml) or b-FGF (17 ng/14 days; 100 ng/ml) treatment was found. The delayed test revealed that water maze performance was restored in rats treated with b-FGF in comparison with intact controls. The data showed that b-FGF can support or initiate processes in the CNS that lead to a delayed functional amelioration and/or compensation for a water maze performance deficit. NGF did not influence the acquisition impairment caused by a sensorimotor cortical lesion. Two-week administration of Cerebrolysin had a time-dependent influence: it attenuated the acquisition deficit and increased the motor activity of rats, both effects declined to the level of lesioned controls within 8 months.
Collapse
Affiliation(s)
- V Valousková
- Institute of Physiology, Czech Academy of Sciences, Vídenská 1083, Prague, 142 20, Czech Republic.
| | | |
Collapse
|
45
|
|
46
|
Affiliation(s)
- T F Freund
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | | |
Collapse
|
47
|
Abstract
Differential actions of acetylcholine on the excitability of two subtypes of interneurons in layer V of the rat visual cortex were examined. Acetylcholine excited low-threshold spike (LTS) cells through nicotinic receptors, whereas it elicited hyperpolarization in fast spiking (FS) cells through muscarinic receptors. Axons of LTS cells were mainly distributed vertically to upper layers, and those of FS cells were primarily confined to layer V. Thus, cortical cholinergic activation may reduce some forms of intralaminar inhibition, promote intracolumnar inhibition, and change the direction of information flow within cortical circuits.
Collapse
Affiliation(s)
- Z Xiang
- Department of Neurology and Neurological Sciences, Stanford University Medical Center, Stanford, CA 94305, USA
| | | | | |
Collapse
|
48
|
Descarries L. The hypothesis of an ambient level of acetylcholine in the central nervous system. JOURNAL OF PHYSIOLOGY, PARIS 1998; 92:215-20. [PMID: 9789811 DOI: 10.1016/s0928-4257(98)80013-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent ultrastructural data demonstrate the largely asynaptic character of the cholinergic innervation in many regions of adult rat brain. These data favour the hypothesis of a diffuse transmission/modulation by acetylcholine in the CNS and, by way of consequence, that of a persistent, low level of acetylcholine in the extracellular space.
Collapse
Affiliation(s)
- L Descarries
- Département de pathologie, Faculté de médecine, Université de Montréal, Québec, Canada
| |
Collapse
|
49
|
Schäfer MK, Eiden LE, Weihe E. Cholinergic neurons and terminal fields revealed by immunohistochemistry for the vesicular acetylcholine transporter. I. Central nervous system. Neuroscience 1998; 84:331-59. [PMID: 9539209 DOI: 10.1016/s0306-4522(97)00516-2] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antibodies directed against the C-terminus of the rat vesicular acetylcholine transporter mark expression of this specifically cholinergic protein in perinuclear regions of the soma and on secretory vesicles concentrated within cholinergic nerve terminals. In the central nervous system, the vesicular acetylcholine transporter terminal fields of the major putative cholinergic pathways in cortex, hippocampus, thalamus, amygdala, olfactory cortex and interpeduncular nucleus were examined and characterized. The existence of an intrinsic cholinergic innervation of cerebral cortex was confirmed by both in situ hybridization histochemistry and immunohistochemistry for the rat vesicular acetylcholine transporter and choline acetyltransferase. Cholinergic interneurons of the olfactory tubercle and Islands of Calleja, and the major intrinsic cholinergic innervation of striatum were fully characterized at the light microscopic level with vesicular acetylcholine transporter immunohistochemistry. Cholinergic staining was much more extensive for the vesicular acetylcholine transporter than for choline acetyltransferase in all these regions, due to visualization of cholinergic nerve terminals not easily seen with immunohistochemistry for choline acetyltransferase in paraffin-embedded sections. Cholinergic innervation of the median eminence of the hypothalamus, previously observed with vesicular acetylcholine transporter immunohistochemistry, was confirmed by the presence of vesicular acetylcholine transporter immunoreactivity in extracts of median eminence by western blotting. Cholinergic projections to cerebellum, pineal gland, and to the substantia nigra were documented by vesicular acetylcholine transporter-positive punctate staining in these structures. Additional novel localizations of putative cholinergic terminals to the subependymal zone surrounding the lateral ventricles, and putative cholinergic cell bodies in the sensory mesencephalic trigeminal nucleus, a primary sensory afferent ganglion located in the brainstem, are documented here. The cholinergic phenotype of neurons of the sensory mesencephalic trigeminal nucleus was confirmed by choline acetyltransferase immunohistochemistry. A feature of cholinergic neurons of the central nervous system revealed clearly with vesicular acetylcholine transporter immunohistochemistry in paraffin-embedded sections is the termination of cholinergic neurons on cholinergic cell bodies. These are most prominent on motor neurons of the spinal cord, less prominent but present in some brainstem motor nuclei, and apparently absent from projection neurons of the telencephalon and brainstem, as well as from the preganglionic vesicular acetylcholine transporter-positive sympathetic and parasympathetic neurons visualized in the intermediolateral and intermediomedial columns of the spinal cord. In addition to the large puncta decorating motor neuronal perikarya and dendrites in the ventral horn, vesicular acetylcholine transporter-positive terminal fields are distributed in lamina X surrounding the central canal, where additional small vesicular acetylcholine transporter-positive cell bodies are located, and in the superficial layers of the dorsal horn. Components of the central cholinergic nervous system whose existence has been controversial have been confirmed, and the existence of new components documented, with immunohistochemistry for the vesicular acetylcholine transporter. Quantitative visualization of terminal fields of known cholinergic systems by staining for vesicular acetylcholine transporter will expand the possibilities for documenting changes in synaptic patency accompanying physiological and pathophysiological changes in these systems.
Collapse
Affiliation(s)
- M K Schäfer
- Department of Anatomy and Cell Biology, Philipps University, Marburg, Germany
| | | | | |
Collapse
|
50
|
Marín O, Smeets WJ, González A. Distribution of choline acetyltransferase immunoreactivity in the brain of anuran (Rana perezi, Xenopus laevis) and urodele (Pleurodeles waltl) amphibians. J Comp Neurol 1997; 382:499-534. [PMID: 9184996 DOI: 10.1002/(sici)1096-9861(19970616)382:4<499::aid-cne6>3.0.co;2-y] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Because our knowledge of cholinergic systems in the brains of amphibians is limited, the present study aimed to provide detailed information on the distribution of cholinergic cell bodies and fibers as revealed by immunohistochemistry with antibodies directed against the enzyme choline acetyltransferase (ChAT). To determine general and derived features of the cholinergic systems within the class of Amphibia, both anuran (Rana perezi, Xenopus laevis) and urodele (Pleurodeles waltl) amphibians were studied. Distinct groups of ChAT-immunoreactive cell bodies were observed in the basal telencephalon, hypothalamus, habenula, isthmic nucleus, isthmic reticular formation, cranial nerve motor nuclei, and spinal cord. Prominent plexuses of cholinergic fibers were found in the olfactory bulb, pallium, basal telencephalon, ventral thalamus, tectum, and nucleus interpeduncularis. Comparison of these results with those obtained in other vertebrates, including a segmental approach to correlate cell populations, reveals that the cholinergic systems in amphibians share many features with amniotes. Thus, cholinergic pedunculopontine and laterodorsal tegmental nuclei could be identified in the amphibian brain. The finding of weakly immunoreactive cells in the striatum of Rana, which is in contrast with the condition found in Xenopus, Pleurodeles, and other anamniotes studied so far, has revived the notion that basal ganglia organization is more preserved during evolution than previously thought.
Collapse
Affiliation(s)
- O Marín
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense, Madrid, Spain
| | | | | |
Collapse
|