1
|
Mazzoni M, Cabanillas L, Costanzini A, Caremoli F, Million M, Larauche M, Clavenzani P, De Giorgio R, Sternini C. Distribution, quantification, and characterization of substance P enteric neurons in the submucosal and myenteric plexuses of the porcine colon. Cell Tissue Res 2024; 395:39-51. [PMID: 37982872 PMCID: PMC10774220 DOI: 10.1007/s00441-023-03842-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/30/2023] [Indexed: 11/21/2023]
Abstract
The pig is an important translational model for studying intestinal physiology and disorders for its many homologies with humans, including the organization of the enteric nervous system (ENS), the major regulator of gastrointestinal functions. This study focused on the quantification and neurochemical characterization of substance P (SP) neurons in the pig ascending (AC) and descending colon (DC) in wholemount preparations of the inner submucosal plexus (ISP), outer submucosal plexus (OSP), and myenteric plexus (MP). We used antibodies for the pan-neuronal marker HuCD, and choline acetyltransferase (ChAT) and neuronal nitric oxide synthase (nNOS), markers for excitatory and inhibitory transmitters, for multiple labeling immunofluorescence and high-resolution confocal microscopy. The highest density of SP immunoreactive (IR) neurons was in the ISP (222/mm2 in the AC, 166/mm2 in the DC), where they make up about a third of HuCD-IR neurons, compared to the OSP and MP (19-22% and 13-17%, respectively, P < 0.001-0.0001). HuCD/SP/ChAT-IR neurons (up to 23%) were overall more abundant than HuCD/SP/nNOS-IR neurons (< 10%). Most SP-IR neurons contained ChAT-IR (62-85%), whereas 18-38% contained nNOS-IR with the highest peak in the OSP. A subpopulation of SP-IR neurons contains both ChAT- and nNOS-IR with the highest peak in the OSP and ISP of DC (33-36%) and the lowest in the ISP of AC (< 10%, P < 0.001). SP-IR varicose fibers were abundant in the ganglia. This study shows that SP-IR neurons are functionally distinct with variable proportions in different plexuses in the AC and DC reflecting diverse functions of specific colonic regions.
Collapse
Affiliation(s)
- Maurizio Mazzoni
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, 40064, Bologna, Italy
| | - Luis Cabanillas
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Department of Neurobiology, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Anna Costanzini
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Filippo Caremoli
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Current address: San Raffaele Hospital, Milan, Italy
| | - Mulugeta Million
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Department of Integrative Biology & Physiology, UCLA, Los Angeles, CA, 90095, USA
| | - Muriel Larauche
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Paolo Clavenzani
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, 40064, Bologna, Italy
| | - Roberto De Giorgio
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Catia Sternini
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA.
- Department of Neurobiology, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
2
|
Chen BN, Humenick A, Yew WP, Peterson RA, Wiklendt L, Dinning PG, Spencer NJ, Wattchow DA, Costa M, Brookes SJH. Types of Neurons in the Human Colonic Myenteric Plexus Identified by Multilayer Immunohistochemical Coding. Cell Mol Gastroenterol Hepatol 2023; 16:573-605. [PMID: 37355216 PMCID: PMC10469081 DOI: 10.1016/j.jcmgh.2023.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND AND AIMS Gut functions including motility, secretion, and blood flow are largely controlled by the enteric nervous system. Characterizing the different classes of enteric neurons in the human gut is an important step to understand how its circuitry is organized and how it is affected by disease. METHODS Using multiplexed immunohistochemistry, 12 discriminating antisera were applied to distinguish different classes of myenteric neurons in the human colon (2596 neurons, 12 patients) according to their chemical coding. All antisera were applied to every neuron, in multiple layers, separated by elutions. RESULTS A total of 164 combinations of immunohistochemical markers were present among the 2596 neurons, which could be divided into 20 classes, with statistical validation. Putative functions were ascribed for 4 classes of putative excitatory motor neurons (EMN1-4), 4 inhibitory motor neurons (IMN1-4), 3 ascending interneurons (AIN1-3), 6 descending interneurons (DIN1-6), 2 classes of multiaxonal sensory neurons (SN1-2), and a small, miscellaneous group (1.8% of total). Soma-dendritic morphology was analyzed, revealing 5 common shapes distributed differentially between the 20 classes. Distinctive baskets of axonal varicosities surrounded 45% of myenteric nerve cell bodies and were associated with close appositions, suggesting possible connectivity. Baskets of cholinergic terminals and several other types of baskets selectively targeted ascending interneurons and excitatory motor neurons but were significantly sparser around inhibitory motor neurons. CONCLUSIONS Using a simple immunohistochemical method, human myenteric neurons were shown to comprise multiple classes based on chemical coding and morphology and dense clusters of axonal varicosities were selectively associated with some classes.
Collapse
Affiliation(s)
- Bao Nan Chen
- Human Physiology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Adam Humenick
- Human Physiology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Wai Ping Yew
- Human Physiology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Rochelle A Peterson
- Human Physiology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Lukasz Wiklendt
- Human Physiology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Phil G Dinning
- Human Physiology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia; Colorectal Surgical Unit, Division of Surgery, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Nick J Spencer
- Human Physiology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - David A Wattchow
- Colorectal Surgical Unit, Division of Surgery, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Marcello Costa
- Human Physiology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Simon J H Brookes
- Human Physiology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia.
| |
Collapse
|
3
|
Wattchow DA, Smolilo D, Hibberd T, Spencer NJ, Brookes SJ, De Giorgio R, Heitmann PT, Costa M, Dinning PG. The human enteric nervous system. Historical and modern advances. Collaboration between science and surgery. ANZ J Surg 2022; 92:1365-1370. [PMID: 35403788 DOI: 10.1111/ans.17688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND There are considerable advantages and opportunities for surgeons and trainee surgeons in conducting a period of research allied with basic scientists. Such clinicians are well placed to define relevant clinical questions, provide human material (tissue, biopsy and blood) and translate the techniques derived in experimental animals to human subjects. METHODS This small review explores research conducted on the nervous system of the intestines, with an emphasis on the translation of findings from animal to human. RESULTS This work shows that new techniques of immunohistochemistry and retrograde tracing, developed in animal tissue, have greatly expanded our knowledge of the structure of the human enteric nervous system. CONCLUSIONS Such findings have sparked therapeutic trials for the treatment of gastrointestinal disorders in patients.
Collapse
Affiliation(s)
- David A Wattchow
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia.,Departments of Surgery and Gastroenterology, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - David Smolilo
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia.,Departments of Surgery and Gastroenterology, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - Tim Hibberd
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Nick J Spencer
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Simon Jh Brookes
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Roberto De Giorgio
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Paul T Heitmann
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia.,Departments of Surgery and Gastroenterology, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - Marcello Costa
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Phil G Dinning
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia.,Departments of Surgery and Gastroenterology, Flinders Medical Centre, Adelaide, South Australia, Australia
| |
Collapse
|
4
|
Boussamet L, Rajoka MSR, Berthelot L. Microbiota, IgA and Multiple Sclerosis. Microorganisms 2022; 10:microorganisms10030617. [PMID: 35336190 PMCID: PMC8954136 DOI: 10.3390/microorganisms10030617] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 12/16/2022] Open
Abstract
Multiple sclerosis (MS) is a neuroinflammatory disease characterized by immune cell infiltration in the central nervous system and destruction of myelin sheaths. Alterations of gut bacteria abundances are present in MS patients. In mouse models of neuroinflammation, depletion of microbiota results in amelioration of symptoms, and gavage with MS patient microbiota exacerbates the disease and inflammation via Th17 cells. On the other hand, depletion of B cells using anti-CD20 is an efficient therapy in MS, and growing evidence shows an important deleterious role of B cells in MS pathology. However, the failure of TACI-Ig treatment in MS highlighted the potential regulatory role of plasma cells. The mechanism was recently demonstrated involving IgA+ plasma cells, specific for gut microbiota and producing IL-10. IgA-coated bacteria in MS patient gut exhibit also modifications. We will focus our review on IgA interactions with gut microbiota and IgA+ B cells in MS. These recent data emphasize new pathways of neuroinflammation regulation in MS.
Collapse
Affiliation(s)
- Léo Boussamet
- Centre for Research in Transplantation and Translation Immunology, Nantes Université, Inserm, CR2TI UMR, 1064 Nantes, France;
| | - Muhammad Shahid Riaz Rajoka
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan;
| | - Laureline Berthelot
- Centre for Research in Transplantation and Translation Immunology, Nantes Université, Inserm, CR2TI UMR, 1064 Nantes, France;
- Correspondence:
| |
Collapse
|
5
|
Humenick A, Chen BN, Wattchow DA, Zagorodnyuk VP, Dinning PG, Spencer NJ, Costa M, Brookes SJH. Characterization of putative interneurons in the myenteric plexus of human colon. Neurogastroenterol Motil 2021; 33:e13964. [PMID: 32839997 PMCID: PMC7772282 DOI: 10.1111/nmo.13964] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/07/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND The enteric nervous system contains multiple classes of neurons, distinguishable by morphology, immunohistochemical markers, and projections; however, specific combinations differ between species. Here, types of enteric neurons in human colon were characterized immunohistochemically, using retrograde tracing combined with multiple labeling immunohistochemistry, focussing on non-motor neurons. METHODS The fluorescent carbocyanine tracer, DiI, was applied to the myenteric plexus in ex vivo preparations, filling neurons projecting within the plexus. Limits of projection lengths of motor neurons were established, allowing them to be excluded from the analysis. Long ascending and descending interneurons were then distinguished by labeling for discriminating immunohistochemical markers: calbindin, calretinin, enkephalin, 5-hydroxytryptamine, nitric oxide synthase, and substance P. These results were combined with a previous published study in which nitric oxide synthase and choline acetyltransferase immunoreactivities were established. KEY RESULTS Long ascending neurons (with projections longer than 8 mm, which excludes more than 95% motor neurons) formed four types, in descending order of abundance, defined by immunoreactivity for: (a) ChAT+/ENK+, (b) ChAT+/ENK+/SP+, (c) ChAT+/Calb+, and (d) ChAT+/ENK+/Calb+. Long descending neurons, up to 70 mm long also formed at least four types, distinguished by immunoreactivity for (a) NOS + cells (without ChAT), (b) ChAT+/NOS+, (c) ChAT+/Calret+, and (d) ChAT+/5HT + cells (with or without NOS). CONCLUSIONS AND INFERENCES Long interneurons, which do not innervate muscularis externa, are likely to coordinate neural activity over distances of many centimeters along the colon. Characterizing their neurochemical coding provides a basis for understanding their roles, investigating their connectivity, and building a comprehensive account of human colonic enteric neurons.
Collapse
Affiliation(s)
- Adam Humenick
- Human Physiology, Medical Bioscience, College of Medicine and Public Health, Flinders University, South Australia 5042
| | - Bao Nan Chen
- Human Physiology, Medical Bioscience, College of Medicine and Public Health, Flinders University, South Australia 5042
| | - David A Wattchow
- Department of Surgery, Flinders Medical Centre, Human, South Australia 5042
| | | | - Phil G Dinning
- Department of Surgery, Flinders Medical Centre, Human, South Australia 5042
| | - Nick J Spencer
- Human Physiology, Medical Bioscience, College of Medicine and Public Health, Flinders University, South Australia 5042
| | - Marcello Costa
- Human Physiology, Medical Bioscience, College of Medicine and Public Health, Flinders University, South Australia 5042
| | - Simon JH Brookes
- Human Physiology, Medical Bioscience, College of Medicine and Public Health, Flinders University, South Australia 5042
| |
Collapse
|
6
|
Semaniakou A, Brothers S, Gould G, Zahiremani M, Paton J, Chappe F, Li A, Anini Y, Croll RP, Chappe V. Disrupted local innervation results in less VIP expression in CF mice tissues. J Cyst Fibros 2020; 20:154-164. [PMID: 32600901 DOI: 10.1016/j.jcf.2020.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 11/16/2022]
Abstract
Vasoactive Intestinal Peptide (VIP) is the major physiological agonist of the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) chloride channel activity. VIP functions as a neuromodulator and neurotransmitter secreted by neurons innervating all exocrine glands. VIP is also a potent vasodilator and bronchodilator that regulates exocrine gland secretions, contributing to local innate defense by stimulating the movement of water and chloride transport across intestinal and tracheobronchial epithelia. Previous human studies have shown that the rich intrinsic neuronal networks for VIP secretion around exocrine glands could be lost in tissues from patients with cystic fibrosis. Our research has since confirmed, in vitro and in vivo, the need for chronic VIP exposure to maintain functional CFTR chloride channels at the cell surface of airways and intestinal epithelium, as well as normal exocrine tissues morphology [1]. The goal of the present study was to examine changes in VIP in the lung, duodenum and sweat glands of 8- and 17-weeks old F508del/F508del mice and to investigate VIPergic innervation in the small intestine of CF mice, before important signs of the disease development. Our data show that a low amount of VIP is found in CF tissues prior to tissue damage. Moreover, we found a specific reduction in VIPergic and cholinergic innervation of the small intestine. The general innervation of the primary and secondary myenteric plexus was lost in CF tissues, with the presence of enlarged ganglionic cells in the tertiary layer. We propose that low amount of VIP in CF tissues is due to a reduction in VIPergic and cholinergic innervation and represents an early defect that constitutes an aggravating factor for CF disease progression.
Collapse
Affiliation(s)
- Anna Semaniakou
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Sarah Brothers
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Grayson Gould
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Mehrsa Zahiremani
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Jamie Paton
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Frederic Chappe
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Audrey Li
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Younes Anini
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada; Department of Obstetrics and Gynecology, IWK Health Center, Halifax, NS, Canada
| | - Roger P Croll
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Valerie Chappe
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
7
|
Gould TW, Swope WA, Heredia DJ, Corrigan RD, Smith TK. Activity within specific enteric neurochemical subtypes is correlated with distinct patterns of gastrointestinal motility in the murine colon. Am J Physiol Gastrointest Liver Physiol 2019; 317:G210-G221. [PMID: 31268770 PMCID: PMC6734370 DOI: 10.1152/ajpgi.00252.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 01/31/2023]
Abstract
The enteric nervous system in the large intestine generates two important patterns relating to motility: 1) propagating rhythmic peristaltic smooth muscle contractions referred to as colonic migrating motor complexes (CMMCs) and 2) tonic inhibition, during which colonic smooth muscle contractions are suppressed. The precise neurobiological substrates underlying each of these patterns are unclear. Using transgenic animals expressing the genetically encoded calcium indicator GCaMP3 to monitor activity or the optogenetic actuator channelrhodopsin (ChR2) to drive activity in defined enteric neuronal subpopulations, we provide evidence that cholinergic and nitrergic neurons play significant roles in mediating CMMCs and tonic inhibition, respectively. Nitrergic neurons [neuronal nitric oxide synthase (nNOS)-positive neurons] expressing GCaMP3 exhibited higher levels of activity during periods of tonic inhibition than during CMMCs. Consistent with these findings, optogenetic activation of ChR2 in nitrergic neurons depressed ongoing CMMCs. Conversely, cholinergic neurons [choline acetyltransferase (ChAT)-positive neurons] expressing GCaMP3 markedly increased their activity during the CMMC. Treatment with the NO synthesis inhibitor Nω-nitro-l-arginine also augmented the activity of ChAT-GCaMP3 neurons, suggesting that the reciprocal patterns of activity exhibited by nitrergic and cholinergic enteric neurons during distinct phases of colonic motility may be related.NEW & NOTEWORTHY Correlating the activity of neuronal populations in the myenteric plexus to distinct periods of gastrointestinal motility is complicated by the difficulty of measuring the activity of specific neuronal subtypes. Here, using mice expressing genetically encoded calcium indicators or the optical actuator channelrhodopsin-2, we provide compelling evidence that cholinergic and nitrergic neurons play important roles in mediating coordinated propagating peristaltic contractions or tonic inhibition, respectively, in the murine colon.
Collapse
Affiliation(s)
- Thomas W Gould
- Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, Nevada
| | - William A Swope
- Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, Nevada
| | - Dante J Heredia
- Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, Nevada
| | - Robert D Corrigan
- Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, Nevada
| | - Terence K Smith
- Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, Nevada
| |
Collapse
|
8
|
Sun X, Tang L, Winesett S, Chang W, Cheng SX. Calcimimetic R568 inhibits tetrodotoxin-sensitive colonic electrolyte secretion and reduces c-fos expression in myenteric neurons. Life Sci 2017; 194:49-58. [PMID: 29247746 DOI: 10.1016/j.lfs.2017.12.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 12/08/2017] [Accepted: 12/12/2017] [Indexed: 12/13/2022]
Abstract
AIMS Calcium-sensing receptor (CaSR) is expressed on neurons of both submucosal and myenteric plexuses of the enteric nervous system (ENS) and the CaSR agonist R568 inhibited Cl- secretion in intestine. The purpose of this study was to localize the primary site of action of R568 in the ENS and to explore how CaSR regulates secretion through the ENS. MATERIALS AND METHODS Two preparations of rat proximal and distal colon were used. The full-thickness preparation contained both the submucosal and myenteric plexuses, whereas for the "stripped" preparation the myenteric plexus with the muscle layers was removed. Both preparations were mounted onto Ussing chambers and Cl- secretory responses were compared by measuring changes in short circuit current (Isc). Two tissue-specific CaSR knockouts (i.e., neuron-specific vs. enterocyte-specific) were generated to compare the effect of R568 on expression of c-fos protein in myenteric neurons by immunocytochemistry. KEY FINDINGS In full-thickness colons, tetrodotoxin (TTX) inhibited Isc, both in proximal and distal colons. A nearly identical inhibition was produced by R568. However, in stripped preparations, while the effect of TTX on Isc largely remained, the effect of R568 was nearly completely eliminated. In keeping with this, R568 reduced c-fos protein expression only in myenteric neurons of wild type mice and mutant mice that contained CaSR in neurons (i.e., villinCre/Casrflox/flox mice), but not in myenteric neurons of nestinCre/Casrflox/flox mice in which neuronal cell CaSR was eliminated. SIGNIFICANCE These results indicate that R568 exerts its anti-secretory effects predominantly via CaSR-mediated inhibition of neuronal activity in the myenteric plexus.
Collapse
Affiliation(s)
- Xiangrong Sun
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China; Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Lieqi Tang
- Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Steven Winesett
- Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Wenhan Chang
- Endocrine Research, VA Medical Center, University of California at San Francisco, San Francisco, CA, USA
| | - Sam Xianjun Cheng
- Division of Gastroenterology, Nutrition and Hepatology, Department of Pediatrics, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
9
|
Systemic gene delivery transduces the enteric nervous system of guinea pigs and cynomolgus macaques. Gene Ther 2017; 24:640-648. [PMID: 28771235 PMCID: PMC5658254 DOI: 10.1038/gt.2017.72] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/16/2017] [Accepted: 07/25/2017] [Indexed: 12/19/2022]
Abstract
Characterization of adeno-associated viral vector (AAV) mediated gene delivery to the enteric nervous system (ENS) was recently described in mice and rats. In these proof-of-concept experiments, we show that intravenous injections of clinically relevant AAVs can transduce the ENS in guinea pigs and non-human primates. Neonatal guinea pigs were given intravenous injections of either AAV8 or AAV9 vectors that contained a green fluorescent protein (GFP) expression cassette or PBS. Piglets were euthanized three weeks post-injection and tissues were harvested for immunofluorescent analysis. GFP expression was detected in myenteric and submucosal neurons along the length of the gastrointestinal tract in AAV8 injected guinea pigs. GFP positive neurons were found in dorsal motor nucleus of the vagus and dorsal root ganglia. Less transduction occurred in AAV9 treated tissues. Gastrointestinal tissues were analyzed from young cynomolgus macaques that received systemic injection of AAV9 GFP. GFP expression was detected in myenteric neurons of the stomach, small and large intestine. These data demonstrate that ENS gene delivery translates to larger species. This work develops tools for the field of neurogastroenterology to explore gut physiology and anatomy using emerging technologies such as optogenetics and gene editing. It also provides a basis to develop novel therapies for chronic gut disorders.
Collapse
|
10
|
Sharrad DF, Chen BN, Gai WP, Vaikath N, El-Agnaf OM, Brookes SJH. Rotenone and elevated extracellular potassium concentration induce cell-specific fibrillation of α-synuclein in axons of cholinergic enteric neurons in the guinea-pig ileum. Neurogastroenterol Motil 2017; 29. [PMID: 27997067 DOI: 10.1111/nmo.12985] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 10/03/2016] [Accepted: 10/03/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND Parkinson's disease is a progressive neurodegenerative disorder that results in the widespread loss of select classes of neurons throughout the nervous system. The pathological hallmarks of Parkinson's disease are Lewy bodies and neurites, of which α-synuclein fibrils are the major component. α-Synuclein aggregation has been reported in the gut of Parkinson's disease patients, even up to a decade before motor symptoms, and similar observations have been made in animal models of disease. However, unlike the central nervous system, the nature of α-synuclein species that form these aggregates and the classes of neurons affected in the gut are unclear. We have previously reported selective expression of α-synuclein in cholinergic neurons in the gut (J Comp Neurol. 2013; 521:657), suggesting they may be particularly vulnerable to degeneration in Parkinson's disease. METHODS In this study, we used immunohistochemistry to detect α-synuclein oligomers and fibrils via conformation-specific antibodies after rotenone treatment or prolonged exposure to high [K+ ] in ex vivo segments of guinea-pig ileum maintained in organotypic culture. KEY RESULTS Rotenone and prolonged raising of [K+ ] caused accumulation of α-synuclein fibrils in the axons of cholinergic enteric neurons. This took place in a time- and, in the case of rotenone, concentration-dependent manner. Rotenone also caused selective necrosis, indicated by increased cellular autofluorescence, of cholinergic enteric neurons, labeled by ChAT-immunoreactivity, also in a concentration-dependent manner. CONCLUSIONS & INFERENCES To our knowledge, this is the first report of rotenone causing selective loss of a neurochemical class in the enteric nervous system. Cholinergic enteric neurons may be particularly susceptible to Lewy pathology and degeneration in Parkinson's disease.
Collapse
Affiliation(s)
- D F Sharrad
- Discipline of Human Physiology, FMST, School of Medicine, Flinders University, Bedford Park, SA, Australia
| | - B N Chen
- Discipline of Human Physiology, FMST, School of Medicine, Flinders University, Bedford Park, SA, Australia
| | - W P Gai
- Discipline of Human Physiology, FMST, School of Medicine, Flinders University, Bedford Park, SA, Australia
| | - N Vaikath
- Neurological Disorders Center, Qatar Biomedical Research Institute, College of Science and Engineering, Hamad Bin Khalifa University (HBKU), Education City, Qatar Foundation, Doha, Qatar
| | - O M El-Agnaf
- Neurological Disorders Center, Qatar Biomedical Research Institute, College of Science and Engineering, Hamad Bin Khalifa University (HBKU), Education City, Qatar Foundation, Doha, Qatar
| | - S J H Brookes
- Discipline of Human Physiology, FMST, School of Medicine, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
11
|
Shao YF, Xie JF, Ren YX, Wang C, Kong XP, Zong XJ, Fan LL, Hou YP. The Inhibitory Effect of Botulinum Toxin Type A on Rat Pyloric Smooth Muscle Contractile Response to Substance P In Vitro. Toxins (Basel) 2015; 7:4143-56. [PMID: 26501321 PMCID: PMC4626726 DOI: 10.3390/toxins7104143] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/02/2015] [Accepted: 10/08/2015] [Indexed: 12/28/2022] Open
Abstract
A decrease in pyloric myoelectrical activity and pyloric substance P (SP) content following intrasphincteric injection of botulinum toxin type A (BTX-A) in free move rats have been demonstrated in our previous studies. The aim of the present study was to investigate the inhibitory effect of BTX-A on rat pyloric muscle contractile response to SP in vitro and the distributions of SP and neurokinin 1 receptor (NK1R) immunoreactive (IR) cells and fibers within pylorus. After treatment with atropine, BTX-A (10 U/mL), similar to [D-Arg1, D-Phe5, D-Trp7,9, Leu11]-SP (APTL-SP, 1 μmol/L) which is an NK1R antagonist, decreased electric field stimulation (EFS)-induced contractile tension and frequency, whereas, subsequent administration of APTL-SP did not act on contractility. Incubation with BTX-A at 4 and 10 U/mL for 4 h respectively decreased SP (1 μmol/L)-induced contractions by 26.64% ± 5.12% and 74.92% ± 3.62%. SP-IR fibers and NK1R-IR cells both located within pylorus including mucosa and circular muscle layer. However, fewer SP-fibers were observed in pylorus treated with BTX-A (10 U/mL). In conclusion, BTX-A inhibits SP release from enteric terminals in pylorus and EFS-induced contractile responses when muscarinic cholinergic receptors are blocked by atropine. In addition, BTX-A concentration- and time-dependently directly inhibits SP-induced pyloric smooth muscle contractility.
Collapse
Affiliation(s)
- Yu-Feng Shao
- Department of Neuroscience, Anatomy, Histology and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 199 Donggang Xi Road, Lanzhou 730000, China.
| | - Jun-Fan Xie
- Department of Neuroscience, Anatomy, Histology and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 199 Donggang Xi Road, Lanzhou 730000, China.
| | - Yin-Xiang Ren
- Department of Neuroscience, Anatomy, Histology and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 199 Donggang Xi Road, Lanzhou 730000, China.
| | - Can Wang
- Department of Neuroscience, Anatomy, Histology and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 199 Donggang Xi Road, Lanzhou 730000, China.
| | - Xiang-Pan Kong
- Department of Neuroscience, Anatomy, Histology and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 199 Donggang Xi Road, Lanzhou 730000, China.
- Department of Human Anatomy, School of Medicine, Hunan Normal University, 371 Tongzipo Road, Changsha 410013, China.
| | - Xiao-Jian Zong
- Department of Functional Examination, the 2nd Hospital of Gansu Province, Lanzhou 730000, China.
| | - Lin-Lan Fan
- Experimental Center of Medicine, School of Basic Medical Sciences, Lanzhou University, 199 Donggang Xi Road, Lanzhou 730000, China.
| | - Yi-Ping Hou
- Department of Neuroscience, Anatomy, Histology and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 199 Donggang Xi Road, Lanzhou 730000, China.
| |
Collapse
|
12
|
Chen BN, Sharrad DF, Hibberd TJ, Zagorodnyuk VP, Costa M, Brookes SJ. Neurochemical characterization of extrinsic nerves in myenteric ganglia of the guinea pig distal colon. J Comp Neurol 2014; 523:742-56. [DOI: 10.1002/cne.23704] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 10/24/2014] [Accepted: 10/29/2014] [Indexed: 12/18/2022]
Affiliation(s)
- Bao Nan Chen
- Department of Human Physiology and Centre for Neuroscience; Flinders Medical Science and Technology, School of Medicine, Flinders University; Bedford Park South Australia Australia
| | - Dale F. Sharrad
- Department of Human Physiology and Centre for Neuroscience; Flinders Medical Science and Technology, School of Medicine, Flinders University; Bedford Park South Australia Australia
| | - Timothy J. Hibberd
- Department of Human Physiology and Centre for Neuroscience; Flinders Medical Science and Technology, School of Medicine, Flinders University; Bedford Park South Australia Australia
| | - Vladimir P. Zagorodnyuk
- Department of Human Physiology and Centre for Neuroscience; Flinders Medical Science and Technology, School of Medicine, Flinders University; Bedford Park South Australia Australia
| | - Marcello Costa
- Department of Human Physiology and Centre for Neuroscience; Flinders Medical Science and Technology, School of Medicine, Flinders University; Bedford Park South Australia Australia
| | - Simon J.H. Brookes
- Department of Human Physiology and Centre for Neuroscience; Flinders Medical Science and Technology, School of Medicine, Flinders University; Bedford Park South Australia Australia
| |
Collapse
|
13
|
Sharrad DF, Gai WP, Brookes SJH. Selective coexpression of synaptic proteins, α-synuclein, cysteine string protein-α, synaptophysin, synaptotagmin-1, and synaptobrevin-2 in vesicular acetylcholine transporter-immunoreactive axons in the guinea pig ileum. J Comp Neurol 2014; 521:2523-37. [PMID: 23296877 DOI: 10.1002/cne.23296] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 12/10/2012] [Accepted: 12/27/2012] [Indexed: 12/25/2022]
Abstract
Parkinson's disease is a neurodegenerative disorder characterized by Lewy bodies and neurites composed mainly of the presynaptic protein α-synuclein. Frequently, Lewy bodies and neurites are identified in the gut of Parkinson's disease patients and may underlie associated gastrointestinal dysfunctions. We recently reported selective expression of α-synuclein in the axons of cholinergic neurons in the guinea pig and human distal gut; however, it is not clear whether α-synuclein expression varies along the gut, nor how closely expression is associated with other synaptic proteins. We used multiple-labeling immunohistochemistry to quantify which neurons in the guinea pig ileum expressed α-synuclein, cysteine string protein-α (CSPα), synaptophysin, synaptotagmin-1, or synaptobrevin-2 in their axons. Among the 10 neurochemically defined axonal populations, a significantly greater proportion of vesicular acetylcholine transporter-immunoreactive (VAChT-IR) varicosities (80% ± 1.7%, n = 4, P < 0.001) contained α-synuclein immunoreactivity, and a significantly greater proportion of α-synuclein-IR axons also contained VAChT immunoreactivity (78% ± 1.3%, n = 4) compared with any of the other nine populations (P < 0.001). Among synaptophysin-, synaptotagmin-1-, synaptobrevin-2-, and CSPα-IR varicosities, 98% ± 0.7%, 96% ± 0.7%, 88% ± 1.6%, and 85% ± 2.9% (n = 4) contained α-synuclein immunoreactivity, respectively. Among α-synuclein-IR varicosities, 96% ± 0.9%, 99% ± 0.6%, 83% ± 1.9%, and 87% ± 2.3% (n = 4) contained synaptophysin-, synaptotagmin-1-, synaptobrevin-2-, and CSPα immunoreactivity, respectively. We report a close association between the expression of α-synuclein and the expression of other synaptic proteins in cholinergic axons in the guinea pig ileum. Selective expression of α-synuclein may relate to the neurotransmitter system utilized and predispose cholinergic enteric neurons to degeneration in Parkinson's disease.
Collapse
Affiliation(s)
- Dale F Sharrad
- Department of Human Physiology and Centre for Neuroscience, Flinders Medical Science and Technology, School of Medicine, Flinders University, Bedford Park, South Australia 5042, Australia
| | | | | |
Collapse
|
14
|
A study of calretinin in Hirschsprung pathology, particularly in total colonic aganglionosis. J Pediatr Surg 2013; 48:1037-43. [PMID: 23701779 DOI: 10.1016/j.jpedsurg.2013.02.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 02/03/2013] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Calretinin, a calcium-binding protein, has been reported to be an important new marker in Hirschsprung's disease (HD). The aim is to study the diagnostic value of Calretinin in total colonic aganglionosis (TA), prematurity, and superficial biopsy when nerve hyperplasia may not be accessed by ACE activity. METHODS Records of patients diagnosed with HD at our institution from 1985 to 2010 were studied and patients with TA identified. We examined tissue samples from those TA, partial colectomies for HD, biopsies for suspicion of HD, and rectal tissue from aborted fetuses. Immunohistochemical analysis of Calretinin was compared with ACE gold standard method in all cases. RESULTS In the majority of the cases, the diagnosis was ascertained by ACE activity and Calretinin staining. However, in 9 cases, the diagnosis was possible with Calretinin staining but not with ACE: in 4 TA because of the absence of nerve hyperplasia, and in 5 cases because the biopsies were too superficial to examine the nerve hyperplasia. In addition, Calretinin was expressed in the gut as early as 22 gestational weeks. CONCLUSION The use of Calretinin staining may be superior to ACE activity, particularly in the context of TA, superficial biopsies, and prematurity, allowing earlier diagnosis.
Collapse
|
15
|
Durnin L, Sanders KM, Mutafova-Yambolieva VN. Differential release of β-NAD(+) and ATP upon activation of enteric motor neurons in primate and murine colons. Neurogastroenterol Motil 2013; 25:e194-204. [PMID: 23279315 PMCID: PMC3578016 DOI: 10.1111/nmo.12069] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND The purinergic component of enteric inhibitory neurotransmission is important for normal motility in the gastrointestinal (GI) tract. Controversies exist about the purine(s) responsible for inhibitory responses in GI muscles: ATP has been assumed to be the purinergic neurotransmitter released from enteric inhibitory motor neurons; however, recent studies demonstrate that β-nicotinamide adenine dinucleotide (β-NAD(+)) and ADP-ribose mimic the inhibitory neurotransmitter better than ATP in primate and murine colons. The study was designed to clarify the sources of purines in colons of Cynomolgus monkeys and C57BL/6 mice. METHODS High-performance liquid chromatography with fluorescence detection was used to analyze purines released by stimulation of nicotinic acetylcholine receptors (nAChR) and serotonergic 5-HT(3) receptors (5-HT(3)R), known to be present on cell bodies and dendrites of neurons within the myenteric plexus. KEY RESULTS Nicotinic acetylcholine receptor or 5-HT(3)R agonists increased overflow of ATP and β-NAD(+) from tunica muscularis of monkey and murine colon. The agonists did not release purines from circular muscles of monkey colon lacking myenteric ganglia. Agonist-evoked overflow of β-NAD(+), but not ATP, was inhibited by tetrodotoxin (0.5 μmol L(-1)) or ω-conotoxin GVIA (50 nmol L(-1)), suggesting that β-NAD(+) release requires nerve action potentials and junctional mechanisms known to be critical for neurotransmission. ATP was likely released from nerve cell bodies in myenteric ganglia and not from nerve terminals of motor neurons. CONCLUSIONS & INFERENCES These results support the conclusion that ATP is not a motor neurotransmitter in the colon and are consistent with the hypothesis that β-NAD(+), or its metabolites, serve as the purinergic inhibitory neurotransmitter.
Collapse
Affiliation(s)
- L Durnin
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557-0575, USA
| | | | | |
Collapse
|
16
|
Sadeghinezhad J, Tootian Z, Latorre R, Sorteni C, Chiocchetti R. Intrinsic Innervation of the Persian Squirrel (Sciurus anomalus) Ileum. Anat Histol Embryol 2012; 42:201-12. [DOI: 10.1111/ahe.12003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 08/08/2012] [Indexed: 12/31/2022]
Affiliation(s)
| | - Z. Tootian
- Department of Basic Sciences; Faculty of Veterinary Medicine; University of Tehran; Tehran; Iran
| | - R. Latorre
- Department of Veterinary Medical Science; University of Bologna; Ozzano dell'Emilia (Bologna); Italy
| | - C. Sorteni
- Department of Veterinary Medical Science; University of Bologna; Ozzano dell'Emilia (Bologna); Italy
| | - R. Chiocchetti
- Department of Veterinary Medical Science; University of Bologna; Ozzano dell'Emilia (Bologna); Italy
| |
Collapse
|
17
|
Digalakis M, Papamichail M, Glava C, Grammatoglou X, Sergentanis TN, Papalois A, Bramis J. Interposition of a Reversed Jejunal Segment Enhances Intestinal Adaptation in Short Bowel Syndrome: An Experimental Study on Pigs. J Surg Res 2011; 171:551-7. [DOI: 10.1016/j.jss.2010.06.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2010] [Revised: 05/09/2010] [Accepted: 06/28/2010] [Indexed: 01/07/2023]
|
18
|
Bellier JP, Kimura H. Peripheral type of choline acetyltransferase: biological and evolutionary implications for novel mechanisms in cholinergic system. J Chem Neuroanat 2011; 42:225-35. [PMID: 21382474 DOI: 10.1016/j.jchemneu.2011.02.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 02/23/2011] [Accepted: 02/24/2011] [Indexed: 01/29/2023]
Abstract
The peripheral type of choline acetyltransferase (pChAT) is an isoform of the well-studied common type of choline acetyltransferase (cChAT), the synthesizing enzyme of acetylcholine. Since pChAT arises by exons skipping, its amino acid sequence is similar to that of cChAT, except the lack of a continuous peptide sequence encoded by all the four exons from 6 to 9. While cChAT expression has been observed in both the central and peripheral nervous systems, pChAT is preferentially expressed in the peripheral nervous system. pChAT appears to be a reliable marker for the visualization of peripheral cholinergic neurons and their processes, whereas other conventional markers including cChAT have not been used successfully for it. In mammals like rodents, pChAT immunoreactivity has been observed in most, if not all, physiologically identified peripheral cholinergic structures such as all parasympathetic postganglionic neurons and most neurons of the enteric nervous system. In addition, pChAT has been found in many peripheral neurons that are derived from the neural crest. These include sensory neurons of the trigeminal ganglion and the dorsal root ganglion, and sympathetic postganglionic neurons. Recent studies moreover indicate that pChAT, as well as cChAT, appears ubiquitously expressed among various species not only of vertebrate mammals but also of invertebrate mollusks. This finding implies that the alternative splicing mechanism to generate pChAT and cChAT has been preserved during evolution, probably for some functional benefits.
Collapse
Affiliation(s)
- J-P Bellier
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan.
| | | |
Collapse
|
19
|
Patel BA, Dai X, Burda JE, Zhao H, Swain GM, Galligan JJ, Bian X. Inhibitory neuromuscular transmission to ileal longitudinal muscle predominates in neonatal guinea pigs. Neurogastroenterol Motil 2010; 22:909-18, e236-7. [PMID: 20482699 PMCID: PMC2911488 DOI: 10.1111/j.1365-2982.2010.01508.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Inhibitory neurotransmission to the longitudinal muscle is more prominent in the neonatal than in the adult guinea pig ileum. METHODS Inhibitory neuromuscular transmission was investigated using in vitro ileal longitudinal muscle myenteric plexus (LMMP) preparations made from neonatal (< or =48 h postnatal) and adult ( approximately 4 weeks postnatal) guinea pigs. KEY RESULTS Amperometric measurements of nicotine-induced nitric oxide (NO) release (measured as an oxidation current) from myenteric ganglia revealed larger currents in neonatal (379 +/- 24 pA) vs adult (119 +/- 39 pA, P < 0.05) tissues. Nicotine-induced oxidation currents were blocked by the nitric oxide synthase (NOS) inhibitor, nitro-l-arginine (NLA, 100 micromol L(-1)). Nicotine-induced, NLA-sensitive oxidation currents could be detected in the tertiary plexus of neonatal but not adult tissues. Immunohistochemistry demonstrated stronger NOS immunoreactivity in neonatal compared with adult myenteric ganglia. Western blot studies revealed higher levels of NOS in neonatal compared with adult LMMP. Cell counts revealed that the total number of myenteric neurons in the small intestine was greater in adults than in neonatal guinea pigs, however, the ratio of NOS : Calbindin neurons was significantly higher in neonatal compared with adult tissues. CONCLUSIONS & INFERENCES Nitric oxide signaling to the longitudinal muscle is stronger in neonatal compared with adult guinea pig ileum. Nitric oxide synthase-containing neurons are diluted postnatally by cholinergic and other, as yet unidentified neuronal subtypes.
Collapse
Affiliation(s)
- Bhavik A. Patel
- Department of Chemistry, Michigan State University, East Lansing, MI 48824 USA,Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK,School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, BN2 4GJ, UK
| | - Xiaoling Dai
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824 USA
| | - Joshua E. Burda
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824 USA
| | - Hong Zhao
- Department of Chemistry, Michigan State University, East Lansing, MI 48824 USA,Neuroscience Program, Michigan State University, East Lansing, MI 48824 USA
| | - Greg M. Swain
- Department of Chemistry, Michigan State University, East Lansing, MI 48824 USA,Neuroscience Program, Michigan State University, East Lansing, MI 48824 USA
| | - James J. Galligan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824 USA,Neuroscience Program, Michigan State University, East Lansing, MI 48824 USA
| | - Xiaochun Bian
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
20
|
Foong JPP, Parry LJ, Gwynne RM, Bornstein JC. 5-HT(1A), SST(1), and SST(2) receptors mediate inhibitory postsynaptic potentials in the submucous plexus of the guinea pig ileum. Am J Physiol Gastrointest Liver Physiol 2010; 298:G384-94. [PMID: 20007849 PMCID: PMC2838515 DOI: 10.1152/ajpgi.00438.2009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Vasoactive intestinal peptide (VIP) immunoreactive neurons are important secretomotor neurons in the submucous plexus. They are the only submucosal neurons to receive inhibitory inputs and exhibit both noradrenergic and nonadrenergic inhibitory synaptic potentials (IPSPs). The former are mediated by alpha(2)-adrenoceptors, but the receptors mediating the latter have not been identified. We used standard intracellular recording, RT-PCR, and confocal microscopy to test whether 5-HT(1A), SST(1), and/or SST(2) receptors mediate nonadrenergic IPSPs in VIP submucosal neurons in guinea pig ileum in vitro. The specific 5-HT(1A) receptor antagonist WAY 100135 (1 microM) reduced the amplitude of IPSPs, an effect that persisted in the presence of the alpha(2)-adrenoceptor antagonist idazoxan (2 microM), suggesting that 5-HT might mediate a component of the IPSPs. Confocal microscopy revealed that there were many 5-HT-immunoreactive varicosities in close contact with VIP neurons. The specific SSTR(2) antagonist CYN 154806 (100 nM) and a specific SSTR(1) antagonist SRA 880 (3 microM) each reduced the amplitude of nonadrenergic IPSPs and hyperpolarizations evoked by somatostatin. In contrast with the other antagonists, CYN 154806 also reduced the durations of nonadrenergic IPSPs. Effects of WAY 100135 and CYN 154806 were additive. RT-PCR revealed gene transcripts for 5-HT(1A), SST(1), and SST(2) receptors in stripped submucous plexus preparations consistent with the pharmacological data. Although the involvement of other neurotransmitters or receptors cannot be excluded, we conclude that 5-HT(1A), SST(1), and SST(2) receptors mediate nonadrenergic IPSPs in the noncholinergic (VIP) secretomotor neurons. This study thus provides the tools to identify functions of enteric neural pathways that inhibit secretomotor reflexes.
Collapse
Affiliation(s)
| | - Laura J. Parry
- 2Zoology, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
21
|
Mazzone SB, McGovern AE. Innervation of tracheal parasympathetic ganglia by esophageal cholinergic neurons: evidence from anatomic and functional studies in guinea pigs. Am J Physiol Lung Cell Mol Physiol 2010; 298:L404-16. [PMID: 20061441 DOI: 10.1152/ajplung.00166.2009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the present study, we describe a subset of nerve fibers, characterized by their immunoreactivity for the calcium-binding protein calretinin, that are densely and selectively associated with cholinergic postganglionic neurons in the guinea pig tracheal ganglia. Retrograde neuronal tracing with cholera toxin B, combined with immunohistochemical analyses, showed that these nerve fibers do not originate from sensory neurons in the nodose, jugular, or dorsal root ganglia or from motor neurons in the nucleus ambiguus, dorsal motor nucleus of the vagus nerve, spinal cord, stellate ganglia, or superior cervical ganglia. Calretinin-immunoreactive nerve fibers disappeared from tracheal segments after 48 h in organotypic culture, indicating that the fibers were of extrinsic origin. However, calretinin-positive nerve fibers persisted in tracheal ganglia when tracheae were cocultured with the adjacent esophagus intact. Immunohistochemical analysis of the esophagus revealed a population of cholinergic neurons in the esophageal myenteric plexus that coexpressed calretinin. In functional studies, electrical stimulation of the esophagus in vitro evoked measurable contractions of the trachea. These contractions were not altered by prior organotypic culture of the trachea and esophagus to remove the extrinsic innervation to the airways but were significantly (P < 0.05) inhibited by the ganglionic blocker hexamethonium or by physical disruption of the tissue connecting the trachea and esophagus. These data suggest that a subset of esophageal neurons, characterized by the expression of calretinin and acetylcholine, provide a previously unrecognized excitatory input to tracheal cholinergic ganglia in guinea pigs.
Collapse
Affiliation(s)
- Stuart B Mazzone
- School of Biomedical Sciences, University of Queensland, St. Lucia, QLD 4072, Australia.
| | | |
Collapse
|
22
|
The enteric nervous system. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/s1546-5098(10)03008-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
23
|
Dénes V, Wilhelm M, NÉMeth A, GÁBriel R. Interactions of Serotoninergic, Cholinergic, and Tachykinin-Containing Nerve Elements in the Rabbit Small Intestine. Anat Rec (Hoboken) 2009; 292:1548-58. [DOI: 10.1002/ar.20956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
24
|
Abstract
The enteric nervous system follows a similar overall arrangement in all vertebrate groups. In fish, the majority of nerve cell bodies are found in the myenteric plexus, innervating muscles, blood vessels and glands. In this review, I describe similarities and differences in size, shape and transmitter content in enteric neurons in different fish species and also in comparison with other vertebrates, foremost mammals. The use of different histological and immunochemical methods is reviewed in a historical perspective including advantages and disadvantages of different methods. Lately, zebrafish have become an important model species for developmental studies of the nervous system, including the enteric nervous system, and this is briefly discussed. Finally, examples of how the enteric nervous system controls gut activity in fish is presented, focussing on the effect on gastrointestinal motility.
Collapse
|
25
|
Choi JH, Lee CH, Chung DW, Hwang IK, Won MH, Seong JK, Yoon YS, Lee IS. Age-related changes of calbindin D-28k-immunoreactive neurons in the myenteric plexus of gerbil duodenum. J Vet Med Sci 2008; 70:343-8. [PMID: 18460827 DOI: 10.1292/jvms.70.343] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined the age-related changes of calbindin D-28k (CB)-immunoreactive neurons and overall populations of neurons in the myenteric plexus of gerbil duodenum using whole mount preparations and immunohistochemistry. The circumference of duodenum increased age-dependently. CB-immunoreactive neurons were observed in all groups, and most of them had the Dogiel type II morphology. The fully developed cobweb-like structures were observed in the myenteric plexus of duodenum at postnatal month (PM) 3 to 24. Although the highest numbers of CB-immunoreactive neurons and overall population were observed in PM 1.5, it is related with significant increase of the size of circumference between PM 1.5 to PM 3. CB-immunoreactive neurons were slightly decreased with age between PM 3 to PM 24. We have also found that whole numbers of myenteric neurons were also significantly decreased in PM 24 group. These results suggest that loss of overall numbers of myenteric neurons and CB-immunoreactive neurons may be related with age-related neurodegeneration and functional loss of duodenum in the gerbil.
Collapse
Affiliation(s)
- Jung Hoon Choi
- Department of Anatomy and Cell Biology, College of Veterinary Medicine and BK21 Program for Veterinary Science, Seoul National University, Seoul, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
26
|
De Fontgalland D, Wattchow DA, Costa M, Brookes SJH. Immunohistochemical characterization of the innervation of human colonic mesenteric and submucosal blood vessels. Neurogastroenterol Motil 2008; 20:1212-26. [PMID: 18643894 DOI: 10.1111/j.1365-2982.2008.01150.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The aim was to characterize quantitatively the classes of nerves innervating human mesenteric and submucosal vessels. Specimens of uninvolved normal human mesentery and colon were obtained with prior informed consent from patients undergoing elective surgery for bowel carcinoma. Mesenteric and submucosal vessels were processed for double-labelling immunohistochemical localization of tyrosine hydroxylase (TH), neuropeptide Y (NPY), calcitonin gene-related peptide (CGRP), substance P (SP), vasoactive intestinal polypeptide (VIP), nitric oxide synthase (NOS), somatostatin (SOM), vesicular acetylcholine transporter (VAChT) and enkephelin (ENK), each compared to the pan-neuronal marker protein gene product 9.5. Branching patterns of individual nerve fibres were investigated using in vitro anterograde tracing. Sympathetic neurons containing TH and NPY were the largest population, accounting for more than 85% on all vessels. Extrinsic sensory axons, containing SP but not CGRP comprised a second major population on mesenteric vessels: these axons generally lacked TH, NPY and VAChT. On submucosal, but not mesenteric vessels, an additional population of SOM-immunoreactive fibres was present: these axons did not co-localize with TH. Major similarities and differences with enteric vessel innervation in laboratory animals were identified. Sympathetic neurons comprise the largest input. Extrinsic sensory neurons in humans largely lack CGRP but contain SP. Submucosal vessels receive an additional source of innervation not present in mesenteric vessels, which contain SOM, but are rarely cholinergic. These results have significant implications for understanding the control of blood flow to the human gut.
Collapse
Affiliation(s)
- D De Fontgalland
- Department of Human Physiology, Flinders University of South Australia, Bedford Park, SA, Australia
| | | | | | | |
Collapse
|
27
|
Abstract
Polarized outputs of myenteric interneurons in guinea-pig small intestine have been well studied. However, the variety of motility patterns exhibited suggests that some interneuron targets remain unknown. We used antisera selected to distinguish interneuron varicosities and known myenteric neuron types to investigate outputs of three interneuron classes in guinea-pig jejunum; two classes of descending interneurons immunoreactive (IR) for somatostatin (SOM) or nitric oxide synthase (NOS)/vasoactive intestinal peptide (VIP), and one class of ascending interneurons [calretinin/enkephalin (ENK)-IR]. Varicosities apposed to immunohistochemically identified cell bodies were quantified by confocal microscopy. Intrinsic sensory neurons (calbindin-IR) were apposed by few varicosities. Cholinergic secretomotor neurons (neuropeptide Y-IR) were apposed by many SOM-IR varicosities. Longitudinal muscle excitatory motor neurons (calretinin-IR) were apposed by some VIP- and ENK-IR varicosities, but few SOM-IR varicosities. Ascending interneurons (calretinin-IR) were apposed by many varicosities of all types. NOS-IR interneurons and inhibitory motor neurons were apposed by numerous VIP-IR and SOM-IR varicosities. NOS-IR short inhibitory motor neurons were apposed by significantly fewer ENK-IR varicosities than other NOS-IR neurons. Based on the specific chemical coding of ascending (ENK) and descending (SOM) interneurons, we conclude that cholinergic secretomotor neurons and short inhibitory neurons are located in descending reflex pathways, while ascending interneurons and NOS-IR descending interneurons are focal points at which ascending and descending pathways converge.
Collapse
Affiliation(s)
- K B Neal
- Department of Physiology, The University of Melbourne, Melbourne, Vic., Australia.
| | | |
Collapse
|
28
|
Reis HJ, Rosa DVF, Guimarães MM, Souza BR, Barros AGA, Pimenta FJ, Souza RP, Torres KCL, Romano-Silva MA. Is DARPP-32 a potential therapeutic target? Expert Opin Ther Targets 2007; 11:1649-61. [DOI: 10.1517/14728222.11.12.1649] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
29
|
Murphy EMA, Defontgalland D, Costa M, Brookes SJH, Wattchow DA. Quantification of subclasses of human colonic myenteric neurons by immunoreactivity to Hu, choline acetyltransferase and nitric oxide synthase. Neurogastroenterol Motil 2007; 19:126-34. [PMID: 17244167 DOI: 10.1111/j.1365-2982.2006.00843.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An accurate method to count human enteric neurons is essential to develop a comprehensive account of the classes of nerve cells responsible for gut function and dysfunction. The majority of cells in the enteric nervous system utilize acetyl choline, or nitric oxide, or a combination of these, as neurotransmitters. Antisera raised against the RNA-binding protein Hu, were used to identify nerve cell bodies in whole mounts of the myenteric plexus of human colon, and then were utilized to analyse cells immunoreactive for combinations of choline acetyltransferase and nitric oxide synthase. Antisera to Hu provided a reliable means to count apparently all enteric nerve cell bodies, revealing 10% more cell bodies than labelling with neuron specific enolase, and no labelling of glial cells as revealed by S100. ChAT+/NOS- neurons accounted for 48% (+/-3%) of myenteric neurons and ChAT-/NOS+ neurons accounted for 43% (+/-2.5%). ChAT+/NOS+ neurons comprised 4% (+/-0.5) of the total number of neurons, and a novel class of small ChAT-/NOS- neurons, making up 5% (+/-0.9%) of all cells, was described for the first time.
Collapse
Affiliation(s)
- E M A Murphy
- Departments of Human Physiology and of Surgery, Flinders University, Adelaide, SA 5001, Australia
| | | | | | | | | |
Collapse
|
30
|
Bartoo AC, Sprunger LK, Schneider DA. Expression of the sodium channel Nav1.2 in chemically identified myenteric neurons in the guinea pig. Cell Tissue Res 2005; 324:25-32. [PMID: 16372194 DOI: 10.1007/s00441-005-0107-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2005] [Accepted: 09/28/2005] [Indexed: 10/25/2022]
Abstract
Our purpose was to identify Na(v)1.2-expressing myenteric neurons of the small and large intestine of the guinea pig by using antibodies directed against Na(v)1.2 and selected neurochemical markers. Na(v)1.2-like immunoreactivity (-li) co-localized with immunoreactivity for choline acetyltransferase in all regions, representing 45%-67% of Na(v)1.2-positive neurons. Na(v)1.2-li co-localized with immunoreactivity for the neural form of nitric oxide synthase more frequently in the colon (20% of neurons exhibiting Na(v)1.2-li) than in the ileum (8%). Co-localization of Na(v)1.2-li with immunoreactivity for a form of neurofilament (NF145) was infrequently observed in the ileum and colon. Enkephalin-immunoreactive cell bodies co-localized with Na(v)1.2-li in all regions. Few myenteric cell bodies immunoreactive for neuropeptide Y were observed in the ileum, but all co-localized with Na(v)1.2-li. This and our previous data suggest that Na(v)1.2 is widely expressed within the guinea pig enteric nervous system, including the three main classes of myenteric neurons (sensory, motor, and interneurons), and is involved in both excitatory and inhibitory pathways. Notable exceptions include the excitatory motor neurons to the longitudinal smooth muscle, the ascending interneurons of the ileum, and the myenteric neurons immunoreactive for NF145, few of which are immunoreactive for Na(v)1.2.
Collapse
Affiliation(s)
- A C Bartoo
- Program in Neuroscience, Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Washington State University, Pullman, WA 99164-6520, USA
| | | | | |
Collapse
|
31
|
Van Nassauw L, Wu M, De Jonge F, Adriaensen D, Timmermans JP. Cytoplasmic, but not nuclear, expression of the neuronal nuclei (NeuN) antibody is an exclusive feature of Dogiel type II neurons in the guinea-pig gastrointestinal tract. Histochem Cell Biol 2005; 124:369-77. [PMID: 16049694 DOI: 10.1007/s00418-005-0019-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2005] [Indexed: 01/20/2023]
Abstract
This study aimed to reveal if NeuN, a neuronal nuclei (NeuN) antibody, is a selective marker of intrinsic primary afferent neurons (IPANs) in the guinea-pig gastrointestinal tract as previously hypothesised. The NeuN immunoreactivity was found in the enteric nervous system with exception of the esophagus. Two groups of NeuN-expressing neurons were observed: neurons with immunostained nuclei and cytoplasm (NeuN(NC)) and neurons only expressing immunoreactivity in their nuclei (NeuN(N)). The NeuN(N)-immunoreactive neurons were found in the myenteric plexus of the stomach and the colon. In the stomach, none of the NeuN(N)-expressing neurons, of which 55+/-3% co-expressed calbindin, had a Dogiel type I or II morphology. The NeuN(N)-positive neurons of the colon, which did not express calbindin, did not resemble a Dogiel type II morphology either, but were small-sized neurons. The NeuN(NC)-immunoreactive neurons were observed in both the small and large intestine. These neurons were smooth-contoured and bigger-sized, resembling a Dogiel type II morphology. Some of these neurons co-expressed calbindin. The present data reveal the existence of two populations of Dogiel type II neurons, exhibiting NeuN(NC)+/calbindin+ or NeuN(NC)+/calbindin- immunoreactivity, in the intestine. Assuming that all IPANs exhibit a Dogiel type II morphology, we conclude that the cytoplasmic expression of NeuN is an exclusive feature of IPANs.
Collapse
Affiliation(s)
- Luc Van Nassauw
- Laboratory of Cell Biology and Histology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | | | | | | | | |
Collapse
|
32
|
Maifrino LBM, Amaral SON, Watanabe I, Liberti EA, De Souza RR. Trypanosoma cruzi: preliminary investigation of NADH-positive and somatostatin-immunoreactive neurons in the myenteric plexus of the mouse colon during the infection. Exp Parasitol 2005; 111:224-9. [PMID: 16202412 DOI: 10.1016/j.exppara.2005.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Revised: 08/17/2005] [Accepted: 08/17/2005] [Indexed: 11/30/2022]
Abstract
In this paper, the distribution of NADH-positive and somatostatin (SOM) immunoreactive neurons in the myenteric plexus of the colon of mice infected with Trypanosoma cruzi was studied. Ten young, male, BALB/c mice were inoculated with the Y strain of T. cruzi, 60 days previously (chronic phase of the infection). Another 10 mice were uninfected controls. Distal and proximal colonic neurons from five chronically infected mice and their controls were stained using the NADH-diaphorase method. Quantitative results showed a significant decrease of 39% in the number of neurons in the proximal colon of infected mice and 58% in the distal colon (p<0.05). SOM was localized in five animals from each group by light microscopy, using an indirect immunofluorescence technique. It was observed that there were far fewer nerve cells and fibres and less intensely stained neuron bodies and varicose SOM-positive nerve fibres in both, control and chronic infected mice. These findings could be related to the disturbances in intestinal motility observed in patients in the chronic phase of Chagas' disease.
Collapse
Affiliation(s)
- L B M Maifrino
- Department of Anatomy, Institute of Biomedical Sciences, São Paulo University, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
33
|
Spencer NJ, Hennig GW, Dickson E, Smith TK. Synchronization of enteric neuronal firing during the murine colonic MMC. J Physiol 2005; 564:829-47. [PMID: 15731189 PMCID: PMC1464464 DOI: 10.1113/jphysiol.2005.083600] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
DiI (1,1'didodecyl-3,3,3',3'-tetramethylindocarbecyanine perchlorate) retrograde labelling and intracellular electrophysiological techniques were used to investigate the mechanisms underlying the generation of spontaneously occurring colonic migrating myoelectric complexes (colonic MMCs) in mice. In isolated, intact, whole colonic preparations, simultaneous intracellular electrical recordings were made from pairs of circular muscle (CM) cells during colonic MMC activity in the presence of nifedipine (1-2 microm). During the intervals between colonic MMCs, spontaneous inhibitory junction potentials (IJPs) were always present. The amplitudes of spontaneous IJPs were highly variable (range 1-20 mV) and occurred asynchronously in the two CM cells, when separated by 1 mm in the longitudinal axis. Colonic MMCs occurred every 151 +/- 7 s in the CM and consisted of a repetitive discharge of cholinergic rapid oscillations in membrane potential (range: 1-20 mV) that were superimposed on a slow membrane depolarization (mean amplitude: 9.6 +/- 0.5 mV; half-duration: 25.9 +/- 0.7 s). During the rising (depolarizing) phase of each colonic MMC, cholinergic rapid oscillations occurred simultaneously in both CM cells, even when the two electrodes were separated by up to 15 mm along the longitudinal axis of the colon. Smaller amplitude oscillations (< 5 mV) showed poor temporal correlation between two CM cells, even at short electrode separation distances (i.e. < 1 mm in the longitudinal axis). When the two electrodes were separated by 20 mm, all cholinergic rapid oscillations and IJPs in the CM (regardless of amplitude) were rarely, if ever, coordinated in time during the colonic MMC. Cholinergic rapid oscillations were blocked by atropine (1 microm) or tetrodotoxin (1 microm). Slow waves were never recorded from any CM cells. DiI labelling showed that the maximum projection length of CM motor neurones and interneurones along the bowel was 2.8 mm and 13 mm, respectively. When recordings were made adjacent to either oral or anal cut ends of the colon, the inhibitory or excitatory phases of the colonic MMC were absent, respectively. In summary, during the colonic MMC, cholinergic rapid oscillations of similar amplitudes occur simultaneously in two CM cells separated by large distances (up to 15 mm). As this distance was found to be far greater than the projection length of any single CM motor neurone, we suggest that the generation of each discrete cholinergic rapid oscillation represents a discreet cholinergic excitatory junction potential (EJP) that involves the synaptic activation of many cholinergic motor neurones simultaneously, by synchronous firing in many myenteric interneurones. Our data also suggest that ascending excitatory and descending inhibitory nerve pathways interact and reinforce each other.
Collapse
Affiliation(s)
- Nick J Spencer
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | | | | | | |
Collapse
|
34
|
Deniz M, Kilinç M, Hatipoğlu ES. Morphological Alterations in Small Intestine of Rats with Myenteric Plexus Denervation. Eur Surg Res 2004; 36:152-8. [PMID: 15178904 DOI: 10.1159/000077257] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2003] [Accepted: 11/26/2003] [Indexed: 11/19/2022]
Abstract
We aimed to investigate the effect of myenteric denervation by benzalkonium chloride (BAC) on small intestine morphology in the rat, and whether segmental myenteric denervation alters morphology elsewhere in the small intestine. Forty male Sprague-Dawley rats were equally divided into 4 groups: control (0.9% NaCl); denervation (0.062% BAC); chemical inflammation (5% acetic acid), and intraluminal stasis produced by partial obstruction. 28 days after operation tissue samples were taken from the treated segment, 10 cm distal to the treated segment, and 20 cm proximal to the treated segment. Morphological changes and the number of ganglion cells were examined under the light microscope. BAC application reduced the number of myenteric neurons by 85% in the treated segment. Denervation increased villus height and crypt depth in the treated and proximal segments. But changes in muscle thickness were seen throughout the intestine. As a result, although myenteric plexus denervation caused mucosa morphology in the treated and proximal segments, it caused smooth muscle changes throughout the small intestine.
Collapse
Affiliation(s)
- M Deniz
- Department of Anatomy, Medical Faculty, University of Harran, Sanliurfa, Turkey.
| | | | | |
Collapse
|
35
|
Li ZS, Pham TD, Tamir H, Chen JJ, Gershon MD. Enteric dopaminergic neurons: definition, developmental lineage, and effects of extrinsic denervation. J Neurosci 2004; 24:1330-9. [PMID: 14960604 PMCID: PMC6730344 DOI: 10.1523/jneurosci.3982-03.2004] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2003] [Revised: 11/20/2003] [Accepted: 12/02/2003] [Indexed: 11/21/2022] Open
Abstract
The existence of enteric dopaminergic neurons has been suspected; however, the innervation of the gut by sympathetic nerves, in which dopamine (DA) is the norepinephrine precursor, complicates analyses of enteric DA. We now report that transcripts encoding tyrosine hydroxylase (TH) and the DA transporter (DAT) are present in the murine bowel (small intestine > stomach or colon; proximal colon > distal colon). Because sympathetic neurons are extrinsic, transcripts encoding TH and DAT in the bowel are probably derived from intrinsic neurons. TH protein was demonstrated immunocytochemically in neuronal perikarya (submucosal >> myenteric plexus; small intestine > stomach or colon). TH, DA, and DAT immunoreactivities were coincident in subsets of neurons (submucosal > myenteric) in guinea pig and mouse intestines in situ and in cultured guinea pig enteric ganglia. Surgical ablation of sympathetic nerves by extrinsic denervation of loops of the bowel did not affect DAT immunoreactivity but actually increased numbers of TH-immunoreactive neurons, expression of mRNA encoding TH and DAT, and enteric DOPAC (the specific dopamine metabolite). The fetal gut contains transiently catecholaminergic (TC) cells. TC cells are the proliferating crest-derived precursors of mature neurons that are not catecholaminergic and, thus, disappear after embryonic day (E) 14 (mouse) or E15 (rat). TC cells appear early in ontogeny, and their development/survival is dependent on mash-1 gene expression. In contrast, the intrinsic TH-expressing neurons of the murine bowel appear late (perinatally) and are mash-1 independent. We conclude that the enteric nervous system contains intrinsic dopaminergic neurons that arise from a mash-1-independent lineage of noncatecholaminergic precursors.
Collapse
Affiliation(s)
- Z S Li
- Department of Anatomy and Cell Biology, Columbia University, College of Physicians and Surgeons, New York, New York 10032, USA.
| | | | | | | | | |
Collapse
|
36
|
Anlauf M, Schäfer MKH, Eiden L, Weihe E. Chemical coding of the human gastrointestinal nervous system: cholinergic, VIPergic, and catecholaminergic phenotypes. J Comp Neurol 2003; 459:90-111. [PMID: 12629668 DOI: 10.1002/cne.10599] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The aim of this investigation was to identify the proportional neurochemical codes of enteric neurons and to determine the specific terminal fields of chemically defined nerve fibers in all parts of the human gastrointestinal (GI) tract. For this purpose, antibodies against the vesicular monoamine transporters (VMAT1/2), the vesicular acetylcholine transporter (VAChT), tyrosine hydroxylase (TH), dopamine beta-hydroxylase (DBH), serotonin (5-HT), vasoactive intestinal peptide (VIP), and protein gene product 9.5 (PGP 9.5) were used. For in situ hybridization (35)S-labeled VMAT1, VMAT2, and VAChT riboprobes were used. In all regions of the human GI tract, 50-70% of the neurons were cholinergic, as judged by staining for VAChT. The human gut unlike the rodent gut exhibits a cholinergic innervation, which is characterized by an extensive overlap with VIPergic innervation. Neurons containing VMAT2 constituted 14-20% of all intrinsic neurons in the upper GI tract, and there was an equal number of TH-positive neurons. In contrast, DBH was absent from intrinsic neurons. Cholinergic and monoaminergic phenotypes proved to be completely distinct phenotypes. In conclusion, the chemical coding of human enteric neurons reveals some similarities with that of other mammalian species, but also significant differences. VIP is a cholinergic cotransmitter in the intrinsic innervation of the human gut. The substantial overlap between VMAT2 and TH in enteric neurons indicates that the intrinsic catecholaminergic innervation is a stable component of the human GI tract throughout life. The absence of DBH from intrinsic catecholaminergic neurons indicates that these neurons have a dopaminergic phenotype.
Collapse
Affiliation(s)
- Martin Anlauf
- Department of Molecular Neuroscience, Institute of Anatomy and Cell Biology, Philipps University, Marburg, 35037 Marburg, Germany
| | | | | | | |
Collapse
|
37
|
Tichenor SD, Buxton ILO, Johnson P, O'Driscoll K, Keef KD. Excitatory motor innervation in the canine rectoanal region: role of changing receptor populations. Br J Pharmacol 2002; 137:1321-9. [PMID: 12466242 PMCID: PMC1573612 DOI: 10.1038/sj.bjp.0704987] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Motor innervation in the canine rectoanal region was examined in isolated strips of the circular muscle layer. Contractile responses to electrical field stimulation began at lower frequencies and were more persistent in the internal anal sphincter (IAS) than in the rectum. 2. Motor innervation to the IAS was almost exclusively sympathetic, since it was blocked by guanethidine (Guan 3 microM) while the response in the proximal rectum was approximately 50% muscarinic, and sensitive to the M(3) selective antagonist 4-diphenylacetoxy-N-methylpiperidine (4-DAMP, 0.1 microM) and 50% tachykinergic, and sensitive to the neurokinin 2 (NK(2)) receptor antagonist GR 94800 (1 microM). From IAS to rectum there was a gradual shift in the relative contribution of intrinsic and extrinsic neural innervation. 3. Responses to exogenously applied transmitters exhibited a similar pattern to that observed with motor innervation. Norepinephrine (NE) was most potent in the IAS and acetylcholine (ACh) and NK-A were most potent in the proximal rectum. The responses were inhibited by prazosin, 4-DAMP and GR 94800 respectively. 4. A gradient in the density of adrenergic alpha(1), muscarinic and NK(2) receptors also existed from IAS to rectum as determined by measuring the binding of [(3)H]-prazosin, [(3)H]-quinuclidinyl benzilate ([(3)H]-QNB and [(3)H]-SR-48968 to smooth muscle membranes. 5. In summary, these data suggest that the shift in motor innervation in the rectoanal region is achieved in part by changes in receptor populations available for activation by sympathetic and enteric motor neurons.
Collapse
Affiliation(s)
- Stephen D Tichenor
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, NV 89557, U.S.A
| | - Iain L O Buxton
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, NV 89557, U.S.A
| | - Paul Johnson
- Department of Physiology & Cell Biology, University of Nevada School of Medicine, Reno, Nevada, NV 89557, U.S.A
| | - Kate O'Driscoll
- Department of Physiology & Cell Biology, University of Nevada School of Medicine, Reno, Nevada, NV 89557, U.S.A
| | - Kathleen D Keef
- Department of Physiology & Cell Biology, University of Nevada School of Medicine, Reno, Nevada, NV 89557, U.S.A
- Author for correspondence:
| |
Collapse
|
38
|
Monro RL, Bertrand PP, Bornstein JC. ATP and 5-HT are the principal neurotransmitters in the descending excitatory reflex pathway of the guinea-pig ileum. Neurogastroenterol Motil 2002; 14:255-64. [PMID: 12061910 DOI: 10.1046/j.1365-2982.2002.00325.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neurotransmission underlying descending excitatory reflexes evoked by distension was studied in opened segments of guinea-pig ileum and compared with peristalsis in intact segments. The opened segments were distended by inflating a balloon against the serosa at the oral end and changes in muscle length recorded from the anal end. Distension elicited contractions in both circular (CM) and longitudinal (LM) muscle layers. Granisetron, a 5-HT(3) receptor antagonist (10 nmol L-1 to 1 micromol L-1) reduced CM contractions (24% control), without affecting the LM. The P2 receptor antagonist, pyridoxal phosphate-6-azopheyl-2',4'-disulphonic acid (PPADS; 10 micromol L-1), reduced CM contractions to 31% and LM contractions to 39%. Hexamethonium (500 micromol L-1) enhanced LM contractions, but had no effect on CM contractions. Granisetron (1 micromol L-1) had no significant effect on the threshold for peristaltic contractions in a modified Trendelenburg preparation, but decreased the decay time of these contractions by 37%. PPADS (10 micromol L-1) had no significant effect in this preparation. Thus, the descending excitatory pathways to CM and LM can be distinguished pharmacologically; the former depend on 5-HT(3) and P2 ATP receptors, the latter are independent of 5-HT(3) receptors. Nicotinic receptors may have little part in either pathway. These properties differ from conventional peristaltic reflexes, which are effectively abolished by nicotinic blockade.
Collapse
Affiliation(s)
- R L Monro
- Department of Physiology, University of Melbourne, Victoria, Australia.
| | | | | |
Collapse
|
39
|
Sencan A, Akçora B, Mir E, Sencan A, Günşar C, Arslan O, Ozer E. Does ileal reverse segment in rats with short bowel syndrome change intestinal morphology? J Pediatr Gastroenterol Nutr 2002; 34:165-8. [PMID: 11840034 DOI: 10.1097/00005176-200202000-00011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
BACKGROUND The primary goal of surgical therapy for short bowel syndrome is to increase intestinal absorptive capacity. Many surgical procedures have been described for this purpose. One of these is ileal reverse-segment procedure. This procedure after massive small-bowel resection is an alternative way to treat short bowel syndrome, but how it affects intestinal morphology in short bowel syndrome has not been investigated. The aim of this study is to investigate macroscopic and microscopic effects of reverse-segment procedure on the short bowel. METHODS Twenty rats underwent resection of 80% of the small bowel. The rats were separated into two groups (n = 10). In the first group (reverse group), a reverse segment was formed by twisting a 2-cm ileal segment 180 degrees, without damaging its vascularity. In the second group (control group), a 2-cm ileal segment was resected, preserving its mesentery, and end-to-end anastomosis was performed to maintain the intestinal passage. The segment was not twisted 180 degrees. The 2-cm proximal (jejunal) and distal (ileal) segments of the resected bowel were reserved for histologic investigation. Two months later, the rats were killed and the jejunal and ileal segments were evaluated morphologically. RESULTS In the reverse group, body weight and total intestinal length significantly increased (14% more than in the control group). The diameter of both proximal (jejunal) and distal (ileal) segments in the reverse group also increased 53.8% and 22.8%, respectively ( P < 0.05). Histologically, crypt depth and villus height of the ileal segment in the reverse group increased 15.2% and 18.2% more than in the control group ( P < 0.05). No histologic change was observed at the jejunal level except for intestinal muscle thickness. CONCLUSIONS Ileal reverse-segment procedure in rats with short bowel syndrome 1) does not cause intestinal obstruction, 2) increases total bowel length and body weight, 3) increases the diameter of both jejunal and ileal segments, and 4) increases villus height and crypt depth only at the ileal level. For this reason, reverse-segment procedure positively affects intestinal adaptation.
Collapse
Affiliation(s)
- Aydin Sencan
- Department of Pediatric Surgery, Faculty of Medicine of Celal Bayar University, Manisa, Turkey.
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Neurotrophin-3 (NT-3) promotes enteric neuronal development in vitro; nevertheless, an enteric nervous system (ENS) is present in mice lacking NT-3 or TrkC. We thus analyzed the physiological significance of NT-3 in ENS development. Subsets of neurons developing in vitro in response to NT-3 became NT-3 dependent; NT-3 withdrawal led to apoptosis, selectively in TrkC-expressing neurons. Antibodies to NT-3, which blocked the developmental response of enteric crest-derived cells to exogenous NT-3, did not inhibit neuronal development in cultures of isolated crest-derived cells but did so in mixed cultures of crest- and non-neural crest-derived cells; therefore, the endogenous NT-3 that supports enteric neuronal development is probably obtained from noncrest-derived mesenchymal cells. In mature animals, retrograde transport of (125)I-NT-3, injected into the mucosa, labeled neurons in ganglia of the submucosal but not myenteric plexus; injections of (125)I-NT-3 into myenteric ganglia, the tertiary plexus, and muscle, labeled neurons in underlying submucosal and distant myenteric ganglia. The labeling pattern suggests that NT-3-dependent submucosal neurons may be intrinsic primary afferent and/or secretomotor, whereas NT-3-dependent myenteric neurons innervate other myenteric ganglia and/or the longitudinal muscle. Myenteric neurons were increased in number and size in transgenic mice that overexpress NT-3 directed to myenteric ganglia by the promoter for dopamine beta-hydroxylase. The numbers of neurons were regionally reduced in both plexuses in mice lacking NT-3 or TrkC. A neuropoietic cytokine (CNTF) interacted with NT-3 in vitro, and if applied sequentially, compensated for NT-3 withdrawal. These observations indicate that NT-3 is required for the normal development of the ENS.
Collapse
|
41
|
Abstract
Neuroanatomical tracing techniques, and retrograde labelling in particular, are widely used tools for the analysis of neuronal pathways in the central and peripheral nervous system. Over the last 10 years, these techniques have been used extensively to identify enteric neuronal pathways. In combination with multiple-labelling immunohistochemistry, quantitative data about the projections and neurochemical profile of many functional classes of cells have been acquired. These data have revealed a high degree of organization of the neuronal plexuses, even though the different classes of nerve cell bodies appear to be randomly assorted in ganglia. Each class of neurone has a predictable target, length and polarity of axonal projection, a particular combination of neurochemicals in its cell body and distinctive morphological characteristics. The combination of retrograde labelling with targeted intracellular recording has made it possible to target small populations of cells that would rarely be sampled during random impalements. These neuroanatomical techniques have also been applied successfully to human tissue and are gradually unravelling the complexity of the human enteric nervous system.
Collapse
Affiliation(s)
- S Brookes
- Department of Human Physiology and Centre for Neuroscience, Flinders University, South Australia.
| |
Collapse
|
42
|
Abstract
The guinea-pig small intestine has been very widely used to study the physiology, pharmacology and morphology of the enteric nervous system. It also provides an ideal, simple mammalian preparation for studying how nerve cells are organised into functional circuits underlying simple behaviours. Many different types of nerve cells are present in the enteric nervous system and they show characteristic combinations of morphological features, projections, biophysical properties, neurochemicals, and receptors. To identify the different functional classes is an important prerequisite for systematic analysis of how the enteric nervous system controls normal gut behaviour. Based on combinations of multiple-labelling immunohistochemistry and retrograde tracing, it has been possible to account quantitatively for all of the neurones in the guinea-pig small intestine. This article summarises that account and updates it in the light of recent data. A total of 18 classes of neurones are currently distinguishable, including primary afferent neurones, motor neurones, interneurones, secretomotor and vasomotor neurones. It is now possible to take an individual nerve cell and use a few carefully chosen criteria to assign it to a functional class. This provides a firm anatomical foundation for the systematic analysis of how the enteric nervous system normally functions and how it goes wrong in various clinically important disorders.
Collapse
Affiliation(s)
- S J Brookes
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, South Australia 5001.
| |
Collapse
|
43
|
Iino S. Muscular innervation of the proximal duodenum of the guinea pig. ARCHIVES OF HISTOLOGY AND CYTOLOGY 2000; 63:327-43. [PMID: 11073065 DOI: 10.1679/aohc.63.327] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We investigated the muscular structure and innervation of the gastroduodenal junction in the guinea pig. In the gastroduodenal junction, the innermost layer of the circular muscle contained numerous nerve fibers and terminals. Since this nerve network continued onto the deep muscular plexus (DMP) of the duodenum, we surmised that the numerous nerve fibers in the gastroduodenal junction were specialized DMP in the most proximal part of the duodenum. The innermost layer containing many nerve fibers was about 1,000 microm in length and 100 microm in thickness in the proximal duodenum. This layer contained numerous connective tissue fibers composed of collagen and elastic fibers. Five to 30 smooth muscle cells lay in contact with each other and were surrounded by fine connective tissue. The nerve fibers in the proximal duodenum contained nerve terminals immunoreactive for choline acetyltransferase, dynorphin, enkephalin, galanin, gastrin-releasing peptide, nitric oxide synthase, substance P, and vasoactive intestinal polypeptide. Adrenergic fibers which contained tyrosine hydroxylase immunoreactivity were rare in the proximal duodenum. In the innermost layer of the proximal duodenum, there were numerous c-Kit immunopositive cells that were in contact with nerve terminals. This study allowed us to clarify the specific architecture of the most proximal portion of the duodenum. The functional significance of the proximal duodenum in relation to the electrical connection and neural cooperation of the musculature between the antrum and the duodenum is also discussed.
Collapse
Affiliation(s)
- S Iino
- Department of Anatomy, Fukui Medical University, Matsuoka, Japan.
| |
Collapse
|
44
|
Malone ED, Kannan MS, Brown DR. Evaluation of substance P as a neurotransmitter in equine jejunum. Am J Vet Res 2000; 61:1178-84. [PMID: 11039544 DOI: 10.2460/ajvr.2000.61.1178] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine whether substance P (SP) functions as a neurotransmitter in equine jejunum. SAMPLE POPULATION Samples of jejunum obtained from horses that did not have lesions in the gastrointestinal tract. PROCEDURE Jejunal smooth muscle strips, oriented in the plane of the circular or longitudinal muscle, were suspended isometrically in muscle baths. Neurotransmitter release was induced by electrical field stimulation (EFS) delivered at 2 intensities (30 and 70 V) and various frequencies on muscle strips that were maintained at low tension or were under contraction. A neurokinin-1 receptor blocker (CP-96,345) was added to baths prior to EFS to interrupt SP neurotransmission. Additionally, direct effects of SP on muscle strips were evaluated, and SP-like immunoreactivity was localized in intestinal tissues, using indirect immunofluorescence testing. RESULTS Substance P contracted circularly and longitudinally oriented muscle strips. Prior treatment with CP-96,345 altered muscle responses to SP and EFS, suggesting that SP was released from depolarized myenteric neurons. Depending on orientation of muscle strips and stimulation variables used, CP-96,345 increased or decreased the contractile response to EFS. Substance P-like immunoreactivity was detected in the myenteric plexus and circular muscle layers. CONCLUSIONS AND CLINICAL RELEVANCE Substance P appears to function as a neurotransmitter in equine jejunum. It apparently modulates smooth muscle contractility, depending on preexisting conditions. Effects of SP may be altered in some forms of intestinal dysfunction. Altering SP neurotransmission in the jejunum may provide a therapeutic option for motility disorders of horses that are unresponsive to adrenergic and cholinergic drugs.
Collapse
Affiliation(s)
- E D Malone
- Department of Clinical and Population Sciences, College of Veterinary Medicine, University of Minnesota, St Paul 55108, USA
| | | | | |
Collapse
|
45
|
Abstract
This study examined whether myenteric neurons activate submucosal vasodilator pathways in in vitro combined submucosal-myenteric plexus preparations from guinea pig ileum. Exposed myenteric ganglia were electrically stimulated, and changes in the outside diameter of submucosal arterioles were monitored in adjoining tissue by videomicroscopy. Stimulation up to 18 mm from the recording site evoked large TTX-sensitive vasodilations in both orad and aborad directions. In double-chamber baths, which isolated the stimulating myenteric chamber from the recording submucosal chamber, hexamethonium or the muscarinic antagonist 4-diphenylacetoxy-N-(2-chloroethyl)-piperdine hydrochloride (4-DAMP) almost completely blocked dilations when superfused in the submucosal chamber. When hexamethonium was placed in the myenteric chamber approximately 50% of responses were hexamethonium sensitive in both orad and aboard orientations. The addition of 4-DAMP or substitution of Ca(2+)-free, 12 mM Mg(2+) solution did not cause further inhibition. These results demonstrate that polysynaptic pathways in the myenteric plexus projecting orad and aborad can activate submucosal vasodilator neurons. These pathways could coordinate intestinal blood flow and motility.
Collapse
Affiliation(s)
- S Vanner
- Gastrointestinal Diseases Research Unit, Departments of Biology, Medicine, and Physiology, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
46
|
Vanden Berghe P, Tack J, Coulie B, Andrioli A, Bellon E, Janssens J. Synaptic transmission induces transient Ca2+ concentration changes in cultured myenteric neurones. Neurogastroenterol Motil 2000; 12:117-24. [PMID: 10771494 DOI: 10.1046/j.1365-2982.2000.00196.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The enteric nervous system controls most of the gastrointestinal functions. We applied confocal microscopy and the Ca2+ indicator Fluo-3 as an optical approach to study synaptic activation in cultures of myenteric neurones. The optical recording of [Ca2+]i (the intracellular Ca2+ concentration) was used to monitor activation, since [Ca2+]i is crucial in the coupling between neuronal excitation and the activation of several intracellular events. Extracellular fibre tract stimulation (2 s, 30 Hz) caused a transient [Ca2+]i rise in a subset of neurones (50%). These transients lasted for 5.2 s (n=36), with an average amplitude of 3.4 +/- 1.3 times the basal concentration. The removal of extracellular Ca2+ (n=15) or the application of 10-6 M tetrodotoxin (n=16) blocked this response. The N-type Ca2+-channel blocker omega-conotoxin (5 x 10 -7M) abolished the [Ca2+]i increase, while blockade of L-type and P/Q type Ca2+ channels had no effect. Single stimuli evoked a [Ca2+]i rise in the processes. omega-conotoxin-sensitive postsynaptic events required repetitive stimulation. Cholinergic blockade did not inhibit the [Ca2+]i rise in all neurones, suggesting that, besides acetylcholine, other neurotransmitters are involved. Optical imaging of [Ca2+]i can be used to study synaptic spread of activation in enteric neuronal circuits expressed in culture.
Collapse
Affiliation(s)
- P Vanden Berghe
- Center for Gastroenterological Research, Catholic University Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
47
|
Aspects of the genetic control of development of the autonomous nervous system. Russ J Dev Biol 2000. [DOI: 10.1007/bf02758810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
48
|
Moore BA, Vanner S. Properties of synaptic inputs from myenteric neurons innervating submucosal S neurons in guinea pig ileum. Am J Physiol Gastrointest Liver Physiol 2000; 278:G273-80. [PMID: 10666052 DOI: 10.1152/ajpgi.2000.278.2.g273] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This study examined synaptic inputs from myenteric neurons innervating submucosal neurons. Intracellular recordings were obtained from submucosal S neurons in guinea pig ileal preparations in vitro, and synaptic inputs were recorded in response to electrical stimulation of exposed myenteric plexus. Most S neurons received synaptic inputs [>80% fast (f) excitatory postsynaptic potentials (EPSP), >30% slow (s) EPSPs] from the myenteric plexus. Synaptic potentials were recorded significant distances aboral (fEPSPs, 25 mm; sEPSPs, 10 mm) but not oral to the stimulating site. When preparations were studied in a double-chamber bath that chemically isolated the stimulating "myenteric chamber" from the recording side "submucosal chamber," all fEPSPs were blocked by hexamethonium in the submucosal chamber, but not by a combination of nicotinic, purinergic, and 5-hydroxytryptamine-3 receptor antagonists in the myenteric chamber. In 15% of cells, a stimulus train elicited prolonged bursts of fEPSPs (>30 s duration) that were blocked by hexamethonium. These findings suggest that most submucosal S neurons receive synaptic inputs from predominantly anally projecting myenteric neurons. These inputs are poised to coordinate intestinal motility and secretion.
Collapse
Affiliation(s)
- B A Moore
- Gastrointestinal Diseases Research Unit, Departments of Medicine, Physiology, and Biology, Queen's University, Kingston, Ontario, Canada K7L 5G2
| | | |
Collapse
|
49
|
Nakajima K, Tooyama I, Yasuhara O, Aimi Y, Kimura H. Immunohistochemical demonstration of choline acetyltransferase of a peripheral type (pChAT) in the enteric nervous system of rats. J Chem Neuroanat 2000; 18:31-40. [PMID: 10708917 DOI: 10.1016/s0891-0618(99)00058-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Using a recently developed antiserum against a splice variant (pChAT) of choline acetyltransferase, the enzyme which synthesizes acetylcholine, we carried out an immunohistochemical examination in the digestive canal of rats. Positive staining was exclusively localized to neuronal cells and fibers. Positive somata were distributed widely in the intramural ganglia throughout the digestive tract from the esophagus to the rectum. Double staining indicated that, in the rat, virtually all pChAT immunoreactive somata exhibited histochemical activity for acetylcholinesterase but not for NADPH-diaphorase. In the guinea pig, however, there were a few neurons possessing both pChAT and NADPH-diaphorase. We also found a few neuronal somata which were positive for acetylcholinesterase but not for pChAT. The results suggest that pChAT immunohistochemistry is useful for studying the enteric cholinergic system.
Collapse
Affiliation(s)
- K Nakajima
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta, Otsu, Japan
| | | | | | | | | |
Collapse
|
50
|
Reiche D, Pfannkuche H, Michel K, Hoppe S, Schemann M. Immunohistochemical evidence for the presence of calbindin containing neurones in the myenteric plexus of the guinea-pig stomach. Neurosci Lett 1999; 270:71-4. [PMID: 10462100 DOI: 10.1016/s0304-3940(99)00471-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Using immunohistochemistry we studied the presence of calbindin in myenteric neurones of the guinea-pig stomach. A rabbit anti recombinant rat calbindin-D28k (CALB) stained 12, 12 and 25% of all myenteric neurones in the fundus, corpus and antrum, respectively. A rabbit anti recombinant human CALB stained 4, 4 and 16%, respectively. A mouse monoclonal antibody against the chicken intestinal CALB showed no labelling. In all regions most calbindin neurones were additionally choline acetyltransferase (ChAT) positive while only a small proportion exhibited nicotinamide adenosine dinucleatide phosphate (NADPH)-diaphorase-activity. Numerous calbindin-positive varicose nerve fibres were present within myenteric ganglia, rarely detectable in the muscle layers and virtually absent in the mucosa. This study demonstrated that a supopulation of cholinergic myenteric neurones in the stomach contain calbindin and suggested that many of these neurones fulfil interneuronal tasks.
Collapse
Affiliation(s)
- D Reiche
- Department of Physiology, School of Veterinary Medicine, Hannover, Germany
| | | | | | | | | |
Collapse
|