1
|
McDermott KE, Barnes CA. An immunohistochemical protocol for visualizing adrenergic receptor subtypes in the rhesus macaque hippocampus. J Neurosci Methods 2025; 418:110410. [PMID: 40024458 PMCID: PMC12011526 DOI: 10.1016/j.jneumeth.2025.110410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/21/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND The noradrenergic system is an important modulatory system in the brain, and dysfunction in this system is implicated in multiple neurodegenerative diseases. The study of this system in neuronal tissues relies on the availability of specific antibodies but to date no protocol exists for immunohistological visualization of α1, α2, and β adrenergic receptors in rhesus macaques. NEW METHOD Here, we test the ability of various commercially available antibodies to detect these receptors in the primate brain and develop a protocol for visualization of receptors alongside noradrenergic axons and glial and vascular cells that interact with the noradrenergic system. RESULTS Of the eleven primary antibodies for adrenergic receptors tested, five did not produce staining at any concentration. The remaining six antibodies underwent a preadsorption protocol to determine specificity of the antibody to its' immunogen sequence. Two antibodies failed this test, indicating they were binding to other targets in the brain. We then determined optimum concentrations for the remaining four antibodies. Additionally, we develop an immunofluorescence protocol that allows for the visualization of each AR - α1, α2a, or β1 - along with adrenergic axons as well as with glia and vasculature. COMPARISON WITH EXISTING METHODS While protocols exist for visualizing receptors in rodents, this is the first protocol for use in nonhuman primates. CONCLUSIONS Seven out of the eleven tested antibodies were inaccurate, highlighting the importance of comprehensive testing. The stringent tests conducted here suggest that some commercially available antibodies can reliably detect adrenergic receptor subtypes in nonhuman primate tissue.
Collapse
Affiliation(s)
- Kelsey E McDermott
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ 85721, United States.
| | - Carol A Barnes
- Departments of Psychology, Neurology and Neuroscience, University of Arizona, Tucson, AZ 85721, United States.
| |
Collapse
|
2
|
Uribe-Mariño A, Falconi-Sobrinho LL, Castiblanco-Urbina MA, Pigatto GR, Ullah F, da Silva JA, Coimbra NC. Alpha 1- and Beta-norepinephrinergic receptors of dorsomedial and ventromedial hypothalamic nuclei modulate panic attack-like defensive behaviour elicited by diencephalic GABAergic neurotransmission disinhibition. Pharmacol Biochem Behav 2024; 236:173710. [PMID: 38262489 DOI: 10.1016/j.pbb.2024.173710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/25/2024]
Abstract
Gamma-aminobutyric acid (GABA) disinhibition in medial hypothalamus (MH) nuclei of rats elicits some defensive reactions that are considered panic attack-like behaviours. Recent evidence showed that the norepinephrine-mediated system modulates fear-related defensive behaviours organised by MH neurons at least in part via noradrenergic receptors recruitment on midbrain tegmentum. However, it is unknown whether noradrenergic receptors of the MH also modulate the panic attack-like reactions. The aim of this work was to investigate the distribution of noradrenergic receptors in MH, and the effects of either α1-, α2- or β-noradrenergic receptors blockade in the MH on defensive behaviours elaborated by hypothalamic nuclei. Defensive behaviours were evaluated after the microinjection of the selective GABAA receptor antagonist bicuculline into the MH that was preceded by microinjection of either WB4101, RX821002, propranolol (α1-, α2- and β-noradrenergic receptor selective antagonists, respectively), or physiological saline into the MH of male Wistar rats. The α1-, α2- and β-noradrenergic receptors were found in neuronal perikarya of all MH nuclei, and the α2-noradrenergic receptor were also found on glial cells mainly situated in the ventrolateral division of the ventromedial hypothalamic nucleus. The α1- and β-noradrenergic receptors blockade in the MH decreased defensive attention and escape reactions elicited by the intra-MH microinjections of bicuculline. These findings suggest that, despite the profuse distributions of α1-, α2- and β-noradrenergic receptors in the MH, both α1- and β-noradrenergic receptor- rather than α2-noradrenergic receptor-signalling in MH are critical for the neuromodulation of panic-like behaviour.
Collapse
Affiliation(s)
- Andrés Uribe-Mariño
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil
| | - Luiz Luciano Falconi-Sobrinho
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil; NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Avenida do Café, 2450, Ribeirão Preto 14220-030, São Paulo, Brazil
| | - Maria Angélica Castiblanco-Urbina
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil
| | - Glauce Regina Pigatto
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Avenida do Café, 2450, Ribeirão Preto 14220-030, São Paulo, Brazil
| | - Farhad Ullah
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil; Department of Animal Sciences, Quaid-i-Azam University, 45320 Islamabad, Pakistan; Department of Eastern Medicine and Surgery, School of Medical and Health Sciences of the University of Poonch Rawalakot, Azad Jammu and Kashmir, Pakistan
| | - Juliana Almeida da Silva
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil; NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Avenida do Café, 2450, Ribeirão Preto 14220-030, São Paulo, Brazil
| | - Norberto Cysne Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil; NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto 14049-900, São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Avenida do Café, 2450, Ribeirão Preto 14220-030, São Paulo, Brazil..
| |
Collapse
|
3
|
Zhao L, Mühleisen TW, Pelzer DI, Burger B, Beins EC, Forstner AJ, Herms S, Hoffmann P, Amunts K, Palomero-Gallagher N, Cichon S. Relationships between neurotransmitter receptor densities and expression levels of their corresponding genes in the human hippocampus. Neuroimage 2023; 273:120095. [PMID: 37030412 PMCID: PMC10167541 DOI: 10.1016/j.neuroimage.2023.120095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/02/2023] [Accepted: 04/05/2023] [Indexed: 04/08/2023] Open
Abstract
Neurotransmitter receptors are key molecules in signal transmission, their alterations are associated with brain dysfunction. Relationships between receptors and their corresponding genes are poorly understood, especially in humans. We combined in vitro receptor autoradiography and RNA sequencing to quantify, in the same tissue samples (7 subjects), the densities of 14 receptors and expression levels of their corresponding 43 genes in the Cornu Ammonis (CA) and dentate gyrus (DG) of human hippocampus. Significant differences in receptor densities between both structures were found only for metabotropic receptors, whereas significant differences in RNA expression levels mostly pertained ionotropic receptors. Receptor fingerprints of CA and DG differ in shapes but have similar sizes; the opposite holds true for their "RNA fingerprints", which represent the expression levels of multiple genes in a single area. In addition, the correlation coefficients between receptor densities and corresponding gene expression levels vary widely and the mean correlation strength was weak-to-moderate. Our results suggest that receptor densities are not only controlled by corresponding RNA expression levels, but also by multiple regionally specific post-translational factors.
Collapse
|
4
|
Biggane JP, Xu K, Goldenstein BL, Davis KL, Luger EJ, Davis BA, Jurgens CWD, Perez DM, Porter JE, Doze VA. Pharmacological characterization of the α 2A-adrenergic receptor inhibiting rat hippocampal CA3 epileptiform activity: comparison of ligand efficacy and potency. J Recept Signal Transduct Res 2022; 42:580-587. [PMID: 35984443 DOI: 10.1080/10799893.2022.2110896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The mechanism underlying the antiepileptic actions of norepinephrine (NE) is unclear with conflicting results. Our objectives are to conclusively delineate the specific adrenergic receptor (AR) involved in attenuating hippocampal CA3 epileptiform activity and assess compounds for lead drug development. We utilized the picrotoxin model of seizure generation in rat brain slices using electrophysiological recordings. Epinephrine (EPI) reduced epileptiform burst frequency in a concentration-dependent manner. To identify the specific receptor involved in this response, the equilibrium dissociation constants were determined for a panel of ligands and compared with established binding values for α1, α2, and other receptor subtypes. Correlation and slope of unity were found for the α2A-AR, but not other receptors. Effects of different chemical classes of α-AR agonists at inhibiting epileptiform activity by potency (pEC50) and relative efficacy (RE) were determined. Compared with NE (pEC50, 6.20; RE, 100%), dexmedetomidine, an imidazoline (pEC50, 8.59; RE, 67.1%), and guanabenz, a guanidine (pEC50, 7.94; RE, 37.9%), exhibited the highest potency (pEC50). In contrast, the catecholamines, EPI (pEC50, 6.95; RE, 120%) and α-methyl-NE (pEC50, 6.38; RE, 116%) were the most efficacious. These findings confirm that CA3 epileptiform activity is mediated solely by α2A-ARs without activation of other receptor systems. These findings suggest a pharmacotherapeutic target for treating epilepsy and highlight the need for selective and efficacious α2A-AR agonists that can cross the blood-brain barrier.
Collapse
Affiliation(s)
- Joseph P Biggane
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Ke Xu
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Brianna L Goldenstein
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Kylie L Davis
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Elizabeth J Luger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Bethany A Davis
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Chris W D Jurgens
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Dianne M Perez
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH, USA
| | - James E Porter
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Van A Doze
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| |
Collapse
|
5
|
Perez DM. Current Developments on the Role of α 1-Adrenergic Receptors in Cognition, Cardioprotection, and Metabolism. Front Cell Dev Biol 2021; 9:652152. [PMID: 34113612 PMCID: PMC8185284 DOI: 10.3389/fcell.2021.652152] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/29/2021] [Indexed: 12/13/2022] Open
Abstract
The α1-adrenergic receptors (ARs) are G-protein coupled receptors that bind the endogenous catecholamines, norepinephrine, and epinephrine. They play a key role in the regulation of the sympathetic nervous system along with β and α2-AR family members. While all of the adrenergic receptors bind with similar affinity to the catecholamines, they can regulate different physiologies and pathophysiologies in the body because they couple to different G-proteins and signal transduction pathways, commonly in opposition to one another. While α1-AR subtypes (α1A, α1B, α1C) have long been known to be primary regulators of vascular smooth muscle contraction, blood pressure, and cardiac hypertrophy, their role in neurotransmission, improving cognition, protecting the heart during ischemia and failure, and regulating whole body and organ metabolism are not well known and are more recent developments. These advancements have been made possible through the development of transgenic and knockout mouse models and more selective ligands to advance their research. Here, we will review the recent literature to provide new insights into these physiological functions and possible use as a therapeutic target.
Collapse
Affiliation(s)
- Dianne M Perez
- The Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH, United States
| |
Collapse
|
6
|
Perez DM. α 1-Adrenergic Receptors in Neurotransmission, Synaptic Plasticity, and Cognition. Front Pharmacol 2020; 11:581098. [PMID: 33117176 PMCID: PMC7553051 DOI: 10.3389/fphar.2020.581098] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022] Open
Abstract
α1-adrenergic receptors are G-Protein Coupled Receptors that are involved in neurotransmission and regulate the sympathetic nervous system through binding and activating the neurotransmitter, norepinephrine, and the neurohormone, epinephrine. There are three α1-adrenergic receptor subtypes (α1A, α1B, α1D) that are known to play various roles in neurotransmission and cognition. They are related to two other adrenergic receptor families that also bind norepinephrine and epinephrine, the β- and α2-, each with three subtypes (β1, β2, β3, α2A, α2B, α2C). Previous studies assessing the roles of α1-adrenergic receptors in neurotransmission and cognition have been inconsistent. This was due to the use of poorly-selective ligands and many of these studies were published before the characterization of the cloned receptor subtypes and the subsequent development of animal models. With the availability of more-selective ligands and the development of animal models, a clearer picture of their role in cognition and neurotransmission can be assessed. In this review, we highlight the significant role that the α1-adrenergic receptor plays in regulating synaptic efficacy, both short and long-term synaptic plasticity, and its regulation of different types of memory. We will also present evidence that the α1-adrenergic receptors, and particularly the α1A-adrenergic receptor subtype, are a potentially good target to treat a wide variety of neurological conditions with diminished cognition.
Collapse
Affiliation(s)
- Dianne M Perez
- The Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH, United States
| |
Collapse
|
7
|
Gaidin SG, Zinchenko VP, Sergeev AI, Teplov IY, Mal'tseva VN, Kosenkov AM. Activation of alpha‐2 adrenergic receptors stimulates GABA release by astrocytes. Glia 2020; 68:1114-1130. [DOI: 10.1002/glia.23763] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/26/2019] [Accepted: 12/03/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Sergei G. Gaidin
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences” Pushchino Russia
| | - Valery P. Zinchenko
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences” Pushchino Russia
| | - Alexander I. Sergeev
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences” Pushchino Russia
| | - Ilia Y. Teplov
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences” Pushchino Russia
| | - Valentina N. Mal'tseva
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences” Pushchino Russia
| | - Artem M. Kosenkov
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences” Pushchino Russia
| |
Collapse
|
8
|
Palomero-Gallagher N, Zilles K. Cyto- and receptor architectonic mapping of the human brain. HANDBOOK OF CLINICAL NEUROLOGY 2018; 150:355-387. [PMID: 29496153 DOI: 10.1016/b978-0-444-63639-3.00024-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mapping of the human brain is more than the generation of an atlas-based parcellation of brain regions using histologic or histochemical criteria. It is the attempt to provide a topographically informed model of the structural and functional organization of the brain. To achieve this goal a multimodal atlas of the detailed microscopic and neurochemical structure of the brain must be registered to a stereotaxic reference space or brain, which also serves as reference for topographic assignment of functional data, e.g., functional magnet resonance imaging, electroencephalography, or magnetoencephalography, as well as metabolic imaging, e.g., positron emission tomography. Although classic maps remain pioneering steps, they do not match recent concepts of the functional organization in many regions, and suffer from methodic drawbacks. This chapter provides a summary of the recent status of human brain mapping, which is based on multimodal approaches integrating results of quantitative cyto- and receptor architectonic studies with focus on the cerebral cortex in a widely used reference brain. Descriptions of the methods for observer-independent and statistically testable cytoarchitectonic parcellations, quantitative multireceptor mapping, and registration to the reference brain, including the concept of probability maps and a toolbox for using the maps in functional neuroimaging studies, are provided.
Collapse
Affiliation(s)
- Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH, Aachen, Germany
| | - Karl Zilles
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH, Aachen, Germany; JARA-BRAIN, Jülich-Aachen Research Alliance, Jülich, Germany.
| |
Collapse
|
9
|
Mann T, Zilles K, Klawitter F, Cremer M, Hawlitschka A, Palomero-Gallagher N, Schmitt O, Wree A. Acetylcholine Neurotransmitter Receptor Densities in the Striatum of Hemiparkinsonian Rats Following Botulinum Neurotoxin-A Injection. Front Neuroanat 2018; 12:65. [PMID: 30147647 PMCID: PMC6095974 DOI: 10.3389/fnana.2018.00065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 07/19/2018] [Indexed: 11/13/2022] Open
Abstract
Cholinergic neurotransmission has a pivotal function in the caudate-putamen, and is highly associated with the pathophysiology of Parkinson's disease. Here, we investigated long-term changes in the densities of the muscarinic receptor subtypes M1, M2, M3 (mAchRs) and the nicotinic receptor subtype α4β2 (nAchRs) in the striatum of the 6-OHDA-induced hemiparkinsonian (hemi-PD) rat model using quantitative in vitro receptor autoradiography. Hemi-PD rats exhibited an ipsilateral decrease in striatal mAchR densities between 6 and 16%. Moreover, a massive and constant decrease in striatal nAchR density by 57% was found. A second goal of the study was to disclose receptor-related mechanisms for the positive motor effect of intrastriatally injected Botulinum neurotoxin-A (BoNT-A) in hemi-PD rats in the apomorphine rotation test. Therefore, the effect of intrastriatally injected BoNT-A in control and hemi-PD rats on mAchR and nAchR densities was analyzed and compared to control animals or vehicle-injected hemi-PD rats. BoNT-A administration slightly reduced interhemispheric differences of mAchR and nAchR densities in hemi-PD rats. Importantly, the BoNT-A effect on striatal nAchRs significantly correlated with behavioral testing after apomorphine application. This study gives novel insights of 6-OHDA-induced effects on striatal mAchR and nAchR densities, and partly explains the therapeutic effect of BoNT-A in hemi-PD rats on a cellular level.
Collapse
Affiliation(s)
- Teresa Mann
- Rostock University Medical Center, Institute of Anatomy, Rostock, Germany
| | - Karl Zilles
- Research Centre Jülich, Institute of Neuroscience and Medicine INM-1, Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Aachen, Germany.,JARA-Translational Brain Medicine, Aachen, Germany
| | - Felix Klawitter
- Rostock University Medical Center, Institute of Anatomy, Rostock, Germany
| | - Markus Cremer
- Research Centre Jülich, Institute of Neuroscience and Medicine INM-1, Jülich, Germany
| | | | - Nicola Palomero-Gallagher
- Research Centre Jülich, Institute of Neuroscience and Medicine INM-1, Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Aachen, Germany
| | - Oliver Schmitt
- Rostock University Medical Center, Institute of Anatomy, Rostock, Germany
| | - Andreas Wree
- Rostock University Medical Center, Institute of Anatomy, Rostock, Germany
| |
Collapse
|
10
|
Antipova V, Wree A, Holzmann C, Mann T, Palomero-Gallagher N, Zilles K, Schmitt O, Hawlitschka A. Unilateral Botulinum Neurotoxin-A Injection into the Striatum of C57BL/6 Mice Leads to a Different Motor Behavior Compared with Rats. Toxins (Basel) 2018; 10:E295. [PMID: 30018211 PMCID: PMC6070800 DOI: 10.3390/toxins10070295] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 07/13/2018] [Accepted: 07/15/2018] [Indexed: 12/26/2022] Open
Abstract
Different morphological changes in the caudate-putamen (CPu) of naïve rats and mice were observed after intrastriatal botulinum neurotoxin-A (BoNT-A) injection. For this purpose we here studied various motor behaviors in mice (n = 46) longitudinally up to 9 months after intrastriatal BoNT-A administration as previously reported for rats, and compared both outcomes. Apomorphine- and amphetamine-induced rotational behavior, spontaneous motor behavior, as well as lateralized neglect were studied in mice after the injection of single doses of BoNT-A into the right CPu, comparing them with sham-injected animals. Unilateral intrastriatal injection of BoNT-A in mice induced significantly increased contralateral apomorphine-induced rotations for 1 to 3 months, as well as significantly increased contralateral amphetamine-induced rotations 1 to 9 months after injection. In rats (n = 28), unilateral BoNT-A injection also induced significantly increased contralateral apomorphine-induced rotations 3 months after injection, but did not provoke amphetamine-induced rotations at all. Lateralized sensorimotor integration, forelimb preference, and forelimb stepping were significantly impaired on the left side. The differences in motor behaviors between rats and mice may be caused by different BoNT-A effects on cholinergic and catecholaminergic fibers in rat and mouse striata, interspecies differences in striatal receptor densities, and different connectomes of the basal ganglia.
Collapse
Affiliation(s)
- Veronica Antipova
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, D-18057 Rostock, Germany.
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Macroscopic and Clinical Anatomy, Medical University of Graz, Harrachgasse 21/1, A-8010 Graz, Austria.
| | - Andreas Wree
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, D-18057 Rostock, Germany.
| | - Carsten Holzmann
- Institute of Medical Genetics, Rostock University Medical Center, Ernst-Heydemann-Strasse 8, D-18057 Rostock, Germany.
| | - Teresa Mann
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, D-18057 Rostock, Germany.
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine INM-1, Research Center Jülich, D-52425 Jülich, Germany.
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, D-52062 Aachen, Germany.
| | - Karl Zilles
- Institute of Neuroscience and Medicine INM-1, Research Center Jülich, D-52425 Jülich, Germany.
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, D-52062 Aachen, Germany.
- JARA-Translational Brain Medicine, D-52062 Aachen, Germany.
| | - Oliver Schmitt
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, D-18057 Rostock, Germany.
| | - Alexander Hawlitschka
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, D-18057 Rostock, Germany.
| |
Collapse
|
11
|
Mann T, Zilles K, Dikow H, Hellfritsch A, Cremer M, Piel M, Rösch F, Hawlitschka A, Schmitt O, Wree A. Dopamine, Noradrenaline and Serotonin Receptor Densities in the Striatum of Hemiparkinsonian Rats following Botulinum Neurotoxin-A Injection. Neuroscience 2018; 374:187-204. [PMID: 29421436 DOI: 10.1016/j.neuroscience.2018.01.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 01/23/2018] [Accepted: 01/26/2018] [Indexed: 11/25/2022]
Abstract
Parkinson's disease (PD) is characterized by a degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) that causes a dopamine (DA) deficit in the caudate-putamen (CPu) accompanied by compensatory changes in other neurotransmitter systems. These changes result in severe motor and non-motor symptoms. To disclose the role of various receptor binding sites for DA, noradrenaline, and serotonin in the hemiparkinsonian (hemi-PD) rat model induced by unilateral 6-hydroxydopamine (6-OHDA) injection, the densities of D1, D2/D3, α1, α2, and 5HT2A receptors were longitudinally visualized and measured in the CPu of hemi-PD rats by quantitative in vitro receptor autoradiography. We found a moderate increase in D1 receptor density 3 weeks post lesion that decreased during longer survival times, a significant increase of D2/D3 receptor density, and 50% reduction in 5HT2A receptor density. α1 receptor density remained unaltered in hemi-PD and α2 receptors demonstrated a slight right-left difference increasing with post lesion survival. In a second step, the possible role of receptors on the known reduction of apomorphine-induced rotations in hemi-PD rats by intrastriatally injected Botulinum neurotoxin-A (BoNT-A) was analyzed by measuring the receptor densities after BoNT-A injection. The application of this neurotoxin reduced D2/D3 receptor density, whereas the other receptors mainly remained unaltered. Our results provide novel data for an understanding of the postlesional plasticity of dopaminergic, noradrenergic and serotonergic receptors in the hemi-PD rat model. The results further suggest a therapeutic effect of BoNT-A on the impaired motor behavior of hemi-PD rats by reducing the interhemispheric imbalance in D2/D3 receptor density.
Collapse
Affiliation(s)
- T Mann
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, D-18057 Rostock, Germany
| | - K Zilles
- Institute of Neuroscience and Medicine INM-1, Research Center Jülich, D-52425 Jülich, Germany; JARA - Translational Brain Medicine, and Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, D-52062 Aachen, Germany
| | - H Dikow
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, D-18057 Rostock, Germany
| | - A Hellfritsch
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, D-18057 Rostock, Germany
| | - M Cremer
- Institute of Neuroscience and Medicine INM-1, Research Center Jülich, D-52425 Jülich, Germany
| | - M Piel
- Institute of Nuclear Chemistry, Johannes Gutenberg University of Mainz, Fritz-Strassmann-Weg 2, D-55128 Mainz, Germany
| | - F Rösch
- Institute of Nuclear Chemistry, Johannes Gutenberg University of Mainz, Fritz-Strassmann-Weg 2, D-55128 Mainz, Germany
| | - A Hawlitschka
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, D-18057 Rostock, Germany
| | - O Schmitt
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, D-18057 Rostock, Germany
| | - A Wree
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, D-18057 Rostock, Germany.
| |
Collapse
|
12
|
Noradrenergic dysregulation in the pathophysiology of PTSD. Exp Neurol 2016; 284:181-195. [PMID: 27222130 DOI: 10.1016/j.expneurol.2016.05.014] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/07/2016] [Accepted: 05/09/2016] [Indexed: 12/17/2022]
Abstract
A central role for noradrenergic dysregulation in the pathophysiology of post-traumatic stress disorder (PTSD) is increasingly suggested by both clinical and basic neuroscience research. Here, we integrate recent findings from clinical and animal research with the earlier literature. We first review the evidence for net upregulation of the noradrenergic system and its responsivity to stress in individuals with PTSD. Next, we trace the evidence that the α1 noradrenergic receptor antagonist prazosin decreases many of the symptoms of PTSD from initial clinical observations, to case series, to randomized controlled trials. Finally, we review the basic science work that has begun to explain the mechanism for this efficacy, as well as to explore its possible limitations and areas for further advancement. We suggest a view of the noradrenergic system as a central, modifiable link in a network of interconnected stress-response systems, which also includes the amygdala and its modulation by medial prefrontal cortex. Particular attention is paid to the evidence for bidirectional signaling between noradrenaline and corticotropin-releasing factor (CRF) in coordinating these interconnected systems. The multiple different ways in which the sensitivity and reactivity of the noradrenergic system may be altered in PTSD are highlighted, as is the evidence for possible heterogeneity in the pathophysiology of PTSD between different individuals who appear clinically similar. We conclude by noting the importance moving forward of improved measures of noradrenergic functioning in clinical populations, which will allow better recognition of clinical heterogeneity and further assessment of the functional implications of different aspects of noradrenergic dysregulation.
Collapse
|
13
|
Schröder H. Cellular and subcellular distribution of receptors in the entorhinal—hippocampal system: Morphologic and biochemical aspects. Hippocampus 2013. [DOI: 10.1002/hipo.1993.4500030717] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hannsjörg Schröder
- Institut für Physiologische Chemie und Pathobiochemie, Johannes Gutenberg‐Universität Mainz, Mainz, Germany
| |
Collapse
|
14
|
Perez DM, Doze VA. Cardiac and neuroprotection regulated by α(1)-adrenergic receptor subtypes. J Recept Signal Transduct Res 2011; 31:98-110. [PMID: 21338248 DOI: 10.3109/10799893.2010.550008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Sympathetic nervous system regulation by the α(1)-adrenergic receptor (AR) subtypes (α(1A), α(1B), α(1D)) is complex, whereby chronic activity can be either detrimental or protective for both heart and brain function. This review will summarize the evidence that this dual regulation can be mediated through the different α(1)-AR subtypes in the context of cardiac hypertrophy, heart failure, apoptosis, ischemic preconditioning, neurogenesis, locomotion, neurodegeneration, cognition, neuroplasticity, depression, anxiety, epilepsy, and mental illness.
Collapse
Affiliation(s)
- Dianne M Perez
- Department of Molecular Cardiology, NB50, The Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA.
| | | |
Collapse
|
15
|
Haghir H, Kovac S, Speckmann EJ, Zilles K, Gorji A. Patterns of neurotransmitter receptor distributions following cortical spreading depression. Neuroscience 2009; 163:1340-52. [DOI: 10.1016/j.neuroscience.2009.07.067] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 07/24/2009] [Accepted: 07/26/2009] [Indexed: 01/30/2023]
|
16
|
Post-training infusion of glutamate into the bed nucleus of the stria terminalis enhanced inhibitory avoidance memory: an effect involving norepinephrine. Neurobiol Learn Mem 2009; 91:456-65. [PMID: 19186212 DOI: 10.1016/j.nlm.2009.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 01/10/2009] [Accepted: 01/12/2009] [Indexed: 11/22/2022]
Abstract
This study examined an interaction between glutamate and norepinephrine in the bed nucleus of the stria terminalis (BNST) in modulating affective memory formation. Male Wistar rats with indwelling cannulae in the BNST were trained on a one-trial step-through inhibitory avoidance task and received pre- or post-training intra-BNST infusion of glutamate, norepinephrine or their antagonists. Results of the 1-day test indicated that post-training intra-BNST infusion of DL-2-amino-5-phosphonovaleric acid (APV) impaired retention in a dose- and time-dependent manner, while infusion of glutamate had an opposite effect. Co-infusion of 0.2microg glutamate and 0.02microg norepinephrine resulted in marked retention enhancement by summating non-apparent effects of the two drugs given at a sub-enhancing dose. The amnesic effect of 5.0microg APV was ameliorated by 0.02microg norepinephrine, while the memory enhancing effect of 1.0microg glutamate was attenuated by 5.0microg propranolol. These findings suggest that training on an inhibitory avoidance task may alter glutamate neurotransmission, which by activating NMDA receptors releases norepinephrine to modulate memory formation via beta adrenoceptors in the BNST.
Collapse
|
17
|
|
18
|
Belmalih A, Borra E, Contini M, Gerbella M, Rozzi S, Luppino G. A multiarchitectonic approach for the definition of functionally distinct areas and domains in the monkey frontal lobe. J Anat 2007; 211:199-211. [PMID: 17623035 PMCID: PMC2375766 DOI: 10.1111/j.1469-7580.2007.00775.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Over the last century, anatomical studies have shown that the cerebral cortex can be subdivided into structurally distinct regions, giving rise to a new branch of neuroanatomy: 'architectonics'. Since then, architectonics has been often accused of being overly subjective, and its validity for the definition of functionally different cortical fields has been seriously questioned. Since the late 1980s, however, the problem of localization has become particularly important in functional studies of the primate motor cortex, because of evidence that (1) the primate motor cortex is made up of a mosaic of functionally specialized areas and (2) the human motor cortex shares several general organizational principles with the monkey motor cortex. Studies of the macaque agranular frontal cortex that used a multimodal cyto-, myelo- and immuno-architectonic approach have shown that architectonic borders can be reliably and consistently defined across different individuals, even at a qualitative level of analysis. The validity of this approach has been confirmed by its ability to localize functionally distinct areas precisely and to predict the existence of new functional areas. After more than a century, architectonics as a discipline goes far beyond its original aim of generating cortical maps.
Collapse
Affiliation(s)
| | - Elena Borra
- Dipartimento di Neuroscienze, Sezione di Fisiologia, Università di ParmaItaly
| | - Massimo Contini
- Dipartimento di Anatomia, Istologia e Medicina Legale, Sezione di Anatomia, Università degli studi di FirenzeItaly
| | - Marzio Gerbella
- Dipartimento di Neuroscienze, Sezione di Fisiologia, Università di ParmaItaly
| | - Stefano Rozzi
- Dipartimento di Neuroscienze, Sezione di Fisiologia, Università di ParmaItaly
| | - Giuseppe Luppino
- Dipartimento di Neuroscienze, Sezione di Fisiologia, Università di ParmaItaly
| |
Collapse
|
19
|
Sterin-Borda L, Furlan C, Orman B, Borda E. Differential regulation on human skin fibroblast by alpha1 adrenergic receptor subtypes. Biochem Pharmacol 2007; 74:1401-12. [PMID: 17714696 DOI: 10.1016/j.bcp.2007.06.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Revised: 06/04/2007] [Accepted: 06/28/2007] [Indexed: 11/30/2022]
Abstract
Alpha 1 adrenoceptor (alpha1-AR) regulation of DNA synthesis was studied in human neonatal foreskin fibroblast. Saturation assay with a specific radioligand for alpha1 adrenergic [3H]-prazosin revealed two saturated and specific binding sites with high or low affinity. Competitive binding assay with different antagonist subtypes, defined pharmacologically three major types of alpha1-AR. The alpha1-AR agonists (from 1x10(-10) to 1x10(-4) M) triggered a biphasic action on DNA synthesis reaching maximal stimulation at 1x10(-9) M and maximal inhibition at 1x10(-6) M. Prazosin, abolished the stimulatory (pA2: 9.24) and inhibitory (pA2: 8.80) actions of alpha1-AR agonists. The alpha1-AR stimulation resulted in the activation of phosphoinositide turnover (InsP) via phospholipase C (PLC) involving calcium/calmodulin (CaM) and nitric oxide synthase (NOS) that correlates with the DNA synthesis increment; whereas the inhibition resulted in a decrease of cyclic AMP (cAMP) accumulation via adenylate cyclase inhibition. The potency displayed by the specific antagonists tested in binding, DNA synthesis, InsP and NOS at low agonist concentration suggests that they can be elicited by the activation of the same receptor (alpha1B-AR subtype); while the decrement in DNA synthesis and cAMP at high concentration account by the activation of alpha1D-AR coupled to Gi protein. Non-functional alpha1A-AR in neonatal human foreskin fibroblast was observed. Results suggest that the expression of alpha1-AR subtypes on human skin fibroblast may differentially activate signaling pathways that modulate physiological response of the cells.
Collapse
Affiliation(s)
- Leonor Sterin-Borda
- Pharmacology Unit, School of Dentistry, University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
20
|
Abstract
Norepinephrine's role in the dentate gyrus is assessed based on a review of what is known about its innervation and receptor patterns and its functional effects at both cellular and behavioral levels. The data support seven hypotheses: (1) Norepinephrine's functional actions are primarily mediated by beta adrenoceptors and include electrophysiological enhancement of responses to excitatory input and glycogenolytic metabolic support of excitatory synaptic activity. (2) At the cellular level, locus coeruleus burst release of norepinephrine transiently inhibits feedforward interneurons and either excites or inhibits subpopulations of feedback interneurons. Consistent with reduced feedforward inhibition, granule cell firing is transiently increased. Concomitant EEG effects include transient increases in theta power and decreases in beta and gamma power. (3) Norepinephrine selectively promotes the processing of medial perforant path spatial input. This effect is mediated both through short- and long-term potentiation of cell excitability and through delayed potentiation of synaptic input. A critical level of norepinephrine release is required for long-term effects to norepinephrine alone. Norepinephrine release switches early phase frequency-induced long-term potentiation of perforant path input to an enduring late phase form and can reinstate decayed long-term potentiation. Norepinephrine also promotes frequency-induced potentiation of granule cell output at the mossy fiber to CA3 connection. (4) Local increases in norepinephrine accompany glutamate release and release of other neurotransmitters providing a mechanism for norepinephrine enhancement effects independent of locus coeruleus firing. (5) Stimuli, such as novelty and reward and punishment, which activate locus coeruleus neurons, enhance responses to medial perforant path input and engage late phase frequency-induced long-term potentiation through beta adrenoceptor activation. (6) Behavioral studies are consistent with the mechanistic evidence for a norepinephrine role in promoting learning and memory and assisting retrieval. (7) The overall profile suggests lower levels of norepinephrine may facilitate pattern completion or memory retrieval while higher levels would recruit global remapping and promote long-term episodic memory.
Collapse
Affiliation(s)
- Carolyn W Harley
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada.
| |
Collapse
|
21
|
|
22
|
Papay R, Gaivin R, Jha A, McCune DF, McGrath JC, Rodrigo MC, Simpson PC, Doze VA, Perez DM. Localization of the mouse alpha1A-adrenergic receptor (AR) in the brain: alpha1AAR is expressed in neurons, GABAergic interneurons, and NG2 oligodendrocyte progenitors. J Comp Neurol 2006; 497:209-22. [PMID: 16705673 DOI: 10.1002/cne.20992] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
alpha(1)-Adrenergic receptors (ARs) are not well defined in the central nervous system. The particular cell types and areas that express these receptors are uncertain because of the lack of high avidity antibodies and selective ligands. We have developed transgenic mice that either systemically overexpress the human alpha(1A)-AR subtype fused with the enhanced green fluorescent protein (EGFP) or express the EGFP protein alone under the control of the mouse alpha(1A)-AR promoter. We confirm our transgenic model against the alpha(1A)-AR knockout mouse, which expresses the LacZ gene in place of the coding region for the alpha(1A)-AR. By using these models, we have now determined cellular localization of the alpha(1A)-AR in the brain, at the protein level. The alpha(1A)-AR or the EGFP protein is expressed prominently in neuronal cells in the cerebral cortex, hippocampus, hypothalamus, midbrain, pontine olivary nuclei, trigeminal nuclei, cerebellum, and spinal cord. The types of neurons were diverse, and the alpha(1A)-AR colocalized with markers for glutamic acid decarboxylase (GAD), gamma-aminobutyric acid (GABA), and N-methyl-D-aspartate (NMDA) receptors. Recordings from alpha(1A)-AR EGFP-expressing cells in the stratum oriens of the hippocampal CA1 region confirmed that these cells were interneurons. We could not detect expression of the alpha(1A)-AR in mature astrocytes, oligodendrocytes, or cerebral blood vessels, but we could detect the alpha(1A)-AR in oligodendrocyte progenitors. We conclude that the alpha(1A)-AR is abundant in the brain, expressed in various types of neurons, and may regulate the function of oligodendrocyte progenitors, interneurons, GABA, and NMDA receptor containing neurons.
Collapse
Affiliation(s)
- Robert Papay
- Department of Molecular Cardiology, Lerner Research Institute, The Cleveland Clinic Foundation, OH 44195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Szot P, White SS, Greenup JL, Leverenz JB, Peskind ER, Raskind MA. Alpha1-adrenoreceptor in human hippocampus: binding and receptor subtype mRNA expression. ACTA ACUST UNITED AC 2006; 139:367-71. [PMID: 16039007 DOI: 10.1016/j.molbrainres.2005.06.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Revised: 05/26/2005] [Accepted: 06/01/2005] [Indexed: 11/21/2022]
Abstract
Alpha1-adrenoreceptors (AR), of which three subtypes exist (alpha1A-, alpha1B- and alpha1D-AR) are G-protein-coupled receptors that mediate the actions of norepinephrine and epinephrine both peripherally and centrally. In the CNS, alpha1-ARs are found in the hippocampus where animal studies have shown the ability of alpha1-AR agents to modulate long-term potentiation and memory; however, the precise distribution of alpha1-AR expression and its subtypes in the human brain is unknown making functional comparisons difficult. In the human hippocampus, 3H-prazosin (alpha1-AR antagonist) labels only the dentate gyrus (molecular, granule and polymorphic layers) and the stratum lucidum of the CA3 homogeneously. Human alpha1A-AR mRNA in the hippocampus is observed only in the dentate gyrus granule cell layer, while alpha1D-AR mRNA expression is observed only in the pyramidal cell layers of CA1, CA2 and CA3, regions where 3H-prazosin did not bind. alpha1B-AR mRNA is not expressed at detectable levels in the human hippocampus. These results confirm a difference in hippocampal alpha1-AR localization between rat and humans and further describe a difference in the localization of the alpha1A- and alpha1D-AR mRNA subtype between rats and humans.
Collapse
Affiliation(s)
- Patricia Szot
- Northwest Network Mental Illness Research, Education and Clinical Center (S-116), VA Puget Sound Health Care System, S-116 MIRECC, 1660 S. Columbian Way, Seattle, WA 98108, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Topic B, Willuhn I, Palomero-Gallagher N, Zilles K, Huston JP, Hasenöhrl RU. Impaired maze performance in aged rats is accompanied by increased density of NMDA, 5-HT1A, and α-adrenoceptor binding in hippocampus. Hippocampus 2006; 17:68-77. [PMID: 17111411 DOI: 10.1002/hipo.20246] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Using quantitative receptor autoradiography, we assessed binding site densities and distribution patterns of glutamate, GABA(A), acetylcholine (ACh), and monoamine receptors in the hippocampus of 32-month-old Fischer 344/Brown Norway rats. Prior to autoradiography, the rats were divided into two groups according to their retention performance in a water maze reference memory task, which was assessed 1 week after 8 days of daily maze training. The animals of the inferior group showed less long-term retention of the hidden-platform task but did not differ from superior rats in their navigation performance during place training and cued trials. The decreased retention performance in the group of inferior learners was primarily accompanied by increased alpha(1)-adrenoceptors in all hippocampal subregions under inspection (CA1-CA4 and dentate gyrus), while elevated alpha(2)-adrenoceptor binding was observed in the CA1 region and DG. Furthermore, inferior learners had higher NMDA binding in the CA2 and CA4 and increased 5-HT(1A) binding sites in the CA2, CA3, and CA4 region. No significant differences between inferior and superior learners were evident with regard to AMPA, kainate, GABA(A), muscarinergic M(1), dopamine D(1), and 5-HT(2) binding densities in any hippocampal region analyzed. These results show that increased NMDA, 5-HT(1A), and alpha-adrenoceptor binding in the hippocampus is associated with a decline in spatial memory. The increased receptor binding observed in the group of old rats with inferior maze performance might be the result of neural adaptation triggered by age-related changes in synaptic connectivity and/or synaptic activity.
Collapse
Affiliation(s)
- B Topic
- Institute of Physiological Psychology, University of Düsseldorf, Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Bozkurt A, Zilles K, Schleicher A, Kamper L, Arigita ES, Uylings HBM, Kötter R. Distributions of transmitter receptors in the macaque cingulate cortex. Neuroimage 2005; 25:219-29. [PMID: 15734357 DOI: 10.1016/j.neuroimage.2004.10.040] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2004] [Revised: 10/18/2004] [Accepted: 10/28/2004] [Indexed: 11/24/2022] Open
Abstract
The primate cingulate cortex is structurally and functionally complex. Although no studies have investigated the regional densities of multiple neurotransmitter receptor systems, such information would be useful for assessing its functions and disease vulnerabilities. We quantified nine different receptors in five transmitter systems by in vitro autoradiographic mapping of the cingulate cortex of macaque monkeys with the aim to link cytoarchitectonic regions and functional specialization. Receptor mapping substantiated the subdivision of the cingulate cortex into anterior versus posterior regions. In anterior cingulate cortex (ACC) AMPA glutamatergic receptors and GABA(A) inhibitory receptors were present in significantly higher concentrations than the modulatory alpha-adrenergic and muscarinic receptors. These differences were absent in the posterior cingulate cortex (PCC). By contrast, NMDA receptor densities were significantly higher than AMPA receptor densities in PCC, but not in ACC. The midcingulate area 24' shared more features with ACC than PCC. This area was characterized by the highest ratios of NMDA receptors to alpha-adrenergic, muscarinic and 5-HT2 receptors among all cingulate regions. Compared to rostrocaudal divisions, the differences between dorsoventral subdivisions a-c were small in all regions of cingulate cortex, and only muscarinic and alpha-adrenergic receptor densities followed the degree of cytoarchitectonic differentiation. We conclude that multiple receptor mapping reveals a highly differentiated classification of cingulate cortex with a characteristic predominance of fast ionotropic excitatory and inhibitory receptors in ACC, but a strong and varied complement of NMDA and metabotropic receptors in PCC.
Collapse
Affiliation(s)
- Ahmet Bozkurt
- C. and O. Vogt Brain Research Institute, Heinrich Heine University, D-40225 Düsseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|
26
|
Papay R, Gaivin R, McCune DF, Rorabaugh BR, Macklin WB, McGrath JC, Perez DM. Mouse alpha1B-adrenergic receptor is expressed in neurons and NG2 oligodendrocytes. J Comp Neurol 2004; 478:1-10. [PMID: 15334645 DOI: 10.1002/cne.20215] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
alpha1-Adrenergic receptors (ARs) are well-known mediators of the sympathetic nervous system, are highly abundant in the brain, but are the least understood in the central nervous system. The particular cell types in the brain that contain these receptors or their functions are not known because of the lack of high avidity antibodies and selective ligands. We developed transgenic mice that endogenously overexpress the alpha1B-AR subtype fused with the enhanced green fluorescent protein (EGFP). Endogenous expression was obtained by using a 3.4 kb fragment of the mouse alpha1B-AR promoter. Using this model, we determined cellular localization of the alpha1B-AR throughout the brain. The alpha1B-AR-EGFP fusion protein is expressed in neurons throughout the brain and in the Purkinje cells of the cerebellum. The alpha1B-AR is also expressed in NG2 oligodendrocyte precursor cells in both neonatal cell cultures and in the adult cerebral cortex, but is weakly expressed in mature oligodendrocytes. The alpha1B-AR was not observed in astrocytes or in cerebral vascular smooth muscle, cell types previously suggested to contain alpha1-ARs. We conclude that the alpha1B-AR is highly abundant throughout the brain, predominately in neurons, and may be involved in the development of the oligodendrocyte. In adult NG2 cells, implicated in stem cell-like functions, the alpha1B-AR may also play a role. This is the first report of a transgenic tagged-GPCR approach to determine in vivo localization of a receptor.
Collapse
Affiliation(s)
- Robert Papay
- Department of Molecular Cardiology, The Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Schmitt O, Pakura M, Aach T, Hömke L, Böhme M, Bock S, Preusse S. Analysis of nerve fibers and their distribution in histologic sections of the human brain. Microsc Res Tech 2004; 63:220-43. [PMID: 14988920 DOI: 10.1002/jemt.20033] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The field of quantitative analysis and subsequent mapping of the cerebral cortex has developed rapidly. New powerful tools have been applied to investigate large regions of complex folded gyrencephalic cortices in order to detect structural transition regions that might partition different cortical fields of disjunct neuronal functions. We have developed a new mapping approach based on axoarchitectonics, a method of cortical visualization that previously has been used only indirectly with regard to myeloarchitectonics. Myeloarchitectonic visualization has the disadvantage of producing strong agglomerative effects of closely neighbored nerve fibers. Therefore, single and neurofunctional-relevant parameters such as axonal branchings, axon areas, and axon numbers have not been determinable with satisfying precision. As a result, different staining techniques had to be explored in order to achieve a suitable histologic staining for axon visualization. The best results were obtained after modifying the Naoumenko-Feigin staining for axons. From these contrast-rich stained histologic sections, videomicroscopic digital image tiles were generated and analyzed using a new fiber analysis framework. Finally, the analysis of histologic images provided topologic ordered parameters of axons that were transferred into parameter maps. The axon parameter maps were analyzed further via a recently developed traverse generating algorithm that calculated test lines oriented perpendicular to the cortical surface and white matter border. The gray value coded parameters of the parameter maps were then transferred into profile arrays. These profile arrays were statistically analyzed by a reliable excess mass approach we recently developed. We found that specific axonal parameters are preferentially distributed throughout granular and agranular types of cortex. Furthermore, our new procedure detected transition regions originally defined by changes of cytoarchitectonic layering. Statistically significant inhomogeneities of the distribution of certain axon quantities were shown to indicate a subparcellation of areas 4 and 6. The quantification techniques established here for the analysis of spatial axon distributions within larger regions of the cerebral cortex are suitable to detect inhomogeneities of laminar axon patterns. Hence, these techniques can be recommended for systematic and observer-supported cortical area mapping and parcellation studies.
Collapse
Affiliation(s)
- O Schmitt
- Institute of Anatomy, University of Rostock, D-18055 Rostock, Germany.
| | | | | | | | | | | | | |
Collapse
|
28
|
Bartesaghi R, Severi S, Guidi S. Effects of early environment on pyramidal neuron morphology in field CA1 of the guinea-pig. Neuroscience 2003; 116:715-32. [PMID: 12573714 DOI: 10.1016/s0306-4522(02)00753-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We previously demonstrated that early isolation has profound effects on the morphology of the dentate granule cells and field CA3 pyramidal neurons. Aim of the present study was to analyze the effects of early environment on the morphology of field CA1 pyramidal neurons, the third element of the hippocampal trisynaptic circuit. The dendritic trees and the soma of field CA1 pyramidal neurons were quantified in Golgi-stained brains of guinea-pigs of both sexes raised in either a social or an isolated environment. Based on the different pattern of the apical dendritic tree two major classes of CA1 pyramidal neurons were recognized (monotufted neurons and bitufted neurons). In males isolation induced in both neuron types a decrease in the number of low order apical branches but in the apical tree of the monotufted neurons isolation induced an increase in the number of intermediate order branches and dendritic length. In isolated females the apical tree of the monotufted neurons showed a very scarce atrophy. In contrast, the apical tree of the bitufted neurons from isolated females showed a decrease in the number of low and intermediate order branches and dendritic length. In isolated males the basal tree of the bitufted neurons had a large decrease in the total number of branches and dendritic length. In contrast, in isolated females the basal tree of both neuron types showed an increase in the number of low order branches. In males but not in females isolation caused a reduction in the soma dimensions of both neuron types. No isolation-induced changes were observed in dendritic spine density in either the apical or basal dendrites. The results demonstrate remarkable structural changes in CA1 pyramidal neurons following early isolation and a different reactivity to environment of the two CA1 pyramidal neuron types, their apical and basal trees and the two sexes. The neuroanatomical changes caused by isolation in field CA1 and in the two other elements of the trisynaptic circuit are likely to be associated with changes in the physiology of the hippocampal formation and in cognitive processes such as learning and memory in which the hippocampal formation plays a pivotal role.
Collapse
Affiliation(s)
- R Bartesaghi
- Dipartimento di Fisiologia Umana e Generale, Università di Bologna, Italy.
| | | | | |
Collapse
|
29
|
Schmitt O, Hömke L, Dümbgen L. Detection of cortical transition regions utilizing statistical analyses of excess masses. Neuroimage 2003; 19:42-63. [PMID: 12781726 DOI: 10.1016/s1053-8119(03)00040-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
A new statistical approach for observer-assisted detection of transition regions of adjacent cytoarchitectonic areas within the human cerebral cortex was developed. This method analyzes the structural information of cytoarchitectural profiles (e.g., the modality of a gray level intensity distribution) based on observed excess mass differences verified by a suitable statistical test. Profiles were generated by scanning the cerebral cortex over respective regions of interest that were oriented to trajectories running parallel to the orientation of cell columns. For each single profile, determination of excess masses provided evidence for a certain number of peaks in the cell density, thereby avoiding fluctuation due solely to sampling anomalies. Comparing such excess mass measurements by means of multiple local rank tests over a wide range of profiles allowed for the detection of cytoarchitectural inhomogeneities at respective given confidence levels. Special parameters (e.g., level of significance, width of targeted region, number of peaks) then could be adapted to specific pattern recognition problems in lamination analyses. Such analyses of excess masses provided a general tool for observer-assisted evaluation of profile arrays. This observer-assisted statistical method was applied to five different cortical examples. It detected the same transition regions that had been determined earlier through direct examination of samples, despite cortical convexities, concavities, and some minor staining inhomogeneities.
Collapse
Affiliation(s)
- Oliver Schmitt
- Institute of Anatomy, University of Rostock, Gertrudenstr. 9, Germany.
| | | | | |
Collapse
|
30
|
Patel S, Fernandez-Garcia E, Hutson PH, Patel S. An in vivo binding assay to determine central alpha(1)-adrenoceptor occupancy using [(3)H]prazosin. BRAIN RESEARCH. BRAIN RESEARCH PROTOCOLS 2001; 8:191-8. [PMID: 11733195 DOI: 10.1016/s1385-299x(01)00110-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
An alpha(1) adrenoceptor (alpha(1)-AdR) assay using [(3)H]prazosin binding in mouse brain is described which allows in vivo determination of central alpha(1)-AdR occupancy for ligands with alpha(1)-AdR affinity. Binding of [3H]prazosin in rat and mouse brain membranes in vitro was used to characterise the pharmacological profile of alpha(1)-AdRs in order to determine any potential species variations. Saturation and displacement studies yielded comparable affinity and pharmacological profile for [(3)H]prazosin binding in mouse and rat brain homogenates. These studies confirmed the absence of species variation for ligands in central alpha(1)-AdR pharmacology which is in good agreement with previous studies in rat brain. Subsequently, in vivo binding of [(3)H]prazosin in mouse whole brain was used to measure the occupancy of a number of AdR ligands. Timecourse studies revealed that a [3H]prazosin (5 mu Ci/mouse) pretreatment time of at least 20 min following intravenous (i.v.) administration was required for optimal specific binding. Ligands were administered systemically 40 min prior to i.v. administration of radiolabel. The alpha(1)-adrenoceptor ligands prazosin (ED(50)=0.15 mg/kg i.p.), benoxathian (0.52 mg/kg i.p.) and phentolamine (51 mg/kg i.p.) were all able to block in vivo [(3)H]prazosin binding from mouse brain. In addition, receptor occupancy values for a number of compounds including haloperidol (ED(50)=0.83 mg/kg s.c.), clozapine (2.2 mg/kg s.c.) and MDL-100907 [R(+)-alpha-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenylethyl)]-4-piperidine-methanol], (10 mg/kg s.c.)], which possess high to moderate affinity at alpha(1)-adrenoceptors, were also determined. These results suggest that in the mouse, [(3)H]prazosin binding can be used to measure in vivo receptor occupancy of ligands with affinity at central alpha(1)-adrenoceptors.
Collapse
Affiliation(s)
- S Patel
- Merck and Co Inc., Sumneytown Pike, West Point, PA 19486, USA.
| | | | | | | |
Collapse
|
31
|
Abstract
Different studies have led to our present knowledge of the membrane receptors responsible for mediating the responses to the endogenous catecholamines. These receptors were initially differentiated into alpha - and beta-adrenoceptors. Alpha-adrenoceptors mediate most excitatory functions, and were in turn differentiated in the 1970s into alpha(1)- and alpha(2)-adrenoceptors. The alpha(1)-adrenoceptor type usually mediates responses in the effector organ. The alpha(2)-adrenoceptor type is located presynaptically and regulates the release of the neurotransmitter but it is also present in postsynaptical locations. Both alpha-adrenoceptors are important for the control of vascular tone, but we now know that neither alpha(1)- nor alpha(2)-adrenoceptors constitute homogeneous groups. Each alpha-adrenoceptor type can be subdivided into different subtypes and in this review we have turned our attention to these. The alpha(1)- and the alpha(2)-adrenoceptor subtypes were previously defined pharmacologically by functional and binding studies, and later they were also isolated and identified using cloning methods. In fact, the study of alpha-adrenoceptors was revolutionized by the techniques of molecular biology which permitted us to establish the present classification. The present classification of alpha(1)-adrenoceptors stands as follows: alpha(1A)-adrenoceptor subtype (cloned alpha(1c) and redesignated alpha(1a/c)), alpha(1B)-adrenoceptor subtype (cloned alpha(1b)) and alpha(1D)-adrenoceptor subtype (cloned alpha(1d) and redesignated alpha(1a/d)). It has not been easy to establish the distribution of these alpha(1)-adrenoceptor subtypes in the various organs and tissues, or to define the functional response mediated by each one in the different species studied. Nevertheless it seems that the alpha(1A)-adrenoceptor subtype is more implicated in the maintenance of vascular basal tone and of arterial blood pressure in conscious animals, and the alpha(1B)-adrenoceptor subtype participates more in responses to exogenous agonists. It has also been observed that the expression of the alpha(1B)-adrenoceptor subtype can be modified in pathological situations and particular attention has been paid to the regulation of expression of this receptor. The present classification of alpha(2)-adrenoceptors stands as follows: alpha(2A/D)-adrenoceptor subtype (today it is accepted that the alpha(2A)-adrenoceptor subtype and the alpha(2D)-adrenoceptor subtype are the same receptor but they were identified in different species: the alpha(2A) in human and the alpha(2D) in rat); alpha(2B)-adrenoceptor subtype (cloned alpha(2b)) and alpha(2C)-adrenoceptor subtype (cloned alpha(2c)). Today we know that the alpha(2A/D)- and alpha(2B)-adrenoceptor subtypes in particular control arterial contraction, and that the alpha(2C)-adrenoceptor subtype is responsible above all for venous vasoconstriction. We also know that the alpha(2 A/D)-adrenoceptor subtype fundamentally mediates the central effects of the alpha(2)-adrenoceptor agonists. Despite the validity of the above-mentioned classification of the alpha(1)- and alpha(2)-adrenoceptors, it seems clear that the contractions of a large number of tissues including smooth muscle are mediated by more than one alpha-adrenoceptor subtype. Moreover, few ligands recognise only one alpha-adrenoceptor subtype and the lack of specifity in the different drugs for each one limits their administration in vivo and their therapeutic use.
Collapse
MESH Headings
- Adrenergic alpha-Agonists/pharmacology
- Adrenergic alpha-Antagonists/pharmacology
- Animals
- Humans
- Receptors, Adrenergic, alpha/classification
- Receptors, Adrenergic, alpha/physiology
- Receptors, Adrenergic, alpha-1/classification
- Receptors, Adrenergic, alpha-1/physiology
- Receptors, Adrenergic, alpha-2/classification
- Receptors, Adrenergic, alpha-2/physiology
- Terminology as Topic
Collapse
Affiliation(s)
- B Civantos Calzada
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid, Spain
| | | |
Collapse
|
32
|
Honner V, Docherty JR. Investigation of the subtypes of alpha1-adrenoceptor mediating contractions of rat vas deferens. Br J Pharmacol 1999; 128:1323-31. [PMID: 10578148 PMCID: PMC1571755 DOI: 10.1038/sj.bjp.0702913] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1 The subtypes of alpha1-adrenoceptor mediating contractions of rat vas deferens to endogenous and exogenous noradrenaline and to the exogenous agonists methoxamine, phenylephrine and A61603 have been examined. 2 The effects of antagonists on the shape of concentration-response curves, both tonic and phasic, to the four agonists were analysed. Prazosin produced parallel shifts in all cases. Particularly for RS 17053 against noradrenaline, there was some evidence for a resistant component of the agonist response. High concentrations of RS 17053 (1-10 microM) virtually abolished tonic contractions but phasic contractions were resistant. 3 A series of nine antagonists (the above and WB4101, benoxathian, phentolamine, BMY 7378, HV 723, spiperone) were investigated against contractions to noradrenaline. The correlation with the potency of the series of alpha1-adrenoceptor antagonists against contractions to noradrenaline was significant only for the alpha1A-adrenoceptor ligand binding site (r=0.88, n=9, P<0.01). 4 In epididymal portions (nifedipine 10 microM), the isometric contraction to a single electrical pulse is alpha1-adrenoceptor mediated. The correlation with ligand binding sites for 11 antagonists (the above plus ARC 239 and (+)-niguldipine) was significant only for the alpha1D-adrenoceptor subtype (r=0.65, n=11, P<0.05). 5 In conclusion, tonic contractions of rat vas deferens produced by exogenous agonists are mediated predominantly by alpha1A-adrenoceptors, although a second subtype of receptor may additionally be involved in phasic contractions. Nerve-stimulation evoked alpha1-adrenoceptor mediated contractions seem to predominantly involve non-alpha1A-adrenoceptors, and the receptor involved resembles the alpha1D-receptor.
Collapse
Affiliation(s)
- V Honner
- Department of Physiology, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | | |
Collapse
|
33
|
Acosta-Martinez M, Fiber JM, Brown RD, Etgen AM. Localization of alpha1B-adrenergic receptor in female rat brain regions involved in stress and neuroendocrine function. Neurochem Int 1999; 35:383-91. [PMID: 10517699 DOI: 10.1016/s0197-0186(99)00077-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Activation of alpha1-adrenergic receptors has been linked to the control of blood pressure, neuroendocrine secretion, reproductive behavior and mood. The present study describes the distribution of alpha1B-adrenergic receptor immunoreactivity in female rat brain regions involved in stress and neuroendocrine function. The pattern of immunolabeling seen resembles that obtained in previous in situ hybridization studies. Several hypothalamic areas that control pituitary function showed intense fiber and/or cell immunolabeling, including the paraventricular nucleus of the hypothalamus, the supraoptic nucleus, and the median eminence. Some regions such as the arcuate nucleus, the median eminence, and dorsal hypothalamus exhibit intense labeling of axonal varicosities, while other regions exhibit only perikarya immunolabeling. alpha1B-adrenergic receptor immunoreactivity was also observed in large pyramidal neurons of layer V of the cerebral cortex, the frontal cortex showing a particularly strong immunoreactivity. Virtually all thalamic regions were labeled, especially the lateral and ventral areas. In addition, labeled cells were present in hippocampus, the medial septum, the horizontal and vertical limbs of the diagonal band of Broca, and the caudate putamen. Finally, some midbrain and hindbrain regions important for motor function were immunoreactive. Because ligands specific for alpha1-adrenergic receptor subtypes are not available, the present immunocytochemical study not only addresses the subcellular and regional distribution of alpha1B-adrenergic receptors but may also provide clues about receptor subtype-specific function.
Collapse
Affiliation(s)
- M Acosta-Martinez
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | | | |
Collapse
|
34
|
Sirviö J, MacDonald E. Central alpha1-adrenoceptors: their role in the modulation of attention and memory formation. Pharmacol Ther 1999; 83:49-65. [PMID: 10501595 DOI: 10.1016/s0163-7258(99)00017-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Adrenoceptors presently are classified into three main subclasses: alpha1-, alpha2-, and beta-receptors, each with three (perhaps more) subtypes. All three alpha1-adrenoceptor subtypes are present in rat brain. The purpose of this review is to assess the role of alpha1-adrenoceptors in the modulation of synaptic transmission and plasticity, as well as their ability to modulate higher cerebral functions, such as attentional and memory processes. However, since there are no truly subtype-specific agonists or antagonists available at present, it is virtually impossible to allocate a particular central effect to one or other of the subtypes. The activation of alpha1-adrenoceptors reduces the firing probability and glutamate release in the cornu ammonis of the hippocampus. Alpha1-Adrenoceptors may flexibly modulate weak and strong activation of the pyramidal neurones in the neocortex. Alpha1-Adrenoceptors play only a minor role in the modulation of long-term potentiation in the hippocampus, and may influence many brain functions also via non-neuronal mechanisms. since glial cells can express alpha1-adrenoceptors. At the behavioural level, the activation of alpha1-adrenoceptors promotes vigilance and influences working memory and behavioural activation, while having only a minor role in the modulation of long-term memory.
Collapse
Affiliation(s)
- J Sirviö
- A.I. Virtanen Institute, University of Kuopio, Department of Neurology, Kuopio University Hospital, Finland
| | | |
Collapse
|
35
|
Abstract
According to the classical view of the nervous system, the numerically superior glial cells have inferior roles in that they provide an ideal environment for neuronal-cell function. However, there is a wave of new information suggesting that glia are intimately involved in the active control of neuronal activity and synaptic neurotransmission. Recent evidence shows that glia respond to neuronal activity with an elevation of their internal Ca2+ concentration, which triggers the release of chemical transmitters from glia themselves and, in turn, causes feedback regulation of neuronal activity and synaptic strength. In view of these new insights, this article suggests that perisynaptic Schwann cells and synaptically associated astrocytes should be viewed as integral modulatory elements of tripartite synapses.
Collapse
Affiliation(s)
- A Araque
- Laboratory of Cellular Signaling, Dept of Zoology and Genetics, Iowa State University, Ames, IA 50011, USA
| | | | | | | |
Collapse
|
36
|
Kobayashi Y, Amaral DG. Chemical neuroanatomy of the hippocampal formation and the perirhinal and parahippocampal cortices. HANDBOOK OF CHEMICAL NEUROANATOMY 1999. [DOI: 10.1016/s0924-8196(99)80026-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
37
|
Pussinen R, Sirviö J. Minor role for alpha1-adrenoceptors in the facilitation of induction and early maintenance of long-term potentiation in the CA1 field of the hippocampus. J Neurosci Res 1998; 51:309-15. [PMID: 9486766 DOI: 10.1002/(sici)1097-4547(19980201)51:3<309::aid-jnr4>3.0.co;2-k] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The influences of noradrenaline on the modulation of learning and memory functions, as well as synaptic plasticity, e.g., long-term potentiation (LTP), via beta-adrenoceptors are well documented, whereas the role of alpha1-adrenoceptors has not been studied extensively. Therefore, the effects of alpha1-agonists (ST 587 and methoxamine) on the induction of LTP were examined in the CA1 area of the hippocampus in vitro. Submaximal LTP in extracellular excitatory postsynaptic potentials (EPSP) was induced with theta burst stimulation using 4 bursts. The effects of a beta-agonist, isoproterenol, on synaptic potentiation were studied as a comparison in this preparation. At a concentration of 1 microM, ST 587 slightly increased the magnitude of potentiation in EPSPs (measured 30 min after stimulation) compared to a control pathway potentiated 30 min before drug infusion, whereas a lower concentration (0.3 microM) was not effective. Methoxamine did not induce any increase in the amount of submaximal LTP at concentrations of 0.3, 1.0, or 3.0 microM. Isoproterenol (1.5 microM) increased the amount of LTP when measured 30 min after stimulation, and also transiently increased synaptic transmission, measured both in the slope and amplitude of the field EPSP in the prepotentiated control pathway. Thus, the present results indicate that (1) alpha1-adrenoceptors have only a minor role in hippocampal synaptic plasticity in the CA1 area, but (2) the synaptic plasticity in the CA1 area of the hippocampus assessed by induction and early maintenance of LTP in vitro can be modulated through beta-adrenoceptors.
Collapse
Affiliation(s)
- R Pussinen
- A.I. Virtanen Institute and Department of Neuroscience and Neurology, University of Kuopio, Finland
| | | |
Collapse
|
38
|
Geyer S, Schleicher A, Zilles K. The somatosensory cortex of human: cytoarchitecture and regional distributions of receptor-binding sites. Neuroimage 1997; 6:27-45. [PMID: 9245653 DOI: 10.1006/nimg.1997.0271] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The aim of this study is to characterize the regional and laminar distribution patterns of various neurotransmitter binding sites in areas 3a, 3b, 1, and 2 of the human primary somatosensory cortex, and to compare these receptor-based "maps" with the cytoarchitectonic parcelation. Cryostat sections from a dorsomedial region of the postcentral gyrus close to the interhemispheric fissure and from a ventrolateral region close to the Sylvian fissure were examined. Neurotransmitter-binding sites were analyzed with quantitative in vitro receptor autoradiography. Different muscarinic-binding sites were labeled with [3H]pirenzepine and [3H]oxotremorine-M, noradrenergic-binding sites with [3H]prazosin, different serotoninergic-binding sites with [3H]5-hydroxytryptamine and [3H]ketanserine, glutamate-binding sites with l-[3H]glutamate, and GABA-binding sites with [3H]muscimol. Adjacent sections were stained with a modified Nissl method for cytoarchitectonic analysis. The binding sites either were preferentially localized in the superficial layers ([3H]5-hydroxytryptamine, [3H]prazosin, l-[3H]glutamate, [3H]muscimol, and [3H]pirenzepine) or were more homogeneously distributed with highest densities in layers III-V ([3H]oxotremorine-M and [3H]ketanserine). Changes in the distribution patterns of [3H]oxotremorine-M- and [3H]ketanserine-binding sites precisely matched the borders between areas 4/3a, 3b/1, and 1/2, as defined cytoarchitectonically. In addition, the autoradiographs showed that area 1 possibly consists of two subregions which cannot be distinguished cytoarchitectonically. The results demonstrate that the regional and laminar distribution patterns of some, but not all, transmitter-binding sites are precisely correlated with the cytoarchitectonic parcelation of the human primary somatosensory cortex. In addition, binding sites may reveal new borders not detectable in Nissl-stained sections. Finally, the human primary somatosensory cortex differs clearly from the primary motor cortex due to higher densities of l-[3H]glutamate-, [3H]muscimol-, [3H]pirenzepine-, [3H]oxotremorine-M-, and [3H]ketanserine-binding sites.
Collapse
Affiliation(s)
- S Geyer
- Department of Neuroanatomy, University of Düsseldorf, Düsseldorf, D-40001, Germany
| | | | | |
Collapse
|
39
|
Abstract
Humans and non-human primates have several motor areas. Exactly how many is a matter of current debate. A proper parcellation of motor areas must be based on correlated structural and functional differences. Recent studies indicate that the primary motor cortex may be, in reality, two areas (4a and 4p). Similarly, there are undoubtedly two or more cingulate motor areas and perhaps two supplementary motor areas. The homologies between human and monkey brains are striking in some cases, making monkey models of human motor cortices attractive. The doctrine of a strict 'homuncular' somatotopical organization of motor areas will have to be abandoned. The engagement of motor areas in different types of voluntary seems merely a matter of degree of activation rather than exclusive specific contributions.
Collapse
Affiliation(s)
- P E Roland
- Division of Human Brain Research, Department of Neuroscience, Karolinska Institute, Doktorsringen 12, 171 77 Stockholm, Sweden,
| | | |
Collapse
|
40
|
Gundlach AL, Burazin TC, Jenkins TA, Berkovic SF. Spatiotemporal alterations of central alpha 1-adrenergic receptor binding sites following amygdaloid kindling seizures in the rat: autoradiographic studies using [3H]prazosin. Brain Res 1995; 672:214-27. [PMID: 7749743 DOI: 10.1016/0006-8993(94)01338-i] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Noradrenergic neurons are thought to be involved in the process of seizure development and long-term central nervous system plasticity associated with kindling and epilepsy. These processes involve actions of noradrenaline at alpha 1-, alpha 2- and beta 1-adrenergic receptors. In this study, quantitative in vitro autoradiography was used to investigate possible changes in the density of brain alpha 1-adrenergic receptors in a kindling model of epilepsy in the rat. Kindling was produced by daily unilateral stimulation of the amygdala. The alpha 1A+alpha 1B subtypes of adrenergic receptors were labelled with the alpha 1-selective antagonist, [3H]prazosin and alpha 1B receptors, detected in the presence of 10 nM WB4101 to selectively occupy alpha 1A receptors, accounted for 50% of total alpha 1 receptors in cerebral cortex. Autoradiographic studies identified significant and long-lasting, ipsilateral increases in specific [3H]prazosin binding throughout layers I-III of the cortex in sham-operated, unstimulated rats, presumably caused by the surgical implantation of the stimulating electrode within the basolateral amygdaloid nucleus. Binding to alpha 1A + alpha 1B receptors and alpha 1B receptors was increased by an average of 35 and 60%, respectively under these conditions. Stimulation-evoked seizures produced dramatic bilateral increases in specific [3H]prazosin binding to alpha 1A + alpha 1B receptors and particularly to alpha 1B receptors in layers I-III of all cortical areas examined. These changes were rapidly induced and the largest increases (range alpha 1A + alpha 1B 80-340%; alpha 1B 165-380%) occurred at 0.5-2 h after the last stage 5 kindled seizure. At 1 and 3 days after the last seizure, increases were measured for both alpha 1A + alpha 1B and alpha 1B receptors in layers I-III of particular cortical regions, but not overall (e.g. 60-210% increase in perirhinal cortex at both times, with increases also in retrosplenial, hindlimb, occipital, parietal and temporal cortices). Between 2-8 wk post-stimulation specific receptor binding levels were equivalent to those in sham-operated, unstimulated rats. In contrast to the large and widespread increases in outer cortical [3H]prazosin binding, smaller increases were detected in the inner cortex (layer V-VI) at individual times (65-75% increase at 30 min), while no significant changes occurred in several other brain regions examined, including thalamus, which contained a high density of alpha 1A and alpha 1B receptors, or hippocampus which has a low density of both alpha 1 receptor subtypes.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- A L Gundlach
- University of Melbourne Department of Medicine, Austin Hospital, Heidelberg, Vic., Australia
| | | | | | | |
Collapse
|
41
|
Chessell IP, Francis PT, Webster MT, Procter AW, Heath PR, Pearson RC, Bowen DM. An aspect of Alzheimer neuropathology after suicide transport damage. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 1994; 44:231-43. [PMID: 7897395 DOI: 10.1007/978-3-7091-9350-1_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Concentrations of APP-like immunoreactivity have been determined by western blotting in a soluble fraction and two membrane fractions of brain cortex from demented patients (14 with Alzheimer's disease and 8 with other diagnoses). The concentration of APP in the soluble fraction correlated with the number of pyramidal neurones but not astrocytes or indices of interneurones. Experimental lesions in rats and quantitative autoradiography were used to investigate the cellular localisation of receptors. Lesions were produced by intrastriatal or intracortical injections of volkensin to destroy corticofugal and corticortical pyramidal neurons respectively. Volkensin treatment caused significant loss of pyramidal neurones which was accompanied by reduced binding to muscarinic cholinergic m1 receptors. [3H] 8-OH-DPAT (serotonin 1A receptors) binding was reduced only following intrastriatal volkensin. Results from the human and rat investigations are discussed in terms of the biology of cortical pyramidal neurones and drugs for the treatment of Alzheimer's disease.
Collapse
MESH Headings
- Alzheimer Disease/metabolism
- Alzheimer Disease/pathology
- Animals
- Brain/drug effects
- Brain/metabolism
- Brain/pathology
- Cerebral Cortex/drug effects
- Cerebral Cortex/metabolism
- Cerebral Cortex/pathology
- Glycoproteins
- Male
- N-Glycosyl Hydrolases
- Neurons/drug effects
- Neurons/metabolism
- Neurons/pathology
- Plant Lectins
- Plant Proteins/toxicity
- Rats
- Rats, Wistar
- Receptors, Adrenergic/metabolism
- Receptors, Biogenic Amine
- Receptors, GABA-A/metabolism
- Receptors, Kainic Acid/metabolism
- Receptors, N-Methyl-D-Aspartate/metabolism
- Receptors, Neurotransmitter/metabolism
- Receptors, Nicotinic/metabolism
- Receptors, Purinergic P1/metabolism
- Receptors, Serotonin/metabolism
- Ribosome Inactivating Proteins, Type 2
- Toxins, Biological
Collapse
Affiliation(s)
- I P Chessell
- Miriam Marks Department of Neurochemistry, Institute of Neurology, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
42
|
Chessell IP, Francis PT, Pangalos MN, Pearson RC, Bowen DM. Localisation of muscarinic (m1) and other neurotransmitter receptors on corticofugal-projecting pyramidal neurones. Brain Res 1993; 632:86-94. [PMID: 8149248 DOI: 10.1016/0006-8993(93)91142-f] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Experimental lesions and quantitative autoradiography were used to investigate the cellular localisation of receptors. Lesions were produced by intrastriatal injections of either volkensin or ricin, only the former is retrogradely transported. Volkensin treatment caused significant losses in Fr1/Fr2 of neocortex in the number of infragranular pyramidal neurones and binding to deep cortical layers of both [3H]pirenzepine (muscarinic cholinergic m1 receptors) and [3H]kainate (kainate sensitive glutamate receptors). In common with previous findings, which also showed sparing of interneurones, supragranular pyramidal neurones were not reduced in number and the binding to deep cortical layers of [3H]8-hydroxy-2-(n-dipropylamino)tetralin (serotonin 1A receptors) was reduced. Significant increases in [3H]prazosin binding to both total alpha adrenoceptors and the alpha 1b subtype were observed in superficial layers. Adrenoceptors were not decreased in any layer. The binding of [3H] GABA to GABAA receptors was not affected at all. Muscarinic receptors and pyramidal neurones were also reduced in deep cortical layers of Par1/Par2 in common with serotonin 1A (5-HT1A) receptors and total alpha receptors were significantly decreased in the middle layers. Overall m1 and kainate receptors were less affected than 5-HT1A receptors. The results are discussed in terms of the biology of cortical pyramidal neurones, drugs for Alzheimer's disease and novel ligands for improving human brain in vivo scanning techniques.
Collapse
MESH Headings
- 8-Hydroxy-2-(di-n-propylamino)tetralin/metabolism
- Animals
- Autoradiography
- Cerebral Cortex/metabolism
- Functional Laterality
- Glycoproteins
- Kainic Acid/metabolism
- Male
- N-Glycosyl Hydrolases
- Neurons/metabolism
- Neurotoxins/pharmacology
- Pirenzepine/metabolism
- Plant Lectins
- Plant Proteins/pharmacology
- Prazosin/metabolism
- Pyramidal Tracts/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Adrenergic, alpha-1/metabolism
- Receptors, GABA-A/metabolism
- Receptors, Kainic Acid/metabolism
- Receptors, Muscarinic/analysis
- Receptors, Muscarinic/drug effects
- Receptors, Muscarinic/metabolism
- Receptors, Neurotransmitter/analysis
- Receptors, Neurotransmitter/drug effects
- Receptors, Neurotransmitter/metabolism
- Receptors, Serotonin/metabolism
- Ribosome Inactivating Proteins, Type 2
- Ricin/pharmacology
- Tritium
- gamma-Aminobutyric Acid/metabolism
Collapse
Affiliation(s)
- I P Chessell
- Miriam Marks Department of Neurochemistry, Institute of Neurology, London, UK
| | | | | | | | | |
Collapse
|
43
|
Booze RM, Crisostomo EA, Davis JN. Beta-adrenergic receptors in the hippocampal and retrohippocampal regions of rats and guinea pigs: autoradiographic and immunohistochemical studies. Synapse 1993; 13:206-14. [PMID: 8098879 DOI: 10.1002/syn.890130303] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Species differences in the distribution of beta-adrenergic receptors in the hippocampal and retrohippocampal regions of rats and guinea pigs were examined using in vitro autoradiographic techniques. beta 1-receptors were found in the hippocampal area CA1 of both species, although guinea pigs had significantly lower receptor densities in comparison to rats. In guinea pigs, beta 2-adrenergic receptors were predominant in hippocampal area CA1. Hippocampal area CA3 had very low levels of beta 1- and beta 2-receptors in both species. The retrohippocampal area was also found to have a distinct topographic distribution of beta-receptors. In rats, the subiculum and parasubiculum (layers II-III) were heavily labeled for beta 1-receptors; in contrast, guinea pigs had few receptors in these regions. beta 2-receptors were particularly prominent in the parasubicular region in rats. The entorhinal cortex laminae was found to contain beta-receptors in both rats and guinea pigs. Immunohistochemical techniques were used to compare the pattern of catecholaminergic innervation with the receptor distribution within each hippocampal subregion. Despite the general lack of beta-receptors in area CA3, abundant catecholamine immunoreactive fibers were observed in CA3 of rat and guinea pig hippocampus. Significant species differences were found in the distribution of hippocampal beta-adrenergic receptor subtypes, and moreover, in both species the distribution of beta-adrenergic receptors did not coincide with the pattern of hippocampal adrenergic innervation.
Collapse
Affiliation(s)
- R M Booze
- Department of Pharmacology, University of Kentucky College of Medicine, Lexington 40536-0084
| | | | | |
Collapse
|
44
|
Abstract
This short review presents examples of plasticity in the brains of vertebrates including man. The basic ability of the nervous system to make functionally relevant adaptations to functional challenges of various kinds during development and adulthood is called plasticity. Enucleation of the eyes or lesioning of the lateral geniculate body during development lead to the generation of a new architectonic area within the nonhuman primate and human primary visual cortex. The enucleation of one eye in rats at various postnatal stages causes profound plastic changes in the callosal system of the visual cortex. The central representation of the periphery in the adult cerebral cortex (somatotopy) can also be altered by adaptive processes. Naturally occurring nerve cell death during pre- and early postnatal development can be manipulated by impairing normal development of neuro-transmission. These findings argue for an important role of transmitter receptors in brain plasticity. The number of receptors shows, for most brain regions and receptor types, an overshoot of growth during ontogeny. After lesions have damaged the adult geniculo-cortical and septo-hippocampal systems, receptors can exhibit plastic changes such as upregulation of the number of binding sites (visual cortex) and modifications in the coupling of receptors, transducer proteins (G-proteins) and second messengers (hippocampus).
Collapse
Affiliation(s)
- K Zilles
- C. and O. Vogt Brain Research Institute, University of Düsseldorf, Germany
| |
Collapse
|
45
|
Zilles K. Neurotransmitter receptors in the forebrain: regional and laminar distribution. PROGRESS IN HISTOCHEMISTRY AND CYTOCHEMISTRY 1992; 26:229-40. [PMID: 1336612 DOI: 10.1016/s0079-6336(11)80100-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- K Zilles
- C. and O. Vogt Institute for Brain Research, University of Düsseldorf, Germany
| |
Collapse
|