1
|
Raju M, Santhoshkumar P, Sharma KK. Cell-penetrating Chaperone Peptide Prevents Protein Aggregation And Protects Against Cell Apoptosis. ACTA ACUST UNITED AC 2017; 2. [PMID: 30271873 DOI: 10.1002/adbi.201700095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Many of the newly discovered therapeutic peptides and molecules are limited by their inability to cross the cell membrane. In the present study we employed a cell penetrating peptide (CPP), VPTLK, derived from Ku70 protein, to facilitate the entry of a mini-chaperone across the cell membrane. Our previous studies suggest that the mini-chaperone peptide representing the chaperone site in αA-crystallin, which can inhibit protein aggregation associated with proteopathies, has therapeutic potential. We have prepared a synthetic mini-chaperone by fusing the VPTLK sequence to N-terminus of mini-chaperone (FVIFLDVKHFSPEDLTVKGRD) to get VPTLKFVIFLDVKHFSPEDLTVKGRD peptide, which we call "CPPGRD." The amino acids, GRD, were added to increase the solubility of the peptide. The chaperone-like function of CPPGRD was measured using unfolding conditions for alcohol dehydrogenase and α-lactalbumin. The anti-apoptotic action of the peptide chaperone was evaluated using H2O2-induced Cos-7 and ARPE-19 cell apoptosis assays. The results show that the CPPGRD has both chaperone function and anti-apoptotic activity. Additionally, the CPPGRD was found to prevent β-amyloid fibril formation and suppress β-amyloid toxicity. The present study demonstrates that the CPPGRD protects unfolding proteins from aggregation and prevents cellular apoptosis. Therefore, the CPPGRD is a mini-chaperone with potential to become a therapeutic agent for protein aggregation diseases.
Collapse
Affiliation(s)
- Murugesan Raju
- Department of Ophthalmology, University of Missouri School of Medicine, Columbia, Missouri 65212
| | - Puttur Santhoshkumar
- Department of Ophthalmology, University of Missouri School of Medicine, Columbia, Missouri 65212
| | - K Krishna Sharma
- Department of Ophthalmology, University of Missouri School of Medicine, Columbia, Missouri 65212.,Department of Biochemistry, University of Missouri School of Medicine, Columbia, Missouri 65212
| |
Collapse
|
2
|
Drew SC. The Case for Abandoning Therapeutic Chelation of Copper Ions in Alzheimer's Disease. Front Neurosci 2017; 11:317. [PMID: 28626387 PMCID: PMC5455140 DOI: 10.3389/fnins.2017.00317] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 05/18/2017] [Indexed: 12/26/2022] Open
Abstract
The "therapeutic chelation" approach to treating Alzheimer's disease (AD) evolved from the metals hypothesis, with the premise that small molecules can be designed to prevent transition metal-induced amyloid deposition and oxidative stress within the AD brain. Over more than 20 years, countless in vitro studies have been devoted to characterizing metal binding, its effect on Aβ aggregation, ROS production, and in vitro toxicity. Despite a lack of evidence for any clinical benefit, the conjecture that therapeutic chelation is an effective approach for treating AD remains widespread. Here, the author plays the devil's advocate, questioning the experimental evidence, the dogma, and the value of therapeutic chelation, with a major focus on copper ions.
Collapse
Affiliation(s)
- Simon C. Drew
- Department of Medicine, Royal Melbourne Hospital, University of MelbourneMelbourne, VIC, Australia
| |
Collapse
|
3
|
Nell HJ, Au JL, Giordano CR, Terlecky SR, Walton PA, Whitehead SN, Cechetto DF. Targeted Antioxidant, Catalase-SKL, Reduces Beta-Amyloid Toxicity in the Rat Brain. Brain Pathol 2016; 27:86-94. [PMID: 26919450 DOI: 10.1111/bpa.12368] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/08/2016] [Indexed: 12/21/2022] Open
Abstract
Accumulation of beta-amyloid (Aβ) in the brain has been implicated as a major contributor to the cellular pathology and cognitive impairment observed in Alzheimer's disease. Beta-amyloid may exert its toxic effects by increasing reactive oxygen species and neuroinflammation in the brain. This study set out to investigate whether a genetically engineered derivative of the peroxisomal antioxidant enzyme catalase (CAT-SKL), is able to reduce the toxicity induced by intracerebroventricular injection of Aβ25-35 in the mature rat brain. Histopathological and immunohistochemical analyses were used to evaluate neuroinflammation, and neuronal loss. Spatial learning and reference memory was assessed using the Morris water maze. CAT-SKL treatment was able to reduce the pathology induced by Aβ25-35 toxicity by significantly decreasing microglia activation in the basal forebrain and thalamus, and reducing cholinergic loss in the basal forebrain. Aβ25-35 animals showed deficits in long-term reference memory in the Morris water maze, while Aβ25-35 animals treated with CAT-SKL did not demonstrate long-term memory impairments. This preclinical data provides support for the use of CAT-SKL in reducing neuroinflammation and long-term reference memory deficits induced by Aβ25-35.
Collapse
Affiliation(s)
- Hayley J Nell
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Jennifer L Au
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Courtney R Giordano
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, 48201
| | - Stanley R Terlecky
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, 48201
| | - Paul A Walton
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Shawn N Whitehead
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - David F Cechetto
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, N6A 5C1, Canada
| |
Collapse
|
4
|
Wang ZX, Tan L, Liu J, Yu JT. The Essential Role of Soluble Aβ Oligomers in Alzheimer's Disease. Mol Neurobiol 2015; 53:1905-1924. [PMID: 25833098 DOI: 10.1007/s12035-015-9143-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/18/2015] [Indexed: 01/21/2023]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease characterized by amyloid plaque and neurofibrillary tangles (NFT). With the finding that soluble nonfibrillar Aβ levels actually correlate strongly with the severity of the disease, the initial focus on amyloid plaques shifted to the contemporary concept that AD memory failure is caused by soluble Aβ oligomers. The soluble Aβ are known to be more neurotoxicthan fibrillar Aβ species. In this paper, we summarize the essential role of soluble Aβ oligomers in AD and discuss therapeutic strategies that target soluble Aβ oligomers.
Collapse
Affiliation(s)
- Zi-Xuan Wang
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China.
| | - Jinyuan Liu
- Columbia College, Columbia University, New York, NY, USA
| | - Jin-Tai Yu
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China. .,Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA.
| |
Collapse
|
5
|
Metal dyshomeostasis and inflammation in Alzheimer's and Parkinson's diseases: possible impact of environmental exposures. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:726954. [PMID: 23710288 PMCID: PMC3654362 DOI: 10.1155/2013/726954] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 02/06/2013] [Accepted: 02/07/2013] [Indexed: 12/14/2022]
Abstract
A dysregulated metal homeostasis is associated with both Alzheimer's (AD) and Parkinson's (PD) diseases; AD patients have decreased cortex and elevated serum copper levels along with extracellular amyloid-beta plaques containing copper, iron, and zinc. For AD, a putative hepcidin-mediated lowering of cortex copper mechanism is suggested. An age-related mild chronic inflammation and/or elevated intracellular iron can trigger hepcidin production followed by its binding to ferroportin which is the only neuronal iron exporter, thereby subjecting it to lysosomal degradation. Subsequently raised neuronal iron levels can induce translation of the ferroportin assisting and copper binding amyloid precursor protein (APP); constitutive APP transmembrane passage lowers the copper pool which is important for many enzymes. Using in silico gene expression analyses, we here show significantly decreased expression of copper-dependent enzymes in AD brain and metallothioneins were upregulated in both diseases. Although few AD exposure risk factors are known, AD-related tauopathies can result from cyanobacterial microcystin and β-methylamino-L-alanine (BMAA) intake. Several environmental exposures may represent risk factors for PD; for this disease neurodegeneration is likely to involve mitochondrial dysfunction, microglial activation, and neuroinflammation. Administration of metal chelators and anti-inflammatory agents could affect disease outcomes.
Collapse
|
6
|
Hochstrasser T, Hohsfield LA, Sperner-Unterweger B, Humpel C. β-Amyloid induced effects on cholinergic, serotonergic, and dopaminergic neurons is differentially counteracted by anti-inflammatory drugs. J Neurosci Res 2012; 91:83-94. [PMID: 22996751 DOI: 10.1002/jnr.23126] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 07/04/2012] [Accepted: 07/16/2012] [Indexed: 12/25/2022]
Abstract
β-Amyloid (Aβ) is a small peptide that plays a potent role in synaptic plasticity as well as forms amyloid plaques in Alzheimer's disease (AD). Recent studies suggest that Aβ deposition is deleterious not only in AD, but also in Parkinson's disease (PD) and depression. This Aβ effect is associated with inflammatory processes. However, further evaluation is needed to understand how Aβ and inflammation interact and contribute to the regulation of the cholinergic, serotonergic, and dopaminergic neuronal populations. The aim of the present study was to investigate the effects of Aβ(1-42) on cholinergic neurons of the nucleus basalis of Meynert (which degenerate in AD), on serotonergic neurons of the dorsal raphe nucleus (which play a role in depression), and on dopaminergic neurons of the ventral mesencephalon (which degenerate in PD) in rat organotypic brain slices. Furthermore, we investigated whether anti-inflammatory drugs (celecoxib, citalopram, cyclooxygenase-2 inhibitor, ibuprofen, indomethacin, piclamilast) modulate or counteract Aβ-induced effects. Two-week-old organotypic brain slices of the nucleus basalis of Meynert, dorsal raphe nucleus, and ventral mesencephalon were incubated with 50 ng/ml Aβ(1-42) with or without anti-inflammatory agents for 3 days. Our results reveal that Aβ significantly decreased the number of choline acetyltransferase-positive cholinergic, tryptophan hydroxylase-positive serotonergic, and tyrosine hydroxylase-positive dopaminergic neurons and that anti-inflammatory drugs partially counteracted the Aβ-induced neuronal decline. This decline was not due to apoptotic processes (as evaluated by TUNEL, propidium iodide, caspase), oxidative stress (as measured by nitrite, catalase, or superoxide dismutase-2), or inflammation, but was most likely caused by a downregulation of these key enzymes.
Collapse
Affiliation(s)
- Tanja Hochstrasser
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Department of Psychiatry and Psychotherapy, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | |
Collapse
|
7
|
Garg SK, Vitvitsky V, Albin R, Banerjee R. Astrocytic redox remodeling by amyloid beta peptide. Antioxid Redox Signal 2011; 14:2385-97. [PMID: 21235355 PMCID: PMC3096517 DOI: 10.1089/ars.2010.3681] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Astrocytes are critical for neuronal redox homeostasis providing them with cysteine needed for glutathione synthesis. In this study, we demonstrate that the astrocytic redox response signature provoked by amyloid beta (Aβ) is distinct from that of a general oxidant (tertiary-butylhydroperoxide [t-BuOOH]). Acute Aβ treatment increased cystathionine β-synthase (CBS) levels and enhanced transsulfuration flux in contrast to repeated Aβ exposure, which decreased CBS and catalase protein levels. Although t-BuOOH also increased transsulfuration flux, CBS levels were unaffected. The net effect of Aβ treatment was an oxidative shift in the intracellular glutathione/glutathione disulfide redox potential in contrast to a reductive shift in response to peroxide. In the extracellular compartment, Aβ, but not t-BuOOH, enhanced cystine uptake and cysteine accumulation, and resulted in remodeling of the extracellular cysteine/cystine redox potential in the reductive direction. The redox changes elicited by Aβ but not peroxide were associated with enhanced DNA synthesis. CBS activity and protein levels tended to be lower in cerebellum from patients with Alzheimer's disease than in age-matched controls. Our study suggests that the alterations in astrocytic redox status could compromise the neuroprotective potential of astrocytes and may be a potential new target for therapeutic intervention in Alzheimer's disease.
Collapse
Affiliation(s)
- Sanjay K Garg
- Department of Biochemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
8
|
Gopalakrishnan SM, Philip BM, Gronlien JH, Malysz J, Anderson DJ, Gopalakrishnan M, Warrior U, Burns DJ. Functional characterization and high-throughput screening of positive allosteric modulators of α7 nicotinic acetylcholine receptors in IMR-32 neuroblastoma cells. Assay Drug Dev Technol 2011; 9:635-45. [PMID: 21309712 DOI: 10.1089/adt.2010.0319] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
α7 nicotinic acetylcholine receptors (nAChRs) are characterized by relatively low ACh sensitivity, rapid activation, and fast desensitization kinetics. ACh/agonist evoked currents at the α7 nAChR are transient, and, typically, calcium flux responses are difficult to detect using conventional fluorometric assay techniques. One approach to study interactions of agonists with the α7 nAChR is by utilizing positive allosteric modulators (PAMs). In this study, we demonstrate that inclusion of type II PAMs such as PNU-120596, but not type I, can enable detection of endogenous α7 nAChR-mediated calcium responses in human neuroblastoma (IMR-32) cells. Using this approach, we characterized the pharmacological profile of nicotine, epibatidine, choline, and other nAChR agonists such as PNU-282987, SSR-180711, GTS-21, OH-GTS21, tropisetron, NS6784, and A-582941. The rank order potency of agonists well correlated with α7 nAChR binding affinities measured in brain membranes. Inhibition of calcium response by methyllycaconitine in the presence of increasing concentrations of PNU-282987 or PNU-120596 revealed that the IC(50) value of methyllycaconitine was sensitive to varying concentrations of the agonist, but not that of the PAM. This format demonstrated the feasibility of this approach for high-throughput screening to identify small molecule, PAMs, which were further confirmed in electrophysiological assays of human α7 nAChR expressed in oocytes.
Collapse
Affiliation(s)
- Sujatha M Gopalakrishnan
- Advanced Technology, Global Pharmaceutical Research & Development, Abbott Laboratories, Abbott Park, Illinois 60064, USA.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Malysz J, Anderson DJ, Grønlien JH, Ji J, Bunnelle WH, Håkerud M, Thorin-Hagene K, Ween H, Helfrich R, Hu M, Gubbins E, Gopalakrishnan S, Puttfarcken PS, Briggs CA, Li J, Meyer MD, Dyhring T, Ahring PK, Nielsen EØ, Peters D, Timmermann DB, Gopalakrishnan M. In vitro pharmacological characterization of a novel selective alpha7 neuronal nicotinic acetylcholine receptor agonist ABT-107. J Pharmacol Exp Ther 2010; 334:863-74. [PMID: 20504915 DOI: 10.1124/jpet.110.167072] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Enhancement of alpha7 nicotinic acetylcholine receptor (nAChR) activity is considered a therapeutic approach for ameliorating cognitive deficits present in Alzheimer's disease and schizophrenia. In this study, we describe the in vitro profile of a novel selective alpha7 nAChR agonist, 5-(6-[(3R)-1-azabicyclo[2,2,2]oct-3-yloxy]pyridazin-3-yl)-1H-indole (ABT-107). ABT-107 displayed high affinity binding to alpha7 nAChRs [rat or human cortex, [(3)H](1S,4S)-2,2-dimethyl-5-(6-phenylpyridazin-3-yl)-5-aza-2-azoniabicyclo[2.2.1]heptane (A-585539), K(i) = 0.2-0.6 nM or [(3)H]methyllycaconitine (MLA), 7 nM] that was at least 100-fold selective versus non-alpha7 nAChRs and other receptors. Functionally, ABT-107 did not evoke detectible currents in Xenopus oocytes expressing human or nonhuman alpha3beta4, chimeric (alpha6/alpha3)beta4, or 5-HT(3A) receptors, and weak or negligible Ca(2+) responses in human neuroblastoma IMR-32 cells (alpha3* function) and human alpha4beta2 and alpha4beta4 nAChRs expressed in human embryonic kidney 293 cells. ABT-107 potently evoked human and rat alpha7 nAChR current responses in oocytes (EC(50), 50-90 nM total charge, approximately 80% normalized to acetylcholine) that were enhanced by the positive allosteric modulator (PAM) 4-[5-(4-chloro-phenyl)-2-methyl-3-propionyl-pyrrol-1-yl]-benzenesulfonamide (A-867744). In rat hippocampus, ABT-107 alone evoked alpha7-like currents, which were inhibited by the alpha7 antagonist MLA. In dentate gyrus granule cells, ABT-107 enhanced spontaneous inhibitory postsynaptic current activity when coapplied with A-867744. In the presence of an alpha7 PAM [A-867744 or N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]-4-chlorobenzamide hydrochloride (PNU-120596)], the addition of ABT-107 elicited MLA-sensitive alpha7 nAChR-mediated Ca(2+) signals in IMR-32 cells and rat cortical cultures and enhanced extracellular signal-regulated kinase phosphorylation in differentiated PC-12 cells. ABT-107 was also effective in protecting rat cortical cultures against glutamate-induced toxicity. In summary, ABT-107 is a selective high affinity alpha7 nAChR agonist suitable for characterizing the roles of this subtype in pharmacological studies.
Collapse
Affiliation(s)
- John Malysz
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott, Abbott Park, Illinois 60064-6125, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Gubbins EJ, Gopalakrishnan M, Li J. Alpha7 nAChR-mediated activation of MAP kinase pathways in PC12 cells. Brain Res 2010; 1328:1-11. [PMID: 20211606 DOI: 10.1016/j.brainres.2010.02.083] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 02/15/2010] [Accepted: 02/28/2010] [Indexed: 10/19/2022]
Abstract
The alpha7 nicotinic acetylcholine receptor (alpha7 nAChR) plays a fundamental role in Ca(2+)-dependent activation of signaling pathways that can modulate intracellular events involved in learning and memory. Activation of extracellular signal-regulated kinase-1 and -2 (ERK1/2) are well documented Ca(2+) signaling events, but these have not been well characterized in response to alpha7 nAChR-selective ligands. The present study examined activation of ERK1/2 and explored pathways leading to CREB phosphorylation utilizing alpha7 nAChR-selective ligands in PC12 cells endogenously expressing alpha7 nAChRs. Robust concentration-dependent increase in ERK1/2 phosphorylation was triggered by structurally diverse alpha7 nAChR agonists such as nicotine, choline, GTS-21, SSR-180711A and PNU-282987 in the presence of the positive allosteric modulator (PAM) PNU-120596. This effect was attenuated by selective alpha7 nAChR antagonists or by chelation of extracellular Ca(2+). ERK1/2 phosphorylation was also attenuated by inhibitors of calmodulin-dependent protein kinase II (CaMKII), p38 MAP kinase and mitogen-activated protein kinase kinase1/2 (MEK1/2), indicating the involvement of these kinases upstream of ERK1/2. This was confirmed by direct measurement of p38 MAPK and MEK1/2 phosphorylation. These data suggest that alpha7 nAChR agonist-triggered Ca(2+) transient in PC12 cells induces activation of CaMKII, leading to sequential phosphorylation of p38 MAPK, MEK1/2, ERK1/2 and CREB. Such mechanisms may endow the alpha7 nAChRs with roles in modulating Ca(2+)-dependent intracellular second messenger events implicated in diverse aspects of cognition.
Collapse
Affiliation(s)
- Earl J Gubbins
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, IL 60064-6125, USA
| | | | | |
Collapse
|
11
|
Harrison FE, May JM, McDonald MP. Vitamin C deficiency increases basal exploratory activity but decreases scopolamine-induced activity in APP/PSEN1 transgenic mice. Pharmacol Biochem Behav 2009; 94:543-52. [PMID: 19941887 DOI: 10.1016/j.pbb.2009.11.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 11/11/2009] [Accepted: 11/16/2009] [Indexed: 11/16/2022]
Abstract
Vitamin C is a powerful antioxidant and its levels are decreased in Alzheimer's patients. Even sub-clinical vitamin C deficiency could impact disease development. To investigate this principle we crossed APP/PSEN1 transgenic mice with Gulo knockout mice unable to synthesize their own vitamin C. Experimental mice were maintained from 6 weeks of age on standard (0.33 g/L) or reduced (0.099 g/L) levels of vitamin C and then assessed for changes in behavior and neuropathology. APP/PSEN1 mice showed impaired spatial learning in the Barnes maze and water maze that was not further impacted by vitamin C level. However, long-term decreased vitamin C levels led to hyperactivity in transgenic mice, with altered locomotor habituation and increased omission errors in the Barnes maze. Decreased vitamin C also led to increased oxidative stress. Transgenic mice were more susceptible to the activity-enhancing effects of scopolamine and low vitamin C attenuated these effects in both genotypes. These data indicate an interaction between the cholinergic system and vitamin C that could be important given the cholinergic degeneration associated with Alzheimer's disease.
Collapse
Affiliation(s)
- F E Harrison
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.
| | | | | |
Collapse
|
12
|
Abstract
In this article, we support the case that the neurotoxic agent in Alzheimer's disease is a soluble aggregated form of the amyloid beta peptide (Abeta), probably complexed with divalent copper. The structure and chemical properties of the monomeric peptide and its Cu(ii) complex are discussed, as well as what little is known about the oligomeric species. Abeta oligomers are neurotoxic by a variety of mechanisms. They adhere to plasma and intracellular membranes and cause lesions by a combination of radical-initiated lipid peroxidation and formation of ion-permeable pores. In endothelial cells this damage leads to loss of integrity of the blood-brain barrier and loss of blood flow to the brain. At synapses, the oligomers close neuronal insulin receptors, mirroring the effects of Type II diabetes. In intracellular membranes, the most damaging effect is loss of calcium homeostasis. The oligomers also bind to a variety of substances, mostly with deleterious effects. Binding to cholesterol is accompanied by its oxidation to products that are themselves neurotoxic. Possibly most damaging is the binding to tau, and to several kinases, that results in the hyperphosphorylation of the tau and abrogation of its microtubule-supporting role in maintaining axon structure, leading to diseased synapses and ultimately the death of neurons. Several strategies are presented and discussed for the development of compounds that prevent the oligomerization of Abeta into the neurotoxic species.
Collapse
Affiliation(s)
- Arvi Rauk
- Department of Chemistry, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
13
|
Seyb KI, Ansar S, Li G, Bean J, Michaelis ML, Dobrowsky RT. p35/Cyclin-dependent kinase 5 is required for protection against beta-amyloid-induced cell death but not tau phosphorylation by ceramide. J Mol Neurosci 2007; 31:23-35. [PMID: 17416967 DOI: 10.1007/bf02686115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 11/30/1999] [Accepted: 06/03/2006] [Indexed: 12/19/2022]
Abstract
Ceramide is a bioactive sphingolipid that can prevent calpain activation and beta-amyloid (A beta) neurotoxicity in cortical neurons. Recent evidence supports A beta induction of a calpain-dependent cleavage of the cyclin-dependent kinase 5 (cdk5) regulatory protein p35 that contributes to tau hyperphosphorylation and neuronal death. Using cortical neurons isolated from wild-type and p35 knockout mice, we investigated whether ceramide required p35/cdk5 to protect against A beta-induced cell death and tau phosphorylation. Ceramide inhibited A beta-induced calpain activation and cdk5 activity in wild-type neurons and protected against neuronal death and tau hyperphosphorylation. Interestingly, A beta also increased cdk5 activity in p35-/- neurons, suggesting that the alternate cdk5 regulatory protein, p39, might mediate this effect. In p35 null neurons, ceramide blocked A beta-induced calpain activation but did not inhibit cdk5 activity or cell death. However, ceramide blocked tau hyperphosphorylation potentially via inhibition of glycogen synthase kinase-3beta. These data suggest that ceramide can regulate A beta cell toxicity in a p35/cdk5-dependent manner.
Collapse
Affiliation(s)
- Kathleen I Seyb
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS 66045, USA
| | | | | | | | | | | |
Collapse
|
14
|
Luo Q, Ding Y, Watson K, Zhang J, Fan GH. N-methyl-D-aspartate attenuates CXCR2-mediated neuroprotection through enhancing the receptor phosphorylation and blocking the receptor recycling. Mol Pharmacol 2005; 68:528-37. [PMID: 15914698 DOI: 10.1124/mol.105.011197] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Abnormal extracellular accumulations of beta-amyloid, a major component of the senile plaques, and of the excitatory amino acid glutamate are both believed to be associated with degeneration of nerve cells in the central nervous system of patients with Alzheimer's disease. The chemokine receptor CXCR2 has been shown to play a role in protecting neurons against beta-amyloid-induced injury in vitro, but it remains unclear whether CXCR2-mediated neuroprotection is affected by glutamate. We demonstrated that pretreatment of hippocampal neurons with a sublethal concentration of N-methyl-d-aspartate (NMDA) attenuated the macrophage inflammatory protein 2 (MIP2)-induced protection against beta-amyloid-induced neuronal death. The NMDA induced inhibition was blocked by (+)-5-methyl-10, 11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801), a noncompetitive NMDA receptor antagonist, indicating the involvement of NMDA receptors in this process. A sublethal dose of NMDA pretreatment induced CXCR2 phosphorylation, although to a lesser extent than the receptor phosphorylation induced by MIP2, and differential serine residues were involved in NMDA- and MIP2-induced CXCR2 phosphorylation. Moreover, NMDA treatment reduced the CXCR2-mediated Ca(2+) mobilization, suggesting that NMDA induces cross-desensitization of CXCR2. CXCR2 underwent dephosphorylation after removal of the extracellular ligand, but the dephosphorylation rate was significantly reduced in the cells pretreated with NMDA. Treatment of the neuronal cells with NMDA retarded the recycling of CXCR2. In view of the critical role of receptor phosphorylation and recycling in the functional responsiveness of the chemokine receptor, these observations indicate a novel pathway through which glutamate may interfere with the neuroprotective function of chemokines.
Collapse
Affiliation(s)
- Qingwei Luo
- Department of Pharmacology, Meharry Medical College, 1005 Dr. D. B Todd Jr Blvd, Nashville, TN 37208, USA
| | | | | | | | | |
Collapse
|
15
|
Qiao H, Koya RC, Nakagawa K, Tanaka H, Fujita H, Takimoto M, Kuzumaki N. Inhibition of Alzheimer's amyloid-beta peptide-induced reduction of mitochondrial membrane potential and neurotoxicity by gelsolin. Neurobiol Aging 2005; 26:849-55. [PMID: 15718043 DOI: 10.1016/j.neurobiolaging.2004.08.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2003] [Revised: 06/23/2004] [Accepted: 08/09/2004] [Indexed: 01/27/2023]
Abstract
Amyloid-beta (A beta) peptides play a central role in the development of Alzheimer's disease. They are known to induce mitochondrial dysfunction and caspase activation, resulting in apoptosis of neuronal cells. Here we show that human cytoplasmic gelsolin inhibits A beta peptide-induced cell death of neuronally differentiated rat pheochromocytoma (PC-12) cells. We also show that the segment 5 but not 6 of human cytoplasmic gelsolin is the important region responsible for inhibition of A beta-induced cytotoxicity. Mitochondrial dysfunction associated with cell death, membrane potential loss and the release of cytochrome c are all abrogated in the presence of human full-length or segment 5 cytoplasmic gelsolin. Furthermore, RNA interference to reduce expression of endogenous gelsolin in PC-12 cells shows that rat gelsolin act as an inhibitor of A beta cytotoxicity. These results demonstrate that cytoplasmic gelsolin plays a important role in inhibiting Abeta-induced cytotoxicity by inhibiting apoptotic mitochondrial changes. The segment 5 of human cytoplasmic gelsolin is sufficient for the function.
Collapse
Affiliation(s)
- Hongjiang Qiao
- The Division of Cancer Gene Regulation, Research Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo 060-0815, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Moyer JA, Wood A, Zaleska MM, Ay I, Finklestein SP, Protter AA. Basic fibroblast growth factor: a potential therapeutic agent for the treatment of acute neurodegenerative disorders and vascular insufficiency. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.8.11.1425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
17
|
Zambrano CA, Egaña JT, Núñez MT, Maccioni RB, González-Billault C. Oxidative stress promotes tau dephosphorylation in neuronal cells: the roles of cdk5 and PP1. Free Radic Biol Med 2004; 36:1393-402. [PMID: 15135175 DOI: 10.1016/j.freeradbiomed.2004.03.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2003] [Revised: 01/29/2004] [Accepted: 03/05/2004] [Indexed: 11/19/2022]
Abstract
Oxidative stress has been demonstrated to produce modifications in several intracellular proteins that lead to alterations in their activities. Alzheimer's disease is related to an increase of oxidative stress markers, which may be an early event in the progression of the disease and neurofibrillary tangles formation. Abnormal phosphorylation of tau has been implicated in the etiopathogenesis of Alzheimer's disease. By using phospho-specific antibodies, we analyzed the changes in tau phosphorylation patterns after treatment of rat hippocampal and SHSY5Y human neuroblastoma cells with H2O2. We found that tau isoforms were hypophosphorylated at the Tau1 epitope after 2 h in the presence of H2O2. The decrease in the phosphorylation levels of tau protein were prevented by pretreatment with N-acetyl-L-cysteine. These changes were shown to depend on the activity of the cdk5/p35 complex, since a 3-fold increase in substrate phosphorylation and a 2-fold increase for the complex association were observed. Also, a decrease in the amount of inhibitor-2 bound to phosphatase PP1 was found in SHSY5Y cells under oxidative stress conditions. This decrease of inhibitor-2 bound to PP1 is due to an increased phosphorylation of the inhibitor-2 protein, thus leading to increased PP1 activity. Therefore, we propose that oxidative stress-induced activation of cdk5 leads to inhibitor-2 phosphorylation, relieving its inhibitory effect on PP1.
Collapse
Affiliation(s)
- Cristian A Zambrano
- Laboratory of Cellular and Molecular Biology, Millennium Institute for Advanced Studies in Cell Biology and Biotechnology, and Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|
18
|
Antzutkin ON. Amyloidosis of Alzheimer's Abeta peptides: solid-state nuclear magnetic resonance, electron paramagnetic resonance, transmission electron microscopy, scanning transmission electron microscopy and atomic force microscopy studies. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2004; 42:231-246. [PMID: 14745804 DOI: 10.1002/mrc.1341] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Aggregation cascade for Alzheimer's amyloid-beta peptides, its relevance to neurotoxicity in the course of Alzheimer's disease and experimental methods useful for these studies are discussed. Details of the solid-phase peptide synthesis and sample preparation procedures for Alzheimer's beta-amyloid fibrils are given. Recent progress in obtaining structural constraints on Abeta-fibrils from solid-state NMR and scanning transmission electron microscopy (STEM) data is discussed. Polymorphism of amyloid fibrils and oligomers of the 'Arctic' mutant of Abeta(1-40) was studied by (1)H,(13)C solid-state NMR, transmission electron microscopy (TEM) and atomic force microscopy (AFM), and a real-time aggregation of different polymorphs of the peptide was observed with the aid of in situ AFM. Recent results on binding of Cu(II) ions and Al-citrate and Al-ATP complexes to amyloid fibrils, as studied by electron paramagnetic resonance (EPR) and solid-state (27)Al NMR techniques, are also presented.
Collapse
Affiliation(s)
- Oleg N Antzutkin
- Division of Chemistry, Luleå University of Technology, S-971 87 Luleå, Sweden.
| |
Collapse
|
19
|
Stackman RW, Eckenstein F, Frei B, Kulhanek D, Nowlin J, Quinn JF. Prevention of age-related spatial memory deficits in a transgenic mouse model of Alzheimer's disease by chronic Ginkgo biloba treatment. Exp Neurol 2003; 184:510-20. [PMID: 14637120 DOI: 10.1016/s0014-4886(03)00399-6] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease (AD) is characterized by cognitive decline and deposition of beta-amyloid (Abeta) plaques in cortex and hippocampus. A transgenic mouse AD model (Tg2576) that overexpresses a mutant form of human Abeta precursor protein exhibits age-related cognitive deficits, Abeta plaque deposition, and oxidative damage in the brain. We tested the ability of Ginkgo biloba, a flavonoid-rich antioxidant, to antagonize the age-related behavioral impairment and neuropathology exhibited by Tg2576 mice. At 8 months of age, 16 female Tg2576 and 15 female wild-type (wt) littermate mice were given ad lib access to tap water or Ginkgo biloba (70 mg/kg/day in water). After 6 months of treatment, all mice received Morris water maze training (4 trials/day for 10 days) to assess hippocampal dependent spatial learning. All mice received a 60-s probe test of spatial memory retention 24 h after the 40th trial. Untreated Tg2576 mice exhibited a spatial learning impairment, relative to wt mice, while Ginkgo biloba-treated Tg2576 mice exhibited spatial memory retention comparable to wt during the probe test. Spatial learning was not different between Ginkgo biloba-treated and untreated wt mice. There were no group differences in learning to swim to a visible platform. Soluble Abeta and hippocampal Abeta plaque burden did not differ between the Tg2576 groups. Brain levels of protein carbonyls were paradoxically elevated in Ginkgo biloba-treated mice. These data indicate that chronic Ginkgo biloba treatment can block an age-dependent decline in spatial cognition without altering Abeta levels and without suppressing protein oxidation in a transgenic mouse model of AD.
Collapse
Affiliation(s)
- Robert W Stackman
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239-3098, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Ishii K, Klunk WE, Arawaka S, Debnath ML, Furiya Y, Sahara N, Shoji S, Tamaoka A, Pettegrew JW, Mori H. Chrysamine G and its derivative reduce amyloid beta-induced neurotoxicity in mice. Neurosci Lett 2002; 333:5-8. [PMID: 12401547 DOI: 10.1016/s0304-3940(02)00915-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The neurotoxicity of amyloid beta (Abeta) is widely believed to play a seminal role in neurodegeneration in Alzheimer's disease. We examined the effect of Chrysamine G (CG) on such neurotoxicity using the specific measurement of surviving neurons. CG was found to reduce the neurodegeneration induced by both the active short fragment of Abeta(25-35) and full-sized Abeta(1-40). In this study, we synthesized a new chemical compound from a monovalent structure of CG (hCG), with a lower affinity for Abeta, and compared its activity with that of CG. Both CG and hCG were found to be equally efficacious in reducing Abeta-induced neuronal death at a concentration of 0.1-1 microM, indicating that the mechanism of action for CG was not due to its chelating activity, but rather due to its anti-oxidant activity.
Collapse
Affiliation(s)
- Kazuhiro Ishii
- Department of Molecular Biology, Tokyo Institute of Psychiatry, Kamikitazawa, Tokyo 156-8585, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Jung SS, Van Nostrand WE. Abeta does not induce oxidative stress in human cerebrovascular smooth muscle cells. Neuroreport 2002; 13:1309-12. [PMID: 12151793 DOI: 10.1097/00001756-200207190-00019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We investigated whether oxidative stress participates in the pathogenic Abeta-induced degenerative mechanism of cultured human cerebrovascular smooth muscle (HCSM) cells, which are intimately involved in cerebral amyloid angiopathy (CAA). Studies using the cell-permeable dye dichlorofluorescein diacetate suggested that free radicals were not robustly detected in HCSM cells exposed to pathogenic Abeta. Furthermore, examination for oxidatively modified proteins, indicated by the presence of dinitrophenylhydrazone and dityrosine moieties, demonstrated no appreciable difference between pathogenic Abeta-treated and untreated HCSM cells. These findings support the notion that pathogenic Abeta-induced toxicity in HCSM cells and neuronal cells occurs by different mechanisms.
Collapse
Affiliation(s)
- Sonia S Jung
- Department of Medicine, State University of New York at Stony Brook, HSC T-15/081, Stony Brook, NY 11794-8153, USA
| | | |
Collapse
|
22
|
Giasson BI, Ischiropoulos H, Lee VMY, Trojanowski JQ. The relationship between oxidative/nitrative stress and pathological inclusions in Alzheimer's and Parkinson's diseases. Free Radic Biol Med 2002; 32:1264-75. [PMID: 12057764 DOI: 10.1016/s0891-5849(02)00804-3] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Alzheimer's (AD) and Parkinson's diseases (PD) are late-onset neurodegenerative diseases that have tremendous impact on the lives of affected individuals, their families, and society as a whole. Remarkable efforts are being made to elucidate the dominant factors that result in the pathogenesis of these disorders. Extensive postmortem studies suggest that oxidative/nitrative stresses are prominent features of these diseases, and several animal models support this notion. Furthermore, it is likely that protein modifications resulting from oxidative/nitrative damage contribute to the formation of intracytoplasmic inclusions characteristic of each disease. The frequent presentation of both AD and PD in individuals and the co-occurrence of inclusions characteristic of AD and PD in several other neurodegenerative diseases suggests the involvement of a common underlying aberrant process. It can be surmised that oxidative/nitrative stress, which is cooperatively influenced by environmental factors, genetic predisposition, and senescence, may be a link between these disorders.
Collapse
Affiliation(s)
- Benoit I Giasson
- Center for Neurodegenerative Disease Research and Department of Pathology and Laboratory Medicine, The University of Pennsylvania, Philadelphia, PA 19104-4283, USA
| | | | | | | |
Collapse
|
23
|
Qi JS, Qiao JT. Amyloid beta-protein fragment 31-35 forms ion channels in membrane patches excised from rat hippocampal neurons. Neuroscience 2002; 105:845-52. [PMID: 11530222 DOI: 10.1016/s0306-4522(01)00244-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inside-out membrane patches excised from rat hippocampal neurons were used to test if ion channels could be formed by fragment 31-35 of amyloid beta-protein. The results showed: (1) after application of fragment 31-35 of amyloid beta-protein (5 microM) to either the inner or outer side of the patches, spontaneous currents could be recorded from those patches that had previously been 'silent'; (2) the fragment 31-35-induced conductance was cation-selective with a permeability ratio of P(Cs)/P(Cl)=23; (3) different levels of conductance, ranging from 25 to 500 pS, could be recorded in different patches, and in some cases, different conductances and spontaneous transitions among them could be recorded in a single patch; and (4) application of ZnCl(2) (1 mM) to the inner side of the patches reversibly blocked the newly formed channel activity; a similar effect was observed after application of CdCl(2) (1 mM). These results show that fragment 31-35 of amyloid beta-protein can insert into membrane patches from both sides and form cation-selective, Zn(2+)- and Cd(2+)-sensitive ion channels. It is proposed that fragment 31-35 in amyloid beta-protein might be the shortest active sequence known to date to form ion channels across neuronal membranes.
Collapse
Affiliation(s)
- J S Qi
- Department of Neurobiology, Shanxi Medical University, Taiyuan, 030001, Shanxi, PR China
| | | |
Collapse
|
24
|
Milton NG. Inhibition of catalase activity with 3-amino-triazole enhances the cytotoxicity of the Alzheimer's amyloid-beta peptide. Neurotoxicology 2001; 22:767-74. [PMID: 11829410 DOI: 10.1016/s0161-813x(01)00064-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Amyloid-beta, (Abeta) is a cytotoxic peptide implicated in the pathology of Alzheimers disease. The antioxidant enzyme catalase has been suggested to protect against Abeta cytotoxicity in both neuronal and non-neuronal cell types. Inhibition of endogenous catalase using 3-amino-1,2,4-triazole (3AT) in neuronal (NT-2) and myeloma (SP2/0-Ag-14) cell lines increases Abeta toxicity, suggesting that any protective role for endogenous catalase requires active enzyme. In Abeta treated mveloma cells there was a significant decrease in the total cell catalase activity and immunoreactivity. However, when the surviving live cell population was isolated following Abeta treatment the levels of catalase were significantly increased. The surviving live cell population from groups treated with both 3AT and Abeta contain elevated immunoreactive catalase levels suggesting that the protective role for endogenous catalase may have a component independent of the antioxidant activity, possibly by acting as an Abeta binding protein. Amyloid-beta (Abeta) cytotoxicity can be prevented by Vitamin E treatment or an anti-Abeta monoclonal antibody (ALIOI), both of which also prevent Abeta cytotoxicity in cells treated with 3AT These observations suggest that Abeta mediated cell death in both neuronal and non-neuronal cells is mediated in part by actions to increase hydrogen peroxide. Catalase has a protective role, as a hydrogen peroxide-degrading enzyme and catalase inhibition by Abeta is not the direct cause of cytotoxicity.
Collapse
Affiliation(s)
- N G Milton
- Department of Molecular Pathology and Clinical Biochemistry, Royal Free and University College Medical School, University College London, UK.
| |
Collapse
|
25
|
Leonard BE. Changes in the immune system in depression and dementia: causal or co-incidental effects? Int J Dev Neurosci 2001; 19:305-12. [PMID: 11337199 DOI: 10.1016/s0736-5748(01)00014-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
It is now widely accepted that psychological stress and psychiatric illness can compromise immune function. Furthermore the mechanisms whereby such changes occur are probably associated with the activities of the cytokines and other inflammatory mediators of the immune system which are known to initiate changes in behaviour. This review aims to summarise the experimental and clinical evidence that implicates the pro-inflammatory cytokines in the pathological changes seen in major depression and in Alzheimer's disease (AD). In major depression, evidence is provided to show that both activation (e.g., macrophage activity, acute phase proteins) and inhibition (e.g., natural killer cell activity) of the immune system occur. Many of the behavioural changes seen in depression are simulated by three pro-inflammatory cytokines (IL-1, IL-6 and TNF-alpha), which may produce their impact on the brain by activating cyclooxygenase, nitric acid synthase and corticotrophin releasing factor. Effective antidepressant treatments largely attenuate the immune changes thereby raising the possibility that the normalisation of central biogenic amine function that are conventionally implicated in the cause of depression may be secondary to those of the pro-inflammatory cytokines. With respect to AD, while the cause(s) are unknown, there is both experimental and clinical evidence to suggest that inflammatory processes in the brain caused in particular by TNF-alpha together with the subsequent rise in free radicals, are instrumental in causing the pathological changes which underlie the disease. Evidence in favour of the inflammatory hypothesis is supported by the finding that nonsteroidal anti-inflammatory drugs slow down the progression of the disease.Although, more research is needed into the inter-relationships between the various pro-inflammatory cytokines and the behavioural changes invoked in major depression and AD, the immunological hypothesis has been important in stimulating new concepts regarding the causes of the pathological changes in these diseases and how effective drug treatments may attenuate them.
Collapse
Affiliation(s)
- B E Leonard
- Pharmacology Department, National University of Ireland, Galway, Ireland.
| |
Collapse
|
26
|
Sudo H, Hashimoto Y, Niikura T, Shao Z, Yasukawa T, Ito Y, Yamada M, Hata M, Hiraki T, Kawasumi M, Kouyama K, Nishimoto I. Secreted Abeta does not mediate neurotoxicity by antibody-stimulated amyloid precursor protein. Biochem Biophys Res Commun 2001; 282:548-56. [PMID: 11401495 DOI: 10.1006/bbrc.2001.4604] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Antibodies against APP, a precursor of Abeta deposited in Alzheimer's disease brain, have been shown to cause neuronal death. Therefore, it is important to determine whether Abeta mediates antibody-induced neurotoxicity. When primary neurons were treated with anti-APP antibodies, Abeta40 and Abeta42 in the cultured media were undetectable by an assay capable of detecting 100 nM Abeta peptides. However, exogenously treated Abeta1-42 or Abeta1-43 required >3 microM to exert neurotoxicity, and 25 microM Abeta1-40 was not neurotoxic. Glutathione-ethyl-ester inhibited neuronal death by anti-APP antibody, but not death by Abeta1-42, whereas serum attenuated toxicity by Abeta1-42, but not by anti-APP antibody. Using immortalized neuronal cells, we specified the domain responsible for toxicity to be cytoplasmic His(657)-Lys(676), but not the Abeta1-42 region, of APP. This indicates that neuronal cell death by anti-APP antibody is not mediated by secreted Abeta.
Collapse
Affiliation(s)
- H Sudo
- Department of Pharmacology and Neurosciences, KEIO University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Butterfield DA, Howard B, Yatin S, Koppal T, Drake J, Hensley K, Aksenov M, Aksenova M, Subramaniam R, Varadarajan S, Harris-White ME, Pedigo NW, Carney JM. Elevated oxidative stress in models of normal brain aging and Alzheimer's disease. Life Sci 2001; 65:1883-92. [PMID: 10576432 DOI: 10.1016/s0024-3205(99)00442-7] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Age-associated neurodegenerative disorders are becoming more prevalent as the mean age of the population increases in the United States over the next few decades. Both normal brain aging and Alzheimer's disease (AD) are associated with oxidative stress. Our laboratory has used a wide variety of physical and biochemical methods to investigate free radical oxidative stress in several models of aging and AD. Beta-amyloid (A beta), the peptide that constitutes the central core of senile plaques in AD brain, is associated with free radical oxidative stress and is toxic to neurons. This review summarizes some of our studies in aging and A beta-associated free radical oxidative stress and on the modulating effects of free radical scavengers on neocortical synaptosomal membrane damage found in aging and A beta-treated systems.
Collapse
Affiliation(s)
- D A Butterfield
- Department of Chemistry, Center of Membrane Sciences, University of Kentucky, Lexington 40506-0055, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Wengenack TM, Whelan S, Curran GL, Duff KE, Poduslo JF. Quantitative histological analysis of amyloid deposition in Alzheimer's double transgenic mouse brain. Neuroscience 2001; 101:939-44. [PMID: 11113343 DOI: 10.1016/s0306-4522(00)00388-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The development of transgenic mice has created new opportunities for the generation of animal models of human neurodegenerative diseases where previously there was no animal counterpart. The first successful transgenic mouse model of Alzheimer's disease expressed increased levels of mutant human amyloid precursor protein, exhibiting neuritic-type amyloid deposits and behavioral deficits at six to nine months of age. More recently, it was shown that transgenic mice expressing both mutant human amyloid precursor protein and presenilin 1 exhibit neuritic-type amyloid deposits and behavioral deficits in as little as 12 weeks. This accelerated Alzheimer phenotype greatly reduces the time necessary to conduct preclinical drug trials, as well as animal housing costs. The purpose of this study was to quantify the deposition of amyloid in five regions of the cortex and two regions of the hippocampus of transgenic mice expressing amyloid precursor protein (K670N, M671L) and presenilin 1 (M146L) mutations at various ages, using quantitative methods of confocal laser scanning microscopy and image analysis. Amyloid burden, expressed as the percentage area occupied by thioflavin S-positive amyloid deposits, increased an average of 179-fold from 12 to 54 weeks of age (0.02+/-0.01% to 3.57+/-0.29%, mean+/-S.E.M., respectively) in five regions of the cortex and two of the hippocampus. This was a function of increases in both deposit number and size. This transgenic mouse provides an ideal animal model for evaluating the efficacy of potential therapeutic agents aimed at reducing amyloid deposition, such as inhibitors of amyloid fibril formation or secretase inhibitors.
Collapse
Affiliation(s)
- T M Wengenack
- Molecular Neurobiology Laboratory, Departments of Neurology and Biochemistry/Molecular Biology, Mayo Clinic and Foundation, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
29
|
Hashimoto Y, Niikura T, Ito Y, Nishimoto I. Multiple mechanisms underlie neurotoxicity by different types of Alzheimer's disease mutations of amyloid precursor protein. J Biol Chem 2000; 275:34541-51. [PMID: 10934205 DOI: 10.1074/jbc.m005332200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We examined a neuronal cell system in which single-cell expression of either familial Alzheimer's disease (FAD) gene V642I-APP or K595N/M596L-APP (NL-APP) in an inducible plasmid was controlled without affecting transfection efficiency. This system revealed that (i) low expression of both mutants exerted toxicity sensitive to both Ac-DEVD-CHO (DEVD) and glutathione ethyl ester (GEE), whereas wild-type APP (wtAPP) only at higher expression levels caused GEE/DEVD-resistant death to lesser degrees; (ii) toxicity by the V642I mutation was entirely GEE/DEVD sensitive; and (iii) toxicity by higher expression of NL-APP was GEE/DEVD resistant. The GEE/DEVD-sensitive death was sensitive to pertussis toxin and was due to G(o)-interacting His(657)-Lys(676) domain. The GEE/DEVD-resistant death was due to C-terminal Met(677)-Asn(695). APP mutants lacking either domain unraveled elaborate intracellular cross-talk between these domains. E618Q-APP, responsible for non-AD type of a human disease, only exerted GEE/DEVD-resistant death at higher expression. Therefore, (i) different FAD mutations in APP cause neuronal cell death through different cytoplasmic domains via different sets of mechanisms; (ii) expression levels of FAD genes are critical in activating specific death mechanisms; and (iii) toxicity by low expression of both mutants most likely reflects the pathogenetic mechanism of FAD.
Collapse
Affiliation(s)
- Y Hashimoto
- Department of Pharmacology, KEIO University School of Medicine, Shinanomachi, Tokyo 160, Japan
| | | | | | | |
Collapse
|
30
|
Barkats M, Millecamps S, Abrioux P, Geoffroy MC, Mallet J. Overexpression of glutathione peroxidase increases the resistance of neuronal cells to Abeta-mediated neurotoxicity. J Neurochem 2000; 75:1438-46. [PMID: 10987823 DOI: 10.1046/j.1471-4159.2000.0751438.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Senile plaques are neuropathological manifestations in Alzheimer's disease (AD) and are composed mainly of extracellular deposits of amyloid beta-peptide (Abeta). Various data suggest that the accumulation of Abeta may contribute to neuronal degeneration and that Abeta neurotoxicity could be mediated by oxygen free radicals. Removal of free radicals by antioxidant scavengers or enzymes was found to protect neuronal cells in culture from Abeta toxicity. However, the nature of the free radicals involved is still unclear. In this study, we investigated whether the neuronal overexpression of glutathione peroxidase (GPx), the major hydrogen peroxide (H2O2)-de-grading enzyme in neurons, could increase their survival in a cellular model of Abeta-induced neurotoxicity. We infected pheochromocytoma (PC12) cells and rat embryonic cultured cortical neurons with an adenoviral vector encoding GPx (Ad-GPx) prior to exposure to toxic concentrations of Abeta(25-35) or (1-40). Both PC12 and cortical Ad-GPx-infected cells were significantly more resistant to Abeta-induced injury. These data strengthen the hypothesis of a role of H2O2 in the mechanism of Abeta toxicity and highlight the potential of Ad-GPx to reduce Abeta-induced damage to neurons. These findings may have applications in gene therapy for AD.
Collapse
Affiliation(s)
- M Barkats
- Laboratoire de Génétique Moléculaire de la Neurotransmission et des Processus Neurodégénératifs, CNRS UMR C9923, Hôpital de la Pitié Salpêtrière, Paris, France
| | | | | | | | | |
Collapse
|
31
|
Abstract
The only definitive diagnosis for Alzheimer disease (AD) at present is postmortem observation of neuritic plaques and neurofibrillary tangles in brain sections. Radiolabeled amyloid-beta peptide (Abeta), which has been shown to label neuritic plaques in vitro, therefore could provide a diagnostic tool if it also labels neuritic plaques in vivo following intravenous injection. In this study, we show that the permeability of Abeta at the blood-brain barrier can be increased by at least twofold through covalent modification with the naturally occurring polyamine, putrescine. We also show that, following intravenous injection, radiolabeled, putrescine-modified Abeta labels amyloid deposits in vivo in a transgenic mouse model of AD, as well as in vitro in human AD brain sections. This technology, when applied to humans, may be used to detect plaques in vivo, allowing early diagnosis of the disease and therapeutic intervention before cognitive decline occurs.
Collapse
Affiliation(s)
- T M Wengenack
- Molecular Neurobiology Laboratory, Departments of Neurology Biochemistry/Molecular Biology, Mayo Clinic and Foundation, Rochester, MN 55905, USA
| | | | | |
Collapse
|
32
|
Varadarajan S, Yatin S, Aksenova M, Butterfield DA. Review: Alzheimer's amyloid beta-peptide-associated free radical oxidative stress and neurotoxicity. J Struct Biol 2000; 130:184-208. [PMID: 10940225 DOI: 10.1006/jsbi.2000.4274] [Citation(s) in RCA: 554] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Alzheimer's disease, the major dementing disorder of the elderly that affects over 4 million Americans, is related to amyloid beta-peptide, the principal component of senile plaques in Alzheimer's disease brain. Oxidative stress, manifested by protein oxidation and lipid peroxidation, among other alterations, is a characteristic of Alzheimer's disease brain. Our laboratory united these two observations in a model to account for neurodegeneration in Alzheimer's disease brain, the amyloid beta-peptide-associated oxidative stress model for neurotoxicity in Alzheimer's disease. Under this model, the aggregated peptide, perhaps in concert with bound redox metal ions, initiates free radical processes resulting in protein oxidation, lipid peroxidation, reactive oxygen species formation, cellular dysfunction leading to calcium ion accumulation, and subsequent neuronal death. Free radical antioxidants abrogate these findings. This review outlines the substantial evidence from multiidisciplinary approaches for amyloid beta-peptide-associated free radical oxidative stress and neurotoxicity and protection against these oxidative processes and cell death by free radical scavengers. In addition, we review the strong evidence supporting the notion that the single methionine residue of amyloid beta-peptide is vital to the oxidative stress and neurotoxicological properties of this peptide. Further, we discuss studies that support the hypothesis that aggregated soluble amyloid beta-peptide and not fibrils per se are necessary for oxidative stress and neurotoxicity associated with amyloid beta-peptide.
Collapse
Affiliation(s)
- S Varadarajan
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, 40506-0055, USA
| | | | | | | |
Collapse
|
33
|
Klein AM, Kowall NW, Ferrante RJ. Neurotoxicity and oxidative damage of beta amyloid 1-42 versus beta amyloid 1-40 in the mouse cerebral cortex. Ann N Y Acad Sci 2000; 893:314-20. [PMID: 10672257 DOI: 10.1111/j.1749-6632.1999.tb07845.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Senile plaques (SP), a neuropathological hallmark of Alzheimer's disease (AD), are characterized by extracellular accumulations of beta amyloid (A beta). SP predominantly contain A beta 42 with a small amount of associated A beta 40. We determined the neurotoxic properties of A beta 42 as compared to A beta 40 by injections into the frontal cortex of three month old C57BL/6 mice. A beta 42 was associated with a significantly larger area of glial fibrillary acidic protein (GFAP) immunoreactivity and a greater density of reactive astrocytes than A beta 40. Immunohistochemical staining for markers of oxidative damage against 3-nitrotyrosine (3-NT) and 8-hydroxydeoxyguanosine (8-OHDG) were significantly more intense around the A beta 42 injection compared to the A beta 40 injection sites. These findings are consistent with previous in vitro studies and suggest that A beta 42 is more neurotoxic and may generate more free radical damage than A beta 40.
Collapse
Affiliation(s)
- A M Klein
- Department of Neurology, Boston University School of Medicine, Massaschusetts 02118, USA
| | | | | |
Collapse
|
34
|
Ramassamy C, Averill D, Beffert U, Theroux L, Lussier-Cacan S, Cohn JS, Christen Y, Schoofs A, Davignon J, Poirier J. Oxidative insults are associated with apolipoprotein E genotype in Alzheimer's disease brain. Neurobiol Dis 2000; 7:23-37. [PMID: 10671320 DOI: 10.1006/nbdi.1999.0273] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The epsilon4 allele of the apolipoprotein E gene (APOE) is associated with sporadic and familial late-onset Alzheimer's disease (AD). Oxidative stress is believed to play an important role in neuronal dysfunction and cell death in AD. We now provide evidence that in the hippocampus of AD, the level of thiobarbituric acid-reactive substances (TBARS) and the APOE genotype are linked. Within AD cases, the levels of TBARS were found to be higher among epsilon4 carriers while the apoE protein concentrations were lower. The relationship between the levels of TBARS and apoE proteins was corroborated by the results from the APOE-deficient mice, in which the levels of TBARS were higher than those in wild-type mice. Among AD cases, tissues from patients with the epsilon4 allele of APOE displayed lower activities of catalase and glutathione peroxidase and lower concentration of glutathione than tissues from patients homozygous for the epsilon3 allele of APOE. Together these data demonstrate that, in AD, the epsilon4 allele of APOE is associated with higher oxidative insults.
Collapse
Affiliation(s)
- C Ramassamy
- Neuroscience Division, Douglas Hospital Research Center, Verdun, Quebec, H4H 1R3, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Elbaum D, Brzyska M, Bacia A, Alkon DL. Implication of novel biochemical property of beta-amyloid. Biochem Biophys Res Commun 2000; 267:733-8. [PMID: 10673360 DOI: 10.1006/bbrc.1999.2024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Alzheimer disease (AD) is a heterogeneous disorder with a variety of molecular pathologies converging predominantly on abnormal amyloid deposition particularly in the brain. beta-Amyloid aggregation into senile plaques is one of the pathological hallmarks of AD. beta-Amyloid is generated by a proteolytic cleavage of a large membrane protein, amyloid precursor protein (APP). We have observed a new property of beta-amyloid. The amyloid 1-42 beta fragment, when aggregated, possesses proteolytic and esterase-like activity, in vitro. Three independent methods were used to test the new property of beta-amyloid. While esterase activity involves imidazole catalysis, proteolytic activity is consistent with participation of a serine peptidase triad: catalytic Ser, His and Glu (or Asp). Although the amino acid triad is a necessary requirement for the protease reactivity, it is not sufficient since the secondary structure of the protein significantly contributes to the proteolytic activity. The ability of beta-amyloid to cleave peptide or ester bonds could be thus responsible for either inactivation of other proteins and/or APP proteolysis itself. This property may be responsible for early pathogenesis of AD since there is emerging evidence that non-plaque amyloid is elevated in Alzheimer patients.
Collapse
Affiliation(s)
- D Elbaum
- Laboratory of Biophysical Methods, Nencki Institute of Experimental Biology, Warsaw, Poland.
| | | | | | | |
Collapse
|
36
|
Varadarajan S, Yatin S, Kanski J, Jahanshahi F, Butterfield DA. Methionine residue 35 is important in amyloid beta-peptide-associated free radical oxidative stress. Brain Res Bull 1999; 50:133-41. [PMID: 10535332 DOI: 10.1016/s0361-9230(99)00093-3] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Amyloid beta-peptide (Abeta), the central constituent of senile plaques in Alzheimer's disease (AD) brain, has been shown to be a source of free radical oxidative stress that may lead to neurodegeneration. In the current study Abeta(1-40), found in AD brain, and the amyloid fragment Abeta(25-35) were used in conjunction with electron paramagnetic resonance spin trapping techniques to demonstrate that these peptides mediate free radical production. The methionine residue in these peptides is believed to play an important role in their neurotoxicity. Substitution of methionine by structurally similar norleucine in both Abeta(1-40) and Abeta(25-35), and the substitution of methionine by valine, or the removal of the methionine in Abeta(25-35), abrogates free radical production and protein oxidation of and toxicity to hippocampal neurons. These results are discussed with relevance to the hypothesis that neurodegeneration in Alzheimer's disease may be due in part to Abeta-associated free radical oxidative stress that involves methionine, and to the use of spin trapping methods to infer mechanistic information about Abeta.
Collapse
Affiliation(s)
- S Varadarajan
- Department of Chemistry, Center of Membrane Sciences, University of Kentucky, Lexington 40506-0055, USA
| | | | | | | | | |
Collapse
|
37
|
Yang EY, Guo-Ross SX, Bondy SC. The stabilization of ferrous iron by a toxic beta-amyloid fragment and by an aluminum salt. Brain Res 1999; 839:221-6. [PMID: 10519044 DOI: 10.1016/s0006-8993(99)01694-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aluminum is a recognized neurotoxin in dialysis encephalopathy and may also be implicated in the etiology of neurodegenerative disease, particularly Alzheimer's disease. Alzheimer's disease is suspected to be associated with oxidative stress, possibly due to the pro-oxidant properties of beta-amyloid present in the senile plaques. The underlying mechanism by which this occurs is not well understood although interactions between amyloid and iron have been proposed. The presence of low molecular weight iron compounds can stimulate free radical production in the brain. This study provides a possible explanation whereby both aluminum and beta-amyloid can potentiate free radical formation by stabilizing iron in its more damaging ferrous (Fe2+) form which can promote the Fenton reaction. The velocity, at which Fe2+ is spontaneously oxidized to Fe3+ at 37 degrees C in 20 mM Bis-Tris buffer at pH 5.8, was significantly slowed in the presence of aluminum salts. A parallel effect of prolongation of stability of soluble ferrous ion, was found in the presence of beta-amyloid fragment (25-35). Ascorbic acid, known to potentiate the pro-oxidant properties of iron, was also capable of markedly stabilizing ferrous ions.
Collapse
Affiliation(s)
- E Y Yang
- Department of Community and Environmental Medicine, University of California, Irvine 92697-1820, USA
| | | | | |
Collapse
|
38
|
Effects of beta-amyloid on cholinergic, cholinoceptive and GABAergic neurons. ACTA BIOLOGICA HUNGARICA 1998. [DOI: 10.1007/bf03542976] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
39
|
Subramaniam R, Koppal T, Green M, Yatin S, Jordan B, Drake J, Butterfield DA. The free radical antioxidant vitamin E protects cortical synaptosomal membranes from amyloid beta-peptide(25-35) toxicity but not from hydroxynonenal toxicity: relevance to the free radical hypothesis of Alzheimer's disease. Neurochem Res 1998; 23:1403-10. [PMID: 9814551 DOI: 10.1023/a:1020754807671] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Amyloid beta-peptide (Abeta) is a key factor in the neurotoxicity of Alzheimer's disease (AD). Recent research has shown that Abeta-mediated neurotoxicity involves free radicals and that Abeta peptides can initiate multiple membrane alterations, including protein oxidation and lipid peroxidation, eventually leading to neuronal cell death. Research also has emphasized the role of 4-hydroxynonenal (HNE), a downstream product of lipid peroxidation, in being able to mimic some of the effects of Abeta peptides. In the current investigation, electron paramagnetic resonance (EPR) studies of spin labeled cortical synaptosomal membrane proteins has been employed to study conformational changes in proteins, spectrophotometric methods have been used to measure protein carbonyl content, and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay for mitochondrial function has been used to study the effect of vitamin E on samples that were treated with Abeta or HNE. The free radical dependence of beta-amyloid-associated toxicity was confirmed by the ability of the free radical scavenger vitamin E to prevent the toxic effects of Abeta. In contrast, HNE was still toxic in the presence of vitamin E. These results support our Abeta-associated free radical model for neurotoxicity in AD brain and are discussed with reference to potential therapeutic strategies for AD.
Collapse
Affiliation(s)
- R Subramaniam
- Department of Chemistry and Center of Membrane Sciences, University of Kentucky, Lexington 40506, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
The age-related susceptibility of the brain to neurodegenerative disease may be inherent in the susceptibility of individual neurons to various stressors. Neurons were isolated from embryonic, young- and old-aged rat hippocampus, cultured in serum-free medium and exposed to lactic acid, glutamate or beta-amyloid. Yields of isolated adult cells were 1 million cells/hippocampus, 12,000 cells/mg tissue, independent of age. For lactic acidosis, there was a non-significant 10% increment in killing of neuron-like cells from old rats compared to young. For glutamate, there was a 5-10% increment in killing of neuron-like cells from old rats compared to young rats and embryonic neurons. For cells exposed to the toxic fragment of beta-amyloid, A beta (25-35), toxicity was age, dose and time-dependent. Maximum toxicity in cells treated for 1 day with 25 microM A beta (25-35) was 16%, 24%, and 33% for embryonic, young and old cells. Similar results were found for A beta (1-40) (LD50 = 2 microM). These results suggest that aging imparts to individual cells an increased susceptibility to toxic substances relevant to neurodegenerative diseases.
Collapse
Affiliation(s)
- G J Brewer
- Southern Illinois University School of Medicine, Springfield 62794-9626, USA.
| |
Collapse
|
41
|
Abstract
Melatonin was recently reported to be an effective free radical scavenger and antioxidant. Melatonin is believed to scavenge the highly toxic hydroxyl radical, the peroxynitrite anion, and possibly the peroxyl radical. Also, secondarily, it reportedly scavenges the superoxide anion radical and it quenches singlet oxygen. Additionally, it stimulates mRNA levels for superoxide dismutase and the activities of glutathione peroxidase, glutathione reductase and glucose-6-phosphate dehydrogenase (all of which are antioxidative enzymes), thereby increasing its antioxidative capacity. Also, melatonin, at least at some sites, inhibits nitric oxide synthase, a pro-oxidative enzyme. In both in vivo and in vitro experiments melatonin has been shown to reduce lipid peroxidation and oxidative damage to nuclear DNA. While these effects have been observed primarily using pharmacological doses of melatonin, in a small number of experiments melatonin has been found to be physiologically relevant as an antioxidant as well. The efficacy of melatonin in inhibiting oxidative damage has been tested in a variety of neurological disease models where free radicals have been implicated as being in part causative of the condition. Thus, melatonin has been shown prophylactically to reduce amyloid beta protein toxicity of Alzheimer's disease, to reduce oxidative damage in several models of Parkinson's disease (dopamine auto-oxidation, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 6-hydroxydopamine), to protect against glutamate excitotoxicity, to reduce ischemia-reperfusion injury, to lower neural damage due to gamma-aminolevulinic acid (phorphyria), hyperbaric hyperoxia and a variety of neural toxins. Since endogenous melatonin levels fal 1 markedly in advanced age, the implication of these findings is that the loss of this antioxidant may contribute to the incidence or severity of some age-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- R J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio 78284-7762, USA.
| |
Collapse
|
42
|
Bondy SC, Guo-Ross SX, Truong AT. Promotion of transition metal-induced reactive oxygen species formation by beta-amyloid. Brain Res 1998; 799:91-6. [PMID: 9666089 DOI: 10.1016/s0006-8993(98)00461-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
beta-amyloid protein appears to be involved in the neural degeneration associated with Alzheimer's disease. However, its mechanism of action is poorly understood. The ability of the neurotoxic peptide fragment (25-35) derived from beta-amyloid, to promote the generation of reactive oxygen species (ROS) by a postmitochondrial fraction (P2) derived from rat cerebrocortex, has been examined. The peptide fragment, when incubated together with P2, did not cause excess ROS formation. However, 10 microM FeSO4 or 10 microM CuSO4 were able to enhance ROS production in the P2 fraction and this was increased further in the concurrent presence of the 25-35 fragment. The corresponding inverse sequence non-neurotoxic peptide (35-25) had no parallel ability to augment iron-stimulated ROS production suggesting a degree of specificity for the observed effect. There was no formation of excess ROS when the 25-35 peptide and 0.5 mM Al2(SO4)3 were incubated with the P2 fraction. However in the presence of both aluminum and iron salts together with the 25-35 peptide, ROS production was augmented to a level significantly higher than that in the absence of aluminum. Polyglutamate, a peptide reported to mitigate aluminum toxicity had no effect on iron-related ROS generation but completely prevented its further potentiation by aluminum. The results indicate that beta-amyloid is able to potentiate the free-radical promoting capacity of metal ions such as iron, copper and aluminum. Such potentiation may be a relevant mechanism underlying beta-amyloid-induced degeneration of nerve cells.
Collapse
Affiliation(s)
- S C Bondy
- Center for Occupational and Environmental Health, Department of Community and Environmental Medicine, University of California Irvine, Irvine, CA 92697-1820, USA
| | | | | |
Collapse
|
43
|
Pakaski M, Farkas Z, Kasa P, Forgon M, Papp H, Zarandi M, Penke B, Kasa P. Vulnerability of small GABAergic neurons to human beta-amyloid pentapeptide. Brain Res 1998; 796:239-46. [PMID: 9689474 DOI: 10.1016/s0006-8993(98)00358-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
beta-Amyloid peptide (A beta), the principal component of senile plaques in Alzheimer's disease, has been found to be neurotoxic. The role of A beta in the deficits of the GABAergic system in patients with Alzheimer's disease is unclear. It has been suggested that the cytotoxic activity of A beta is localized to amino acid residues 25-35 of this peptide, which contains a total of 42 amino acid residues. We now report that the short amyloid peptide fragments corresponding to amino acids 31-35 (A beta 31-35) and 34-39 (A beta 34-39) are also toxic in vitro to the small GABAergic neuron population of basal forebrain cultures. Morphological changes were accompanied by an increased number of varicosities localized on the processes of the GABA-immunoreactive neurons and by the appearance of round cells without processes. The neurodegeneration was confirmed by means of scanning electron microscopy. Quantification of the morphological findings by image analysis demonstrated a size-related dependence of the degeneration of GABAergic neurons. The results suggest that fragments of A beta shorter than A beta 25-35 may exert cytotoxic action and demonstrate the toxicity of these A beta fragments in decreasing the number of small GABAergic neurons.
Collapse
Affiliation(s)
- M Pakaski
- Alzheimer's Disease Research Centre, Albert Szent-Györgyi Medical University, Szeged, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Aksenov MY, Aksenova MV, Markesbery WR, Butterfield DA. Amyloid beta-peptide (1-40)-mediated oxidative stress in cultured hippocampal neurons. Protein carbonyl formation, CK BB expression, and the level of Cu, Zn, and Mn SOD mRNA. J Mol Neurosci 1998; 10:181-92. [PMID: 9770641 DOI: 10.1007/bf02761773] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Mechanism of amyloid beta-peptide (A beta) toxicity in cultured neurons involves the development of oxidative stress in the affected cells. A significant increase in protein carbonyl formation was detected in cultured hippocampal neurons soon after the addition of preaggregated A beta(1-40), indicating oxidative damage of proteins. We report that neurons, subjected to A beta(1-40), respond to A beta oxidative impact by activation of antioxidant defense mechanisms and alternative ATP-regenerating pathway. The study demonstrates an increase of Mn SOD gene expression and the restoration of Cu, Zn SOD gene expression to a normal level after temporary suppression. Partial loss of creatine kinase (CK) BB activity, which is the key enzyme for functioning of the creatine/phosphocreatine shuttle, was compensated in neurons surviving the A beta oxidative attack by increased production of the enzyme. As soon as the oxidative attack triggered by the addition of preaggregated A beta (1-40) to rat hippocampal cell cultures has been extinguished, CK BB expression and SOD isoenzyme-specific mRNA levels in surviving neurons return to normal. We propose that the maintenance of a constant level of CK function by increased CK BB production together with the induction of antioxidant enzyme gene expression in A beta-treated hippocampal neurons accounts for at least part of their adaptation to A beta toxicity.
Collapse
Affiliation(s)
- M Y Aksenov
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, USA
| | | | | | | |
Collapse
|
45
|
Kiatipattanasakul W, Nakamura SI, Kuroki K, Nakayama H, Doi K. Immunohistochemical detection of anti-oxidative stress enzymes in the dog brain. Neuropathology 1997. [DOI: 10.1111/j.1440-1789.1997.tb00058.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
46
|
Mark RJ, Keller JN, Kruman I, Mattson MP. Basic FGF attenuates amyloid beta-peptide-induced oxidative stress, mitochondrial dysfunction, and impairment of Na+/K+-ATPase activity in hippocampal neurons. Brain Res 1997; 756:205-14. [PMID: 9187334 DOI: 10.1016/s0006-8993(97)00196-0] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Basic fibroblast growth factor (bFGF) exhibits trophic activity for many populations of neurons in the brain, and can protect those neurons against excitotoxic, metabolic and oxidative insults. In Alzheimer's disease (AD), amyloid beta-peptide (A beta) fibrils accumulate in plaques which are associated with degenerating neurons. A beta can be neurotoxic by a mechanism that appears to involve induction of oxidative stress and disruption of calcium homeostasis. Plaques in AD brain contain high levels of bFGF suggesting a possible modulatory role for bFGF in the neurodegenerative process. We now report that bFGF can protect cultured hippocampal neurons against A beta25-35 toxicity by a mechanism that involves suppression of reactive oxygen species (ROS) accumulation and maintenance of Na+/K+-ATPase activity. A beta25-35 induced lipid peroxidation, accumulation of H2O2, mitochondrial ROS accumulation, and a decrease in mitochondrial transmembrane potential; each of these effects of A beta25-35 was abrogated in cultures pre-treated with bFGF. Na+/K+-ATPase activity was significantly reduced following exposure to A beta25-35 in control cultures, but not in cultures pre-treated with bFGF. bFGF did not protect neurons from death induced by ouabain (a specific inhibitor of the Na+/K+-ATPase) or 4-hydroxynonenal (an aldehydic product of lipid peroxidation) consistent with a site of action of bFGF prior to induction of oxidative stress and impairment of ion-motive ATPases. By suppressing accumulation of oxyradicals, bFGF may slow A beta-induced neurodegenerative cascades.
Collapse
Affiliation(s)
- R J Mark
- Sanders-Brown Research Center on Aging, University of Kentucky, Lexington 40536, USA
| | | | | | | |
Collapse
|
47
|
|
48
|
Nishimoto I, Okamoto T, Giambarella U, Iwatsubo T. Apoptosis in neurodegenerative diseases. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1997; 41:337-68. [PMID: 9204151 DOI: 10.1016/s1054-3589(08)61064-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- I Nishimoto
- Department of Pharmacology and Neurosciences, Keio University School of Medicine, Tokyo, Japan
| | | | | | | |
Collapse
|