1
|
Chiu YS, Wu KJ, Yu SJ, Wu KL, Hsieh CY, Chou YS, Chen KY, Wang YS, Bae EK, Hung TW, Lin SH, Lin CH, Hsu SC, Wang Y, Chen YH. Transplantation of Exosomes Derived From Human Wharton's Jelly Mesenchymal Stromal Cells Enhances Functional Improvement in Stroke Rats. Cell Transplant 2024; 33:9636897241296366. [PMID: 39624898 PMCID: PMC11613244 DOI: 10.1177/09636897241296366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/28/2024] [Accepted: 10/15/2024] [Indexed: 12/06/2024] Open
Abstract
Cerebral ischemic stroke is a major cerebrovascular disease and the leading cause of adult disability. We and others previously demonstrated that transplantation of human Wharton's jelly mesenchymal stromal cells (WJ-MSCs) attenuated neuronal damage and promoted functional improvement in stroke animals. This study aimed to investigate the protective effects of human WJ-MSC exosome (Exo) transplant in cellular and rat models of cerebral stroke. Administration of Exo significantly antagonized glutamate-mediated neuronal loss and terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-X nick end labeling (TUNEL) in rat primary cortical neuronal cultures. Adult male rats underwent a 60-min middle cerebral artery occlusion (MCAo); Exo or vehicle was injected through the tail vein 5-10 min after the MCAo. Two days later, the rats underwent a series of behavioral tests. Stroke rats receiving Exo developed a significant improvement in locomotor function and forelimb strength while reductions in body asymmetry and Bederson's neurological score. After the behavioral test, brain tissues were harvested for histological and quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) analyses. Animals receiving Exo had less infarction volume, measured by 2,3,5-triphenyl tetrazolium chloride (TTC) staining. Transplantation of Exo increased the expression of protective neurotrophic factors (BMP7, GDNF) and anti-apoptotic factors (Bcl2, Bcl-xL) in the ischemic brain. These findings suggest that early post-treatment with WJ-MSC Exo, given non-invasively through the vein, improved functional recovery and reduced brain damage in the stroke brain.
Collapse
Affiliation(s)
- Yu-Sung Chiu
- YJ Biotechnology Co., Ltd., New Taipei City, Taiwan
| | - Kuo-Jen Wu
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan
| | - Seong-Jin Yu
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
| | - Kun-Lieh Wu
- YJ Biotechnology Co., Ltd., New Taipei City, Taiwan
- Department of Electrical Engineering, I-Shou University, Kaohsiung, Taiwan
| | | | | | - Kuan-Yu Chen
- YJ Biotechnology Co., Ltd., New Taipei City, Taiwan
| | - Yu-Syuan Wang
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
| | - Eun-Kyung Bae
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
| | - Tsai-Wei Hung
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
| | - Shih-Hsun Lin
- Department of Life Science, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Chih-Hsueh Lin
- Department of Life Science, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Shu-Ching Hsu
- Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- PhD Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung, Taiwan
- Immunology Research and Development Center, China Medical University, Taichung City, Taiwan
- Department of Life Sciences, Tzu Chi University, Hualien, Taiwan
| | - Yun Wang
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
| | - Yun-Hsiang Chen
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
- Department of Life Science, Fu-Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
2
|
Barrett MS, Bauer TC, Li MH, Hegarty DM, Mota CMD, Amaefuna CJ, Ingram SL, Habecker BA, Aicher SA. Ischemia-reperfusion myocardial infarction induces remodeling of left cardiac-projecting stellate ganglia neurons. Am J Physiol Heart Circ Physiol 2024; 326:H166-H179. [PMID: 37947434 PMCID: PMC11213476 DOI: 10.1152/ajpheart.00582.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/23/2023] [Accepted: 11/08/2023] [Indexed: 11/12/2023]
Abstract
Neurons in the stellate ganglion (SG) provide sympathetic innervation to the heart, brown adipose tissue (BAT), and other organs. Sympathetic innervation to the heart becomes hyperactive following myocardial infarction (MI). The impact of MI on the morphology of cardiac sympathetic neurons is not known, but we hypothesized that MI would stimulate increased cell and dendritic tree size in cardiac neurons. In this study, we examined the effects of ischemia-reperfusion MI on sympathetic neurons using dual retrograde tracing methods to allow detailed characterization of cardiac- and BAT-projecting neurons. Different fluorescently conjugated cholera toxin subunit B (CTb) tracers were injected into the pericardium and the interscapular BAT pads, respectively. Experimental animals received a 45-min occlusion of the left anterior descending coronary artery and controls received sham surgery. One week later, hearts were collected for assessment of MI infarct and SGs were collected for morphological or electrophysiological analysis. Cardiac-projecting SG neurons from MI mice had smaller cell bodies and shorter dendritic trees compared with sham animals, specifically on the left side ipsilateral to the MI. BAT-projecting neurons were not altered by MI, demonstrating the subpopulation specificity of the response. The normal size and distribution differences between BAT- and cardiac-projecting stellate ganglion neurons were not altered by MI. Patch-clamp recordings from cardiac-projecting left SG neurons revealed increased spontaneous excitatory postsynaptic currents despite the decrease in cell and dendritic tree size. Thus, increased dendritic tree size does not contribute to the enhanced sympathetic neural activity seen after MI.NEW & NOTEWORTHY Myocardial infarction (MI) causes structural and functional changes specifically in stellate ganglion neurons that project to the heart, but not in cells that project to brown adipose fat tissue.
Collapse
Affiliation(s)
- Madeleine S Barrett
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, United States
| | - Temerity C Bauer
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, United States
| | - Ming-Hua Li
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, United States
| | - Deborah M Hegarty
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, United States
| | - Clarissa M D Mota
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, United States
| | - Chimezie J Amaefuna
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, United States
| | - Susan L Ingram
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, United States
| | - Beth A Habecker
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, United States
| | - Sue A Aicher
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, United States
| |
Collapse
|
3
|
Karunungan K, Garza RH, Grodzki AC, Holt M, Lein PJ, Chandrasekaran V. Gamma secretase activity modulates BMP-7-induced dendritic growth in primary rat sympathetic neurons. Auton Neurosci 2023; 247:103085. [PMID: 37031474 PMCID: PMC10330319 DOI: 10.1016/j.autneu.2023.103085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
Autonomic dysfunction has been observed in Alzheimer's disease (AD); however, the effects of genes involved in AD on the peripheral nervous system are not well understood. Previous studies have shown that presenilin-1 (PSEN1), the catalytic subunit of the gamma secretase (γ-secretase) complex, mutations in which are associated with familial AD function, regulates dendritic growth in hippocampal neurons. In this study, we examined whether the γ-secretase pathway also influences dendritic growth in primary sympathetic neurons. Using immunoblotting and immunocytochemistry, molecules of the γ-secretase complex, PSEN1, PSEN2, PEN2, nicastrin and APH1a, were detected in sympathetic neurons dissociated from embryonic (E20/21) rat sympathetic ganglia. Addition of bone morphogenetic protein-7 (BMP-7), which induces dendrites in these neurons, did not alter expression or localization of γ-secretase complex proteins. BMP-7-induced dendritic growth was inhibited by siRNA knockdown of PSEN1 and by three γ-secretase inhibitors, γ-secretase inhibitor IX (DAPT), LY-411575 and BMS-299897. These effects were specific to dendrites and concentration-dependent and did not alter early downstream pathways of BMP signaling. In summary, our results indicate that γ-secretase activity enhances BMP-7 induced dendritic growth in sympathetic neurons. These findings provide insight into the normal cellular role of the γ-secretase complex in sympathetic neurons.
Collapse
Affiliation(s)
- Krystal Karunungan
- Department of Biology, Saint Mary's College of California, 1928 Saint Mary's Road, Moraga, CA 94556, United States of America
| | - Rachel H Garza
- Department of Biology, Saint Mary's College of California, 1928 Saint Mary's Road, Moraga, CA 94556, United States of America
| | - Ana Cristina Grodzki
- Department of Molecular Biosciences, University of California, Davis, 1089 Veterinary Medicine Drive, Davis, CA 95616, United States of America
| | - Megan Holt
- Department of Biology, Saint Mary's College of California, 1928 Saint Mary's Road, Moraga, CA 94556, United States of America
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California, Davis, 1089 Veterinary Medicine Drive, Davis, CA 95616, United States of America
| | - Vidya Chandrasekaran
- Department of Biology, Saint Mary's College of California, 1928 Saint Mary's Road, Moraga, CA 94556, United States of America.
| |
Collapse
|
4
|
Wilson C, Moyano AL, Cáceres A. Perspectives on Mechanisms Supporting Neuronal Polarity From Small Animals to Humans. Front Cell Dev Biol 2022; 10:878142. [PMID: 35517494 PMCID: PMC9062071 DOI: 10.3389/fcell.2022.878142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/04/2022] [Indexed: 11/23/2022] Open
Abstract
Axon-dendrite formation is a crucial milestone in the life history of neurons. During this process, historically referred as “the establishment of polarity,” newborn neurons undergo biochemical, morphological and functional transformations to generate the axonal and dendritic domains, which are the basis of neuronal wiring and connectivity. Since the implementation of primary cultures of rat hippocampal neurons by Gary Banker and Max Cowan in 1977, the community of neurobiologists has made significant achievements in decoding signals that trigger axo-dendritic specification. External and internal cues able to switch on/off signaling pathways controlling gene expression, protein stability, the assembly of the polarity complex (i.e., PAR3-PAR6-aPKC), cytoskeleton remodeling and vesicle trafficking contribute to shape the morphology of neurons. Currently, the culture of hippocampal neurons coexists with alternative model systems to study neuronal polarization in several species, from single-cell to whole-organisms. For instance, in vivo approaches using C. elegans and D. melanogaster, as well as in situ imaging in rodents, have refined our knowledge by incorporating new variables in the polarity equation, such as the influence of the tissue, glia-neuron interactions and three-dimensional development. Nowadays, we have the unique opportunity of studying neurons differentiated from human induced pluripotent stem cells (hiPSCs), and test hypotheses previously originated in small animals and propose new ones perhaps specific for humans. Thus, this article will attempt to review critical mechanisms controlling polarization compiled over decades, highlighting points to be considered in new experimental systems, such as hiPSC neurons and human brain organoids.
Collapse
|
5
|
Blake MR, Gardner RT, Jin H, Staffenson MA, Rueb NJ, Barrios AM, Dudley GB, Cohen MS, Habecker BA. Small Molecules Targeting PTPσ-Trk Interactions Promote Sympathetic Nerve Regeneration. ACS Chem Neurosci 2022; 13:688-699. [PMID: 35156811 PMCID: PMC9112862 DOI: 10.1021/acschemneuro.1c00854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chondroitin sulfate proteoglycans (CSPGs) prevent sympathetic nerve regeneration in the heart after myocardial infarction and prevent central nerve regrowth after traumatic brain injury and spinal cord injury. Currently, there are no small-molecule therapeutics to promote nerve regeneration through CSPG-containing scars. CSPGs bind to monomers of receptor protein tyrosine phosphatase sigma (PTPσ) on the surface of neurons, enhancing the ability of PTPσ to bind and dephosphorylate tropomyosin receptor kinases (Trks), inhibiting their activity and preventing axon outgrowth. Targeting PTPσ-Trk interactions is thus a potential therapeutic target. Here, we describe the development and synthesis of small molecules (HJ-01 and HJ-02) that disrupt PTPσ interactions with Trks, enhance Trk signaling, and promote sympathetic nerve regeneration over CSPGs.
Collapse
Affiliation(s)
- Matthew R. Blake
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR 97239, USA
- Graduate Program in Biomedical Sciences, Oregon Health and Science University, Portland, OR 97239, USA
| | - Ryan T. Gardner
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR 97239, USA
| | - Haihong Jin
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR 97239, USA
| | - Melanie A. Staffenson
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR 97239, USA
| | - Nicole J. Rueb
- Department of Medicinal Chemistry, University of Utah College of Pharmacy, Salt Lake City, UT 84112, USA
| | - Amy M. Barrios
- Department of Medicinal Chemistry, University of Utah College of Pharmacy, Salt Lake City, UT 84112, USA
| | - Gregory B. Dudley
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, USA
| | - Michael S. Cohen
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR 97239, USA
| | - Beth A. Habecker
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR 97239, USA
| |
Collapse
|
6
|
Abstract
The sympathetic nervous system prepares the body for 'fight or flight' responses and maintains homeostasis during daily activities such as exercise, eating a meal or regulation of body temperature. Sympathetic regulation of bodily functions requires the establishment and refinement of anatomically and functionally precise connections between postganglionic sympathetic neurons and peripheral organs distributed widely throughout the body. Mechanistic studies of key events in the formation of postganglionic sympathetic neurons during embryonic and early postnatal life, including axon growth, target innervation, neuron survival, and dendrite growth and synapse formation, have advanced the understanding of how neuronal development is shaped by interactions with peripheral tissues and organs. Recent progress has also been made in identifying how the cellular and molecular diversity of sympathetic neurons is established to meet the functional demands of peripheral organs. In this Review, we summarize current knowledge of signalling pathways underlying the development of the sympathetic nervous system. These findings have implications for unravelling the contribution of sympathetic dysfunction stemming, in part, from developmental perturbations to the pathophysiology of peripheral neuropathies and cardiovascular and metabolic disorders.
Collapse
|
7
|
Jensen GS, Leon-Palmer NE, Townsend KL. Bone morphogenetic proteins (BMPs) in the central regulation of energy balance and adult neural plasticity. Metabolism 2021; 123:154837. [PMID: 34331962 DOI: 10.1016/j.metabol.2021.154837] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/28/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022]
Abstract
The current worldwide obesity pandemic highlights a need to better understand the regulation of energy balance and metabolism, including the role of the nervous system in controlling energy intake and energy expenditure. Neural plasticity in the hypothalamus of the adult brain has been implicated in full-body metabolic health, however, the mechanisms surrounding hypothalamic plasticity are incompletely understood. Bone morphogenetic proteins (BMPs) control metabolic health through actions in the brain as well as in peripheral tissues such as adipose, together regulating both energy intake and energy expenditure. BMP ligands, receptors, and inhibitors are found throughout plastic adult brain regions and have been demonstrated to modulate neurogenesis and gliogenesis, as well as synaptic and dendritic plasticity. This role for BMPs in adult neural plasticity is distinct from their roles in brain development. Existing evidence suggests that BMPs induce weight loss through hypothalamic pathways, and part of the mechanism of action may be through inducing neural plasticity. In this review, we summarize the data regarding how BMPs affect neural plasticity in the adult mammalian brain, as well as the relationship between central BMP signaling and metabolic health.
Collapse
Affiliation(s)
- Gabriel S Jensen
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States of America; Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America
| | - Noelle E Leon-Palmer
- School of Biology and Ecology, University of Maine, Orono, ME, United States of America
| | - Kristy L Townsend
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States of America; Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America; School of Biology and Ecology, University of Maine, Orono, ME, United States of America.
| |
Collapse
|
8
|
Richards LA, Schonhoff CM. Nitric oxide and sex differences in dendritic branching and arborization. J Neurosci Res 2021; 99:1390-1400. [PMID: 33538046 DOI: 10.1002/jnr.24789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/02/2021] [Indexed: 12/17/2022]
Abstract
Nitric oxide (NO) is an important signaling molecule with many functions in the nervous system. Derived from the enzymatic conversion of arginine by several nitric oxide synthases (NOS), NO plays significant roles in neuronal developmental events such as the establishment of dendritic branching or arbors. A brief summary of the discovery, molecular biology, and chemistry of NO, and a description of important NO-mediated signal transduction pathways with emphasis on the role for NO in the development of dendritic branching during neurodevelopment are presented. Important sex differences in neuronal nitric oxide synthase expression during neuronal development are considered. Finally, a survey of endogenous and exogenous substances that disrupt dendritic patterning is presented with particular emphasis on how these molecules may drive NO-mediated sex differences in dendritic branching.
Collapse
Affiliation(s)
- Laura A Richards
- Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA, USA
| | - Christopher M Schonhoff
- Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA, USA.,Department of Biomedical Sciences, Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA, USA
| |
Collapse
|
9
|
Pravoverov K, Whiting K, Thapa S, Bushong T, Trang K, Lein PJ, Chandrasekaran V. MicroRNAs are Necessary for BMP-7-induced Dendritic Growth in Cultured Rat Sympathetic Neurons. Cell Mol Neurobiol 2019; 39:917-934. [PMID: 31104181 PMCID: PMC6713596 DOI: 10.1007/s10571-019-00688-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/14/2019] [Indexed: 01/28/2023]
Abstract
Neuronal connectivity is dependent on size and shape of the dendritic arbor. However, mechanisms controlling dendritic arborization, especially in the peripheral nervous system, are not completely understood. Previous studies have shown that bone morphogenetic proteins (BMPs) are important initiators of dendritic growth in peripheral neurons. In this study, we examined the hypothesis that post-transcriptional regulation mediated by microRNAs (miRNAs) is necessary for BMP-7-induced dendritic growth in these neurons. To examine the role of miRNAs in BMP-7-induced dendritic growth, microarray analyses was used to profile miRNA expression in cultured sympathetic neurons from the superior cervical ganglia of embryonic day 21 rat pups at 6 and 24 h after treatment with BMP-7 (50 ng/mL). Our data showed that BMP-7 significantly regulated the expression of 43 of the 762 miRNAs. Of the 43 miRNAs, 22 showed robust gene expression; 14 were upregulated by BMP-7 and 8 were downregulated by BMP-7. The expression profile for miR-335, miR-664-1*, miR-21, and miR-23b was confirmed using qPCR analyses. Functional studies using morphometric analyses of dendritic growth in cultured sympathetic neurons transfected with miRNA mimics and inhibitors indicated that miR-664-1*, miR-23b, and miR-21 regulated early stages of BMP-7-induced dendritic growth. In summary, our data provide evidence for miRNA-mediated post-transcriptional regulation as important downstream component of BMP-7 signaling during early stages of dendritic growth in sympathetic neurons.
Collapse
Affiliation(s)
- Kristina Pravoverov
- Department of Biology, Saint Mary's College of California, 1928 Saint Mary's Road, Moraga, CA, 94556, USA
| | - Katherine Whiting
- Department of Biology, Saint Mary's College of California, 1928 Saint Mary's Road, Moraga, CA, 94556, USA
| | - Slesha Thapa
- Department of Biology, Saint Mary's College of California, 1928 Saint Mary's Road, Moraga, CA, 94556, USA
| | - Trevor Bushong
- Department of Biology, Saint Mary's College of California, 1928 Saint Mary's Road, Moraga, CA, 94556, USA
| | - Karen Trang
- Department of Biology, Saint Mary's College of California, 1928 Saint Mary's Road, Moraga, CA, 94556, USA
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA
| | - Vidya Chandrasekaran
- Department of Biology, Saint Mary's College of California, 1928 Saint Mary's Road, Moraga, CA, 94556, USA.
| |
Collapse
|
10
|
Sánchez-de-Diego C, Valer JA, Pimenta-Lopes C, Rosa JL, Ventura F. Interplay between BMPs and Reactive Oxygen Species in Cell Signaling and Pathology. Biomolecules 2019; 9:E534. [PMID: 31561501 PMCID: PMC6843432 DOI: 10.3390/biom9100534] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/12/2019] [Accepted: 09/24/2019] [Indexed: 12/12/2022] Open
Abstract
The integration of cell extrinsic and intrinsic signals is required to maintain appropriate cell physiology and homeostasis. Bone morphogenetic proteins (BMPs) are cytokines that belong to the transforming growth factor-β (TGF-β) superfamily, which play a key role in embryogenesis, organogenesis and regulation of whole-body homeostasis. BMPs interact with membrane receptors that transduce information to the nucleus through SMAD-dependent and independent pathways, including PI3K-AKT and MAPKs. Reactive oxygen species (ROS) are intracellular molecules derived from the partial reduction of oxygen. ROS are highly reactive and govern cellular processes by their capacity to regulate signaling pathways (e.g., NF-κB, MAPKs, KEAP1-NRF2 and PI3K-AKT). Emerging evidence indicates that BMPs and ROS interplay in a number of ways. BMPs stimulate ROS production by inducing NOX expression, while ROS regulate the expression of several BMPs. Moreover, BMPs and ROS influence common signaling pathways, including PI3K/AKT and MAPK. Additionally, dysregulation of BMPs and ROS occurs in several pathologies, including vascular and musculoskeletal diseases, obesity, diabetes and kidney injury. Here, we review the current knowledge on the integration between BMP and ROS signals and its potential applications in the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Cristina Sánchez-de-Diego
- Departament de Ciències Fisiològiques, Universitat de Barcelona, Carrer Feixa Llarga s/n, 08907 L'Hospitalet Llobregat, Spain.
| | - José Antonio Valer
- Departament de Ciències Fisiològiques, Universitat de Barcelona, Carrer Feixa Llarga s/n, 08907 L'Hospitalet Llobregat, Spain.
| | - Carolina Pimenta-Lopes
- Departament de Ciències Fisiològiques, Universitat de Barcelona, Carrer Feixa Llarga s/n, 08907 L'Hospitalet Llobregat, Spain.
| | - José Luis Rosa
- Departament de Ciències Fisiològiques, Universitat de Barcelona, Carrer Feixa Llarga s/n, 08907 L'Hospitalet Llobregat, Spain.
- IDIBELL, Avinguda Granvia de l'Hospitalet 199, 08908 L'Hospitalet de Llobregat, Spain.
| | - Francesc Ventura
- Departament de Ciències Fisiològiques, Universitat de Barcelona, Carrer Feixa Llarga s/n, 08907 L'Hospitalet Llobregat, Spain.
- IDIBELL, Avinguda Granvia de l'Hospitalet 199, 08908 L'Hospitalet de Llobregat, Spain.
| |
Collapse
|
11
|
Yang Q, Peng L, Wu Y, Li Y, Wang L, Luo JH, Xu J. Endocytic Adaptor Protein HIP1R Controls Intracellular Trafficking of Epidermal Growth Factor Receptor in Neuronal Dendritic Development. Front Mol Neurosci 2018; 11:447. [PMID: 30574069 PMCID: PMC6291753 DOI: 10.3389/fnmol.2018.00447] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 11/19/2018] [Indexed: 12/12/2022] Open
Abstract
Huntington-interacting protein 1-related protein (HIP1R) was identified on the basis of its structural homology with HIP1. Based on its domain structure, HIP1R is a putative endocytosis-related protein. Our previous study had shown that knockdown of HIP1R induces a dramatic decrease of dendritic growth and branching in cultured rat hippocampal neurons. However, the underlying mechanism remains elucidative. In this study, we found that knockdown of HIP1R impaired the endocytosis of activated epidermal growth factor receptor (EGFR) and the consequent activation of the downstream ERK and Akt proteins. Meanwhile, it blocked the EGF-induced dendritic outgrowth. We also showed that the HIP1R fragment, amino acids 633–822 (HIP1R633–822), interacted with EGFR and revealed a dominant negative effect in disrupting the HIP1R-EGFR interaction-mediated neuronal development. Collectively, these results reveal a novel mechanism that HIP1R plays a critical role in neurite initiation and dendritic branching in cultured hippocampal neurons via mediating the endocytosis of EGFR and downstream signaling.
Collapse
Affiliation(s)
- Qian Yang
- Department of Neurobiology, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Lin Peng
- Department of Psychiatry, Jining Medical University, Jining, China
| | - Yu Wu
- Department of Neurobiology, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanan Li
- Department of Anesthesiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ling Wang
- Department of Neurobiology, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian-Hong Luo
- Department of Neurobiology, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Junyu Xu
- Department of Neurobiology, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
12
|
Henley R, Chandrasekaran V, Giulivi C. Computing neurite outgrowth and arborization in superior cervical ganglion neurons. Brain Res Bull 2018; 144:194-199. [PMID: 30529562 DOI: 10.1016/j.brainresbull.2018.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/30/2018] [Accepted: 12/04/2018] [Indexed: 11/18/2022]
Abstract
Dendrites are the primary site of synaptic activity in neurons and changes in synapses are often the first pathological stage in neurodegenerative diseases. Molecular studies of these changes rely on morphological analysis of the imaging of somas and dendritic arbors of cultured or primary neurons. As research on preventing or reversing synaptic degeneration develops, demands increase for user-friendly 2D neurite analyzers without undermining accuracy and reproducibility. The most common method of 2D neurite analysis is manual by using ImageJ. This method relies completely on the user's ability to distinguish the shape and size of dendrites and trace morphology with a series of straight connected lines. Semi-automatic methods have also been developed, such as the NeuronJ plugin for ImageJ. These methods still rely on the user to identify the start and end of the dendrites, but automatically determine the shape, reducing the likelihood of user bias and speeding the process. Some automatic methods have been developed through image processing software, like ImagePro. These programs tend to be expensive, but have been shown to be fast and effective, limiting user interaction. In this study, we compare three methods of neurite analysis-ImageJ, NeuronJ, and ImagePro-in measuring the soma size, number of dendrites, and length of dendrites per cell of embryonic sympathetic rat neurons with BMP-7-induced dendritic growth. Our results indicate that ImageJ and NeuronJ measurements were of similar effectiveness and consistent throughout various images and multiple trials. NeuronJ required less user interaction in measuring the length of dendrites than the manual method and therefore, was faster and less labor intensive. Conversely, ImagePro tended to be inconsistent across images, overestimating both soma size and the number of dendrites per cell while underestimating the length of dendrites. Overall, NeuronJ, in conjunction with ImageJ, is the most reliable and efficient method of 2D neurite analysis tested in the present study.
Collapse
Affiliation(s)
- Rachel Henley
- Department of Biology, Saint Mary's College of California, Moraga, CA, 94575, United States
| | - Vidya Chandrasekaran
- Department of Biology, Saint Mary's College of California, Moraga, CA, 94575, United States
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, United States; Medical Investigations of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, CA 95817, United States.
| |
Collapse
|
13
|
Howard L, Wosnitzka E, Okakpu D, White MA, Wyatt S, Davies AM. TWE-PRIL reverse signalling suppresses sympathetic axon growth and tissue innervation. Development 2018; 145:dev.165936. [PMID: 30337376 PMCID: PMC6262789 DOI: 10.1242/dev.165936] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 10/10/2018] [Indexed: 12/14/2022]
Abstract
TWE-PRIL is a naturally occurring fusion protein of components of two TNF superfamily members: the extracellular domain of APRIL; and the intracellular and transmembrane domains of TWEAK with no known function. Here, we show that April−/− mice (which lack APRIL and TWE-PRIL) exhibited overgrowth of sympathetic fibres in vivo, and sympathetic neurons cultured from these mice had significantly longer axons than neurons cultured from wild-type littermates. Enhanced axon growth from sympathetic neurons cultured from April−/− mice was prevented by expressing full-length TWE-PRIL in these neurons but not by treating them with soluble APRIL. Soluble APRIL, however, enhanced axon growth from the sympathetic neurons of wild-type mice. siRNA knockdown of TWE-PRIL but not siRNA knockdown of APRIL alone also enhanced axon growth from wild-type sympathetic neurons. Our work reveals the first and physiologically relevant role for TWE-PRIL and suggests that it mediates reverse signalling. Summary:In vivo and in vitro studies of superior cervical ganglion neurons of April−/− mice reveal that TWE-PRIL is a physiological regulator of NGF-promoted sympathetic axon growth, acting as a reverse signalling receptor.
Collapse
Affiliation(s)
- Laura Howard
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AT, UK
| | - Erin Wosnitzka
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AT, UK
| | - Darian Okakpu
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AT, UK
| | - Matthew A White
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AT, UK
| | - Sean Wyatt
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AT, UK
| | - Alun M Davies
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AT, UK
| |
Collapse
|
14
|
Canonical TGF-β Signaling Negatively Regulates Neuronal Morphogenesis through TGIF/Smad Complex-Mediated CRMP2 Suppression. J Neurosci 2018; 38:4791-4810. [PMID: 29695415 DOI: 10.1523/jneurosci.2423-17.2018] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 03/07/2018] [Accepted: 03/20/2018] [Indexed: 11/21/2022] Open
Abstract
Functional neuronal connectivity requires proper neuronal morphogenesis and its dysregulation causes neurodevelopmental diseases. Transforming growth factor-β (TGF-β) family cytokines play pivotal roles in development, but little is known about their contribution to morphological development of neurons. Here we show that the Smad-dependent canonical signaling of TGF-β family cytokines negatively regulates neuronal morphogenesis during brain development. Mechanistically, activated Smads form a complex with transcriptional repressor TG-interacting factor (TGIF), and downregulate the expression of a neuronal polarity regulator, collapsin response mediator protein 2. We also demonstrate that TGF-β family signaling inhibits neurite elongation of human induced pluripotent stem cell-derived neurons. Furthermore, the expression of TGF-β receptor 1, Smad4, or TGIF, which have mutations found in patients with neurodevelopmental disorders, disrupted neuronal morphogenesis in both mouse (male and female) and human (female) neurons. Together, these findings suggest that the regulation of neuronal morphogenesis by an evolutionarily conserved function of TGF-β signaling is involved in the pathogenesis of neurodevelopmental diseases.SIGNIFICANCE STATEMENT Canonical transforming growth factor-β (TGF-β) signaling plays a crucial role in multiple organ development, including brain, and mutations in components of the signaling pathway associated with several human developmental disorders. In this study, we found that Smads/TG-interacting factor-dependent canonical TGF-β signaling regulates neuronal morphogenesis through the suppression of collapsin response mediator protein-2 (CRMP2) expression during brain development, and that function of this signaling is evolutionarily conserved in the mammalian brain. Mutations in canonical TGF-β signaling factors identified in patients with neurodevelopmental disorders disrupt the morphological development of neurons. Thus, our results suggest that proper control of TGF-β/Smads/CRMP2 signaling pathways is critical for the precise execution of neuronal morphogenesis, whose impairment eventually results in neurodevelopmental disorders.
Collapse
|
15
|
Higashi T, Tanaka S, Iida T, Okabe S. Synapse Elimination Triggered by BMP4 Exocytosis and Presynaptic BMP Receptor Activation. Cell Rep 2018; 22:919-929. [DOI: 10.1016/j.celrep.2017.12.101] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/03/2017] [Accepted: 12/26/2017] [Indexed: 11/16/2022] Open
|
16
|
Meyers EA, Kessler JA. TGF-β Family Signaling in Neural and Neuronal Differentiation, Development, and Function. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a022244. [PMID: 28130363 DOI: 10.1101/cshperspect.a022244] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Signaling by the transforming growth factor β (TGF-β) family is necessary for proper neural development and function throughout life. Sequential waves of activation, inhibition, and reactivation of TGF-β family members regulate numerous elements of the nervous system from the earliest stages of embryogenesis through adulthood. This review discusses the expression, regulation, and function of TGF-β family members in the central nervous system at various developmental stages, beginning with induction and patterning of the nervous system to their importance in the adult as modulators of inflammatory response and involvement in degenerative diseases.
Collapse
Affiliation(s)
- Emily A Meyers
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - John A Kessler
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| |
Collapse
|
17
|
Abstract
Bone morphogenetic protein-7 (BMP7), a member of the transforming growth factor-β (TGF-β) superfamily, has various effects in many biological events. However, there is little information on BMP7 expression in the adult central nervous system (CNS). Therefore, we investigated BMP7 levels in the adult rat CNS using immunohistochemistry. Abundant BMP7 expression was seen in astrocytes throughout the CNS and strong BMP7 expression was also observed in neuropils of the gray matter. Furthermore, BMP7 expression was observed in several kinds of neurons, including oxytocin, dopaminergic and noradrenergic neurons. These data suggest that BMP7 is widely expressed throughout the adult CNS, and support the idea that BMP7 plays pivotal roles in the adult brain, as well as in the developing brain. BMP7 is expressed throughout the adult CNS, and abundantly expressed in astrocytes. BMP7 is also expressed in some kinds of neurons and axons.
Collapse
Key Words
- Astrocyte
- BMP, bone morphogenetic protein
- BMPR, bone morphogenetic protein receptor
- BSA, bovine serum albumin
- CNS, central nervous system
- CSPGs, chondroitin sulfate proteoglycans
- GFAP, glial fibrillary acidic protein
- IHC, immunohistochemistry
- IR, immunoreactivity
- Immunohistochemistry
- Neuron
- PB, phosphate buffer
- RT, room temperature
- SVZ, subventricular zone
- TGF-β, transforming growth factor β
- TTBS, Tris-buffered saline containing 0.05% Tween-20
Collapse
|
18
|
Xi G, Best B, Mania-Farnell B, James CD, Tomita T. Therapeutic Potential for Bone Morphogenetic Protein 4 in Human Malignant Glioma. Neoplasia 2017; 19:261-270. [PMID: 28278424 PMCID: PMC5342987 DOI: 10.1016/j.neo.2017.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/19/2017] [Accepted: 01/19/2017] [Indexed: 12/14/2022] Open
Abstract
Human glioma, in particular, malignant forms such as glioblastoma exhibit dismal survival rates despite advances in treatment strategies. A population of glioma cells with stem-like features, glioma cancer stem-like cells (GCSCs), contribute to renewal and maintenance of the tumor cell population and appear responsible for chemotherapeutic and radiation resistance. Bone morphogenetic protein 4 (BMP4), drives differentiation of GCSCs and thus improves therapeutic efficacy. Based on this observation it is imperative that the clinical merits of BMP4 in treating human gliomas should be addressed. This article reviews BMP4 signaling in central nervous system development and in glioma tumorigenesis, and the potential of this molecule as a treatment target in human gliomas. Further work needs to be done to determine if distinct lineages of GCSCs, associated with different glioma sub-classifications, proneural, neural, classical and mesenchymal, differ in responsiveness to BMP4 treatment. Additionally, interaction among BMP4 and cell matrix, tumor-vascular molecules and microglial immune cells also needs to be investigated, as this will enhance our knowledge about the role of BMP4 in human glioma and lead to the identification and/or development of novel therapeutic approaches that improve treatment outcomes of these devastating tumors.
Collapse
Affiliation(s)
- Guifa Xi
- Division of Pediatric Neurosurgery, Falk Brain Tumor Center, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA; The Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Benjamin Best
- Division of Pediatric Neurosurgery, Falk Brain Tumor Center, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Barbara Mania-Farnell
- Department of Biological Sciences, Purdue University Northwest, Hammond, IN 46323, USA
| | - Charles David James
- The Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Tadanori Tomita
- Division of Pediatric Neurosurgery, Falk Brain Tumor Center, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA; The Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
19
|
Courter LA, Shaffo FC, Ghogha A, Parrish DJ, Lorentz CU, Habecker BA, Lein PJ. BMP7-induced dendritic growth in sympathetic neurons requires p75(NTR) signaling. Dev Neurobiol 2016; 76:1003-13. [PMID: 26663679 PMCID: PMC4905816 DOI: 10.1002/dneu.22371] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/26/2015] [Accepted: 12/09/2015] [Indexed: 12/29/2022]
Abstract
Dendritic morphology is a critical determinant of neuronal connectivity, and in postganglionic sympathetic neurons, tonic activity correlates directly with the size of the dendritic arbor. Thus, identifying signaling mechanisms that regulate dendritic arborization of sympathetic neurons is important to understanding how functional neural circuitry is established and maintained in the sympathetic nervous system. Bone morphogenetic proteins (BMPs) promote dendritic growth in sympathetic neurons; however, downstream signaling events that link BMP receptor activation to dendritic growth are poorly characterized. We previously reported that BMP7 upregulates p75(NTR) mRNA in cultured sympathetic neurons. This receptor is implicated in controlling dendritic growth in central neurons but whether p75(NTR) regulates dendritic growth in peripheral neurons is not known. Here, we demonstrate that BMP7 increases p75(NTR) protein in cultured sympathetic neurons, and this effect is blocked by pharmacologic inhibition of signaling via BMP type I receptor. BMP7 does not trigger dendritic growth in sympathetic neurons dissociated from superior cervical ganglia (SCG) of p75(NTR) nullizygous mice, and overexpression of p75(NTR) in p75(NTR) -/- neurons is sufficient to cause dendritic growth even in the absence of BMP7. Morphometric analyses of SCG from wild-type versus p75(NTR) nullizygous mice at 3, 6, and 12 to 16 weeks of age indicated that genetic deletion of p75(NTR) does not prevent dendritic growth but does stunt dendritic maturation in sympathetic neurons. These data support the hypotheses that p75(NTR) is involved in downstream signaling events that mediate BMP7-induced dendritic growth in sympathetic neurons, and suggest that p75(NTR) signaling positively modulates dendritic complexity in sympathetic neurons in vivo. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1003-1013, 2016.
Collapse
Affiliation(s)
- Lauren A. Courter
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, Portland, OR 97239
| | - Frances C. Shaffo
- Department of Molecular Biosciences, University of California, Davis, CA 95616
| | - Atefeh Ghogha
- Department of Molecular Biosciences, University of California, Davis, CA 95616
| | - Diana J. Parrish
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239
| | - Christina U. Lorentz
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239
| | - Beth A. Habecker
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239
| | - Pamela J. Lein
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, Portland, OR 97239
- Department of Molecular Biosciences, University of California, Davis, CA 95616
| |
Collapse
|
20
|
Chordin and noggin expression in the adult rat trigeminal nuclei. J Chem Neuroanat 2016; 78:36-41. [PMID: 27546891 DOI: 10.1016/j.jchemneu.2016.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 08/07/2016] [Indexed: 01/27/2023]
Abstract
Bone morphogenetic proteins (BMP) exert its biological functions by interacting with membrane bound receptors. However, functions of BMPs are also regulated in the extracellular space by secreted antagonistic regulators, such as chordin and noggin. Although the deep involvement of BMP signaling in the development and functions of the trigeminal nuclei has been postulated, little information is available for its expression in the trigeminal nuclei. We, thus, investigated chordin and noggin expression in the adult rat trigeminal nuclei using immunohistochemistry. Chordin and noggin were intensely expressed throughout the trigeminal nuclei. In addition, interesting differences are observed between chordin expression and noggin expression. For example, chordin prefers dendritic expression than noggin, suggesting that chordin is involved in the regulation of dendritic morphology and synaptic homeostasis. Furthermore, chordin and noggin were differentially expressed in the neuropil of the trigeminal nuclei. Since BMP signaling is known to play a pivotal role to make precise neural network, theses differences might be important to keep precise interneuronal connections by regulating local BMP signaling intensity in each region. Interestingly, we also detected chordin and noggin expression in axons of the trigeminal nerves. These data indicate that chordin and noggin play pivotal roles also in the adult trigeminal system.
Collapse
|
21
|
Abstract
Basic fibroblast growth factor (bFGF) is a polypeptide with potent trophic effects on brain cells. In particular, bFGF promotes the survival and outgrowth of brain neurons, and protects neurons against toxic processes that are important contributors to cell death after cerebral ischemia (stroke). Recent studies in animal models have suggested two potential uses of exogenously administered bFGF for the treatment of stroke: 1) intra venous bFGF to reduce infarct size in acute stroke, and 2) intracisternal bFGF to enhance neurological recovery in chronic stroke. Human clinical trials of the first of these applications are currently in progress. NEUROSCIENTIST 3:247-250,1997
Collapse
Affiliation(s)
- David A. Lin
- CNS Growth Factor Research Laboratory Department of
Neurology Massachusetts General Hospital and Harvard Medical School Boston,
Massachusetts
| | - Seth P. Finklestein
- CNS Growth Factor Research Laboratory Department of
Neurology Massachusetts General Hospital and Harvard Medical School Boston,
Massachusetts
| |
Collapse
|
22
|
Impairments in dendrite morphogenesis as etiology for neurodevelopmental disorders and implications for therapeutic treatments. Neurosci Biobehav Rev 2016; 68:946-978. [PMID: 27143622 DOI: 10.1016/j.neubiorev.2016.04.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 04/13/2016] [Accepted: 04/13/2016] [Indexed: 02/08/2023]
Abstract
Dendrite morphology is pivotal for neural circuitry functioning. While the causative relationship between small-scale dendrite morphological abnormalities (shape, density of dendritic spines) and neurodevelopmental disorders is well established, such relationship remains elusive for larger-scale dendrite morphological impairments (size, shape, branching pattern of dendritic trees). Here, we summarize published data on dendrite morphological irregularities in human patients and animal models for neurodevelopmental disorders, with focus on autism and schizophrenia. We next discuss high-risk genes for these disorders and their role in dendrite morphogenesis. We finally overview recent developments in therapeutic attempts and we discuss how they relate to dendrite morphology. We find that both autism and schizophrenia are accompanied by dendritic arbor morphological irregularities, and that majority of their high-risk genes regulate dendrite morphogenesis. Thus, we present a compelling argument that, along with smaller-scale morphological impairments in dendrites (spines and synapse), irregularities in larger-scale dendrite morphology (arbor shape, size) may be an important part of neurodevelopmental disorders' etiology. We suggest that this should not be ignored when developing future therapeutic treatments.
Collapse
|
23
|
O'Keeffe GW, Gutierrez H, Howard L, Laurie CW, Osorio C, Gavaldà N, Wyatt SL, Davies AM. Region-specific role of growth differentiation factor-5 in the establishment of sympathetic innervation. Neural Dev 2016; 11:4. [PMID: 26878848 PMCID: PMC4755026 DOI: 10.1186/s13064-016-0060-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/08/2016] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Nerve growth factor (NGF) is the prototypical target-derived neurotrophic factor required for sympathetic neuron survival and for the growth and ramification of sympathetic axons within most but not all sympathetic targets. This implies the operation of additional target-derived factors for regulating terminal sympathetic axon growth and branching. RESULTS Here report that growth differentiation factor 5 (GDF5), a widely expressed member of the transforming growth factor beta (TGFβ) superfamily required for limb development, promoted axon growth from mouse superior cervical ganglion (SCG) neurons independently of NGF and enhanced axon growth in combination with NGF. GDF5 had no effect on neuronal survival and influenced axon growth during a narrow window of postnatal development when sympathetic axons are ramifying extensively in their targets in vivo. SCG neurons expressed all receptors capable of participating in GDF5 signaling at this stage of development. Using compartment cultures, we demonstrated that GDF5 exerted its growth promoting effect by acting directly on axons and by initiating retrograde canonical Smad signalling to the nucleus. GDF5 is synthesized in sympathetic targets, and examination of several anatomically circumscribed tissues in Gdf5 null mice revealed regional deficits in sympathetic innervation. There was a marked, highly significant reduction in the sympathetic innervation density of the iris, a smaller though significant reduction in the trachea, but no reduction in the submandibular salivary gland. There was no reduction in the number of neurons in the SCG. CONCLUSIONS These findings show that GDF5 is a novel target-derived factor that promotes sympathetic axon growth and branching and makes a distinctive regional contribution to the establishment of sympathetic innervation, but unlike NGF, plays no role in regulating sympathetic neuron survival.
Collapse
Affiliation(s)
- Gerard W O'Keeffe
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AT, UK
- Dept. Anatomy/Neuroscience and Biosciences Institute, UCC, Cork, Ireland
| | - Humberto Gutierrez
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AT, UK
- Current address, School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK
| | - Laura Howard
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AT, UK
| | | | - Catarina Osorio
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AT, UK
- Current address, MRC Centre for Developmental Neurobiology, King's College London, New Hunt's House, 4th Floor, Guy's Hospital Campus, London, SE1 1UL, UK
| | - Núria Gavaldà
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AT, UK
- Current address, SOM Innovation Biotech SL, c/Baldiri Reixac 4, 08028, Barcelona, Spain
| | - Sean L Wyatt
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AT, UK
| | - Alun M Davies
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AT, UK.
| |
Collapse
|
24
|
Chandrasekaran V, Lea C, Sosa JC, Higgins D, Lein PJ. Reactive oxygen species are involved in BMP-induced dendritic growth in cultured rat sympathetic neurons. Mol Cell Neurosci 2015; 67:116-25. [PMID: 26079955 PMCID: PMC4550485 DOI: 10.1016/j.mcn.2015.06.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 05/26/2015] [Accepted: 06/12/2015] [Indexed: 12/28/2022] Open
Abstract
Previous studies have shown that bone morphogenetic proteins (BMPs) promote dendritic growth in sympathetic neurons; however, the downstream signaling molecules that mediate the dendrite promoting activity of BMPs are not well characterized. Here we test the hypothesis that reactive oxygen species (ROS)-mediated signaling links BMP receptor activation to dendritic growth. In cultured rat sympathetic neurons, exposure to any of the three mechanistically distinct antioxidants, diphenylene iodinium (DPI), nordihydroguaiaretic acid (NGA) or desferroxamine (DFO), blocked de novo BMP-induced dendritic growth. Addition of DPI to cultures previously induced with BMP to extend dendrites caused dendritic retraction while DFO and NGA prevented further growth of dendrites. The inhibition of the dendrite promoting activity of BMPs by antioxidants was concentration-dependent and occurred without altering axonal growth or neuronal cell survival. Antioxidant treatment did not block BMP activation of SMAD 1,5 as determined by nuclear localization of these SMADs. While BMP treatment did not cause a detectable increase in intracellular ROS in cultured sympathetic neurons as assessed using fluorescent indicator dyes, BMP treatment increased the oxygen consumption rate in cultured sympathetic neurons as determined using the Seahorse XF24 Analyzer, suggesting increased mitochondrial activity. In addition, BMPs upregulated expression of NADPH oxidase 2 (NOX2) and either pharmacological inhibition or siRNA knockdown of NOX2 significantly decreased BMP-7 induced dendritic growth. Collectively, these data support the hypothesis that ROS are involved in the downstream signaling events that mediate BMP7-induced dendritic growth in sympathetic neurons, and suggest that ROS-mediated signaling positively modulates dendritic complexity in peripheral neurons.
Collapse
Affiliation(s)
| | - Charlotte Lea
- Department of Biology, Saint Mary's College of California, Moraga, CA, USA
| | - Jose Carlo Sosa
- Department of Biology, Saint Mary's College of California, Moraga, CA, USA
| | - Dennis Higgins
- Department of Pharmacology and Toxicology, University of Buffalo, Buffalo, NY, USA
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California, Davis, CA, USA
| |
Collapse
|
25
|
Post-hypoxic and ischemic neuroprotection of BMP-7 in the cerebral cortex and caudate-putamen tissue of rat. Acta Histochem 2015; 117:148-54. [PMID: 25577291 DOI: 10.1016/j.acthis.2014.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/24/2014] [Accepted: 11/28/2014] [Indexed: 12/12/2022]
Abstract
Previous reports have indicated that exogenous bone morphogenetic protein-7 (BMP-7) has a neuroprotective effect after cerebral ischemia injury and promotes motor function recovery, but the appropriate BMP-7 concentration and time course are unclear. Here, we assessed endogenous BMP-7 expression in hypoxia and ischemia-damaged brain tissues and investigated the effects of different BMP-7 concentrations in pre- and post-hypoxic primary rat neurons. The results showed that BMP-7 expression was significantly higher in the ischemic hemisphere. The expressions of BMP-7 and caspase-3 were localized in the cytoplasm of the primary cerebral cortical and caudate-putamen neurons 24h after hypoxia/reoxygenation. After BMP-7 treatment, the number of caspase-3 positive neurons began to decrease with increasing BMP-7 concentrations up to 80ng/ml, but not beyond. Although the numbers of caspase-3-positive neurons between pre- and post-hypoxia/reoxygenation were not significantly different, more dendrites were observed in the groups treated prior to hypoxia/reoxygenation. These results suggest that increased BMP-7 expression can be induced in the cerebral cortex and caudate-putamen both in vivo and in vitro in hypoxic-ischemic states. The neuroprotective mechanism of BMP-7 may include apoptosis suppression, and its effect was enhanced from 40 to 80ng/ml. Pre-hypoxic BMP-7 treatment may be useful to stimulate dendrite sprouting in non-injured neurons.
Collapse
|
26
|
Kahn OI, Sharma V, González-Billault C, Baas PW. Effects of kinesin-5 inhibition on dendritic architecture and microtubule organization. Mol Biol Cell 2014; 26:66-77. [PMID: 25355946 PMCID: PMC4279230 DOI: 10.1091/mbc.e14-08-1313] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Inhibition of kinesin-5, a molecular motor protein best known for its essential role in mitosis, has notable effects on the morphology and microtubule organization of dendrites of terminally postmitotic neurons. Kinesin-5 acts as a brake that can limit the capacity of other motor proteins to influence microtubule organization and distribution. Kinesin-5 is a slow homotetrameric motor protein best known for its essential role in the mitotic spindle, where it limits the rate at which faster motors can move microtubules. In neurons, experimental suppression of kinesin-5 causes the axon to grow faster by increasing the mobility of microtubules in the axonal shaft and the invasion of microtubules into the growth cone. Does kinesin-5 act differently in dendrites, given that they have a population of minus end–distal microtubules not present in axons? Using rodent primary neurons in culture, we found that inhibition of kinesin-5 during various windows of time produces changes in dendritic morphology and microtubule organization. Specifically, dendrites became shorter and thinner and contained a greater proportion of minus end–distal microtubules, suggesting that kinesin-5 acting normally restrains the number of minus end–distal microtubules that are transported into dendrites. Additional data indicate that, in neurons, CDK5 is the kinase responsible for phosphorylating kinesin-5 at Thr-926, which is important for kinesin-5 to associate with microtubules. We also found that kinesin-5 associates preferentially with microtubules rich in tyrosinated tubulin. This is consistent with an observed accumulation of kinesin-5 on dendritic microtubules, as they are known to be less detyrosinated than axonal microtubules.
Collapse
Affiliation(s)
- Olga I Kahn
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Vandana Sharma
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Christian González-Billault
- Department of Biology and Institute for Cell Dynamics and Biotechnology (ICDB), Faculty of Sciences, Universidad de Chile, 7800024 Nunoa, Santiago, Chile
| | - Peter W Baas
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| |
Collapse
|
27
|
BMP5 expression in the adult rat brain. Neuroscience 2014; 284:972-987. [PMID: 25110111 DOI: 10.1016/j.neuroscience.2014.07.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 07/23/2014] [Accepted: 07/24/2014] [Indexed: 01/27/2023]
Abstract
Bone morphogenetic protein-5 (BMP5), a member of the transforming growth factor-β (TGF-β) superfamily, has many effects in several biological events. Although BMP5 expression has been well reported in the early development of the central nervous system (CNS), there is little information about its expression in the adult CNS. Thus, we analyzed BMP5 expression in the adult rat CNS by immunohistochemistry. Abundant BMP5 expression was observed in most neurons, and their dendrites and axons. Furthermore, strong BMP5 expression was also detected in the neuropil of the gray matters with high plasticity, such as the molecular layer of the cerebellum, locus coeruleus, and nucleus of the solitary tract. In addition, we showed BMP5 expression also in astrocytes, ependymal cells and meninges. Our data suggest that BMP5 is widely expressed throughout the adult CNS, and this abundant expression in the adult brain strongly supports the idea that BMP5 plays important roles not only in the developing brain but also in the adult brain.
Collapse
|
28
|
Wang X, Sterne GR, Ye B. Regulatory mechanisms underlying the differential growth of dendrites and axons. Neurosci Bull 2014; 30:557-68. [PMID: 25001617 PMCID: PMC5562626 DOI: 10.1007/s12264-014-1447-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 04/10/2014] [Indexed: 01/06/2023] Open
Abstract
A typical neuron is comprised of an information input compartment, or the dendrites, and an output compartment, known as the axon. These two compartments are the structural basis for functional neural circuits. However, little is known about how dendritic and axonal growth are differentially regulated. Recent studies have uncovered two distinct types of regulatory mechanisms that differentiate dendritic and axonal growth: dedicated mechanisms and bimodal mechanisms. Dedicated mechanisms regulate either dendritespecific or axon-specific growth; in contrast, bimodal mechanisms direct dendritic and axonal development in opposite manners. Here, we review the dedicated and bimodal regulators identified by recent Drosophila and mammalian studies. The knowledge of these underlying molecular mechanisms not only expands our understanding about how neural circuits are wired, but also provides insights that will aid in the rational design of therapies for neurological diseases.
Collapse
Affiliation(s)
- Xin Wang
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Gabriella R. Sterne
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Bing Ye
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
29
|
Hegarty SV, Collins LM, Gavin AM, Roche SL, Wyatt SL, Sullivan AM, O'Keeffe GW. Canonical BMP-Smad signalling promotes neurite growth in rat midbrain dopaminergic neurons. Neuromolecular Med 2014; 16:473-89. [PMID: 24682653 DOI: 10.1007/s12017-014-8299-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 03/07/2014] [Indexed: 01/01/2023]
Abstract
Ventral midbrain (VM) dopaminergic (DA) neurons project to the dorsal striatum via the nigrostriatal pathway to regulate voluntary movements, and their loss leads to the motor dysfunction seen in Parkinson's disease (PD). Despite recent progress in the understanding of VM DA neurogenesis, the factors regulating nigrostriatal pathway development remain largely unknown. The bone morphogenetic protein (BMP) family regulates neurite growth in the developing nervous system and may contribute to nigrostriatal pathway development. Two related members of this family, BMP2 and growth differentiation factor (GDF)5, have neurotrophic effects, including promotion of neurite growth, on cultured VM DA neurons. However, the molecular mechanisms regulating their effects on DA neurons are unknown. By characterising the temporal expression profiles of endogenous BMP receptors (BMPRs) in the developing and adult rat VM and striatum, this study identified BMP2 and GDF5 as potential regulators of nigrostriatal pathway development. Furthermore, through the use of noggin, dorsomorphin and BMPR/Smad plasmids, this study demonstrated that GDF5- and BMP2-induced neurite outgrowth from cultured VM DA neurons is dependent on BMP type I receptor activation of the Smad 1/5/8 signalling pathway.
Collapse
Affiliation(s)
- Shane V Hegarty
- Department of Anatomy and Neuroscience, Biosciences Institute, University College Cork, Cork, Ireland
| | | | | | | | | | | | | |
Collapse
|
30
|
Dendrite complexity of sympathetic neurons is controlled during postnatal development by BMP signaling. J Neurosci 2013; 33:15132-44. [PMID: 24048844 DOI: 10.1523/jneurosci.4748-12.2013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Dendrite development is controlled by the interplay of intrinsic and extrinsic signals affecting initiation, growth, and maintenance of complex dendrites. Bone morphogenetic proteins (BMPs) stimulate dendrite growth in cultures of sympathetic, cortical, and hippocampal neurons but it was unclear whether BMPs control dendrite morphology in vivo. Using a conditional knock-out strategy to eliminate Bmpr1a and Smad4 in immature noradrenergic sympathetic neurons we now show that dendrite length, complexity, and neuron cell body size are reduced in adult mice deficient of Bmpr1a. The combined deletion of Bmpr1a and Bmpr1b causes no further decrease in dendritic features. Sympathetic neurons devoid of Bmpr1a/1b display normal Smad1/5/8 phosphorylation, which suggests that Smad-independent signaling paths are involved in dendritic growth control downstream of BMPR1A/B. Indeed, in the Smad4 conditional knock-out dendrite and cell body size are not affected and dendrite complexity and number are increased. Together, these results demonstrate an in vivo function for BMPs in the generation of mature sympathetic neuron dendrites. BMPR1 signaling controls dendrite complexity postnatally during the major dendritic growth period of sympathetic neurons.
Collapse
|
31
|
Mikawa S, Sato K. Chordin expression in the adult rat brain. Neuroscience 2013; 258:16-33. [PMID: 24231736 DOI: 10.1016/j.neuroscience.2013.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 10/11/2013] [Accepted: 11/03/2013] [Indexed: 11/25/2022]
Abstract
Bone morphogenetic proteins (BMPs) exert its biological functions by interacting with membrane bound receptors. However, functions of BMPs are also regulated in the extracellular space by secreted antagonistic regulators. Chordin is an extracellular BMP antagonist that binds BMP-2, 4, and 7 with high affinity and thus interferes with binding to BMP receptors. Although chordin expression has been well described in the early development of the CNS, little information is available for its expression in the adult CNS. We, thus, investigated chordin expression in the adult rat CNS using immunohistochemistry. Chordin was intensely expressed in most neurons, and their dendrites and axons. In addition, abundant chordin expression was also observed in the neuropil of the gray matters where high plasticity is reported, such as the molecular layer of the cerebellum and the superficial layer of the superior colliculus. Furthermore, we found that astrocytes and ependymal cells also express chordin protein. These data indicate that chordin is more widely expressed throughout the adult CNS than previously reported, and its continued abundant expression in the adult brain strongly supports the idea that chordin plays pivotal roles also in the adult brain.
Collapse
Affiliation(s)
- S Mikawa
- Department of Anatomy & Neuroscience, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu, Shizuoka 431-3192, Japan
| | - K Sato
- Department of Anatomy & Neuroscience, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu, Shizuoka 431-3192, Japan.
| |
Collapse
|
32
|
Osório C, Chacón PJ, Kisiswa L, White M, Wyatt S, Rodríguez-Tébar A, Davies AM. Growth differentiation factor 5 is a key physiological regulator of dendrite growth during development. Development 2013; 140:4751-62. [PMID: 24173804 PMCID: PMC3833432 DOI: 10.1242/dev.101378] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Dendrite size and morphology are key determinants of the functional properties of neurons. Here, we show that growth differentiation factor 5 (GDF5), a member of the bone morphogenetic protein (BMP) subclass of the transforming growth factor β superfamily with a well-characterised role in limb morphogenesis, is a key regulator of the growth and elaboration of pyramidal cell dendrites in the developing hippocampus. Pyramidal cells co-express GDF5 and its preferred receptors, BMP receptor 1B and BMP receptor 2, during development. In culture, GDF5 substantially increased dendrite, but not axon, elongation from these neurons by a mechanism that depends on activation of SMADs 1/5/8 and upregulation of the transcription factor HES5. In vivo, the apical and basal dendritic arbours of pyramidal cells throughout the hippocampus were markedly stunted in both homozygous and heterozygous Gdf5 null mutants, indicating that dendrite size and complexity are exquisitely sensitive to the level of endogenous GDF5 synthesis.
Collapse
Affiliation(s)
- Catarina Osório
- School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK
| | | | | | | | | | | | | |
Collapse
|
33
|
Zhang R, Pei H, Ru L, Li H, Liu G. Bone morphogenetic protein 7 upregulates the expression of nestin and glial fibrillary acidic protein in rats with cerebral ischemia-reperfusion injury. Biomed Rep 2013; 1:895-900. [PMID: 24649049 DOI: 10.3892/br.2013.164] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 08/23/2013] [Indexed: 11/06/2022] Open
Abstract
Bone morphogenetic protein 7 (BMP7) is a member of the transforming growth factor-β (TGF-β) superfamily and was initially identified as a protein that may induce bone and cartilage growth in the bone matrix. The present study was conducted in order to investigate the effect of BMP7 on the expression of nestin and glial fibrillary acidic protein (GFAP) in the brain tissue of rats after cerebral ischemia-reperfusion injury. A total of 40 adult healthy male Sprague-Dawley rats were used in this study, of which 10 randomly received a sham operation and the remaining 30 were subjected to a 2-h ischemia and 24-h reperfusion by ligation of the left external and internal carotid arteries. Twenty successfully modeled rats were equally randomized into the treatment and control groups. The rats in the treatment group were intervened with 250 μl BMP7 (0.1 mg/kg) via tail vein injection, whereas the rats in the control and sham operation groups were injected with an equal volume of sterile water for injection. Neurological deficits were evaluated by the Bederson's method at 24 h after ischemia-reperfusion and the brain infarct volume was assessed by 2,3,5-triphenyl tetrazolium chloride coloring. The neuronal apoptosis was assessed by terminal deoxynucleotidyl transferase-mediated biotinylated deoxyuridine triphosphate nick end-labelling (TUNEL) staining and the expression of nestin and GFAP in the three groups was analyzed by immunohistochemistry. Bederson's score (t=4.66, P<0.01) and focus infarction (t=6.98, P<0.01) were lower in the BMP7 treatment group compared to those in the control group. In addition, the number of TUNEL-positive cells in the treatment group was lower compared to that in the control group (P<0.01). Compared to the control group, the expression of nestin and GFAP was enhanced in the BMP7 treatment group (P<0.01). Therefore, BMP7 may upregulate the expression of nestin and GFAP and promote neural regeneration to protect animals against ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Rui Zhang
- Institute of Cerebrovascular Diseases, The Affiliated Hospital of Qingdao University Medical College, Qingdao, Shandong 266003, P.R. China
| | - Haitao Pei
- Department of Emergency Neurology, The Affiliated Hospital of Qingdao University Medical College, Qingdao, Shandong 266003, P.R. China
| | - Lijuan Ru
- Department of Emergency Neurology, The Affiliated Hospital of Qingdao University Medical College, Qingdao, Shandong 266003, P.R. China
| | - Hongyun Li
- Department of Emergency Neurology, The Affiliated Hospital of Qingdao University Medical College, Qingdao, Shandong 266003, P.R. China
| | - Guangyi Liu
- Institute of Cerebrovascular Diseases, The Affiliated Hospital of Qingdao University Medical College, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
34
|
Hegarty SV, O'Keeffe GW, Sullivan AM. BMP-Smad 1/5/8 signalling in the development of the nervous system. Prog Neurobiol 2013; 109:28-41. [PMID: 23891815 DOI: 10.1016/j.pneurobio.2013.07.002] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 02/07/2023]
Abstract
The transcription factors, Smad1, Smad5 and Smad8, are the pivotal intracellular effectors of the bone morphogenetic protein (BMP) family of proteins. BMPs and their receptors are expressed in the nervous system (NS) throughout its development. This review focuses on the actions of Smad 1/5/8 in the developing NS. The mechanisms by which these Smad proteins regulate the induction of the neuroectoderm, the central nervous system (CNS) primordium, and finally the neural crest, which gives rise to the peripheral nervous system (PNS), are reviewed herein. We describe how, following neural tube closure, the most dorsal aspect of the tube becomes a signalling centre for BMPs, which directs the pattern of the development of the dorsal spinal cord (SC), through the action of Smad1, Smad5 and Smad8. The direct effects of Smad 1/5/8 signalling on the development of neuronal and non-neuronal cells from various neural progenitor cell populations are then described. Finally, this review discusses the neurodevelopmental abnormalities associated with the knockdown of Smad 1/5/8.
Collapse
Affiliation(s)
- Shane V Hegarty
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
| | | | | |
Collapse
|
35
|
Infarct-derived chondroitin sulfate proteoglycans prevent sympathetic reinnervation after cardiac ischemia-reperfusion injury. J Neurosci 2013; 33:7175-83. [PMID: 23616527 DOI: 10.1523/jneurosci.5866-12.2013] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Sympathetic nerves can regenerate after injury to reinnervate target tissues. Sympathetic regeneration is well documented after chronic cardiac ischemia, so we were surprised that the cardiac infarct remained denervated following ischemia-reperfusion (I-R). We used mice to ask if the lack of sympathetic regeneration into the scar was due to blockade by inhibitory extracellular matrix within the infarct. We found that chondroitin sulfate proteoglycans (CSPGs) were present in the infarct after I-R, but not after chronic ischemia, and that CSPGs caused inhibition of sympathetic axon outgrowth in vitro. Ventricle explants after I-R and chronic ischemia stimulated sympathetic axon outgrowth that was blocked by nerve growth factor antibodies. However, growth in I-R cocultures was asymmetrical, with axons growing toward the heart tissue consistently shorter than axons growing in other directions. Growth toward I-R explants was rescued by adding chondroitinase ABC to the cocultures, suggesting that I-R infarct-derived CSPGs prevented axon extension. Sympathetic ganglia lacking protein tyrosine phosphatase sigma (PTPRS) were not inhibited by CSPGs or I-R explants in vitro, suggesting PTPRS is the major CSPG receptor in sympathetic neurons. To test directly if infarct-derived CSPGs prevented cardiac reinnervation, we performed I-R in ptprs-/- and ptprs+/- mice. Cardiac infarcts in ptprs-/- mice were hyperinnervated, while infarcts in ptprs+/- littermates were denervated, confirming that CSPGs prevent sympathetic reinnervation of the cardiac scar after I-R. This is the first example of CSPGs preventing sympathetic reinnervation of an autonomic target following injury, and may have important consequences for cardiac function and arrhythmia susceptibility after myocardial infarction.
Collapse
|
36
|
Vanlandingham PA, Fore TR, Chastain LR, Royer SM, Bao H, Reist NE, Zhang B. Epsin 1 Promotes Synaptic Growth by Enhancing BMP Signal Levels in Motoneuron Nuclei. PLoS One 2013; 8:e65997. [PMID: 23840387 PMCID: PMC3686817 DOI: 10.1371/journal.pone.0065997] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/01/2013] [Indexed: 11/19/2022] Open
Abstract
Bone morphogenetic protein (BMP) retrograde signaling is crucial for neuronal development and synaptic plasticity. However, how the BMP effector phospho-Mother against decapentaplegic (pMad) is processed following receptor activation remains poorly understood. Here we show that Drosophila Epsin1/Liquid facets (Lqf) positively regulates synaptic growth through post-endocytotic processing of pMad signaling complex. Lqf and the BMP receptor Wishful thinking (Wit) interact genetically and biochemically. lqf loss of function (LOF) reduces bouton number whereas overexpression of lqf stimulates bouton growth. Lqf-stimulated synaptic overgrowth is suppressed by genetic reduction of wit. Further, synaptic pMad fails to accumulate inside the motoneuron nuclei in lqf mutants and lqf suppresses synaptic overgrowth in spinster (spin) mutants with enhanced BMP signaling by reducing accumulation of nuclear pMad. Interestingly, lqf mutations reduce nuclear pMad levels without causing an apparent blockage of axonal transport itself. Finally, overexpression of Lqf significantly increases the number of multivesicular bodies (MVBs) in the synapse whereas lqf LOF reduces MVB formation, indicating that Lqf may function in signaling endosome recycling or maturation. Based on these observations, we propose that Lqf plays a novel endosomal role to ensure efficient retrograde transport of BMP signaling endosomes into motoneuron nuclei.
Collapse
Affiliation(s)
| | - Taylor R. Fore
- Department of Biology, University of Oklahoma, Norman, Oklahoma
| | | | - Suzanne M. Royer
- Department of Biomedical Sciences, Molecular, Cellular, and Integrative Neuroscience Program, Colorado State University, Fort Collins, Colorado
| | - Hong Bao
- Department of Biology, University of Oklahoma, Norman, Oklahoma
| | - Noreen E. Reist
- Department of Biomedical Sciences, Molecular, Cellular, and Integrative Neuroscience Program, Colorado State University, Fort Collins, Colorado
| | - Bing Zhang
- Department of Biology, University of Oklahoma, Norman, Oklahoma
- * E-mail:
| |
Collapse
|
37
|
Shi GX, Cai W, Andres DA. Rit subfamily small GTPases: regulators in neuronal differentiation and survival. Cell Signal 2013; 25:2060-8. [PMID: 23770287 DOI: 10.1016/j.cellsig.2013.06.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 06/04/2013] [Indexed: 02/07/2023]
Abstract
Ras family small GTPases serve as binary molecular switches to regulate a broad array of cellular signaling cascades, playing essential roles in a vast range of normal physiological processes, with dysregulation of numerous Ras-superfamily G-protein-dependent regulatory cascades underlying the development of human disease. However, the physiological function for many "orphan" Ras-related GTPases remain poorly characterized, including members of the Rit subfamily GTPases. Rit is the founding member of a novel branch of the Ras subfamily, sharing close homology with the neuronally expressed Rin and Drosophila Ric GTPases. Here, we highlight recent studies using transgenic and knockout animal models which have begun to elucidate the physiological roles for the Rit subfamily, including emerging roles in the regulation of neuronal morphology and cellular survival signaling, and discuss new genetic data implicating Rit and Rin signaling in disorders such as cancer, Parkinson's disease, autism, and schizophrenia.
Collapse
Affiliation(s)
- Geng-Xian Shi
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, BBSRB, 741S. Limestone St., Lexington, KY 40536-0509, USA
| | | | | |
Collapse
|
38
|
Wang X, Kim JH, Bazzi M, Robinson S, Collins CA, Ye B. Bimodal control of dendritic and axonal growth by the dual leucine zipper kinase pathway. PLoS Biol 2013; 11:e1001572. [PMID: 23750116 PMCID: PMC3672216 DOI: 10.1371/journal.pbio.1001572] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 04/16/2013] [Indexed: 02/03/2023] Open
Abstract
Knowledge of the molecular and genetic mechanisms underlying the separation of dendritic and axonal compartments is not only crucial for understanding the assembly of neural circuits, but also for developing strategies to correct defective dendrites or axons in diseases with subcellular precision. Previous studies have uncovered regulators dedicated to either dendritic or axonal growth. Here we investigate a novel regulatory mechanism that differentially directs dendritic and axonal growth within the same neuron in vivo. We find that the dual leucine zipper kinase (DLK) signaling pathway in Drosophila, which consists of Highwire and Wallenda and controls axonal growth, regeneration, and degeneration, is also involved in dendritic growth in vivo. Highwire, an evolutionarily conserved E3 ubiquitin ligase, restrains axonal growth but acts as a positive regulator for dendritic growth in class IV dendritic arborization neurons in the larva. While both the axonal and dendritic functions of highwire require the DLK kinase Wallenda, these two functions diverge through two downstream transcription factors, Fos and Knot, which mediate the axonal and dendritic regulation, respectively. This study not only reveals a previously unknown function of the conserved DLK pathway in controlling dendrite development, but also provides a novel paradigm for understanding how neuronal compartmentalization and the diversity of neuronal morphology are achieved.
Collapse
Affiliation(s)
- Xin Wang
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jung Hwan Kim
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Mouna Bazzi
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sara Robinson
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Catherine A. Collins
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Bing Ye
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
39
|
Differential phosphorylation of Smad1 integrates BMP and neurotrophin pathways through Erk/Dusp in axon development. Cell Rep 2013; 3:1592-606. [PMID: 23665221 DOI: 10.1016/j.celrep.2013.04.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 02/11/2013] [Accepted: 04/12/2013] [Indexed: 12/13/2022] Open
Abstract
Sensory axon development requires concerted actions of growth factors for the precise control of axonal outgrowth and target innervation. How developing sensory neurons integrate different cues is poorly understood. We demonstrate here that Smad1 activation is required for neurotrophin-mediated sensory axon growth in vitro and in vivo. Through differential phosphorylation, Smad1 exerts transcriptional selectivity to regulate the expression and activity of Erk1 and Erk2-two key neurotrophin effectors. Specifically, bone morphogenetic proteins (BMPs) signal through carboxy-terminal phosphorylation of Smad1 (pSmad1C) to induce Erk1/2 transcription for enhanced neurotrophin responsiveness. Meanwhile, neurotrophin signaling results in linker phosphorylation of Smad1 (pSmad1L), which in turn upregulates an Erk-specific dual-specificity phosphatase, Dusp6, leading to reduced pErk1/2 and constituting a negative-feedback loop for the prevention of axon overgrowth. Together, the BMP and neurotrophin pathways form a tightly regulated signaling network with a balanced ratio of Erk1/2 and pErk1/2 to direct the precise connections between sensory neurons and peripheral targets.
Collapse
|
40
|
Stamou M, Streifel KM, Goines PE, Lein PJ. Neuronal connectivity as a convergent target of gene × environment interactions that confer risk for Autism Spectrum Disorders. Neurotoxicol Teratol 2013; 36:3-16. [PMID: 23269408 PMCID: PMC3610799 DOI: 10.1016/j.ntt.2012.12.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 11/12/2012] [Accepted: 12/17/2012] [Indexed: 11/21/2022]
Abstract
Evidence implicates environmental factors in the pathogenesis of Autism Spectrum Disorders (ASD). However, the identity of specific environmental chemicals that influence ASD risk, severity or treatment outcome remains elusive. The impact of any given environmental exposure likely varies across a population according to individual genetic substrates, and this increases the difficulty of identifying clear associations between exposure and ASD diagnoses. Heritable genetic vulnerabilities may amplify adverse effects triggered by environmental exposures if genetic and environmental factors converge to dysregulate the same signaling systems at critical times of development. Thus, one strategy for identifying environmental risk factors for ASD is to screen for environmental factors that modulate the same signaling pathways as ASD susceptibility genes. Recent advances in defining the molecular and cellular pathology of ASD point to altered patterns of neuronal connectivity in the developing brain as the neurobiological basis of these disorders. Studies of syndromic ASD and rare highly penetrant mutations or CNVs in ASD suggest that ASD risk genes converge on several major signaling pathways linked to altered neuronal connectivity in the developing brain. This review briefly summarizes the evidence implicating dysfunctional signaling via Ca(2+)-dependent mechanisms, extracellular signal-regulated kinases (ERK)/phosphatidylinositol-3-kinases (PI3K) and neuroligin-neurexin-SHANK as convergent molecular mechanisms in ASD, and then discusses examples of environmental chemicals for which there is emerging evidence of their potential to interfere with normal neuronal connectivity via perturbation of these signaling pathways.
Collapse
Affiliation(s)
- Marianna Stamou
- Department of Molecular Biosciences, University of California at Davis School of Veterinary Medicine, Davis, CA 95616, United States.
| | | | | | | |
Collapse
|
41
|
Low gene expression of bone morphogenetic protein 7 in brainstem astrocytes in major depression. Int J Neuropsychopharmacol 2012; 15:855-68. [PMID: 21896235 DOI: 10.1017/s1461145711001350] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The noradrenergic locus coeruleus (LC) is the principal source of brain norepinephrine, a neurotransmitter thought to play a major role in the pathology of major depressive disorder (MDD) and in the therapeutic action of many antidepressant drugs. The goal of this study was to identify potential mediators of brain noradrenergic dysfunction in MDD. Bone morphogenetic protein 7 (BMP7), a member of the transforming growth factor-β superfamily, is a critical mediator of noradrenergic neuron differentiation during development and has neurotrophic and neuroprotective effects on mature catecholaminergic neurons. Real-time PCR of reversed transcribed RNA isolated from homogenates of LC tissue from 12 matched pairs of MDD subjects and psychiatrically normal control subjects revealed low levels of BMP7 gene expression in MDD. No differences in gene expression levels of other members of the BMP family were observed in the LC, and BMP7 gene expression was normal in the prefrontal cortex and amygdala in MDD subjects. Laser capture microdissection of noradrenergic neurons, astrocytes, and oligodendrocytes from the LC revealed that BMP7 gene expression was highest in LC astrocytes relative to the other cell types, and that the MDD-associated reduction in BMP7 gene expression was limited to astrocytes. Rats exposed to chronic social defeat exhibited a similar reduction in BMP7 gene expression in the LC. BMP7 has unique developmental and trophic actions on catecholamine neurons and these findings suggest that reduced astrocyte support for pontine LC neurons may contribute to pathology of brain noradrenergic neurons in MDD.
Collapse
|
42
|
The effects of energy beverages on cultured cells. Food Chem Toxicol 2012; 50:3759-68. [PMID: 22809471 DOI: 10.1016/j.fct.2012.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 06/30/2012] [Accepted: 07/05/2012] [Indexed: 01/22/2023]
Abstract
The popularity and prevalence of energy beverages makes it essential to examine the interactions between the ingredients and their effects on the safety of these beverages. In this study, we used in vitro assays to examine the effects of two energy beverages on mesenchymal, epithelial and neuronal cells. Our results showed that treatment of epithelial and mesenchymal cells with either energy beverage resulted in a dose dependent delay in wound closure, in a scratch wound healing assay. In rat embryonic fibroblasts, treatment with the energy beverages led to decreased lamellipodia formation and decreased proliferation/viability; whereas in MDCK cells, energy beverage treatment resulted in actin disorganization without any effects on cell proliferation. This suggests that the mechanisms underlying delayed wound healing might be different in the two cell types. Interestingly, the delays in both cell types could not be mimicked by treatment of caffeine, taurine and glucose alone or in combinations. Furthermore, treatment of chick forebrain neuronal cultures with energy beverages resulted in a dose dependent inhibition of neurite outgrowth. The cellular assays used in this study provide a consistent, qualitative and quantitative system for examining the combinatorial effects of the various ingredients used in energy beverages.
Collapse
|
43
|
Krieglstein K, Zheng F, Unsicker K, Alzheimer C. More than being protective: functional roles for TGF-β/activin signaling pathways at central synapses. Trends Neurosci 2011; 34:421-9. [PMID: 21742388 DOI: 10.1016/j.tins.2011.06.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 05/30/2011] [Accepted: 06/01/2011] [Indexed: 12/14/2022]
Abstract
It is becoming increasingly clear that members of the transforming growth factor-β (TGF-β) family have roles in the central nervous system that extend beyond their well-established roles as neurotrophic and neuroprotective factors. Recent findings have indicated that the TGF-β signaling pathways are involved in the modulation of both excitatory and inhibitory synaptic transmission in the adult mammalian brain. In this review, we discuss how TGF-β, bone morphogenetic protein and activin signaling at central synapses modulate synaptic plasticity, cognition and affective behavior. We also discuss the implications of these findings for the molecular understanding and potential treatment of neuropsychiatric diseases, such as anxiety, depression and other neurological disorders.
Collapse
Affiliation(s)
- Kerstin Krieglstein
- Institute of Anatomy and Cell Biology, University of Freiburg, 79104 Freiburg, Germany
| | | | | | | |
Collapse
|
44
|
IL-1β inhibits axonal growth of developing sympathetic neurons. Mol Cell Neurosci 2011; 48:142-50. [DOI: 10.1016/j.mcn.2011.07.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 07/11/2011] [Indexed: 11/19/2022] Open
|
45
|
Garred MM, Wang MM, Guo X, Harrington CA, Lein PJ. Transcriptional responses of cultured rat sympathetic neurons during BMP-7-induced dendritic growth. PLoS One 2011; 6:e21754. [PMID: 21765909 PMCID: PMC3135585 DOI: 10.1371/journal.pone.0021754] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 06/06/2011] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Dendrites are the primary site of synapse formation in the vertebrate nervous system; however, relatively little is known about the molecular mechanisms that regulate the initial formation of primary dendrites. Embryonic rat sympathetic neurons cultured under defined conditions extend a single functional axon, but fail to form dendrites. Addition of bone morphogenetic proteins (BMPs) triggers these neurons to extend multiple dendrites without altering axonal growth or cell survival. We used this culture system to examine differential gene expression patterns in naïve vs. BMP-treated sympathetic neurons in order to identify candidate genes involved in regulation of primary dendritogenesis. METHODOLOGY/PRINCIPAL FINDINGS To determine the critical transcriptional window during BMP-induced dendritic growth, morphometric analysis of microtubule-associated protein (MAP-2)-immunopositive processes was used to quantify dendritic growth in cultures exposed to the transcription inhibitor actinomycin-D added at varying times after addition of BMP-7. BMP-7-induced dendritic growth was blocked when transcription was inhibited within the first 24 hr after adding exogenous BMP-7. Thus, total RNA was isolated from sympathetic neurons exposed to three different experimental conditions: (1) no BMP-7 treatment; (2) treatment with BMP-7 for 6 hr; and (3) treatment with BMP-7 for 24 hr. Affymetrix oligonucleotide microarrays were used to identify differential gene expression under these three culture conditions. BMP-7 significantly regulated 56 unique genes at 6 hr and 185 unique genes at 24 hr. Bioinformatic analyses implicate both established and novel genes and signaling pathways in primary dendritogenesis. CONCLUSIONS/SIGNIFICANCE This study provides a unique dataset that will be useful in generating testable hypotheses regarding transcriptional control of the initial stages of dendritic growth. Since BMPs selectively promote dendritic growth in central neurons as well, these findings may be generally applicable to dendritic growth in other neuronal cell types.
Collapse
Affiliation(s)
- Michelle M. Garred
- Gene Microarray Shared Resource, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Michael M. Wang
- Departments of Neurology and Molecular & Integrative Physiology, University of Michigan, VA Ann Arbor Healthcare System, Ann Arbor, Michigan, United States of America
| | - Xin Guo
- Department of Environmental Health Sciences, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Christina A. Harrington
- Gene Microarray Shared Resource, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Pamela J. Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| |
Collapse
|
46
|
Abdu E, Bruun DA, Yang D, Yang J, Inceoglu B, Hammock BD, Alkayed NJ, Lein PJ. Epoxyeicosatrienoic acids enhance axonal growth in primary sensory and cortical neuronal cell cultures. J Neurochem 2011; 117:632-42. [PMID: 21155804 DOI: 10.1111/j.1471-4159.2010.07139.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It has recently been reported that soluble epoxide hydrolase (sEH), the major enzyme that metabolizes epoxyeicosatrienoic acids (EETs), is expressed in axons of cortical neurons; however, the functional relevance of axonal sEH localization is unknown. Immunocytochemical analyses demonstrate predominant axonal localization of sEH in primary cultures of not only cortical but also sympathetic and sensory neurons. Morphometric analyses of cultured sensory neurons indicate that exposure to a regioisomeric mixture of EETs (0.01-1.0 μM) causes a concentration-dependent increase in axon outgrowth. This axon promoting activity is not a generalized property of all regioisomers of EETs as axonal growth is enhanced in sensory neurons exposed to 14,15-EET but not 8,9- or 11,12-EET. 14,15-EET also promotes axon outgrowth in cultured cortical neurons. Co-exposure to EETs and either of two structurally diverse pharmacological inhibitors of sEH potentiates the axon-enhancing activity of EETs in sensory and cortical neurons. Mass spectrometry indicates that sEH inhibition significantly increases EETs and significantly decreases dihydroxyeicosatrienoic acid metabolites in neuronal cell cultures. These data indicate that EETs enhance axon outgrowth and suggest that axonal sEH activity regulates EETs-induced axon outgrowth. These findings suggest a novel therapeutic use of sEH inhibitors in promoting nerve regeneration.
Collapse
Affiliation(s)
- Emun Abdu
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Miyagi M, Mikawa S, Hasegawa T, Kobayashi S, Sho K, Matsuyama Y, Sato K. Bone morphogenetic protein receptor expressions in the adult rat brain. Neuroscience 2010; 176:93-109. [PMID: 21185359 DOI: 10.1016/j.neuroscience.2010.12.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 12/16/2010] [Accepted: 12/16/2010] [Indexed: 11/24/2022]
Abstract
Bone morphogenetic proteins (BMP) are members of the transforming growth factor β (TGF-β) superfamily. BMPs exert its biological functions by interacting with membrane bound receptors belonging to the serine/threonine kinase family including bone morphogenetic protein receptor I (BMPRIA, BMPRIB) and type II (BMPRII). Although BMPR expressions have been well described in the early development of the CNS, little information is available for their expressions in the adult CNS. We, thus, investigated BMPR expressions in the adult rat CNS using immunohistochemistry. Here, we show that BMPRIA, IB and II proteins are widely expressed throughout the adult CNS. Interestingly, we observed that BMPRIA, IB and II proteins are abundantly expressed in many kinds of axons. In addition, we found that BAMRIB-IR was preferentially expressed in dendrites of many neurons throughout the CNS, while BMPRIA was mainly expressed in cell bodies, showing that BMPRIA and BMPRIB are differentially targeted in a single neuron. In addition, besides abundant BMPR expressions in neurons, we exhibited BMPR expressions in astrocytes and ependymal cells. These data indicate that BMPRs are more widely expressed throughout the adult CNS than previously reported, and their continued abundant expressions in the adult brain strongly support the idea that BMPRs play pivotal roles also in the adult brain.
Collapse
Affiliation(s)
- M Miyagi
- Department of Orthopaedic Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu, Shizuoka 431-3192, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Type-specific dendrite morphology is a hallmark of the neuron and has important functional implications in determining what signals a neuron receives and how these signals are integrated. During the past two decades, studies on dendritic arborization neurons in Drosophila melanogaster have started to identify mechanisms of dendrite morphogenesis that may have broad applicability to vertebrate species. Transcription factors, receptor-ligand interactions, various signalling pathways, local translational machinery, cytoskeletal elements, Golgi outposts and endosomes have been identified as contributors to the organization of dendrites of individual neurons and the placement of these dendrites in the neuronal circuitry. Further insight into these mechanisms will improve our understanding of how the nervous system functions and might help to identify the underlying causes of some neurological and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Yuh-Nung Jan
- Howard Hughes Medical Institute, Department of Physiology, University of California, 1550 4th Street, San Francisco 94158, USA.
| | | |
Collapse
|
49
|
Abstract
Neurons are among the most highly polarized cell types in the body, and the polarization of axon and dendrites underlies the ability of neurons to integrate and transmit information in the brain. Significant progress has been made in the identification of the cellular and molecular mechanisms underlying the establishment of neuronal polarity using primarily in vitro approaches such as dissociated culture of rodent hippocampal and cortical neurons. This model has led to the predominant view suggesting that neuronal polarization is specified largely by stochastic, asymmetric activation of intracellular signaling pathways. Recent evidence shows that extracellular cues can play an instructive role during neuronal polarization in vitro and in vivo. In this review, we synthesize the recent data supporting an integrative model whereby extracellular cues orchestrate the intracellular signaling underlying the initial break of neuronal symmetry leading to axon-dendrite polarization.
Collapse
Affiliation(s)
- Anthony P Barnes
- Pediatric Neuroscience Research Program, Department of Pediatrics, Oregon Health and Science University, Portland, Oregon 97239-3098, USA.
| | | |
Collapse
|
50
|
Ernsberger U. Role of neurotrophin signalling in the differentiation of neurons from dorsal root ganglia and sympathetic ganglia. Cell Tissue Res 2009; 336:349-84. [PMID: 19387688 DOI: 10.1007/s00441-009-0784-z] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Accepted: 02/12/2009] [Indexed: 12/17/2022]
Abstract
Manipulation of neurotrophin (NT) signalling by administration or depletion of NTs, by transgenic overexpression or by deletion of genes coding for NTs and their receptors has demonstrated the importance of NT signalling for the survival and differentiation of neurons in sympathetic and dorsal root ganglia (DRG). Combination with mutation of the proapoptotic Bax gene allows the separation of survival and differentiation effects. These studies together with cell culture analysis suggest that NT signalling directly regulates the differentiation of neuron subpopulations and their integration into neural networks. The high-affinity NT receptors trkA, trkB and trkC are restricted to subpopulations of mature neurons, whereas their expression at early developmental stages largely overlaps. trkC is expressed throughout sympathetic ganglia and DRG early after ganglion formation but becomes restricted to small neuron subpopulations during embryogenesis when trkA is turned on. The temporal relationship between trkA and trkC expression is conserved between sympathetic ganglia and DRG. In DRG, NGF signalling is required not only for survival, but also for the differentiation of nociceptors. Expression of neuropeptides calcitonin gene-related peptide and substance P, which specify peptidergic nociceptors, depends on nerve growth factor (NGF) signalling. ret expression indicative of non-peptidergic nociceptors is also promoted by the NGF-signalling pathway. Regulation of TRP channels by NGF signalling might specify the temperature sensitivity of afferent neurons embryonically. The manipulation of NGF levels "tunes" heat sensitivity in nociceptors at postnatal and adult stages. Brain-derived neurotrophic factor signalling is required for subpopulations of DRG neurons that are not fully characterized; it affects mechanical sensitivity in slowly adapting, low-threshold mechanoreceptors and might involve the regulation of DEG/ENaC ion channels. NT3 signalling is required for the generation and survival of various DRG neuron classes, in particular proprioceptors. Its importance for peripheral projections and central connectivity of proprioceptors demonstrates the significance of NT signalling for integrating responsive neurons in neural networks. The molecular targets of NT3 signalling in proprioceptor differentiation remain to be characterized. In sympathetic ganglia, NGF signalling regulates dendritic development and axonal projections. Its role in the specification of other neuronal properties is less well analysed. In vitro analysis suggests the involvement of NT signalling in the choice between the noradrenergic and cholinergic transmitter phenotype, in the expression of various classes of ion channels and for target connectivity. In vivo analysis is required to show the degree to which NT signalling regulates these sympathetic neuron properties in developing embryos and postnatally.
Collapse
Affiliation(s)
- Uwe Ernsberger
- Interdisciplinary Center for Neurosciences (IZN), INF 307, University of Heidelberg, 69120, Heidelberg, Germany.
| |
Collapse
|