1
|
Magi MS, Lopez-Vidal L, García MC, Stempin CC, Marin C, Maletto B, Palma SD, Real JP, Jimenez-Kairuz AF. Organic solvent-free benznidazole nanosuspension as an approach to a novel pediatric formulation for Chagas disease. Ther Deliv 2024; 15:699-716. [PMID: 39101355 DOI: 10.1080/20415990.2024.2380244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/11/2024] [Indexed: 08/06/2024] Open
Abstract
Aim: Benznidazole (BNZ), a class-II drug, is the primary treatment for Chagas disease, but its low aqueous solubility presents challenges in formulation and efficacy. Nanosuspensions (NS) could potentially address these issues.Methods: BNZ-NS were prepared using a simple, organic solvents-free nano-milling approach. Physicochemical characterizations were conducted on both NS and lyophilized solid-state BNZ-nanocrystals (NC).Results: BNZ-NS exhibited particle size <500 nm, an acceptable polydispersity index (0.23), high Z-potential, and physical stability for at least 90 days. BNZ-NC showed tenfold higher solubility than pure BNZ. Dissolution assays revealed rapid BNZ-NS dissolution. BNZ-NC demonstrated biocompatibility on an eukaryotic cell and enhanced BNZ efficacy against trypomastigotes of Trypanosoma cruzi.Conclusion: BNZ-NS offers a promising alternative, overcoming limitations associated with BNZ for optimized pharmacotherapy.
Collapse
Affiliation(s)
- María Sol Magi
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), 1-4 Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET/UNC, 1-4 Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
| | - Lucía Lopez-Vidal
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), 1-4 Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET/UNC, 1-4 Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
| | - Mónica Cristina García
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), 1-4 Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET/UNC, 1-4 Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
| | - Cinthia Carolina Stempin
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 1-4 Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET/UNC, 1-4 Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
| | - Constanza Marin
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 1-4 Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET/UNC, 1-4 Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
| | - Belkys Maletto
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 1-4 Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET/UNC, 1-4 Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
| | - Santiago Daniel Palma
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), 1-4 Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET/UNC, 1-4 Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
| | - Juan Pablo Real
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), 1-4 Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET/UNC, 1-4 Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
| | - Alvaro Federico Jimenez-Kairuz
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), 1-4 Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET/UNC, 1-4 Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
| |
Collapse
|
2
|
Fontes ND, Habib FL, Leony LM, Freitas NEM, Silva ÂAO, Dantas-Torres F, da Silva Sales KG, da Câmara ACJ, de Araújo-Neto VT, Amorim LDAF, Celedon PAF, Zanchin NIT, Santos FLN. Evaluation of chimeric recombinant antigens for the serodiagnosis of Trypanosoma cruzi in dogs: a promising tool for Chagas disease surveillance. Parasit Vectors 2024; 17:305. [PMID: 39010122 PMCID: PMC11251128 DOI: 10.1186/s13071-024-06376-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/25/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Chagas disease (CD), a neglected parasitic disease caused by Trypanosoma cruzi, poses a significant health threat in Latin America and has emerged globally because of human migration. Trypanosoma cruzi infects humans and over 100 other mammalian species, including dogs, which are important sentinels for assessing the risk of human infection. Nonetheless, the serodiagnosis of T. cruzi in dogs is still impaired by the absence of commercial tests. In this study, we investigated the diagnostic accuracy of four chimeric recombinant T. cruzi IBMP antigens (IBMP-8.1, IBMP-8.2, IBMP-8.3, and IBMP-8.4) for detecting anti-T. cruzi antibodies in dogs, using latent class analysis (LCA). METHODS We examined 663 canine serum samples, employing indirect ELISA with the chimeric antigens. LCA was utilized to establish a latent variable as a gold standard for T. cruzi infection, revealing distinct response patterns for each antigen. RESULTS The IBMP (Portuguese acronym for the Molecular Biology Institute of Paraná) antigens achieved area under the ROC curve (AUC) values ranging from 90.9% to 97.3%. The highest sensitivity was attributed to IBMP-8.2 (89.8%), while IBMP-8.1, IBMP-8.3, and IBMP-8.4 achieved 73.5%, 79.6%, and 85.7%, respectively. The highest specificity was observed for IBMP-8.4 (98.6%), followed by IBMP-8.2, IBMP-8.3, and IBMP-8.1 with specificities of 98.3%, 94.4%, and 92.7%, respectively. Predictive values varied according to prevalence, indicating higher effectiveness in endemic settings. CONCLUSIONS Our findings underscore the remarkable diagnostic performance of IBMP-8.2 and IBMP-8.4 for the serodiagnosis of Trypanosoma cruzi in dogs, representing a promising tool for the diagnosis of CD in dogs. These chimeric recombinant antigens may not only enhance CD surveillance strategies but also hold broader implications for public health, contributing to the global fight against this neglected tropical disease.
Collapse
Affiliation(s)
- Natália Dantas Fontes
- Advanced Public Health Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil
| | - Fernanda Lopes Habib
- Advanced Public Health Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil
| | - Leonardo Maia Leony
- Advanced Public Health Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil
- Interdisciplinary Research Group in Biotechnology and Epidemiology of Infectious Diseases (GRUPIBE), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ-BA), Salvador, Brazil
| | - Natália Erdens Maron Freitas
- Advanced Public Health Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil
- Interdisciplinary Research Group in Biotechnology and Epidemiology of Infectious Diseases (GRUPIBE), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ-BA), Salvador, Brazil
| | - Ângelo Antônio Oliveira Silva
- Advanced Public Health Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil
- Interdisciplinary Research Group in Biotechnology and Epidemiology of Infectious Diseases (GRUPIBE), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ-BA), Salvador, Brazil
| | - Filipe Dantas-Torres
- Laboratory of Immunoparasitology, Department of Immunology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Brazil
| | - Kamila Gaudêncio da Silva Sales
- Laboratory of Immunoparasitology, Department of Immunology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Brazil
| | - Antônia Cláudia Jácome da Câmara
- Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | | | | | - Nilson Ivo Tonin Zanchin
- Laboratory of Structural Biology & Protein Engineering, Carlos Chagas Institute, Oswaldo Cruz Foundation, Curitiba, Brazil
- Integrated Translational Program in Chagas disease from Fiocruz - Fio-Chagas, Rio de Janeiro, Brazil
| | - Fred Luciano Neves Santos
- Advanced Public Health Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil.
- Interdisciplinary Research Group in Biotechnology and Epidemiology of Infectious Diseases (GRUPIBE), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ-BA), Salvador, Brazil.
- Integrated Translational Program in Chagas disease from Fiocruz - Fio-Chagas, Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Gold M, Jackson Y, Parrat D. Chagas disease is a low health priority among high-risk Latin American migrants in Geneva, a qualitative study. J Migr Health 2024; 10:100239. [PMID: 39036036 PMCID: PMC11260342 DOI: 10.1016/j.jmh.2024.100239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/25/2023] [Accepted: 06/19/2024] [Indexed: 07/23/2024] Open
Abstract
This qualitative study of the situation of Latin American migrants with Chagas Disease in Geneva analyses how precarious migration-related socioeconomic conditions determine health priorities and disease perception. The study was conducted between 2016 and 2019 and is based on survey data collected in three Chagas-related community events, as well as on open-ended interviews with Bolivian migrants. This research contributes to more appropriate development of public health policies for migrants, as well as to a more nuanced and culturally sensitive understanding of how precarity affects the delivery of, and access to, healthcare in Western Europe. The significance of this research is to highlight how perceptions of Chagas Disease provide a lens to better understand the links between precarity and health among Bolivian migrants.
Collapse
Affiliation(s)
- Marina Gold
- Fundación Mundo Sano and Zurich University, Switzerland
| | | | | |
Collapse
|
4
|
Vilar-Pereira G, Gibaldi D, Castaño-Barrios L, da Silva AA, Resende Pereira I, Cruz Moreira O, Britto C, Mata dos Santos HA, de Oliveira Lopes R, Wanderley Tinoco L, Oliveira W, Lannes-Vieira J. The beneficial effect of fluoxetine on behavioral and cognitive changes in chronic experimental Chagas disease unveils the role of serotonin fueling astrocyte infection by Trypanosoma cruzi. PLoS Negl Trop Dis 2024; 18:e0012199. [PMID: 38776344 PMCID: PMC11149870 DOI: 10.1371/journal.pntd.0012199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 06/04/2024] [Accepted: 05/06/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND In Chagas disease (CD), a neglected tropical disease caused by the parasite Trypanosoma cruzi, the development of mental disorders such as anxiety, depression, and memory loss may be underpinned by social, psychological, and biological stressors. Here, we investigated biological factors underlying behavioral changes in a preclinical model of CD. METHODOLOGY/PRINCIPAL FINDINGS In T. cruzi-infected C57BL/6 mice, a kinetic study (5 to 150 days postinfection, dpi) using standardized methods revealed a sequential onset of behavioral changes: reduced innate compulsive behavior, followed by anxiety and depressive-like behavior, ending with progressive memory impairments. Hence, T. cruzi-infected mice were treated (120 to 150 dpi) with 10 mg/Kg/day of the selective serotonin reuptake inhibitor fluoxetine (Fx), an antidepressant that favors neuroplasticity. Fx therapy reversed the innate compulsive behavior loss, anxiety, and depressive-like behavior while preventing or reversing memory deficits. Biochemical, histological, and parasitological analyses of the brain tissue showed increased levels of the neurotransmitters GABA/glutamate and lipid peroxidation products and decreased expression of brain-derived neurotrophic factor in the absence of neuroinflammation at 150 dpi. Fx therapy ameliorated the neurochemical changes and reduced parasite load in the brain tissue. Next, using the human U-87 MG astroglioma cell line, we found no direct effect of Fx on parasite load. Crucially, serotonin/5-HT (Ser/5-HT) promoted parasite uptake, an effect increased by prior stimulation with IFNγ and TNF but abrogated by Fx. Also, Fx blocked the cytokine-driven Ser/5-HT-promoted increase of nitric oxide and glutamate levels in infected cells. CONCLUSION/SIGNIFICANCE We bring the first evidence of a sequential onset of behavioral changes in T. cruzi-infected mice. Fx therapy improves behavioral and biological changes and parasite control in the brain tissue. Moreover, in the central nervous system, cytokine-driven Ser/5-HT consumption may favor parasite persistence, disrupting neurotransmitter balance and promoting a neurotoxic environment likely contributing to behavioral and cognitive disorders.
Collapse
Affiliation(s)
- Glaucia Vilar-Pereira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Brazil
| | - Daniel Gibaldi
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Brazil
| | - Leda Castaño-Barrios
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Brazil
| | - Andrea Alice da Silva
- Laboratório Multidisciplinar de Apoio à Pesquisa em Nefrologia e Ciências Médicas, Departamento de Patologia, Faculdade de Medicina, Universidade Federal Fluminense, Niterói, Brazil
| | - Isabela Resende Pereira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Brazil
| | - Otacílio Cruz Moreira
- Laboratório de Virologia e Parasitologia Molecular, IOC/Fiocruz, Rio de Janeiro, Brazil
| | - Constança Britto
- Laboratório de Biologia Molecular e Doenças Endêmicas, IOC/Fiocruz, Rio de Janeiro, Brazil
| | - Hílton Antônio Mata dos Santos
- Escola de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Análise e Desenvolvimento de Inibidores Enzimáticos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel de Oliveira Lopes
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório Multiusuário de Análises por Ressonância Magnética Nuclear (LAMAR), Instituto de Pesquisas de Produtos Naturais (IPPN), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luzineide Wanderley Tinoco
- Laboratório Multiusuário de Análises por Ressonância Magnética Nuclear (LAMAR), Instituto de Pesquisas de Produtos Naturais (IPPN), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wilson Oliveira
- Ambulatório de Doença de Chagas e Insuficiência Cardíaca, Pronto Socorro Cardiológico de Pernambuco (PROCAPE)/Universidade de Pernambuco, Recife, Brazil
| | - Joseli Lannes-Vieira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Serrano IM, Ribeiro G, Santos RS, Cruz JS, Lanza FC, dos Santos EF, de Almeida MC, Soares JFDS, Luquetti AO, Celedon PAF, Zanchin NIT, Santos FLN, dos Reis MG. IgG Isotypes Targeting a Recombinant Chimeric Protein of Trypanosoma cruzi in Different Clinical Presentations of Chronic Chagas Disease. Am J Trop Med Hyg 2024; 110:669-676. [PMID: 38412539 PMCID: PMC10993828 DOI: 10.4269/ajtmh.23-0652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/24/2023] [Indexed: 02/29/2024] Open
Abstract
Chagas disease (CD) is caused by the protozoan Trypanosoma cruzi, which leads to a spectrum of clinical presentations that range from asymptomatic to severe cardiac involvement. The host immune response plays a pivotal role in disease progression. Ig isotypes may contribute to disease pathogenesis. Investigating these components can provide insights into the immunopathogenic mechanisms underlying CD. This cross-sectional study aims to establish a correlation between the Ig profile of individuals infected with T. cruzi with the clinical forms of chronic CD. Serum samples were collected from partner institutions in different states of Brazil. Individuals diagnosed with chronic CD were categorized based on the clinical form of the disease. The indirect ELISA method using the recombinant chimeric Molecular Biology Institute of Paraná membrane protein 8.4 as the antigen was used to determine the Ig profile, including total IgG, IgG1, IgG2, IgG3, and IgG4. Ninety-seven serum samples from patients classified as negative (NEG, n = 38), indeterminate (IND, n = 24), mild cardiac (MC, n = 20), and severe cardiac (SC, n = 15) forms were analyzed. IgG1 exhibited greater levels compared with the other isotypes, showing a significant difference between the MC and IND groups. IgG3 levels were greater in individuals from the MC group compared with the SC group. IgG1 and IgG3 isotypes can serve as biomarkers to evaluate the progression of CD because they exhibit variations across clinical groups. Additional longitudinal studies are necessary to explore the relationship between antibody kinetics and the development of tissue damage.
Collapse
Affiliation(s)
- Isabela Machado Serrano
- Laboratory of Pathology and Molecular Biology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation–Bahia, Salvador, Brazil
- Advanced Health Public Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation–Bahia, Salvador, Brazil
| | - Gilmar Ribeiro
- Laboratory of Pathology and Molecular Biology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation–Bahia, Salvador, Brazil
- Integrated Translational Program in Chagas Disease, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Jaqueline Silva Cruz
- Laboratory of Pathology and Molecular Biology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation–Bahia, Salvador, Brazil
| | - Fernanda Cardoso Lanza
- Laboratory of Pathology and Molecular Biology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation–Bahia, Salvador, Brazil
| | - Emily Ferreira dos Santos
- Advanced Health Public Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation–Bahia, Salvador, Brazil
| | - Márcio Cerqueira de Almeida
- Laboratory of Pathology and Molecular Biology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation–Bahia, Salvador, Brazil
| | | | | | - Paola Alejandra Fiorani Celedon
- Laboratory of Molecular and Systems Biology of Trypanosomatids, Carlos Chagas Institute, Oswaldo Cruz Foundation–Paraná, Curitiba, Brazil
| | - Nilson Ivo Tonin Zanchin
- Integrated Translational Program in Chagas Disease, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory of Structural Biology and Protein Engineering Laboratory, Carlos Chagas Institute, Oswaldo Cruz Foundation–Paraná, Curitiba, Brazil
| | - Fred Luciano Neves Santos
- Advanced Health Public Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation–Bahia, Salvador, Brazil
- Integrated Translational Program in Chagas Disease, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Mitermayer Galvão dos Reis
- Laboratory of Pathology and Molecular Biology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation–Bahia, Salvador, Brazil
- Integrated Translational Program in Chagas Disease, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Faculty of Medicine, Federal University of Bahia, Salvador, Brazil
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, Connecticut
| |
Collapse
|
6
|
De Rose Ghilardi F, Silva G, Vieira TM, Mota A, Bierrenbach AL, Damasceno RF, de Oliveira LC, Dias Porto Chiavegatto Filho A, Sabino E. Machine learning for predicting Chagas disease infection in rural areas of Brazil. PLoS Negl Trop Dis 2024; 18:e0012026. [PMID: 38626209 PMCID: PMC11093296 DOI: 10.1371/journal.pntd.0012026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 05/14/2024] [Accepted: 02/27/2024] [Indexed: 04/18/2024] Open
Abstract
INTRODUCTION Chagas disease is a severe parasitic illness that is prevalent in Latin America and often goes unaddressed. Early detection and treatment are critical in preventing the progression of the illness and its associated life-threatening complications. In recent years, machine learning algorithms have emerged as powerful tools for disease prediction and diagnosis. METHODS In this study, we developed machine learning algorithms to predict the risk of Chagas disease based on five general factors: age, gender, history of living in a mud or wooden house, history of being bitten by a triatomine bug, and family history of Chagas disease. We analyzed data from the Retrovirus Epidemiology Donor Study (REDS) to train five popular machine learning algorithms. The sample comprised 2,006 patients, divided into 75% for training and 25% for testing algorithm performance. We evaluated the model performance using precision, recall, and AUC-ROC metrics. RESULTS The Adaboost algorithm yielded an AUC-ROC of 0.772, a precision of 0.199, and a recall of 0.612. We simulated the decision boundary using various thresholds and observed that in this dataset a threshold of 0.45 resulted in a 100% recall. This finding suggests that employing such a threshold could potentially save 22.5% of the cost associated with mass testing of Chagas disease. CONCLUSION Our findings highlight the potential of applying machine learning to improve the sensitivity and effectiveness of Chagas disease diagnosis and prevention. Furthermore, we emphasize the importance of integrating socio-demographic and environmental factors into neglected disease prediction models to enhance their performance.
Collapse
Affiliation(s)
| | - Gabriel Silva
- Faculdade de Saúde Pública da Universidade de São Paulo–FSP USP, São Paulo, Brazil
| | - Thallyta Maria Vieira
- Universidade Estadual de Montes Claros–Unimontes, Montes Claros, Minas Gerais, Brazil
| | - Ariela Mota
- Universidade Estadual de Montes Claros–Unimontes, Montes Claros, Minas Gerais, Brazil
| | | | | | - Lea Campos de Oliveira
- Instituto de Medicina Tropical da Faculdade de Medicina da USP–IMT USP, São Paulo, Brazil
| | | | - Ester Sabino
- Faculdade de Medicina da Universidade de São Paulo–FMUSP, São Paulo, Brazil
- Instituto de Medicina Tropical da Faculdade de Medicina da USP–IMT USP, São Paulo, Brazil
| |
Collapse
|
7
|
Espinoza-Chávez RM, Oliveira Rezende Júnior CD, de Souza ML, Pauli I, Valli M, Gomes Ferreira LL, Chelucci RC, Michelan-Duarte S, Krogh R, Romualdo da Silva FB, Cruz FC, de Oliveira AS, Andricopulo AD, Dias LC. Structure-activity relationships of novel N-imidazoylpiperazines with potent anti- Trypanosoma cruzi activity. Future Med Chem 2024; 16:253-269. [PMID: 38193294 DOI: 10.4155/fmc-2023-0185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024] Open
Abstract
Background: Chagas disease is caused by the parasite Trypanosoma cruzi, and the lack of effective and safe treatments makes identifying new classes of compounds with anti-T. cruzi activity of paramount importance. Methods: Hit-to-lead exploration of a metabolically stable N-imidazoylpiperazine was performed. Results: Compound 2, a piperazine derivative active against T. cruzi, was selected to perform the hit-to-lead exploration, which involved the design, synthesis and biological evaluation of 39 new derivatives. Conclusion: Compounds 6e and 10a were identified as optimized compounds with low micromolar in vitro activity, low cytotoxicity and suitable preliminary absorption, distribution, metabolism and excretion and physicochemical properties. Both compounds reduced parasitemia in mouse models of Chagas disease, providing a promising opportunity for further exploration of new antichagasic compounds.
Collapse
Affiliation(s)
- Rocío Marisol Espinoza-Chávez
- Laboratory of Synthetic Organic Chemistry, Institute of Chemistry, State University of Campinas, Campinas-SP, 13084-971, Brazil
| | - Celso de Oliveira Rezende Júnior
- Laboratory of Synthetic Organic Chemistry, Institute of Chemistry, State University of Campinas, Campinas-SP, 13084-971, Brazil
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia-MG, 38400-902, Brazil
| | - Mariana Laureano de Souza
- Laboratory of Medicinal & Computational Chemistry, São Carlos Institute of Physics, University of São Paulo, São Carlos-SP, 13563-120, Brazil
| | - Ivani Pauli
- Laboratory of Medicinal & Computational Chemistry, São Carlos Institute of Physics, University of São Paulo, São Carlos-SP, 13563-120, Brazil
| | - Marilia Valli
- Laboratory of Medicinal & Computational Chemistry, São Carlos Institute of Physics, University of São Paulo, São Carlos-SP, 13563-120, Brazil
| | - Leonardo Luiz Gomes Ferreira
- Laboratory of Medicinal & Computational Chemistry, São Carlos Institute of Physics, University of São Paulo, São Carlos-SP, 13563-120, Brazil
| | - Rafael Consolin Chelucci
- Laboratory of Medicinal & Computational Chemistry, São Carlos Institute of Physics, University of São Paulo, São Carlos-SP, 13563-120, Brazil
| | - Simone Michelan-Duarte
- Laboratory of Medicinal & Computational Chemistry, São Carlos Institute of Physics, University of São Paulo, São Carlos-SP, 13563-120, Brazil
| | - Renata Krogh
- Laboratory of Medicinal & Computational Chemistry, São Carlos Institute of Physics, University of São Paulo, São Carlos-SP, 13563-120, Brazil
| | | | - Fábio Cardoso Cruz
- Department of Pharmacology, Federal University of São Paulo - UNIFESP, São Paulo-SP, 04023-062, Brazil
| | - Aldo Sena de Oliveira
- Department of Exact Sciences & Education, Federal University of Santa Catarina, Campus of Blumenau, Santa Catarina-SC, 89036-256, Brazil
| | - Adriano Defini Andricopulo
- Laboratory of Medicinal & Computational Chemistry, São Carlos Institute of Physics, University of São Paulo, São Carlos-SP, 13563-120, Brazil
| | - Luiz Carlos Dias
- Laboratory of Synthetic Organic Chemistry, Institute of Chemistry, State University of Campinas, Campinas-SP, 13084-971, Brazil
| |
Collapse
|
8
|
Ossowski MS, Gallardo JP, Niborski LL, Rodríguez-Durán J, Lapadula WJ, Juri Ayub M, Chadi R, Hernandez Y, Fernandez ML, Potenza M, Gómez KA. Characterization of Novel Trypanosoma cruzi-Specific Antigen with Potential Use in the Diagnosis of Chagas Disease. Int J Mol Sci 2024; 25:1202. [PMID: 38256275 PMCID: PMC10816184 DOI: 10.3390/ijms25021202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024] Open
Abstract
Chagas disease is caused by the parasite Trypanosoma cruzi. In humans, it evolves into a chronic disease, eventually resulting in cardiac, digestive, and/or neurological disorders. In the present study, we characterized a novel T. cruzi antigen named Tc323 (TcCLB.504087.20), recognized by a single-chain monoclonal antibody (scFv 6B6) isolated from the B cells of patients with cardiomyopathy related to chronic Chagas disease. Tc323, a ~323 kDa protein, is an uncharacterized protein showing putative quinoprotein alcohol dehydrogenase-like domains. A computational molecular docking study revealed that the scFv 6B6 binds to an internal domain of Tc323. Immunofluorescence microscopy and Western Blot showed that Tc323 is expressed in the main developmental forms of T. cruzi, localized intracellularly and exhibiting a membrane-associated pattern. According to phylogenetic analysis, Tc323 is highly conserved throughout evolution in all the lineages of T. cruzi so far identified, but it is absent in Leishmania spp. and Trypanosoma brucei. Most interestingly, only plasma samples from patients infected with T. cruzi and those with mixed infection with Leishmania spp. reacted against Tc323. Collectively, our findings demonstrate that Tc323 is a promising candidate for the differential serodiagnosis of chronic Chagas disease in areas where T. cruzi and Leishmania spp. infections coexist.
Collapse
Affiliation(s)
- Micaela S. Ossowski
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI-CONICET), Buenos Aires 1428, Argentina; (M.S.O.); (J.P.G.); (L.L.N.); (J.R.-D.)
| | - Juan Pablo Gallardo
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI-CONICET), Buenos Aires 1428, Argentina; (M.S.O.); (J.P.G.); (L.L.N.); (J.R.-D.)
| | - Leticia L. Niborski
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI-CONICET), Buenos Aires 1428, Argentina; (M.S.O.); (J.P.G.); (L.L.N.); (J.R.-D.)
| | - Jessica Rodríguez-Durán
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI-CONICET), Buenos Aires 1428, Argentina; (M.S.O.); (J.P.G.); (L.L.N.); (J.R.-D.)
| | - Walter J. Lapadula
- Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL-CONICET), Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis 5700, Argentina; (W.J.L.); (M.J.A.)
| | - Maximiliano Juri Ayub
- Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL-CONICET), Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis 5700, Argentina; (W.J.L.); (M.J.A.)
| | - Raúl Chadi
- Hospital General de Agudos “Dr. Ignacio Pirovano”, Buenos Aires 1430, Argentina;
| | - Yolanda Hernandez
- Instituto Nacional de Parasitología “Dr. Mario Fatala Chaben”, Buenos Aires 1063, Argentina; (Y.H.); (M.L.F.)
| | - Marisa L. Fernandez
- Instituto Nacional de Parasitología “Dr. Mario Fatala Chaben”, Buenos Aires 1063, Argentina; (Y.H.); (M.L.F.)
| | - Mariana Potenza
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI-CONICET), Buenos Aires 1428, Argentina; (M.S.O.); (J.P.G.); (L.L.N.); (J.R.-D.)
| | - Karina A. Gómez
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI-CONICET), Buenos Aires 1428, Argentina; (M.S.O.); (J.P.G.); (L.L.N.); (J.R.-D.)
| |
Collapse
|
9
|
Díaz-Viraqué F, Chiribao ML, Paes-Vieira L, Machado MR, Faral-Tello P, Tomasina R, Trochine A, Robello C. New Insights into the Role of the Trypanosoma cruzi Aldo-Keto Reductase TcAKR. Pathogens 2023; 12:pathogens12010085. [PMID: 36678433 PMCID: PMC9860839 DOI: 10.3390/pathogens12010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
Chagas disease is a zoonotic infectious disease caused by the protozoan parasite Trypanosoma cruzi. It is distributed worldwide, affecting around 7 million people; there is no effective treatment, and it constitutes a leading cause of disability and premature death in the Americas. Only two drugs are currently approved for the treatment, Benznidazole and Nifurtimox, and both have to be activated by reducing the nitro-group. The T. cruzi aldo-keto reductase (TcAKR) has been related to the metabolism of benznidazole. TcAKR has been extensively studied, being most efforts focused on characterizing its implication in trypanocidal drug metabolism; however, little is known regarding its biological role. Here, we found that TcAKR is confined, throughout the entire life cycle, into the parasite mitochondria providing new insights into its biological function. In particular, in epimastigotes, TcAKR is associated with the kinetoplast, which suggests additional roles of the protein. The upregulation of TcAKR, which does not affect TcOYE expression, was correlated with an increase in PGF2α, suggesting that this enzyme is related to PGF2α synthesis in T. cruzi. Structural analysis showed that TcAKR contains a catalytic tetrad conserved in the AKR superfamily. Finally, we found that TcAKR is also involved in Nfx metabolization.
Collapse
Affiliation(s)
- Florencia Díaz-Viraqué
- Laboratorio de Interacciones Hospedero Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - María Laura Chiribao
- Laboratorio de Interacciones Hospedero Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
- Departamento de Bioquímica, Facultad de Medicina Universidad de la República, Montevideo 11400, Uruguay
| | - Lisvane Paes-Vieira
- Laboratorio de Interacciones Hospedero Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Matias R. Machado
- Unidad de Proteínas Recombinantes, Institut Pasteur de Montevideo, Montevideo 11300, Uruguay
| | - Paula Faral-Tello
- Laboratorio de Interacciones Hospedero Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Ramiro Tomasina
- Laboratory of Apicomplexan Biology, Institut Pasteur de Montevideo and Departamento de Parasitología, Facultad de Medicina Universidad de la República, Montevideo 11300, Uruguay
| | - Andrea Trochine
- Centro de Referencia en Levaduras y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), CONICET-Universidad Nacional del Comahue, Quintral 1250, San Carlos de Bariloche 8400, Argentina
| | - Carlos Robello
- Laboratorio de Interacciones Hospedero Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
- Departamento de Bioquímica, Facultad de Medicina Universidad de la República, Montevideo 11400, Uruguay
- Correspondence:
| |
Collapse
|
10
|
Kmetiuk LB, Gonçalves G, Chechia Do Couto A, Biondo AW, Figueiredo FB. Serosurvey of Trypanosoma cruzi in persons experiencing homelessness and shelter workers of Brazil. Front Public Health 2023; 11:1125028. [PMID: 36935667 PMCID: PMC10022815 DOI: 10.3389/fpubh.2023.1125028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
Although Chagas disease, caused by Trypanosoma cruzi, has been associated with social vulnerability worldwide, producing disability and mortality, no study to date has assessed this protozoal infection in persons experiencing homelessness. Accordingly, the present study aimed to assess anti-T. cruzi antibodies by Wiener Chagatest ELISA recombinant v.3.0 in serum samples of persons experiencing homelessness and related shelter workers in São Paulo, a city with reported vectors but no recent autochthonous case report. Overall, seropositivity to T. cruzi resulted in three of 203 (1.5%) persons experiencing homelessness and two of 87 (2.3%) shelter workers, with similar seroprevalence likely associated with their past social vulnerability. Although the seropositivity in persons experiencing homelessness and shelter workers was within 0 to 25.1% seroprevalence for chronic Chagas disease in the general Brazilian population, the disease has almost decreased 2-fold from the 1980s to 2000s, and such a wide range may not reflect the local disease status. In addition, the authors hypothesized that the similar seroprevalence and exposure between homeless persons and shelter workers herein may be more associated with shared past and present low-income social vulnerability than migratory movements, which may also include infection by sharing injecting drugs, vertical transmission, or blood transfusion. Thus, future studies are needed to confirm the active transmission of Chagas disease in São Paulo city. Moreover, Chagas disease should be considered as differential diagnosis in homeless persons and shelter workers, even in major disease-free Brazilian or other worldwide cities, mostly due to early exposure and vulnerable living conditions.
Collapse
Affiliation(s)
- Louise Bach Kmetiuk
- Laboratory of Cell Biology, Carlos Chagas Institute, Oswaldo Cruz Foundation, Curitiba, Paraná, Brazil
| | - Gustavo Gonçalves
- Laboratory of Cell Biology, Carlos Chagas Institute, Oswaldo Cruz Foundation, Curitiba, Paraná, Brazil
| | - Anahi Chechia Do Couto
- Department of Veterinary Medicine, Federal University of Paraná State, Curitiba, Paraná, Brazil
| | - Alexander Welker Biondo
- Department of Veterinary Medicine, Federal University of Paraná State, Curitiba, Paraná, Brazil
| | - Fabiano Borges Figueiredo
- Laboratory of Cell Biology, Carlos Chagas Institute, Oswaldo Cruz Foundation, Curitiba, Paraná, Brazil
- *Correspondence: Fabiano Borges Figueiredo
| |
Collapse
|
11
|
Freitas NEM, Habib FL, Santos EF, Silva ÂAO, Fontes ND, Leony LM, Sampaio DD, de Almeida MC, Dantas-Torres F, Santos FLN. Technological advances in the serological diagnosis of Chagas disease in dogs and cats: a systematic review. Parasit Vectors 2022; 15:343. [PMID: 36167575 PMCID: PMC9516836 DOI: 10.1186/s13071-022-05476-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/10/2022] [Indexed: 11/12/2022] Open
Abstract
Background Chagas disease (CD) is caused by Trypanosoma cruzi, which is transmitted mainly through the feces/urine of infected triatomine bugs. The acute phase lasts 2–3 months and is characterized by high parasitemia and nonspecific symptoms, whereas the lifelong chronic phase features symptoms affecting the heart and/or digestive tract occurring in 30–40% of infected individuals. As in humans, cardiac abnormalities are observed in T. cruzi-infected dogs and cats. We reviewed the technological advances in the serological diagnosis of CD in dogs and cats. Methods A review of the published literature during the last 54 years (1968–2022) on the epidemiology, clinical features, diagnosis, treatment and prevention of CD in dogs and cats was conducted. Results Using predefined eligibility criteria for a search of the published literature, we retrieved and screened 436 publications. Of these, 84 original studies were considered for inclusion in this review. Dogs and cats are considered as sentinels, potentially indicating an active T. cruzi transmission and thus the risk for human infection. Although dogs and cats are reputed to be important for maintaining the T. cruzi domestic transmission cycle, there are no commercial tests to detect past or active infections in these animals. Most published research on CD in dogs and cats have used in-house serological tests prepared with native and/or full-length recombinant antigens, resulting in variable diagnostic performance. In recent years, chimeric antigens have been used to improve the diagnosis of chronic CD in humans with encouraging results. Some of them have high performance values (> 95%) and extremely low cross-reactivity rates for Leishmania spp., especially the antigens IBMP-8.1 to IBMP-8.4. The diagnostic performance of IBMP antigens was also investigated in dogs, showing high diagnostic performance with negligible cross-reactivity with anti-Leishmania infantum antibodies. Conclusions The development of a commercial immunodiagnostic tool to identify past or active T. cruzi infections in dogs and cats is urgently needed. The use of chimeric recombinant T. cruzi antigens may help to fill this gap and is discussed in this review. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05476-4.
Collapse
Affiliation(s)
- Natália Erdens Maron Freitas
- Advanced Health Public Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Waldemar Falcão Street, 121, Candeal, Bahia, Salvador, 40296-710, Brazil
| | - Fernanda Lopes Habib
- Advanced Health Public Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Waldemar Falcão Street, 121, Candeal, Bahia, Salvador, 40296-710, Brazil
| | - Emily Ferreira Santos
- Advanced Health Public Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Waldemar Falcão Street, 121, Candeal, Bahia, Salvador, 40296-710, Brazil
| | - Ângelo Antônio Oliveira Silva
- Advanced Health Public Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Waldemar Falcão Street, 121, Candeal, Bahia, Salvador, 40296-710, Brazil
| | - Natália Dantas Fontes
- Advanced Health Public Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Waldemar Falcão Street, 121, Candeal, Bahia, Salvador, 40296-710, Brazil
| | - Leonardo Maia Leony
- Advanced Health Public Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Waldemar Falcão Street, 121, Candeal, Bahia, Salvador, 40296-710, Brazil
| | - Daniel Dias Sampaio
- Brazil's Family Health Strategy, Municipal Health Department, Tremedal City Hall, Bahia, Tremedal, Brazil
| | - Marcio Cerqueira de Almeida
- Pathology and Molecular Biology Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Bahia, Brazil
| | - Filipe Dantas-Torres
- Laboratory of Immunoparasitology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| | - Fred Luciano Neves Santos
- Advanced Health Public Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Waldemar Falcão Street, 121, Candeal, Bahia, Salvador, 40296-710, Brazil. .,Integrated Translational Program in Chagas Disease From Fiocruz (Fio-Chagas), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| |
Collapse
|
12
|
Cirqueira ML, Bortot LO, Bolean M, Aleixo MAA, Luccas PH, Costa-Filho AJ, Ramos AP, Ciancaglini P, Nonato MC. Trypanosoma cruzi nitroreductase: Structural features and interaction with biological membranes. Int J Biol Macromol 2022; 221:891-899. [PMID: 36100001 DOI: 10.1016/j.ijbiomac.2022.09.073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/28/2022] [Accepted: 09/08/2022] [Indexed: 11/05/2022]
Abstract
Due to its severe burden and geographic distribution, Chagas disease (CD) has a significant social and economic impact on low-income countries. Benznidazole and nifurtimox are currently the only drugs available for CD. These are prodrugs activated by reducing the nitro group, a reaction catalyzed by nitroreductase type I enzyme from Trypanosoma cruzi (TcNTR), with no homolog in the human host. The three-dimensional structure of TcNTR, and the molecular and chemical bases of the selective activation of nitro drugs, are still unknown. To understand the role of TcNTR in the basic parasite biology, investigate its potential as a drug target, and contribute to the fight against neglected tropical diseases, a combined approach using multiple biophysical and biochemical methods together with in silico studies was employed in the characterization of TcNTR. For the first time, the interaction of TcNTR with membranes was demonstrated, with a preference for those containing cardiolipin, a unique dimeric phospholipid that exists almost exclusively in the inner mitochondrial membrane in eukaryotic cells. Prediction of TcNTR's 3D structure suggests that a 23-residue long insertion (199 to 222), absent in the homologous bacterial protein and identified as conserved in protozoan sequences, mediates enzyme specificity, and is involved in protein-membrane interaction.
Collapse
Affiliation(s)
- Marília L Cirqueira
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (FCFRP-USP), Ribeirão Preto, SP, Brazil
| | - Leandro O Bortot
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (FCFRP-USP), Ribeirão Preto, SP, Brazil; Laboratory of Computational Biology (LBC), Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Maytê Bolean
- Chemistry Dept., Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo (FFCLRP-USP), Ribeirão Preto, SP, Brazil
| | - Mariana A A Aleixo
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (FCFRP-USP), Ribeirão Preto, SP, Brazil; Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Pedro H Luccas
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (FCFRP-USP), Ribeirão Preto, SP, Brazil
| | - Antonio J Costa-Filho
- Physics Dept., Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo (FFCLRP-USP), Ribeirão Preto, SP, Brazil
| | - Ana Paula Ramos
- Chemistry Dept., Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo (FFCLRP-USP), Ribeirão Preto, SP, Brazil
| | - Pietro Ciancaglini
- Chemistry Dept., Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo (FFCLRP-USP), Ribeirão Preto, SP, Brazil
| | - M Cristina Nonato
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (FCFRP-USP), Ribeirão Preto, SP, Brazil.
| |
Collapse
|
13
|
Gómez-Ochoa SA, Bautista-Niño PK, Rojas LZ, Hunziker L, Muka T, Echeverría LE. Circulating MicroRNAs and myocardial involvement severity in chronic Chagas cardiomyopathy. Front Cell Infect Microbiol 2022; 12:922189. [PMID: 36004323 PMCID: PMC9393411 DOI: 10.3389/fcimb.2022.922189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 07/18/2022] [Indexed: 12/18/2022] Open
Abstract
Background Chronic Chagas Cardiomyopathy (CCM) is characterized by a unique pathophysiology in which inflammatory, microvascular and neuroendocrine processes coalesce in the development of one of the most severe cardiomyopathies affecting humans. Despite significant advances in understanding the molecular mechanisms involved in this disease, scarce information is available regarding microRNAs and clinical parameters of disease severity. We aimed to evaluate the association between circulating levels of six microRNAs with markers of myocardial injury and prognosis in this population. Methods Patients with CCM and reduced ejection fraction were included in a prospective exploratory cohort study. We assessed the association of natural log-transformed values of six circulating microRNAs (miR-34a-5p, miR-208a-5p, miR-185-5p, miR-223-5p, let-7d-5p, and miR-454-5p) with NT-proBNP levels and echocardiographic variables using linear regression models adjusted for potential confounders. By using Cox Proportional Hazard models, we examined whether levels of microRNAs could predict a composite outcome (CO), including all-cause mortality, cardiac transplantation, and implantation of a left ventricular assist device (LVAD). Finally, for mRNAs showing significant associations, we predicted the target genes and performed pathway analyses using Targetscan and Reactome Pathway Browser. Results Seventy-four patients were included (59% males, median age: 64 years). After adjustment for age, sex, body mass index, and heart failure medications, only increasing miR-223-5p relative expression levels were significantly associated with better myocardial function markers, including left atrium area (Coef. -10.2; 95% CI -16.35; -4.09), end-systolic (Coef. -45.3; 95% CI -74.06; -16.61) and end-diastolic volumes (Coef. -46.1; 95% CI -81.99; -10.26) of the left ventricle. Moreover, we observed that higher miR-223-5p levels were associated with better left-ventricle ejection fraction and lower NT-proBNP levels. No associations were observed between the six microRNAs and the composite outcome. A total of 123 target genes for miR-223-5p were obtained. From these, several target pathways mainly related to signaling by receptor tyrosine kinases were identified. Conclusions The present study found an association between miR-223-5p and clinical parameters of CCM, with signaling pathways related to receptor tyrosine kinases as a potential mechanism linking low levels of miR-223-5p with CCM worsening.
Collapse
Affiliation(s)
| | | | - Lyda Z. Rojas
- Research Group and Development of Nursing Knowledge (GIDCEN-FCV), Research Center, Fundación Cardiovascular de Colombia, Floridablanca, Colombia
| | - Lukas Hunziker
- Department of Cardiology, Bern University Hospital, Bern, Switzerland
| | - Taulant Muka
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
- *Correspondence: Taulant Muka,
| | - Luis E. Echeverría
- Heart Failure and Heart Transplant Clinic, Fundación Cardiovascular de Colombia, Floridablanca, Colombia
| |
Collapse
|
14
|
Suárez C, Nolder D, García-Mingo A, Moore DAJ, Chiodini PL. Diagnosis and Clinical Management of Chagas Disease: An Increasing Challenge in Non-Endemic Areas. Res Rep Trop Med 2022; 13:25-40. [PMID: 35912165 PMCID: PMC9326036 DOI: 10.2147/rrtm.s278135] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 06/16/2022] [Indexed: 11/24/2022] Open
Abstract
Chagas disease (CD) is caused by the parasite Trypanosoma cruzi, and it is endemic in Central, South America, Mexico and the South of the United States. It is an important cause of early mortality and morbidity, and it is associated with poverty and stigma. A third of the cases evolve into chronic cardiomyopathy and gastrointestinal disease. The infection is transmitted vertically and by blood/organ donation and can reactivate with immunosuppression. Case identification requires awareness and screening programmes targeting the population at risk (women in reproductive age, donors, immunocompromised patients). Treatment with benznidazole or nifurtimox is most effective in the acute phase and prevents progression to chronic phase when given to children. Treating women antenatally reduces but does not eliminate vertical transmission. Treatment is poorly tolerated, contraindicated during pregnancy, and has little effect modifying the disease in the chronic phase. Screening is easily performed with serology. Migration has brought the disease outside of the endemic countries, where the transmission continues vertically and via blood and tissue/organ donations. There are more than 32 million migrants from Latin America living in non-endemic countries. However, the infection is massively underdiagnosed in this setting due to the lack of awareness by patients, health authorities and professionals. Blood and tissue donation screening policies have significantly reduced transmission in endemic countries but are not universally established in the non-endemic setting. Antenatal screening is not commonly done. Other challenges include difficulties accessing and retaining patients in the healthcare system and lack of specific funding for the interventions. Any strategy must be accompanied by education and awareness campaigns directed to patients, professionals and policy makers. The involvement of patients and their communities is central and key for success and must be sought early and actively. This review proposes strategies to address challenges faced by non-endemic countries.
Collapse
Affiliation(s)
- Cristina Suárez
- UK Chagas Hub, London, UK
- Department of Infection, Barts Health NHS Trust, London, UK
| | - Debbie Nolder
- UK Chagas Hub, London, UK
- Diagnostic Parasitology Laboratory, London School of Hygiene & Tropical Medicine, London, UK
| | - Ana García-Mingo
- UK Chagas Hub, London, UK
- Microbiology Department, Whittington Health NHS Trust, London, UK
| | - David A J Moore
- UK Chagas Hub, London, UK
- Hospital for Tropical Diseases, University College London Hospitals NHS Trust;, London, UK
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Peter L Chiodini
- UK Chagas Hub, London, UK
- Hospital for Tropical Diseases, University College London Hospitals NHS Trust;, London, UK
- London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
15
|
Pacheco GJ, Fulton L, Betancourt J, Shanmugam R, Granados PS. Geospatial analysis as a tool to identify target areas for Chagas disease education for healthcare providers. BMC Infect Dis 2022; 22:590. [PMID: 35788197 PMCID: PMC9252050 DOI: 10.1186/s12879-022-07577-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/29/2022] [Indexed: 11/10/2022] Open
Abstract
Chagas Disease (CD) is a neglected zoonotic disease of the Americas. It can be fatal if not diagnosed and treated in its early stages. Using geospatial and sensitivity analysis, this study focuses on understanding how to better allocate resources and educational information to areas in the United States, specifically Texas, that have the potential for increased risk of CD cases and the associated costs of addressing the disease. ICD-9 and 10 inpatient hospital diagnostic codes were used to illustrate the salience of potentially missed CD diagnoses (e.g., cardiomyopathic diagnoses) and where these are occurring with more frequency. Coding software along with GIS and Microsoft Excel 3D mapping were used to generate maps to illustrate where there may be a need for increased statewide surveillance and screening of populations at greater risk for CD. The CD cases reported to the Texas Department of State Healthcare Services (TxDSHS) are not homogenously dispersed throughout the state but rather, reveal that the incidences are in clusters and primarily in urban areas, where there is increased access to physician care, CD research and diagnostic capabilities.
Collapse
Affiliation(s)
- Gerardo J Pacheco
- School of Health Administration, Texas State University, San Marcos, TX, 78666, USA.
| | - Lawrence Fulton
- School of Health Administration, Texas State University, San Marcos, TX, 78666, USA
| | - Jose Betancourt
- School of Health Administration, Texas State University, San Marcos, TX, 78666, USA
| | - Ram Shanmugam
- School of Health Administration, Texas State University, San Marcos, TX, 78666, USA
| | | |
Collapse
|
16
|
Agbata EN, Buitrago-Garcia D, Nunez-Gonzalez S, Hashmi SS, Pottie K, Alonso-Coello P, Arevalo-Rodriguez I. Quality assessment of systematic reviews on international migrant healthcare interventions: a systematic review. J Public Health (Oxf) 2022. [DOI: 10.1007/s10389-020-01390-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
17
|
Ojeda-Pat A, Martin-Gonzalez A, Brito-Loeza C, Ruiz-Piña H, Ruz-Suarez D. Effective residual convolutional neural network for Chagas disease parasite segmentation. Med Biol Eng Comput 2022; 60:1099-1110. [DOI: 10.1007/s11517-022-02537-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 01/17/2022] [Indexed: 10/19/2022]
|
18
|
Dos Santos EF, Silva ÂAO, Freitas NEM, Leony LM, Daltro RT, Santos CADST, de Almeida MDCC, de Araújo FLV, Celedon PAF, Krieger MA, Zanchin NIT, Dos Reis MG, Santos FLN. Performance of Chimeric Trypanosoma cruzi Antigens in Serological Screening for Chagas Disease in Blood Banks. Front Med (Lausanne) 2022; 9:852864. [PMID: 35330587 PMCID: PMC8940225 DOI: 10.3389/fmed.2022.852864] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/02/2022] [Indexed: 01/22/2023] Open
Abstract
Chagas disease (CD) is among the top 10 causes of inability to blood donation. Blood donation centers screen for anti-Trypanosoma cruzi antibodies using highly sensitive immunoenzymatic (ELISA) or chemiluminescent methods, which can lead to false positive results. Since positive samples cannot be used, to avoid the loss of valuable blood donations, it is necessary to improve specificity without reducing the sensitivity of the tests used for blood screening. For this purpose, our group has developed four chimeric proteins (IBMP-8.1, IBMP-8.2, IBMP-8.3, and IBMP-8.4) that have been evaluated in phase I and II studies with high performance and low cross-reactivity rates. The study included a panel of 5,014 serum samples collected from volunteer blood donors at the Hematology and Hemotherapy Foundation of the State of Bahia (Brazil). They were subjected to the detection of anti-T. cruzi antibodies, using all four IBMP antigens individually and latent class analysis (LCA) as a reference test, since there is no gold standard test for this purpose. Considering the sample size analyzed, LCA classified 4,993 (99.6%) samples as T. cruzi-negative and 21 (0.42%) as T. cruzi-positive. Sensitivity values ranged from 85.71% for IBMP-8.1 and 90.48% for IBMP-8.2–95.24% for IBMP-8.3 and 100% for IBMP-8.4, while specificity ranged from 99.98% for IBMP-8.3 and IBMP-8.4–100% for IBMP-8.1 and IBMP-8.2. Accuracy values ranged from 99.4 to 99.98%. The pretest probability for the molecules was 0.42, whereas the positive posttest probability ranged from 95.24 to 99.95% and the negative posttest probability ranged from 0.00001 to 0.0006% for all antigens. The higher odds ratio diagnosis was found for IBMP-8.4, which has been shown to be a safe single antigen for serological screening of CD in blood samples. The use of chimeric IBMP antigens is an alternative to reduce the number of bags discarded due to false-positive results. These molecules have high diagnostic performance and were shown to be suitable for use in screening CD in blood banks, isolated (IBMP-8.4) or in combination; and their use in blood banks could significantly reduce unnecessary disposal of blood bags or the risk of T. cruzi transmission.
Collapse
Affiliation(s)
- Emily Ferreira Dos Santos
- Advanced Health Public Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation - Bahia (FIOCRUZ-BA), Salvador, Brazil
| | - Ângelo Antônio Oliveira Silva
- Advanced Health Public Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation - Bahia (FIOCRUZ-BA), Salvador, Brazil
| | - Natália Erdens Maron Freitas
- Advanced Health Public Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation - Bahia (FIOCRUZ-BA), Salvador, Brazil
| | - Leonardo Maia Leony
- Advanced Health Public Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation - Bahia (FIOCRUZ-BA), Salvador, Brazil
| | - Ramona Tavares Daltro
- Advanced Health Public Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation - Bahia (FIOCRUZ-BA), Salvador, Brazil
| | - Carlos Antônio de Souza Teles Santos
- Center for Integration of Data and Health Knowledge (CIDACS), Gonçalo Moniz Institute, Oswaldo Cruz Foundation - Bahia (FIOCRUZ-BA), Salvador, Brazil
| | | | | | - Paola Alejandra Fiorani Celedon
- Laboratory of Molecular Biology of Trypanosomatids, Carlos Chagas Institute, Oswaldo Cruz Foundation - Paraná (FIOCRUZ-PR), Curitiba, Brazil
| | - Marco Aurélio Krieger
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation - Paraná (FIOCRUZ-PR), Curitiba, Brazil.,Integrated Translational Program in Chagas Disease From Fiocruz (Fio-Chagas), Oswaldo Cruz Foundation - Rio de Janeiro (FIOCRUZ-RJ), Rio de Janeiro, Brazil
| | - Nilson Ivo Tonin Zanchin
- Structural Biology and Protein Engineering, Carlos Chagas Institute, Oswaldo Cruz Foundation - Paraná (FIOCRUZ-PR), Curitiba, Brazil
| | - Mitermayer Galvão Dos Reis
- Integrated Translational Program in Chagas Disease From Fiocruz (Fio-Chagas), Oswaldo Cruz Foundation - Rio de Janeiro (FIOCRUZ-RJ), Rio de Janeiro, Brazil.,Pathology and Molecular Biology Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation - Bahia (FIOCRUZ-BA), Salvador, Brazil.,Faculty of Medicine of Bahia, Federal University of Bahia, Salvador, Brazil.,Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT, United States
| | - Fred Luciano Neves Santos
- Advanced Health Public Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation - Bahia (FIOCRUZ-BA), Salvador, Brazil.,Integrated Translational Program in Chagas Disease From Fiocruz (Fio-Chagas), Oswaldo Cruz Foundation - Rio de Janeiro (FIOCRUZ-RJ), Rio de Janeiro, Brazil
| |
Collapse
|
19
|
Geysillene Castro Matos M, da Silva LP, Wagner Queiroz Almeida-Neto F, Machado Marinho E, Róseo Paula Pessoa Bezerra de Menezes R, Lima Sampaio T, Nunes da Rocha M, Rodrigues Ribeiro L, Paula Magalhaes E, Rodrigues Teixeira AM, Dos Santos HS, Marinho ES, de Lima-Neto P, Costa Martins AM, Monteiro NKV, Machado Marinho M. Quantum mechanical, molecular docking, molecular dynamics, ADMET and antiproliferative activity on Trypanosoma cruzi (Y strain) of chalcone ( E)-1-(2-hydroxy-3,4,6-trimethoxyphenyl)-3-(3-nitrophenyl)prop-2-en-1-one derived from a natural product. Phys Chem Chem Phys 2022; 24:5052-5069. [PMID: 35144275 DOI: 10.1039/d1cp04992e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chagas disease is a leading public health problem. More than 8 million people are affected by the disease, which is endemic in 21 countries in Latin America, generating an average annual cost of 7.2 billion dollars per year. The conventional treatment of Chagas disease is carried out by administering the drug benznidazole (BZN), which has caused numerous adverse reactions. Hence, the search for new, more efficient, and less toxic anti-chagasic agents is essential. Recently, chalcones have been researched to propose new therapies against neglected diseases, mainly Trypanosoma cruzi. The objective of this work was to evaluate for the first time the antiproliferative potential of chalcone derived from the natural product on T. cruzi strain Y. The molecular structure of the chalcone was confirmed by spectrometric data. The toxicity of chalcone in LLC-MK2 cells indicated that a concentration of 514.10 ± 62.40 μM was able to reduce cell viability by 50%. Regarding the effect of chalcone on epimastigote forms, an IC50 value of 46.57 ± 9.81 μM was observed; 45.92 ± 8.42 and 16.32 ± 3.41 μM at times of 24, 48 and 72 hours, respectively. The chalcone was able to eliminate trypomastigote forms at all concentrations tested, except for 31.25 μM, with LC50 values of 117.90 ± 12.60 μM, lower than the reference drug BZN (161.40 ± 31. 80 μM). The mechanism of action may be related to the membrane damage provoked by reduction of the mitochondrial potential. The anti-T. cruzi effect can be assigned through some structural aspects of the chalcone as the nitro group (NO2) is present, which can be enzymatically reduced forming a nitro radical, and the presence of methoxyl groups in the A ring of the chalcone. In silico studies showed that the chalcone had a higher affinity for cruzain when compared to BZN and the co-crystallized inhibitor KB2, as it presented a more thermodynamically stable complex in the order of -6.9 kcal mol-1. The pharmacokinetic prediction showed a significant probability of antiprotozoal activity, a good volume of distribution after being absorbed in the intestine, and a low chance of activity in the central nervous system. Therefore, these results suggest that the chalcone can become a potential cruzain enzyme inhibitor with trypanocidal activity.
Collapse
Affiliation(s)
- Maria Geysillene Castro Matos
- State University of Ceará, Center for Science and Technology, Postgraduate Program in Natural Sciences, Fortaleza, CE, Brazil.
| | - Leonardo Paes da Silva
- Federal University of Ceará, Department of Analytical Chemistry and Physical Chemistry, Campus do Pici, Fortaleza, CE, Brazil
| | | | - Emanuelle Machado Marinho
- Federal University of Ceará, Department of Analytical Chemistry and Physical Chemistry, Campus do Pici, Fortaleza, CE, Brazil
| | | | - Tiago Lima Sampaio
- Federal University of Ceará, Department of Clinical and Toxicological Analysis, Fortaleza, CE, Brazil
| | - Matheus Nunes da Rocha
- State University of Ceará, Faculty of Philosophy Dom Aureliano Matos, Limoeiro do Norte, CE, Brazil
| | - Lyanna Rodrigues Ribeiro
- Federal University of Ceará, Department of Clinical and Toxicological Analysis, Fortaleza, CE, Brazil
| | - Emanuel Paula Magalhaes
- Federal University of Ceará, Department of Clinical and Toxicological Analysis, Fortaleza, CE, Brazil
| | | | - Hélcio Silva Dos Santos
- State University of Ceará, Center for Science and Technology, Postgraduate Program in Natural Sciences, Fortaleza, CE, Brazil. .,State University of Vale do Acaraú, Center for Exact Sciences and Technology, Sobral, CE, Brazil.,Regional University of Cariri, Department of Biological Chemistry, Crato, CE, Brazil
| | - Emmanuel Silva Marinho
- State University of Ceará, Faculty of Philosophy Dom Aureliano Matos, Limoeiro do Norte, CE, Brazil.,Regional University of Cariri, Department of Biological Chemistry, Crato, CE, Brazil
| | - Pedro de Lima-Neto
- Federal University of Ceará, Department of Analytical Chemistry and Physical Chemistry, Campus do Pici, Fortaleza, CE, Brazil
| | - Alice Maria Costa Martins
- Federal University of Ceará, Department of Clinical and Toxicological Analysis, Fortaleza, CE, Brazil
| | - Norberto K V Monteiro
- State University of Ceará, Center for Science and Technology, Postgraduate Program in Natural Sciences, Fortaleza, CE, Brazil.
| | - Márcia Machado Marinho
- Faculty of Education, Science and Letters of Iguatu, State University of Ceará, Iguatu, CE, Brazil
| |
Collapse
|
20
|
The Importance of Screening for Chagas Disease Against the Backdrop of Changing Epidemiology in the USA. CURRENT TROPICAL MEDICINE REPORTS 2022; 9:185-193. [PMID: 36105114 PMCID: PMC9463514 DOI: 10.1007/s40475-022-00264-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2022] [Indexed: 01/11/2023]
Abstract
Purpose of Review This review seeks to identify factors contributing to the changing epidemiology of Chagas disease in the United States of America (US). By showcasing screening programs for Chagas disease that currently exist in endemic and non-endemic settings, we make recommendations for expanding access to Chagas disease diagnosis and care in the US. Recent Findings Several factors including but not limited to increasing migration, climate change, rapid population growth, growing urbanization, changing transportation patterns, and rising poverty are thought to contribute to changes in the epidemiology of Chagas disease in the US. Outlined are some examples of successful screening programs for Chagas disease in other countries as well as in some areas of the US, notably those which focus on screening high-risk populations and are linked to affordable and effective treatment options. Summary Given concerns that Chagas disease prevalence and even risk of transmission may be increasing in the US, there is a need for improving detection and treatment of the disease. There are many successful screening programs in place that can be replicated and/or expanded upon in the US. Specifically, we propose integrating Chagas disease into relevant clinical guidelines, particularly in cardiology and obstetrics/gynecology, and using advocacy as a tool to raise awareness of Chagas disease.
Collapse
|
21
|
Mathison BA, Sapp SGH. An annotated checklist of the eukaryotic parasites of humans, exclusive of fungi and algae. Zookeys 2021; 1069:1-313. [PMID: 34819766 PMCID: PMC8595220 DOI: 10.3897/zookeys.1069.67403] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022] Open
Abstract
The classification of "parasites" in the medical field is a challenging notion, a group which historically has included all eukaryotes exclusive of fungi that invade and derive resources from the human host. Since antiquity, humans have been identifying and documenting parasitic infections, and this collective catalog of parasitic agents has expanded considerably with technology. As our understanding of species boundaries and the use of molecular tools has evolved, so has our concept of the taxonomy of human parasites. Consequently, new species have been recognized while others have been relegated to synonyms. On the other hand, the decline of expertise in classical parasitology and limited curricula have led to a loss of awareness of many rarely encountered species. Here, we provide a comprehensive checklist of all reported eukaryotic organisms (excluding fungi and allied taxa) parasitizing humans resulting in 274 genus-group taxa and 848 species-group taxa. For each species, or genus where indicated, a concise summary of geographic distribution, natural hosts, route of transmission and site within human host, and vectored pathogens are presented. Ubiquitous, human-adapted species as well as very rare, incidental zoonotic organisms are discussed in this annotated checklist. We also provide a list of 79 excluded genera and species that have been previously reported as human parasites but are not believed to be true human parasites or represent misidentifications or taxonomic changes.
Collapse
Affiliation(s)
- Blaine A. Mathison
- Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, UT, USAInstitute for Clinical and Experimental PathologySalt Lake CityUnited States of America
| | - Sarah G. H. Sapp
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USACenters for Disease Control and PreventionAtlantaUnited States of America
| |
Collapse
|
22
|
Pérez-Campos Mayoral L, Hernández-Huerta MT, Papy-García D, Barritault D, Zenteno E, Sánchez Navarro LM, Pérez-Campos Mayoral E, Matias Cervantes CA, Martínez Cruz M, Mayoral Andrade G, López Cervantes M, Vázquez Martínez G, López Sánchez C, Pina Canseco S, Martínez Cruz R, Pérez-Campos E. Immunothrombotic dysregulation in chagas disease and COVID-19: a comparative study of anticoagulation. Mol Cell Biochem 2021; 476:3815-3825. [PMID: 34110554 PMCID: PMC8190527 DOI: 10.1007/s11010-021-04204-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 06/03/2021] [Indexed: 12/27/2022]
Abstract
Chagas and COVID-19 are diseases caused by Trypanosoma cruzi and SARS-CoV-2, respectively. These diseases present very different etiological agents despite showing similarities such as susceptibility/risk factors, pathogen-associated molecular patterns (PAMPs), recognition of glycosaminoglycans, inflammation, vascular leakage hypercoagulability, microthrombosis, and endotheliopathy; all of which suggest, in part, treatments with similar principles. Here, both diseases are compared, focusing mainly on the characteristics related to dysregulated immunothrombosis. Given the in-depth investigation of molecules and mechanisms related to microthrombosis in COVID-19, it is necessary to reconsider a prompt treatment of Chagas disease with oral anticoagulants.
Collapse
Affiliation(s)
- Laura Pérez-Campos Mayoral
- Centro de Investigación Facultad de Medicina UNAM-UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, 68020, México
| | | | | | | | - Edgar Zenteno
- Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, 04360, México
| | | | - Eduardo Pérez-Campos Mayoral
- Centro de Investigación Facultad de Medicina UNAM-UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, 68020, México
| | | | | | - Gabriel Mayoral Andrade
- Centro de Investigación Facultad de Medicina UNAM-UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, 68020, México
| | | | | | - Claudia López Sánchez
- Tecnológico Nacional de México / Instituto Tecnológico de Oaxaca, Oaxaca, 68030, México
| | - Socorro Pina Canseco
- Centro de Investigación Facultad de Medicina UNAM-UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, 68020, México
| | - Ruth Martínez Cruz
- Centro de Investigación Facultad de Medicina UNAM-UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, 68020, México
| | - Eduardo Pérez-Campos
- Tecnológico Nacional de México / Instituto Tecnológico de Oaxaca, Oaxaca, 68030, México.
- Laboratorio de Patología Clínica "Eduardo Pérez Ortega", Oaxaca, 68000, México.
| |
Collapse
|
23
|
Profiro de Oliveira JH, Arruda IES, Izak Ribeiro de Araújo J, Chaves LL, de La Rocca Soares MF, Soares-Sobrinho JL. Why do few drug delivery systems to combat neglected tropical diseases reach the market? An analysis from the technology's stages. Expert Opin Ther Pat 2021; 32:89-114. [PMID: 34424127 DOI: 10.1080/13543776.2021.1970746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Many drugs used to combat schistosomiasis, Chagas disease, and leishmaniasis (SCL) have clinical limitations such as: high toxicity to the liver, kidneys and spleen; reproductive, gastrointestinal, and heart disorders; teratogenicity. In this sense, drug delivery systems (DDSs) have been described in the literature as a viable option for overcoming the limitations of these drugs. An analysis of the level of development (TRL) of patents can help in determine the steps that must be taken for promising technologies to reach the market. AREAS COVERED This study aimed to analyze the stage of development of DDSs for the treatment of SCL described in patents. In addition, we try to understand the main reasons why many DDSs do not reach the market. In this study, we examined DDSs for drugs indicated by WHO and treatment of SCL, by performing a search for patents. EXPERT OPINION In this present work we provide arguments that support the hypothesis that there is a lack of integration between academia and industry to finance and continue research, especially the development of clinical studies. We cite the translational research consortia as the potential alternative for developing DDSs to combat NTDs.
Collapse
Affiliation(s)
| | | | | | - Luise Lopes Chaves
- Department of Pharmacy, Federal University of Pernambuco, Recife, Recife-Pernambuco
| | | | | |
Collapse
|
24
|
Castro-Sesquen YE, Saldaña A, Patino Nava D, Bayangos T, Paulette Evans D, DeToy K, Trevino A, Marcus R, Bern C, Gilman RH, Talaat KR. Use of a Latent Class Analysis in the Diagnosis of Chronic Chagas Disease in the Washington Metropolitan Area. Clin Infect Dis 2021; 72:e303-e310. [PMID: 32766826 DOI: 10.1093/cid/ciaa1101] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The diversity of individuals at risk for Trypanosoma cruzi infection in the United States poses challenges for diagnosis. We evaluated the diagnostic accuracy of Food and Drug Administration (FDA)-cleared tests in the Washington Metropolitan area (WMA). METHODS In total, 1514 individuals were evaluated (1078 from Mexico, Central and northern South America [TcI-predominant areas], and 436 from southern South America [TcII/V/VI-predominant areas]). Optical density (OD) values from the Hemagen EIA and Chagatest v.3 Wiener, and categorical results of the IgG-TESA-blot (Western blot with trypomastigote excretory-secretory antigen), and the Chagas detect plus (CDP), as well as information of area of origin were used to determine T. cruzi serostatus using latent class analysis. RESULTS We detected 2 latent class (LC) of seropositives with low (LC1) and high (LC2) antibody levels. A significantly lower number of seropositives were detected by the Wiener, IgG-TESA-blot, and CDP in LC1 (60.6%, P < .001, 93.1%, P = .014, and 84.9%, P = .002, respectively) as compared to LC2 (100%, 100%, and 98.2%, respectively). LC1 was the main type of seropositives in TcI-predominant areas, representing 65.0% of all seropositives as opposed to 22.8% in TcII/V/VI-predominant areas. The highest sensitivity was observed for the Hemagen (100%, 95% confidence interval [CI]: 96.2-100.0), but this test has a low specificity (90.4%, 95% CI: 88.7-91.9). The best balance between positive (90.9%, 95% CI: 83.5-95.1), and negative (99.9%, 95% CI: 99.4-99.9) predictive values was obtained with the Wiener. CONCLUSIONS Deficiencies in current FDA-cleared assays were observed. Low antibody levels are the main type of seropositives in individuals from TcI-predominant areas, the most frequent immigrant group in the United States.
Collapse
Affiliation(s)
- Yagahira E Castro-Sesquen
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Antonella Saldaña
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Dhayanna Patino Nava
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Tabitha Bayangos
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Diana Paulette Evans
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Kelly DeToy
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Alexia Trevino
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Rachel Marcus
- MedStar Washington Hospital Center, Washington, D.C., USA
| | - Caryn Bern
- Department of Epidemiology and Biostatistics, School of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Robert H Gilman
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Kawsar R Talaat
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | |
Collapse
|
25
|
Hasslocher-Moreno AM, Saraiva RM, Sangenis LH, Xavier SS, de Sousa AS, Costa AR, de Holanda MT, Veloso HH, Mendes FS, Costa FA, Boia MN, Brasil PE, Carneiro FM, da Silva GM, Mediano MF. Benznidazole decreases the risk of chronic Chagas disease progression and cardiovascular events: A long-term follow up study. EClinicalMedicine 2021; 31:100694. [PMID: 33554085 PMCID: PMC7846661 DOI: 10.1016/j.eclinm.2020.100694] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/24/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Chagas disease (CD) remains an important endemic disease in Latin America. However, CD became globalized in recent decades. The majority of the chronically infected individuals did not receive etiologic treatment for several reasons, among them the most conspicuous is the lack of access to diagnosis. The impact of trypanocidal treatment on CD chronic phase, without cardiac involvement (indeterminate form ICF), is yet to be determined. We aimed to evaluate the effect of trypanocidal treatment with benznidazole (BZN) on the rate of progression to Chagas heart disease in patients with ICF. METHODS This is a retrospective cohort observational study including patients with ICF treated with BZN and compared to a group of non-treated patients matched for age, sex, region of origin, and the year of cohort entry. We reviewed the medical charts of all patients followed from May 1987 to June 2020 at the outpatient center of the Evandro Chagas National Institute of Infectious Diseases (INI) of the Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil. Patients' follow-up included at least one annual medical visit and one annual electrocardiogram (ECG). Echocardiographic exams were performed at baseline and during the follow-up. Disease progression from ICF to cardiac form was defined by changes in baseline ECG. Cumulative incidence and the incidence rate were described in the incidence analysis. Cox proportional hazards models were used to estimate hazard ratios and 95% confidence intervals for the association between BZN and CD progression, cardiovascular events or death. FINDINGS One hundred and fourteen treated patients met the study inclusion criteria. A comparison group of 114 non-treated patients matched for age, sex, region of origin, and the year of cohort entry was also included, totalizing 228 patients. Most patients included in the study were male (70.2%), and their mean age was 31.3 (+7.4) years. Over a median follow-up of 15.1 years (ranging from 1.0 to 32.4), the cumulative CD progression incidence in treated patients was 7.9% vs. 21.1% in the non-treated group (p = 0.04) and the CD progression rate was 0.49 per 1.000 patients/year in treated patients vs. 1.10 per 1.000 patients/year for non-treated patients (p = 0.02). BZN treatment was associated with a decreased risk of CD progression in both unadjusted (HR 0.46; 95%CI 0.21 to 0.98) and adjusted (HR 0.43; 95%CI 0.19 to 0.96) models and with a decreased risk of occurrence of the composite of cardiovascular events only in the adjusted (HR 0.15; 95%CI 0.03 to 0.80) model. No association was observed between BZN treatment and mortality. INTERPRETATION In a long-term follow-up, BZN treatment was associated with a decreased incidence of CD progression from ICF to the cardiac form and also with a decreased risk of cardiovascular events. Therefore, our results indicate that BZN treatment for CD patients with ICF should be implemented into clinical practice.
Collapse
Affiliation(s)
- Alejandro M. Hasslocher-Moreno
- Evandro Chagas National Institute of Infectious Disease, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
- Corresponding author.
| | - Roberto M. Saraiva
- Evandro Chagas National Institute of Infectious Disease, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Luiz H.C. Sangenis
- Evandro Chagas National Institute of Infectious Disease, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Sergio S. Xavier
- Evandro Chagas National Institute of Infectious Disease, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Andrea S. de Sousa
- Evandro Chagas National Institute of Infectious Disease, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
- Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Andrea R. Costa
- Evandro Chagas National Institute of Infectious Disease, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Marcelo T. de Holanda
- Evandro Chagas National Institute of Infectious Disease, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Henrique H. Veloso
- Evandro Chagas National Institute of Infectious Disease, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Fernanda S.N.S. Mendes
- Evandro Chagas National Institute of Infectious Disease, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Filipe A.C. Costa
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Marcio N. Boia
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
- Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Pedro E.A.A. Brasil
- Evandro Chagas National Institute of Infectious Disease, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Fernanda M. Carneiro
- Evandro Chagas National Institute of Infectious Disease, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | | | - Mauro F.F. Mediano
- Evandro Chagas National Institute of Infectious Disease, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
26
|
Marcus R, Henao-Martínez AF, Nolan M, Livingston E, Klotz SA, Gilman RH, Miranda-Schaeubinger M, Meymandi S. Recognition and screening for Chagas disease in the USA. Ther Adv Infect Dis 2021; 8:20499361211046086. [PMID: 34589212 PMCID: PMC8474340 DOI: 10.1177/20499361211046086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/24/2021] [Indexed: 12/01/2022] Open
Abstract
Chagas disease (CD), caused by the protozoan Trypanosoma cruzi, is a public health concern, mainly among countries in South and Central America. However, despite the large number of immigrants from endemic countries living in the USA, awareness of CD is poor in the medical community, and therefore it is significantly underdiagnosed. To avoid the catastrophic cardiac complications of CD and to prevent maternal-fetal transmission, widespread educational programs highlighting the need for diagnosis are urgently needed.
Collapse
Affiliation(s)
- Rachel Marcus
- LASOCHA, MedStar Union Memorial Hospital,
Baltimore, MD 21218-2829, USA
| | - Andrés F. Henao-Martínez
- Division of Infectious Diseases, University of
Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Melissa Nolan
- Arnold School of Public Health, University of
South Carolina, Columbia, SC, USA
| | - Elizabeth Livingston
- Department of Obstetrics and Gynecology, Duke
University Medical Center, Durham, NC, USA
| | - Stephen A. Klotz
- Division of Infectious Diseases, University of
Arizona, Tucson, AZ, USA
| | - Robert H. Gilman
- Department of International Health, Johns
Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Sheba Meymandi
- Division of Cardiology, David Geffen School of
Medicine at UCLA, Los Angeles, CA, USA
- Center of Excellence for Chagas Disease, David
Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
27
|
Hypothyroidism impairs the host immune response during the acute phase of Chagas disease. Immunobiology 2020; 225:152024. [PMID: 33227693 DOI: 10.1016/j.imbio.2020.152024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/20/2020] [Accepted: 10/18/2020] [Indexed: 11/24/2022]
Abstract
Diseases associated with thyroid hypofunction have been the subject of studies in infectious models, since several authors have demonstrated a pivotal role of iodinated hormones (thyroxine and triiodothyronine) in the modulation of immune effector responses. Using a model of hypothyroidism induced by anti-thyroid drug, we investigated the influence of hypothyroidism in the course of acute Trypanosoma cruzi infection. For this, male Hannover Wistar rats were challenged with methimazole for 21 days (0.02% in drinking water), and water for control counterparts. After confirmation of the hypothyroidism, rats were intraperitoneally challenged with 1x105 blood trypomastigotes of the Y strain of T. cruzi. Our findings suggest that hypothyroidism impairs animal weight gain, but does not affect the health of essential organs. Interestingly, infected hypothyroid animals had a significant increase in thymic cell death, with consequent drop in lymphocyte frequency in whole blood (evaluated on the 11th day of infection). Analyzing the percentage of immune cells in the spleen, we found a strong influence of hypothyroidism as a negative regulator of B cells, and antigenic ability of macrophages (RT1b expression) in the course of the experimental chagasic infection. Enhanced serum IL-17A concentration was induced by T. cruzi infection, but hypothyroidism impaired the production of this mediator as seen in infected hypothyroid animals. Taken together, our work suggests for the first time that hypothyroidism may adversely interfere with the modulation of effective immunity in the early phase of Chagas' disease.
Collapse
|
28
|
Altamiranda-Saavedra M, Osorio-Olvera L, Yáñez-Arenas C, Marín-Ortiz JC, Parra-Henao G. Geographic abundance patterns explained by niche centrality hypothesis in two Chagas disease vectors in Latin America. PLoS One 2020; 15:e0241710. [PMID: 33147272 PMCID: PMC7641389 DOI: 10.1371/journal.pone.0241710] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 10/19/2020] [Indexed: 11/18/2022] Open
Abstract
Ecoepidemiological scenarios for Chagas disease transmission are complex, so vector control measures to decrease human–vector contact and prevent infection transmission are difficult to implement in all geographic contexts. This study assessed the geographic abundance patterns of two vector species of Chagas disease: Triatoma maculata (Erichson, 1848) and Rhodnius pallescens (Barber, 1932) in Latin America. We modeled their potential distribution using the maximum entropy algorithm implemented in Maxent and calculated distances to their niche centroid by fitting a minimum-volume ellipsoid. In addition, to determine which method would accurately explain geographic abundance patterns, we compared the correlation between population abundance and the distance to the ecological niche centroid (DNC) and between population abundance and Maxent environmental suitability. The potential distribution estimated for T. maculata showed that environmental suitability covers a large area, from Panama to Northern Brazil. R. pallescens showed a more restricted potential distribution, with environmental suitability covering mostly the coastal zone of Costa Rica and some areas in Nicaragua, Honduras, Belize and the Yucatán Peninsula in Mexico, northern Colombia, Acre, and Rondônia states in Brazil, as well as a small region of the western Brazilian Amazon. We found a negative slope in the relationship between population abundance and the DNC in both species. R. pallecens has a more extensive potential latitudinal range than previously reported, and the distribution model for T. maculata corroborates previous studies. In addition, population abundance increases according to the niche centroid proximity, indicating that population abundance is limited by the set of scenopoetic variables at coarser scales (non-interactive variables) used to determine the ecological niche. These findings might be used by public health agencies in Latin America to implement actions and support programs for disease prevention and vector control, identifying areas in which to expand entomological surveillance and maintain chemical control, in order to decrease human–vector contact.
Collapse
Affiliation(s)
- Mariano Altamiranda-Saavedra
- Centro de Investigación en Salud para el Trópico (CIST), Universidad Cooperativa de Colombia, Santa Marta, Colombia
- Politécnico Colombiano Jaime Isaza Cadavid, Medellín, Antioquia, Colombia
- * E-mail:
| | - Luis Osorio-Olvera
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Carlos Yáñez-Arenas
- Laboratorio de Ecología Geográfica, Unidad de Conservación de la Biodiversidad, UMDI-Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Juan Carlos Marín-Ortiz
- Departamento de Ciencias Agrarias, Universidad Nacional de Colombia, Facultad de Ciencias Agrarias, Medellín, Colombia
| | - Gabriel Parra-Henao
- Centro de Investigación en Salud para el Trópico (CIST), Universidad Cooperativa de Colombia, Santa Marta, Colombia
- National Health Institute (Instituto Nacional de Salud), Bogotá, Colombia
| |
Collapse
|
29
|
Longoni SS, Pomari E, Antonelli A, Formenti F, Silva R, Tais S, Scarso S, Rossolini GM, Angheben A, Perandin F. Performance Evaluation of a Commercial Real-Time PCR Assay and of an In-House Real-Time PCR for Trypanosoma cruzi DNA Detection in a Tropical Medicine Reference Center, Northern Italy. Microorganisms 2020; 8:E1692. [PMID: 33143253 PMCID: PMC7692395 DOI: 10.3390/microorganisms8111692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 02/01/2023] Open
Abstract
Chagas disease, a neglected protozoal disease endemic in Latin America, is also currently considered an emerging threat in nonendemic areas because of population movements. The detection of Trypanosoma cruzi DNA is increasingly being considered as important evidence to support Chagas disease diagnoses. However, further performance evaluation of molecular assays is useful for a standardization of strategy considering the whole process in routine diagnosis, especially for the different settings such as endemic and nonendemic countries. Seventy-five samples were collected from subjects screened for Chagas disease in Italy. The DNA was isolated from blood using automated extraction. We evaluated the performance of the commercial RealCycler® CHAG kit (pmPCR) based on satellite DNA (SatDNA) and of an in-house real-time PCR (ihPCR) targeting Sat and kinetoplast (k) DNAs, using the concordance of two serology assays as a reference standard. The sensitivity of kDNA and SatDNA tests by ihPCR and SatDNA by pmPCR were 14.29% (95% confidence interval (CI) 6.38 to 26.22), 7.14% (95% CI 1.98 to 17.29), and 7.14% (95% CI 1.98 to 17.29), respectively. Specificity was 100% for all PCR assays and targets. Overall, our results suggest that the preferred approach for clinical laboratories is to combine the kDNA and SatDNA as targets in order to minimize false-negative results increasing sensitivity.
Collapse
Affiliation(s)
- Silvia Stefania Longoni
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS SacroCuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy; (E.P.); (F.F.); (R.S.); (S.T.); (S.S.); (A.A.); (F.P.)
| | - Elena Pomari
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS SacroCuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy; (E.P.); (F.F.); (R.S.); (S.T.); (S.S.); (A.A.); (F.P.)
| | - Alberto Antonelli
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (A.A.); (G.M.R.)
- Microbiology and Virology Unit, Careggi University Hospital, 50134 Florence, Italy
| | - Fabio Formenti
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS SacroCuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy; (E.P.); (F.F.); (R.S.); (S.T.); (S.S.); (A.A.); (F.P.)
| | - Ronaldo Silva
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS SacroCuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy; (E.P.); (F.F.); (R.S.); (S.T.); (S.S.); (A.A.); (F.P.)
| | - Stefano Tais
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS SacroCuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy; (E.P.); (F.F.); (R.S.); (S.T.); (S.S.); (A.A.); (F.P.)
| | - Salvatore Scarso
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS SacroCuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy; (E.P.); (F.F.); (R.S.); (S.T.); (S.S.); (A.A.); (F.P.)
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (A.A.); (G.M.R.)
- Microbiology and Virology Unit, Careggi University Hospital, 50134 Florence, Italy
| | - Andrea Angheben
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS SacroCuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy; (E.P.); (F.F.); (R.S.); (S.T.); (S.S.); (A.A.); (F.P.)
| | - Francesca Perandin
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS SacroCuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy; (E.P.); (F.F.); (R.S.); (S.T.); (S.S.); (A.A.); (F.P.)
| |
Collapse
|
30
|
Kahaleh M, Tyberg A, Suresh S, Lambroza A, Gaidhane M, Zamarripa F, Martínez GM, Carames JC, Moura ET, Farias GF, Porfilio MG, Nieto J, Rey M, Rodriguez Casas F, Mondragón Hernández OV, Vargas-Rubio R, Canadas R, Hani A, Munoz G, Castillo B, Lukashok HP, Robles-Medranda C, de Moura EG. How does per-oral endoscopic myotomy compare to Heller myotomy? The Latin American perspective. Endosc Int Open 2020; 8:E1392-E1397. [PMID: 33015342 PMCID: PMC7508649 DOI: 10.1055/a-1223-1521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 06/12/2020] [Indexed: 12/12/2022] Open
Abstract
Background and study aims Both Heller myotomy (HM) and per-oral endoscopic myotomy (POEM) are efficacious therapies for achalasia. The efficacy and safety of POEM vs HM in Latin America and specifically in patients with Chagas disease is unknown. Patients and methods Consecutive patients undergoing either HM or POEM for achalasia were included from nine Latin American centers in a prospective registry over 5 years. Technical success was defined as undergoing a successful myotomy. Clinical success was defined as achieving an Eckardt score < 3. Data on demographics, procedure info, Eckardt score, and adverse events (AEs) were collected. Student's t test, Chi squared, and logistic regression analyses were conducted. Results One hundred thirty-three patients were included (59 male; 44 %; mean age 47). POEM was performed in 69 patients, HM in 64 patients. A total of 35 patients had Chagas disease, 17 of 69 in the POEM group, 18 of 64 in the HM group. Both groups had significant reduction in Eckardt scores ( P < 0.00001), but successful initial therapy was significantly higher in the POEM group compared to the HM group ( P = 0.01304). AEs were similar in both group (17 % vs 14 %) and consisted of pneumothorax (n = 3 vs 2), bleeding requiring transfusion (n = 3 vs 2), and mediastinitis (n = 3 vs 1). Hospital stay was longer in the HM group than in the POEM group ( P < 0.00001). In the Chagas subgroup, post-procedure Eckardt score in the POEM group was significantly reduced by 5.71 points ( P < 0.00001) versus 1.56 points in the HM group ( P = 0.042793). Conclusion Both HM and POEM are efficacious for achalasia, but POEM was associated with higher initial therapy success and shorter hospital stay in Latin America. In Chagas patients with achalasia, POEM was significantly more effective than HM.
Collapse
Affiliation(s)
- Michel Kahaleh
- Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States
| | - Amy Tyberg
- Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States
| | - Supriya Suresh
- Weill Cornell Medical School, New York, New York, United States
| | - Arnon Lambroza
- Weill Cornell Medical School, New York, New York, United States
| | - Monica Gaidhane
- Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States
| | | | | | | | | | | | | | - Jose Nieto
- Borland-Groover, Jacksonville, Florida, United States
| | - Mario Rey
- La Policia Hospital, Bogota, Colombia
| | | | | | | | - Raul Canadas
- San Ignacio University Hospital, Bogota, Colombia
| | - Albis Hani
- San Ignacio University Hospital, Bogota, Colombia
| | - Guillermo Munoz
- Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States
| | | | | | | | | |
Collapse
|
31
|
Ikedionwu C, Dongarwar D, Kaur M, Nunez L, Awazi A, Mallet J, Kennedy K, Cano M, Dike C, Okwudi J, Stewart J, Igwegbe D, Estes FG, Spooner KK, Salemi JL, Salihu HM, Olaleye OA. Trends and associated characteristics for Chagas disease among women of reproductive age in the United States, 2002 to 2017. Parasite Epidemiol Control 2020; 11:e00167. [PMID: 32743081 PMCID: PMC7388767 DOI: 10.1016/j.parepi.2020.e00167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 11/24/2022] Open
Abstract
Background American trypanosomiasis, commonly referred to as Chagas disease, is caused by a single cell protozoan known as Trypanosoma cruzi (T. cruzi). Although those affected are mainly in Latin America, Chagas has been detected in the United States (US), Canada and in many European countries due to migration. Few studies have explored the epidemiology of Chagas within the US or changes in disease burden over the past decade. The objective of this study was to explore the trends and associated characteristics for Chagas disease among hospitalized women of reproductive age in the US. Methods We analyzed admissions data including socio-demographic and hospital characteristics for inpatient hospitalization for women of reproductive age (15-49 years) in the US from 2002 through 2017. We employed Joinpoint regression analysis to determine trends in the prevalence of Chagas disease over this period. Results A total of 487 hospitalizations of Chagas disease were identified, corresponding to 3.7 per million hospitalizations over the study period. The rate statistically increased from 1.6 per million in 2002 to 7.6 per million hospitalizations in 2017. Chagas was most prevalent among older women, Hispanics and those in the highest zip income bracket. The in-hospital mortality rate was about 10 times greater among women with Chagas compared to those without the condition (3.1% versus 0.3%), and the condition tended to be clustered in women treated at large, urban teaching hospitals in the Northeastern region of the US. Conclusion Chagas disease diagnosis appears to be increasing among hospitalized women of reproductive age in the US with a 10-fold elevated risk of mortality.
Collapse
Affiliation(s)
- Chioma Ikedionwu
- Center of Excellence in Health Equity, Training, and Research, Baylor College of Medicine, Houston, TX, USA
| | - Deepa Dongarwar
- Center of Excellence in Health Equity, Training, and Research, Baylor College of Medicine, Houston, TX, USA
| | - Manvir Kaur
- College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA
| | - Lisa Nunez
- College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA
| | - Annabella Awazi
- College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA
| | - Jere' Mallet
- College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA
| | - KaShena Kennedy
- College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA
| | - Michelle Cano
- College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA
| | - Chinwe Dike
- College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA
| | - Jessica Okwudi
- College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA
| | - Justice Stewart
- College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA
| | - David Igwegbe
- College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA
| | - Flora G Estes
- College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA
| | - Kiara K Spooner
- Department of Family and Community Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jason L Salemi
- Department of Family and Community Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Hamisu M Salihu
- Center of Excellence in Health Equity, Training, and Research, Baylor College of Medicine, Houston, TX, USA.,Department of Family and Community Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Omonike A Olaleye
- College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA
| |
Collapse
|
32
|
Acute Chagas disease in Brazil from 2001 to 2018: A nationwide spatiotemporal analysis. PLoS Negl Trop Dis 2020; 14:e0008445. [PMID: 32745113 PMCID: PMC7425982 DOI: 10.1371/journal.pntd.0008445] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 08/13/2020] [Accepted: 06/02/2020] [Indexed: 12/31/2022] Open
Abstract
Background In Brazil, acute Chagas disease (ACD) surveillance involves mandatory notification, which allows for population-based epidemiological studies. We conducted a nationwide population-based ecological analysis of the spatiotemporal patterns of ACD notifications in Brazil using secondary surveillance data obtained from the Notifiable Diseases Information System (SINAN) maintained by Brazilian Ministry of Health. Methodology/Principal findings In this nationwide population-based ecological all cases of ACD reported in Brazil between 2001 and 2018 were included. Epidemiological characteristics and time trends were analyzed through joinpoint regression models and spatial distribution using microregions as the unit of analysis. A total of 5,184 cases of ACD were recorded during the period under study. The annual incidence rate in Brazil was 0.16 per 100,000 inhabitants/year. Three statistically significant changes in time trends were identified: a rapid increase prior to 2005 (Period 1), a stable drop from 2005 to 2009 (Period 2), followed by another increasing trend after 2009 (Period 3). Higher frequencies were noted in males and females in the North (all three periods) and in females in Northeast (Periods 1 and 2) macroregions, as well as in individuals aged between 20–64 years in the Northeast, and children, adolescents and the elderly in the North macroregion. Vectorial transmission was the main route reported during Period 1, while oral transmission was found to increase significantly in the North during the other periods. Spatiotemporal distribution was heterogeneous in Brazil over time. Despite regional differences, over time cases of ACD decreased significantly nationwide. An increasing trend was noted in the North (especially after 2007), and significant decreases occurred after 2008 among all microregions other than those in the North, especially those in the Northeast and Central-West macroregions. Conclusions/Significance In light of the newly identified epidemiological profile of CD transmission in Brazil, we emphasize the need for strategically integrated entomological and health surveillance actions. Chagas disease (CD) infection is a debilitating and neglected disease that occurs in 21 Latin America countries. CD has two distinct phases: acute and chronic. The generally asymptomatic acute phase begins shortly after infection and can last up to four months. When symptoms do appear, they are typically mild and unspecific. Following this phase, infected individuals evolve to a long-lasting chronic phase, which can be either symptomatic or asymptomatic. In Brazil, only acute cases are mandatorily notifiable in the Brazilian Notifiable Diseases Information System (Brazilian Ministry of Health). Most chronic cases are unknown and untreated. Considering that epidemiological data related to ACD is publicly available, we have analyzed the spatiotemporal distribution of notified cases of ACD and evaluated relevant epidemiological indicators throughout Brazil from 2001 to 2018. The data present here may contribute to surveillance actions designed at preventing new CD cases. We observed 5,184 cases of ACD during the period under study. The annual incidence rate in Brazil was 0.16 per 100,000 inhabitants/year. Three distinct epidemiological periods were identified: a rapid increase prior to 2005 (Period 1), a stable drop from 2005 to 2009 (Period 2), followed by another increasing trend after 2009 (Period 3). Vectorial transmission was the main route reported during Period 1, while oral transmission was found to increase significantly in the North during the other periods. Despite regional differences, over time cases of ACD decreased significantly nationwide. An increasing trend was noted in the North (especially after 2007). In light of the newly identified epidemiological profile of CD transmission in Brazil, we emphasize the need for strategically integrated entomological and health surveillance actions.
Collapse
|
33
|
Carmo RLD, Alves Simão AK, Amaral LLFD, Inada BSY, Silveira CF, Campos CMDS, Freitas LF, Bonadio V, Marussi VHR. Neuroimaging of Emergent and Reemergent Infections. Radiographics 2020; 39:1649-1671. [PMID: 31589575 DOI: 10.1148/rg.2019190020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Infectious diseases emerge and reemerge over the years, and many of them can cause neurologic disease. Several factors contribute to the emergence and reemergence of these conditions, including human population growth, an increase in international travel, the geographic expansion of recognized pathogens to areas where they were previously nonendemic, and greater contact with wild animal reservoirs. The antivaccination social movement has played an important role in the reemergence of infectious diseases, especially some viral conditions. The authors review different viral (arboviruses such as dengue, chikungunya, and Zika virus; enterovirus 71; measles; and influenza), bacterial (syphilis, Lyme disease, and listeriosis), and parasitic (Chagas disease) diseases, focusing primarily on their neurologic complications. Although there are several additional infectious diseases with central nervous system manifestations that could be classified as emergent or reemergent, those listed here are the most relevant from an epidemiologic standpoint and are representative of important public health issues on all continents. The infections caused by these pathogens often show a variety of neuroimaging patterns that can be identified at CT and MRI, and radiology is central to the diagnosis and follow-up of such conditions. Given the increasing relevance of emerging and reemerging infections in clinical practice and public health scenarios, radiologists should be familiar with these infections. Online supplemental material is available for this article. ©RSNA, 2019.
Collapse
Affiliation(s)
- Rafael Lourenço do Carmo
- From the Department of Neuroradiology, A Beneficência Portuguesa de São Paulo, R. Maestro Cardim 769, São Paulo, SP 01323-001, Brazil
| | - Aylla Keiner Alves Simão
- From the Department of Neuroradiology, A Beneficência Portuguesa de São Paulo, R. Maestro Cardim 769, São Paulo, SP 01323-001, Brazil
| | - Lázaro Luís Faria do Amaral
- From the Department of Neuroradiology, A Beneficência Portuguesa de São Paulo, R. Maestro Cardim 769, São Paulo, SP 01323-001, Brazil
| | - Bruno Shigueo Yonekura Inada
- From the Department of Neuroradiology, A Beneficência Portuguesa de São Paulo, R. Maestro Cardim 769, São Paulo, SP 01323-001, Brazil
| | - Camila Filardi Silveira
- From the Department of Neuroradiology, A Beneficência Portuguesa de São Paulo, R. Maestro Cardim 769, São Paulo, SP 01323-001, Brazil
| | | | - Leonardo Furtado Freitas
- From the Department of Neuroradiology, A Beneficência Portuguesa de São Paulo, R. Maestro Cardim 769, São Paulo, SP 01323-001, Brazil
| | - Victor Bonadio
- From the Department of Neuroradiology, A Beneficência Portuguesa de São Paulo, R. Maestro Cardim 769, São Paulo, SP 01323-001, Brazil
| | - Victor Hugo Rocha Marussi
- From the Department of Neuroradiology, A Beneficência Portuguesa de São Paulo, R. Maestro Cardim 769, São Paulo, SP 01323-001, Brazil
| |
Collapse
|
34
|
Chagas cardiomyopathy and heart failure: From epidemiology to treatment. Rev Port Cardiol 2020; 39:279-289. [PMID: 32532535 DOI: 10.1016/j.repc.2019.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/10/2019] [Accepted: 12/01/2019] [Indexed: 12/28/2022] Open
Abstract
Chagas disease is among the neglected tropical diseases recognized by the World Health Organization that have received insufficient attention from governments and health agencies. Chagas disease is endemic in 21 Latin America regions. Due to globalization and increased migration, it has crossed borders and reached other regions including North America and Europe. The clinical presentation of the disease is highly variable, from general symptoms to severe cardiac involvement that can culminate in heart failure. Chagas heart disease is multifactorial, and can include dilated cardiomyopathy, thromboembolic phenomena, and arrhythmias that may lead to sudden death. Diagnosis is by methods such as enzyme-linked immunosorbent assay (ELISA) and the degree of cardiac involvement should be investigated with complementary exams including ECG, chest radiography and electrophysiological study. There have been insufficient studies on which to base specific treatment for heart failure due to Chagas disease. Treatment should therefore be derived from guidelines for heart failure that are not specific for this disease. Heart transplantation is a viable option with satisfactory success rates that has improved survival.
Collapse
|
35
|
Santos É, Menezes Falcão L. Chagas cardiomyopathy and heart failure: From epidemiology to treatment. REVISTA PORTUGUESA DE CARDIOLOGIA (ENGLISH EDITION) 2020. [DOI: 10.1016/j.repce.2020.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
36
|
Kruse CS, Guerra DA, Gelillo-Smith R, Vargas A, Krishnan L, Stigler-Granados P. Leveraging Technology to Manage Chagas Disease by Tracking Domestic and Sylvatic Animal Hosts as Sentinels: A Systematic Review. Am J Trop Med Hyg 2020; 101:1126-1134. [PMID: 31549619 PMCID: PMC6838565 DOI: 10.4269/ajtmh.19-0050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Surveillance of Chagas in the United States show more is known about prevalence in animals and vectors than in humans. Leveraging health information technology (HIT) may augment surveillance efforts for Chagas disease (CD), given its ability to disseminate information through health information exchanges (HIE) and geographical information systems (GISs). This systematic review seeks to determine whether technological tracking of Trypanosoma cruzi–infected domestic and/or sylvatic animals as sentinels can serve as a potential surveillance resource to manage CD in the southern United States. A Boolean search string was used in PubMed and the Cumulative Index to Nursing and Allied Health Literature (CINAHL). Relevance of results was established and analysis of articles was performed by multiple reviewers. The overall Cohen statistic was 0.73, demonstrating moderate agreement among the study team. Four major themes were derived for this systematic review (n = 41): animals act as reservoir hosts to perpetuate CD, transmission to humans could be dependent on cohabitation proximity, variations in T. cruzi genotypes could lead to different clinical manifestations, and leveraging technology to track T. cruzi in domestic animals could reveal prevalent areas or “danger zones.” Overall, our systematic review identified that HIT can serve as a surveillance tool to manage CD. Health information technology can serve as a surveillance tool to manage CD. This can be accomplished by tracking domestic and/or sylvatic animals as sentinels within a GIS. Information can be disseminated through HIE for use by clinicians and public health officials to reach at-risk populations.
Collapse
|
37
|
Herrick JA, Nordstrom M, Maloney P, Rodriguez M, Naceanceno K, Gallo G, Mejia R, Hershow R. Parasitic infections represent a significant health threat among recent immigrants in Chicago. Parasitol Res 2020; 119:1139-1148. [PMID: 32008064 PMCID: PMC7075846 DOI: 10.1007/s00436-020-06608-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/14/2020] [Indexed: 12/19/2022]
Abstract
Parasitic infections are likely under-recognized among immigrant populations in the USA. We conducted a cross-sectional study to evaluate if such infections have health impacts among recent immigrants in Chicago and to identify predictive factors for parasitic infections. A total of 133 recent immigrants were enrolled, filling out a standardized medical questionnaire and providing blood and stool samples. Appriximately 12% of subjects (15/125) who provided a blood or stool sample for testing were found to have evidence of current or prior infection with a pathogenic parasite, of which Toxocara spp. (8 subjects, 6.4%) and Strongyloides stercoralis (5 subjects, 4%) were most commonly identified. Parasitic infection was more likely among subjects who had immigrated within the previous 2 years and those with a self-reported history of worms in the stool. The most useful surrogate markers identified for parasitic infections were an elevated immunoglobulin E level (seen in 46.7% (7/15) of subjects with parasitic infections and 20% (22/110) of uninfected individuals, p = 0.04) and the presence of Blastocystis hominis cysts on Ova & Parasite exam (detected in 38.5% (5/13) of subjects with parasitic infections who provided a stool sample and 5.1% (5/98) of uninfected subjects, p = 0.002). Our study found that parasitic infections may be common in recent US immigrants, which highlights an important health disparity among a vulnerable population that merits further study. Additionally, clinical risk factors, symptoms, and laboratory findings traditionally thought to be associated with parasites were commonly found but not predictive of infection in this study population.
Collapse
Affiliation(s)
- Jesica A. Herrick
- Department of Medicine, Division of Infectious Diseases, Immunology, and International Medicine, University of Illinois at Chicago, 808 South Wood, M/C 735, Chicago, IL 60612 USA
| | - Monica Nordstrom
- University of Illinois at Chicago School of Public Health, Chicago, IL USA
| | - Patrick Maloney
- University of Illinois at Chicago School of Public Health, Chicago, IL USA
| | - Miguel Rodriguez
- University of Illinois at Chicago School of Public Health, Chicago, IL USA
| | - Kevin Naceanceno
- Department of Medicine, Section of Infectious Diseases, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX USA
| | - Gloria Gallo
- Department of Medicine, Section of Infectious Diseases, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX USA
- Science and Technology Institute, Federal University of São Paulo, São José dos Campos, São Paulo, Brazil
| | - Rojelio Mejia
- Department of Medicine, Section of Infectious Diseases, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX USA
| | - Ron Hershow
- Department of Medicine, Division of Infectious Diseases, Immunology, and International Medicine, University of Illinois at Chicago, 808 South Wood, M/C 735, Chicago, IL 60612 USA
- University of Illinois at Chicago School of Public Health, Chicago, IL USA
| |
Collapse
|
38
|
Losada Galván I, Madrid Pascual O, Herrero-Martínez JM, Pérez-Ayala A, Lizasoain Hernández M. Does Progressive Introduction of Benznidazole Reduce the Chance of Adverse Events in the Treatment of Chagas Disease? Am J Trop Med Hyg 2020; 100:1477-1481. [PMID: 30938285 DOI: 10.4269/ajtmh.18-0638] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In this retrospective cohort study, we aimed to assess whether introducing benznidazole at escalating doses reduces the probability of adverse events or treatment discontinuation compared with a full-dose scheme. We collected data from patients who had chronic Trypanosoma cruzi infection and underwent treatment from July 2008 to January 2017 in a referral center in Madrid. Dose was adjusted to body weight (5 mg/kg/day), with treatment introduction with full dose or escalating dose according to local consensus and protocols. Among the 62 patients treated, benznidazole was introduced at full dose in 28 patients and on escalating dose in the remaining 34. We found no statistical differences in the number of adverse events, treatment discontinuations, days of treatment, or sociodemographic profiles. There is insufficient evidence to support escalating dose as a strategy for reducing the adverse effects of benznidazole. Further research is needed to evaluate this approach.
Collapse
Affiliation(s)
- Irene Losada Galván
- Internal Medicine Department, Hospital Universitario 12 de Octubre, Madrid, Spain.,Tropical Medicine and International Health, ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Olaya Madrid Pascual
- Internal Medicine Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | - Ana Pérez-Ayala
- Microbiology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | |
Collapse
|
39
|
Allen V, Longley N, Galloway JB, Bechman K. The immunosuppressed traveler: infection risks with autoimmunity and immunosuppression, vaccinations, and general travel advice. HANDBOOK OF SYSTEMIC AUTOIMMUNE DISEASES 2020. [PMCID: PMC7151825 DOI: 10.1016/b978-0-444-64217-2.00006-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The travel-related infection risks in the significantly immunocompromised traveler are complex and comprise vaccine preventable, vector-borne, and other nonvaccine preventable infections. A thorough risk assessment should be performed before travel and advice sought from relevant specialists. Immunosuppression used to treat autoimmune diseases and their mechanisms of action need particular consideration.This risk assessment needs to take the patient's beliefs and preferences into account. It is also important not to neglect noninfectious travel considerations.
Collapse
Affiliation(s)
- Victoria Allen
- Department of Infection, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
| | - Nicky Longley
- Consultant in Infectious Diseases and Travel Medicine at The Hospital For Tropical Diseases, London, United Kingdom
- Associate Professor at The London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - James B. Galloway
- MRC Clinical Research Training Fellow, Centre for Rheumatic Disease, Kings College London, London, United Kingdom
- Corresponding Author: E-mail:
| | - Katie Bechman
- MRC Clinical Research Training Fellow, Centre for Rheumatic Disease, Kings College London, London, United Kingdom
| |
Collapse
|
40
|
Monteiro M, Lechuga G, Lara L, Souto B, Viganó M, Bourguignon S, Calvet C, Oliveira F, Alves C, Souza-Silva F, Santos M, Pereira M. Synthesis, structure-activity relationship and trypanocidal activity of pyrazole-imidazoline and new pyrazole-tetrahydropyrimidine hybrids as promising chemotherapeutic agents for Chagas disease. Eur J Med Chem 2019; 182:111610. [DOI: 10.1016/j.ejmech.2019.111610] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 10/26/2022]
|
41
|
Santos FLN, Campos ACP, Amorim LDAF, Silva ED, Zanchin NIT, Celedon PAF, Del-Rei RP, Krieger MA, Gomes YM. Highly Accurate Chimeric Proteins for the Serological Diagnosis of Chronic Chagas Disease: A Latent Class Analysis. Am J Trop Med Hyg 2019; 99:1174-1179. [PMID: 30226130 PMCID: PMC6221211 DOI: 10.4269/ajtmh.17-0727] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The existence of an imperfect reference standard presents complications when evaluating the unbiased performance of novel diagnostic techniques. This is especially true in the absence of a gold standard, as is the case in chronic Chagas disease (CD) diagnosis. To circumvent this constraint, we elected to use latent class analysis (LCA). Previously, our group demonstrated the high performance of four Trypanosoma cruzi–chimeric proteins (Molecular Biology Institute of Paraná [IBMP]-8.1, -8.2, -8.3, and -8.4) for CD diagnosis using several distinct immunoassays. Although commercial tests had previously been established as a reference standard, the diagnostic performance of these chimeric antigens could present bias because these tests fail to produce 100% accurate results. Thus, we used LCA to assess the performance of these IBMP chimeric antigens in chronic CD diagnosis. Using the LCA model as a gold standard, sensitivity and specificity values ranged from 93.5% to 99.4% and 99.6% to 100%, respectively. The accuracy values were 96.2% for IBMP-8.2, approximately 98% for IBMP-8.1 and IBMP-8.3, and nearly 100% for IBMP-8.4. For IBMP-8.1 and IBMP-8.2, higher positive predictive values were associated with increases in hypothetical prevalence. Similarly, higher hypothetical prevalence resulted in lower negative predictive values for IBMP-8.1, IBMP-8.2, and IBMP-8.3. In addition, samples with serodiscordant results from commercial serological tests were analyzed using LCA. Molecular Biology Institute of Paraná -8.1 demonstrated potential for use in confirmatory testing with regard to samples with inconsistent results. Moreover, our findings further confirmed the remarkable performance of the IBMP-8.4 antigen to diagnose chronic CD in both endemic and non-endemic areas.
Collapse
Affiliation(s)
- Fred Luciano Neves Santos
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation-Bahia, Salvador, Brazil.,Fio-Chagas, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Ana Clara Paixão Campos
- Department of Statistics, Institute of Mathematics and Statistics, Federal University of Bahia, Salvador, Brazil
| | | | - Edimilson Domingos Silva
- Institute of Technology in Immunobiologicals, Bio-Manguinhos, Oswaldo Cruz Foundation-Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | - Marco Aurélio Krieger
- Molecular Biology Institute of Paraná (IBMP), Curitiba, Brazil.,Carlos Chagas Institute, Oswaldo Cruz Foundation-Paraná, Curitiba, Brazil.,Fio-Chagas, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Yara Miranda Gomes
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation-Pernambuco, Recife, Brazil.,Fio-Chagas, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
42
|
Zmuda F, Sastry L, Shepherd SM, Jones D, Scott A, Craggs PD, Cortes A, Gray DW, Torrie LS, De Rycker M. Identification of Novel Trypanosoma cruzi Proteasome Inhibitors Using a Luminescence-Based High-Throughput Screening Assay. Antimicrob Agents Chemother 2019; 63:e00309-19. [PMID: 31307977 PMCID: PMC6709497 DOI: 10.1128/aac.00309-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/05/2019] [Indexed: 11/20/2022] Open
Abstract
Chagas' disease, caused by the protozoan parasite Trypanosoma cruzi, is a potentially life-threatening condition that has become a global issue. Current treatment is limited to two medicines that require prolonged dosing and are associated with multiple side effects, which often lead to treatment discontinuation and failure. One way to address these shortcomings is through target-based drug discovery on validated T. cruzi protein targets. One such target is the proteasome, which plays a crucial role in protein degradation and turnover through chymotrypsin-, trypsin-, and caspase-like catalytic activities. In order to initiate a proteasome drug discovery program, we isolated proteasomes from T. cruzi epimastigotes and characterized their activity using a commercially available glow-like luminescence-based assay. We developed a high-throughput biochemical assay for the chymotrypsin-like activity of the T. cruzi proteasome, which was found to be sensitive, specific, and robust but prone to luminescence technology interference. To mitigate this, we also developed a counterscreen assay that identifies potential interferers at the levels of both the luciferase enzyme reporter and the mechanism responsible for a glow-like response. Interestingly, we also found that the peptide substrate for chymotrypsin-like proteasome activity was not specific and was likely partially turned over by other catalytic sites of the protein. Finally, we utilized these biochemical tools to screen 18,098 compounds, exploring diverse drug-like chemical space, which allowed us to identify 39 hits that were active in the primary screening assay and inactive in the counterscreen assay.
Collapse
Affiliation(s)
- Filip Zmuda
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Lalitha Sastry
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Sharon M Shepherd
- Protein Production Team, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Deuan Jones
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Alison Scott
- Protein Production Team, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Peter D Craggs
- Screening Compound Profiling and Mechanistic Biology, Platform Technology and Science, GlaxoSmithKline, Stevenage, United Kingdom
| | - Alvaro Cortes
- Screening Compound Profiling and Mechanistic Biology, Platform Technology and Science, GlaxoSmithKline, Stevenage, United Kingdom
| | - David W Gray
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Leah S Torrie
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Manu De Rycker
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
43
|
Melo TG, Adesse D, Meirelles MDN, Pereira MCS. Trypanosoma cruzi down-regulates mechanosensitive proteins in cardiomyocytes. Mem Inst Oswaldo Cruz 2019; 114:e180593. [PMID: 31433004 PMCID: PMC6697411 DOI: 10.1590/0074-02760180593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 07/08/2019] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Cardiac physiology depends on coupling and electrical and mechanical
coordination through the intercalated disc. Focal adhesions offer mechanical
support and signal transduction events during heart contraction-relaxation
processes. Talin links integrins to the actin cytoskeleton and serves as a
scaffold for the recruitment of other proteins, such as paxillin in focal
adhesion formation and regulation. Chagasic cardiomyopathy is caused by
infection by Trypanosoma cruzi and is a debilitating
condition comprising extensive fibrosis, inflammation, cardiac hypertrophy
and electrical alterations that culminate in heart failure. OBJECTIVES Since mechanotransduction coordinates heart function, we evaluated the
underlying mechanism implicated in the mechanical changes, focusing
especially in mechanosensitive proteins and related signalling pathways
during infection of cardiac cells by T. cruzi. METHODS We investigated the effect of T. cruzi infection on the
expression and distribution of talin/paxillin and associated proteins in
mouse cardiomyocytes in vitro by western blotting, immunofluorescence and
quantitative real-time polymerase chain reaction (qRT-PCR). FINDINGS Talin and paxillin spatial distribution in T.
cruzi-infected cardiomyocytes in vitro were
altered associated with a downregulation of these proteins and mRNAs levels
at 72 h post-infection (hpi). Additionally, we observed an increase in the
activation of the focal adhesion kinase (FAK) concomitant with increase in
β-1-integrin at 24 hpi. Finally, we detected a decrease in the activation of
FAK at 72 hpi in T. cruzi-infected cultures. MAIN CONCLUSION The results suggest that these changes may contribute to the
mechanotransduction disturbance evidenced in chagasic cardiomyopathy.
Collapse
Affiliation(s)
- Tatiana G Melo
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Ultraestrutura Celular, Rio de Janeiro, RJ, Brasil
| | - Daniel Adesse
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Biologia Estrutural, Rio de Janeiro, RJ, Brasil
| | - Maria de Nazareth Meirelles
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Ultraestrutura Celular, Rio de Janeiro, RJ, Brasil
| | - Mirian Claudia S Pereira
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Ultraestrutura Celular, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
44
|
Miranda DLP, Ribeiro G, Lanza FC, Santos FLN, Reis RB, Fraga DBM, Silva LK, Silva Neto MMD, Santana IDJ, Reis MGD. Seroprevalence of Trypanosoma cruzi infection among blood donors in the state of Bahia, Brazil. Rev Soc Bras Med Trop 2019; 52:e20190146. [PMID: 31390443 DOI: 10.1590/0037-8682-0146-2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/31/2019] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION Chagas disease (CD) affects 5.7-7.0 million individuals worldwide, and its prevalence reached 25.1% in the state of Bahia, Brazil. There is an association between the prevalence of CD, the socioeconomic status of the population, and the risk of re-emergence due to non-vectorial transmission, such as blood transfusion. This study determined the seroprevalence of T. cruzi infection among blood donors in the state of Bahia, located in northeastern Brazil, and their epidemiological profile during a 10-year period. METHODS We performed a descriptive cross-sectional study involving a database review. Data were collected from patients with non-negative results for T. cruzi infection during a 10-year period. RESULTS A total of 3,084 (0.62%) samples were non-negative for T. cruzi infection in an initial serological screening, and 810 (0.16%) samples were non-negative in the second screening. The correlation between infection and age (30 years or older) and between infection and lower educational level (12 years or less) in the first and second screening was statistically significant. The seroprevalence of T. cruzi infection was higher in men in the first screening. In addition, 99.52% of the municipalities of Bahia had at least one case of CD. Livramento de Nossa Senhora and Salvador presented the highest disease prevalence and recurrence, respectively. CONCLUSIONS The seroprevalence of T. cruzi infection in these populations was lower than that found in other studies in Brazil but was comparatively higher in densely-populated areas. The demographic characteristics of our population agreed with previous studies.
Collapse
Affiliation(s)
- Diego Lopes Paim Miranda
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, BA, Brasil.,Laboratório de Patologia e Biologia Molecular, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, BA, Brasil
| | - Gilmar Ribeiro
- Laboratório de Patologia e Biologia Molecular, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, BA, Brasil
| | - Fernanda Cardoso Lanza
- Laboratório de Patologia e Biologia Molecular, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, BA, Brasil
| | - Fred Luciano Neves Santos
- Laboratório de Patologia e Biologia Molecular, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, BA, Brasil
| | - Renato Barbosa Reis
- Laboratório de Patologia e Biologia Molecular, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, BA, Brasil
| | | | - Luciano Kalabric Silva
- Laboratório de Patologia e Biologia Molecular, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, BA, Brasil
| | | | | | - Mitermayer Galvão Dos Reis
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, BA, Brasil.,Laboratório de Patologia e Biologia Molecular, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, BA, Brasil.,Yale University, New Haven, Connecticut, USA
| |
Collapse
|
45
|
Cross-Reactivity Using Chimeric Trypanosoma cruzi Antigens: Diagnostic Performance in Settings Where Chagas Disease and American Cutaneous or Visceral Leishmaniasis Are Coendemic. J Clin Microbiol 2019; 57:JCM.00762-19. [PMID: 31189586 PMCID: PMC6663885 DOI: 10.1128/jcm.00762-19] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/07/2019] [Indexed: 12/02/2022] Open
Abstract
Chimeric T. cruzi antigens have been proposed as a diagnostic tool for chronic Chagas disease (CD) in both settings where Chagas disease is endemic and those where it is not endemic. Antibody response varies in accordance to each T. cruzi strain, presenting challenges to the use of antigens lacking demonstrated cross-reactivity with Leishmania spp. Chimeric T. cruzi antigens have been proposed as a diagnostic tool for chronic Chagas disease (CD) in both settings where Chagas disease is endemic and those where it is not endemic. Antibody response varies in accordance to each T. cruzi strain, presenting challenges to the use of antigens lacking demonstrated cross-reactivity with Leishmania spp. Our group expressed four chimeric proteins (IBMP-8.1, IBMP-8.2, IBMP-8.3, and IBMP-8.4) and previously assessed their diagnostic performance to determine cross-reactivity with Leishmania spp. Here, we validated our findings using serum samples from different Brazilian geographic areas reporting endemic Chagas disease, endemic visceral or American cutaneous leishmaniasis (ACL), or both. Overall, 829 serum samples were evaluated using commercial and IBMP enzyme-linked immunosorbent assays. Due to the absence of a reference assay to diagnosis CD, latent class analysis (LCA) was performed through the use of a statistical model. The incidence of cross-reactivity for ACL-positive samples varied from 0.35% (IBMP-8.3) to 0.70% (IBMP-8.1 and IBMP-8.2). Regarding visceral leishmaniasis (VL)-positive samples, the IBMP-8.2 and IBMP-8.3 antigens cross-reacted with six (3.49%) and with only one sample (0.58%), respectively. No cross-reactivity with either ACL or VL was observed for the IBMP-8.4 antigen. Similarly, no cross-reactions were found when VL-positive samples were assayed with IBMP-8.1. The agreement among the results obtained using IBMP antigens ranged from 97.3% for IBMP-8.2 and 99% for IBMP-8.1 and IBMP-8.3 to 100% for IBMP-8.4, demonstrating almost perfect agreement with LCA. Accordingly, in light of the negligible cross-reactivity with both ACL and VL, we suggest the use of IBMP antigens in regions where T. cruzi and Leishmania spp. are coendemic.
Collapse
|
46
|
Apolipoprotein A1 and Fibronectin Fragments as Markers of Cure for the Chagas Disease. Methods Mol Biol 2019. [PMID: 30868534 DOI: 10.1007/978-1-4939-9148-8_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Chagas disease (CD), endemic from Latin America, affects more than 8 million people, and the disease keeps spreading around the world due to population migrations. The treatment options for CD are currently limited to two drugs, benznidazole (BZ) and nifurtimox (Nfx), which are often unsatisfactory in chronically infected patients. To date, the only accepted marker of the cure is seroconversion (the disappearance of Trypanosoma cruzi antibodies in the patient's serum), which can take decades to occur, if ever. The lack of posttreatment test-of-cure often prevents appropriate patient counseling and limits the development of new drugs. Without a doubt, reliable biomarkers for parasitological cure are urgently needed. Several pieces of evidence suggest that apolipoprotein A1 and fibronectin fragments are produced during the infection as part of the process of T. cruzi cell invasion and can thus be used as its surrogate biomarkers. In this chapter, we present a standardized method to evaluate these fragments in serum using mass spectrometry and immunoblotting in CD patients for diagnosis, prognosis, and treatment assessment purposes.
Collapse
|
47
|
Lidani KCF, Andrade FA, Bavia L, Damasceno FS, Beltrame MH, Messias-Reason IJ, Sandri TL. Chagas Disease: From Discovery to a Worldwide Health Problem. Front Public Health 2019; 7:166. [PMID: 31312626 PMCID: PMC6614205 DOI: 10.3389/fpubh.2019.00166] [Citation(s) in RCA: 319] [Impact Index Per Article: 53.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/05/2019] [Indexed: 12/23/2022] Open
Abstract
Carlos Chagas discovered American trypanosomiasis, also named Chagas disease (CD) in his honor, just over a century ago. He described the clinical aspects of the disease, characterized by its etiological agent (Trypanosoma cruzi) and identified its insect vector. Initially, CD occurred only in Latin America and was considered a silent and poorly visible disease. More recently, CD became a neglected worldwide disease with a high morbimortality rate and substantial social impact, emerging as a significant public health threat. In this context, it is crucial to better understand better the epidemiological scenarios of CD and its transmission dynamics, involving people infected and at risk of infection, diversity of the parasite, vector species, and T. cruzi reservoirs. Although efforts have been made by endemic and non-endemic countries to control, treat, and interrupt disease transmission, the cure or complete eradication of CD are still topics of great concern and require global attention. Considering the current scenario of CD, also affecting non-endemic places such as Canada, USA, Europe, Australia, and Japan, in this review we aim to describe the spread of CD cases worldwide since its discovery until it has become a global public health concern.
Collapse
Affiliation(s)
| | - Fabiana Antunes Andrade
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
| | - Lorena Bavia
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
| | - Flávia Silva Damasceno
- Laboratory of Biochemistry of Tryps-LaBTryps, Department of Parasitology, Institute for Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marcia Holsbach Beltrame
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná, Curitiba, Brazil
| | - Iara J. Messias-Reason
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
| | - Thaisa Lucas Sandri
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| |
Collapse
|
48
|
Meira CS, Santos EDS, Santo RFDE, Vasconcelos JF, Orge ID, Nonaka CKV, Barreto BC, Caria ACI, Silva DN, Barbosa-Filho JM, Macambira SG, Moreira DRM, Soares MBP. Betulinic Acid Derivative BA5, Attenuates Inflammation and Fibrosis in Experimental Chronic Chagas Disease Cardiomyopathy by Inducing IL-10 and M2 Polarization. Front Immunol 2019; 10:1257. [PMID: 31244833 PMCID: PMC6579897 DOI: 10.3389/fimmu.2019.01257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/17/2019] [Indexed: 12/29/2022] Open
Abstract
Chronic Chagas disease cardiomyopathy (CCC) is a major cause of heart disease in Latin America and treatment for this condition is unsatisfactory. Here we investigated the effects of BA5, an amide semi-synthetic derivative betulinic acid, in a model of CCC. Mice chronically infected with T. cruzi were treated orally with BA5 (10 or 1 mg/Kg), three times per week, for 2 months. BA5 treatment decreased inflammation and fibrosis in heart sections but did not improve exercise capacity or ameliorate cardiac electric disturbances in infected mice. Serum concentrations of TNF-α, IFN-γ, and IL-1β, as well as cardiac gene expression of pro-inflammatory mediators, were reduced after BA5 treatment. In contrast, a significant increase in the anti-inflammatory cytokine IL-10 concentration was observed in BA5-treated mice in both tested doses compared to vehicle-treated mice. Moreover, polarization to anti-inflammatory/M2 macrophage phenotype was evidenced by a decrease in the expression of NOS2 and proinflammatory cytokines and the increase in M2 markers, such as Arg1 and CHI3 in mice treated with BA5. In conclusion, BA5 had a potent anti-inflammatory activity on a model of parasite-driven heart disease related to IL-10 production and a switch from M1 to M2 subset of macrophages.
Collapse
Affiliation(s)
| | | | - Renan Fernandes do Espírito Santo
- FIOCRUZ, Gonçalo Moniz Institute, Salvador, Brazil.,Science and Health Institute, Federal University of Bahia (UFBA), Salvador, Brazil
| | - Juliana Fraga Vasconcelos
- FIOCRUZ, Gonçalo Moniz Institute, Salvador, Brazil.,Center for Biotechnology and Cell Therapy, Hospital São Rafael, Salvador, Brazil
| | - Iasmim Diniz Orge
- FIOCRUZ, Gonçalo Moniz Institute, Salvador, Brazil.,Center for Biotechnology and Cell Therapy, Hospital São Rafael, Salvador, Brazil
| | - Carolina Kymie Vasques Nonaka
- FIOCRUZ, Gonçalo Moniz Institute, Salvador, Brazil.,Center for Biotechnology and Cell Therapy, Hospital São Rafael, Salvador, Brazil
| | - Breno Cardim Barreto
- FIOCRUZ, Gonçalo Moniz Institute, Salvador, Brazil.,Center for Biotechnology and Cell Therapy, Hospital São Rafael, Salvador, Brazil
| | | | - Daniela Nascimento Silva
- FIOCRUZ, Gonçalo Moniz Institute, Salvador, Brazil.,Center for Biotechnology and Cell Therapy, Hospital São Rafael, Salvador, Brazil
| | - José Maria Barbosa-Filho
- Laboratory of Pharmaceutical Technology, Federal University of Paraíba (UFPB), João Pessoa, Brazil
| | - Simone Garcia Macambira
- Science and Health Institute, Federal University of Bahia (UFBA), Salvador, Brazil.,Center for Biotechnology and Cell Therapy, Hospital São Rafael, Salvador, Brazil
| | | | | |
Collapse
|
49
|
Del-Rei RP, Leony LM, Celedon PAF, Zanchin NIT, dos Reis MG, Gomes YDM, Schijman AG, Longhi SA, Santos FLN. Detection of anti-Trypanosoma cruzi antibodies by chimeric antigens in chronic Chagas disease-individuals from endemic South American countries. PLoS One 2019; 14:e0215623. [PMID: 30998741 PMCID: PMC6472793 DOI: 10.1371/journal.pone.0215623] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/04/2019] [Indexed: 12/21/2022] Open
Abstract
Background Laboratory diagnosis of chronic Chagas disease is a troubling factor due to lack of reference tests. The WHO suggests the use of two distinct commercial serological tests in parallel. The performance of commercial immunoassays might fluctuate depending on the antigenic matrices and the local strains of T. cruzi in different geographical settings. The use of antigenic matrices based on chimeric proteins can solve these limitations. Here, we evaluated the diagnostic performance of two chimeric T. cruzi antigens (IBMP-8.1 and -8.4) to diagnose chronic Chagas disease in individuals from endemic South American countries. Methodology/Principal findings IBMP-8.1 and IBMP-8.4 chimeric antigens were expressed as soluble proteins in E. coli and purified using chromatography methods. Reactivity of IBMP-8.1 and IBMP-8.4 was assessed using an in-house ELISA with sera from 122 non-infected and 215 T. cruzi-infected individuals from Argentina, Bolivia, and Paraguay. Cut-off values were based on ROC curves and performance parameters were determined using a dichotomous approach. Area under the curve values were > 99.7% for both IBMP-8.1 and IBMP-8.4 antigens. IgG levels in T. cruzi-positive and negative samples were higher for IBMP-8.4 than IBMP-8.1. Both IBMP-8.1 and -8.4 were 100% specific, while IBMP-8.4 were 100% sensitive compared to IBMP-8.1 (95.3%). Admitting RI values of 1.0 ± 0.10 as the inconclusive interval, 6.2% of the samples tested using IBMP-8.1 and 2.1% using IBMP-8.4 fell inside the grey zone. Based on accuracy and diagnostic odds ratio values, IBMP-8.4 presented the best performance. Differences in sensitivity and IgG levels among the samples from Argentina, Bolivia, and Paraguay were not significant. Conclusions/Significance Our findings showed a notable performance of IBMP-8.1 and -8.4 chimeric antigens in diagnosing chronic Chagas disease in individuals from endemic South American countries, confirming our hypothesis that these antigens could be used in geographical areas where distinct T. cruzi DTUs occur.
Collapse
Affiliation(s)
| | | | | | | | - Mitermayer Galvão dos Reis
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Bahia, Brazil
- Department of Pathology and Legal Medicine, Federal University of Bahia, Salvador, Bahia, Brazil
- Department of Epidemiology of Microbial Diseases, School of Public Health, Yale University, New Haven, Connecticut, United States of America
| | | | - Alejandro Gabriel Schijman
- Laboratory of Molecular Biology of Chagas Disease, Institute for Research on Genetic Engineering and Molecular Biology “Dr Héctor Torres”, Buenos Aires, Argentina
| | - Silvia Andrea Longhi
- Laboratory of Molecular Biology of Chagas Disease, Institute for Research on Genetic Engineering and Molecular Biology “Dr Héctor Torres”, Buenos Aires, Argentina
| | | |
Collapse
|
50
|
Volpedo G, Costa L, Ryan N, Halsey G, Satoskar A, Oghumu S. Nanoparticulate drug delivery systems for the treatment of neglected tropical protozoan diseases. J Venom Anim Toxins Incl Trop Dis 2019; 25:e144118. [PMID: 31130996 PMCID: PMC6483407 DOI: 10.1590/1678-9199-jvatitd-1441-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 11/06/2018] [Indexed: 12/13/2022] Open
Abstract
Neglected Tropical Diseases (NTDs) comprise of a group of seventeen infectious
conditions endemic in many developing countries. Among these diseases are three
of protozoan origin, namely leishmaniasis, Chagas disease, and African
trypanosomiasis, caused by the parasites Leishmania spp.,
Trypanosoma cruzi, and Trypanosoma brucei
respectively. These diseases have their own unique challenges which are
associated with the development of effective prevention and treatment methods.
Collectively, these parasitic diseases cause more deaths worldwide than all
other NTDs combined. Moreover, many current therapies for these diseases are
limited in their efficacy, possessing harmful or potentially fatal side effects
at therapeutic doses. It is therefore imperative that new treatment strategies
for these parasitic diseases are developed. Nanoparticulate drug delivery
systems have emerged as a promising area of research in the therapy and
prevention of NTDs. These delivery systems provide novel mechanisms for targeted
drug delivery within the host, maximizing therapeutic effects while minimizing
systemic side effects. Currently approved drugs may also be repackaged using
these delivery systems, allowing for their potential use in NTDs of protozoan
origin. Current research on these novel delivery systems has provided insight
into possible indications, with evidence demonstrating their improved ability to
specifically target pathogens, penetrate barriers within the host, and reduce
toxicity with lower dose regimens. In this review, we will examine current
research on these delivery systems, focusing on applications in the treatment of
leishmaniasis, Chagas disease, and African trypanosomiasis. Nanoparticulate
systems present a unique therapeutic alternative through the repositioning of
existing medications and directed drug delivery.
Collapse
Affiliation(s)
- Greta Volpedo
- Ohio State University Wexner Medical Center, Department of Pathology, Columbus, OH, 43210, USA.,Ohio State University, Department of Microbiology, Columbus, OH, 43210, USA
| | - Lourena Costa
- Ohio State University Wexner Medical Center, Department of Pathology, Columbus, OH, 43210, USA.,Universidade Federal de Minas Gerais, Faculdade de Medicina, Departamento de Infectologia e Medicina Tropical, Belo Horizonte, MG, Brasil
| | - Nathan Ryan
- Ohio State University Wexner Medical Center, Department of Pathology, Columbus, OH, 43210, USA
| | - Gregory Halsey
- Ohio State University Wexner Medical Center, Department of Pathology, Columbus, OH, 43210, USA
| | - Abhay Satoskar
- Ohio State University Wexner Medical Center, Department of Pathology, Columbus, OH, 43210, USA.,Ohio State University, Department of Microbiology, Columbus, OH, 43210, USA
| | - Steve Oghumu
- Ohio State University Wexner Medical Center, Department of Pathology, Columbus, OH, 43210, USA
| |
Collapse
|