1
|
Xiao X, Yang S, Jiang G, He S. Current views and trends of nanomaterials as vectors for gene delivery since the 21st century: a bibliometric analysis. Nanomedicine (Lond) 2025; 20:439-454. [PMID: 39878523 PMCID: PMC11875476 DOI: 10.1080/17435889.2025.2457781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 01/20/2025] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND Gene therapy is garnering increasing support due to its potential for a "once-delivered, lifelong benefit." The limitations of traditional gene delivery methods have spurred the advancement of bionanomaterials. Despite this progress, a thorough analysis of the evolution, current state, key contributors, focal studies, and future directions of nanomaterials in gene delivery remains absent. METHODS This study scrutinizes articles from the Web of Science, spanning 1 January 2 000, to 31 December 2023, employing various online tools for analysis and visualization. RESULTS The 21st century has witnessed consistent growth in scholarly work in this domain globally, with notable contributions from China and the US. At the same time, the Chinese Academy of Sciences (CAS), Harvard University, and Massachusetts Institute of Technology (MIT) have emerged as the most productive institutions, with CAS's academician Weihong Tan becoming the field's leading author. While drug delivery and nanoparticles (NPs) have been central themes for two decades, the research focus has shifted from modifying NPs and ultrafine particles to exploring polymer-hybrid NPs, mRNA vaccines, immune responses, green synthesis, and CRISPR/Cas tools. CONCLUSIONS This shift marks the transition from nanomaterials to bionanomaterials. The insights provided by this research offer a comprehensive overview of the field and valuable guidance for future investigations.
Collapse
Affiliation(s)
- Xiao Xiao
- Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Sheng Yang
- Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ge Jiang
- Department of Hematology, Shanghai Institute of Hematology, Ruijin Hospital affiliated to School of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shisheng He
- Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Goswami R, Nagaraj H, Cicek YA, Nasim N, Mirza SS, Hassan MA, Mhaske R, Saravanan DM, Noonan C, Pham E, Mager J, Rotello VM. Polymer-siRNA nanovectors for treating lung inflammation. J Control Release 2025; 378:1092-1102. [PMID: 39730067 PMCID: PMC11830555 DOI: 10.1016/j.jconrel.2024.12.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/07/2024] [Accepted: 12/21/2024] [Indexed: 12/29/2024]
Abstract
Uncontrolled inflammation is the driver of numerous lung diseases. Current treatments, including corticosteroids and bronchodilators, can be effective. However, they often come with notable side effects. siRNA is a promising therapeutic modality for immune regulation. However, effective delivery of siRNA is challenged by issues related to cellular uptake and localization within tissues. This study investigates a series of guanidinium-functionalized polymers (Cn-Guan) designed to explore the effects of amphiphilicity on siRNA complexation and efficiency in vitro and in vivo. Nine polymers with varying side chain lengths (C3, C5, C7) and molecular weights (17 kDa, 30 kDa, 65 kDa) were synthesized, forming polyplexes with siRNA. Characterization revealed that C7-Guan/si_scr polymers exhibited the smallest polyplex sizes and the tightest complexation with siRNA. In vitro studies showed that 65 kDa polymers had the highest gene knockdown efficiency, with C3 and C5-Guan/si_TNF-α achieving ∼70 % knockdown, while C7-Guan/si_TNF-α achieved ∼30 %. In vivo, C7-Guan/Cy5-siRNA demonstrated the highest lung accumulation, and all polymers showed ∼70 % TNF-α knockdown with a low siRNA dosage (0.14 mg/kg) in a murine lung inflammation model. C7-Guan polymers, despite lower in vitro efficiency, were quite effective in vivo, potentially due to enhanced serum stability. These findings demonstrate that Cn-Guan/siRNA polyplexes are effective and safe for attenuating pulmonary inflammation and provide important insights for the development of future siRNA delivery vectors for lung disease treatment.
Collapse
Affiliation(s)
- Ritabrita Goswami
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Harini Nagaraj
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Yagiz Anil Cicek
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Nourina Nasim
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Sarah S Mirza
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 661 N Pleasant Street, Amherst, MA 01003, USA
| | - Muhammad Aamir Hassan
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Rukmini Mhaske
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Deepthika M Saravanan
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - Cedar Noonan
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Edward Pham
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Jesse Mager
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 661 N Pleasant Street, Amherst, MA 01003, USA
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA.
| |
Collapse
|
3
|
Zhang A, Zhang X, Chen J, Shi X, Yu X, He Z, Sun J, Sun M, Liu Z. Approaches and applications in transdermal and transpulmonary gene drug delivery. Front Bioeng Biotechnol 2025; 12:1519557. [PMID: 39881959 PMCID: PMC11775749 DOI: 10.3389/fbioe.2024.1519557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/20/2024] [Indexed: 01/31/2025] Open
Abstract
Gene therapy has emerged as a pivotal component in the treatment of diverse genetic and acquired human diseases. However, effective gene delivery remains a formidable challenge to overcome. The presence of degrading enzymes, acidic pH conditions, and the gastrointestinal mucus layer pose significant barriers for genetic therapy, necessitating exploration of alternative therapeutic options. In recent years, transdermal and transpulmonary gene delivery modalities offer promising avenues with multiple advantages, such as non-invasion, avoided liver first-pass effect and improved patient compliance. Considering the rapid development of gene therapeutics via transdermal and transpulmonary administration, here we aim to summarize the nearest advances in transdermal and transpulmonary gene drug delivery. In this review, we firstly elaborate on current delivery carrier in gene therapy. We, further, describe approaches and applications for enhancing transdermal and transpulmonary gene delivery encompassing microneedles, chemical enhancers, physical methods for transdermal administration as well as nebulized formulations, dry powder formulations, and pressurized metered dose formulations for efficient transpulmonary delivery. Last but not least, the opportunities and outlooks of gene therapy through both administrated routes are highlighted.
Collapse
Affiliation(s)
- Anni Zhang
- Department of Ultrasound, Shengjing Hospital, China Medical University, Shenyang, Liaoning, China
| | - Xuran Zhang
- Department of Orthopedics, Fuxin Center Hospital, Fuxin, Liaoning, China
| | - Jiahui Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Xijuan Yu
- Department of Ultrasound, Shengjing Hospital, China Medical University, Shenyang, Liaoning, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang, Liaoning, China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang, Liaoning, China
| | - Mengchi Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang, Liaoning, China
| | - Zhijun Liu
- Department of Ultrasound, Shengjing Hospital, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
4
|
Cabibbo M, Scialabba C, Craparo EF, Carneiro SP, Merkel OM, Cavallaro G. Diving into RNAi Therapy: An Inhalable Formulation Based on Lipid-Polymer Hybrid Systems for Pulmonary Delivery of siRNA. Biomacromolecules 2025; 26:163-177. [PMID: 39665463 DOI: 10.1021/acs.biomac.4c00387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Here, a pulmonary formulation based on lipid-polymer hybrid nanoparticles carrying small interfering RNA (siRNA) was developed to realize a RNA interference-based therapy to treat respiratory diseases. Toward this aim, a new copolymer was synthesized, by functionalization of the α,β-poly(N-2-hydroxyethyl)-d,l-aspartamide with 35 mol % of 1,2-bis(3-aminopropylamino)ethane, 0.4 mol % of fluorescent dye, and 4.5 mol % of poly(lactic-co-glycolic acid). This was used to encapsulate siRNA targeting the green fluorescent protein (siGFP), within a lipid shell made from 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-distearoyl-sn-glycero-phosphoethanolamine-N-(polyethylene glycol)2000. siGFP-loaded lipid-polymer hybrid nanoparticles (LPHFNPs@siGFP) exhibited colloidal size (∼164 nm), positive ζ potential, high siRNA encapsulation efficiency (∼99%), and a core-shell morphology. They showed high cellular uptake and a gene silencing efficiency of ∼50% in human lung cancer cells expressing GFP. To address aerodynamic challenges, LPHFNPs@siGFP were spray-dried with trehalose, yielding spherical particles (∼3 μm) with 80% siRNA encapsulation efficiency, excellent aerosolization properties, and a gene silencing efficiency comparable to the fresh LPHFNPs@siGFP sample.
Collapse
Affiliation(s)
- Marta Cabibbo
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo 90123, Italy
| | - Cinzia Scialabba
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo 90123, Italy
| | - Emanuela F Craparo
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo 90123, Italy
| | - Simone P Carneiro
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-University, Butenandtstrasse 5-13, 81337 Munich, Germany
| | - Olivia M Merkel
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-University, Butenandtstrasse 5-13, 81337 Munich, Germany
| | - Gennara Cavallaro
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo 90123, Italy
| |
Collapse
|
5
|
Purewal JS, Doshi GM. RNAi in psoriasis: A melodic exploration of miRNA, shRNA, and amiRNA with a spotlight on siRNA. Eur J Pharmacol 2024; 985:177083. [PMID: 39481628 DOI: 10.1016/j.ejphar.2024.177083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/02/2024]
Abstract
Psoriasis (Pso) is an autoimmune inflammatory skin disease characterised by well-demarcated, red plaques covered in silver scales. It affects people of all ages and can be passed down through generations. Genetics play an important role in determining vulnerability to develop Pso. Several large-scale genome-wide association studies have identified over 80 genetic loci associated with Pso susceptibility. Gene expression can be regulated via RNA interference (RNAi). RNAi suppresses gene expression by degrading mRNA molecules. Since its discovery, RNAi has generated considerable excitement over its potential therapeutic benefits. RNAi is mediated by endogenous small RNA molecules like microRNA (miRNA) or exogenous small RNA molecules like small interfering RNA (siRNA), short hairpin RNA (shRNA), and artificial micro RNA (amiRNA). These small RNA molecules can silence a disease-related gene in a sequence-specific manner. Targeting RNAi pathways can help modify disease-related biological processes in various medical conditions, including autoimmune disorders. In Pso, RNAi can downregulate the expression of molecules involved in the pathophysiology of the disease. Significant progress has been made in the field of RNAi therapeutics. However, further research is needed to fine-tune the design and delivery of RNAi therapeutics in humans. In this review, we discuss various effectors of RNAi, some challenges related to RNAi therapeutics (emphasizing siRNA) and strategies to overcome these challenges. Furthermore, we have discussed some studies that employ RNAi therapeutics for Pso.
Collapse
|
6
|
Berkenfeld K, Carneiro S, Corzo C, Laffleur F, Salar-Behzadi S, Winkeljann B, Esfahani G. Formulation strategies, preparation methods, and devices for pulmonary delivery of biologics. Eur J Pharm Biopharm 2024; 204:114530. [PMID: 39393712 DOI: 10.1016/j.ejpb.2024.114530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Biological products, including vaccines, blood components, and recombinant therapeutic proteins, are derived from natural sources such as humans, animals, or microorganisms and are typically produced using advanced biotechnological methods. The success of biologics, particularly monoclonal antibodies, can be attributed to their favorable safety profiles and target specificity. However, their large molecular size presents significant challenges in drug delivery, particularly in overcoming biological barriers. Pulmonary delivery has emerged as a promising route for administering biologics, offering non-invasive delivery with rapid absorption, high systemic bioavailability, and avoidance of first-pass metabolism. This review first details the anatomy and physiological barriers of the respiratory tract and the associated challenges of pulmonary drug delivery (PDD). It further discusses innovations in PDD, the impact of particle size on drug deposition, and the use of secondary particles, such as nanoparticles, to enhance bioavailability and targeting. The review also explains various devices used for PDD, including dry powder inhalers (DPIs) and nebulizers, highlighting their advantages and limitations in delivering biologics. The role of excipients in improving the stability and performance of inhalation products is also addressed. Since dry powders are considered the suitable format for delivering biomolecules, particular emphasis is placed on the excipients used in DPI development. The final section of the article reviews and compares various dry powder manufacturing methods, clarifying their clinical relevance and potential for future applications in the field of inhalable drug formulation.
Collapse
Affiliation(s)
- Kai Berkenfeld
- Laboratory of Pharmaceutical Technology and Biopharmaceutics, Institute of Pharmacy, University of Bonn, Gerhard-Domagk-Street 3, 53121 Bonn, Germany; Pharmaceutical Engineering and Technology Research Scientists (PETRS)
| | - Simone Carneiro
- Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Haus B, 81377 München, Germany; Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, München 80799, Germany; Pharmaceutical Engineering and Technology Research Scientists (PETRS)
| | - Carolina Corzo
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria; Pharmaceutical Engineering and Technology Research Scientists (PETRS)
| | - Flavia Laffleur
- Department of Pharmaceutical Technology, Institute of Pharmacy, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; Pharmaceutical Engineering and Technology Research Scientists (PETRS)
| | - Sharareh Salar-Behzadi
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria; Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, University of Graz, Graz, Austria; Pharmaceutical Engineering and Technology Research Scientists (PETRS)
| | - Benjamin Winkeljann
- Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Haus B, 81377 München, Germany; Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, München 80799, Germany; RNhale GmbH, München 81371, Germany; Comprehensive Pneumology Center Munich (CPC-M), Helmholtz Munich, German Center for Lung Research (DZL), 81377 Munich, Germany; Pharmaceutical Engineering and Technology Research Scientists (PETRS)
| | - Golbarg Esfahani
- Department of Pharmaceutical Technology, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Straße 4, Halle 06120, Saale, Germany; Pharmaceutical Engineering and Technology Research Scientists (PETRS).
| |
Collapse
|
7
|
Bai Z, Wan D, Lan T, Hong W, Dong H, Wei Y, Wei X. Nanoplatform Based Intranasal Vaccines: Current Progress and Clinical Challenges. ACS NANO 2024; 18:24650-24681. [PMID: 39185745 PMCID: PMC11394369 DOI: 10.1021/acsnano.3c10797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 08/27/2024]
Abstract
Multiple vaccine platforms have been employed to develop the nasal SARS-CoV-2 vaccines in preclinical studies, and the dominating pipelines are viral vectored as protein-based vaccines. Among them, several viral vectored-based vaccines have entered clinical development. Nevertheless, some unsatisfactory results were reported in these clinical studies. In the face of such urgent situations, it is imperative to rapidly develop the next-generation intranasal COVID-19 vaccine utilizing other technologies. Nanobased intranasal vaccines have emerged as an approach against respiratory infectious diseases. Harnessing the power of nanotechnology, these vaccines offer a noninvasive yet potent defense against pathogens, including the threat of COVID-19. The improvements made in vaccine mucosal delivery technologies based on nanoparticles, such as lipid nanoparticles, polymeric nanoparticles, inorganic nanoparticles etc., not only provide stability and controlled release but also enhance mucosal adhesion, effectively overcoming the limitations of conventional vaccines. Hence, in this review, we overview the evaluation of intranasal vaccine and highlight the current barriers. Next, the modern delivery systems based on nanoplatforms are summarized. The challenges in clinical application of nanoplatform based intranasal vaccine are finally discussed.
Collapse
Affiliation(s)
| | | | | | - Weiqi Hong
- Laboratory of Aging Research
and Cancer Drug Target, State Key Laboratory of Biotherapy, National
Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Haohao Dong
- Laboratory of Aging Research
and Cancer Drug Target, State Key Laboratory of Biotherapy, National
Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Yuquan Wei
- Laboratory of Aging Research
and Cancer Drug Target, State Key Laboratory of Biotherapy, National
Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Xiawei Wei
- Laboratory of Aging Research
and Cancer Drug Target, State Key Laboratory of Biotherapy, National
Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| |
Collapse
|
8
|
Subramaniam S, Joyce P, Prestidge CA. The biomolecule corona mediates pulmonary delivery of nanomedicine. Eur J Pharm Biopharm 2024; 202:114420. [PMID: 39038525 DOI: 10.1016/j.ejpb.2024.114420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/12/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
Pulmonary delivery of therapeutics (e.g., biologics, antibiotics, and chemotherapies) encapsulated in nanoparticles is desirable for the ability to provide a localised treatment, bypassing the harsh gastrointestinal environment. However, limited understanding of the biological fate of nanoparticles upon administration to the lungs hinders translation of pre-clinical investigations into viable therapies. A key knowledge gap is the impact of the pulmonary biomolecular corona on the functionality of nanoparticles. In this review, opportunities and challenges associated with pulmonary nanoparticle delivery are elucidated, highlighting the impact of the pulmonary biomolecular corona on immune recognition and nanoparticle internalisation in target cells. Recent investigations detailing the influence of proteins, lipids and mucin derived from pulmonary surfactants on nanoparticle behaviour are detailed. In addition, latest approaches in modulating plasma protein corona upon systemic delivery for biodistribution to the lungs are also discussed. Key examples of reengineering nanoparticle structure to mediate formation of biomolecule corona are provided. This review aims to provide a comprehensive understanding on biomolecular corona of nanoparticles for pulmonary delivery, while accentuating their significance for successful translation of newly investigated therapeutics.
Collapse
Affiliation(s)
- Santhni Subramaniam
- University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia
| | - Paul Joyce
- University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia
| | - Clive A Prestidge
- University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia.
| |
Collapse
|
9
|
Silva AC, Costa MP, Zacaron TM, Ferreira KCB, Braz WR, Fabri RL, Frézard FJG, Pittella F, Tavares GD. The Role of Inhaled Chitosan-Based Nanoparticles in Lung Cancer Therapy. Pharmaceutics 2024; 16:969. [PMID: 39204314 PMCID: PMC11359377 DOI: 10.3390/pharmaceutics16080969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 09/04/2024] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide, largely due to the limited efficacy of anticancer drugs, which is primarily attributed to insufficient doses reaching the lungs. Additionally, patients undergoing treatment experience severe systemic adverse effects due to the distribution of anticancer drugs to non-targeted sites. In light of these challenges, there has been a growing interest in pulmonary administration of drugs for the treatment of lung cancer. This route allows drugs to be delivered directly to the lungs, resulting in high local concentrations that can enhance antitumor efficacy while mitigating systemic toxic effects. However, pulmonary administration poses the challenge of overcoming the mechanical, chemical, and immunological defenses of the respiratory tract that prevent the inhaled drug from properly penetrating the lungs. To overcome these drawbacks, the use of nanoparticles in inhaler formulations may be a promising strategy. Nanoparticles can assist in minimizing drug clearance, increasing penetration into the lung epithelium, and enhancing cellular uptake. They can also facilitate increased drug stability, promote controlled drug release, and delivery to target sites, such as the tumor environment. Among them, chitosan-based nanoparticles demonstrate advantages over other polymeric nanocarriers due to their unique biological properties, including antitumor activity and mucoadhesive capacity. These properties have the potential to enhance the efficacy of the drug when administered via the pulmonary route. In view of the above, this paper provides an overview of the research conducted on the delivery of anticancer drug-loaded chitosan-based nanoparticles incorporated into inhaled drug delivery devices for the treatment of lung cancer. Furthermore, the article addresses the use of emerging technologies, such as siRNA (small interfering RNA), in the context of lung cancer therapy. Particularly, recent studies employing chitosan-based nanoparticles for siRNA delivery via the pulmonary route are described.
Collapse
Affiliation(s)
- Allana Carvalho Silva
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
| | - Mirsiane Pascoal Costa
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
| | - Thiago Medeiros Zacaron
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
| | - Kézia Cristine Barbosa Ferreira
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
| | - Wilson Rodrigues Braz
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
| | - Rodrigo Luiz Fabri
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
- Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil
| | - Frédéric Jean Georges Frézard
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil;
| | - Frederico Pittella
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
- Department of Pharmaceutical Science, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil
| | - Guilherme Diniz Tavares
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
- Department of Pharmaceutical Science, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil
| |
Collapse
|
10
|
Motamedi H, Ari MM, Alvandi A, Abiri R. Principle, application and challenges of development siRNA-based therapeutics against bacterial and viral infections: a comprehensive review. Front Microbiol 2024; 15:1393646. [PMID: 38939184 PMCID: PMC11208694 DOI: 10.3389/fmicb.2024.1393646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/28/2024] [Indexed: 06/29/2024] Open
Abstract
While significant progress has been made in understanding and applying gene silencing mechanisms and the treatment of human diseases, there have been still several obstacles in therapeutic use. For the first time, ONPATTRO, as the first small interfering RNA (siRNA) based drug was invented in 2018 for treatment of hTTR with polyneuropathy. Additionally, four other siRNA based drugs naming Givosiran, Inclisiran, Lumasiran, and Vutrisiran have been approved by the US Food and Drug Administration and the European Medicines Agency for clinical use by hitherto. In this review, we have discussed the key and promising advances in the development of siRNA-based drugs in preclinical and clinical stages, the impact of these molecules in bacterial and viral infection diseases, delivery system issues, the impact of administration methods, limitations of siRNA application and how to overcome them and a glimpse into future developments.
Collapse
Affiliation(s)
- Hamid Motamedi
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Marzie Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Amirhoushang Alvandi
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ramin Abiri
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
11
|
Turuvekere Vittala Murthy N, Vlasova K, Renner J, Jozic A, Sahay G. A new era of targeting cystic fibrosis with non-viral delivery of genomic medicines. Adv Drug Deliv Rev 2024; 209:115305. [PMID: 38626860 DOI: 10.1016/j.addr.2024.115305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/27/2024] [Accepted: 04/09/2024] [Indexed: 04/21/2024]
Abstract
Cystic fibrosis (CF) is a complex genetic respiratory disorder that necessitates innovative gene delivery strategies to address the mutations in the gene. This review delves into the promises and challenges of non-viral gene delivery for CF therapy and explores strategies to overcome these hurdles. Several emerging technologies and nucleic acid cargos for CF gene therapy are discussed. Novel formulation approaches including lipid and polymeric nanoparticles promise enhanced delivery through the CF mucus barrier, augmenting the potential of non-viral strategies. Additionally, safety considerations and regulatory perspectives play a crucial role in navigating the path toward clinical translation of gene therapy.
Collapse
Affiliation(s)
| | - Kseniia Vlasova
- Department of Pharmaceutical Sciences, College of Pharmacy at Oregon State University, Corvallis, OR 97331, USA
| | - Jonas Renner
- Department of Pharmaceutical Sciences, College of Pharmacy at Oregon State University, Corvallis, OR 97331, USA
| | - Antony Jozic
- Department of Pharmaceutical Sciences, College of Pharmacy at Oregon State University, Corvallis, OR 97331, USA
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy at Oregon State University, Corvallis, OR 97331, USA; Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97201, USA; Department of Biomedical Engineering, Robertson Life Sciences Building, Oregon Health & Science University, Portland, OR 97201, USA.
| |
Collapse
|
12
|
Chu R, Wang Y, Kong J, Pan T, Yang Y, He J. Lipid nanoparticles as the drug carrier for targeted therapy of hepatic disorders. J Mater Chem B 2024; 12:4759-4784. [PMID: 38682294 DOI: 10.1039/d3tb02766j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
The liver, a complex and vital organ in the human body, is susceptible to various diseases, including metabolic disorders, acute hepatitis, cirrhosis, and hepatocellular carcinoma. In recent decades, these diseases have significantly contributed to global morbidity and mortality. Currently, liver transplantation remains the most effective treatment for hepatic disorders. Nucleic acid therapeutics offer a selective approach to disease treatment through diverse mechanisms, enabling the regulation of relevant genes and providing a novel therapeutic avenue for hepatic disorders. It is expected that nucleic acid drugs will emerge as the third generation of pharmaceuticals, succeeding small molecule drugs and antibody drugs. Lipid nanoparticles (LNPs) represent a crucial technology in the field of drug delivery and constitute a significant advancement in gene therapies. Nucleic acids encapsulated in LNPs are shielded from the degradation of enzymes and effectively delivered to cells, where they are released and regulate specific genes. This paper provides a comprehensive review of the structure, composition, and applications of LNPs in the treatment of hepatic disorders and offers insights into prospects and challenges in the future development of LNPs.
Collapse
Affiliation(s)
- Runxuan Chu
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, P. R. China.
| | - Yi Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tung, Hong Kong SAR, P. R. China.
| | - Jianglong Kong
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tung, Hong Kong SAR, P. R. China.
| | - Ting Pan
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, P. R. China.
- Department of Pharmaceutics School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yani Yang
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, P. R. China.
| | - Jun He
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, P. R. China.
| |
Collapse
|
13
|
Adams F, Zimmermann CM, Baldassi D, Pehl TM. Pulmonary siRNA Delivery with Sophisticated Amphiphilic Poly(Spermine Acrylamides) for the Treatment of Lung Fibrosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308775. [PMID: 38126895 PMCID: PMC7616748 DOI: 10.1002/smll.202308775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/16/2023] [Indexed: 12/23/2023]
Abstract
RNA interference (RNAi) is an efficient strategy to post-transcriptionally silence gene expression. While all siRNA drugs on the market target the liver, the lung offers a variety of currently undruggable targets, which can potentially be treated with RNA therapeutics. To achieve this goal, the synthesis of poly(spermine acrylamides) (P(SpAA) is reported herein. Polymers are prepared via polymerization of N-acryloxysuccinimide (NAS) and afterward this active ester is converted into spermine-based pendant groups. Copolymerizations with decylacrylamide are employed to increase the hydrophobicity of the polymers. After deprotection, polymers show excellent siRNA encapsulation to obtain perfectly sized polyplexes at very low polymer/RNA ratios. In vitro 2D and 3D cell culture, ex vivo and in vivo experiments reveal superior properties of amphiphilic spermine-copolymers with respect to delivery of siRNA to lung cells in comparison to commonly used lipid-based transfection agents. In line with the in vitro results, siRNA delivery to human lung explants confirm more efficient gene silencing of protease-activated receptor 2 (PAR2), a G protein-coupled receptor involved in fibrosis. This study reveals the importance of the balance between efficient polyplex formation, cellular uptake, gene knockdown, and toxicity for efficient siRNA delivery in vitro, in vivo, and in fibrotic human lung tissue ex vivo.
Collapse
Affiliation(s)
- Friederike Adams
- Pharmaceutical Technology and Biopharmaceutics, Department Pharmacy Ludwig-Maximilians-University Munich, Butenandtstr. 5−13, 81377Munich, Germany
- Institute of Polymer Chemistry Chair of Macromolecular Materials and Fiber Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569Stuttgart, Germany
- Center for Ophthalmology University Eye Hospital Tübingen, Elfriede-Aulhorn-Straße 7, 72076 Tübingen, Germany
| | | | - Domizia Baldassi
- Pharmaceutical Technology and Biopharmaceutics, Department Pharmacy Ludwig-Maximilians-University Munich, Butenandtstr. 5−13, 81377Munich, Germany
| | - Thomas M. Pehl
- WACKER-Chair of Macromolecular Chemistry, Catalysis Research Center, Department of Chemistry, Technical University Munich, Lichtenbergstr. 4, 85748Garching bei München, Germany
| |
Collapse
|
14
|
Man RCH, Qiu Y, Leung SWS, Fruhwirth GO, Lam JKW. Co-delivery of PD-L1- and EGFR-targeting siRNAs by synthetic PEG 12-KL4 peptide to the lungs as potential strategy against non-small cell lung cancer. Eur J Pharm Biopharm 2024; 195:114177. [PMID: 38185193 PMCID: PMC11932971 DOI: 10.1016/j.ejpb.2024.114177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/13/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
BACKGROUND Small interfering RNA (siRNA) holds great promise for treating various lung diseases, but the lack of safe and efficient pulmonary siRNA delivery systems has hindered its advance into the clinics. The epidermal growth factor receptor (EGFR) which promotes cell proliferation, and the programmed cell death ligand 1 (PD-L1) which plays a crucial role in suppressing cytotoxic T cells activity, are two important targets for treating non-small cell lung cancer (NSCLC). Here, we explored the potential of PEG12-KL4, a synthetic peptide, to deliver siRNA to various NSCLC cells and to lung tissues in mice. METHODS PEG12-KL4 was used to transfect siRNAs targeted at both EGFR and PD-L1 into NSCLC cells. Immunoblotting was used to evaluate the siRNA silencing effects in HCC827 and NCI-H1975 NSCLC cells. CD8+ T cell-mediated NSCLC cell killing was employed to demonstrate the functional effects of PD-L1 siRNA knock-down. Fluorescent siRNAs were used to visualise siRNA uptake in cells as well as to enable biodistribution studies in BALB/c mice. RESULTS Our results showed that PEG12-KL4 was efficient in mediating siRNA knock-down of EGFR and PD-L1 in various NSCLC cells. Importantly, the PEG12-KL4 peptide enabled significantly better siRNA delivery than the commercial Lipofectamine 2000 reagent. We hypothesised that PEG12-KL4 peptide enabled siRNA to either escape from or bypass endosomal degradation as indicated by confocal fluorescence imaging. Notably, combined knock-down of EGFR and PD-L1 in NCI-H1975 cells resulted in better effector T cell-mediated cancer cell killing than knock-down of PD-L1 alone. Moreover, biodistribution of PEG12-KL4/siRNA complexes following intravenous administration revealed poor lung delivery with the fluorescent siRNA accumulating in the liver. In contrast, intratracheal delivery of PEG12-KL4/siRNA complexes resulted in the fluorescent siRNA to be detected in the lung with retarded renal excretion. CONCLUSION In conclusion, we demonstrated that the co-delivery of siRNAs targeting EGFR and PD-L1 using PEG12-KL4 is feasible and represents a promising future strategy to treat NSCLC, whereby pulmonary siRNA delivery is favourable to intravenous administration.
Collapse
Affiliation(s)
- Rico C H Man
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong SAR; Imaging Therapies and Cancer Group, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 9RT, UK
| | - Yingshan Qiu
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong SAR
| | - Susan W S Leung
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong SAR
| | - Gilbert O Fruhwirth
- Imaging Therapies and Cancer Group, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 9RT, UK
| | - Jenny K W Lam
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong SAR; Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
15
|
Neary MT, Mulder LM, Kowalski PS, MacLoughlin R, Crean AM, Ryan KB. Nebulised delivery of RNA formulations to the lungs: From aerosol to cytosol. J Control Release 2024; 366:812-833. [PMID: 38101753 DOI: 10.1016/j.jconrel.2023.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
In the past decade RNA-based therapies such as small interfering RNA (siRNA) and messenger RNA (mRNA) have emerged as new and ground-breaking therapeutic agents for the treatment and prevention of many conditions from viral infection to cancer. Most clinically approved RNA therapies are parenterally administered which impacts patient compliance and adds to healthcare costs. Pulmonary administration via inhalation is a non-invasive means to deliver RNA and offers an attractive alternative to injection. Nebulisation is a particularly appealing method due to the capacity to deliver large RNA doses during tidal breathing. In this review, we discuss the unique physiological barriers presented by the lung to efficient nebulised RNA delivery and approaches adopted to circumvent this problem. Additionally, the different types of nebulisers are evaluated from the perspective of their suitability for RNA delivery. Furthermore, we discuss recent preclinical studies involving nebulisation of RNA and analysis in in vitro and in vivo settings. Several studies have also demonstrated the importance of an effective delivery vector in RNA nebulisation therefore we assess the variety of lipid, polymeric and hybrid-based delivery systems utilised to date. We also consider the outlook for nebulised RNA medicinal products and the hurdles which must be overcome for successful clinical translation. In summary, nebulised RNA delivery has demonstrated promising potential for the treatment of several lung-related conditions such as asthma, COPD and cystic fibrosis, to which the mode of delivery is of crucial importance for clinical success.
Collapse
Affiliation(s)
- Michael T Neary
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Ireland; School of Pharmacy, University College Cork, Ireland
| | | | - Piotr S Kowalski
- School of Pharmacy, University College Cork, Ireland; APC Microbiome, University College Cork, Cork, Ireland
| | | | - Abina M Crean
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Ireland; School of Pharmacy, University College Cork, Ireland
| | - Katie B Ryan
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Ireland; School of Pharmacy, University College Cork, Ireland.
| |
Collapse
|
16
|
Isshiki T, Naiel S, Vierhout M, Otsubo K, Ali P, Tsubouchi K, Yazdanshenas P, Kumaran V, Dvorkin-Gheva A, Kolb MRJ, Ask K. Therapeutic strategies to target connective tissue growth factor in fibrotic lung diseases. Pharmacol Ther 2024; 253:108578. [PMID: 38103794 DOI: 10.1016/j.pharmthera.2023.108578] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
The treatment of interstitial lung diseases, including idiopathic pulmonary fibrosis (IPF), remains challenging as current available antifibrotic agents are not effective in halting disease progression. Connective tissue growth factor (CTGF), also known as cellular communication factor 2 (CCN2), is a member of the CCN family of proteins that regulates cell signaling through cell surface receptors such as integrins, the activity of cytokines/growth factors, and the turnover of extracellular matrix (ECM) proteins. Accumulating evidence indicates that CTGF plays a crucial role in promoting lung fibrosis through multiple processes, including inducing transdifferentiation of fibroblasts to myofibroblasts, epithelial-mesenchymal transition (EMT), and cooperating with other fibrotic mediators such as TGF-β. Increased expression of CTGF has been observed in fibrotic lungs and inhibiting CTGF signaling has been shown to suppress lung fibrosis in several animal models. Thus, the CTGF signaling pathway is emerging as a potential therapeutic target in IPF and other pulmonary fibrotic conditions. This review provides a comprehensive overview of the current evidence on the pathogenic role of CTGF in pulmonary fibrosis and discusses the current therapeutic agents targeting CTGF using a systematic review approach.
Collapse
Affiliation(s)
- Takuma Isshiki
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 48L, Canada; Department of Respiratory Medicine, Toho University School of Medicine, 6-11-1 Omori Nisi, Ota-ku, Tokyo 143-8541, Japan
| | - Safaa Naiel
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 48L, Canada
| | - Megan Vierhout
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 48L, Canada
| | - Kohei Otsubo
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Pareesa Ali
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 48L, Canada
| | - Kazuya Tsubouchi
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Parichehr Yazdanshenas
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 48L, Canada
| | - Vaishnavi Kumaran
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 48L, Canada
| | - Anna Dvorkin-Gheva
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 48L, Canada
| | - Martin R J Kolb
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada
| | - Kjetil Ask
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 48L, Canada.
| |
Collapse
|
17
|
Han Y, Wu Y, He B, Wu D, Hua J, Qian H, Zhang J. DNA nanoparticles targeting FOXO4 selectively eliminate cigarette smoke-induced senescent lung fibroblasts. NANOSCALE ADVANCES 2023; 5:5965-5973. [PMID: 37881696 PMCID: PMC10597553 DOI: 10.1039/d3na00547j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/20/2023] [Indexed: 10/27/2023]
Abstract
The pathogenesis and development of chronic obstructive pulmonary disease (COPD) are significantly related to cellular senescence. Strategies to eliminate senescent cells have been confirmed to benefit several senescence-related diseases. However, there are few reports of senolytic drugs in COPD management. In this study, we demonstrated elevated FOXO4 expression in cigarette smoke-induced senescent lung fibroblasts both in vitro and in vivo. Additionally, self-assembled DNA nanotubes loaded with single-stranded FOXO4 siRNA (siFOXO4-NT) were designed and synthesized to knockdown FOXO4 in senescent fibroblasts. We found that siFOXO4-NT can concentration- and time-dependently enter human lung fibroblasts (HFL-1 cells), thereby reducing FOXO4 levels in vitro. Most importantly, siFOXO4-NT selectively cleared senescent HFL-1 cells by reducing BCLXL expression and the BCL2/BAX ratio, which were increased in CSE-induced senescent HFL-1 cells. The findings from our work present a novel strategy for senolytic drug development for COPD therapy.
Collapse
Affiliation(s)
- Yaopin Han
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai 200032 China
| | - Yixing Wu
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai 200032 China
| | - Binfeng He
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai 200032 China
- Department of General Practice, Xinqiao Hospital, Third Military Medical University Chongqing 400037 China
| | - Di Wu
- Institute of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University Chongqing 400037 China
| | - Jianlan Hua
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai 200032 China
| | - Hang Qian
- Institute of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University Chongqing 400037 China
| | - Jing Zhang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai 200032 China
| |
Collapse
|
18
|
Won Lee J, Kyu Shim M, Kim H, Jang H, Lee Y, Hwa Kim S. RNAi therapies: Expanding applications for extrahepatic diseases and overcoming delivery challenges. Adv Drug Deliv Rev 2023; 201:115073. [PMID: 37657644 DOI: 10.1016/j.addr.2023.115073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/31/2023] [Accepted: 08/20/2023] [Indexed: 09/03/2023]
Abstract
The era of RNA medicine has become a reality with the success of messenger RNA (mRNA) vaccines against COVID-19 and the approval of several RNA interference (RNAi) agents in recent years. Particularly, therapeutics based on RNAi offer the promise of targeting intractable and previously undruggable disease genes. Recent advances have focused in developing delivery systems to enhance the poor cellular uptake and insufficient pharmacokinetic properties of RNAi therapeutics and thereby improve its efficacy and safety. However, such approach has been mainly achieved via lipid nanoparticles (LNPs) or chemical conjugation with N-Acetylgalactosamine (GalNAc), thus current RNAi therapy has been limited to liver diseases, most likely to encounter liver-targeting limitations. Hence, there is a huge unmet medical need for intense evolution of RNAi therapeutics delivery systems to target extrahepatic tissues and ultimately extend their indications for treating various intractable diseases. In this review, challenges of delivering RNAi therapeutics to tumors and major organs are discussed, as well as their transition to clinical trials. This review also highlights innovative and promising preclinical RNAi-based delivery platforms for the treatment of extrahepatic diseases.
Collapse
Affiliation(s)
- Jong Won Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Man Kyu Shim
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hyosuk Kim
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hochung Jang
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Yuhan Lee
- Department of Anesthesiology, Perioperative, and Pain Medicine, Center for Accelerated Medical Innovation & Center for Nanomedicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Sun Hwa Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
| |
Collapse
|
19
|
Jin Y, Adams F, Isert L, Baldassi D, Merkel OM. Spermine-Based Poly(β-amino ester)s for siRNA Delivery against Mutated KRAS in Lung Cancer. Mol Pharm 2023; 20:4505-4516. [PMID: 37578116 PMCID: PMC7615020 DOI: 10.1021/acs.molpharmaceut.3c00206] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Polyethylenimine (PEI) is a highly efficient cationic polymer for nucleic acid delivery, and although it is commonly used in preclinical studies, its clinical application is limited because of concerns regarding its cytotoxicity. Poly(β-amino ester)s are a new group of biodegradable and biocompatible cationic polymers that can be used for siRNA delivery. In this study, we synthesized Boc-protected and deprotected poly(β-amino ester)s, P(BSpBAE) and P(SpBAE), respectively, based on spermine and 1,4-butanediol diacrylate to deliver siRNA. The polymers were synthesized by Michael addition in a step-growth polymerization and characterized via 1H NMR spectroscopy and size-exclusion chromatography (SEC). The polymers can encapsulate siRNA as determined by SYBR gold assays. Both polymers and polyplexes were biocompatible in vitro. Furthermore, the cellular uptake of P(BSpBAE) and P(SpBAE) polyplexes was more efficient than for branched PEI (25 kDa) polyplexes at the same N/P ratios. P(BSpBAE) polyplexes achieved 60% eGFP knockdown in vitro, which indicates that the Boc-protection can improve the siRNA delivery and gene silencing efficiency of PBAEs. P(BSpBAE) polyplexes and P(SpBAE) polyplexes showed different cellular uptake mechanisms, and P(BSpBAE) polyplexes demonstrated decreased endosomal entrapment, which could explain why P(BSpBAE) polyplexes more efficiently mediated gene silencing than P(SpBAE) polyplexes. Furthermore, transfection of an siRNA against mutated KRAS in KRAS-mutated lung cancer cells led to around 35% (P(BspBAE)) to 45% (P(SpBAE)) inhibition of KRAS expression and around 33% (P(SpBAE)) to 55% (P(BspBAE)) decreased motility in a migration assay. These results suggest that the newly developed spermine-based poly(β-amino ester)s are promising materials for therapeutic siRNA delivery.
Collapse
Affiliation(s)
- Yao Jin
- Ludwig-Maximilians-University Munich, Department of Pharmacy, Pharmaceutical technology and Biopharmaceutics, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Friederike Adams
- Ludwig-Maximilians-University Munich, Department of Pharmacy, Pharmaceutical technology and Biopharmaceutics, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Lorenz Isert
- Ludwig-Maximilians-University Munich, Department of Pharmacy, Pharmaceutical technology and Biopharmaceutics, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Domizia Baldassi
- Ludwig-Maximilians-University Munich, Department of Pharmacy, Pharmaceutical technology and Biopharmaceutics, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Olivia M. Merkel
- Ludwig-Maximilians-University Munich, Department of Pharmacy, Pharmaceutical technology and Biopharmaceutics, Butenandtstr. 5-13, 81377 Munich, Germany
| |
Collapse
|
20
|
Boboltz A, Kumar S, Duncan GA. Inhaled drug delivery for the targeted treatment of asthma. Adv Drug Deliv Rev 2023; 198:114858. [PMID: 37178928 PMCID: PMC10330872 DOI: 10.1016/j.addr.2023.114858] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/14/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023]
Abstract
Asthma is a chronic lung disease affecting millions worldwide. While classically acknowledged to result from allergen-driven type 2 inflammatory responses leading to IgE and cytokine production and the influx of immune cells such as mast cells and eosinophils, the wide range in asthmatic pathobiological subtypes lead to highly variable responses to anti-inflammatory therapies. Thus, there is a need to develop patient-specific therapies capable of addressing the full spectrum of asthmatic lung disease. Moreover, delivery of targeted treatments for asthma directly to the lung may help to maximize therapeutic benefit, but challenges remain in design of effective formulations for the inhaled route. In this review, we discuss the current understanding of asthmatic disease progression as well as genetic and epigenetic disease modifiers associated with asthma severity and exacerbation of disease. We also overview the limitations of clinically available treatments for asthma and discuss pre-clinical models of asthma used to evaluate new therapies. Based on the shortcomings of existing treatments, we highlight recent advances and new approaches to treat asthma via inhalation for monoclonal antibody delivery, mucolytic therapy to target airway mucus hypersecretion and gene therapies to address underlying drivers of disease. Finally, we conclude with discussion on the prospects for an inhaled vaccine to prevent asthma.
Collapse
Affiliation(s)
- Allison Boboltz
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, United States
| | - Sahana Kumar
- Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742, United States
| | - Gregg A Duncan
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, United States; Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742, United States.
| |
Collapse
|
21
|
Paul D, Miller MH, Born J, Samaddar S, Ni H, Avila H, Krishnamurthy VR, Thirunavukkarasu K. The Promising Therapeutic Potential of Oligonucleotides for Pulmonary Fibrotic Diseases. Expert Opin Drug Discov 2023; 18:193-206. [PMID: 36562410 DOI: 10.1080/17460441.2023.2160439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Fibrotic lung diseases represent a large subset of diseases with an unmet clinical need. Oligonucleotide therapies (ONT) are a promising therapeutic approach for the treatment of pulmonary disease as they can inhibit pathways that are otherwise difficult to target. Additionally, targeting the lung specifically with ONT is advantageous because it reduces the possibilities of systemic side effects and tolerability concerns. AREAS COVERED This review presents the chemical basis of designing various ONTs currently known to treat fibrotic lung diseases. Further, the authors have also discussed the delivery vehicle, routes of administration, physiological barriers of the lung, and toxicity concerns with ONTs. EXPERT OPINION ONTs provide a promising therapeutic approach for the treatment of fibrotic diseases of the lung, particularly because ONTs directly delivered to the lung show little systemic side effects compared to current therapeutic strategies. Dry powder aerosolized inhalers may be a good strategy for getting ONTs into the lung in humans. However, as of now, no dry powder ONTs have been approved for use in the clinical setting, and this challenge must be overcome for future therapies. Various delivery methods that can aid in direct targeting may also improve the use of ONTs for lung fibrotic diseases.
Collapse
Affiliation(s)
| | | | - Josh Born
- Genetic Medicine, Eli Lilly and Company
| | - Shayak Samaddar
- Bioproduct Drug Development, Eli Lilly and Company, Indianapolis, IN, US
| | | | | | | | | |
Collapse
|
22
|
Chernikov IV, Staroseletz YY, Tatarnikova IS, Sen’kova AV, Savin IA, Markov AV, Logashenko EB, Chernolovskaya EL, Zenkova MA, Vlassov VV. siRNA-Mediated Timp1 Silencing Inhibited the Inflammatory Phenotype during Acute Lung Injury. Int J Mol Sci 2023; 24:ijms24021641. [PMID: 36675165 PMCID: PMC9865963 DOI: 10.3390/ijms24021641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Acute lung injury is a complex cascade process that develops in response to various damaging factors, which can lead to acute respiratory distress syndrome. Within this study, based on bioinformatics reanalysis of available full-transcriptome data of acute lung injury induced in mice and humans by various factors, we selected a set of genes that could serve as good targets for suppressing inflammation in the lung tissue, evaluated their expression in the cells of different origins during LPS-induced inflammation, and chose the tissue inhibitor of metalloproteinase Timp1 as a promising target for suppressing inflammation. We designed an effective chemically modified anti-TIMP1 siRNA and showed that Timp1 silencing correlates with a decrease in the pro-inflammatory cytokine IL6 secretion in cultured macrophage cells and reduces the severity of LPS-induced acute lung injury in a mouse model.
Collapse
|
23
|
Han Y, Zhu Y, Youngblood HA, Almuntashiri S, Jones TW, Wang X, Liu Y, Somanath PR, Zhang D. Nebulization of extracellular vesicles: A promising small RNA delivery approach for lung diseases. J Control Release 2022; 352:556-569. [PMID: 36341934 DOI: 10.1016/j.jconrel.2022.10.052] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/13/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
Small extracellular vesicles (sEVs) are a group of cell-secreted nanovesicles with a diameter up to 200 nm. A growing number of studies have indicated that sEVs can reflect the pathogenesis of human diseases and mediate intercellular communications. Recently, sEV research has drastically increased due to their drug delivery property. However, a comprehensive method of delivering exogenous small RNAs-loaded sEVs through nebulization has not been reported. The methodology is complicated by uncertainty regarding the integrity of sEVs after nebulization, the delivery efficiency of aerosolized sEVs, their deposition in the lungs/cells, etc. This study demonstrates that sEVs can be delivered to murine lungs through a vibrating mesh nebulizer (VMN). In vivo sEV tracking indicated that inhaled sEVs were distributed exclusively in the lung and localized primarily in lung macrophages and airway epithelial cells. Additionally, sEVs loaded with small RNAs were successfully delivered into the lungs. The administration of siMyd88-loaded sEVs through inhalation reduced lipopolysaccharide (LPS)-induced lung injury in mice, supporting an application of this nebulization methodology to deliver functional small RNAs. Collectively, our study proposes a novel method of sEVs-mediated small RNA delivery into the murine lung through nebulization and presents a potential sEV-based therapeutic strategy for human lung diseases.
Collapse
Affiliation(s)
- Yohan Han
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States
| | - Yin Zhu
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States
| | - Hannah A Youngblood
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA 30912, United States
| | - Sultan Almuntashiri
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States
| | - Timothy W Jones
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States
| | - Xiaoyun Wang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA 30912, United States
| | - Payaningal R Somanath
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States; Vascular Biology Center, Augusta University, Augusta, GA 30912, United States
| | - Duo Zhang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States; Vascular Biology Center, Augusta University, Augusta, GA 30912, United States; Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States.
| |
Collapse
|
24
|
Japiassu KB, Fay F, Marengo A, Louaguenouni Y, Cailleau C, Denis S, Chapron D, Tsapis N, Nascimento TL, Lima EM, Fattal E. Interplay between mucus mobility and alveolar macrophage targeting of surface-modified liposomes. J Control Release 2022; 352:15-24. [PMID: 36209941 DOI: 10.1016/j.jconrel.2022.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/16/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
Alveolar macrophages play a crucial role in the initiation and resolution of the immune response in the lungs. Pro-inflammatory M1 alveolar macrophages are an interesting target for treating inflammatory and infectious pulmonary diseases. One commune targeting strategy is to use nanoparticles conjugated with hyaluronic acid, which interact with CD44 overexpressed on the membrane of those cells. Unfortunately, this coating strategy may be countered by the presence on the surface of the nanoparticles of a poly(ethylene glycol) corona employed to improve nanoparticles' diffusion in the lung mucus. This study aims to measure this phenomenon by comparing the behavior in a murine lung inflammation model of three liposomal platforms designed to represent different poly(ethylene glycol) and hyaluronic acid densities (Liposome-PEG, Liposome-PEG-HA and Liposome-HA). In this work, the liposomes were obtained by a one-step ethanol injection method. Their interaction with mucin and targeting ability toward pro-inflammatory macrophages were then investigated in vitro and in vivo in a LPS model of lung inflammation. In vitro, poly(ethylene glycol) free HA-liposomes display a superior targeting efficiency toward M1 macrophages, while the addition of poly(ethylene glycol) induces better mucus mobility. Interestingly in vivo studies revealed that the three liposomes showed distinct cell specificity with alveolar macrophages demonstrating an avidity for poly(ethylene glycol) free HA-liposomes, while neutrophils favored PEGylated liposomes exempt of HA. Those results could be explained by the presence of two forces exercising a balance between mucus penetration and receptor targeting. This study corroborates the importance of considering the site of action and the targeted cells when designing nanoparticles to treat lung diseases.
Collapse
Affiliation(s)
- Kamila Bohne Japiassu
- University Paris-Saclay, CNRS, Institut Galien Paris-Saclay (UMR 8612), Châtenay-Malabry, France; Center for RD&I in Pharmaceutical Nano/Technology (FarmaTec), Federal University of Goias, Goiania, 74605-220, Goias, Brazil
| | - Francois Fay
- University Paris-Saclay, CNRS, Institut Galien Paris-Saclay (UMR 8612), Châtenay-Malabry, France
| | - Alessandro Marengo
- University Paris-Saclay, CNRS, Institut Galien Paris-Saclay (UMR 8612), Châtenay-Malabry, France
| | - Younès Louaguenouni
- University Paris-Saclay, CNRS, Institut Galien Paris-Saclay (UMR 8612), Châtenay-Malabry, France
| | - Catherine Cailleau
- University Paris-Saclay, CNRS, Institut Galien Paris-Saclay (UMR 8612), Châtenay-Malabry, France
| | - Stéphanie Denis
- University Paris-Saclay, CNRS, Institut Galien Paris-Saclay (UMR 8612), Châtenay-Malabry, France
| | - David Chapron
- University Paris-Saclay, CNRS, Institut Galien Paris-Saclay (UMR 8612), Châtenay-Malabry, France
| | - Nicolas Tsapis
- University Paris-Saclay, CNRS, Institut Galien Paris-Saclay (UMR 8612), Châtenay-Malabry, France
| | - Thais Leite Nascimento
- Center for RD&I in Pharmaceutical Nano/Technology (FarmaTec), Federal University of Goias, Goiania, 74605-220, Goias, Brazil
| | - Eliana Martins Lima
- Center for RD&I in Pharmaceutical Nano/Technology (FarmaTec), Federal University of Goias, Goiania, 74605-220, Goias, Brazil
| | - Elias Fattal
- University Paris-Saclay, CNRS, Institut Galien Paris-Saclay (UMR 8612), Châtenay-Malabry, France.
| |
Collapse
|
25
|
Wang H, Qin L, Zhang X, Guan J, Mao S. Mechanisms and challenges of nanocarriers as non-viral vectors of therapeutic genes for enhanced pulmonary delivery. J Control Release 2022; 352:970-993. [PMID: 36372386 PMCID: PMC9671523 DOI: 10.1016/j.jconrel.2022.10.061] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022]
Abstract
With the rapid development of biopharmaceuticals and the outbreak of COVID-19, the world has ushered in a frenzy to develop gene therapy. Therefore, therapeutic genes have received enormous attention. However, due to the extreme instability and low intracellular gene expression of naked genes, specific vectors are required. Viral vectors are widely used attributed to their high transfection efficiency. However, due to the safety concerns of viral vectors, nanotechnology-based non-viral vectors have attracted extensive investigation. Still, issues of low transfection efficiency and poor tissue targeting of non-viral vectors need to be addressed. Especially, pulmonary gene delivery has obvious advantages for the treatment of inherited lung diseases, lung cancer, and viral pneumonia, which can not only enhance lung targeting and but also reduce enzymatic degradation. For systemic diseases therapy, pulmonary gene delivery can enhance vaccine efficacy via inducing not only cellular, humoral immunity but also mucosal immunity. This review provides a comprehensive overview of nanocarriers as non-viral vectors of therapeutic genes for enhanced pulmonary delivery. First of all, the characteristics and therapeutic mechanism of DNA, mRNA, and siRNA are provided. Thereafter, the advantages and challenges of pulmonary gene delivery in exerting local and systemic effects are discussed. Then, the inhalation dosage forms for nanoparticle-based drug delivery systems are introduced. Moreover, a series of materials used as nanocarriers for pulmonary gene delivery are presented, and the endosomal escape mechanisms of nanocarriers based on different materials are explored. The application of various non-viral vectors for pulmonary gene delivery are summarized in detail, with the perspectives of nano-vectors for pulmonary gene delivery.
Collapse
Affiliation(s)
| | | | - Xin Zhang
- Corresponding authors at: School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, 110016 Shenyang, China
| | | | - Shirui Mao
- Corresponding authors at: School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, 110016 Shenyang, China
| |
Collapse
|
26
|
Pulmonary Delivery of Emerging Antibacterials for Bacterial Lung Infections Treatment. Pharm Res 2022; 40:1057-1072. [PMID: 36123511 PMCID: PMC9484715 DOI: 10.1007/s11095-022-03379-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/20/2022] [Indexed: 11/08/2022]
Abstract
Bacterial infections in the respiratory tract are considered as one of the major challenges to the public health worldwide. Pulmonary delivery is an attractive approach in the management of bacterial respiratory infections with a few inhaled antibiotics approved. However, with the rapid emergence of antibiotic-resistant bacteria, it is necessary to develop new/alternative inhaled antibacterial agents in the post-antibiotic era. A pipeline of novel biological antibacterial agents, including antimicrobial peptides, RNAi therapeutics, and bacteriophages, has emerged to combat bacterial infections with excellent performance. In this review, the causal effects of bacterial infections on the related pulmonary infectious diseases will be firstly introduced. This is followed by an overview on the development of emerging antibacterial therapeutics for managing lung bacterial infections through nebulization/inhalation of dried powders. The obstacles and underlying proposals regarding their clinical transformation are also discussed to seek insights for further development. Research on inhaled therapy of these emerging antibacterials are still in the infancy, but the promising progress warrants further attention.
Collapse
|
27
|
Cortez-Jugo C, Masoumi S, Chan PPY, Friend J, Yeo L. Nebulization of siRNA for inhalation therapy based on a microfluidic surface acoustic wave platform. ULTRASONICS SONOCHEMISTRY 2022; 88:106088. [PMID: 35797825 PMCID: PMC9263997 DOI: 10.1016/j.ultsonch.2022.106088] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 05/14/2023]
Abstract
The local delivery of therapeutic small interfering RNA or siRNA to the lungs has the potential to improve the prognosis for patients suffering debilitating lung diseases. Recent advances in materials science have been aimed at addressing delivery challenges including biodistribution, bioavailability and cell internalization, but an equally important challenge to overcome is the development of an inhalation device that can deliver the siRNA effectively to the lung, without degrading the therapeutic itself. Here, we report the nebulization of siRNA, either naked siRNA or complexed with polyethyleneimine (PEI) or a commercial transfection agent, using a miniaturizable acoustomicrofluidic nebulization device. The siRNA solution could be nebulised without significant degradation into an aerosol mist with tunable mean aerodynamic diameters of approximately 3 µm, which is appropriate for deep lung deposition via inhalation. The nebulized siRNA was tested for its stability, as well as its toxicity and gene silencing properties using the mammalian lung carcinoma cell line A549, which demonstrated that the gene silencing capability of siRNA is retained after nebulization. This highlights the potential application of the acoustomicrofluidic device for the delivery of efficacious siRNA via inhalation, either for systemic delivery via the alveolar epithelium or local therapeutic delivery to the lung.
Collapse
Affiliation(s)
- Christina Cortez-Jugo
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia; Melbourne Centre for Nanofabrication, 151 Wellington Road, Clayton, Victoria 3168, Australia.
| | - Sarah Masoumi
- Micro/Nanophysics Research Laboratory, RMIT University, Melbourne, Victoria 3001, Australia
| | - Peggy P Y Chan
- School of Software and Electrical Engineering, Swinburne University, Hawthorn, Victoria 3122, Australia; Melbourne Centre for Nanofabrication, 151 Wellington Road, Clayton, Victoria 3168, Australia
| | - James Friend
- Micro/Nanophysics Research Laboratory, RMIT University, Melbourne, Victoria 3001, Australia; Melbourne Centre for Nanofabrication, 151 Wellington Road, Clayton, Victoria 3168, Australia
| | - Leslie Yeo
- Micro/Nanophysics Research Laboratory, RMIT University, Melbourne, Victoria 3001, Australia.
| |
Collapse
|
28
|
Gao J, Xia Z, Vohidova D, Joseph J, Luo JN, Joshi N. Progress in non-viral localized delivery of siRNA therapeutics for pulmonary diseases. Acta Pharm Sin B 2022; 13:1400-1428. [PMID: 37139423 PMCID: PMC10150162 DOI: 10.1016/j.apsb.2022.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/10/2022] [Accepted: 06/13/2022] [Indexed: 11/01/2022] Open
Abstract
Emerging therapies based on localized delivery of siRNA to lungs have opened up exciting possibilities for treatment of different lung diseases. Localized delivery of siRNA to lungs has shown to result in severalfold higher lung accumulation than systemic route, while minimizing non-specific distribution in other organs. However, to date, only 2 clinical trials have explored localized delivery of siRNA for pulmonary diseases. Here we systematically reviewed recent advances in the field of pulmonary delivery of siRNA using non-viral approaches. We firstly introduce the routes of local administration and analyze the anatomical and physiological barriers towards effective local delivery of siRNA in lungs. We then discuss current progress in pulmonary delivery of siRNA for respiratory tract infections, chronic obstructive pulmonary diseases, acute lung injury, and lung cancer, list outstanding questions, and highlight directions for future research. We expect this review to provide a comprehensive understanding of current advances in pulmonary delivery of siRNA.
Collapse
|
29
|
Gao Q, DeLaura IF, Anwar IJ, Kesseli SJ, Kahan R, Abraham N, Asokan A, Barbas AS, Hartwig MG. Gene Therapy: Will the Promise of Optimizing Lung Allografts Become Reality? Front Immunol 2022; 13:931524. [PMID: 35844566 PMCID: PMC9283701 DOI: 10.3389/fimmu.2022.931524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/09/2022] [Indexed: 01/21/2023] Open
Abstract
Lung transplantation is the definitive therapy for patients living with end-stage lung disease. Despite significant progress made in the field, graft survival remains the lowest of all solid organ transplants. Additionally, the lung has among the lowest of organ utilization rates-among eligible donors, only 22% of lungs from multi-organ donors were transplanted in 2019. Novel strategies are needed to rehabilitate marginal organs and improve graft survival. Gene therapy is one promising strategy in optimizing donor allografts. Over-expression or inhibition of specific genes can be achieved to target various pathways of graft injury, including ischemic-reperfusion injuries, humoral or cellular rejection, and chronic lung allograft dysfunction. Experiments in animal models have historically utilized adenovirus-based vectors and the majority of literature in lung transplantation has focused on overexpression of IL-10. Although several strategies were shown to prevent rejection and prolong graft survival in preclinical models, none have led to clinical translation. The past decade has seen a renaissance in the field of gene therapy and two AAV-based in vivo gene therapies are now FDA-approved for clinical use. Concurrently, normothermic ex vivo machine perfusion technology has emerged as an alternative to traditional static cold storage. This preservation method keeps organs physiologically active during storage and thus potentially offers a platform for gene therapy. This review will explore the advantages and disadvantages of various gene therapy modalities, review various candidate genes implicated in various stages of allograft injury and summarize the recent efforts in optimizing donor lungs using gene therapy.
Collapse
Affiliation(s)
- Qimeng Gao
- Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Isabel F. DeLaura
- Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Imran J. Anwar
- Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Samuel J. Kesseli
- Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Riley Kahan
- Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Nader Abraham
- Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Aravind Asokan
- Department of Surgery, Duke University Medical Center, Durham, NC, United States
- Department of Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, NC, United States
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Andrew S. Barbas
- Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Matthew G. Hartwig
- Division of Cardiovascular and Thoracic Surgery, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
30
|
Bai X, Zhao G, Chen Q, Li Z, Gao M, Ho W, Xu X, Zhang XQ. Inhaled siRNA nanoparticles targeting IL11 inhibit lung fibrosis and improve pulmonary function post-bleomycin challenge. SCIENCE ADVANCES 2022; 8:eabn7162. [PMID: 35731866 PMCID: PMC9216512 DOI: 10.1126/sciadv.abn7162] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/04/2022] [Indexed: 05/31/2023]
Abstract
Interleukin-11 (IL-11) is a profibrotic cytokine essential for the differentiation of fibroblasts into collagen-secreting, actin alpha 2, smooth muscle-positive (ACTA2+) myofibroblasts, driving processes underlying the pathogenesis of idiopathic pulmonary fibrosis (IPF). Here, we developed an inhalable and mucus-penetrative nanoparticle (NP) system incorporating siRNA against IL11 (siIL11@PPGC NPs) and investigated therapeutic potential for the treatment of IPF. NPs are formulated through self-assembly of a biodegradable PLGA-PEG diblock copolymer and a self-created cationic lipid-like molecule G0-C14 to enable efficient transmucosal delivery of siIL11. Noninvasive aerosol inhalation hindered fibroblast differentiation and reduced ECM deposition via inhibition of ERK and SMAD2. Furthermore, siIL11@PPGC NPs significantly diminished fibrosis development and improved pulmonary function in a mouse model of bleomycin-induced pulmonary fibrosis without inducing systemic toxicity. This work presents a versatile NP platform for the locally inhaled delivery of siRNA therapeutics and exhibits promising clinical potential in the treatment of numerous respiratory diseases, including IPF.
Collapse
Affiliation(s)
- Xin Bai
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Guolin Zhao
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Qijing Chen
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Zhongyu Li
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Mingzhu Gao
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - William Ho
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Xiaoyang Xu
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Xue-Qing Zhang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| |
Collapse
|
31
|
Fan Y, Yang Z. Inhaled siRNA Formulations for Respiratory Diseases: From Basic Research to Clinical Application. Pharmaceutics 2022; 14:1193. [PMID: 35745766 PMCID: PMC9227582 DOI: 10.3390/pharmaceutics14061193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 12/10/2022] Open
Abstract
The development of siRNA technology has provided new opportunities for gene-specific inhibition and knockdown, as well as new ideas for the treatment of disease. Four siRNA drugs have already been approved for marketing. However, the instability of siRNA in vivo makes systemic delivery ineffective. Inhaled siRNA formulations can deliver drugs directly to the lung, showing great potential for treating respiratory diseases. The clinical applications of inhaled siRNA formulations still face challenges because effective delivery of siRNA to the lung requires overcoming the pulmonary and cellular barriers. This paper reviews the research progress for siRNA inhalation formulations for the treatment of various respiratory diseases and summarizes the chemical structural modifications and the various delivery systems for siRNA. Finally, we conclude the latest clinical application research for inhaled siRNA formulations and discuss the potential difficulty in efficient clinical application.
Collapse
Affiliation(s)
| | - Zhijun Yang
- School of Chinese Medicine, Hong Kong Baptist University, 224 Waterloo Rd., Kowloon Tong, Hong Kong, China;
| |
Collapse
|
32
|
Ma Z, Wong S, Forgham H, Esser L, Lai M, Leiske M, Kempe K, Sharbeen G, Youkhana J, Mansfeld F, Quinn J, Phillips P, Davis T, Kavallaris M, McCarroll J. Aerosol delivery of star polymer-siRNA nanoparticles as a therapeutic strategy to inhibit lung tumor growth. Biomaterials 2022; 285:121539. [DOI: 10.1016/j.biomaterials.2022.121539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 01/12/2023]
|
33
|
Merkel OM. Can pulmonary RNA delivery improve our pandemic preparedness? J Control Release 2022; 345:549-556. [PMID: 35358609 PMCID: PMC8958776 DOI: 10.1016/j.jconrel.2022.03.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 03/20/2022] [Indexed: 12/17/2022]
Abstract
The coronavirus pandemic has changed our perception of RNA medicines, and RNA vaccines have revolutionized our pandemic preparedness. But are we indeed prepared for the next variant or the next emerging virus? How can we prepare? And what does the role of inhaled antiviral RNA play in this regard? When the pandemic started, I rerouted much of the ongoing inhaled RNA delivery research in my group towards the inhibition and treatment of respiratory viral infections. Two years later, I have taken the literature, past and ongoing clinical trials into consideration and have gained new insights based on our collaborative research which I will discuss in this oration.
Collapse
Affiliation(s)
- Olivia M Merkel
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University of Munich, Butenandtstraße 5, 81377 Munich, Germany.
| |
Collapse
|
34
|
Zhang D, Tian J, Wang Y, Lu J. Evitar: designing anti-viral RNA therapies against future RNA viruses. Bioinformatics 2022; 38:2437-2443. [PMID: 35294970 PMCID: PMC9048652 DOI: 10.1093/bioinformatics/btac144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION The coronavirus disease 2019 (COVID-19) pandemic has highlighted the threat of emerging respiratory viruses and has exposed the lack of availability of off-the-shelf therapeutics against new RNA viruses. Previous research has established the potential that siRNAs and RNA-targeting CRISPR have in combating known RNA viruses. However, the feasibility and tools for designing anti-viral RNA therapeutics against future RNA viruses have not yet been established. RESULTS We develop the Emerging-Virus-Targeting RNA (Evitar) pipeline for designing anti-viral siRNAs and CRISPR Cas13a guide RNA (gRNA) sequences. Within Evitar, we develop Greedy Algorithm with Redundancy and Similarity-weighted Greedy Algorithm with Redundancy to enhance the performance. Time simulations using known coronavirus genomes deposited as early as 10 years prior to the COVID-19 outbreak show that at least three SARS-CoV-2-targeting siRNAs are among the top 30 pre-designed siRNAs. In addition, among the top 19 pre-designed gRNAs, there are three SARS-CoV-2-targeting Cas13a gRNAs that could be predicted using information from 2011. Before-the-outbreak design is also possible against the MERS-CoV virus and the 2009-H1N1 swine flu virus. Designed siRNAs are further shown to suppress SARS-CoV-2 viral sequences using in vitro reporter assays. Our results support the utility of Evitar to pre-design anti-viral siRNAs/gRNAs against future viruses. Therefore, we propose the development of a collection consisting of roughly 30 pre-designed, safety-tested and off-the-shelf siRNA/CRISPR therapeutics that could accelerate responses to future RNA virus outbreaks. AVAILABILITY AND IMPLEMENTATION Codes are available at GitHub (https://github.com/dingyaozhang/Evitar). SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Dingyao Zhang
- Yale Stem Cell Center, Yale University, New Haven, CT 06520, USA.,Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jingru Tian
- Yale Stem Cell Center, Yale University, New Haven, CT 06520, USA.,Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Yadong Wang
- Yale Stem Cell Center, Yale University, New Haven, CT 06520, USA.,Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA.,Yale Center for RNA Science and Medicine, Yale Cancer Center, Yale University, New Haven, CT 06520, USA
| | - Jun Lu
- Yale Stem Cell Center, Yale University, New Haven, CT 06520, USA.,Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA.,Yale Center for RNA Science and Medicine, Yale Cancer Center, Yale University, New Haven, CT 06520, USA.,Yale Cooperative Center of Excellence in Hematology, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
35
|
Kota P. Sustained inhibition of ENaC in CF: Potential RNA-based therapies for mutation-agnostic treatment. Curr Opin Pharmacol 2022; 64:102209. [PMID: 35483215 DOI: 10.1016/j.coph.2022.102209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 12/17/2022]
Abstract
Disruption of the equilibrium between ion secretion and absorption processes by the airway epithelium is central to many muco-obstructive lung diseases including cystic fibrosis (CF). Besides correction of defective folding and function of CFTR, inhibition of amiloride-sensitive epithelia sodium channels (ENaC) has emerged as a bona fide therapeutic strategy to improve mucociliary clearance in patients with CF. The short half-life of amiloride-based ENaC blockers and hyperosmotic therapies have led to the development of novel RNA-based interventions for targeted and sustained reduction of ENaC expression and function in preclinical models of CF. This review summarizes the recent advances in RNA therapeutics targeting ENaC for mutation-agnostic treatment of CF.
Collapse
Affiliation(s)
- Pradeep Kota
- Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, NC 27599, USA.
| |
Collapse
|
36
|
Azhar A, Khan WH, Al-Hosaini K, Kamal MA. miRNAs in SARS-CoV-2 Infection: An Update. Curr Drug Metab 2022; 23:283-298. [PMID: 35319361 DOI: 10.2174/1389200223666220321102824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 02/08/2023]
Abstract
Coronavirus disease-2019 (COVID-19) is a highly infectious disease caused by newly discovered severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since the inception of SARS-CoV-2 from Wuhan, China, the virus has traveled to more than 200 countries globally. The role of SARS-CoV-2 in COVID-19 has been thoroughly investigated and reviewed in the last 22 months or so; however, a comprehensive outline of miRNAs in SARS-CoV-2 infection is still missing. The genetic material of SARS-CoV-2 is a single-stranded RNA molecule nearly 29 kb in size. RNA is composed of numerous sub-constituents, including microRNAs (miRNAs). miRNAs play an essential role in biological processes like apoptosis, cellular metabolism, cell death, cell movement, oncogenesis, intracellular signaling, immunity, and infection. Lately, miRNAs have been involved in SARS-CoV-2 infection, though the clear demonstration of miRNAs in the SARS-CoV-2 infection is not fully elucidated. The present review article summarizes recent findings of miRNAs associated with SARS-CoV-2 infection. We presented various facets of miRNAs such as miRNAs as the protagonist in viral infection, the occurrence of miRNA in cellular receptors, expression of miRNAs in multiple diseases, miRNA as a biomarker, and miRNA as a therapeutic tool discussed in detail. We also presented the vaccine status available in various countries.
Collapse
Affiliation(s)
- Asim Azhar
- Aligarh College of Education, Aligarh, UP, India
| | - Wajihul Hasan Khan
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Khaled Al-Hosaini
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Post Box 2457, Riyadh 11451, Kingdom of Saudi Arabia
| | - Mohammad Amjad Kamal
- West China School of Nursing / Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia
- Enzymoics, NSW; Novel Global Community Educational Foundation, Australia
| |
Collapse
|
37
|
Zhang Y, Almazi JG, Ong HX, Johansen MD, Ledger S, Traini D, Hansbro PM, Kelleher AD, Ahlenstiel CL. Nanoparticle Delivery Platforms for RNAi Therapeutics Targeting COVID-19 Disease in the Respiratory Tract. Int J Mol Sci 2022; 23:2408. [PMID: 35269550 PMCID: PMC8909959 DOI: 10.3390/ijms23052408] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Since December 2019, a pandemic of COVID-19 disease, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has rapidly spread across the globe. At present, the Food and Drug Administration (FDA) has issued emergency approval for the use of some antiviral drugs. However, these drugs still have limitations in the specific treatment of COVID-19, and as such, new treatment strategies urgently need to be developed. RNA-interference-based gene therapy provides a tractable target for antiviral treatment. Ensuring cell-specific targeted delivery is important to the success of gene therapy. The use of nanoparticles (NPs) as carriers for the delivery of small interfering RNA (siRNAs) to specific tissues or organs of the human body could play a crucial role in the specific therapy of severe respiratory infections, such as COVID-19. In this review, we describe a variety of novel nanocarriers, such as lipid NPs, star polymer NPs, and glycogen NPs, and summarize the pre-clinical/clinical progress of these nanoparticle platforms in siRNA delivery. We also discuss the application of various NP-capsulated siRNA as therapeutics for SARS-CoV-2 infection, the challenges with targeting these therapeutics to local delivery in the lung, and various inhalation devices used for therapeutic administration. We also discuss currently available animal models that are used for preclinical assessment of RNA-interference-based gene therapy. Advances in this field have the potential for antiviral treatments of COVID-19 disease and could be adapted to treat a range of respiratory diseases.
Collapse
Affiliation(s)
- Yuan Zhang
- Kirby Institute, UNSW, Sydney, NSW 2052, Australia; (Y.Z.); (S.L.); (A.D.K.)
| | - Juhura G. Almazi
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia; (J.G.A.); (H.X.O.); (D.T.)
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Ryde, NSW 2109, Australia
| | - Hui Xin Ong
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia; (J.G.A.); (H.X.O.); (D.T.)
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Ryde, NSW 2109, Australia
| | - Matt D. Johansen
- Centre for Inflammation, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2050, Australia; (M.D.J.); (P.M.H.)
| | - Scott Ledger
- Kirby Institute, UNSW, Sydney, NSW 2052, Australia; (Y.Z.); (S.L.); (A.D.K.)
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia; (J.G.A.); (H.X.O.); (D.T.)
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Ryde, NSW 2109, Australia
| | - Philip M. Hansbro
- Centre for Inflammation, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2050, Australia; (M.D.J.); (P.M.H.)
| | - Anthony D. Kelleher
- Kirby Institute, UNSW, Sydney, NSW 2052, Australia; (Y.Z.); (S.L.); (A.D.K.)
| | | |
Collapse
|
38
|
Zoulikha M, Xiao Q, Boafo GF, Sallam MA, Chen Z, He W. Pulmonary delivery of siRNA against acute lung injury/acute respiratory distress syndrome. Acta Pharm Sin B 2022; 12:600-620. [PMID: 34401226 PMCID: PMC8359643 DOI: 10.1016/j.apsb.2021.08.009] [Citation(s) in RCA: 159] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/14/2021] [Accepted: 07/02/2021] [Indexed: 02/08/2023] Open
Abstract
The use of small interfering RNAs (siRNAs) has been under investigation for the treatment of several unmet medical needs, including acute lung injury/acute respiratory distress syndrome (ALI/ARDS) wherein siRNA may be implemented to modify the expression of pro-inflammatory cytokines and chemokines at the mRNA level. The properties such as clear anatomy, accessibility, and relatively low enzyme activity make the lung a good target for local siRNA therapy. However, the translation of siRNA is restricted by the inefficient delivery of siRNA therapeutics to the target cells due to the properties of naked siRNA. Thus, this review will focus on the various delivery systems that can be used and the different barriers that need to be surmounted for the development of stable inhalable siRNA formulations for human use before siRNA therapeutics for ALI/ARDS become available in the clinic.
Collapse
Key Words
- AAV, adeno-associated virus
- ALI/ARDS
- ALI/ARDS, acute lung injury/acute respiratory distress syndrome
- AM, alveolar macrophage
- ATI, alveolar cell type I
- ATII, alveolar cell type II
- AV, adenovirus
- Ago-2, argonaute 2
- CFDA, China Food and Drug Administration
- COPD, chronic obstructive pulmonary disease
- CPP, cell-penetrating peptide
- CS, cigarette smoke
- CXCR4, C–X–C motif chemokine receptor type 4
- Cellular uptake
- DAMPs, danger-associated molecular patterns
- DC-Chol, 3β-(N-(N′,N′-dimethylethylenediamine)-carbamoyl) cholesterol
- DDAB, dimethyldioctadecylammonium bromide
- DODAP, 1,2-dioleyl-3-dimethylammonium-propane
- DODMA, 1,2-dioleyloxy-N,N-dimethyl-3-aminopropane
- DOGS, dioctadecyl amido glycin spermine
- DOPC, 1,2-dioleoyl-sn-glycero-3-phosphocholine
- DOPE, 1,2-dioleoyl-l-α-glycero-3-phosphatidylethanolamine
- DOSPA, 2,3-dioleyloxy-N-[2-(sperminecarboxamido)ethyl]-N,N-dimethyl-1-propanaminium
- DOTAP, 1,2-dioleoyl-3-trimethylammonium-propane
- DOTMA, N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium
- DPI, dry powder inhaler
- DPPC, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine
- Drug delivery
- EC, endothelial cell
- EPC, egg phosphatidylcholine
- EXOs, exosomes
- Endosomal escape
- EpiC, epithelial cell
- FDA, US Food and Drug Administration
- HALI, hyperoxic acute lung injury
- HMGB1, high-mobility group box 1
- HMVEC, human primary microvascular endothelial cell
- HNPs, hybrid nanoparticles
- Hem-CLP, hemorrhagic shock followed by cecal ligation and puncture septic challenge
- ICAM-1, intercellular adhesion molecule-1
- IFN, interferons
- Inflammatory diseases
- LPS, lipopolysaccharides
- MEND, multifunctional envelope-type nano device
- MIF, macrophage migration inhibitory factor
- Myd88, myeloid differentiation primary response 88
- N/P ratio, nitrogen /phosphate ratio
- NETs, neutrophil extracellular traps
- NF-κB, nuclear factor kappa B
- NPs, nanoparticles
- Nanoparticles
- PAI-1, plasminogen activator inhibitor-1
- PAMAM, polyamidoamine
- PAMPs, pathogen-associated molecular patterns
- PD-L1, programmed death ligand-1
- PDGFRα, platelet-derived growth factor receptor-α
- PEEP, positive end-expiratory pressure
- PEG, polyethylene glycol
- PEI, polyethyleneimine
- PF, pulmonary fibrosis
- PFC, perfluorocarbon
- PLGA, poly(d,l-lactic-co-glycolic acid)
- PMs, polymeric micelles
- PRR, pattern recognition receptor
- PS, pulmonary surfactant
- Pulmonary administration
- RIP2, receptor-interacting protein 2
- RISC, RNA-induced silencing complex
- RNAi, RNA interference
- ROS, reactive oxygen species
- SLN, solid lipid nanoparticle
- SNALP, stable nucleic acid lipid particle
- TGF-β, transforming growth factor-β
- TLR, Toll-like receptor
- TNF-α, tumor necrosis factor-α
- VALI, ventilator-associated lung injury
- VILI, ventilator-induced lung injury
- dsDNA, double-stranded DNA
- dsRNA, double-stranded RNA
- eggPG, l-α-phosphatidylglycerol
- mRNA, messenger RNA
- miRNA, microRNA
- pDNA, plasmid DNA
- shRNA, short RNA
- siRNA
- siRNA, small interfering RNA
Collapse
Affiliation(s)
- Makhloufi Zoulikha
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qingqing Xiao
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - George Frimpong Boafo
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Marwa A. Sallam
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Wei He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| |
Collapse
|
39
|
From high-throughput to therapeutic: host-directed interventions against influenza viruses. Curr Opin Virol 2022; 53:101198. [PMID: 35030353 PMCID: PMC9086133 DOI: 10.1016/j.coviro.2021.12.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022]
Abstract
Influenza viruses are simultaneously supported and antagonized by factors within the host cell. This close relationship is the theoretical basis for future antivirals that target the host rather than the virus itself, a concept termed host-directed therapeutics. Genetic screening has led to the identification of host factors capable of modulating influenza virus infections, and these factors represent candidate targets for host-directed antiviral strategies. Despite advances in understanding host targets, however, there are currently no host-directed interventions for influenza viruses in clinical use. In this brief review, we discuss some host factors identified in knockout/knockdown and overexpression screens that could potentially be targeted as host-directed influenza intervention strategies. We further comment on the feasibility of changing gene expression in the respiratory tract with RNA delivery vectors and transient CRISPR-mediated gene targeting.
Collapse
|
40
|
Kumar K, Rani V, Mishra M, Chawla R. New paradigm in combination therapy of siRNA with chemotherapeutic drugs for effective cancer therapy. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100103. [PMID: 35586474 PMCID: PMC9108887 DOI: 10.1016/j.crphar.2022.100103] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 12/11/2022] Open
Abstract
Chemotherapeutics drugs play a pivotal role in the treatment of cancer. However, many issues generate by chemotherapy drugs, including unfavorable harm to healthy cells and multidrug resistance (MDR), persist and have a negative impact on therapeutic outcomes. When compared to monotherapy, combination cancer therapy has many advantages, like improving efficacy through synergistic effects and overcoming drug resistance. Combination treatment may comprise several chemotherapeutics drugs and combinations of chemotherapeutic drugs with some other therapeutic options such as surgery or radiation. Cancer treatment that utilizes co-delivery strategies with siRNA and chemotherapeutic drugs has been shown to have highly effective antitumor effects in the treatment of many cancers. However, the highly complex mechanisms of chemotherapeutic drugs-siRNA pairs during the co-delivery process have received little attention. The ideal combination of chemotherapeutic drugs with siRNA is very crucial for producing the desirable anticancer effects that would greatly enhance therapeutic efficiency. This review puts an emphasis on the logic for choosing suitable chemotherapeutic drug-siRNA combinations, which may open the way for the co-delivery of chemotherapeutic drugs and siRNA for treating cancer in the clinic. This review summarizes recent breakthrough in the area of diverse mechanism-based chemotherapeutic drugs-siRNA combinations in cancer treatment.
Collapse
Affiliation(s)
| | | | | | - Ruchi Chawla
- Corresponding author. Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, U.P., India.
| |
Collapse
|
41
|
Ip S, Ms S, Av K, Aa N, Ed B, Vi K, Li V, Vn T, Kv Y, Mm K, Ve B, I S, A M, DA K, O P, M R K. The mixture of siRNAs targeted to IL-4 and IL-13 genes effectively reduces the airway hyperreactivity and allergic inflammation in a mouse model of asthma. Int Immunopharmacol 2021; 103:108432. [PMID: 34923422 DOI: 10.1016/j.intimp.2021.108432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023]
Abstract
Bronchial asthma (BA) is one of the most common chronic inflammatory disease of airways. There are huge experimental data indicating that Th2-cytokines IL-4 and IL-13 play a key role in BA pathogenesis. They are implicated in the IgE synthesis, eosinophil infiltration to the lungs and in the development of airway hyperreactivity (AHR), that makes these cytokines the promising targets. Neutralization of IL-4 and IL-13 or its common receptor chain (IL-4Rα) by monoclonal antibodies substantially reduce asthma symptoms. RNA interference provides a novel method for regulation of gene expression by siRNA molecules. In this study we evaluated whether the siRNA targeted to IL-4 and IL-13 reduce BA symptoms in mice model. Experimental BA was induced in BALB/c mice by sensitization to ovalbumin allergen followed by intranasal challenge. The intranasal delivery of siRNAs targeted to IL-4 and IL-13 inhibited the lung expression of these cytokines by more than 50% that led to the attenuation of AHR and pulmonary inflammation; the quantity of eosinophils in lungs which are one of the major inflammatory cells involved in allergic asthma pathogenesis decreased by more than 50% after siRNA treatment. These data support the possibility of a dual IL-4 and IL-13 inhibition by locally delivered siRNAs which in turn leads to the suppression of allergen-induced pulmonary inflammation and AHR.
Collapse
Affiliation(s)
- Shilovskiy Ip
- National Research Center - Institute of Immunology of Federal Medico-Biological Agency. 115478, 24, Kashirskoye shosse, Moscow, Russian Federation.
| | - Sundukova Ms
- National Research Center - Institute of Immunology of Federal Medico-Biological Agency. 115478, 24, Kashirskoye shosse, Moscow, Russian Federation
| | - Korneev Av
- National Research Center - Institute of Immunology of Federal Medico-Biological Agency. 115478, 24, Kashirskoye shosse, Moscow, Russian Federation
| | - Nikolskii Aa
- National Research Center - Institute of Immunology of Federal Medico-Biological Agency. 115478, 24, Kashirskoye shosse, Moscow, Russian Federation
| | - Barvinskaya Ed
- National Research Center - Institute of Immunology of Federal Medico-Biological Agency. 115478, 24, Kashirskoye shosse, Moscow, Russian Federation
| | - Kovchina Vi
- National Research Center - Institute of Immunology of Federal Medico-Biological Agency. 115478, 24, Kashirskoye shosse, Moscow, Russian Federation
| | - Vishniakova Li
- National Research Center - Institute of Immunology of Federal Medico-Biological Agency. 115478, 24, Kashirskoye shosse, Moscow, Russian Federation
| | - Turenko Vn
- National Research Center - Institute of Immunology of Federal Medico-Biological Agency. 115478, 24, Kashirskoye shosse, Moscow, Russian Federation
| | - Yumashev Kv
- National Research Center - Institute of Immunology of Federal Medico-Biological Agency. 115478, 24, Kashirskoye shosse, Moscow, Russian Federation
| | - Kaganova Mm
- National Research Center - Institute of Immunology of Federal Medico-Biological Agency. 115478, 24, Kashirskoye shosse, Moscow, Russian Federation
| | - Brylina Ve
- Federal State Budgetary Educational Institution of Higher Education «Moscow state Academy of Veterinary Medicine and Biotechnology - MVA by K.I. Skryabin» of the Ministry of Agriculture of the Russian Federation, 109472, Moscow, Russian Federation
| | - Sergeev I
- National Research Center - Institute of Immunology of Federal Medico-Biological Agency. 115478, 24, Kashirskoye shosse, Moscow, Russian Federation
| | - Maerle A
- National Research Center - Institute of Immunology of Federal Medico-Biological Agency. 115478, 24, Kashirskoye shosse, Moscow, Russian Federation
| | - Kudlay DA
- National Research Center - Institute of Immunology of Federal Medico-Biological Agency. 115478, 24, Kashirskoye shosse, Moscow, Russian Federation; Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenovskiy University), 119991, Moscow, Russian Federation
| | - Petukhova O
- National Research Center - Institute of Immunology of Federal Medico-Biological Agency. 115478, 24, Kashirskoye shosse, Moscow, Russian Federation
| | - Khaitov M R
- National Research Center - Institute of Immunology of Federal Medico-Biological Agency. 115478, 24, Kashirskoye shosse, Moscow, Russian Federation; Federal State Autonomous Educational Institution of Higher Education «N.I. Pirogov Russian National Research Medical University» of the Ministry of Health of the Russian Federation, 117997, Moscow, Russian Federation
| |
Collapse
|
42
|
Biomacromolecule-mediated pulmonary delivery of siRNA and anti-sense oligos: challenges and possible solutions. Expert Rev Mol Med 2021; 23:e22. [PMID: 34906269 DOI: 10.1017/erm.2021.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Biomacromolecules have gained much attention as biomedicine carriers in recent years due to their remarkable biophysical and biochemical properties including sustainability, non-toxicity, biocompatibility, biodegradability, long systemic circulation time and ability to target. Recent developments in a variety of biological functions of biomacromolecules and progress in the study of biological drug carriers suggest that these carriers may have advantages over carriers of synthetic materials in terms of half-life, durability, protection and manufacturing facility. Despite the full pledge advancements in the applications of biomacromolecules, its clinical use is hindered by certain factors that allow the pre-mature release of loaded cargos before reaching the target site. The delivery therapeutics are degraded by systemic nucleases, cleared by reticulo-endothelial system, cleared by pulmonary mucus cilia or engulfed by lysosome during cellular uptake that has led to the failure of clinical therapy. It clearly indicates that there is a wide range of gaps in the results of experimental work and clinical applications of biomacromolecules. This review focuses mainly on the barriers (intracellular/extracellular) and hurdles to the delivery of biomacromolecules with special emphasis on siRNA as well as the delivery of antisense oligos in multiple pulmonary diseases, particularly focusing on lung cancer. Also, the challenges posed to such delivery and possible solutions have been highlighted.
Collapse
|
43
|
Gedefaw L, Ullah S, Lee TMH, Yip SP, Huang CL. Targeting Inflammasome Activation in COVID-19: Delivery of RNA Interference-Based Therapeutic Molecules. Biomedicines 2021; 9:1823. [PMID: 34944639 PMCID: PMC8698532 DOI: 10.3390/biomedicines9121823] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/22/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023] Open
Abstract
Mortality and morbidity associated with COVID-19 continue to be significantly high worldwide, owing to the absence of effective treatment strategies. The emergence of different variants of SARS-CoV-2 is also a considerable source of concern and has led to challenges in the development of better prevention and treatment strategies, including vaccines. Immune dysregulation due to pro-inflammatory mediators has worsened the situation in COVID-19 patients. Inflammasomes play a critical role in modulating pro-inflammatory cytokines in the pathogenesis of COVID-19 and their activation is associated with poor clinical outcomes. Numerous preclinical and clinical trials for COVID-19 treatment using different approaches are currently underway. Targeting different inflammasomes to reduce the cytokine storm, and its associated complications, in COVID-19 patients is a new area of research. Non-coding RNAs, targeting inflammasome activation, may serve as an effective treatment strategy. However, the efficacy of these therapeutic agents is highly dependent on the delivery system. MicroRNAs and long non-coding RNAs, in conjunction with an efficient delivery vehicle, present a potential strategy for regulating NLRP3 activity through various RNA interference (RNAi) mechanisms. In this regard, the use of nanomaterials and other vehicle types for the delivery of RNAi-based therapeutic molecules for COVID-19 may serve as a novel approach for enhancing drug efficacy. The present review briefly summarizes immune dysregulation and its consequences, the roles of different non-coding RNAs in regulating the NLRP3 inflammasome, distinct types of vectors for their delivery, and potential therapeutic targets of microRNA for treatment of COVID-19.
Collapse
Affiliation(s)
- Lealem Gedefaw
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (L.G.); (S.U.)
| | - Sami Ullah
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (L.G.); (S.U.)
| | - Thomas M. H. Lee
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China;
| | - Shea Ping Yip
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (L.G.); (S.U.)
| | - Chien-Ling Huang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (L.G.); (S.U.)
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
44
|
Kubczak M, Michlewska S, Bryszewska M, Aigner A, Ionov M. Nanoparticles for local delivery of siRNA in lung therapy. Adv Drug Deliv Rev 2021; 179:114038. [PMID: 34742826 DOI: 10.1016/j.addr.2021.114038] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 02/07/2023]
Abstract
An overview of the application of natural and synthetic, non-viral vectors for oligonucleotide delivery into the lung is presented in this review, with a special focus on lung cancer. Due to the specificity of the respiratory tract, its structure and natural barriers, the administration of drugs (especially those based on nucleic acids) is a particular challenge. Among widely tested non-viral drug and oligonucleotides carriers, synthetic polymers seem to be most promising. Unique properties of these nanoparticles allow for essentially unlimited possibilities regarding their design and modification. This gives hope that optimal nanoparticles with ideal nucleic acid carrier properties for lung cancer therapy will eventually emanate.
Collapse
|
45
|
Steinle H, Weber J, Stoppelkamp S, Große-Berkenbusch K, Golombek S, Weber M, Canak-Ipek T, Trenz SM, Schlensak C, Avci-Adali M. Delivery of synthetic mRNAs for tissue regeneration. Adv Drug Deliv Rev 2021; 179:114007. [PMID: 34710530 DOI: 10.1016/j.addr.2021.114007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/03/2021] [Accepted: 10/12/2021] [Indexed: 02/06/2023]
Abstract
In recent years, nucleic acid-based therapeutics have gained increasing importance as novel treatment options for disease prevention and treatment. Synthetic messenger RNAs (mRNAs) are promising nucleic acid-based drugs to transiently express desired proteins that are missing or defective. Recently, synthetic mRNA-based vaccines encoding viral proteins have been approved for emergency use against COVID-19. Various types of vehicles, such as lipid nanoparticles (LNPs) and liposomes, are being investigated to enable the efficient uptake of mRNA molecules into desired cells. In addition, the introduction of novel chemical modifications into mRNAs increased the stability, enabled the modulation of nucleic acid-based drugs, and increased the efficiency of mRNA-based therapeutic approaches. In this review, novel and innovative strategies for the delivery of synthetic mRNA-based therapeutics for tissue regeneration are discussed. Moreover, with this review, we aim to highlight the versatility of synthetic mRNA molecules for various applications in the field of regenerative medicine and also discuss translational challenges and required improvements for mRNA-based drugs.
Collapse
Affiliation(s)
- Heidrun Steinle
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Josefin Weber
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Sandra Stoppelkamp
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Katharina Große-Berkenbusch
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Sonia Golombek
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Marbod Weber
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Tuba Canak-Ipek
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Sarah-Maria Trenz
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Christian Schlensak
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Meltem Avci-Adali
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany.
| |
Collapse
|
46
|
Khaitov M, Nikonova A, Shilovskiy I, Kozhikhova K, Kofiadi I, Vishnyakova L, Nikolskii A, Gattinger P, Kovchina V, Barvinskaia E, Yumashev K, Smirnov V, Maerle A, Kozlov I, Shatilov A, Timofeeva A, Andreev S, Koloskova O, Kuznetsova N, Vasina D, Nikiforova M, Rybalkin S, Sergeev I, Trofimov D, Martynov A, Berzin I, Gushchin V, Kovalchuk A, Borisevich S, Valenta R, Khaitov R, Skvortsova V. Silencing of SARS-CoV-2 with modified siRNA-peptide dendrimer formulation. Allergy 2021; 76:2840-2854. [PMID: 33837568 PMCID: PMC8251148 DOI: 10.1111/all.14850] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022]
Abstract
Background First vaccines for prevention of Coronavirus disease 2019 (COVID‐19) are becoming available but there is a huge and unmet need for specific forms of treatment. In this study we aimed to evaluate the anti‐SARS‐CoV‐2 effect of siRNA both in vitro and in vivo. Methods To identify the most effective molecule out of a panel of 15 in silico designed siRNAs, an in vitro screening system based on vectors expressing SARS‐CoV‐2 genes fused with the firefly luciferase reporter gene and SARS‐CoV‐2‐infected cells was used. The most potent siRNA, siR‐7, was modified by Locked nucleic acids (LNAs) to obtain siR‐7‐EM with increased stability and was formulated with the peptide dendrimer KK‐46 for enhancing cellular uptake to allow topical application by inhalation of the final formulation – siR‐7‐EM/KK‐46. Using the Syrian Hamster model for SARS‐CoV‐2 infection the antiviral capacity of siR‐7‐EM/KK‐46 complex was evaluated. Results We identified the siRNA, siR‐7, targeting SARS‐CoV‐2 RNA‐dependent RNA polymerase (RdRp) as the most efficient siRNA inhibiting viral replication in vitro. Moreover, we showed that LNA‐modification and complexation with the designed peptide dendrimer enhanced the antiviral capacity of siR‐7 in vitro. We demonstrated significant reduction of virus titer and lung inflammation in animals exposed to inhalation of siR‐7‐EM/KK‐46 in vivo. Conclusions Thus, we developed a therapeutic strategy for COVID‐19 based on inhalation of a modified siRNA‐peptide dendrimer formulation. The developed medication is intended for inhalation treatment of COVID‐19 patients.
Collapse
Affiliation(s)
| | - Alexandra Nikonova
- NRC Institute of Immunology FMBA Moscow Russia
- Mechnikov Research Institute for Vaccines and Sera Moscow Russia
| | | | | | | | | | | | | | | | | | | | | | | | - Ivan Kozlov
- NRC Institute of Immunology FMBA Moscow Russia
| | | | | | | | | | - Nadezhda Kuznetsova
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology named after Honorary Academician N. F.Gamaleya” of the Ministry of Health of the Russian Federation Moscow Russia
| | - Daria Vasina
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology named after Honorary Academician N. F.Gamaleya” of the Ministry of Health of the Russian Federation Moscow Russia
| | - Maria Nikiforova
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology named after Honorary Academician N. F.Gamaleya” of the Ministry of Health of the Russian Federation Moscow Russia
| | | | | | | | | | - Igor Berzin
- Federal Medico‐biological Agency of Russia (FMBA Russia) Moscow Russia
| | - Vladimir Gushchin
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology named after Honorary Academician N. F.Gamaleya” of the Ministry of Health of the Russian Federation Moscow Russia
| | - Aleksey Kovalchuk
- 48 Central Research Institute of the Ministry of Defense of the Russian Federation Moscow Russia
| | - Sergei Borisevich
- 48 Central Research Institute of the Ministry of Defense of the Russian Federation Moscow Russia
| | - Rudolf Valenta
- NRC Institute of Immunology FMBA Moscow Russia
- Medical University of Vienna Vienna Austria
| | | | | |
Collapse
|
47
|
Tieu T, Wei Y, Cifuentes‐Rius A, Voelcker NH. Overcoming Barriers: Clinical Translation of siRNA Nanomedicines. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Terence Tieu
- Parkville Campus 381 Royal Parade Monash Institute of Pharmaceutical Sciences Monash University Parkville VIC 3052 Australia
- CSIRO Manufacturing Bayview Avenue Clayton VIC 3168 Australia
| | - Yingkai Wei
- Parkville Campus 381 Royal Parade Monash Institute of Pharmaceutical Sciences Monash University Parkville VIC 3052 Australia
| | - Anna Cifuentes‐Rius
- Parkville Campus 381 Royal Parade Monash Institute of Pharmaceutical Sciences Monash University Parkville VIC 3052 Australia
| | - Nicolas H. Voelcker
- Parkville Campus 381 Royal Parade Monash Institute of Pharmaceutical Sciences Monash University Parkville VIC 3052 Australia
- CSIRO Manufacturing Bayview Avenue Clayton VIC 3168 Australia
- Melbourne Centre for Nanofabrication 151 Wellington Road Victorian Node of the Australian National Fabrication Facility Clayton VIC 3168 Australia
| |
Collapse
|
48
|
The Nanosystems Involved in Treating Lung Cancer. Life (Basel) 2021; 11:life11070682. [PMID: 34357054 PMCID: PMC8307574 DOI: 10.3390/life11070682] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 12/12/2022] Open
Abstract
Even though there are various types of cancer, this pathology as a whole is considered the principal cause of death worldwide. Lung cancer is known as a heterogeneous condition, and it is apparent that genome modification presents a significant role in the occurrence of this disorder. There are conventional procedures that can be utilized against diverse cancer types, such as chemotherapy or radiotherapy, but they are hampered by the numerous side effects. Owing to the many adverse events observed in these therapies, it is imperative to continuously develop new and improved strategies for managing individuals with cancer. Nanomedicine plays an important role in establishing new methods for detecting chromosomal rearrangements and mutations for targeted chemotherapeutics or the local delivery of drugs via different types of nano-particle carriers to the lungs or other organs or areas of interest. Because of the complex signaling pathways involved in developing different types of cancer, the need to discover new methods for prevention and detection is crucial in producing gene delivery materials that exhibit the desired roles. Scientists have confirmed that nanotechnology-based procedures are more effective than conventional chemotherapy or radiotherapy, with minor side effects. Several nanoparticles, nanomaterials, and nanosystems have been studied, including liposomes, dendrimers, polymers, micelles, inorganic nanoparticles, such as gold nanoparticles or carbon nanotubes, and even siRNA delivery systems. The cytotoxicity of such nanosystems is a debatable concern, and nanotechnology-based delivery systems must be improved to increase the bioavailability, biocompatibility, and safety profiles, since these nanosystems boast a remarkable potential in many biomedical applications, including anti-tumor activity or gene therapy. In this review, the nanosystems involved in treating lung cancer and its associated challenges are discussed.
Collapse
|
49
|
Seyfoori A, Shokrollahi Barough M, Mokarram P, Ahmadi M, Mehrbod P, Sheidary A, Madrakian T, Kiumarsi M, Walsh T, McAlinden KD, Ghosh CC, Sharma P, Zeki AA, Ghavami S, Akbari M. Emerging Advances of Nanotechnology in Drug and Vaccine Delivery against Viral Associated Respiratory Infectious Diseases (VARID). Int J Mol Sci 2021; 22:6937. [PMID: 34203268 PMCID: PMC8269337 DOI: 10.3390/ijms22136937] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/19/2021] [Accepted: 06/19/2021] [Indexed: 12/12/2022] Open
Abstract
Viral-associated respiratory infectious diseases are one of the most prominent subsets of respiratory failures, known as viral respiratory infections (VRI). VRIs are proceeded by an infection caused by viruses infecting the respiratory system. For the past 100 years, viral associated respiratory epidemics have been the most common cause of infectious disease worldwide. Due to several drawbacks of the current anti-viral treatments, such as drug resistance generation and non-targeting of viral proteins, the development of novel nanotherapeutic or nano-vaccine strategies can be considered essential. Due to their specific physical and biological properties, nanoparticles hold promising opportunities for both anti-viral treatments and vaccines against viral infections. Besides the specific physiological properties of the respiratory system, there is a significant demand for utilizing nano-designs in the production of vaccines or antiviral agents for airway-localized administration. SARS-CoV-2, as an immediate example of respiratory viruses, is an enveloped, positive-sense, single-stranded RNA virus belonging to the coronaviridae family. COVID-19 can lead to acute respiratory distress syndrome, similarly to other members of the coronaviridae. Hence, reviewing the current and past emerging nanotechnology-based medications on similar respiratory viral diseases can identify pathways towards generating novel SARS-CoV-2 nanotherapeutics and/or nano-vaccines.
Collapse
Affiliation(s)
- Amir Seyfoori
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.S.); (T.W.)
- Biomaterials and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran
| | - Mahdieh Shokrollahi Barough
- Department of Immunology, Iran University of Medical Sciences, Tehran 1449614535, Iran;
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran
| | - Pooneh Mokarram
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran;
- Autophagy Research Center, Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| | - Mazaher Ahmadi
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838695, Iran; (M.A.); (T.M.)
| | - Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Pasteur Institute of IRAN, Tehran 1316943551, Iran;
| | - Alireza Sheidary
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14155-6451, Iran;
| | - Tayyebeh Madrakian
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838695, Iran; (M.A.); (T.M.)
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14155-6451, Iran;
| | - Mohammad Kiumarsi
- Department of Human Anatomy and Cell Science, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
| | - Tavia Walsh
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.S.); (T.W.)
| | - Kielan D. McAlinden
- Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston, TAS 7248, Australia;
| | - Chandra C. Ghosh
- Roger Williams Medical Center, Immuno-Oncology Institute (Ix2), Providence, RI 02908, USA;
| | - Pawan Sharma
- Center for Translational Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Amir A. Zeki
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, U.C. Davis Lung Center, Davis School of Medicine, University of California, Davis, CA 95817, USA;
- Veterans Affairs Medical Center, Mather, CA 95817, USA
| | - Saeid Ghavami
- Autophagy Research Center, Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Department of Human Anatomy and Cell Science, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Mohsen Akbari
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.S.); (T.W.)
- Biotechnology Center, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, BC V8P 5C2, Canada
| |
Collapse
|
50
|
de Braganca L, Ferguson GJ, Luis Santos J, Derrick JP. Adverse immunological responses against non-viral nanoparticle (NP) delivery systems in the lung. J Immunotoxicol 2021; 18:61-73. [PMID: 33956565 PMCID: PMC8788408 DOI: 10.1080/1547691x.2021.1902432] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
There is a large, unmet medical need to treat chronic obstructive pulmonary disease, asthma, idiopathic pulmonary fibrosis and other respiratory diseases. New modalities are being developed, including gene therapy which treats the disease at the DNA/RNA level. Despite recent innovations in non-viral gene therapy delivery for chronic respiratory diseases, unwanted or adverse interactions with immune cells, particularly macrophages, can limit drug efficacy. This review will examine the relationship between the design and fabrication of non-viral nucleic acid nanoparticle (NP) delivery systems and their ability to trigger unwanted immunogenic responses in lung tissues. NP formulated with peptides, lipids, synthetic and natural polymers provide a robust means of delivering the genetic cargos to the desired cells. However NP, or their components, may trigger local responses such as cell damage, edema, inflammation, and complement activation. These effects may be acute short-term reactions or chronic long-term effects like fibrosis, increased susceptibility to diseases, autoimmune disorders, and even cancer. This review examines the relationship between physicochemical properties, i.e. shape, charge, hydrophobicity, composition and stiffness, and interactions of NP with pulmonary immune cells. Inhalation is the ideal route of administration for direct delivery but inhaled NP encounter innate immune cells, such as alveolar macrophages (AM) and dendritic cells (DC), that perceive them as harmful foreign material, interfere with gene delivery to target cells, and can induce undesirable side effects. Recommendations for fabrication and formulation of gene therapies to avoid adverse immunological responses are given. These include fine tuning physicochemical properties, functionalization of the surface of NP to actively target diseased pulmonary cells and employing biomimetics to increase immunotolerance.
Collapse
Affiliation(s)
- Leonor de Braganca
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - G John Ferguson
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Jose Luis Santos
- Dosage Form Design Development, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Jeremy P Derrick
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| |
Collapse
|