1
|
Kong Y, Yang H, Nie R, Zhang X, Zuo F, Zhang H, Nian X. Obesity: pathophysiology and therapeutic interventions. MOLECULAR BIOMEDICINE 2025; 6:25. [PMID: 40278960 PMCID: PMC12031720 DOI: 10.1186/s43556-025-00264-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 03/15/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025] Open
Abstract
Over the past few decades, obesity has transitioned from a localized health concern to a pressing global public health crisis affecting over 650 million adults globally, as documented by WHO epidemiological surveys. As a chronic metabolic disorder characterized by pathological adipose tissue expansion, chronic inflammation, and neuroendocrine dysregulation that disrupts systemic homeostasis and impairs physiological functions, obesity is rarely an isolated condition; rather, it is frequently complicated by severe comorbidities that collectively elevate mortality risks. Despite advances in nutritional science and public health initiatives, sustained weight management success rates and prevention in obesity remain limited, underscoring its recognition as a multifactorial disease influenced by genetic, environmental, and behavioral determinants. Notably, the escalating prevalence of obesity and its earlier onset in younger populations have intensified the urgency to develop novel therapeutic agents that simultaneously ensure efficacy and safety. This review aims to elucidate the pathophysiological mechanisms underlying obesity, analyze its major complications-including type 2 diabetes mellitus (T2DM), cardiovascular diseases (CVD), non-alcoholic fatty liver disease (NAFLD), obesity-related respiratory disorders, obesity-related nephropathy (ORN), musculoskeletal impairments, malignancies, and psychological comorbidities-and critically evaluate current anti-obesity strategies. Particular emphasis is placed on emerging pharmacological interventions, exemplified by plant-derived natural compounds such as berberine (BBR), with a focus on their molecular mechanisms, clinical efficacy, and therapeutic advantages. By integrating mechanistic insights with clinical evidence, this review seeks to provide innovative perspectives for developing safe, accessible, and effective obesity treatments.
Collapse
Affiliation(s)
- Yue Kong
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | | | - Rong Nie
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xuxiang Zhang
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Fan Zuo
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | | | - Xin Nian
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, China.
| |
Collapse
|
2
|
Havranek B, Loh R, Torre B, Redfield R, Halegoua-DeMarzio D. Glucagon-like peptide-1 receptor agonists improve metabolic dysfunction-associated steatotic liver disease outcomes. Sci Rep 2025; 15:4947. [PMID: 39930071 PMCID: PMC11811119 DOI: 10.1038/s41598-025-89408-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/05/2025] [Indexed: 02/13/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the leading cause of chronic liver disease and is associated with significant cardiovascular morbidity and mortality. This study aims to investigate the association of glucagon-like peptide-1 (GLP-1) agonists with major cardiovascular events, clinically significant portal hypertension events, and all-cause mortality in patients with MASLD. A large, population-based retrospective cohort study was conducted using the TriNetX platform, which provided real-time access to electronic health records of 634,265 adult patients with MASLD/MASH. Propensity score matching (PSM) was employed to create two cohorts: A GLP-1 agonists group and a control group without GLP-1 agonists usage. Hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated using Cox proportional hazards models along with Kaplan-Meier survival analyses to estimate outcomes at the end of 1, 3, 5, and 7 years. After PSM, 6,243 patients were included in each group. The GLP-1 agonist group had significantly lower risk of heart failure (at 7 years, HR, 0.721; 95% Cl, 0.593-0.876), composite cardiovascular events (at years 7, HR, 0.594; 95% Cl, 0.475-0.745), clinically significant portal hypertension events (at 7 years, HR, 0.463; 95% Cl, 0.348-0.611), and all-cause mortality (at 7 years, HR, 0.303; 95% Cl, 0.239-0.385). These results were consistent at 1-, 3-, 5-, and 7-years post index event. GLP-1 agonists usage in patients with MASLD is associated with reduced risk of major cardiovascular events, clinically significant portal hypertension, and all-cause mortality. These findings highlight the potential of GLP-1 agonists in MASLD/MASH management, warranting further prospective studies.
Collapse
Affiliation(s)
- Brandon Havranek
- Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Rebecca Loh
- Department of Gastroenterology & Hepatology, Thomas Jefferson University Hospital, 132 S 10th St, Suite 480, Philadelphia, PA, 19107, USA
| | - Beatriz Torre
- Department of Medicine, Thomas Jefferson University Hospital, Philadelphia, PA, 19107, USA
| | - Rachel Redfield
- Department of Gastroenterology & Hepatology, Thomas Jefferson University Hospital, 132 S 10th St, Suite 480, Philadelphia, PA, 19107, USA
| | - Dina Halegoua-DeMarzio
- Department of Gastroenterology & Hepatology, Thomas Jefferson University Hospital, 132 S 10th St, Suite 480, Philadelphia, PA, 19107, USA.
| |
Collapse
|
3
|
Riedinger CJ, Sakach J, Maples JM, Fulton J, Chippior J, O'Donnell B, O'Malley DM, Chambers LM. Glucagon-like peptide-1 (GLP-1) receptor agonists for weight management: A review for the gynecologic oncologist. Gynecol Oncol 2024; 190:1-10. [PMID: 39116625 DOI: 10.1016/j.ygyno.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024]
Abstract
The use of glucagon-like peptide-1 receptor agonists (GLP-1RA) has experienced rapid growth amidst the obesity epidemic in the United States. While originally developed for glucose control in Type 2 Diabetes Mellitus, the scope of these agents now extends to encompass weight loss and cardiovascular risk reduction. GLP-1RAs have the potential to induce significant weight loss, in combination with lifestyle modifications, among adults who are overweight or obese. Furthermore, these agents demonstrate efficacy in ameliorating hyperglycemia, enhancing insulin sensitivity, regulating blood pressure, improving cardiometabolic parameters, mitigating kidney dysfunction, and potentially reducing the risk of several obesity-related cancers. Drug-related toxicity is primarily gastrointestinal and active management can prevent drug discontinuation. Obesity is associated both with an increased incidence of malignancy but also with decreased survival. More research is needed to evaluate the potential use of GLP-1RA to modify the endocrine function of adipocytes, regulate the chronic inflammatory state associated with obesity, and prospective applications in oncology. These agents can impact patients with gynecologic malignancies both through their direct mechanism of action as well as potential drug toxicity.
Collapse
Affiliation(s)
- Courtney J Riedinger
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, The Ohio State University Comprehensive Cancer Center/James Cancer Hospital, Columbus, OH, USA
| | - Julia Sakach
- Department of Obstetrics and Gynecology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Jill M Maples
- Department of Obstetrics and Gynecology, The University of Tennessee Graduate School of Medicine, Knoxville, TN, USA
| | - Jessica Fulton
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, The Ohio State University Comprehensive Cancer Center/James Cancer Hospital, Columbus, OH, USA
| | - Jessica Chippior
- Department of Internal Medicine, Division of Endocrinology Diabetes and Metabolism, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Benjamin O'Donnell
- Department of Internal Medicine, Division of Endocrinology Diabetes and Metabolism, The Ohio State University College of Medicine, Columbus, OH, USA
| | - David M O'Malley
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, The Ohio State University Comprehensive Cancer Center/James Cancer Hospital, Columbus, OH, USA
| | - Laura M Chambers
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, The Ohio State University Comprehensive Cancer Center/James Cancer Hospital, Columbus, OH, USA.
| |
Collapse
|
4
|
Janez A, Muzurovic E, Bogdanski P, Czupryniak L, Fabryova L, Fras Z, Guja C, Haluzik M, Kempler P, Lalic N, Mullerova D, Stoian AP, Papanas N, Rahelic D, Silva-Nunes J, Tankova T, Yumuk V, Rizzo M. Modern Management of Cardiometabolic Continuum: From Overweight/Obesity to Prediabetes/Type 2 Diabetes Mellitus. Recommendations from the Eastern and Southern Europe Diabetes and Obesity Expert Group. Diabetes Ther 2024; 15:1865-1892. [PMID: 38990471 PMCID: PMC11330437 DOI: 10.1007/s13300-024-01615-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/20/2024] [Indexed: 07/12/2024] Open
Abstract
The increasing global incidence of obesity and type 2 diabetes mellitus (T2D) underscores the urgency of addressing these interconnected health challenges. Obesity enhances genetic and environmental influences on T2D, being not only a primary risk factor but also exacerbating its severity. The complex mechanisms linking obesity and T2D involve adiposity-driven changes in β-cell function, adipose tissue functioning, and multi-organ insulin resistance (IR). Early detection and tailored treatment of T2D and obesity are crucial to mitigate future complications. Moreover, personalized and early intensified therapy considering the presence of comorbidities can delay disease progression and diminish the risk of cardiorenal complications. Employing combination therapies and embracing a disease-modifying strategy are paramount. Clinical trials provide evidence confirming the efficacy and safety of glucagon-like peptide 1 receptor agonists (GLP-1 RAs). Their use is associated with substantial and durable body weight reduction, exceeding 15%, and improved glucose control which further translate into T2D prevention, possible disease remission, and improvement of cardiometabolic risk factors and associated complications. Therefore, on the basis of clinical experience and current evidence, the Eastern and Southern Europe Diabetes and Obesity Expert Group recommends a personalized, polymodal approach (comprising GLP-1 RAs) tailored to individual patient's disease phenotype to optimize diabetes and obesity therapy. We also expect that the increasing availability of dual GLP-1/glucose-dependent insulinotropic polypeptide (GIP) agonists will significantly contribute to the modern management of the cardiometabolic continuum.
Collapse
Affiliation(s)
- Andrej Janez
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia.
| | - Emir Muzurovic
- Department of Internal Medicine, Endocrinology Section, Clinical Centre of Montenegro, Faculty of Medicine, University of Montenegro, Podgorica, Montenegro
| | - Pawel Bogdanski
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, University of Medical Sciences, Poznan, Poland
| | - Leszek Czupryniak
- Department of Diabetology and Internal Medicine, Medical University of Warsaw, Warszawa, Poland
| | - Lubomira Fabryova
- MetabolKLINIK sro, Department for Diabetes and Metabolic Disorders, Lipid Clinic, MED PED Centre, Biomedical Research Centre of Slovak Academy of Sciences, Slovak Health University, Bratislava, Slovak Republic
| | - Zlatko Fras
- Preventive Cardiology Unit, Division of Medicine, University Medical Centre Ljubljana and Chair of Internal Medicine, Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Cristian Guja
- Clinic of Diabetes, Nutrition and Metabolic Diseases, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Martin Haluzik
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Vídeňská 1958/9, 140 21, Prague 4, Czech Republic
| | - Peter Kempler
- Department of Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Nebojsa Lalic
- Faculty of Medicine, Clinic for Endocrinology, Diabetes and Metabolic Diseases, Clinical Center of Serbia, University of Belgrade, Belgrade, Serbia
| | - Dana Mullerova
- Faculty of Medicine in Pilsen, Department of Public Health and Preventive Medicine and Faculty Hospital in Pilsen, 1st Internal Clinic, Charles University, Pilsen, Czech Republic
| | - Anca Pantea Stoian
- Diabetes, Nutrition and Metabolic Diseases Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Nikolaos Papanas
- Diabetes Centre, Second Department of Internal Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Dario Rahelic
- Vuk Vrhovac University Clinic for Diabetes, Endocrinology and Metabolic Diseases, Merkur University Hospital, Zagreb, Croatia
- Catholic University of Croatia School of Medicine, Zagreb, Croatia
- Josip Juraj Strossmayer, University of Osijek School of Medicine, Osijek, Croatia
| | - José Silva-Nunes
- NOVA Medical School, New University of Lisbon, Lisbon, Portugal
- Department of Endocrinology, Diabetes and Metabolism, Unidade Local de Saúde São José, Lisbon, Portugal
| | - Tsvetalina Tankova
- Department of Endocrinology, Faculty of Medicine, Medical University, Sofia, Bulgaria
| | - Volkan Yumuk
- Division of Endocrinology, Metabolism and Diabetes, Istanbul University-Cerrahpaşa, Cerrahpaşa Medical Faculty, Istanbul, Turkey
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), School of Medicine, University of Palermo, Palermo, Italy
| |
Collapse
|
5
|
Cai X, Cao J, Wang L, Zou J, Li R, Sun P, Ding X, Zhang B, Liu Z, Pei X, Yang J, Zhan Y, Liu N, Liu T, Liang R, Gao J, Wang S. Liraglutide Protects Pancreatic Islet From Ischemic Injury by Reducing Oxidative Stress and Activating Akt Signaling During Cold Preservation to Improve Islet Transplantation Outcomes. Transplantation 2024; 108:e156-e169. [PMID: 38578708 DOI: 10.1097/tp.0000000000004949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
BACKGROUND Islet transplantation is a promising therapy for patients with type 1 diabetes. However, ischemic injury to the donor islets during cold preservation leads to reduced islet quality and compromises transplant outcome. Several studies imply that liraglutide, a glucagon-like peptide-1 receptor agonist, has a positive effect on promoting islet survival, but its impact on islet cold-ischemic injury remains unexplored. Therefore, the aim of this study was to investigate whether liraglutide can improve islet transplantation efficacy by inhibiting cold-ischemic injury and to explore the underlying mechanisms. METHODS Liraglutide was applied in a mouse pancreas preservation model and a human islets cold-preservation model, and islet viability, function, oxidative stress levels were evaluated. Furthermore, islet transplantation was performed in a syngeneic mouse model and a human-to-nude mouse islet xenotransplantation model. RESULTS The supplementation of liraglutide in preservation solution improved islet viability, function, and reduced cell apoptosis. Liraglutide inhibited the oxidative stress of cold-preserved pancreas or islets through upregulating the antioxidant enzyme glutathione levels, inhibiting reactive oxygen species accumulation, and maintaining the mitochondrial membrane integrity, which is associated with the activation of Akt signaling. Furthermore, the addition of liraglutide during cold preservation of donor pancreas or donor islets significantly improved the subsequent transplant outcomes in both syngeneic mouse islet transplantation model and human-to-nude mouse islet xenotransplantation model. CONCLUSIONS Liraglutide protects islets from cold ischemia-related oxidative stress during preservation and hence improved islet transplantation outcomes, and this protective effect of liraglutide in islets is associated with the activation of Akt signaling.
Collapse
Affiliation(s)
- Xiangheng Cai
- School of Medicine, Nankai University, Tianjin, China
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Jinglin Cao
- Department of Hepatobiliary Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Le Wang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Jiaqi Zou
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Rui Li
- Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Peng Sun
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Xuejie Ding
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Boya Zhang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Zewen Liu
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Xirui Pei
- First Clinical Department, The First Hospital of China Medical University, China Medical University, Shenyang, China
| | - Jiuxia Yang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Yixiang Zhan
- School of Medicine, Nankai University, Tianjin, China
| | - Na Liu
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Tengli Liu
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Rui Liang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Jie Gao
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, China
| | - Shusen Wang
- School of Medicine, Nankai University, Tianjin, China
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| |
Collapse
|
6
|
Hoffman S, Adeli K. Glucagon-like peptide (GLP)-1 regulation of lipid and lipoprotein metabolism. MEDICAL REVIEW (2021) 2024; 4:301-311. [PMID: 39135603 PMCID: PMC11317082 DOI: 10.1515/mr-2024-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/13/2024] [Indexed: 08/15/2024]
Abstract
Metabolic health is highly dependent on intestinal and hepatic handling of dietary and endogenous lipids and lipoproteins. Disorders of lipid and lipoprotein metabolism are commonly observed in patients with insulin resistant states such as obesity, metabolic syndrome, and type 2 diabetes. Evidence from both animal models and human studies indicates that a major underlying factor in metabolic or diabetic dyslipidemia is the overproduction of hepatic and intestinal apolipoprotein (apo)B-containing lipoprotein particles. These particles are catabolized down into highly proatherogenic remnants, which can be taken up into the arterial intima and promote plaque development. Several gut-derived peptides have been identified as key regulators of energy metabolism; one such peptide is the incretin hormone glucagon-like peptide (GLP)-1. Our laboratory has previously demonstrated that GLP-1 can signal both centrally and peripherally to reduce postprandial and fasting lipoprotein secretion. Moreover, we have demonstrated that GLP-1 receptor (GLP-1R) agonists can ameliorate diet-induced dyslipidemia. Recently, we published evidence for a novel vagal neuroendocrine signalling pathway by which native GLP-1 may exert its anti-lipemic effects. Furthermore, we demonstrated a novel role for other gut-derived peptides in regulating intestinal lipoprotein production. Overall, ample evidence supports a key role for GLP-1R on the portal vein afferent neurons and nodose ganglion in modulating intestinal fat absorption and lipoprotein production and identifies other gut-derived peptides as novel regulators of postprandial lipemia. Insights from these data may support identification of potential drug targets and the development of new therapeutics targeting treatment of diabetic dyslipidemia.
Collapse
Affiliation(s)
- Simon Hoffman
- Molecular Medicine, Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Cardiovascular & Metabolic Disease, Merck Research Laboratories, South San Francisco, CA, USA
| | - Khosrow Adeli
- Molecular Medicine, Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Fassler MJ, Zarrinpar A. Transplantation's next frontier: The promise of deceased donor studies. Liver Transpl 2024; 30:565-566. [PMID: 38289270 DOI: 10.1097/lvt.0000000000000338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 03/05/2024]
Affiliation(s)
- Michael J Fassler
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | | |
Collapse
|
8
|
Trinh TA, Le TMD, Nguyen HTT, Nguyen TL, Kim J, Huynh DP, Lee DS. pH-temperature Responsive Hydrogel-Mediated Delivery of Exendin-4 Encapsulated Chitosan Nanospheres for Sustained Therapeutic Efficacy in Type 2 Diabetes Mellitus. Macromol Biosci 2023; 23:e2300221. [PMID: 37365122 DOI: 10.1002/mabi.202300221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 05/31/2023] [Indexed: 06/28/2023]
Abstract
Type 2 Diabetes Mellitus (T2D) is a chronic, obesity-related, and inflammatory disorder characterize by insulin resistance, inadequate insulin secretion, hyperglycemia, and excessive glucagon secretion. Exendin-4 (EX), a clinically established antidiabetic medication that acts as a glucagon-like peptide-1 receptor agonist, is effective in lowering glucose levels and stimulating insulin secretion while significantly reducing hunger. However, the requirement for multiple daily injections due to EX's short half-life is a significant limitation in its clinical application, leading to high treatment costs and patient inconvenience. To address this issue, an injectable hydrogel system is developed that can provide sustained EX release at the injection site, reducing the need for daily injections. In this study, the electrospray technique is examine to form EX@CS nanospheres by electrostatic interaction between cationic chitosan (CS) and negatively charged EX. These nanospheres are uniformly dispersed in a pH-temperature responsive pentablock copolymer, which forms micelles and undergoes sol-to-gel transition at physiological conditions. Following injection, the hydrogel gradually degraded, exhibiting excellent biocompatibility. The EX@CS nanospheres are subsequently released, maintaining therapeutic levels for over 72 h compared to free EX solution. The findings demonstrate that the pH-temperature responsive hydrogel system containing EX@CS nanospheres can be a promising platform for the treatment of T2D.
Collapse
Affiliation(s)
- Thuy An Trinh
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Thai Minh Duy Le
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Hien Thi-Thanh Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, 0084, Vietnam
| | - Thanh Loc Nguyen
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jaeyun Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Dai Phu Huynh
- National Key Laboratory of Polymer and Composite Materials, Research Center for Polymeric Materials, Ho Chi Minh University of Technology, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, 0084, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, 700000, Vietnam
| | - Doo Sung Lee
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
9
|
Shi L, Tianqi F, Zhang C, Deng X, Zhou Y, Wang J, Wang L. High-protein compound yogurt with quinoa improved clinical features and metabolism of high-fat diet-induced nonalcoholic fatty liver disease in mice. J Dairy Sci 2023; 106:5309-5327. [PMID: 37474360 DOI: 10.3168/jds.2022-23045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/22/2023] [Indexed: 07/22/2023]
Abstract
Gut microbiota dysbiosis plays a crucial role in the occurrence and progression of nonalcoholic fatty liver disease (NAFLD), which may be influenced by nutritional supplementation. Quinoa, a type of pseudocereal, has gained prominence due to its high nutritional value and diverse applications. This study aimed to determine whether yogurt containing quinoa can ameliorate NAFLD and alleviate metabolic disorders by protecting against the divergence of gut microbiota. Our findings suggested that quinoa yogurt could significantly reduce the body weight gain and fat tissue weight of high-fat diet (HFD)-fed obese mice. In addition, quinoa yogurt significantly reduced liver steatosis and enhanced glucose homeostasis and insulin sensitivity. Additional research indicates that quinoa yogurt can reduce the levels of proinflammatory cytokines (i.e., tumor necrosis factor α, IL-1β, and IL-6) and inhibit endotoxemia and systemic inflammation. The characteristics of the gut microbiota were then determined by analyzing 16S rRNA. In addition, we discovered that the gut microbiota was disturbed by HFD consumption. Particularly, intestinal probiotics and beneficial intestinal secretions were increased, leading to the expression of glucagon-like peptide-1 in the colon, contributing to NAFLD. Furthermore, endotoxemia and systemic inflammation in HFD-fed mice were restored to the level of control mice when they were fed yogurt and quinoa. Therefore, yogurt containing quinoa can effectively alleviate NAFLD symptoms and may exert its effects via microbiome-gut-liver axis mechanisms. According to some research, the role of the enteric-liver axis may also influence metabolic disorders to reduce the development of NAFLD.
Collapse
Affiliation(s)
- Linlin Shi
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China; Department of Food Quality and Safety, Jilin University, Changchun 130062, China
| | - Fang Tianqi
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China; Department of Food Quality and Safety, Jilin University, Changchun 130062, China
| | - Can Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xuming Deng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China; Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yonglin Zhou
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China; Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jianfeng Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China; Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Lin Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China; Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
10
|
Mehdi SF, Pusapati S, Anwar MS, Lohana D, Kumar P, Nandula SA, Nawaz FK, Tracey K, Yang H, LeRoith D, Brownstein MJ, Roth J. Glucagon-like peptide-1: a multi-faceted anti-inflammatory agent. Front Immunol 2023; 14:1148209. [PMID: 37266425 PMCID: PMC10230051 DOI: 10.3389/fimmu.2023.1148209] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/26/2023] [Indexed: 06/03/2023] Open
Abstract
Inflammation contributes to many chronic conditions. It is often associated with circulating pro-inflammatory cytokines and immune cells. GLP-1 levels correlate with disease severity. They are often elevated and can serve as markers of inflammation. Previous studies have shown that oxytocin, hCG, ghrelin, alpha-MSH and ACTH have receptor-mediated anti-inflammatory properties that can rescue cells from damage and death. These peptides have been studied well in the past century. In contrast, GLP-1 and its anti-inflammatory properties have been recognized only recently. GLP-1 has been proven to be a useful adjuvant therapy in type-2 diabetes mellitus, metabolic syndrome, and hyperglycemia. It also lowers HbA1C and protects cells of the cardiovascular and nervous systems by reducing inflammation and apoptosis. In this review we have explored the link between GLP-1, inflammation, and sepsis.
Collapse
Affiliation(s)
- Syed Faizan Mehdi
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Suma Pusapati
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Muhammad Saad Anwar
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Durga Lohana
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Parkash Kumar
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | | | - Fatima Kausar Nawaz
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Kevin Tracey
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Huan Yang
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Derek LeRoith
- Division of Endocrinology, Diabetes & Bone Disease, Icahn School of Medicine at Mt. Sinai, New York, NY, United States
| | | | - Jesse Roth
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| |
Collapse
|
11
|
GLP-1 Receptor Agonists in Non-Alcoholic Fatty Liver Disease: Current Evidence and Future Perspectives. Int J Mol Sci 2023; 24:ijms24021703. [PMID: 36675217 PMCID: PMC9865319 DOI: 10.3390/ijms24021703] [Citation(s) in RCA: 109] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
To date, non-alcoholic fatty liver disease (NAFLD) is the most frequent liver disease, affecting up to 70% of patients with diabetes. Currently, there are no specific drugs available for its treatment. Beyond their anti-hyperglycemic effect and the surprising role of cardio- and nephroprotection, GLP-1 receptor agonists (GLP-1 RAs) have shown a significant impact on body weight and clinical, biochemical and histological markers of fatty liver and fibrosis in patients with NAFLD. Therefore, GLP-1 RAs could be a weapon for the treatment of both diabetes mellitus and NAFLD. The aim of this review is to summarize the evidence currently available on the role of GLP-1 RAs in the treatment of NAFLD and to hypothesize potential future scenarios.
Collapse
|
12
|
Wasim R, Ansari TM, Siddiqui MH, Ahsan F, Shamim A, Singh A, Shariq M, Anwar A, Siddiqui AR, Parveen S. Repurposing of Drugs for Cardiometabolic Disorders: An Out and Out Cumulation. Horm Metab Res 2023; 55:7-24. [PMID: 36599357 DOI: 10.1055/a-1971-6965] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cardiometabolic disorders (CMD) is a constellation of metabolic predisposing factors for atherosclerosis such as insulin resistance (IR) or diabetes mellitus (DM), systemic hypertension, central obesity, and dyslipidemia. Cardiometabolic diseases (CMDs) continue to be the leading cause of mortality in both developed and developing nations, accounting for over 32% of all fatalities globally each year. Furthermore, dyslipidemia, angina, arrhythmia, heart failure, myocardial infarction (MI), and diabetes mellitus are the major causes of death, accounting for an estimated 19 million deaths in 2012. CVDs will kill more than 23 million individuals each year by 2030. Nonetheless, new drug development (NDD) in CMDs has been increasingly difficult in recent decades due to increased costs and a lower success rate. Drug repositioning in CMDs looks promising in this scenario for launching current medicines for new therapeutic indications. Repositioning is an ancient method that dates back to the 1960s and is mostly based on coincidental findings during medication trials. One significant advantage of repositioning is that the drug's safety profile is well known, lowering the odds of failure owing to undesirable toxic effects. Furthermore, repositioning takes less time and money than NDD. Given these facts, pharmaceutical corporations are becoming more interested in medication repositioning. In this follow-up, we discussed the notion of repositioning and provided some examples of repositioned medications in cardiometabolic disorders.
Collapse
Affiliation(s)
| | | | | | - Farogh Ahsan
- Pharmacology, Integral University, Lucknow, India
| | | | - Aditya Singh
- Pharmaceutics, Integral University, Lucknow, India
| | | | - Aamir Anwar
- Pharmacy, Integral University, Lucknow, India
| | | | - Saba Parveen
- Pharmacology, Integral University, Lucknow, India
| |
Collapse
|
13
|
Discrepancy between the Actions of Glucagon-like Peptide-1 Receptor Ligands in the Protection of the Heart against Ischemia Reperfusion Injury. Pharmaceuticals (Basel) 2022; 15:ph15060720. [PMID: 35745639 PMCID: PMC9228343 DOI: 10.3390/ph15060720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/02/2022] [Indexed: 11/23/2022] Open
Abstract
Tirzepatide is a dual glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) receptor agonist and a promising therapy for type 2 diabetes mellitus (T2DM). GLP-1 is an incretin hormone with therapeutic potential beyond type 2 diabetes mellitus. However, GLP-1 is rapidly degraded by dipeptdyl peptidase-IV (DPP-IV) to GLP-1 (9-36). Exendin-4 (Ex-4) is a DPP-IV-resistant GLP-1 receptor agonist which, when truncated to Ex-4 (9-39), acts as a GLP-1 receptor antagonist. In the present study, hearts isolated from Wistar rats (n = 8 per group) were perfused with a modified Langendorff preparation. Left ventricular (LV) contractility and cardiovascular hemodynamics were evaluated by a data acquisition program and infarct size was evaluated by 2,3,5-Triphenyl-2H-tetrazolium chloride (TTC) staining and cardiac enzyme levels. Hearts were subjected to 30 min regional ischemia, produced by ligation of the left anterior descending (LAD) coronary artery followed by 30 min reperfusion. Hearts were treated during reperfusion with either the non-lipidated precursor of tirzepatide (NLT), GLP-1, GLP-1 (9-36), or Ex-4 in the presence or absence of Ex-4 (9-39). Infusion of GLP-1 (9-36) or Ex-4 protected the heart against I/R injury (p > 0.01) by normalizing cardiac hemodynamic and enzyme levels. Neither GLP-1, NLT, nor Ex-4 (9-39) showed any protection. Interestingly, Ex-4 (9-39) blocked Ex-4-mediated protection but not that of GLP-1 (9-36). These data suggest that Ex-4-mediated protection is GLP-1-receptor-dependent but GLP-1 (9-36)-mediated protection is not.
Collapse
|
14
|
Chen Y, Xu YN, Ye CY, Feng WB, Zhou QT, Yang DH, Wang MW. GLP-1 mimetics as a potential therapy for nonalcoholic steatohepatitis. Acta Pharmacol Sin 2022; 43:1156-1166. [PMID: 34934197 PMCID: PMC9061743 DOI: 10.1038/s41401-021-00836-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022]
Abstract
Nonalcoholic steatohepatitis (NASH), as a severe form of nonalcoholic fatty liver disease (NAFLD), is characterized by liver steatosis, inflammation, hepatocellular injury and different degrees of fibrosis. The pathogenesis of NASH is complex and multifactorial, obesity and type 2 diabetes mellitus (T2DM) have been implicated as major risk factors. Glucagon-like peptide-1 receptor (GLP-1R) is one of the most successful drug targets of T2DM and obesity, and its peptidic ligands have been proposed as potential therapeutic agents for NASH. In this article we provide an overview of the pathophysiology and management of NASH, with a special focus on the pharmacological effects and possible mechanisms of GLP-1 mimetics in treating NAFLD/NASH, including dual and triple agonists at GLP-1R, glucose-dependent insulinotropic polypeptide receptor or glucagon receptor.
Collapse
Affiliation(s)
- Yan Chen
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Ying-Na Xu
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Chen-Yu Ye
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Wen-Bo Feng
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Qing-Tong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - De-Hua Yang
- The CAS Key Laboratory of Receptor Research and The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Research Center for Deepsea Bioresources, Sanya, 572025, China.
| | - Ming-Wei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
- The CAS Key Laboratory of Receptor Research and The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Research Center for Deepsea Bioresources, Sanya, 572025, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
15
|
Muzurović EM, Volčanšek Š, Tomšić KZ, Janež A, Mikhailidis DP, Rizzo M, Mantzoros CS. Glucagon-Like Peptide-1 Receptor Agonists and Dual Glucose-Dependent Insulinotropic Polypeptide/Glucagon-Like Peptide-1 Receptor Agonists in the Treatment of Obesity/Metabolic Syndrome, Prediabetes/Diabetes and Non-Alcoholic Fatty Liver Disease-Current Evidence. J Cardiovasc Pharmacol Ther 2022; 27:10742484221146371. [PMID: 36546652 DOI: 10.1177/10742484221146371] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The obesity pandemic is accompanied by increased risk of developing metabolic syndrome (MetS) and related conditions: non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH), type 2 diabetes mellitus (T2DM) and cardiovascular (CV) disease (CVD). Lifestyle, as well as an imbalance of energy intake/expenditure, genetic predisposition, and epigenetics could lead to a dysmetabolic milieu, which is the cornerstone for the development of cardiometabolic complications. Glucagon-like peptide-1 (GLP-1) receptor agonists (RAs) and dual glucose-dependent insulinotropic polypeptide (GIP)/GLP-1 RAs promote positive effects on most components of the "cardiometabolic continuum" and consequently help reduce the need for polypharmacy. In this review, we highlight the main pathophysiological mechanisms and risk factors (RFs), that could be controlled by GLP-1 and dual GIP/GLP-1 RAs independently or through synergism or differences in their mode of action. We also address the evidence on the use of GLP-1 and dual GIP/GLP-1 RAs in the treatment of obesity, MetS and its related conditions (prediabetes, T2DM and NAFLD/NASH). In conclusion, GLP-1 RAs have already been established for the treatment of T2DM, obesity and cardioprotection in T2DM patients, while dual GIP/GLP-1 RAs appear to have the potential to possibly surpass them for the same indications. However, their use in the prevention of T2DM and the treatment of complex cardiometabolic metabolic diseases, such as NAFLD/NASH or other metabolic disorders, would benefit from more evidence and a thorough clinical patient-centered approach. There is a need to identify those patients in whom the metabolic component predominates, and whether the benefits outweigh any potential harm.
Collapse
Affiliation(s)
- Emir M Muzurović
- Department of Internal Medicine, Endocrinology Section, Clinical Center of Montenegro, Podgorica, Montenegro.,Faculty of Medicine, University of Montenegro, Podgorica, Montenegro
| | - Špela Volčanšek
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia.,Medical Faculty Ljubljana, Ljubljana, Slovenia
| | - Karin Zibar Tomšić
- Department of Endocrinology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Andrej Janež
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia.,Medical Faculty Ljubljana, Ljubljana, Slovenia
| | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom.,Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Manfredi Rizzo
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.,Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Boston VA Healthcare System, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Hurtado-Carneiro V, Dongil P, Pérez-García A, Álvarez E, Sanz C. Preventing Oxidative Stress in the Liver: An Opportunity for GLP-1 and/or PASK. Antioxidants (Basel) 2021; 10:antiox10122028. [PMID: 34943132 PMCID: PMC8698360 DOI: 10.3390/antiox10122028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 02/07/2023] Open
Abstract
The liver’s high metabolic activity and detoxification functions generate reactive oxygen species, mainly through oxidative phosphorylation in the mitochondria of hepatocytes. In contrast, it also has a potent antioxidant mechanism for counterbalancing the oxidant’s effect and relieving oxidative stress. PAS kinase (PASK) is a serine/threonine kinase containing an N-terminal Per-Arnt-Sim (PAS) domain, able to detect redox state. During fasting/feeding changes, PASK regulates the expression and activation of critical liver proteins involved in carbohydrate and lipid metabolism and mitochondrial biogenesis. Interestingly, the functional inactivation of PASK prevents the development of a high-fat diet (HFD)-induced obesity and diabetes. In addition, PASK deficiency alters the activity of other nutrient sensors, such as the AMP-activated protein kinase (AMPK) and the mammalian target of rapamycin (mTOR). In addition to the expression and subcellular localization of nicotinamide-dependent histone deacetylases (SIRTs). This review focuses on the relationship between oxidative stress, PASK, and other nutrient sensors, updating the limited knowledge on the role of PASK in the antioxidant response. We also comment on glucagon-like peptide 1 (GLP-1) and its collaboration with PASK in preventing the damage associated with hepatic oxidative stress. The current knowledge would suggest that PASK inhibition and/or exendin-4 treatment, especially under fasting conditions, could ameliorate disorders associated with excess oxidative stress.
Collapse
Affiliation(s)
- Verónica Hurtado-Carneiro
- Department of Physiology, Faculty of Medicine, Institute of Medical Research at the San Carlos Clinic Hospital (IdISSC), Complutense University of Madrid, Ciudad Universitaria, 28040 Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Institute of Medical Research at the San Carlos Clinic Hospital (IdISSC), Complutense University of Madrid, Ciudad Universitaria, 28040 Madrid, Spain; (P.D.); (A.P.-G.); (E.Á.)
- Correspondence:
| | - Pilar Dongil
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Institute of Medical Research at the San Carlos Clinic Hospital (IdISSC), Complutense University of Madrid, Ciudad Universitaria, 28040 Madrid, Spain; (P.D.); (A.P.-G.); (E.Á.)
- Department of Cell Biology, Faculty of Medicine, Institute of Medical Research at the San Carlos Clinic Hospital (IdISSC), Complutense University of Madrid, Ciudad Universitaria, 28040 Madrid, Spain;
| | - Ana Pérez-García
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Institute of Medical Research at the San Carlos Clinic Hospital (IdISSC), Complutense University of Madrid, Ciudad Universitaria, 28040 Madrid, Spain; (P.D.); (A.P.-G.); (E.Á.)
- Department of Cell Biology, Faculty of Medicine, Institute of Medical Research at the San Carlos Clinic Hospital (IdISSC), Complutense University of Madrid, Ciudad Universitaria, 28040 Madrid, Spain;
| | - Elvira Álvarez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Institute of Medical Research at the San Carlos Clinic Hospital (IdISSC), Complutense University of Madrid, Ciudad Universitaria, 28040 Madrid, Spain; (P.D.); (A.P.-G.); (E.Á.)
| | - Carmen Sanz
- Department of Cell Biology, Faculty of Medicine, Institute of Medical Research at the San Carlos Clinic Hospital (IdISSC), Complutense University of Madrid, Ciudad Universitaria, 28040 Madrid, Spain;
| |
Collapse
|
17
|
Modulation of Prostanoids Profile and Counter-Regulation of SDF-1α/CXCR4 and VIP/VPAC2 Expression by Sitagliptin in Non-Diabetic Rat Model of Hepatic Ischemia-Reperfusion Injury. Int J Mol Sci 2021; 22:ijms222313155. [PMID: 34884960 PMCID: PMC8658172 DOI: 10.3390/ijms222313155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/27/2021] [Accepted: 12/04/2021] [Indexed: 11/16/2022] Open
Abstract
Molecular mechanisms underlying the beneficial effect of sitagliptin repurposed for hepatic ischemia-reperfusion injury (IRI) are poorly understood. We aimed to evaluate the impact of IRI and sitagliptin on the hepatic profile of eicosanoids (LC-MS/MS) and expression/concentration (RTqPCR/ELISA) of GLP-1/GLP-1R, SDF-1α/CXCR4 and VIP/VPAC1, VPAC2, and PAC1 in 36 rats. Animals were divided into four groups and subjected to ischemia (60 min) and reperfusion (24 h) with or without pretreatment with sitagliptin (5 mg/kg) (IR and SIR) or sham-operated with or without sitagliptin pretreatment (controls and sitagliptin). PGI2, PGE2, and 13,14-dihydro-PGE1 were significantly upregulated in IR but not SIR, while sitagliptin upregulated PGD2 and 15-deoxy-12,14-PGJ2. IR and sitagliptin non-significantly upregulated GLP-1 while Glp1r expression was borderline detectable. VIP concentration and Vpac2 expression were downregulated in IR but not SIR, while Vpac1 was significantly downregulated solely in SIR. IRI upregulated both CXCR4 expression and concentration, and sitagliptin pretreatment abrogated receptor overexpression and downregulated Sdf1. In conclusion, hepatic IRI is accompanied by an elevation in proinflammatory prostanoids and overexpression of CXCR4, combined with downregulation of VIP/VPAC2. Beneficial effects of sitagliptin during hepatic IRI might be mediated by drug-induced normalization of proinflammatory prostanoids and upregulation of PGD2 and by concomitant downregulation of SDF-1α/CXCR4 and reinstating VIP/VCAP2 signaling.
Collapse
|
18
|
Lin CY, Adhikary P, Cheng K. Cellular protein markers, therapeutics, and drug delivery strategies in the treatment of diabetes-associated liver fibrosis. Adv Drug Deliv Rev 2021; 174:127-139. [PMID: 33857552 PMCID: PMC8217274 DOI: 10.1016/j.addr.2021.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/18/2021] [Accepted: 04/08/2021] [Indexed: 02/08/2023]
Abstract
Liver fibrosis is the excessive accumulation of extracellular matrix due to chronic injuries, such as viral infection, alcohol abuse, high-fat diet, and toxins. Liver fibrosis is reversible before it progresses to cirrhosis and hepatocellular carcinoma. Type 2 diabetes significantly increases the risk of developing various complications including liver diseases. Abundant evidence suggests that type 2 diabetes and liver diseases are bidirectionally associated. Patients with type 2 diabetes experience more severe symptoms and accelerated progression of live diseases. Obesity and insulin resistance resulting from hyperlipidemia and hyperglycemia are regarded as the two major risk factors that link type 2 diabetes and liver fibrosis. This review summarizes possible mechanisms of the association between type 2 diabetes and liver fibrosis. The cellular protein markers that can be used for diagnosis and therapy of type 2 diabetes-associated liver fibrosis are discussed. We also highlight the potential therapeutic agents and their delivery systems that have been investigated for type 2 diabetes-associated liver fibrosis.
Collapse
Affiliation(s)
- Chien-Yu Lin
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, United States
| | - Pratik Adhikary
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, United States
| | - Kun Cheng
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, United States.
| |
Collapse
|
19
|
Fan S, Shi X, Yao J, Zhong M, Feng P. The efficacy of glucagon-like peptide 1 receptor agonists in patients with non-alcoholic fatty liver disease: a systematic review and meta-analysis of randomized controlled trials. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2021; 112:627-635. [PMID: 32496108 DOI: 10.17235/reed.2020.6392/2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND non-alcoholic fatty liver disease (NAFLD) is considered as the hepatic manifestation of metabolic syndrome and is highly prevalent all over the world. New drugs are urgently needed for the treatment of NAFLD. The aim of this meta-analysis was to assess the efficacy of glucagon-like peptide 1 receptor agonists (GLP-1RAs) in patients with NAFLD. METHOD English language publications in the PubMed, Cochrane Library, Embase and Web of Science databases were searched from inception to October 2019. All randomized controlled trials (RCTs) of GLP-1RAs treatment for NAFLD were considered. Standardized mean difference (SMD) with 95 % confidence intervals (CIs) were pooled using the fixed-effects or random-effects model. RESULTS six RCTs, involving 406 patients, were included in the analysis. A significant improvement was found in liver fat fraction (LFF) (SMD = -0.33, 95 % CI, -0.64 to -0.03, p = 0.034), body mass index (BMI) (SMD: -0.89, 95 % CI: -1.60 to -0.19, p = 0.012) and adiponectin (SMD: 0.66, 95 % CI: 0.37 to 0.95, p = 0.000) with GLP-1RAs treatment. There were no significant differences in serum alanine aminotransferase (ALT) (SMD: -0.52, 95 % CI: -1.04 to 0.01, p = 0.054) and aspartate transaminase (AST) (SMD: -0.20, 95 % CI: -0.54 to 0.15, p = 0.134) reduction between the GLP-1RAs and control groups. In the subgroup analysis, exenatide was associated with an improvement in serum ALT (SMD = -1.25, 95 % CI: -1.68 to -0.82, p = 0.000) and AST (SMD = -0.62, 95 % CI: -1.16 to -0.08, p = 0.024). Liraglutide was associated with a reduction in BMI (SMD = -0.44, 95 % CI: -0.77 to -0.11, p = 0.010) and an increase in adiponectin (SMD = -0.33, 95 % CI, -0.64 to -0.03, p = 0.034). CONCLUSION our study suggested that GLP-1RAs may improve LFF, BMI and adiponectin in patients with NAFLD. Furthermore, the potential efficacy to treat NAFLD was also shown. More high-quality RCTs are needed to validate our findings.
Collapse
Affiliation(s)
- Simin Fan
- Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, China
| | - Xiaoyan Shi
- Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, China
| | - Jia Yao
- Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, China
| | - Min Zhong
- Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, China
| | - Peimin Feng
- Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, China
| |
Collapse
|
20
|
Kolachala VL, Lopez C, Shen M, Shayakhmetov D, Gupta NA. Ischemia reperfusion injury induces pyroptosis and mediates injury in steatotic liver thorough Caspase 1 activation. Apoptosis 2021; 26:361-370. [PMID: 33990906 DOI: 10.1007/s10495-021-01673-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2021] [Indexed: 12/16/2022]
Abstract
A steatotic liver is increasingly vulnerable to ischemia reperfusion injury (IRI), and the underlying mechanisms are incompletely defined. Caspases are endo-proteases, which provide critical regulatory connections between cell death and inflammation. Caspase 1 is driven by inflammasomes which are key signaling platforms, that detect sterile stressors (DAMPs), releasing the highly pro-inflammatory cytokine interleukin IL-8 and IL-1β. To delineate the involvement of Caspase 1 and 11 in hepatocellular injury in steatotic liver undergoing IRI. Male C57BL6/Wild Type and Caspase 1Null, Caspase 11-/- and Caspase 1-/-/11-/- mice were fed a high fat diet (HFD) for 12 weeks. These mice were subjected to 40 min of ischemia followed by 2-24 h of reperfusion. Hepatocellular injury was assessed by histopathologic injury scoring, serum ALT and propidium iodide (PI) uptake, mRNA levels of Caspase 1, IL-1β by RT PCR, Caspase 1 activity assay and Caspase 1. Specific Caspase 1, inhibitor experiments were carried out. All groups gained similar body weight after a 12-week HFD. Cleaved Caspase 1 protein levels, Caspase 1 mRNA levels were significantly higher in steatotic liver undergoing IRI. Executor of pyroptosis cleaved GSDMD levels were higher in HFD fed mouse compared to lean. In addition, genetic deletion of Caspase 1, Casp1Null mouse expressing Caspase-11 and Caspase 1/11 double knock out demonstrated significant reduction in serum ALT (p < 0.01), Injury Score, (p < 0.0002) but not in Caspase 11 alone. Caspase 1 is the driver of hepatocellular injury in a steatotic liver undergoing IRI, inhibition of which leads to hepatoprotection, thus providing a therapeutic target for clinical use.
Collapse
Affiliation(s)
- Vasantha L Kolachala
- Department of Pediatrics, Emory University School of Medicine, 1760 Haygood Drive, Atlanta, GA, 30322, USA
| | - Chrissy Lopez
- Department of Pediatrics, Emory University School of Medicine, 1760 Haygood Drive, Atlanta, GA, 30322, USA
| | - Ming Shen
- Department of Pediatrics, Emory University School of Medicine, 1760 Haygood Drive, Atlanta, GA, 30322, USA
| | - Dmitry Shayakhmetov
- Department of Pediatrics, Emory University School of Medicine, 1760 Haygood Drive, Atlanta, GA, 30322, USA
| | - Nitika Arora Gupta
- Department of Pediatrics, Emory University School of Medicine, 1760 Haygood Drive, Atlanta, GA, 30322, USA.
- Transplant Services, Children's Healthcare of Atlanta, Atlanta, GA, USA.
| |
Collapse
|
21
|
Xue Y, Liu H, Yang XX, Pang L, Liu J, Ng KTP, Yeung OWH, Lam YF, Zhang WY, Lo CM, Man K. Inhibition of Carnitine Palmitoyltransferase 1A Aggravates Fatty Liver Graft Injury via Promoting Mitochondrial Permeability Transition. Transplantation 2021; 105:550-560. [PMID: 32890136 DOI: 10.1097/tp.0000000000003437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Hepatic steatosis is a major risk factor for graft failure due to increased susceptibility of fatty liver to ischemia-reperfusion injury (IRI) during transplantation. Here, we aimed to investigate the role of carnitine palmitoyltransferase 1A (CPT1A) in fatty liver graft injury and to explore the underlying mechanism and therapeutic potential on attenuating hepatic IRI. METHODS Intragraft CPT1A expression profile and the association with fatty graft injury were investigated in human and rat liver transplantation samples. The underlying mechanism and therapeutic potential of CPT1A activator against IRI were also explored in mouse hepatic ischemia-reperfusion plus major hepatectomy model and in in vitro. RESULTS CPT1A expression was significantly reduced (P = 0.0019; n = 96) in human fatty liver graft compared with normal one at early phase after transplantation. Low expression of CPT1A was significantly associated with high serum alanine aminotransferase (P = 0.0144) and aspartate aminotransferase (P = 0.0060) levels. The inhibited CPT1A and poor liver function were consistently observed in rat and mouse models with fatty livers. Furthermore, inhibition of CPT1A significantly promoted the translocation of chloride intracellular channel 1 to form chloride ion channel. The dysregulation of chloride ion channel activity subsequently triggered mitochondrial permeability transition (MPT) pore opening, exacerbated cellular oxidative stress, and energy depletion. Importantly, our intravital confocal imaging showed that CPT1A activation attenuated hepatic injury through preventing MPT after reperfusion in fatty mice. CONCLUSIONS CPT1A inhibition triggered MPT contributed to severe IRI in fatty liver graft. CPT1A restoration may offer therapeutic potential on attenuating hepatic IRI.
Collapse
Affiliation(s)
- Yan Xue
- Department of Surgery, HKU-SZH &LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Nowrouzi-Sohrabi P, Rezaei S, Jalali M, Ashourpour M, Ahmadipour A, Keshavarz P, Akbari H. The effects of glucagon-like peptide-1 receptor agonists on glycemic control and anthropometric profiles among diabetic patients with non-alcoholic fatty liver disease: A systematic review and meta-analysis of randomized controlled trials. Eur J Pharmacol 2020; 893:173823. [PMID: 33352183 DOI: 10.1016/j.ejphar.2020.173823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022]
Abstract
This study was undertaken to assess the effects of glucagon-like peptide-1 receptor agonists (GLP-1RAs), mainly liraglutide and exenatide, on glycemic control and anthropometric profiles to see if they are effective in treating patients with non-alcoholic fatty liver disease (NAFLD) and type-2 diabetes mellitus (T2DM). We searched PubMed, Embase, Scopus, Web of Science (WOS), and Cochrane Library databases to identify all the randomized clinical trials (RCTs) up to August 23, 2020. Heterogeneity of the included studies was evaluated using Cochrane's Q test and the I2 statistic. Moreover, a random-effects model was used to pool the weighted mean differences (WMDs) and their 95% confidence intervals (CIs). Nine articles (12 studies) comprising a total of 780 participants aged 40-56 were finally selected. GLP-1RAs intake significantly reduced body mass index (BMI) (WMD -1.57, 95%CI; -2.74, -0.39), waist-circumference (WC) (WMD -4.14, 95%CI; -7.09, -1.19), body weight (WMD -4.20, 95%CI; -8.15, -0.25) among the body mass indices. Additionally, GLP-1RAs leads to lower postprandial plasma glucose (PPG) levels (WMD -25.73 mg/dl, 95%CI; -32.71, -18.75). We also found that GLP-1RAs intake has no significant effect on the waist-hip ratio (WHR) (WMD -0.01, 95%CI; -0.03, 0.02), fasting blood glucose (FBG) (WMD -2.12 mg/dl, 95%CI; -6.23, 1.96), hemoglobin A1c (HbA1c) (WMD -0.08%, 95%CI; -0.21, 0.04), and homeostatic model assessment for insulin resistance (HOMA-IR) levels (WMD -0.31, 95%CI; -0.69, 0.07). GLP-1RAs therapy showed a greater reduction in BMI, body weight, WC, and PPG, but not in WHR, HOMA-IR, FBG, and HbA1c compared with other therapies in patients with T2DM and NAFLD.
Collapse
Affiliation(s)
- Peyman Nowrouzi-Sohrabi
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahla Rezaei
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Jalali
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahkameh Ashourpour
- Department of Nutrition Sciences, School of Health, Larestan University of Medical Sciences, Larestan, Iran; Emam Reza Teaching Hospital, Larestan University of Medical Sciences, Larestan, Iran
| | - Ahmad Ahmadipour
- Pharmaceutics Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Pedram Keshavarz
- Medical Imaging Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Radiology, Tbilisi State Medical University (TUMS), Tbilisi, Georgia
| | - Hamed Akbari
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran; Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
23
|
Qu X, Zheng C, Wang B, Wang F, Sun X, Gao Y, Xia Q, Kong X. Comprehensive analysis of circular RNAs from steatotic livers after ischemia and reperfusion injury by next-generation RNA sequencing. FEBS Lett 2020; 595:99-109. [PMID: 33070312 DOI: 10.1002/1873-3468.13960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022]
Abstract
Global organ shortage has led to the acceptance of steatotic livers for transplantation, taking the risk of graft dysfunction associated with the higher sensitivity of steatotic livers to ischemia and reperfusion injury (IRI). Data about circular RNAs (circRNAs) in steatotic livers following IRI are practically nonexistent. In our study, a high-fat diet-fed mouse model of hepatic steatosis was generated, and RNA sequencing was performed both on IRI and on sham liver tissues of these mice to screen for circRNAs with significant differential expression. To further validate our bioinformatics data, one upregulated circRNA and four downregulated circRNAs were examined. The circularity of these circRNAs was demonstrated using RNaseR digestion and Sanger sequencing. The expression of four stable circRNAs undigested by RNaseR was further validated by quantitative PCR. In summary, this study unearths several circRNAs as novel and potentially effective targets involved in the more severe damage of steatotic livers following IRI.
Collapse
Affiliation(s)
- Xiaoye Qu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Institute of Clinical Immunology, Department of Liver Diseases, Central Laboratory, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Chao Zheng
- Institute of Clinical Immunology, Department of Liver Diseases, Central Laboratory, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Bingrui Wang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Institute of Clinical Immunology, Department of Liver Diseases, Central Laboratory, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Fang Wang
- Institute of Clinical Immunology, Department of Liver Diseases, Central Laboratory, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Xuehua Sun
- Institute of Clinical Immunology, Department of Liver Diseases, Central Laboratory, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Yueqiu Gao
- Institute of Clinical Immunology, Department of Liver Diseases, Central Laboratory, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xiaoni Kong
- Institute of Clinical Immunology, Department of Liver Diseases, Central Laboratory, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| |
Collapse
|
24
|
Gut-Pancreas-Liver Axis as a Target for Treatment of NAFLD/NASH. Int J Mol Sci 2020; 21:ijms21165820. [PMID: 32823659 PMCID: PMC7461212 DOI: 10.3390/ijms21165820] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/04/2020] [Accepted: 08/09/2020] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents the most common form of chronic liver disease worldwide. Due to its association with obesity and diabetes and the fall in hepatitis C virus morbidity, cirrhosis in NAFLD is becoming the most frequent indication to liver transplantation, but the pathogenetic mechanisms are still not completely understood. The so-called gut-liver axis has gained enormous interest when data showed that its alteration can lead to NAFLD development and might favor the occurrence of non-alcoholic steatohepatitis (NASH). Moreover, several therapeutic approaches targeting the gut-pancreas-liver axis, e.g., incretins, showed promising results in NASH treatment. In this review, we describe the role of incretin hormones in NAFLD/NASH pathogenesis and treatment and how metagenomic/metabolomic alterations in the gut microbiota can lead to NASH in the presence of gut barrier modifications favoring the passage of bacteria or bacterial products in the portal circulation, i.e., bacterial translocation.
Collapse
|
25
|
Abdel-Gaber SA, Geddawy A, Moussa RA. The hepatoprotective effect of sitagliptin against hepatic ischemia reperfusion-induced injury in rats involves Nrf-2/HO-1 pathway. Pharmacol Rep 2019; 71:1044-1049. [PMID: 31600635 DOI: 10.1016/j.pharep.2019.06.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/23/2019] [Accepted: 06/13/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Oxidative stress and inflammation play a key role in the development of hepatic ischemia reperfusion (HIR)-induced injury. Nuclear factor-erythroid 2-related factor-2 (Nrf-2) is a main regulator of numerous genes, encoding cytoprotective molecules including heme oxygenase-1 (HO-1). Sitagliptin (Sit) is an incretin enhancer acting via inhibition of dipeptidyl peptidase-4 (DPP-4) enzyme. This study was undertaken to investigate the ability of Sit to prevent the hepatic pathological changes of HIR induced injury and to modify Nrf-2 and its target HO-1. METHODS Pringle's maneuver was used to induce total HIR in adult male rats that were randomly assigned into 4 groups. Group1 (sham-operated control), Group 2 (sham-operated + Sit-control group), Group 3 (HIR non-treated), and Group 4 (HIR + Sit). Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities together with hepatic contents of malondialdhyde (MDA), nitric oxide (NO) and reduced glutathione (GSH) and superoxide dismutase (SOD) activity were evaluated. Hepatic tissue mRNA of Nrf-2 and protein content of HO-1 along with histopathological examination and scoring of hepatic injury were performed. RESULTS Sit caused a significant reduction in ALT and AST activities together with attenuation of HIR-induced histopathological liver injury. Effect of Sit was associated with decreased hepatic level of MDA and NO with increased GSH level and SOD activity. Non-treated rats with HIR showed an increase in Nrf-2 mRNA expression and HO-1 content in hepatic tissue which was further increased by Sit treatment. CONCLUSIONS These results indicate that hepatoprotective activity of Sit against HIR is attributed at least in part to modulation of Nrf-2/ HO-1 signaling pathway.
Collapse
Affiliation(s)
- Seham A Abdel-Gaber
- Department of Pharmacology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Ayman Geddawy
- Department of Pharmacology, Faculty of Medicine, Minia University, Minia, Egypt; Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia.
| | - Rabab A Moussa
- Department of Pathology, Faculty of Medicine, Minia University, Minia, Egypt
| |
Collapse
|
26
|
Fiorentino TV, Casiraghi F, Davalli AM, Finzi G, La Rosa S, Higgins PB, Abrahamian GA, Marando A, Sessa F, Perego C, Guardado-Mendoza R, Kamath S, Ricotti A, Fiorina P, Daniele G, Paez AM, Andreozzi F, Bastarrachea RA, Comuzzie AG, Gastaldelli A, Chavez AO, Di Cairano ES, Frost P, Luzi L, Dick EJ, Halff GA, DeFronzo RA, Folli F. Exenatide regulates pancreatic islet integrity and insulin sensitivity in the nonhuman primate baboon Papio hamadryas. JCI Insight 2019; 4:93091. [PMID: 31536476 DOI: 10.1172/jci.insight.93091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 09/05/2019] [Indexed: 12/20/2022] Open
Abstract
The glucagon-like peptide-1 receptor agonist exenatide improves glycemic control by several and not completely understood mechanisms. Herein, we examined the effects of chronic intravenous exenatide infusion on insulin sensitivity, β cell and α cell function and relative volumes, and islet cell apoptosis and replication in nondiabetic nonhuman primates (baboons). At baseline, baboons received a 2-step hyperglycemic clamp followed by an l-arginine bolus (HC/A). After HC/A, baboons underwent a partial pancreatectomy (tail removal) and received a continuous exenatide (n = 12) or saline (n = 12) infusion for 13 weeks. At the end of treatment, HC/A was repeated, and the remnant pancreas (head-body) was harvested. Insulin sensitivity increased dramatically after exenatide treatment and was accompanied by a decrease in insulin and C-peptide secretion, while the insulin secretion/insulin resistance (disposition) index increased by about 2-fold. β, α, and δ cell relative volumes in exenatide-treated baboons were significantly increased compared with saline-treated controls, primarily as the result of increased islet cell replication. Features of cellular stress and secretory dysfunction were present in islets of saline-treated baboons and absent in islets of exenatide-treated baboons. In conclusion, chronic administration of exenatide exerts proliferative and cytoprotective effects on β, α, and δ cells and produces a robust increase in insulin sensitivity in nonhuman primates.
Collapse
Affiliation(s)
- Teresa Vanessa Fiorentino
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy.,Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Francesca Casiraghi
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA.,Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Alberto M Davalli
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA.,Department of Medicine, Endocrinology Unit, Ospedale San Raffaele, Milan, Italy
| | - Giovanna Finzi
- Unit of Pathology, Ospedale di Circolo and Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Stefano La Rosa
- Service of Clinical Pathology, Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Paul B Higgins
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Gregory A Abrahamian
- Department of Surgery, Transplant Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Alessandro Marando
- Unit of Pathology, Ospedale di Circolo and Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Fausto Sessa
- Unit of Pathology, Ospedale di Circolo and Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Carla Perego
- Department of Pharmacology and Biomolecular Science, University of Milan, Milan, Italy
| | - Rodolfo Guardado-Mendoza
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Subhash Kamath
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Andrea Ricotti
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Paolo Fiorina
- Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, Division of Health Science, Harvard University, Boston, Massachusetts, USA
| | - Giuseppe Daniele
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Ana M Paez
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Francesco Andreozzi
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy.,Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Raul A Bastarrachea
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Anthony G Comuzzie
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Amalia Gastaldelli
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA.,Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Alberto O Chavez
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Eliana S Di Cairano
- Department of Pharmacology and Biomolecular Science, University of Milan, Milan, Italy
| | - Patrice Frost
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Livio Luzi
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy.,Metabolism Research Centre, IRCCS Policlinico San Donato, Milan, Italy
| | - Edward J Dick
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Glenn A Halff
- Department of Surgery, Transplant Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Ralph A DeFronzo
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Franco Folli
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA.,Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA.,Department of Health Science, University of Milan, Milan, Italy
| |
Collapse
|
27
|
Kalra S, Das AK, Sahay RK, Baruah MP, Tiwaskar M, Das S, Chatterjee S, Saboo B, Bantwal G, Bhattacharya S, Priya G, Chawla M, Brar K, Raza SA, Aamir AH, Shrestha D, Somasundaram N, Katulanda P, Afsana F, Selim S, Naseri MW, Latheef A, Sumanatilleke M. Consensus Recommendations on GLP-1 RA Use in the Management of Type 2 Diabetes Mellitus: South Asian Task Force. Diabetes Ther 2019; 10:1645-1717. [PMID: 31359367 PMCID: PMC6778554 DOI: 10.1007/s13300-019-0669-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Indexed: 12/17/2022] Open
Abstract
The advent of incretin mimetics such as glucagon-like peptide-1 receptor agonists (GLP-1 RAs) has enriched the armamentarium for diabetes management owing to their glycaemic as well as extra-glycaemic benefits. The approval status and availability of this class of drugs vary widely across the globe. Being a relatively newer class of drug with numerous benefits, several national and international guidelines are working towards addressing clinical questions pertaining to the optimal use of GLP-1 RAs for the management of diabetes. Although the newer class of drugs are associated with significant benefits such as patient-centric approach, these drugs demand the providers to be vigilant and knowledgeable about the medication. The South Asian population is at higher risk of type 2 diabetes mellitus (T2DM) because of their genetic predisposition and lifestyle changes. Hence, prevention and management of T2DM and its associated complications in this population are of paramount importance. The current report aims to present an overview of current knowledge on GLP-1 RAs based on pragmatic review of the available clinical evidence. In addition, this report is a consensus of expert endocrinologists representing South Asian countries including India, Pakistan, Bangladesh, Nepal, Sri Lanka, Afghanistan and the Maldives on essential recommendations related to the use of GLP-1 RAs in a real-world scenario.
Collapse
Affiliation(s)
| | - Ashok Kumar Das
- Pondicherry Institute of Medical Sciences, Pondicherry, India
| | | | | | | | - Sambit Das
- Hi Tech Medical College and Hospital, Bhubaneshwar, India
| | | | | | | | | | | | | | | | - Syed Abbas Raza
- Shaukat Khanum Memorial Cancer Hospital and Research Centre and National Defence Hospital, Lahore, Pakistan
| | | | | | | | | | | | - Shahjada Selim
- Bangabandhu Sheikh Mujib Medical University, Shahbag, Dhaka, Bangladesh
| | | | - Ali Latheef
- Department of Medicine, Indra Gandhi Hospital, Male, Maldives
| | | |
Collapse
|
28
|
Sood A, Swislocki A. Nonglycemic Effects of GLP-1 Agonists: From a Starling to Lizards to People. Metab Syndr Relat Disord 2019; 17:303-313. [PMID: 31145029 DOI: 10.1089/met.2018.0134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
With the approval of exenatide in 2005, physicians had a new class of hypoglycemic agents available for the treatment of type 2 diabetes-the glucagon-like peptide-1 receptor agonists (or GLP-1 receptor agonists). As of this writing, there are seven drugs in this class available in the United States. In addition to demonstrating either cardiovascular risk neutrality or overt benefit, as now mandated by the United States Food and Drug Administration (FDA), many of these drugs have other, unexpected actions. It is our goal to outline these actions, some beneficial, some not. We have reviewed English-language articles in this area, not for an exhaustive study, but rather a broad search to define current understanding and perhaps generate further investigation.
Collapse
Affiliation(s)
- Ajay Sood
- 1Medical Service, VA Northern California Health Care System, Martinez, California.,2Division of Endocrinology and Metabolism, Department of Internal Medicine, UC Davis School of Medicine, Sacramento, California
| | - Arthur Swislocki
- 1Medical Service, VA Northern California Health Care System, Martinez, California.,2Division of Endocrinology and Metabolism, Department of Internal Medicine, UC Davis School of Medicine, Sacramento, California
| |
Collapse
|
29
|
Kolachala VL, Palle SK, Shen M, Shenoi A, Shayakhmetov DM, Gupta NA. Influence of Fat on Differential Receptor Interacting Serine/Threonine Protein Kinase 1 Activity Leading to Apoptotic Cell Death in Murine Liver Ischemia Reperfusion Injury Through Caspase 8. Hepatol Commun 2019; 3:925-942. [PMID: 31334443 PMCID: PMC6601319 DOI: 10.1002/hep4.1352] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/11/2019] [Indexed: 12/14/2022] Open
Abstract
Current understanding is that receptor interacting serine/threonine protein kinase 1 (RIPK1) can lead to two distinct forms of cell death: RIPK3‐mediated necroptosis or caspase 8 (Casp8)‐mediated apoptosis. Here, we report that RIPK1 signaling is indispensable for protection from hepatocellular injury in a steatotic liver undergoing ischemia reperfusion injury (IRI) but not in the lean liver. In lean liver IRI, RIPK1‐mediated cell death is operational, leading to protection in RIP1 kinase‐dead knock‐in (RIPK1K45A) mice and necrostatin‐1s (Nec1s)‐treated lean wild‐type (WT) mice. However, when fed a high‐fat diet (HFD), RIPK1K45A‐treated and Nec1s‐treated WT mice undergoing IRI demonstrate exacerbated hepatocellular injury along with decreased RIPK1 ubiquitylation. Furthermore, we demonstrate that HFD‐fed RIPK3–/–/Casp8–/– mice show protection from IRI, but HFD‐fed RIPK3–/–/Casp8–/+ mice do not. We also show that blockade of RIPK1 leads to increased Casp8 activity and decreases mitochondrial viability. Conclusion: Although more studies are required, we provide important proof of concept for RIPK1 inhibition leading to distinctive outcomes in lean and steatotic liver undergoing IRI. Considering the rising incidence of nonalcoholic fatty liver disease (NAFLD) in the general population, it will be imperative to address this critical difference when treating patients with RIPK1 inhibitors. This study also presents a new target for drug therapy to prevent hepatocellular injury in NAFLD.
Collapse
Affiliation(s)
| | - Sirish K Palle
- Department of Pediatrics Emory University School of Medicine Atlanta GA
| | - Ming Shen
- Department of Pediatrics Emory University School of Medicine Atlanta GA
| | - Asha Shenoi
- Department of Pediatrics Emory University School of Medicine Atlanta GA
| | | | - Nitika A Gupta
- Department of Pediatrics Emory University School of Medicine Atlanta GA.,Transplant Services Children's Healthcare of Atlanta Atlanta GA
| |
Collapse
|
30
|
Gut peptide and neuroendocrine regulation of hepatic lipid and lipoprotein metabolism in health and disease. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:326-334. [DOI: 10.1016/j.bbalip.2018.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 12/04/2018] [Accepted: 12/15/2018] [Indexed: 02/08/2023]
|
31
|
Bifari F, Manfrini R, Dei Cas M, Berra C, Siano M, Zuin M, Paroni R, Folli F. Multiple target tissue effects of GLP-1 analogues on non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). Pharmacol Res 2018; 137:219-229. [PMID: 30359962 DOI: 10.1016/j.phrs.2018.09.025] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 09/11/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022]
Abstract
Accumulating experimental and clinical evidences over the last decade indicate that GLP-1 analogues have a series of central nervous system and peripheral target tissues actions which are able to significantly influence the liver metabolism. GLP-1 analogues pleiotropic effects proved to be efficacious in T2DM subjects not only reducing liver steatosis and ameliorating NAFLD and NASH, but also in lowering plasma glucose and liver inflammation, improving cardiac function and protecting from kidney dysfunction. While the experimental and clinical data are robust, the precise mechanisms of action potentially involved in these protective multi-target effects need further investigation. Here we present a systematic review of the most recent literature data on the multi-target effects of GLP-1 analogues on the liver, on adipose and muscular tissue and on the nervous system, all capable of influencing significant aspects of the fatty liver disease physiopathology. From this analysis, we can conclude that the multi-target beneficial action of the GLP-1 analogues could explain the positive effects observed in animal and human models on progression of NAFLD to NASH.
Collapse
Affiliation(s)
- Francesco Bifari
- Laboratory of Cell Metabolism and Regenerative Medicine, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Roberto Manfrini
- Department of Internal Medicine ASST Santi Paolo e Carlo, Milan, Italy
| | - Michele Dei Cas
- Laboratory of Clinical Biochemistry and Mass Spectrometry, Department of Health Science, University of Milan, Milan, Italy
| | - Cesare Berra
- Metabolic Disease and Diabetes, Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Matteo Siano
- Department of Internal Medicine ASST Santi Paolo e Carlo, Milan, Italy
| | - Massimo Zuin
- Unit of Medicine, Gastroenterology and Hepatology, Milan, Italy
| | - Rita Paroni
- Laboratory of Clinical Biochemistry and Mass Spectrometry, Department of Health Science, University of Milan, Milan, Italy
| | - Franco Folli
- Unit of Endocrinology and Metabolism ASST Santi Paolo e Carlo, Department of Health Science, University of Milan, Milan, Italy.
| |
Collapse
|
32
|
Dropping in on lipid droplets: insights into cellular stress and cancer. Biosci Rep 2018; 38:BSR20180764. [PMID: 30111611 PMCID: PMC6146295 DOI: 10.1042/bsr20180764] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/01/2018] [Accepted: 08/06/2018] [Indexed: 02/07/2023] Open
Abstract
Lipid droplets (LD) have increasingly become a major topic of research in recent years following its establishment as a highly dynamic organelle. Contrary to the initial view of LDs being passive cytoplasmic structures for lipid storage, studies have provided support on how they act in concert with different organelles to exert functions in various cellular processes. Although lipid dysregulation resulting from aberrant LD homeostasis has been well characterised, how this translates and contributes to cancer progression is poorly understood. This review summarises the different paradigms on how LDs function in the regulation of cellular stress as a contributing factor to cancer progression. Mechanisms employed by a broad range of cancer cell types in differentially utilising LDs for tumourigenesis will also be highlighted. Finally, we discuss the potential of targeting LDs in the context of cancer therapeutics.
Collapse
|
33
|
Auclair N, Melbouci L, St-Pierre D, Levy E. Gastrointestinal factors regulating lipid droplet formation in the intestine. Exp Cell Res 2018; 363:1-14. [PMID: 29305172 DOI: 10.1016/j.yexcr.2017.12.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/28/2017] [Accepted: 12/29/2017] [Indexed: 12/22/2022]
Abstract
Cytoplasmic lipid droplets (CLD) are considered as neutral lipid reservoirs, which protect cells from lipotoxicity. It became clear that these fascinating dynamic organelles play a role not only in energy storage and metabolism, but also in cellular lipid and protein handling, inter-organelle communication, and signaling among diverse functions. Their dysregulation is associated with multiple disorders, including obesity, liver steatosis and cardiovascular diseases. The central aim of this review is to highlight the link between intra-enterocyte CLD dynamics and the formation of chylomicrons, the main intestinal dietary lipid vehicle, after overviewing the morphology, molecular composition, biogenesis and functions of CLD.
Collapse
Affiliation(s)
- N Auclair
- Research Centre, CHU Sainte-Justine and Department of Montreal, Quebec, Canada H3T 1C5; Nutrition, Université de Montréal, Montreal, Quebec, Canada H3T 1C5
| | - L Melbouci
- Research Centre, CHU Sainte-Justine and Department of Montreal, Quebec, Canada H3T 1C5; Department of Sciences and Physical Activities, UQAM, Quebec, Canada H2X 1Y4
| | - D St-Pierre
- Research Centre, CHU Sainte-Justine and Department of Montreal, Quebec, Canada H3T 1C5; Department of Sciences and Physical Activities, UQAM, Quebec, Canada H2X 1Y4
| | - E Levy
- Research Centre, CHU Sainte-Justine and Department of Montreal, Quebec, Canada H3T 1C5; Nutrition, Université de Montréal, Montreal, Quebec, Canada H3T 1C5; Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Quebec, Canada G1V 0A6.
| |
Collapse
|
34
|
Kolachala VL, Palle S, Shen M, Feng A, Shayakhmetov D, Gupta NA. Loss of L-selectin-guided CD8 + , but not CD4 + , cells protects against ischemia reperfusion injury in a steatotic liver. Hepatology 2017; 66:1258-1274. [PMID: 28543181 PMCID: PMC5605411 DOI: 10.1002/hep.29276] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 04/30/2017] [Accepted: 05/08/2017] [Indexed: 12/15/2022]
Abstract
UNLABELLED Steatotic liver responds with increased hepatocellular injury when exposed to an ischemic-reperfusion insult. Increasing evidence supports the role of immune cells as key mediators of this injury in a normal (lean) state, but data about their role in a steatotic liver are practically nonexistent. The objective of the current study was to delineate the contribution of specific phenotypes of T cells and adhesion molecules in exacerbated cell death in steatotic liver injury. RNA sequencing was performed on isolated steatotic primary hepatocytes, and T-cell markers were assessed in hepatic lymphocytes after ischemia reperfusion injury (IRI) in high-fat diet (HFD)-fed mice. Cluster of differentiation 8 knockout (CD8-/- ) and CD4-/- mice along with CD8 and L-selectin antibody-treated mice were fed an HFD, and hepatocellular injury was assessed by histology, propidium iodide injection, and alanine aminotransferase after IRI. RNA sequencing demonstrated a strikingly differential gene profile in steatotic hepatocytes versus lean hepatocytes. After injury, the HFD liver showed increased necrosis, infiltrating CD8+ cells, alanine aminotransferase, and proinflammatory cytokines. Hepatic lymphocytes demonstrated increased CD8+ /CD62L+ (L-selectin) cells in HFD-fed mice after IRI. CD8-/- mice and CD8-depleted C57BL/6 mice demonstrated significant protection from injury, which was not seen in CD4-/- mice. L-selectin blockade also demonstrated significant hepatoprotection from IRI. L-selectin ligand MECA-79 was increased in HFD-fed mice undergoing IRI. CONCLUSION Blockade of CD8 and L-selectin, but not CD4, ameliorated hepatocellular injury, confirming that CD8+ cells are critical drivers of injury in a steatotic liver; this represents a therapeutic target in steatotic liver injury, underlining the importance of development of therapies specific to a steatotic liver. (Hepatology 2017;66:1258-1274).
Collapse
Affiliation(s)
| | - Sirish Palle
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Ming Shen
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Alayna Feng
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | | | - Nitika A. Gupta
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA,Transplant services, Children’s Healthcare of Atlanta. Atlanta, GA
| |
Collapse
|
35
|
Xiao Y, Han J, Wang Q, Mao Y, Wei M, Jia W, Wei L. A Novel Interacting Protein SERP1 Regulates the N‐Linked Glycosylation and Function of GLP‐1 Receptor in the Liver. J Cell Biochem 2017; 118:3616-3626. [DOI: 10.1002/jcb.26207] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 06/08/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Yuanyuan Xiao
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes MellitusShanghai Key Clinical Center for Metabolic DiseaseShanghai 200233China
| | - Junfeng Han
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes MellitusShanghai Key Clinical Center for Metabolic DiseaseShanghai 200233China
| | - Qianqian Wang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes MellitusShanghai Key Clinical Center for Metabolic DiseaseShanghai 200233China
| | - Yueqin Mao
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes MellitusShanghai Key Clinical Center for Metabolic DiseaseShanghai 200233China
| | - Meilin Wei
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes MellitusShanghai Key Clinical Center for Metabolic DiseaseShanghai 200233China
| | - Weiping Jia
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes MellitusShanghai Key Clinical Center for Metabolic DiseaseShanghai 200233China
| | - Li Wei
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes MellitusShanghai Key Clinical Center for Metabolic DiseaseShanghai 200233China
| |
Collapse
|
36
|
Colin IM, Colin H, Dufour I, Gielen CE, Many MC, Saey J, Knoops B, Gérard AC. Extrapancreatic effects of incretin hormones: evidence for weight-independent changes in morphological aspects and oxidative status in insulin-sensitive organs of the obese nondiabetic Zucker rat (ZFR). Physiol Rep 2017; 4:4/15/e12886. [PMID: 27511983 PMCID: PMC4985551 DOI: 10.14814/phy2.12886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 07/18/2016] [Indexed: 12/16/2022] Open
Abstract
Incretin‐based therapies are widely used to treat type 2 diabetes. Although hypoglycemic actions of incretins are mostly due to their insulinotropic/glucagonostatic effects, they may also influence extrapancreatic metabolism. We administered exendin‐4 (Ex‐4), a long‐acting glucagon‐like peptide receptor agonist, at low dose (0.1 nmol/kg/day) for a short period (10 days), in obese nondiabetic fa/fa Zucker rats (ZFRs). Ex‐4‐treated ZFRs were compared to vehicle (saline)‐treated ZFRs and vehicle‐ and Ex‐4‐treated lean rats (LRs). Blood glucose levels were measured at days 0, 9, and 10. Ingested food and animal weight were recorded daily. On the day of sacrifice (d10), blood was sampled along with liver, epididymal, subcutaneous, brown adipose, and skeletal muscle tissues from animals fasted for 24 h. Plasma insulin and blood glucose levels, food intake, and body and epididymal fat weight were unchanged, but gross morphological changes were observed in insulin‐sensitive tissues. The average size of hepatocytes was significantly lower in Ex‐4‐treated ZFRs, associated with decreased number and size of lipid droplets and 4‐hydroxy‐2‐nonenal (HNE) staining, a marker of oxidative stress (OS). Myocytes, which were smaller in ZFRs than in LRs, were significantly enlarged and depleted of lipid droplets in Ex‐4‐treated ZFRs. Weak HNE staining was increased by Ex‐4. A similar observation was made in brown adipose tissue, whereas the elevated HNE staining observed in epididymal adipocytes of ZFRs, suggestive of strong OS, was decreased by Ex‐4. These results suggest that incretins by acting on OS in insulin‐sensitive tissues may contribute to weight‐independent improvement in insulin sensitivity.
Collapse
Affiliation(s)
- Ides M Colin
- Endocrino-Diabetology Research Unit, Centre Hospitalier Régional (CHR) Mons-Hainaut, Mons, Belgium
| | - Henri Colin
- Faculté de Médecine, Pôle de Morphologie, Institut de Recherche Expérimentale et Clinique (IREC) Secteur des Sciences de la Santé (SSS) Université catholique de Louvain (UCL), Brussels, Belgium
| | - Ines Dufour
- Faculté de Médecine, Pôle de Morphologie, Institut de Recherche Expérimentale et Clinique (IREC) Secteur des Sciences de la Santé (SSS) Université catholique de Louvain (UCL), Brussels, Belgium
| | - Charles-Edouard Gielen
- Faculté de Médecine, Pôle de Morphologie, Institut de Recherche Expérimentale et Clinique (IREC) Secteur des Sciences de la Santé (SSS) Université catholique de Louvain (UCL), Brussels, Belgium
| | - Marie-Christine Many
- Faculté de Médecine, Pôle de Morphologie, Institut de Recherche Expérimentale et Clinique (IREC) Secteur des Sciences de la Santé (SSS) Université catholique de Louvain (UCL), Brussels, Belgium
| | - Jean Saey
- Endocrino-Diabetology Research Unit, Centre Hospitalier Régional (CHR) Mons-Hainaut, Mons, Belgium
| | - Bernard Knoops
- Group of Animal and Molecular Cell Biology, Institut des Sciences de la Vie, Université catholique de Louvain (UCL), Louvain-La-Neuve, Belgium
| | - Anne-Catherine Gérard
- Endocrino-Diabetology Research Unit, Centre Hospitalier Régional (CHR) Mons-Hainaut, Mons, Belgium Group of Animal and Molecular Cell Biology, Institut des Sciences de la Vie, Université catholique de Louvain (UCL), Louvain-La-Neuve, Belgium
| |
Collapse
|
37
|
Banan B, Watson R, Xu M, Lin Y, Chapman W. Development of a normothermic extracorporeal liver perfusion system toward improving viability and function of human extended criteria donor livers. Liver Transpl 2016; 22:979-93. [PMID: 27027254 DOI: 10.1002/lt.24451] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 03/08/2016] [Accepted: 03/21/2016] [Indexed: 12/23/2022]
Abstract
Donor organ shortages have led to an increased interest in finding new approaches to recover organs from extended criteria donors (ECD). Normothermic extracorporeal liver perfusion (NELP) has been proposed as a superior preservation method to reduce ischemia/reperfusion injury (IRI), precondition suboptimal grafts, and treat ECD livers so that they can be successfully used for transplantation. The aim of this study was to investigate the beneficial effects of a modified NELP circuit on discarded human livers. Seven human livers that were rejected for transplantation were placed on a modified NELP circuit for 8 hours. Perfusate samples and needle core biopsies were obtained at hourly intervals. A defatting solution that contained exendin-4 (50 nM) and L-carnitine (10 mM) was added to the perfusate for 2 steatotic livers. NELP provided normal temperature, electrolytes, and pH and glucose levels in the perfusate along with physiological vascular flows and pressures. Functional, biochemical, and microscopic evaluation revealed no additional injuries to the grafts during NELP with an improved oxygen extraction ratio (>0.5) and stabilized markers of hepatic injury. All livers synthesized adequate amounts of bile and coagulation factors. We also demonstrated a mild reduction (10%) of macroglobular steatosis with the use of the defatting solution. Histology demonstrated normal parenchymal architecture and a minimal to complete lack of IRI at the end of NELP. In conclusion, a modified NELP circuit preserved hepatocyte architecture, recovered synthetic functions, and hepatobiliary parameters of ECD livers without additional injuries to the grafts. This approach has the potential to increase the donor pool for clinical transplantation. Liver Transplantation 22 979-993 2016 AASLD.
Collapse
Affiliation(s)
- Babak Banan
- Departments of Surgery, Washington University School of Medicine, St. Louis, MO
| | - Rao Watson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO.,Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Min Xu
- Departments of Surgery, Washington University School of Medicine, St. Louis, MO
| | - Yiing Lin
- Departments of Surgery, Washington University School of Medicine, St. Louis, MO
| | - William Chapman
- Departments of Surgery, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
38
|
Ali ES, Hua J, Wilson CH, Tallis GA, Zhou FH, Rychkov GY, Barritt GJ. The glucagon-like peptide-1 analogue exendin-4 reverses impaired intracellular Ca(2+) signalling in steatotic hepatocytes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2135-46. [PMID: 27178543 DOI: 10.1016/j.bbamcr.2016.05.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/20/2016] [Accepted: 05/04/2016] [Indexed: 02/07/2023]
Abstract
The release of Ca(2+) from the endoplasmic reticulum (ER) and subsequent replenishment of ER Ca(2+) by Ca(2+) entry through store-operated Ca(2+) channels (SOCE) play critical roles in the regulation of liver metabolism by adrenaline, glucagon and other hormones. Both ER Ca(2+) release and Ca(2+) entry are severely inhibited in steatotic hepatocytes. Exendin-4, a slowly-metabolised glucagon-like peptide-1 (GLP-1) analogue, is known to reduce liver glucose output and liver lipid, but the mechanisms involved are not well understood. The aim of this study was to determine whether exendin-4 alters intracellular Ca(2+) homeostasis in steatotic hepatocytes, and to evaluate the mechanisms involved. Exendin-4 completely reversed lipid-induced inhibition of SOCE in steatotic liver cells, but did not reverse lipid-induced inhibition of ER Ca(2+) release. The action of exendin-4 on Ca(2+) entry was rapid in onset and was mimicked by GLP-1 or dibutyryl cyclic AMP. In steatotic liver cells, exendin-4 caused a rapid decrease in lipid (half time 6.5min), inhibited the accumulation of lipid in liver cells incubated in the presence of palmitate plus the SOCE inhibitor BTP-2, and enhanced the formation of cyclic AMP. Hormone-stimulated accumulation of extracellular glucose in glycogen replete steatotic liver cells was inhibited compared to that in non-steatotic cells, and this effect of lipid was reversed by exendin-4. It is concluded that, in steatotic hepatocytes, exendin-4 reverses the lipid-induced inhibition of SOCE leading to restoration of hormone-regulated cytoplasmic Ca(2+) signalling. The mechanism may involve GLP-1 receptors, cyclic AMP, lipolysis, decreased diacylglycerol and decreased activity of protein kinase C.
Collapse
Affiliation(s)
- Eunüs S Ali
- Department of Medical Biochemistry and Centre for Neuroscience, School of Medicine, Flinders University, Adelaide, South Australia 5001, Australia
| | - Jin Hua
- Department of Medical Biochemistry and Centre for Neuroscience, School of Medicine, Flinders University, Adelaide, South Australia 5001, Australia
| | - Claire H Wilson
- Molecular Regulation Laboratory, Centre for Cancer Biology, Division of Health Sciences, University of South Australia, Adelaide, South Australia, 5001, Australia
| | - George A Tallis
- Medical Biochemistry, SA Pathology, Finders Medical Centre, Bedford Park, South Australia 5042, Australia
| | - Fiona H Zhou
- School of Medicine, The University of Adelaide, and South Australian Health and Medical Research Institute, Adelaide, South Australia 5005, Australia
| | - Grigori Y Rychkov
- School of Medicine, The University of Adelaide, and South Australian Health and Medical Research Institute, Adelaide, South Australia 5005, Australia
| | - Greg J Barritt
- Department of Medical Biochemistry and Centre for Neuroscience, School of Medicine, Flinders University, Adelaide, South Australia 5001, Australia.
| |
Collapse
|
39
|
Contrast-Based Real-Time Assessment of Microcirculatory Changes in a Fatty Liver After Ischemia Reperfusion Injury. J Pediatr Gastroenterol Nutr 2016; 62:429-36. [PMID: 26485605 PMCID: PMC4768725 DOI: 10.1097/mpg.0000000000001008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVES A fatty liver is known to have impairment of microcirculation, which is worsened after ischemia reperfusion injury (IRI). This makes most fatty grafts unsuitable for transplantation, and in the absence of real time assessment of microcirculation this selection has been at best, random. The aim of this study was to demonstrate the utility of a contrast enhanced ultrasound model in quantitative assessment of the microcirculation of a fatty liver. METHODS We subjected fatty mice to IRI, and blood flow dynamics were assessed before and after the injury. RESULTS There was a significant increase in the resistive and pulsatility index of the extrahepatic artery and a significant decrease in velocity of the portal vein. There was also a quantifiable decrease in the intrahepatic blood volume, blood flow, time to peak flow, and perfusion index of mice with fatty liver, suggesting that a fatty liver develops hemodynamic abnormalities after IRI, leading to increased hepatocellular injury. CONCLUSIONS Hemodynamic abnormalities in liver can be reliably quantified using a contrast, enhanced Doppler ultrasound, which is an inexpensive technique with multiple clinical applications. It can be used to assess the quality of the fatty liver donor graft before organ retrieval; for determining live donor candidacy, for making post-IRI recovery prognosis, and for assessing the effectiveness of therapeutic interventions.
Collapse
|
40
|
Mostafa AM, Hamdy NM, El-Mesallamy HO, Abdel-Rahman SZ. Glucagon-like peptide 1 (GLP-1)-based therapy upregulates LXR-ABCA1/ABCG1 cascade in adipocytes. Biochem Biophys Res Commun 2015; 468:900-5. [PMID: 26603933 DOI: 10.1016/j.bbrc.2015.11.054] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 11/11/2015] [Indexed: 01/31/2023]
Abstract
A promising treatment for obesity involves the use of therapeutic agents that increase the level of the glucagon-like peptide (GLP-1) which reduces appetite and food intake. Native GLP-1 is rapidly metabolized by the dipeptidyl peptidase-4 (DPP-4) enzyme and, as such, GLP-1 mimetics or DPP-4 inhibitors represent promising treatment approaches. Interestingly, obese patient receiving such medications showed improved lipid profiles and cholesterol homeostasis, however the mechanism(s) involved are not known. Members of the ATP-binding cassette (ABC) transporters, including ABCA1 and ABCG1, play essential roles in reverse cholesterol transport and in high density lipoprotein (HDL) formation. These transporters are under the transcriptional regulation of liver X receptor alpha (LXR-α). We hypothesize that GLP-1 mimetics and/or DPP-4 inhibitors modulate ABCA1/ABCG1 expression in adipocytes through an LXR-α mediated process and thus affecting cholesterol homeostasis. 3T3-L1 adipocytes were treated with the DPP-4 inhibitor vildagliptin (2 nM) or the GLP-1 mimetic exendin-4 (5 nM). Gene and protein expression of ABCA1, ABCG1 and LXR-α were determined and correlated with cholesterol efflux. Expression levels of interleukin-6 (IL-6), leptin and the glucose transporter-4 (GLUT-4) were also determined. Treatment with both medications significantly increased the expression of ABCA1, ABCG1, LXR-α and GLUT-4, decreased IL-6 and leptin, and improved cholesterol efflux from adipocytes (P < 0.05). Our data suggest that GLP-1-based therapy modulate ABCA1/ABCG1 expression in adipocytes potentially through an LXR-α mediated process.
Collapse
Affiliation(s)
- Ahmed M Mostafa
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch, Galveston, TX, USA; Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Nadia M Hamdy
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Hala O El-Mesallamy
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Sherif Z Abdel-Rahman
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
41
|
Guo XY, Liu J, Gao Y. Nonalcoholic fatty liver disease: Pathogenesis and incretin based therapies. Shijie Huaren Xiaohua Zazhi 2015; 23:4990-4996. [DOI: 10.11569/wcjd.v23.i31.4990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease is considered a hepatic manifestation of metabolic syndrome (MS). The current treatment of non-alcoholic fatty liver disease (NAFLD) principally involves amelioration of MS components by lifestyle modification. Effective pharmacological agents for fatty liver treatment are lacking. Incretins are gut derived hormones secreted into the circulation in response to nutrient ingestion that can enhance glucose-stimulated insulin secretion, and represent a new class of drugs for treatment of type 2 diabetes, including glucagon-like peptide 1 analogues and dipeptidyl aminopeptidase 4 inhibitors. There are several experimental and clinical trials exploring the efficacy of incretin based therapies in NAFLD treatment, however, further studies are needed to assess the long-term effect of incretin based therapies on NAFLD.
Collapse
|
42
|
Carlessi R, Lemos NE, Dias AL, Brondani LA, Oliveira JR, Bauer AC, Leitão CB, Crispim D. Exendin-4 attenuates brain death-induced liver damage in the rat. Liver Transpl 2015; 21:1410-8. [PMID: 26334443 DOI: 10.1002/lt.24317] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 07/14/2015] [Accepted: 08/20/2015] [Indexed: 12/23/2022]
Abstract
The majority of liver grafts destined for transplantation originate from brain dead donors. However, significantly better posttransplantation outcomes are achieved when organs from living donors are used, suggesting that brain death (BD) causes irreversible damage to the liver tissue. Recently, glucagon-like peptide-1 (GLP1) analogues were shown to possess interesting hepatic protection effects in different liver disease models. We hypothesized that donor treatment with the GLP1 analogue exendin-4 (Ex-4) could alleviate BD-induced liver damage. A rat model of BD was employed in order to estimate BD-induced liver damage and Ex-4's potential protective effects. Liver damage was assessed by biochemical determination of circulating hepatic markers. Apoptosis in the hepatic tissue was assessed by immunoblot and immunohistochemistry using an antibody that only recognizes the active form of caspase-3. Gene expression changes in inflammation and stress response genes were monitored by quantitative real-time polymerase chain reaction. Here, we show that Ex-4 administration to the brain dead liver donors significantly reduces levels of circulating aspartate aminotransferase and lactate dehydrogenase. This was accompanied by a remarkable reduction in hepatocyte apoptosis. In this model, BD caused up-regulation of tumor necrosis factor and stress-related genes, confirming previous findings in clinical and animal studies. In conclusion, treatment of brain dead rats with Ex-4 reduced BD-induced liver damage. Further investigation is needed to determine the molecular basis of the observed liver protection. After testing in a randomized clinical trial, the inclusion of GLP1 analogues in organ donor management might help to improve organ quality, maximize organ donation, and possibly increase liver transplantation success rates.
Collapse
Affiliation(s)
- Rodrigo Carlessi
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil.,Postgraduate Program in Medical Sciences, Endocrinology, Faculty of Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.,School of Biomedical Sciences, Curtin Health Innovation Research Institute-Biosciences, Curtin University, Perth, Western Australia, Australia
| | - Natalia E Lemos
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil.,Postgraduate Program in Medical Sciences, Endocrinology, Faculty of Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ana L Dias
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Leticia A Brondani
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil.,Postgraduate Program in Medical Sciences, Endocrinology, Faculty of Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jarbas R Oliveira
- Biosciences Faculty, Pontificia Universidade Catolica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Andrea C Bauer
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Cristiane B Leitão
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil.,Postgraduate Program in Medical Sciences, Endocrinology, Faculty of Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Daisy Crispim
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil.,Postgraduate Program in Medical Sciences, Endocrinology, Faculty of Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
43
|
Wang C, Li Q, Wang W, Guo L, Guo C, Sun Y, Zhang J. GLP-1 contributes to increases in PGC-1α expression by downregulating miR-23a to reduce apoptosis. Biochem Biophys Res Commun 2015; 466:33-9. [PMID: 26315270 DOI: 10.1016/j.bbrc.2015.08.092] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 08/20/2015] [Indexed: 11/15/2022]
Abstract
GLP-1 can help to overcome problems of liver cells metabolism, not only pancreatic cell. But the explicit mechanism of this effect remains unclear. In recent years, microRNAs have received the attention of researchers and some microRNAs have important implications for diabetes. The mitochondrial protective gene PGC-1α is also closely related to diabetes, and UCP2 is related to anti-mitochondrial oxidative stress, but the mechanism of action of these genes is unclear. In this study, we used HepG2 cell line and used the cell counting kit (CCK) to measure the cell viability with GLP-1(7-36) and/or glucotoxicity. To investigate alterations in gene expression resulting from incubation with GLP-1 (7-36) or hyperglycaemia, the RNA expression levels of miR-23a, PGC-1α, Bak, Bax and UCP2 were quantified using real-time PCR. The protein levels of PGC-1α were determined by western blot. The role of miR-23a in the regulation of PGC-1α was further assessed through cell transfection to downregulate of miR-23a expression. In this study, the viability of HepG2 hepatocytes was decreased under hyperglycaemia, but incubation with 10 nmol/L GLP-1 (7-36) amide for 24 h significantly increased the viability and decreased the mRNA expression levels of Bax and Bak. Incubation with GLP-1(7-36) amide for 24 h attenuated the RNA expression of miR-23a and increased the mRNA and protein expression of PGC-1α. Inhibition of miR-23a expression by cell transfection led to increases in the mRNA and protein expression of PGC-1α. In addition, the mRNA expression of UCP2 increased after incubation with GLP-1(7-36) for 24 h. In conclusion, GLP-1 induced increased expression of mitochondrial protective gene PGC-1α by downregulating miR-23a to inhibit hepatocyte apoptosis and also enhanced UCP2 to reduce apoptosis.
Collapse
Affiliation(s)
- Chi Wang
- Department of Endocrinology and Metabolism, Second Affiliated Hospital of Harbin Medical University, Xuefu Road No. 246, Harbin, Heilongjiang 150086, China
| | - Qiang Li
- Department of Endocrinology and Metabolism, Second Affiliated Hospital of Harbin Medical University, Xuefu Road No. 246, Harbin, Heilongjiang 150086, China.
| | - Wei Wang
- Department of Endocrinology and Metabolism, Second Affiliated Hospital of Harbin Medical University, Xuefu Road No. 246, Harbin, Heilongjiang 150086, China
| | - Lin Guo
- Department of Endocrinology and Metabolism, Second Affiliated Hospital of Harbin Medical University, Xuefu Road No. 246, Harbin, Heilongjiang 150086, China
| | - Chang Guo
- Department of Endocrinology and Metabolism, Second Affiliated Hospital of Harbin Medical University, Xuefu Road No. 246, Harbin, Heilongjiang 150086, China
| | - Yiqiong Sun
- Department of Endocrinology and Metabolism, Second Affiliated Hospital of Harbin Medical University, Xuefu Road No. 246, Harbin, Heilongjiang 150086, China
| | - Jinchao Zhang
- Department of Endocrinology and Metabolism, Second Affiliated Hospital of Harbin Medical University, Xuefu Road No. 246, Harbin, Heilongjiang 150086, China
| |
Collapse
|
44
|
Rizvi AA, Patti AM, Giglio RV, Nikolic D, Amato A, Al-Busaidi N, Al-Rasadi K, Soresi M, Banach M, Montalto G, Rizzo M. Liraglutide improves carotid intima-media thickness in patients with type 2 diabetes and non-alcoholic fatty liver disease: an 8-month prospective pilot study. Expert Opin Biol Ther 2015; 15:1391-1397. [PMID: 26195184 DOI: 10.1517/14712598.2015.1067299] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE To explore the effects of the glucagon-like peptide-1 receptor analogue liraglutide on subclinical atherosclerosis in diabetic subjects with non-alcoholic fatty liver disease (NAFLD). RESEARCH DESIGN AND METHODS In this 8-month prospective study, 29 subjects with type 2 diabetes (T2DM) and NAFLD (16 men and 13 women, mean age: 61 ± 10 years) were matched for age and gender with 29 subjects with T2DM without NAFLD (16 men and 13 women, mean age: 61 ± 8 years). Liraglutide 0.6 mg/day for 2 weeks, followed by 1.2 mg/day, was given in addition to metformin. MAIN OUTCOME MEASURES Anthropometric variables, glucometabolic parameters and carotid intima-media thickness (IMT) using B-mode real-time ultrasound were assessed at baseline and 4 and 8 months. RESULTS Glycated hemoglobin reduced significantly in both groups. No significant changes were found in body weight, waist circumference and lipids. Carotid IMT decreased significantly in the T2DM patients with NAFLD (from 0.96 ± 0.27 to 0.82 ± 0.17 to 0.85 ± 0.12 mm, p = 0.0325), but not in the T2DM patients without NAFLD (from 0.91 ± 0.23 to 0.88 ± 0.17 to 0.85 ± 0.15 mm, p = 0.4473). CONCLUSION Eight months of liraglutide use in patients with T2DM and NAFLD significantly reduced carotid IMT, a surrogate marker of atherosclerosis, independently of glucometabolic changes.
Collapse
Affiliation(s)
- Ali A Rizvi
- a 1 University of South Carolina School of Medicine, Division of Endocrinology, Diabetes and Metabolism , Columbia, SC, USA
| | - Angelo Maria Patti
- b 2 University of Palermo, Biomedical Department of Internal Medicine and Medical Specialties , Via del Vespro, 141, 90127, Palermo, Italy +39 091 6552945 ; +39 091 6552945 ;
| | - Rosaria Vincenza Giglio
- b 2 University of Palermo, Biomedical Department of Internal Medicine and Medical Specialties , Via del Vespro, 141, 90127, Palermo, Italy +39 091 6552945 ; +39 091 6552945 ;
| | - Dragana Nikolic
- b 2 University of Palermo, Biomedical Department of Internal Medicine and Medical Specialties , Via del Vespro, 141, 90127, Palermo, Italy +39 091 6552945 ; +39 091 6552945 ;
| | - Antonella Amato
- c 3 University of Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies , Palermo, Italy
| | - Noor Al-Busaidi
- d 4 Sultan Qaboos University Hospital, Department of Clinical Biochemistry , Muscat, Oman
| | - Khalid Al-Rasadi
- d 4 Sultan Qaboos University Hospital, Department of Clinical Biochemistry , Muscat, Oman
| | - Maurizio Soresi
- b 2 University of Palermo, Biomedical Department of Internal Medicine and Medical Specialties , Via del Vespro, 141, 90127, Palermo, Italy +39 091 6552945 ; +39 091 6552945 ;
| | - Maciej Banach
- e 5 University of Lodz, Department of Hypertension, Chair of Nephrology and Hypertension , Lodz, Poland
| | - Giuseppe Montalto
- b 2 University of Palermo, Biomedical Department of Internal Medicine and Medical Specialties , Via del Vespro, 141, 90127, Palermo, Italy +39 091 6552945 ; +39 091 6552945 ;
| | - Manfredi Rizzo
- a 1 University of South Carolina School of Medicine, Division of Endocrinology, Diabetes and Metabolism , Columbia, SC, USA
- b 2 University of Palermo, Biomedical Department of Internal Medicine and Medical Specialties , Via del Vespro, 141, 90127, Palermo, Italy +39 091 6552945 ; +39 091 6552945 ;
| |
Collapse
|
45
|
Li CL, Zhao LJ, Zhou XL, Wu HX, Zhao JJ. Review on the effect of glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors for the treatment of non-alcoholic fatty liver disease. ACTA ACUST UNITED AC 2015; 35:333-336. [PMID: 26072069 DOI: 10.1007/s11596-015-1433-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/20/2015] [Indexed: 01/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common liver disease and it represents the hepatic manifestation of metabolic syndrome, which includes type 2 diabetes mellitus (T2DM), dyslipidemia, central obesity and hypertension. Glucagon-like peptide-1 (GLP-1) analogues and dipeptidyl peptidase-4 (DPP-4) inhibitors were widely used to treat T2DM. These agents improve glycemic control, promote weight loss and improve lipid metabolism. Recent studies have demonstrated that the GLP-1 receptor (GLP-1R) is present and functional in human and rat hepatocytes. In this review, we present data from animal researches and human clinical studies that showed GLP-1 analogues and DPP-4 inhibitors can decrease hepatic triglyceride (TG) content and improve hepatic steatosis, although some effects could be a result of improvements in metabolic parameters. Multiple hepatocyte signal transduction pathways and mRNA from key enzymes in fatty acid metabolism appear to be activated by GLP-1 and its analogues. Thus, the data support the need for more rigorous prospective clinical trials to further investigate the potential of incretin therapies to treat patients with NAFLD.
Collapse
Affiliation(s)
- Chao-Lin Li
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
- Department of Endocrinology, Jinan, China
| | - Lu-Jie Zhao
- Hemodialysis Center, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, China
| | - Xin-Li Zhou
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| | - Hui-Xiao Wu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| | - Jia-Jun Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China.
| |
Collapse
|
46
|
Ryan D, Acosta A. GLP-1 receptor agonists: Nonglycemic clinical effects in weight loss and beyond. Obesity (Silver Spring) 2015; 23:1119-29. [PMID: 25959380 PMCID: PMC4692091 DOI: 10.1002/oby.21107] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/06/2015] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Glucagon-like peptide-1 (GLP-1) receptor agonists are indicated for treatment of type 2 diabetes since they mimic the actions of native GLP-1 on pancreatic islet cells, stimulating insulin release, while inhibiting glucagon release, in a glucose-dependent manner. The observation of weight loss has led to exploration of their potential as antiobesity agents, with liraglutide 3.0 mg day(-1) approved for weight management in the US on December 23, 2014, and in the EU on March 23, 2015. This review examines the potential nonglycemic effects of GLP-1 receptor agonists. METHODS A literature search was conducted to identify preclinical and clinical evidence on nonglycemic effects of GLP-1 receptor agonists. RESULTS GLP-1 receptors are distributed widely in a number of tissues in humans, and their effects are not limited to the well-recognized effects on glycemia. Nonglycemic effects include weight loss, which is perhaps the most widely recognized nonglycemic effect. In addition, effects on the cardiovascular, neurologic, and renal systems and on taste perception may occur independently of weight loss. CONCLUSIONS GLP-1 receptor agonists may provide other nonglycemic clinical effects besides weight loss. Understanding these effects is important for prescribers in using GLP-1 receptor agonists for diabetic patients, but also if approved for chronic weight management.
Collapse
Affiliation(s)
- Donna Ryan
- Pennington Biomedical Research Center, Baton RougeLouisiana, USA
| | - Andres Acosta
- Division of Gastroenterology and Hepatology, Mayo ClinicRochester, Minnesota, USA
| |
Collapse
|
47
|
Gupta NA, Kolachala VL, Jiang R, Abramowsky C, Shenoi A, Kosters A, Pavuluri H, Anania F, Kirk AD. Mitigation of autophagy ameliorates hepatocellular damage following ischemia-reperfusion injury in murine steatotic liver. Am J Physiol Gastrointest Liver Physiol 2014; 307:G1088-99. [PMID: 25258410 PMCID: PMC4254956 DOI: 10.1152/ajpgi.00210.2014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Ischemia-reperfusion injury (IRI) is a common clinical consequence of hepatic surgery, cardiogenic shock, and liver transplantation. A steatotic liver is particularly vulnerable to IRI, responding with extensive hepatocellular injury. Autophagy, a lysosomal pathway balancing cell survival and cell death, is engaged in IRI, although its role in IRI of a steatotic liver is unclear. The role of autophagy was investigated in high-fat diet (HFD)-fed mice exposed to IRI in vivo and in steatotic hepatocytes exposed to hypoxic IRI (HIRI) in vitro. Two inhibitors of autophagy, 3-methyladenine and bafilomycin A1, protected the steatotic hepatocytes from HIRI. Exendin 4 (Ex4), a glucagon-like peptide 1 analog, also led to suppression of autophagy, as evidenced by decreased autophagy-associated proteins [microtubule-associated protein 1A/1B-light chain 3 (LC3) II, p62, high-mobility group protein B1, beclin-1, and autophagy-related protein 7], reduced hepatocellular damage, and improved mitochondrial structure and function in HFD-fed mice exposed to IRI. Decreased autophagy was further demonstrated by reversal of a punctate pattern of LC3 and decreased autophagic flux after IRI in HFD-fed mice. Under the same conditions, the effects of Ex4 were reversed by the competitive antagonist exendin 9-39. The present study suggests that, in IRI of hepatic steatosis, treatment of hepatocytes with Ex4 mitigates autophagy, ameliorates hepatocellular injury, and preserves mitochondrial integrity. These data suggest that therapies targeting autophagy, by Ex4 treatment in particular, may ameliorate the effects of IRI in highly prevalent steatotic liver.
Collapse
Affiliation(s)
- Nitika A. Gupta
- 1Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia; ,2Transplant Services, Children's Healthcare of Atlanta, Atlanta, Georgia;
| | | | - Rong Jiang
- 1Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia;
| | - Carlos Abramowsky
- 1Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia; ,3Department of Pathology, Emory University School of Medicine, Atlanta, Georgia;
| | - Asha Shenoi
- 1Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia; ,2Transplant Services, Children's Healthcare of Atlanta, Atlanta, Georgia;
| | - Astrid Kosters
- 1Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia;
| | - Haritha Pavuluri
- 1Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia;
| | - Frank Anania
- 4Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; and
| | - Allan D. Kirk
- 1Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia; ,2Transplant Services, Children's Healthcare of Atlanta, Atlanta, Georgia; ,5Department of Surgery, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
48
|
Wang XC, Gusdon AM, Liu H, Qu S. Effects of glucagon-like peptide-1 receptor agonists on non-alcoholic fatty liver disease and inflammation. World J Gastroenterol 2014; 20:14821-14830. [PMID: 25356042 PMCID: PMC4209545 DOI: 10.3748/wjg.v20.i40.14821] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/14/2014] [Accepted: 07/16/2014] [Indexed: 02/06/2023] Open
Abstract
Glucagon-like peptide1 (GLP-1) is secreted from Langerhans cells in response to oral nutrient intake. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are a new class of incretin-based anti-diabetic drugs. They function to stimulate insulin secretion while suppressing glucagon secretion. GLP-1-based therapies are now well established in the management of type 2 diabetes mellitus (T2DM), and recent literature has suggested potential applications of these drugs in the treatment of obesity and for protection against cardiovascular and neurological diseases. As we know, along with change in lifestyles, the prevalence of non-alcoholic fatty liver disease (NAFLD) in China is rising more than that of viral hepatitis and alcoholic fatty liver disease, and NAFLD has become the most common chronic liver disease in recent years. Recent studies further suggest that GLP-1RAs can reduce transaminase levels to improve NAFLD by improving blood lipid levels, cutting down the fat content to promote fat redistribution, directly decreasing fatty degeneration of the liver, reducing the degree of liver fibrosis and improving inflammation. This review shows the NAFLD-associated effects of GLP-1RAs in animal models and in patients with T2DM or obesity who are participants in clinical trials.
Collapse
|
49
|
Zhou SW, Zhang M, Zhu M. Liraglutide reduces lipid accumulation in steatotic L‑02 cells by enhancing autophagy. Mol Med Rep 2014; 10:2351-7. [PMID: 25230688 PMCID: PMC4214343 DOI: 10.3892/mmr.2014.2569] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 08/05/2014] [Indexed: 12/25/2022] Open
Abstract
Simple hepatic steatosis is the early stage of non-alcoholic fatty liver disease and is recognized as a benign process. Previous studies show that glucagon-like peptide-1 has great potential in improving hepatic steatosis. Recent data have revealed that inhibiting autophagy exacerbates lipid accumulation in hepatocytes. Therefore, the present study aimed to determine the effects of liraglutide (LG) on simple hepatic steatosis and the possible role of autophagy. Firstly, steatotic L-02 cells were induced by incubating L-02 cells with 1 mmol/l free fatty acid (FFA) mixture (oleic acid and palmitic acid at a molar ratio of 2:1) for 24 h. Intracellular lipid accumulation, cell viability, oxidative stress and apoptosis were evaluated. Secondly, steatotic L-02 cells were treated with 10 or 100 nmol/l LG, 100 nmol/l LG plus 3-methyladenine (3-MA), or rapamycin for 24 h, and then lipid accumulation was measured. Next, the degree of lipid accumulation and the intensity of autophagy were assessed. Oil red O staining and triglyceride quantification demonstrated notable steatosis in L-02 cells following exposure to 1 mmol/l FFA mixture for 24 h. There was no significant cytotoxicity, oxidative stress or apoptosis in steatotic L-02 cells. Treatment with 100 nmol/l LG reduced lipid accumulation in steatotic L-02 cells and increased the mRNA levels of microtubule-associated protein 1 light chain 3B. Additionally, it enhanced the autophagic flux in steatotic L-02 cells, as measured by western blot analysis and shown by electron microscopy. Additionally, 3-MA weakened the ability of LG to improve hepatic steatosis and enhance autophagy. Our data indicate that LG reduces the lipid accumulation in steatotic L-02 cells, and the activation of autophagy plays a significant role in this process.
Collapse
Affiliation(s)
- Shi-Wei Zhou
- Department of Geriatrics, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Man Zhang
- Department of Geriatrics, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Min Zhu
- Department of Geriatrics, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
50
|
Kim S, Jung J, Kim H, Heo RW, Yi CO, Lee JE, Jeon BT, Kim WH, Hahm JR, Roh GS. Exendin-4 Improves Nonalcoholic Fatty Liver Disease by Regulating Glucose Transporter 4 Expression in ob/ob Mice. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2014; 18:333-9. [PMID: 25177166 PMCID: PMC4146636 DOI: 10.4196/kjpp.2014.18.4.333] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 05/14/2014] [Accepted: 06/14/2014] [Indexed: 01/14/2023]
Abstract
Exendin-4 (Ex-4), a glucagon-like peptide-1 receptor (GLP-1R) agonist, has been known to reverse hepatic steatosis in ob/ob mice. Although many studies have evaluated molecular targets of Ex-4, its mechanism of action on hepatic steatosis and fibrosis has not fully been determined. In the liver, glucose transporter 4 (GLUT4) is mainly expressed in hepatocytes, endothelial cells and hepatic stellate cells (HSCs). In the present study, the effects of Ex-4 on GLUT4 expression were determined in the liver of ob/ob mice. Ob/ob mice were treated with Ex-4 for 10 weeks. Serum metabolic parameters, hepatic triglyceride levels, and liver tissues were evaluated for hepatic steatosis. The weights of the whole body and liver in ob/ob mice were reduced by long-term Ex-4 treatment. Serum metabolic parameters, hepatic steatosis, and hepatic fibrosis in ob/ob mice were reduced by Ex-4. Particularly, Ex-4 improved hepatic steatosis by enhancing GLUT4 via GLP-1R activation in ob/ob mice. Ex-4 treatment also inhibited hepatic fibrosis by decreasing expression of connective tissue growth factor in HSCs of ob/ob mice. Our data suggest that GLP-1 agonists exert a protective effect on hepatic steatosis and fibrosis in obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Seok Kim
- Department of Anatomy and Convergence Medical Science, Institutes of Health Science, Gyeongsnag National University School of Medicine, Jinju 660-751, Korea
| | - Jaehoon Jung
- Department of Internal Medicine, Institutes of Health Science, Gyeongsnag National University School of Medicine, Jinju 660-751, Korea
| | - Hwajin Kim
- Department of Anatomy and Convergence Medical Science, Institutes of Health Science, Gyeongsnag National University School of Medicine, Jinju 660-751, Korea
| | - Rok Won Heo
- Department of Anatomy and Convergence Medical Science, Institutes of Health Science, Gyeongsnag National University School of Medicine, Jinju 660-751, Korea
| | - Chin-Ok Yi
- Department of Anatomy and Convergence Medical Science, Institutes of Health Science, Gyeongsnag National University School of Medicine, Jinju 660-751, Korea
| | - Jung Eun Lee
- Department of Thoracic and Cardiovascular Surgery, Institutes of Health Science, Gyeongsnag National University School of Medicine, Jinju 660-751, Korea
| | - Byeong Tak Jeon
- Department of Neurologic Surgery, Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Won-Ho Kim
- Division of Metabolic Diseases, Center for Biomedical Sciences, National Institutes of Health, Cheongwon-gun 363-700, Korea
| | - Jong Ryeal Hahm
- Department of Internal Medicine, Institutes of Health Science, Gyeongsnag National University School of Medicine, Jinju 660-751, Korea
| | - Gu Seob Roh
- Department of Anatomy and Convergence Medical Science, Institutes of Health Science, Gyeongsnag National University School of Medicine, Jinju 660-751, Korea
| |
Collapse
|