1
|
Sangkaew B, Viennasay B, Cherdthong A, Norrapoke T, Supapong C. Effects of high protein yeast with oil palm frond on feed utilization and blood chemical of Boer crossbred goats. Sci Rep 2025; 15:15438. [PMID: 40316729 PMCID: PMC12048596 DOI: 10.1038/s41598-025-99866-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 04/23/2025] [Indexed: 05/04/2025] Open
Abstract
This study aimed to investigate the effects of high-protein yeast combined with oil palm leaves on crossbred goats. Twelve goats with similar ages and average weights ranging 18 ± 1.5 kg were assigned to three independent experimental groups. Treatment 1 served as the control group (fresh Napier grass), treatment 2 received yeast-fermented oil palm leaves, and treatment 3 received yeast-fermented Napier grass, all for a duration of 90 days. The chemical composition of the yeast-fermented oil palm leaves showed higher crude protein content (10.84%) compared to yeast-fermented Napier grass and normal Napier grass (6.62% and 2.52%, respectively). Regarding feed intake, treatment 2 exhibited the highest consumption, with no significant statistical difference compared to the control group (p > 0.05), consuming the highest amount of feed (0.67 kg/day). Digestibility coefficients of organic matter did not significantly differ among treatments (58.34, 58.04, and 64.14, respectively) (p > 0.05). However, yeast supplementation significantly increased the digestibility of dry matter, crude protein, NDF fiber, and ADF fiber (p < 0.05). Yeast supplementation did not affect rumen pH and temperature, however, it enhanced the production of propionic and butyric acids in treatment 3 (14.43 and 9.04 millimoles per liter, respectively). Regarding blood chemistry, significant differences were observed in hemoglobin, hematocrit, red blood cell count, red blood cell distribution width, and blood urea nitrogen levels (p < 0.05). In conclusion, the use of yeast to improve the quality of oil palm leaves appears promising for enhancing animal nutrition. Furthermore, it represents a valuable agricultural application of oil palm by-products, particularly in the southern region, leading to increased nutritional benefits for livestock.
Collapse
Affiliation(s)
- Bunthum Sangkaew
- Department of Animal Science, Faculty of Agriculture, Rajamangala University of Technology Srivijaya, Nakhon Si Thammarat, 80240, Thailand
| | - Bounnaxay Viennasay
- Bounthavyxay Farm, Bounneua village, Bounneua Distic, Phongsaly Provice, 02000, Lao People's Democratic Republic
| | - Anusorn Cherdthong
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Thitima Norrapoke
- Faculty of Agricultural Technology, Department of Animal Production Technology, Kalasin University, Kalasin Province, Kalasin, 46000, Thailand
| | - Chanadol Supapong
- Department of Animal Science, Faculty of Agricultural Innovation and Technology, Rajamangala University of Technology Isan, Nakhon Ratchasima, 30000, Thailand.
| |
Collapse
|
2
|
Zhou P, Liu Q, Zhao Y, Wu Y, Shen J, Duan T, Che L, Zhang Y, Yan H. Yeast protein as a fishmeal substitute: impacts on reproductive performance, immune responses, and gut microbiota in two sow hybrids. Front Cell Infect Microbiol 2025; 15:1579950. [PMID: 40330018 PMCID: PMC12052836 DOI: 10.3389/fcimb.2025.1579950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 03/24/2025] [Indexed: 05/08/2025] Open
Abstract
Introduction The persistent African swine fever epidemic has significantly compromised China's swine production. To accelerate production recovery, commercial farms are increasingly adopting retention of two-way backcross sows (Landrace × Yorkshire × Landrace, LLY) for breeding. This study aimed to investigate the effects of yeast protein, an emerging sustainable protein source, on reproductive performance, immune responses, and gut microbiota in two-way crossbred sows (Landrace × Yorkshire, LY) and LLY sows. Methods The experiment employed a 2×2 factorial design evaluating two fixed factors: sow hybrid (LY vs LLY) and yeast protein supplementation (0% vs 2.6%). The four treatment groups were: LY sows without yeast protein supplementation (LY-C), LLY sows without yeast protein supplementation (LLY-C), LY sows with yeast protein supplementation (LY-YP), and LLY sows with yeast protein supplementation (LLY-YP). A total of one hundred healthy sows of 2-6 parities (50 LY sows and 50 LLY sows), were stratified by backfat thickness, body weight, and parity, then randomly allocated to the four treatment groups on day 105 of gestation, with 25 sows in each group. The experimental period lasted from day 106 of gestation to day 18 of lactation. Results and conclusion Yeast protein supplementation showed no significant effects on most reproductive parameters of different sow hybrids, but reduced backfat loss by 30.5% during lactation (P < 0.05) and demonstrated a numerical reduction in mummification rate of fetuses (P = 0.06). Immunological assessments revealed that LLY sows exhibited 26.8% lower serum IgM concentration than LY sows (P < 0.05), while yeast protein supplementation significantly reduced serum IL-1β levels by 45.6% (P < 0.05) on day 18 of lactation. 16S rRNA gene sequencing analysis revealed comparable fecal microbial diversity across treatments (P > 0.05), though differences were observed in certain bacterial genera between LY and LLY sows during late gestation and lactation. Yeast protein supplementation enriched beneficial bacteria including Ruminococcaceae_UCG-002, Rikenellaceae_RC9_gut_group, and Christensenellaceae_R_7_group, while suppressing potentially detrimental bacteria such as Family_XIII_AD3011_group (P < 0.05). These findings demonstrate the practical feasibility of retaining LLY sows for commercial breeding. Yeast protein supplementation, as a substitute for fishmeal during late gestation and lactation, significantly reduced lactational backfat loss, moderately attenuated inflammatory response, and enhanced gut microbiome homeostasis through selective microbial enrichment in sows.
Collapse
Affiliation(s)
- Pan Zhou
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Qi Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Yang Zhao
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Yachao Wu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Jianbo Shen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Tao Duan
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Long Che
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Yong Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Honglin Yan
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| |
Collapse
|
3
|
Thanh LM, Lan VTH, Cuong CQ, Lam LHT, Han LK, Trang NTH, Nghia NH. Development of CRISPR/Cas9-Mediated Saccharomyces cerevisiae Strains for the Cell-Surface Display of a Novel Fusion Acid-Alkaline Phytase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:8458-8468. [PMID: 40145799 DOI: 10.1021/acs.jafc.5c00550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Phytases enhance phosphorus bioavailability in animal feed, but their limited reusability hinders their application. To overcome this, Saccharomyces cerevisiae was engineered to display a fusion phytase combining acid and alkaline phytases on its cell surface by using CRISPR/Cas9. The enzyme was anchored via the α-agglutinin-GPI system in two marker-free strains, BY4743::GAP-mGEB and BY4743::GAP-aGEB, employing MFα and Aga2p signal peptides, respectively. Both strains exhibited robust surface activity across a broad pH range, retaining >50% relative activity between pH 1.0 and 7.0, with dual optima at pH 2.0 and 5.0-6.0. Kinetic analysis revealed a Km of 0.377-0.989 mM and a kcat of 0.014-0.019 μmol/min/mg wet-cell weight, with the Aga2p strain showing the highest efficiency. The fusion phytase exhibited ∼ 3.5-4 times higher activity than the single acid phytase. These strains effectively degraded phytate in soybean, corn flour, and rice bran, demonstrating a sustainable approach for improving phosphorus utilization in animal feed.
Collapse
Affiliation(s)
- Luc Mai Thanh
- Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City 700000, Vietnam
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Vo Thi Hoang Lan
- Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City 700000, Vietnam
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Chau Quoc Cuong
- Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City 700000, Vietnam
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - La Ho Truc Lam
- Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City 700000, Vietnam
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Le Kha Han
- Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City 700000, Vietnam
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Ngo Thi Huyen Trang
- Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City 700000, Vietnam
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Nguyen Hieu Nghia
- Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City 700000, Vietnam
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
4
|
De La Guardia Hidrogo VM, Rummell LM, Swanson KS. Effects of Yeast Products on the Apparent Total Tract Macronutrient Digestibility, Oxidative Stress Markers, Skin Measures, and Fecal Characteristics and Microbiota Populations of Healthy Adult Dogs. Animals (Basel) 2025; 15:1046. [PMID: 40218439 PMCID: PMC11987801 DOI: 10.3390/ani15071046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/01/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
Brewer's yeast has high nutritional value and contains bioactive compounds that may promote health. Functionalized canola meal (FCM) is a high-fiber ingredient that has been proposed as a carrier for brewer's yeast. The objective of this experiment was to determine the apparent total tract digestibility (ATTD) of diets containing yeast-enriched FCM and test their effects on the fecal characteristics and microbiota, skin measures, and serum oxidative stress markers of adult dogs. Twelve dogs were fed four extruded kibble diets (control (no FCM or yeast), FCM + low yeast dose, FCM + medium yeast dose, and FCM + high yeast dose) in a replicated 4x4 LSD. Dogs fed yeast-enriched FCM had greater wet fecal output (~15% greater than control). The ATTD of DM, OM, and fat was lower in the diets containing FCM, although the values remained >80% for all macronutrients. The yeast-enriched FCM altered the relative abundance of a few bacterial genera (Eubacterium brachy, Peptoclostridium, Ruminococcus gnavus) and fecal phenol and indole concentrations. Other fecal characteristics, metabolites, bacterial diversity indices, skin measures, or oxidative stress markers were not affected. These findings suggest that yeast-enriched FCM can be incorporated into canine diets without compromising stool quality or nutrient digestibility and may affect microbial metabolism.
Collapse
Affiliation(s)
| | | | - Kelly S. Swanson
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Veterinary Clinical Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
5
|
Lu X, Ma H, Liu Y, Chen M, Dang J, Su X, Zhao Y, Wang K, Yang G, Zhang G, Li X, Gao A, Wang Y. Rhodotorula Yeast Culture Improved the Antioxidant Capacity, Lipid Metabolism, and Immunity of Sheep Livers. Vet Sci 2025; 12:314. [PMID: 40284815 PMCID: PMC12030957 DOI: 10.3390/vetsci12040314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/18/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
There is currently no research on the application evaluation of R. mucilaginosa yeast culture (RYC) in animal production. Therefore, this study investigated the effects of RYC on the antioxidant capacity, lipid metabolism, and immunity of sheep livers. Twenty-four 3-month-old Duhan male sheep (36 ± 4 kg) were divided into four groups. The control group received a basal diet, the L group received a basal diet + 10 g/sheep/day RYC, the M group received a basal diet + 20 g/sheep/day RYC, and the H group received a basal diet + 40 g/sheep/day RYC. The trial lasted for 75 days. The results showed that the content of glutathione peroxidase in the livers of sheep in group M was significantly increased by 26.6%, and the content of malondialdehyde was significantly decreased by 38% (p < 0.05). Additionally, the serum levels of total cholesterol, triglycerides, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol significantly decreased; the liver content of C16:0 decreased; and the levels of C18:2n6C and C20:1 increased (p < 0.05). Furthermore, the contents of cytokines TNF-α and IFN-γ in sheep livers from the M group were also significantly decreased by 20% and 24.8%, respectively (p < 0.05). These findings suggest that supplementation with 20 g/sheep/day RYC can enhance antioxidant capacity, improve lipid metabolism, and reduce inflammation in sheep livers, which is advantageous for farming healthy sheep.
Collapse
Affiliation(s)
- Xinyu Lu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Huiru Ma
- Hetao College, Bayannur 015000, China
| | - Yeqing Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Meiru Chen
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jianlong Dang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xiangtan Su
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yahui Zhao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Ke Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Guang Yang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Gaowei Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xiaorui Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Aiqin Gao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yuan Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot 010018, China
| |
Collapse
|
6
|
Zang R, Liu Z, Wu H, Chen W, Zhou R, Yu F, Li Y, Xu H. Candida utilis Ameliorates Dextran Sulfate Sodium-Induced Colitis in Mice via NF-κB/MAPK Suppression and Gut Microbiota Modulation. Int J Mol Sci 2025; 26:1993. [PMID: 40076616 PMCID: PMC11901058 DOI: 10.3390/ijms26051993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/09/2025] [Accepted: 02/10/2025] [Indexed: 03/14/2025] Open
Abstract
Candida utilis (CUM) possesses various biological effects, including anti-inflammatory, intestinal microbiota regulatory, and immunomodulatory activities. However, there has been little exploration regarding the effects of CUM on ulcerative colitis (UC). Therefore, this study aimed to investigate the beneficial effects of CUM on alleviating dextran sulfate sodium (DSS)-induced UC in mice and to explore the potential underlying mechanisms. Here, the effect of CUM on UC was analyzed using a DSS-induced colitis mouse model (n = 9), the results of which indicated a decrease in disease activity index (DAI) in DSS-induced UC mice. Furthermore, CUM alleviated colon shortening, minimized intestinal tissue damage, and preserved intestinal tight junction proteins (Claudin-3, Occludin, and ZO-1). CUM reduced the level of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), inhibited the activation of the NF-ĸB, MAPK and PPARγ signaling pathways, and decreased the level of oxidative mediators (MPO, SOD and MDA) in the colon of UC mice. Additionally, it mitigated the dysbiosis of intestinal microbiota in UC mice by increasing the abundance of Prevotellaceae and Lactobacillus while decreasing the abundance of Bacteroidaceae and Enterobacteriaceae. CUM alleviated the decrease in short-chain fatty acids (SCFAs) content in the colon of UC mice. The above results provide a scientific basis for CUM, as a natural supplement, to restore the balance of the gut inflammatory microbiota and promote gut health.
Collapse
Affiliation(s)
- Rongxin Zang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730100, China
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Lanzhou 730030, China
| | - Zhouliang Liu
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730100, China
| | - Huihao Wu
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Northwest Minzu University, Lanzhou 730030, China;
| | - Wenyan Chen
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730100, China
| | - Rui Zhou
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730100, China
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Northwest Minzu University, Lanzhou 730030, China;
| | - Fazheng Yu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yaodong Li
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730100, China
| | - Hongwei Xu
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730100, China
- Gansu Tech Innovation Center of Animal Cell, Northwest Minzu University, Lanzhou 730030, China
| |
Collapse
|
7
|
Vogel CL, Geary EL, Oba PM, Mioto JC, Rudolph BC, Rens L, Swanson KS. Effects of corn protein inclusion on apparent total tract macronutrient digestibility, palatability, and fecal characteristics, microbiota, and metabolites of healthy adult dogs. J Anim Sci 2025; 103:skaf122. [PMID: 40243089 PMCID: PMC12065405 DOI: 10.1093/jas/skaf122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 04/10/2025] [Indexed: 04/18/2025] Open
Abstract
Corn protein (CP), a co-product of the corn ethanol industry, is a sustainable protein source used in pet foods. The objectives of this study were to determine the palatability and apparent total tract digestibility (ATTD) of diets containing CP and to test the effects of CP-containing diets on the serum metabolites, hematology, and fecal characteristics, metabolites, and microbiota of healthy adult dogs. Ten female adult beagles (mean age: 6.12 ± 1.39 yr; mean body weight: 9.33 ± 1.04 kg) were used in a replicated 5 × 5 Latin square design (n = 10/treatment). All dietary treatments were based on brewers rice, low-ash chicken byproduct meal, and chicken fat, and contained variable amounts of corn-based proteins: 0% (control), 15.3% corn gluten meal (CGM), 10.2% CGM + 5% CP (Low), 5.1% CGM + 10% CP (Medium), and 15% CP (High). The experiment was composed of five 28-d periods, with each consisting of a 22-d diet consumption period, a 5-d fecal collection period, and 1 d for blood collection. Data were analyzed statistically by Mixed Models using SAS 9.4, with P < 0.05 accepted as being statistically significant. Two 2-d palatability studies (n = 20 dogs) were also conducted to compare the High diet vs. control diet and High diet vs. CGM diet. Dogs were shown to prefer (P < 0.05) the High diet over the control diet by a ratio of 1.8:1, but no preference was observed between the High and CGM diets. In the digestibility study, the ATTD of dry matter, organic matter, and energy increased (P < 0.001) linearly with CP inclusion. The ATTD of fat was greater (P < 0.001) for the control diet than for the CGM, Low, and High diets. Fecal scores were lower (P = 0.05; firmer) and fecal dry matter percentage was higher (P < 0.0001) in dogs fed CGM than those fed CP. Fecal phenol and indole, short-chain fatty acid, and branched-chain fatty acid concentrations were greater (P < 0.05) in dogs fed CP than dogs fed CGM and control. Fecal bacterial diversity was not altered by diet, but the relative abundance of approximately 10 bacterial genera was altered by diet. In summary, our data demonstrate that the inclusion of CP in dog foods resulted in high diet palatability and macronutrient digestibility and altered microbial composition and activity.
Collapse
Affiliation(s)
- Christina L Vogel
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Elizabeth L Geary
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Patrícia M Oba
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Julio C Mioto
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | | | - Louis Rens
- Green Plains, Inc., Omaha, NE 68106, USA
| | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Veterinary Clinical Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
8
|
Min JH, Istianah N, Jang JH, Jeon HJ, Jung YH. Effects of Peptidase Treatment on Properties of Yeast Protein as an Alternative Protein Source. J Microbiol Biotechnol 2024; 34:2596-2608. [PMID: 39631785 PMCID: PMC11729370 DOI: 10.4014/jmb.2409.09062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024]
Abstract
Yeast protein, high-quality and high-content microbial protein, can serve as alternative sources of protein. This study examined the structural and functional characteristics of yeast protein through enzymatic treatment using different ratios of alcalase (endo-type) and prozyme 2000P (exo-type) including 2:1 (A2P1), 1:1 (A1P1), and 1:2 (A1P2). After enzymatic hydrolysis, a significant increase in protein solubility from less than 3.1% in untreated proteins to around 16%, particularly at pH 2 or pH 12. Furthermore, a maximum degree of hydrolysis of over 85% was achieved after enzyme treatment. Among them, the highest value of 87.73% was achieved at yeast protein treated by A1P2. Scanning electron microscopy images revealed varied surface morphologies, with exhibiting an increased surface area, particularly after treatment using A2P1. Next, yeast protein treated with A2P1 also demonstrated a superior emulsion stability index (3364.17). However, the antioxidant capacity was higher in proteins treated with A1P2 (78.30%). In addition, the elevated levels of certain amino acids, specifically leucine, lysine, phenylalanine, valine, and arginine, thereby indicating an enhanced amino acid profile was observed. Overall, yeast proteins treated with complex enzymes exhibited improved functionality and potential for diverse food applications.
Collapse
Affiliation(s)
- Ju Hyun Min
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Nur Istianah
- Department of Food Science and Biotechnology, Brawijaya University, Malang 65145, Indonesia
| | - Jeong Hwa Jang
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyeon Ji Jeon
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Young Hoon Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
9
|
Hu B, Liu T, Xia B, Dong Y, Liu M, Zhou J. Precise evaluation of the nutritional value of yeast culture and its effect on pigs fed low-protein diets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 19:325-338. [PMID: 39640552 PMCID: PMC11617308 DOI: 10.1016/j.aninu.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/06/2024] [Accepted: 05/30/2024] [Indexed: 12/07/2024]
Abstract
The purpose of the present study was to assess the nutritional value of yeast culture (YC) and to explore the effect of YC on growth performance and health of piglets fed low-protein diets. In Exp. 1, 12 growing barrows were allocated into control diet and YC diet treatments to determine the available energy of YC. Results showed that the digestible energy and metabolizable energy of YC are 12.12 and 11.66 MJ/kg dry matter (DM), respectively. In Exp. 2, 12 growing barrows were surgically equipped with a T-cannula near the distal ileum and were assigned to 2 dietary treatments (nitrogen-free diet and YC diet), and the amino acid digestibility of YC was determined. In Exp. 3, a total of 96 weaned piglets were randomly divided into 4 treatments, including low-protein basal diet (Basal), Basal + 0.5% YC (0.5%YC), Basal + 1.0% YC (1.0%YC), and Basal + 1.5% YC (1.5%YC). The results were as follows: YC supplementation linearly improved the weight gain and feed intake ratio (P < 0.001), linearly increased the activity of glutathione peroxidase on d 14 (P = 0.032) and linearly decreased the concentration of malondialdehyde on d 14 (P = 0.008) and d 32 (P = 0.004) in serum, and linearly decreased the concentration of total short-chain fatty acid on d 14 in feces (P = 0.045). Compared with other treatments, 1.5%YC group showed a greater abundance of various probiotics, such as Prevotellaceae, Prevotella and Turicibacter. In Exp. 4, twelve growing barrows with an ileal T-cannula were randomly assigned to Control and 1.5%YC treatments to clarify the impact of YC supplementation on nitrogen balance and nutrient digestibility. Results showed that YC had no significant effect on nitrogen efficiency and nutrient digestibility, except for trend of reducing the total tract digestibility of organic matter (P = 0.067). In conclusion, the present study assessed the digestible and metabolizable energy values (12.12 and 11.66 MJ/kg DM, respectively) and standardized ileal digestibility of amino acid (from 43.93% to 82.65%) of YC in pig feed and demonstrated that moderate supplementation of YC (1.5% of diet) can effectively improve feed conversion efficiency, enhance antioxidant capacity, and promote a balanced gut microbiota in piglets.
Collapse
Affiliation(s)
- Baocheng Hu
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Tairan Liu
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Bing Xia
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Yanjun Dong
- Beijing China-Agri Hong Ke Bio-Technology Co, Ltd., Beijing 100226, China
| | - Ming Liu
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Junyan Zhou
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| |
Collapse
|
10
|
Jiang Z, Yang M, Su W, Mei L, Li Y, Guo Y, Li Y, Liang W, Yang B, Huang Z, Wang Y. Probiotics in piglet: from gut health to pathogen defense mechanisms. Front Immunol 2024; 15:1468873. [PMID: 39559358 PMCID: PMC11570287 DOI: 10.3389/fimmu.2024.1468873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024] Open
Abstract
Various problems and obstacles are encountered during pig farming, especially the weaning phase when switching from liquid to solid feed. Infection by pathogenic bacteria causes damage to the intestinal barrier function of piglets, disrupts the balance of the intestinal microbiota, and destroys the chemical, mechanical, and immune barriers of the intestinal tract, which is one of the main causes of gut inflammation or gut diseases in piglets. The traditional method is to add antibiotics to piglet diets to prevent bacterial infections. However, long-term overuse of antibiotics leads to bacterial resistance and residues in animal products, threatening human health and causing gut microbiota dysbiosis. In this context, finding alternatives to antibiotics to maintain pre- and post-weaning gut health in piglets and prevent pathogenic bacterial infections becomes a real emergency. The utilization of probiotics in piglet nutrition has emerged as a pivotal strategy to promote gut health and defend against pathogenic infections, offering a sustainable alternative to traditional antibiotic usage. This review introduces recent findings that underscore the multifaceted roles of probiotics in enhancing piglet welfare, from fortifying the gut barrier to mitigating the impacts of common bacterial pathogens. Meanwhile, this study introduces the functions of probiotics from different perspectives: positive effects of probiotics on piglet gut health, protecting piglets against pathogen infection, and the mechanisms of probiotics in preventing pathogenic bacteria.
Collapse
Affiliation(s)
- Zipeng Jiang
- Guangdong VTR Bio-tech Co., Ltd, R&D Center, Zhuhai, China
- South China University of Technology, School of Biology and Biological Engineering, Guangzhou, China
| | - Mingzhi Yang
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weifa Su
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liang Mei
- Guangdong VTR Bio-tech Co., Ltd, R&D Center, Zhuhai, China
| | - Yuqi Li
- Guangdong VTR Bio-tech Co., Ltd, R&D Center, Zhuhai, China
| | - Yuguang Guo
- Guangdong VTR Bio-tech Co., Ltd, R&D Center, Zhuhai, China
| | - Yangyuan Li
- Guangdong VTR Bio-tech Co., Ltd, R&D Center, Zhuhai, China
| | - Weifan Liang
- Guangdong VTR Bio-tech Co., Ltd, R&D Center, Zhuhai, China
| | - Bo Yang
- South China University of Technology, School of Biology and Biological Engineering, Guangzhou, China
| | - Zhiyi Huang
- Guangdong VTR Bio-tech Co., Ltd, R&D Center, Zhuhai, China
| | - Yizhen Wang
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
11
|
Parada J, Magnoli A, Poloni V, Corti Isgro M, Rosales Cavaglieri L, Luna MJ, Carranza A, Cavaglieri L. Pediococcus pentosaceus RC007 and Saccharomyces boulardii RC009 as antibiotic alternatives for gut health in post-weaning pigs. J Appl Microbiol 2024; 135:lxae282. [PMID: 39501497 DOI: 10.1093/jambio/lxae282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 10/03/2024] [Accepted: 11/01/2024] [Indexed: 11/26/2024]
Abstract
AIMS The aim of the present study was to evaluate a novel probiotic Pediococcus pentosaceus RC007 used alone and convined with Saccharomyces cerevisiae var. boulardii RC009, as in-feed additives to substitute the nontherapeutic use of antibiotics, and evaluate the different structural characteristics of intestinal bacterial populations between groups, correlated with pig production performance. METHODS AND RESULTS The in vivo study was conducted on post-weaning pigs, from 21 to 56 days old. Three dietary treatments were included: T1-basal diet (BD-control group); T2-BD with P. pentosaceus RC007; and T3-BD with a mix of P. pentosaceus RC007 and S. boulardii RC009. The weight gain increase of pigs consuming non-therapeutic antibiotics was similar to those that did not consume antibiotics during the study (P = 0.0234), but had better health indicators. The use of a probiotic combination increased carcass weight and significantly reduced the lumbar fat thickness. In terms of taxonomic composition, there was a tendency to modify the abundance of Proteobacteria, Cyanobacteria, Enterobacteriaceae, and Lactobacillaceae in pigs that consumed the additives. The genus Butyricicoccus, Collinsella, and Ruminococcus tended to be more abundant in the microbiota of pigs at T3. CONCLUSIONS For the first time, the results of the present study indicate that P. pentosaceus RC007 and S. boulardii RC009, a probiotic combination, could be a good substitute for antibiotics in improving pig production performance, while also contributing to a healthier gut microbiota, especially with the reduced abundance of Proteobacteria and Cyanobacteria.
Collapse
Affiliation(s)
- Julián Parada
- Departamento de Patología Animal, Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto, Ruta 36, 601 km. Río Cuarto 5800, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Cdad. de Valparaíso S/N. Córdoba 5000, Argentina
| | - Alejandra Magnoli
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Cdad. de Valparaíso S/N. Córdoba 5000, Argentina
- Departamento de Producción Animal, Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto, Ruta 36, 601 km. Río Cuarto 5800, Córdoba, Argentina
| | - Valeria Poloni
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Cdad. de Valparaíso S/N. Córdoba 5000, Argentina
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físicas, Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36, 601 km. Río Cuarto 5800, Córdoba, Argentina
| | - Maite Corti Isgro
- Departamento de Patología Animal, Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto, Ruta 36, 601 km. Río Cuarto 5800, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Cdad. de Valparaíso S/N. Córdoba 5000, Argentina
| | - Lorenzo Rosales Cavaglieri
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Cdad. de Valparaíso S/N. Córdoba 5000, Argentina
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físicas, Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36, 601 km. Río Cuarto 5800, Córdoba, Argentina
| | - María Julieta Luna
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Cdad. de Valparaíso S/N. Córdoba 5000, Argentina
- Departamento de Producción Animal, Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto, Ruta 36, 601 km. Río Cuarto 5800, Córdoba, Argentina
| | - Alicia Carranza
- Departamento de Patología Animal, Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto, Ruta 36, 601 km. Río Cuarto 5800, Córdoba, Argentina
| | - Lilia Cavaglieri
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Cdad. de Valparaíso S/N. Córdoba 5000, Argentina
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físicas, Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36, 601 km. Río Cuarto 5800, Córdoba, Argentina
| |
Collapse
|
12
|
Onomu AJ, Okuthe GE. The Application of Fungi and Their Secondary Metabolites in Aquaculture. J Fungi (Basel) 2024; 10:711. [PMID: 39452663 PMCID: PMC11508898 DOI: 10.3390/jof10100711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/05/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024] Open
Abstract
Ensuring sustainability has increasingly become a significant concern not only in aquaculture but in the general agrifood sector. Therefore, it is imperative to investigate pathways to feed substitutes/best practices to enhance aquaculture sustainability. The application of fungi in aquaculture provides innovative methods to enhance the sustainability and productivity of aquaculture. Fungi play numerous roles in aquaculture, including growth, immunity enhancement and disease resistance. They also play a role in bioremediation of waste and bioflocculation. The application of fungi improves the suitability and utilization of terrestrial plant ingredients in aquaculture by reducing the fibre fractions and anti-nutritional factors and increasing the nutrients and mineral contents of plant ingredients. Fungi are good flotation agents and can enhance the buoyancy of aquafeed. Pigments from fungi enhance the colouration of fish fillets, making them more attractive to consumers. This paper, via the relevant literature, explores the multifaceted roles of fungi in aquaculture, emphasizing their potential to transform aquaculture through environmentally friendly and sustainable techniques. The effectiveness of fungi in reducing fibre fractions and enhancing nutrient availability is influenced by the duration of fermentation and the dosage administered, which may differ for various feed ingredients, making it difficult for most aquaculture farmers to apply fungi approximately. Therefore, the most effective dosage and fermentation duration for each feed ingredient should be investigated.
Collapse
Affiliation(s)
- Abigail John Onomu
- Department of Biological & Environmental Sciences, Walter Sisulu University, Mthatha 5117, South Africa;
| | | |
Collapse
|
13
|
Sultana S, Biró J, Kucska B, Hancz C. Factors Affecting Yeast Digestibility and Immunostimulation in Aquatic Animals. Animals (Basel) 2024; 14:2851. [PMID: 39409800 PMCID: PMC11475639 DOI: 10.3390/ani14192851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/11/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
The aquafeed industry increasingly relies on using sustainable and appropriate protein sources to ensure the long-term sustainability and financial viability of intensive aquaculture. Yeast has emerged as a viable substitute protein source in the aquaculture sector due to its potential as a nutritional supplement. A substantial body of evidence exists to suggest that yeast has the potential to act as an effective immune-stimulating agent for a range of aquaculture fish species. Furthermore, the incorporation of yeast supplements and feed additives has the potential to bolster disease prevention, development, and production within the aquaculture sector. Except for methionine, lysine, arginine, and phenylalanine, which are typically the limiting essential amino acids in various fish species, the various yeast species exhibit amino acid profiles that are advantageous when compared to fishmeal. The present review considers the potential nutritional suitability of several yeast species for fish, with particular attention to the various applications of yeast in aquaculture nutrition. The findings of this study indicate that the inclusion of yeast in the diet resulted in the most favorable outcomes, with improvements observed in the overall health, growth performance, and nutritional condition of the fish. Digestibility, a key factor in sustainable feed development, is discussed in special detail. Additionally, this review addresses the utilization of yeast as an immunostimulating agent for fish and its digestion in fish. Furthermore, the research emphasizes the necessity of large-scale production of yeast as a substitute for fishmeal in aquaculture.
Collapse
Affiliation(s)
- Sadia Sultana
- Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, Guba S. 40., 7400 Kaposvár, Hungary; (S.S.)
| | - Janka Biró
- Research Center for Fisheries and Aquaculture, Hungarian University of Agriculture and Life Sciences, Anna-liget u. 35, 5540 Szarvas, Hungary
| | - Balázs Kucska
- Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, Guba S. 40., 7400 Kaposvár, Hungary; (S.S.)
| | - Csaba Hancz
- Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, Guba S. 40., 7400 Kaposvár, Hungary; (S.S.)
| |
Collapse
|
14
|
Li X, Wang Y, Xu J, Yang Q, Sha Y, Jiao T, Zhao S. Effects of yeast cultures on meat quality, flavor composition and rumen microbiota in lambs. Curr Res Food Sci 2024; 9:100845. [PMID: 39376582 PMCID: PMC11456904 DOI: 10.1016/j.crfs.2024.100845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 10/09/2024] Open
Abstract
Since the banning of antibiotics, the use of feed additives to improve meat quality to satisfy people's pursuit of high quality has become a research hotspot. Yeast culture (YC) is rich in proteins, mannan oligosaccharides, peptides, and yeast cell metabolites, etc., and its use as a feed additive has a positive impact on improving meat quality. So the study aimed to provide a theoretical basis for YC improving mutton flavor and quality by detecting and analyzing the effects of YC on muscle physicochemical properties, amino acids, fatty acids, flavor composition, expression of related genes, and rumen microbiota of lambs. A total of 20 crossbred F1 weaned lambs (Australian white sheep♂ × Hu sheep♀; average 23.38 ± 1.17 kg) were randomly assigned to 2 groups, the control group (CON) and the 1.0% YC supplemented group (YC) (n = 10), and were reared in separate pens. The experiment had a pre-feeding period of 10 d and a treatment period of 60 d. After the experiment, 6 lambs in each group were randomly selected for slaughtering. The results showed that dietary YC supplementation increased rumen total VFA and acetate concentrations (p < 0.05), and muscle carcass fat (GR), a∗ value, intramuscular fat (IMF), lysine (Lys), arginine (Arg), nonessential amino acid (NEAA), oleic acid (C18:1n9c), and eicosanoic acid (C20:1) contents were significantly increased (p < 0.05), while cooking loss and γ-linolenic acid (C18: 3n6) were decreased (p < 0.05). Furthermore, we found that dietary YC improved the types of flavor compounds, and the key flavor substances such as hexanal, nonanal, styrene, benzaldehyde, p-xylene, and 1-octen-3-ol contents were changed (p < 0.05). Additionally, the expression of fat metabolism related genes PPARγ, FASN, and FABP4 were increased. Adding 1% YC to lamb diets increased profits by 47.70 CNY per sheep after 60 d of fattening. All of which indicated that YC could improve meat quality, especially flavor, which may be related to the regulation of the relative abundance of rumen microorganisms Bacteroidota, Prevotella_7, Succiniclasticum and Lachnospiraceae_NK3A20_group.
Collapse
Affiliation(s)
- Xiongxiong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yanchi Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jinlong Xu
- College of Grassland Science, Key Laboratory of Grassland Ecosystem, Gansu Agricultural University, Lanzhou, 730070, China
| | - Qitian Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yuzhu Sha
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Ting Jiao
- College of Grassland Science, Key Laboratory of Grassland Ecosystem, Gansu Agricultural University, Lanzhou, 730070, China
| | - Shengguo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
15
|
Mallea AP, Espinosa CD, Lee SA, Cristobal MA, Torrez-Mendoza LJ, Stein HH. Dietary supplementation of valine, isoleucine, and tryptophan may overcome the negative effects of excess leucine in diets for weanling pigs containing corn fermented protein. J Anim Sci Biotechnol 2024; 15:125. [PMID: 39252075 PMCID: PMC11385133 DOI: 10.1186/s40104-024-01082-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/28/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Diets with high inclusion of corn co-products such as corn fermented protein (CFP) may contain excess Leu, which has a negative impact on feed intake and growth performance of pigs due to increased catabolism of Val and Ile and reduced availability of Trp in the brain for serotonin synthesis. However, we hypothesized that the negative effect of using CFP in diets for weanling pigs may be overcome if diets are fortified with crystalline sources of Val, Trp, and (or) Ile. METHODS Three hundred and twenty weanling pigs were randomly allotted to one of 10 dietary treatments in a completely randomized design, with 4 pigs per pen and 8 replicate pens per treatment. A corn-soybean meal diet and 2 basal diets based on corn and 10% CFP or corn and 20% CFP were formulated. Seven additional diets were formulated by fortifying the basal diet with 20% CFP with Ile, Trp, Val, Ile and Val, Ile and Trp, Trp and Val, or Ile, Trp and Val. A two-phase feeding program was used, with d 1 to 14 being phase 1 and d 15 to 28 being phase 2. Fecal scores were recorded every other day. Blood samples were collected on d 14 and 28 from one pig per pen. On d 14, fecal samples were collected from one pig per pen in 3 of the 10 treatments to determine volatile fatty acids, ammonium concentration, and microbial protein. These pigs were also euthanized and ileal tissue was collected. RESULTS There were no effects of dietary treatments on any of the parameters evaluated in phase 1. Inclusion of 10% or 20% CFP in diets reduced (P < 0.05) final body weight on d 28, and average daily gain (ADG) and average daily feed intake (ADFI) in phase 2 and for the entire experimental period. However, pigs fed the CFP diet supplemented with Val, Ile, and Trp had final body weight, ADFI, ADG and gain to feed ratio in phase 2 and for the entire experiment that was not different from pigs fed the control diet. Fecal scores in phase 2 were reduced (P < 0.05) if CFP was used. CONCLUSIONS Corn fermented protein may be included by up to 20% in diets for weanling pigs without affecting growth performance, gut health, or hindgut fermentation, if diets are fortified with extra Val, Trp, and Ile. Inclusion of CFP also improved fecal consistency of pigs.
Collapse
Affiliation(s)
- Andrea P Mallea
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, 61801, USA
| | - Charmaine D Espinosa
- Department of Animal Sciences, University of Illinois, Urbana, IL, 61801, USA
- Present Address: EnviroFlight, Raleigh, NC, USA
| | - Su A Lee
- Department of Animal Sciences, University of Illinois, Urbana, IL, 61801, USA
| | - Minoy A Cristobal
- Department of Animal Sciences, University of Illinois, Urbana, IL, 61801, USA
| | | | - Hans H Stein
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, 61801, USA.
- Department of Animal Sciences, University of Illinois, Urbana, IL, 61801, USA.
| |
Collapse
|
16
|
Li Z, Hu Y, Li H, Lin Y, Cheng M, Zhu F, Guo Y. Effects of yeast culture supplementation on milk yield, rumen fermentation, metabolism, and bacterial composition in dairy goats. Front Vet Sci 2024; 11:1447238. [PMID: 39170629 PMCID: PMC11336828 DOI: 10.3389/fvets.2024.1447238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024] Open
Abstract
The effects of yeast culture (YC) on dairy goat milk yield and potential effects of rumen microbial population changes on rumen fermentation are poorly understood. This study aimed to evaluate the effects of YC on milk yield and rumen fermentation in dairy goats and explore the potential microbial mechanisms. Forty Laoshan dairy goats with a weight of 51.23 ± 2.23 kg and daily milk yield of 1.41 ± 0.26 kg were randomly divided into 4 groups: control (no YC), YC1 (10 g/day per goat), YC2 (25 g/day per goat), and YC3 (40 g/day per goat). The pre-feeding period was 15 days, and the official period was 60 days. Laoshan dairy goats were milked twice daily, and the individual milk yield was recorded. On the last day of the official period, rumen fluid was collected to measure rumen fermentation, perform quantitative polymerase chain reaction (PCR), and detect metabolites. Compared to the control group, the YC group had greater milk yield; higher acetic acid, butyric acid, and total volatile fatty acid contents; and lower ammonia-N (NH3-N) content in the rumen (p < 0.05). YC increased the abundance of Clostridia_UCG-014 and Paraprevotella (p < 0.05). Differential metabolites L-leucine and aspartic acid were screened. This study revealed the microbial mechanisms linking the relative abundance of Paraprevotella and Clostridia_UCG-014 to L-leucine and aspartic acid utilization. These results describe the potential benefits of supplementing 10 g/day per goat YC in the diets of Laoshan dairy goats for improving the rumen environment and milk yield.
Collapse
Affiliation(s)
- Zunyan Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Yufeng Hu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Haibin Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Yingting Lin
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Ming Cheng
- Qingdao Animal Husbandry and Veterinary Research Institute, Qingdao, China
| | - Fenghua Zhu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Yixuan Guo
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
17
|
Chen X, Xiao J, Zhao W, Li Y, Zhao W, Zhang W, Xin L, Han Z, Wang L, Aschalew ND, Zhang X, Wang T, Qin G, Sun Z, Zhen Y. Mechanistic insights into rumen function promotion through yeast culture ( Saccharomyces cerevisiae) metabolites using in vitro and in vivo models. Front Microbiol 2024; 15:1407024. [PMID: 39081884 PMCID: PMC11287897 DOI: 10.3389/fmicb.2024.1407024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/26/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction Yeast culture (YC) enhances ruminant performance, but its functional mechanism remains unclear because of the complex composition of YC and the uncertain substances affecting rumen fermentation. The objective of this study was to determine the composition of effective metabolites in YC by exploring its effects on rumen fermentation in vitro, growth and slaughter performance, serum index, rumen fermentation parameters, rumen microorganisms, and metabolites in lambs. Methods In Trial 1, various YCs were successfully produced, providing raw materials for identifying effective metabolites. The experiment was divided into 5 treatment groups with 5 replicates in each group: the control group (basal diet without additives) and YC groups were supplemented with 0.625‰ of four different yeast cultures, respectively (groups A, B, C, and D). Rumen fermentation parameters were determined at 3, 6, 12, and 24 h in vitro. A univariate regression model multiple factor associative effects index (MFAEI; y) was established to correlate the most influential factors on in vitro rumen fermentation with YC metabolites (x). This identified the metabolites promoting rumen fermentation and optimal YC substance levels. In Trial 2, metabolites in YC not positively correlated with MFAEI were excluded, and effective substances were combined with pure chemicals (M group). This experiment validated the effectiveness of YC metabolites in lamb production based on their impact on growth, slaughter performance, serum indices, rumen parameters, microorganisms, and metabolites. Thirty cross-generation rams (Small tail Han-yang ♀ × Australian white sheep ♂) with good body condition and similar body weight were divided into three treatment groups with 10 replicates in each group: control group, YC group, pure chemicals combination group (M group). Results Growth performance and serum index were measured on days 30 and 60, and slaughter performance, rumen fermentation parameters, microorganisms, and metabolites were measured on day 60. The M group significantly increased the dressing percentage, and significantly decreased the GR values of lambs (p < 0.05). The concentration of growth hormone (GH), Cortisol, insulin (INS), and rumen VFA in the M group significantly increased (p < 0.05). Discussion These experiments confirmed that YC or its screened effective metabolites positively impact lamb slaughter performance, rumen fermentation, and microbial metabolism.
Collapse
Affiliation(s)
- Xue Chen
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science and Technology Co., Ltd., Changchun, China
| | - Jun Xiao
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science and Technology Co., Ltd., Changchun, China
| | - Wanzhu Zhao
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yanan Li
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Wei Zhao
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science and Technology Co., Ltd., Changchun, China
| | - Weigang Zhang
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science and Technology Co., Ltd., Changchun, China
| | - Liang Xin
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science and Technology Co., Ltd., Changchun, China
| | - Zhiyi Han
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science and Technology Co., Ltd., Changchun, China
| | - Lanhui Wang
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science and Technology Co., Ltd., Changchun, China
| | - Natnael Demelash Aschalew
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xuefeng Zhang
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Tao Wang
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science and Technology Co., Ltd., Changchun, China
| | - Guixin Qin
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Zhe Sun
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science and Technology Co., Ltd., Changchun, China
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yuguo Zhen
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science and Technology Co., Ltd., Changchun, China
| |
Collapse
|
18
|
Kholif AE, Anele A, Anele UY. Microbial feed additives in ruminant feeding. AIMS Microbiol 2024; 10:542-571. [PMID: 39219749 PMCID: PMC11362274 DOI: 10.3934/microbiol.2024026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 09/04/2024] Open
Abstract
The main purposes of feed additives administration are to increase feed quality, feed utilization, and the performance and health of animals. For many years, antibiotic-based feed additives showed promising results; however, their administration in animal feeds has been banned due to some public concerns regarding their residues in the produced milk and meat from treated animals. Some microorganisms have desirable properties and elicit certain effects, which makes them potential alternatives to antibiotics to enhance intestinal health and ruminal fermentation. The commonly evaluated microorganisms are some species of bacteria and yeasts. Supplementing microorganisms to ruminants boosts animal health, feed digestion, ruminal fermentation, animal performance (meat and milk), and feed efficiency. Moreover, feeding microorganisms helps young calves adapt quickly to consume solid feed and prevents thriving populations of enteric pathogens in the gastrointestinal tract which cause diarrhea. Lactobacillus, Streptococcus, Lactococcus, Bacillus, Enterococcus, Bifidobacterium, Saccharomyces cerevisiae, and Aspergillus oryzae are the commonly used microbial feed additives in ruminant production. The response of feeding such microorganisms depends on many factors including the level of administration, diet fed to animal, physiological status of animal, and many other factors. However, the precise modes of action in which microbial feed additives improve nutrient utilization and livestock production are under study. Therefore, we aim to highlight some of the uses of microorganisms-based feed additives effects on animal production, the modes of action of microorganisms, and their potential use as an alternative to antibiotic feed additives.
Collapse
Affiliation(s)
- Ahmed E. Kholif
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
- Dairy Science Department, National Research Centre, 33 Bohouth St. Dokki, Giza, Egypt
| | - Anuoluwapo Anele
- Department of Natural Resources and Environmental Design, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| | - Uchenna Y. Anele
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| |
Collapse
|
19
|
Curso-Almeida P, Subramaniam M, Gallagher A, Adolphe JA, Drew MD, Loewen ME, Weber LP. Determining the effects of Candida utilis-fermented pea starch vs. unfermented pea starch, alone or in whole diets, on palatability and glycemic response in dogs and cats. J Anim Physiol Anim Nutr (Berl) 2024; 108:934-949. [PMID: 38375687 DOI: 10.1111/jpn.13940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/03/2023] [Accepted: 02/02/2024] [Indexed: 02/21/2024]
Abstract
Current research suggests yeast fermentation has the potential to improve palatability of pea-based diets for both cats and dogs. However, to be useful, fermentation should not compromise other healthy attributes of peas such as a low glycemic response. Fermentation of uncooked pea starch with Candida utilis (ATCC 9950) appeared to increase crude protein, crude fiber content, inorganic compounds (phosphorus and iron) and phenols. Whole diets were designed with fermented and unfermented pea starch to assess palatability, food intake, and glycemic responses in unacclimated, mixed sex Beagle dogs and mixed breed cats (n = 8 and n = 7, respectively). For palatability testing, a control diet was formulated with 30% corn starch as well as test diets with 30% inclusion of fermented or unfermented pea starch (all lab-made), then compared to a commercial diet containing pea starch (Legacy/Horizon). Fermentation had little effect on rapidly digestible starch either in uncooked starch form or when incorporated into whole diets, but did decrease resistant starch by 15% and increase slowly digestible starch by 20%. Palatability tests using either two choices or four choices at a time revealed a significant preference for the fermented pea starch diet (p < 0.01) in both species. For the glycemic responses, a total of four different pea products were included: unfermented pea starch, fermented pea starch, and 30% inclusion of unfermented and fermented pea starch in whole formulated diets. There were no significant changes in glycemic responses with the fermented pea diet compared to the unfermented diet, demonstrating that healthful low glycemic properties of pea starch were retained after C. utilis fermentation. Overall, C. utilis-fermentation technique was successfully adapted to pea starch where it resulted in increased palatability and food intake in dogs and cats, with potential to positively contribute to overall health benefits for both species.
Collapse
Affiliation(s)
- Priscila Curso-Almeida
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Marina Subramaniam
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Alyssa Gallagher
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jennifer A Adolphe
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Murray D Drew
- Department of Animal & Poultry Science, College of Agriculture & Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Matthew E Loewen
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Lynn P Weber
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
20
|
Takiya CS, Chesini RG, de Freitas AC, Grigoletto NTS, Vieira DJC, Poletti G, Martins NP, Sbaralho OP, Roth N, Acedo T, Cortinhas C, Rennó FP. Dietary supplementation with live or autolyzed yeast: Effects on performance, nutrient digestibility, and ruminal fermentation in dairy cows. J Dairy Sci 2024; 107:4495-4508. [PMID: 38369113 DOI: 10.3168/jds.2023-24194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/12/2024] [Indexed: 02/20/2024]
Abstract
This study was conducted to evaluate the effects of live or autolyzed yeast supplementation on dairy cow performance and ruminal fermentation. Two experiments were conducted to evaluate performance, feed sorting, total-tract apparent digestibility of nutrients, purine derivatives excretion, N utilization, ruminal fermentation, and the abundance of specific bacterial groups in the rumen. In experiment 1, 39 Holstein cows (171 ± 40 DIM and 32.6 ± 5.4 kg/d milk yield) were blocked according to parity, DIM, and milk yield and randomly assigned to the following treatments: control (CON); autolyzed yeast fed at 0.625 g/kg DM (AY; Levabon, DSM-Firmenich); or live yeast fed at 0.125 g/kg DM (LY; Vistacell, AB Vista). Cows were submitted to a 2-wk adaptation period followed by a 9-wk trial. In experiment 2, 8 ruminal cannulated Holstein cows (28.4 ± 4.0 kg/d milk yield and 216 ± 30 DIM), of which 4 were multiparous and 4 were primiparous, were blocked according to parity and enrolled into a 4 × 4 Latin square experiment with 21-d periods (the last 7 d for sampling). Cows within blocks were randomly assigned to treatment sequences: control (CON), LY (using the same product and dietary concentration as described in experiment 1), AY, or autolyzed yeast fed at 0.834 g/kg DM (AY2). In experiments 1 and 2, nutrient intake and total-tract apparent digestibility were not affected by treatments. Sorting for long feed particles (>19 mm) tended to be greater in cows fed yeast supplements than CON in experiment 1. Efficiency of N conversion into milk N was increased when feeding yeast supplements in experiment 1, and 3.5% FCM yield tended to be greater in cows fed yeast supplements than CON. Feed efficiency was increased when yeast supplements were fed to cows in relation to CON in experiment 1. In experiment 2, yield of FCM and fat were greater in cows fed yeast supplements compared with CON. Uric acid concentration and output in urine were increased when feeding yeast supplements when compared with CON. Neither ruminal pH nor total VFA were influenced by treatments. The current study did not reveal treatment differences in ruminal abundance of Anaerovibrio lipolytica, the genus Butyrivibrio, Fibrobacter succinogenes, Butyrivibrio proteoclasticus, or Streptococcus bovis. Yeast supplementation can increase feed efficiency without affecting nutrient intake and digestibility, ruminal VFA concentration, or ruminal abundance of specific bacterial groups. Supplementing live or autolyzed yeast, regardless of the dose, resulted in similar performance.
Collapse
Affiliation(s)
- Caio S Takiya
- Department of Animal Production and Animal Nutrition, University of São Paulo, Pirassununga 13635-900, Brazil; Academic Department of Agrarian Sciences, Federal University of Technology-Paraná, Pato Branco 85.503-390, Brazil
| | - Rodrigo G Chesini
- Department of Animal Production and Animal Nutrition, University of São Paulo, Pirassununga 13635-900, Brazil
| | - Ana Carolina de Freitas
- Department of Animal Production and Animal Nutrition, University of São Paulo, Pirassununga 13635-900, Brazil
| | - Nathália T S Grigoletto
- Department of Animal Production and Animal Nutrition, University of São Paulo, Pirassununga 13635-900, Brazil
| | - Daniel José C Vieira
- Department of Animal Production and Animal Nutrition, University of São Paulo, Pirassununga 13635-900, Brazil
| | - Guilherme Poletti
- Department of Animal Production and Animal Nutrition, University of São Paulo, Pirassununga 13635-900, Brazil
| | - Natalia P Martins
- Department of Animal Production and Animal Nutrition, University of São Paulo, Pirassununga 13635-900, Brazil
| | - Osmar Pietro Sbaralho
- Department of Animal Production and Animal Nutrition, University of São Paulo, Pirassununga 13635-900, Brazil
| | - Nataliya Roth
- DSM-Firmenich BIOMIN Research Center, 3430 Tulln, Austria
| | - Tiago Acedo
- DSM-Firmenich, São Paulo, 04543-907 SP, Brazil
| | | | - Francisco P Rennó
- Department of Animal Production and Animal Nutrition, University of São Paulo, Pirassununga 13635-900, Brazil.
| |
Collapse
|
21
|
Agpoon IEP, Aya FA, Watanabe K, Bennett RM, Aki T, Dedeles GR. Pichia kudriavzevii as feed additive in Nile tilapia (Oreochromis niloticus) diet. Lett Appl Microbiol 2024; 77:ovae057. [PMID: 38906842 DOI: 10.1093/lambio/ovae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 05/20/2024] [Accepted: 06/20/2024] [Indexed: 06/23/2024]
Abstract
Yeasts are unicellular eukaryotic microorganisms extensively employed in various applications, notably as an alternative source of protein in feeds, owing to their nutritional benefits. Despite their potential, marine and mangrove yeast species used in the aquaculture industry have received little attention in the Philippines. Pichia kudriavzevii (A2B R1 ISO 3), sourced from bark samples, was selected and mass-produced due to its high protein content and amino acid profile. The dried biomass of P. kudriavzevii was incorporated into the diets of Nile tilapia (Oreochromis niloticus) juveniles at varying inclusion levels (0, 1, 2, and 4 g/kg diet) and its effect on their growth performance, body composition, and liver and intestinal morphology was assessed after 40 days of feeding. The groups that received P. kudriavzevii at a concentration of 2 g/kg diet exhibited higher final body weight, percent weight gain, and specific growth rate in comparison to the other treatment groups. Whole body proximate composition did not vary among the dietary groups. Intestinal and liver histopathology also indicated no abnormalities. These findings suggest the potential of ascomycetous P. kudriavzevii as a beneficial feed additive in Nile tilapia diets, warranting further investigation into its long-term effects and broader applications in fish culture.
Collapse
Affiliation(s)
- I E P Agpoon
- The Graduate School, University of Santo Tomas, Manila 1015, the Philippines
- Laboratory of Pure and Applied Microbiology, Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila 1015, the Philippines
| | - F A Aya
- Aquaculture Department, Southeast Asian Fisheries Development Center, Binangonan Freshwater Station, Binangonan, Rizal 1940, the Philippines
| | - K Watanabe
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - R M Bennett
- The Graduate School, University of Santo Tomas, Manila 1015, the Philippines
- Laboratory of Pure and Applied Microbiology, Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila 1015, the Philippines
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila 1015, the Philippines
| | - T Aki
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - G R Dedeles
- The Graduate School, University of Santo Tomas, Manila 1015, the Philippines
- Laboratory of Pure and Applied Microbiology, Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila 1015, the Philippines
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila 1015, the Philippines
| |
Collapse
|
22
|
Wang A, Archile A, Patterson R. Feeding a Novel Mannan-Rich Yeast Carbohydrate Product Improves Production Performance and Humoral Immunity of Broiler Chickens. Animals (Basel) 2024; 14:1667. [PMID: 38891714 PMCID: PMC11171193 DOI: 10.3390/ani14111667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/22/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
The current study examined the benefits of a novel mannan-rich yeast carbohydrate product (YM) on broiler chicken growth performance and immune response against sheep red blood cells (SRBCs). A total of 144 newly hatched male Cornish cross broiler chicks were randomly assigned to four treatments with 12 cages per treatment and three birds per cage. The treatments were (1) control, basal diet; (2) YCW, basal diet + 1 g/kg yeast cell wall; (3) YM1, basal diet + 0.5 g/kg of a novel yeast mannan-rich product (YM); and (4) YM2, basal diet + 1 g/kg YM. Growth performance was measured at 14, 28, and 35 days of age (d). At 26 and 27 d, nine birds per treatment were immunized intravenously with SRBCs, and antibody responses against SRBCs were analyzed through a hemagglutination assay 7 days post-inoculation. Supplementing YM tended to improve broiler chicken weight gain from 29 to 35 d (p = 0.053). An improvement in the feed conversion ratio (FCR) was observed in the birds fed YM diets during 29-35 d and over the entire experimental period (0-35 d; p < 0.05). Furthermore, birds fed YM2 diets had more robust antibody responses against SRBCs than the control birds (p = 0.033). In conclusion, dietary supplementation of YM improved broiler chicken growth performance and antibody response against SRBCs.
Collapse
Affiliation(s)
- Anhao Wang
- CBS Bio Platforms, 4389-112 Ave SE, Calgary, AB T2C 0J7, Canada; (A.A.); (R.P.)
| | | | | |
Collapse
|
23
|
Abd El-Naby AS, El Asely AM, Hussein MN, Khattaby AERA, Sabry EA, Abdelsalam M, Samir F. Effects of dietary fermented Saccharomyces cerevisiae extract (Hilyses) supplementation on growth, hematology, immunity, antioxidants, and intestinal health in Nile tilapia. Sci Rep 2024; 14:12583. [PMID: 38821973 PMCID: PMC11143225 DOI: 10.1038/s41598-024-62589-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 05/20/2024] [Indexed: 06/02/2024] Open
Abstract
This study investigated the effects of dietary supplementation with the product Hilyses on growth performance, feed utilization, nutrient composition, hematological parameters, serum biochemistry, immune function, antioxidant status, and digestive enzyme activity in juvenile Nile tilapia (Oreochromis niloticus, initial body weight 4.24 ± 0.01 g). The fish were fed diets supplemented with Hilyses at concentrations of 0, 1, 2, or 3 g/kg for a period of 8 weeks. The results showed that supplementation with Hilyses at levels up to 2 g/kg diet significantly improved final body weight, weight gain, specific growth rate, feed efficiency ratio, protein efficiency ratio, apparent protein utilization, and energy utilization compared to the control diet without Hilyses. Carcass crude protein content and moisture were significantly higher in Hilyses-fed groups, while crude lipid content decreased at the 3 g/kg supplementation level. Hilyses supplementation enhanced various hematological parameters, including increased red blood cell count, total leukocyte count, hemoglobin concentration, hematocrit, and mean corpuscular volume. Serum biochemistry and immune function markers like total protein, albumin, complement component C3, IgM, and IgG were significantly elevated in the 2 and 3 g/kg Hilyses groups. Antioxidant enzyme activities (catalase, glutathione peroxidase, total superoxide dismutase) were enhanced, and lipid peroxidation was reduced, in the 2 g/kg Hilyses group. Digestive enzyme activities, particularly protease and lipase, were also improved with Hilyses supplementation. Histological examination showed reduced lipid deposition in the liver and increased branching of intestinal villi at the 2 g/kg Hilyses level. Overall, these results indicated that dietary Hilyses supplementation at 2 g/kg diet optimizes growth, feed utilization, nutrient composition, hematology, immunity, antioxidant status, and digestive function in juvenile Nile tilapia.
Collapse
Affiliation(s)
- Asmaa S Abd El-Naby
- Department of Fish Nutrition, Central Laboratory for Aquaculture Research Centre, Agriculture Research Centre, Abassa, Abu Hammad, Sharkia, Egypt.
| | - Amel M El Asely
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Benha University, Benha, 13736, Egypt.
| | - Mona N Hussein
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Benha University, Benha, 13736, Egypt
| | - Abd El-Rahman A Khattaby
- Department of Production and Aquaculture Systems, Central Laboratory for Aquaculture Research Centre, Agriculture Research Centre, Abassa, Abu Hammad, Sharkia, Egypt
| | - Eman A Sabry
- Department of Production and Aquaculture Systems, Central Laboratory for Aquaculture Research Centre, Agriculture Research Centre, Abassa, Abu Hammad, Sharkia, Egypt
| | - Mohamed Abdelsalam
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 11221, Egypt.
| | - Fatma Samir
- Department of Fish Nutrition, Central Laboratory for Aquaculture Research Centre, Agriculture Research Centre, Abassa, Abu Hammad, Sharkia, Egypt
| |
Collapse
|
24
|
Min JH, Lee YJ, Kang HJ, Moon NR, Park YK, Joo ST, Jung YH. Characterization of Yeast Protein Hydrolysate for Potential Application as a Feed Additive. Food Sci Anim Resour 2024; 44:723-737. [PMID: 38765283 PMCID: PMC11097015 DOI: 10.5851/kosfa.2024.e33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 05/21/2024] Open
Abstract
Yeast protein can be a nutritionally suitable auxiliary protein source in livestock food. The breakdown of proteins and thereby generating high-quality peptide, typically provides nutritional benefits. Enzyme hydrolysis has been effectively uesed to generate peptides; however, studies on the potential applications of different types of enzymes to produce yeast protein hydrolysates remain limited. This study investigated the effects of endo- (alcalase and neutrase) and exotype (flavourzyme and prozyme 2000P) enzyme treatments on yeast protein. Endotype enzymes facilitate a higher hydrolysis efficiency in yeast proteins than exotype enzymes. The highest degree of hydrolysis was observed for the protein treated with neutrase, which was followed by alcalase, prozyme 2000P, and flavourzyme. Furthermore, endotype enzyme treated proteins exhibited higher solubility than their exotype counterparts. Notably, the more uniform particle size distribution was observed in endotype treated yeast protein. Moreover, compared with the original yeast protein, the enzymatic protein hydrolysates possessed a higher content of β-sheets structures, indicating their higher structural stability. Regardless of enzyme type, enzyme treated protein possessed a higher total free amino acid content including essential amino acids. Therefore, this study provides significant insights into the production of protein hydrolysates as an alternative protein material.
Collapse
Affiliation(s)
- Ju Hyun Min
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea
| | - Yeon Ju Lee
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea
| | - Hye Jee Kang
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea
| | - Na Rae Moon
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea
| | | | - Seon-Tea Joo
- Division of Applied Life Science (BK21 Four), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Young Hoon Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
25
|
Peng Y, Zhang L, Bao X, Qian X, Dong W, Jiang M. Palmitoleic acid-rich oleaginous yeast Scheffersomyces segobiensis DSM 27193 exerts anti-obesity effects by ameliorating hepatic steatosis and adipose tissue hypertrophy. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2156-2164. [PMID: 37926439 DOI: 10.1002/jsfa.13100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/13/2023] [Accepted: 11/06/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Yeast biomass, encompassing fatty acids, terpenoids, vitamins, antioxidants, enzymes, and other bioactive compounds have been extensively utilized in food-related fields. The safety and potential bioactivities of Scheffersomyces segobiensis DSM 27193, an oleaginous yeast strain, are unclear. RESULTS Scheffersomyces segobiensis DSM 27193 accumulated large palmitoleic acid (POA) levels (43.4 g kg-1 biomass) according to the results of whole-cell components. We annotated the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and predicted the categories and host of the pathogen-host interactions (PHI) genes in S. segobiensis DSM 27193. However, S. segobiensis DSM 27193 did not exert toxic effects in mice. Administration of S. segobiensis DSM 27193 led to substantial weight reduction by diminishing food intake in an obesity mouse model. Additionally, it reversed hepatic steatosis and adipose tissue hypertrophy, and improved abnormalities in serum biochemical profiles such as triglyceride, total cholesterol, low-density lipoprotein cholesterol, lipopolysaccharide, tumor necrosis factor-α, interleukin-1β, and interleukin-6. CONCLUSION This study is the first to illustrate the safety and effects of S. segobiensis DSM 27193 against obesity and offers a scientific rationale for its application in functional food supplements. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yujia Peng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Lili Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Xinhui Bao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Xiujuan Qian
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, China
| |
Collapse
|
26
|
Barducci RS, Santos AAD, Pacheco LG, Putarov TC, Koch JFA, Callegari MA, Dias CP, de Carvalho RH, da Silva CA. Enhancing Weaned Piglet Health and Performance: The Role of Autolyzed Yeast ( Saccharomyces cerevisiae) and β-Glucans as a Blood Plasma Alternative in Diets. Animals (Basel) 2024; 14:631. [PMID: 38396599 PMCID: PMC10886371 DOI: 10.3390/ani14040631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/23/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The objective of this study was to evaluate the inclusion of the autolyzed yeast (AY) Saccharomyces cerevisiae with or without an immunomodulator (1,3/1,6 β-glucans) as a total/partial substitute for blood plasma (BP) in the diet of post-weaning piglets; zootechnical performance, intestinal health and microbiota, immune responses and energy metabolism were assessed. A total of 240 castrated male and female piglets, with a mean age of 22 days and mean initial weight of 5.24 ± 0.82 kg, were randomly divided into blocks of four treatments with 12 replicates. The dietary inclusions were blood plasma (BP), autolyzed yeast (AY), autolyzed yeast + immunomodulator (AYI) and 50% BP and 50% AY (BPAY). In pre-initial phase II (29-35 days), piglets fed AY showed better feed conversion (FCR = 1.358) than the piglets in the BP (1.484), AYI (1.379) and BPAY (1.442) groups, i.e., 8.49% (0.126), 1.52% (0.021) and 4.50% (0.084), respectively (p = 0.0293). In the total period (21-42 days), better FCR was observed in the AYI (1.458) group, i.e., 4.64% (0.071), 1.15% (0.017) and 4.58% (0.070), than in the BP (1.529), AY (1.475) and BPAY (1.528) groups, respectively (p = 0.0150). In piglets fed AY (n = 3) and BPAY (n = 2), there was a reduction in the number of medications, i.e., 82.35% (-14n) and 88.23% (-15n), respectively (p = 0.0001), compared with that in the BP group (n = 17). In the AY group (73.83 mg/dL), AYI group (69.92 mg/dL), and BPAY group (69.58 mg/dL), piglets exhibited increases in triglyceride levels of 79.32%, 69.83%, and 69.00%, respectively, in comparison to those in the BP group, which had triglyceride levels of 41.17 mg/dL (p = 0.0400). The beta-hydroxybutyrate concentration in the AY group (79.96 ng/μL) was lower by 31.95%, 22.64%, and 5.89% compared to the BP group (117.50 ng/μL), AYI group (103.36 ng/μL), and BPAY group (84.67 ng/μL), respectively (p = 0.0072). In the AYI group, there was modulation of the microbiota, with an increase in the relative abundance of bacteria of the genera Lactobacillus, Collinsella and Bulleidia. AY, associated or not associated with an immunomodulator, is a potential substitute for BP in diets for piglets in the nursery phase, with positive effects on immune, metabolic, and intestinal microbial performance.
Collapse
Affiliation(s)
- Robson Sfaciotti Barducci
- Biorigin, Lençóis Paulista 18680-900, SP, Brazil; (R.S.B.); (A.A.D.S.); (L.G.P.); (T.C.P.); (J.F.A.K.)
| | | | - Leticia Graziele Pacheco
- Biorigin, Lençóis Paulista 18680-900, SP, Brazil; (R.S.B.); (A.A.D.S.); (L.G.P.); (T.C.P.); (J.F.A.K.)
| | - Thaila Cristina Putarov
- Biorigin, Lençóis Paulista 18680-900, SP, Brazil; (R.S.B.); (A.A.D.S.); (L.G.P.); (T.C.P.); (J.F.A.K.)
| | - João Fernando Albers Koch
- Biorigin, Lençóis Paulista 18680-900, SP, Brazil; (R.S.B.); (A.A.D.S.); (L.G.P.); (T.C.P.); (J.F.A.K.)
| | | | | | - Rafael Humberto de Carvalho
- Akei Animal Research, Fartura 18870-970, SP, Brazil; (M.A.C.); (C.P.D.); (R.H.d.C.)
- Animal Science Program, Center of Agrarian Sciences, State University of Londrina, Londrina 86057-970, PR, Brazil
| | - Caio Abércio da Silva
- Animal Science Program, Center of Agrarian Sciences, State University of Londrina, Londrina 86057-970, PR, Brazil
| |
Collapse
|
27
|
Aschalew ND, Zhang L, Wang Z, Xia Y, Yin G, Dong J, Zhen Y, Zhang X, Wang T, Sun Z, Qin G. Effects of yeast culture and oxalic acid supplementation on in vitro nutrient disappearance, rumen fermentation, and bacterial community composition. Front Vet Sci 2024; 10:1330841. [PMID: 38313769 PMCID: PMC10834634 DOI: 10.3389/fvets.2023.1330841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/14/2023] [Indexed: 02/06/2024] Open
Abstract
Hemicellulose is an important polysaccharide in ruminant nutrition, but it has not been studied as thoroughly as cellulose. Further research is needed to explore supplements that can improve its digestibility and ruminal buffering effects. Our previous research demonstrated the efficacy of oxalic acid (OA) as an essential nutrient in yeast culture (YC) for improving rumen fermentation performance. Consequently, we conducted in vitro rumen digestion experiments to examine the effects of YC and OA on rumen fermentation and bacterial composition. Two diets containing different levels of hemicellulose were formulated: diet 1 with 10.3% and diet 2 with 17% hemicellulose. Three levels of YC (0.00, 0.625, and 1.25 g/kg) and three doses of OA (0.0, 0.4, and 0.8 g/kg, DM) were added into each diet with a 3 × 3 factorial design. A comprehensive assessment was conducted on a total of 18 experimental treatments at fermentation periods of 0, 6, 12, 24, and 48 h. In the first experiment (diet 1), the supplementation of YC, OA, and their interaction significantly increased in vitro DM disappearance (IVDMD) and NDF disappearance (IVNDFD; p < 0.001). In the second experiment (diet 2), the supplementation of OA and the interaction between YC and OA (p < 0.001) increased IVDMD and IVCPD, but had no significant effects on IVNDFD. The interactions of YC and OA significantly increased ammonia nitrogen (p < 0.001). The production of acetic acid, propionic acid, and total volatile fatty acids (TVFA), and pH levels were significantly higher in treatments supplemented with YC and OA (p < 0.001). YC and OA in both diets significantly altered the rumen bacterial community leading to increased Shannon and Simpson diversity indices (p < 0.001). In both diets, OA supplementation significantly increased the relative abundance of the phylum Bacteroidetes and Prevotella genus. The result also showed a positive correlation between the Prevotella and Selenomonas genera with IVDMD, IVNDFD, propionic acid, and TVFA production, suggesting that these dominant bacteria enhanced nutrient disappearance in the rumen. In conclusion, adding YC and OA resulted in modifications to the bacterial community's composition and diversity, and improved nutrient disappearance. These changes indicate improved rumen fermentation efficiency, which is promising for future in vivo studies.
Collapse
Affiliation(s)
- Natnael D Aschalew
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- College of Agriculture and Environmental Science, Dilla University, Dilla, Ethiopia
| | - Longyu Zhang
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Ziyuan Wang
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yuanhong Xia
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Guopei Yin
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jianan Dong
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yuguo Zhen
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science and Technology Co., Ltd., Changchun, China
| | - Xuefeng Zhang
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science and Technology Co., Ltd., Changchun, China
| | - Tao Wang
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science and Technology Co., Ltd., Changchun, China
| | - Zhe Sun
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science and Technology Co., Ltd., Changchun, China
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Guixin Qin
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science and Technology Co., Ltd., Changchun, China
| |
Collapse
|
28
|
Kok I, Copani G, Bryan KA, Witt KLM, van Straalen WM, do Amaral RC, Cappellozza BI. Effects of feeding an inoculated corn silage with or without a direct-fed microbial on dry matter intake, milk production, and nutrient digestibility of high-producing lactating Holstein cows. Transl Anim Sci 2024; 8:txae010. [PMID: 38352623 PMCID: PMC10863484 DOI: 10.1093/tas/txae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024] Open
Abstract
This study evaluated the effects of inoculating corn silage and/or feeding a direct-fed microbial (PRO) on performance and nutrient digestibility of lactating dairy cows. At harvesting, corn silage was treated either with water (culated or not [CON]) or Lactococcus lactis and Lentilactobacillus buchneri (INC; SiloSolve FC) at 1.5 × 105 cfu/g of corn silage. Ten mini silos and one farm-scale silo bunker per treatment were prepared for the laboratory and the lactating dairy cow trial, respectively. Five mini silos per treatment were opened on days 2 or 90 post-ensiling for pH measurement, as well as chemical analysis and aerobic stability, respectively. The farm-scale silo bunkers were opened 77 d post-ensiling for the beginning of the lactating cow trial. Eighty lactating Holstein cows were assigned in a 2 × 2 factorial design to: (1) CON silage without PRO (CON-CON; n = 20), (2) CON silage with PRO at 14 g/head/d (CON-PRO; n = 20), (3) INC silage without PRO (INC-CON; n = 20), and (4) INC silage with PRO at 14 g/head/d (INC-PRO; n = 20). Concurrently with the feeding trial, eight cows per treatment were chosen for nutrient digestibility. The pH of the corn silage was not affected by the silage inoculant (P ≥ 0.29), but INC yielded greater concentration of acetic acid and longer aerobic stability (P < 0.01). Dairy cows fed INC had a lower mean total dry matter intake (DMI), milk protein content, and somatic cell counts vs. CON (P ≤ 0.02). On the other hand, milk and fat- and protein-corrected milk (FPCM) production efficiency, milk urea-N, DM, crude protein, and starch digestibility were greater for INC-fed cows (P ≤ 0.03). Feeding direct-fed microbials (DFM) improved mean body weight, milk yield, and FPCM, as well as milk protein and lactose yield (P ≤ 0.05), but reduced milk fat and protein content (P = 0.02). A silage inoculant × DFM interaction was observed for milk production efficiency, milk protein and lactose content, and somatic cell count (P ≤ 0.05). Dairy cows fed INC-CON had a greater milk production efficiency and milk lactose content (P ≤ 0.04), but INC-PRO had lower milk protein content and SCC (P ≤ 0.03). In summary, inoculating L. lactis and L. buchneri increased acetic acid content and aerobic stability of corn silage, reduced DMI, but improved milk production efficiency and nutrient digestibility of lactating Holstein dairy cows. On the other hand, feeding PRO improved milk, protein, and lactose yield. Additionally, combining the feeding of an inoculated corn silage with PRO reduced milk somatic cell count.
Collapse
Affiliation(s)
- Ivonne Kok
- Schothorst Feed Research, 8218 NALelystad, The Netherlands
| | - Giuseppe Copani
- Animal and Plant Health & Nutrition, Chr. Hansen A/S, Hørsholm 2970, Denmark
| | - Keith A Bryan
- Animal and Plant Health & Nutrition, Chr. Hansen, Inc., Milwaukee, WI 53214, USA
| | - Kristian L M Witt
- Animal and Plant Health & Nutrition, Chr. Hansen A/S, Hørsholm 2970, Denmark
| | | | - Rafael C do Amaral
- Animal and Plant Health & Nutrition, Chr. Hansen Indústria e Comércio, Valinhos, SP 13278-327, Brazil
| | - Bruno I Cappellozza
- Animal and Plant Health & Nutrition, Chr. Hansen A/S, Hørsholm 2970, Denmark
| |
Collapse
|
29
|
Jenkins AK, DeRouchey JM, Gebhardt JT, Tokach MD, Woodworth JC, Goodband RD, Loughmiller JA, Kremer BT. Effect of yeast probiotics in lactation and yeast cell wall prebiotic and Bacillus subtilis probiotic in nursery on lifetime growth performance, immune response, and carcass characteristics. J Anim Sci 2024; 102:skae320. [PMID: 39432555 PMCID: PMC11561585 DOI: 10.1093/jas/skae320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024] Open
Abstract
Twenty-eight mixed-parity sows (Line 241; DNA) and their offspring were used to evaluate live yeast supplementation during lactation with or without a pre/probiotic combination during the nursery period on lactation performance, lifetime growth performance, and immune response. On day 110 of gestation, sows were allotted to a lactation diet with or without a live yeast probiotic (0.10% Actisaf Sc 47 HR+; Phileo by Lesaffre, Milwaukee, WI). At weaning, their offspring (350 pigs; initially 6.1 ± 0.02 kg) were randomly assigned in a 2 × 2 factorial with main effects of sow treatment and nursery treatment consisting of a control diet or a diet with a yeast cell wall prebiotic and Bacillus subtilis probiotic (0.10% YB; Phileo by Lesaffre, Milwaukee, WI) fed for 42 d followed by common diets fed until marketing. Two nursery pens were combined into 1 finishing pen, such that there were 5 and 10 pigs per pen with 17 or 18 and 8 or 9 replications per treatment during the nursery and finishing periods, respectively. There were no significant effects of yeast supplementation on lactation performance (P ≥ 0.079). There was a sow × nursery diet interaction (P = 0.024) on nursery ADG. Pigs from yeast-fed sows had increased ADG when fed control nursery diets compared to pigs from control sows fed the control nursery diet with pigs fed pre/probiotic nursery diets intermediate, regardless of sow diet. Pigs from yeast-fed sows tended (P = 0.067) to have greater final body weight (BW) (day 165). A subset of pigs was sampled throughout their lifetime to determine serum porcine circovirus type 2 (PCV2) and Mycoplasma hyopneumoniae antibody sample-to-positive (S/P) ratios and percentage inhibition of Lawsonia intracellularis. There was a tendency for a PCV2 S/P ratio sow diet × day interaction (P = 0.097) where progeny from yeast-fed sows had higher PCV2 S/P ratios at 101 d of age compared to control sow progeny (P = 0.046). There was a PCV2 S/P ratio nursery diet × day interaction (P = 0.036) where pigs fed a pre/probiotic combination had reduced S/P ratios at 66, 78, and 162 d of age (P ≤ 0.022); however, at 22 d of age pigs fed a pre/probiotic combination tended to have an increased S/P ratio (P = 0.051). In conclusion, the effects of combining a yeast probiotic in lactation diets and a pre/probiotic in nursery diets were not additive. However, feeding a live yeast probiotic during lactation resulted in tendencies (P ≤ 0.10) for increased progeny final BW and hot carcass weight.
Collapse
Affiliation(s)
- Abigail K Jenkins
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS, USA
| | - Joel M DeRouchey
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS, USA
| | - Jordan T Gebhardt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Mike D Tokach
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS, USA
| | - Jason C Woodworth
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS, USA
| | - Robert D Goodband
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS, USA
| | | | | |
Collapse
|
30
|
Luo L, Gu Z, Pu J, Chen D, Tian G, He J, Zheng P, Mao X, Yu B. Synbiotics improve growth performance and nutrient digestibility, inhibit PEDV infection, and prevent intestinal barrier dysfunction by mediating innate antivirus immune response in weaned piglets. J Anim Sci 2024; 102:skae023. [PMID: 38271094 PMCID: PMC10894507 DOI: 10.1093/jas/skae023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/24/2024] [Indexed: 01/27/2024] Open
Abstract
This experiment was conducted to explore the effects of dietary synbiotics (SYB) supplementation on growth performance, immune function, and intestinal barrier function in piglets challenged with porcine epidemic diarrhea virus (PEDV). Forty crossbred (Duroc × Landrace × Yorkshire) weaned piglets (26 ± 1 d old) with a mean body weight (BW) of 6.62 ± 0.36 kg were randomly allotted to five groups: control (CON) I and CONII group, both fed basal diet; 0.1% SYB group, 0.2% SYB group, and 0.2% yeast culture (YC) group, fed basal diet supplemented with 0.1%, 0.2% SYB, and 0.2% YC, respectively. On day 22, all piglets were orally administrated with 40 mL PEDV (5.6 × 103 TCID50/mL) except piglets in CONI group, which were administrated with the same volume of sterile saline. The trial lasted for 26 d. Before PEDV challenge, dietary 0.1% SYB supplementation increased final BW, average daily gain (ADG), and decreased the ratio of feed to gain during 0 to 21 d (P < 0.05), as well as improved the apparent nutrient digestibility of dry matter (DM), organic matter (OM), crude protein, ether extract (EE), and gross energy (GE). At the same time, 0.2% YC also improved the apparent nutrient digestibility of DM, OM, EE, and GE (P < 0.05). PEDV challenge increased diarrhea rate and diarrhea indexes while decreased ADG (P < 0.05) from days 22 to 26, and induced systemic and intestinal mucosa innate immune and proinflammatory responses, destroyed intestinal barrier integrity. The decrease in average daily feed intake and ADG induced by PEDV challenge was suppressed by dietary SYB and YC supplementation, and 0.1% SYB had the best-alleviating effect. Dietary 0.1% SYB supplementation also increased serum interleukin (IL)-10, immunoglobulin M, complement component 4, and jejunal mucosal IL-4 levels, while decreased serum diamine oxidase activity compared with CONII group (P < 0.05). Furthermore, 0.1% SYB improved mRNA expressions of claudin-1, zonula occludens protein-1, mucin 2, interferon-γ, interferon regulatory factor-3, signal transducers and activators of transcription (P < 0.05), and protein expression of occludin, and downregulated mRNA expressions of toll-like receptor 3 and tumor necrosis factor-α (P < 0.05) in jejunal mucosa. Supplementing 0.2% SYB or 0.2% YC also had a positive effect on piglets, but the effect was not as good as 0.1% SYB. These results indicated that dietary 0.1% SYB supplementation improved growth performance under normal conditions, and alleviated the inflammatory response and the damage of intestinal barrier via improving innate immune function and decreasing PEDV genomic copies, showed optimal protective effects against PEDV infection.
Collapse
Affiliation(s)
- Luhong Luo
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Zhemin Gu
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Junning Pu
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Daiwen Chen
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Gang Tian
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jun He
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Ping Zheng
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiangbing Mao
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Bing Yu
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
31
|
Zhao Y, Lin Y, Xu S, Hua L, Feng B, Fang Z, Jiang X, Che L, Zhuo Y, Wu D. Amino acid standardized ileal digestibility together with concentrations of digestible and metabolizable energy in Saccharomyces cerevisiae yeast and soybean meal for gestating sows. J Anim Sci 2024; 102:skad402. [PMID: 38044794 PMCID: PMC10768982 DOI: 10.1093/jas/skad402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/02/2023] [Indexed: 12/05/2023] Open
Abstract
The standardized ileal digestibility (SID) of amino acids (AAs) plus crude protein (CP), in addition to digestible energy (DE) and metabolizable energy (ME) concentrations, was assessed through two experiments on Saccharomyces cerevisiae yeast (SCY) combined with soybean meal (SBM) for gestating sows. SCY and SBM were subjected to experiment 1 for the determination of CP and AAs in terms of SID. Under a randomized complete block design, three dietary treatments were provided for a total of 24 Landrace × Yorkshire gestating sows (parity 2), with the distal ileum clipped by a T-cannula at gestational day 33 based on body weight (BW) (194.1 ± 7.1, 195.3 ± 8.5, and 195.3 ± 8.6 kg). SCY and SBM were used as the only source of nitrogen to prepare two semi-purified diets and a nitrogen-free diet was also utilized to examine CP plus AAs for basal ileal endogenous losses. The gestating sows were initially fed these diets for 5 d to allow for adaptation, and ileal digesta was collected 2 d later for analysis. CP and all AAs in SCY, except for Trp and Gly, showed significantly lower SID than those in SBM (P < 0.05). Among the essential AAs, the range of SID was 68.8% for Thr to 92.2% for Arg in dried yeast, and from 79.9% for Thr to 98.6% for Met in SBM. DE plus ME were measured via experiment 2 with a randomized complete block design on SCY and SBM. Eighteen day-35 Landrace × Yorkshire pregnant sows (parity 3) were allocated to three diets based on BW (233.3 ± 16.0, 233.4 ± 9.6, and 233.4 ± 10.3 kg). Three diets were adopted for the experiment, namely, a corn-based diet as well as two diets containing 20.2% SCY and 20.0% SBM samples. The full fecal collection method, comprising a 5-day adaptation period before a 5- to 6-d experimental period for quantitative urine and feces collection, was employed for metabolic trials. The DE and ME for SCY were remarkably decreased compared with those for SBM (3812 kcal/kg DM vs. 4264 kcal/kg DM and 3714 kcal/kg DM vs. 4157 kcal/kg DM), respectively (P < 0.05). No differences were observed in the apparent total tract digestibility (ATTD) of organic matter, CP, and gross energy between SCY and SBM, but ATTD was significantly reduced in SCY for acid detergent fiber, dry matter, and neutral detergent fiber by contrast with SBM (P < 0.05). In conclusion, most AAs and CP in SCY had lower SID, DE, and ME than SBM in this study. These findings can be applied to diet formulation with the aforementioned ingredients for sows.
Collapse
Affiliation(s)
- Yang Zhao
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yan Lin
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Shengyu Xu
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lun Hua
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Bin Feng
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Zhengfeng Fang
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xuemei Jiang
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lianqiang Che
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yong Zhuo
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - De Wu
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
32
|
Kilburn-Kappeler LR, Doerksen T, Lu A, Palinski RM, Lu N, Aldrich CG. Evaluation of corn fermented protein on the fecal microbiome of cats. J Anim Sci 2024; 102:skae268. [PMID: 39276154 PMCID: PMC11537796 DOI: 10.1093/jas/skae268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/13/2024] [Indexed: 09/16/2024] Open
Abstract
Co-products from the ethanol industry, such as distillers dried grains with solubles (DDGS), can provide alternative protein sources for pet food. Corn fermented protein (CFP) is produced using postfermentation technology to split the protein and yeast from fiber prior to drying. This results in a higher protein ingredient compared to DDGS, increasing its appeal for pet food. In addition, the substantial yeast component, at approximately 20% to 25%, may promote gut health through modulation of the microbiome and the production of short-chain fatty acids. Therefore, the objective of this study was to determine the effect of CFP on the fecal microbiome of cats. The 4 experimental diets included a control with no yeast (T1) and diets containing either 3.5% brewer's dried yeast (T2), 2.5% brewer's dried yeast plus 17.5% DDGS (T3), or 17.5% CFP (T4). All diets except T1 were formulated to contain 3.5% yeast. Diets were fed to adult cats (n = 11) in an incomplete 4 × 4 replicated Latin square design. Cats were adapted to diet for 9 d followed by a 5-d total fecal collection. During each collection period, fresh fecal samples from each cat were collected and stored at -80 °C until analysis. Fresh fecal samples (n = 44) were analyzed by 16S rRNA gene sequencing. Raw sequences were processed through Mothur (v.1.44.1). Community diversity was evaluated in R (v4.0.3). Relative abundance was analyzed within the 50 most abundant operational taxonomic unitsusing a mixed model of SAS (v9.4, SAS Institute, Inc., Cary, NC). Diet was the fixed effect and cat and period were random effects. Results were considered significant at P < 0.05. Alpha-diversity indices (Observed, Chao1, Shannon, Simpson) and beta-diversity metric (principal coordinate analysis) were similar for all treatments. Predominant phyla were Firmicutes (66%), Bacteroidetes (25%), Actinobacteria (8%), Proteobacteria (0.64%), and Desulfobacteria (0.54%). The relative abundance of Firmicutes and Actinobacteria was lower (P < 0.05) for T3 compared to T4 and T2, respectively. On a more specific phylogenic level, 17 genera resulted in differences (P < 0.05) among dietary treatments. Overall, this data indicates that compared to traditional yeast and distillers dried grains, CFP did not alter the overall diversity of the fecal microbiome of healthy adult cats over a 14-d period.
Collapse
Affiliation(s)
| | - Tyler Doerksen
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Andrea Lu
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Rachel M Palinski
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Nanyan Lu
- Bioinformatics Center, Kansas State University, Manhattan, KS 66506, USA
| | - Charles G Aldrich
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
33
|
Trudeau MP, Mosher W, Tran H, de Rodas B, Karnezos TP, Urriola PE, Gomez A, Saqui-Salces M, Chen C, Shurson GC. Growth Performance, Metabolomics, and Microbiome Responses of Weaned Pigs Fed Diets Containing Growth-Promoting Antibiotics and Various Feed Additives. Animals (Basel) 2023; 14:60. [PMID: 38200791 PMCID: PMC10778031 DOI: 10.3390/ani14010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
The objective of this study was to determine the potential biological mechanisms of improved growth performance associated with potential changes in the metabolic profiles and intestinal microbiome composition of weaned pigs fed various feed additives. Three separate 42 day experiments were conducted to evaluate the following dietary treatments: chlortetracycline and sulfamethazine (PC), herbal blends, turmeric, garlic, bitter orange extract, sweet orange extract, volatile and semi-volatile milk-derived substances, yeast nucleotide, and cell wall products, compared with feeding a non-supplemented diet (NC). In all three experiments, only pigs fed PC had improved (p < 0.05) ADG and ADFI compared with pigs fed NC. No differences in metabolome and microbiome responses were observed between feed additive treatments and NC. None of the feed additives affected alpha or beta microbiome diversity in the ileum and cecum, but the abundance of specific bacterial taxa was affected by some dietary treatments. Except for feeding antibiotics, none of the other feed additives were effective in improving growth performance or significantly altering the metabolomic profiles, but some additives (e.g., herbal blends and garlic) increased (p < 0.05) the relative abundance of potentially protective bacterial genera that may be beneficial during disease challenge in weaned pigs.
Collapse
Affiliation(s)
- Michaela P. Trudeau
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108, USA; (M.P.T.); (P.E.U.); (A.G.); (M.S.-S.)
| | - Wes Mosher
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA; (W.M.); (C.C.)
| | - Huyen Tran
- Purina Animal Nutrition, Gray Summit, MO 63039, USA; (H.T.); (B.d.R.); (T.P.K.)
| | - Brenda de Rodas
- Purina Animal Nutrition, Gray Summit, MO 63039, USA; (H.T.); (B.d.R.); (T.P.K.)
| | | | - Pedro E. Urriola
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108, USA; (M.P.T.); (P.E.U.); (A.G.); (M.S.-S.)
| | - Andres Gomez
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108, USA; (M.P.T.); (P.E.U.); (A.G.); (M.S.-S.)
| | - Milena Saqui-Salces
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108, USA; (M.P.T.); (P.E.U.); (A.G.); (M.S.-S.)
| | - Chi Chen
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA; (W.M.); (C.C.)
| | - Gerald C. Shurson
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108, USA; (M.P.T.); (P.E.U.); (A.G.); (M.S.-S.)
| |
Collapse
|
34
|
Carroll AL, Morris DL, Jolly-Beithaupt ML, Herrick KJ, Watson AK, Kononoff PJ. Energy and nitrogen utilization of lactating dairy cattle fed increasing inclusion of a high-protein processed corn coproduct. J Dairy Sci 2023; 106:8809-8820. [PMID: 37690720 DOI: 10.3168/jds.2023-23360] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/24/2023] [Indexed: 09/12/2023]
Abstract
Advancing technologies of the corn dry-milling ethanol production process includes the mechanical separation of fiber-containing particles from a portion of plant- and yeast-based nitrogenous particles. The resulting high-protein processed corn coproduct (HPCoP) contains approximately 52% crude protein (CP), 36% neutral detergent fiber (NDF), 6.4% total fatty acids (TFA). The objective of this experiment was to examine the effects of replacing nonenzymatically browned soybean meal with the HPCoP on dry matter intake (DMI), energy and N utilization, and milk production of lactating Jersey cows. Twelve multiparous Jersey cows were used in a triplicated 4 × 4 Latin square design consisting of four 28-d periods. Cows were blocked by milk yield and assigned randomly to 1 of 4 treatment diets that contained HPCoP (dry matter [DM] basis) at (1) 0%; (2) 2.6%; (3) 5.4%; and (4) 8.0%. Diets were formulated to be isonitrogenous and thus replace nonenzymatically browned soybean meal with HPCoP in the concentrate mix, while forage inclusion remained the same across diets. Increasing the concentration of HPCoP had no effect on DMI (mean ± SE; 19.9 ± 0.62 kg/d), but tended to linearly increase milk yield (27.8, 28.5, 29.8, and 29.0 ± 1.00 kg/d). Although no difference was observed in the concentration of milk protein with increasing inclusion of HPCoP (3.40% ± 0.057%), the concentration of fat linearly increased with the inclusion of HPCoP (5.05%, 5.19%, 5.15%, 5.47% ± 0.18%). No differences were observed in the digestibility of DM, NDF, CP, TFA, and gross energy averaging 66.6% ± 0.68%, 49.0% ± 1.03%, 66.1% ± 0.82%, 73.6% ± 1.73%, 66.3% ± 0.72%, respectively, with increasing HPCoP inclusion. The concentration of dietary gross energy linearly increased with increasing concentrations of HPCoP (4.25, 4.26, 4.28, and 4.31 ± 0.01 Mcal/kg), but no difference was observed in digestible energy and metabolizable energy (ME) across treatments averaging 2.83 ± 0.033 and 2.53 ± 0.043 Mcal/kg, respectively. Concentration of dietary net energy for lactation (NEL) tended to increase with increasing HPCoP (1.61, 1.72, 1.74, 1.72 ± 0.054 Mcal/kg) with the ratio of NEL:ME increasing linearly with increasing HPCoP inclusion (0.648, 0.676, 0.687, 0.677 ± 0.0124). Results of this study suggest that inclusion of the HPCoP can replace nonenzymatically browned soybean meal and support normal milk production.
Collapse
Affiliation(s)
- A L Carroll
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583
| | - D L Morris
- Perdue AgriBusiness, Salisbury, MD 21804
| | | | | | - A K Watson
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583
| | - P J Kononoff
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583.
| |
Collapse
|
35
|
Christodoulou C, Skourtis A, Kyriakaki P, Satolias FF, Karabinas D, Briche M, Salah N, Zervas G, Mavrommatis A, Tsiplakou E. The Effect of Dietary Supplementation with Probiotic and Postbiotic Yeast Products on Ewes Milk Performance and Immune Oxidative Status. J Fungi (Basel) 2023; 9:1139. [PMID: 38132740 PMCID: PMC10744422 DOI: 10.3390/jof9121139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
The administration of yeast products as feed additives has been proven to beneficially affect animal productivity through energy, oxidative, and immune status improvement. This study evaluated a combination of Saccharomyces cerevisiae live yeast (LY) with yeast postbiotics (rich in mannan-oligosaccharides (MOS) and beta-glucans) and selenium (Se)-enriched yeast on ewes' milk performance and milk quality, energy and oxidative status, and gene expression related to their immune system during the peripartum period. Ewes were fed a basal diet (BD; F:C = 58:42 prepartum and 41:59 postpartum) including inorganic Se (CON; n = 27), the BD supplemented with a LY product, and inorganic Se (AC; n = 29), as well as the combination of the LY, a product of yeast fraction rich in MOS and beta-glucans, and organic-Se-enriched yeast (ACMAN; n = 26) from 6 weeks prepartum to 6 weeks postpartum. The β-hydroxybutyric acid concentration in the blood of AC and ACMAN ewes was lower (compared to the CON) in both pre- and postpartum periods (p < 0.010). Postpartum, milk yield was increased in the AC and ACMAN Lacaune ewes (p = 0.001). In addition, the activity of superoxide dismutase (p = 0.037) and total antioxidant capacity (p = 0.034) measured via the 2,2-Azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) method was increased in the blood plasma of the ACMAN postpartum. Higher ABTS values were also found (p = 0.021), while protein carbonyls were reduced (p = 0.023) in the milk of the treated groups. The relative transcript levels of CCL5 and IL6 were downregulated in the monocytes (p = 0.007 and p = 0.026 respectively), and those of NFKB were downregulated in the neutrophils of the ACMAN-fed ewes postpartum (p = 0.020). The dietary supplementation of ewes with yeast postbiotics rich in MOS and beta-glucans, and organic Se, improved energy status, milk yield and some milk constituents, and oxidative status, with simultaneous suppression of mRNA levels of proinflammatory genes during the peripartum period.
Collapse
Affiliation(s)
- Christos Christodoulou
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (C.C.); (A.S.); (P.K.); (F.F.S.); (D.K.); (G.Z.); (A.M.)
| | - Alexis Skourtis
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (C.C.); (A.S.); (P.K.); (F.F.S.); (D.K.); (G.Z.); (A.M.)
| | - Panagiota Kyriakaki
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (C.C.); (A.S.); (P.K.); (F.F.S.); (D.K.); (G.Z.); (A.M.)
| | - Fotis Fokion Satolias
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (C.C.); (A.S.); (P.K.); (F.F.S.); (D.K.); (G.Z.); (A.M.)
| | - Dimitris Karabinas
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (C.C.); (A.S.); (P.K.); (F.F.S.); (D.K.); (G.Z.); (A.M.)
| | - Maxime Briche
- Phileo by Lesaffre, 59700 Marcq en Baroeul, Nord, France; (M.B.); (N.S.)
| | - Nizar Salah
- Phileo by Lesaffre, 59700 Marcq en Baroeul, Nord, France; (M.B.); (N.S.)
| | - George Zervas
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (C.C.); (A.S.); (P.K.); (F.F.S.); (D.K.); (G.Z.); (A.M.)
| | - Alexandros Mavrommatis
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (C.C.); (A.S.); (P.K.); (F.F.S.); (D.K.); (G.Z.); (A.M.)
| | - Eleni Tsiplakou
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (C.C.); (A.S.); (P.K.); (F.F.S.); (D.K.); (G.Z.); (A.M.)
| |
Collapse
|
36
|
Pont GCD, Lee A, Bortoluzzi C, Rohloff Junior N, Farnell YZ, Pilla R, Suchodolski JS, Ceccantini M, Eyng C, Kogut MH. Distillers dried grains with soluble and enzyme inclusion in the diet effects broilers performance, intestinal health, and microbiota composition. Poult Sci 2023; 102:102981. [PMID: 37742451 PMCID: PMC10523001 DOI: 10.1016/j.psj.2023.102981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 09/26/2023] Open
Abstract
This study tested the effect of distillers dried grains with soluble (DDGS) inclusion in a broiler diet, with or without supplementation of exogenous enzymes, on the microbiota composition, intestinal health, diet digestibility and performance. A total of 288 one-day-old chickens was assigned to 6 treatments (8 replicate of 6 birds each) according to a completely randomized design with a 3 × 2 factorial scheme with 3 DDGS levels (0, 7 and 14%) and 2 inclusions of exogenous enzymes (with or without a multicarbohydrase complex + phytase [MCPC]). The results exhibited that DDGS inclusion up to 14% did not impair broilers performance up to 28 d, however, DDGS-fed animals exhibited significant improvement with the MCPC supplementation. No effects of the enzymes in the ileal digestibility were found at 21 d. DDGS inclusion in the diet affected dry matter and gross energy digestibility. Broilers fed diets with MCPC were found to have less intestinal histological alteration thus better gut health. No effect of DDGS, enzyme or interaction of those were observed for intestinal permeability and in the serum inflammatory biomarker (calprotectin) at 7 and 28 d. The increase of DDGS percentage in the diet reduced the diversity of the ileal microbiota but increased the cecal microbiota diversity. The inclusion of DDGS showed positive effects on microbiota composition due to a reduction of Proteobacteria phylum in the ileum at 28d and a reduction in the presence of Enterococcaceae family in the ileum at 14 and 28d. The inclusion of MCPC complex might promote beneficial changes in the ileal and cecal microbiota due reduce of Proteobacteria, Bacillaceae and Enterobacteriaceae. The supplementation of xylanase, β-glucanase, arabinofuranosidase and phytase to a DDGS diet improves performance and intestinal health allowing the use of these subproduct in the poultry nutrition.
Collapse
Affiliation(s)
- Gabriela C Dal Pont
- Department of Poultry Science, Texas A&M AgriLife Research, Texas A&M University, College Station, TX 77843
| | - A Lee
- Department of Poultry Science, Texas A&M AgriLife Research, Texas A&M University, College Station, TX 77843
| | - C Bortoluzzi
- Department of Poultry Science, Texas A&M AgriLife Research, Texas A&M University, College Station, TX 77843
| | - N Rohloff Junior
- Department of Animal Science, Western Paraná State University, Unioeste, Marechal C. Rondon, PR 85960000, Brazil
| | - Y Z Farnell
- Department of Poultry Science, Texas A&M AgriLife Research, Texas A&M University, College Station, TX 77843
| | - R Pilla
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX 77843
| | - J S Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX 77843
| | | | - C Eyng
- Department of Animal Science, Western Paraná State University, Unioeste, Marechal C. Rondon, PR 85960000, Brazil.
| | - M H Kogut
- USDA-ARS, Southern Plains Agricultural Research Center, College Station, TX 77845
| |
Collapse
|
37
|
Sales GFC, Carvalho BF, Schwan RF, Pereira MN, Ávila CLS. Diversity and probiotic characterisation of yeast isolates in the bovine gastrointestinal tract. Antonie Van Leeuwenhoek 2023; 116:1123-1137. [PMID: 37650994 DOI: 10.1007/s10482-023-01865-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023]
Abstract
The use of yeasts as a feed supplement for cattle can promote animal development and performance. However, for the positive results to be consistent, strains with probiotic properties must be selected. The objective of this study was to isolate and identify yeasts present in the bovine feces and evaluate their probiotic potential together with strains previously isolated from the rumen (preliminary study). A total of 193 isolates were studied, including 139 isolates (19 species) from fecal samples from 11 different animals (Bos taurus and Bos indicus) and 54 strains previously isolated from rumen fluid (Bos taurus). The yeast population in the feces ranged from 3.51 to 4.99 log CFU/g, with Candida pararugosa being the most abundant (isolated from the feces of six samples analysed). Isolates were selected that had negative results in the safety tests (hemolytic activity, DNAse, and gelatinase) and had percentages greater than 35 and 70% for hydrophobicity and auto-aggregation, respectively. In addition, selected isolates had percentages greater than 77.7 and 74.7% for coaggregation with pathogenic strains of Escherichia coli and Clostridium perfringens, respectively. The isolates with percentage growth at 39 °C greater than 64.6% and viability greater than 96.7% were selected for survival testing under bovine gastrointestinal conditions. After the tests, the seven best isolates were selected, belonging to the species Candida pararugosa (L60, CCMA 928 and CCMA 930) and Pichia kudriavzevii (L97, L100, CCMA904, CCMA 907). The selected isolates were exopolysaccharide producers. Based on the results of the evaluated properties, the seven selected isolates were classified as potential probiotics for cattle.
Collapse
Affiliation(s)
- G F C Sales
- Department of Biology, Universidade Federal de Lavras, Lavras, MG, Brazil
| | - B F Carvalho
- Department of Biology, Universidade Federal de Lavras, Lavras, MG, Brazil
| | - R F Schwan
- Department of Biology, Universidade Federal de Lavras, Lavras, MG, Brazil
| | - M N Pereira
- Department of Animal Science, Universidade Federal de Lavras, Lavras, MG, Brazil
| | - C L S Ávila
- Department of Animal Science, Universidade Federal de Lavras, Lavras, MG, Brazil.
- Departamento de Zootecnia, Universidade Federal de Lavras, Caixa Postal 3037, Lavras, MG, Brazil.
| |
Collapse
|
38
|
Maturana M, Castillejos L, Martin-Orue SM, Minel A, Chetty O, Felix AP, Adib Lesaux A. Potential benefits of yeast Saccharomyces and their derivatives in dogs and cats: a review. Front Vet Sci 2023; 10:1279506. [PMID: 37954670 PMCID: PMC10634211 DOI: 10.3389/fvets.2023.1279506] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023] Open
Abstract
Yeast Saccharomyces and its derivatives have been largely used in livestock and poultry nutrition for their potential positive impact on growth, performance, and general health. Originally included in animal diets as a source of protein, yeasts can also offer a wide range of by-products with interesting bioactive compounds that would confer uses beyond nutrition. Although its supplementation in livestock, poultry and even in humans is well documented, the available body of literature on the use of yeast and its derivatives in companion animals' food, mainly dogs and cats' diets, is still developing. Despite this, gut microbiota modulation, immune system enhancement or decreasing of potentially pathogenic microorganisms have been reported in pets when using these products, highlighting their possible role as probiotics, prebiotics, and postbiotics. This review attempts to provide the reader with a comprehensive on the effects of Saccharomyces and its derivatives in pets and the possible mechanisms that confer their functional properties.
Collapse
Affiliation(s)
- Marta Maturana
- Animal Nutrition and Welfare Service (SNiBA), Department of Animal and Food Science, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Lorena Castillejos
- Animal Nutrition and Welfare Service (SNiBA), Department of Animal and Food Science, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Susana M. Martin-Orue
- Animal Nutrition and Welfare Service (SNiBA), Department of Animal and Food Science, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Anaelle Minel
- Department of Research & Development, Phileo by Lesaffre, Marcq-en-Baroeul, France
| | - Olivia Chetty
- Department of Research & Development, Phileo by Lesaffre, Marcq-en-Baroeul, France
| | - Ananda P. Felix
- Department of Animal Science, Federal University of Paraná, Curitiba, Brazil
| | - Achraf Adib Lesaux
- Department of Research & Development, Phileo by Lesaffre, Marcq-en-Baroeul, France
| |
Collapse
|
39
|
Sampath V, Sureshkumar S, Kim IH. The Efficacy of Yeast Supplementation on Monogastric Animal Performance-A Short Review. Life (Basel) 2023; 13:2037. [PMID: 37895419 PMCID: PMC10608604 DOI: 10.3390/life13102037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Due to a continual growth in the world's population and the prohibition of antibiotics in animal production, the livestock industry faces significant challenges in the global demand for meat, eggs, and dairy products. The growing demand for organic products and the prohibition on antibiotic growth promoters (AGPs) have compelled animal nutrition experts to search for natural substitutes that include medical plants and beneficial microorganisms. Natural feed additives like probiotics are found to be more effective than AGPs in reducing the load of harmful intestinal pathogens. One of the probiotics that has generated considerable interest since ancient times is yeast. Yeast is used as a supplement in animal feeds due to its relatively high protein, amino acid, energy, and micronutrient content. Yeast byproducts such as yeast cells and cell walls contain nutraceutical compounds (i.e., β-glucans, mannooligosaccharides, and nucleotides) and have been shown to improve animal growth performance and health. Though the application of yeast supplements has been reviewed to date, only a scarce amount of information exists on the yeast-derived products in non-ruminant nutrition. Additionally, it is difficult for nutritionists to differentiate the characteristics, composition, and optimal feeding among the diverse number of yeast-containing products. Due to the increasing popularity of using yeast-based products in animal feeds, the development of analytical approaches to estimate yeast and its components in these products is greatly needed. Thus, in this review, we intend to provide current knowledge of different categories of commercially available yeast and yeast-derived additives, along with their role in improving animal growth performance and health, their proposed mechanisms of action, and the challenges of quantifying yeast content and biologically active components.
Collapse
Affiliation(s)
- Vetriselvi Sampath
- Department of Animal Resource and Science, Dankook University, Cheonan 330-714, Republic of Korea; (V.S.); (S.S.)
- Smart Animal Bio Institute, Dankook University, Cheonan 330-714, Republic of Korea
| | - Shanmugam Sureshkumar
- Department of Animal Resource and Science, Dankook University, Cheonan 330-714, Republic of Korea; (V.S.); (S.S.)
- Smart Animal Bio Institute, Dankook University, Cheonan 330-714, Republic of Korea
| | - In Ho Kim
- Department of Animal Resource and Science, Dankook University, Cheonan 330-714, Republic of Korea; (V.S.); (S.S.)
- Smart Animal Bio Institute, Dankook University, Cheonan 330-714, Republic of Korea
| |
Collapse
|
40
|
Verstrepen L, Calatayud-Arroyo M, Duysburgh C, De Medts J, Ekmay RD, Marzorati M. Amino Acid Digestibility of Different Formulations of Torula Yeast in an In Vitro Porcine Gastrointestinal Digestion Model and Their Protective Effects on Barrier Function and Inflammation in a Caco-2/THP1Co-Culture Model. Animals (Basel) 2023; 13:2812. [PMID: 37760211 PMCID: PMC10526019 DOI: 10.3390/ani13182812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Single-cell protein from torula yeast (Cyberlindnera jadinii) grown on lignocellulosic biomass has been proven to be an excellent alternative protein source for animal feed. This study aimed to evaluate the amino acid (AA) digestibility by estimating intestinal absorption from three yeast-based ingredients, produced by cultivating C. jadinii on hydrolysate, using either mixed woody species (drum- (WDI) or spray-dried (WSI)) or corn dextrose (drum-dried (DDI)) as the carbon source. Further, the protective effect of intestinal digests on activated THP1-Blue™-induced epithelial damage and cytokine profile was evaluated. Total protein content from these three ingredients ranged from 34 to 45%, while the AA dialysis showed an estimated bioaccessibility between 41 and 58%, indicating good digestibility of all test products. A protective effect against epithelial-induced damage was observed for two of the three tested products. Torula yeast cultivated on wood and drum-dried (WDI) and torula yeast cultivated on wood and spray-dried (WSI) significantly increased transepithelial electrical resistance (TEER) values (111-147%, p < 0.05), recovering the epithelial barrier from the inflammation-induced damage in a dose-dependent manner. Further, WSI digests significantly reduced IL8 (250.8 ± 28.1 ng/mL), IL6 (237.9 ± 1.8 pg/mL) and TNF (2797.9 ± 216.3 pg/mL) compared to the blank control (IL8 = 485.7 ± 74.4 ng/mL, IL6 = 478.7 ± 58.9 pg/mL; TNF = 4273.5 ± 20.9 pg/mL) (p < 0.05). These results align with previous in vivo studies, supporting torula yeast-based ingredients as a high-quality protein source for pigs, protecting the intestinal barrier from inflammatory damage, and reducing the pro-inflammatory response. We provided novel insights into the mechanisms behind the health improvement of pigs fed on torula yeast-based ingredients, with potential applications for designing nutritional interventions to recover intestinal homeostasis during critical production periods, such as weaning.
Collapse
Affiliation(s)
- Lynn Verstrepen
- ProDigest BV, Technologiepark 82, 9052 Zwijnaarde, Belgium; (L.V.); (C.D.); (J.D.M.)
| | - Marta Calatayud-Arroyo
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
- Institute of Agrochemistry and Food Technology (IATA-CSIC), Spanish National Research Council, 46980 Valencia, Spain
| | - Cindy Duysburgh
- ProDigest BV, Technologiepark 82, 9052 Zwijnaarde, Belgium; (L.V.); (C.D.); (J.D.M.)
| | - Jelle De Medts
- ProDigest BV, Technologiepark 82, 9052 Zwijnaarde, Belgium; (L.V.); (C.D.); (J.D.M.)
| | | | - Massimo Marzorati
- ProDigest BV, Technologiepark 82, 9052 Zwijnaarde, Belgium; (L.V.); (C.D.); (J.D.M.)
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
41
|
Attfield PV. Crucial aspects of metabolism and cell biology relating to industrial production and processing of Saccharomyces biomass. Crit Rev Biotechnol 2023; 43:920-937. [PMID: 35731243 DOI: 10.1080/07388551.2022.2072268] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/27/2022] [Accepted: 04/21/2022] [Indexed: 12/16/2022]
Abstract
The multitude of applications to which Saccharomyces spp. are put makes these yeasts the most prolific of industrial microorganisms. This review considers biological aspects pertaining to the manufacture of industrial yeast biomass. It is proposed that the production of yeast biomass can be considered in two distinct but interdependent phases. Firstly, there is a cell replication phase that involves reproduction of cells by their transitions through multiple budding and metabolic cycles. Secondly, there needs to be a cell conditioning phase that enables the accrued biomass to withstand the physicochemical challenges associated with downstream processing and storage. The production of yeast biomass is not simply a case of providing sugar, nutrients, and other growth conditions to enable multiple budding cycles to occur. In the latter stages of culturing, it is important that all cells are induced to complete their current budding cycle and subsequently enter into a quiescent state engendering robustness. Both the cell replication and conditioning phases need to be optimized and considered in concert to ensure good biomass production economics, and optimum performance of industrial yeasts in food and fermentation applications. Key features of metabolism and cell biology affecting replication and conditioning of industrial Saccharomyces are presented. Alternatives for growth substrates are discussed, along with the challenges and prospects associated with defining the genetic bases of industrially important phenotypes, and the generation of new yeast strains."I must be cruel only to be kind: Thus bad begins, and worse remains behind." William Shakespeare: Hamlet, Act 3, Scene 4.
Collapse
|
42
|
Chu Q, Xie C, Cao G, Hu Z, Li F, Fu Y, Han G, Li X. An Alternative Thinking in Tumor Therapeutics: Living Yeast Armored with Silicate. ACS NANO 2023; 17:16264-16273. [PMID: 37523324 DOI: 10.1021/acsnano.3c06311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
A hybrid platform, constructed via the surface "armoring" of living yeasts by a manganese silicate compound (MS@Yeast), is investigated for combinational cancer treatment. The intrinsic characteristics of living yeasts, in both acidophilic and anaerobic conditions, empower the hybrid platform with activated selected colonization in tumors. While silicate particles are delivered in a targeting manner, yeast fermentation occurs at the cancerous region, inducing both alcohol and CO2. The excessive content of alcohol causes the hemangiectasis of tumor tissue, facilitating the penetration of therapeutics into central tumors and subsequent endocytosis. The catalytic Mn2+ ions, released from silicate particles, react with CO2 to induce forceful oxidative stress in tumor cells, ablating the primary tumors. More interestingly, the debris of sacrificed tumor cells and yeasts triggers considerable antitumor immune responses, rejecting both rechallenged and metastatic tumors. The integration of biologically active microorganisms and functional materials, illustrated in this study, provides distinctive perspectives in the exploration of potential therapeutics for tackling cancer.
Collapse
Affiliation(s)
- Qiang Chu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
- Tea Research Institute, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Congkun Xie
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Guodong Cao
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China
| | - Zefeng Hu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Feiyu Li
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Yike Fu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, People's Republic of China
| | - Gaorong Han
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Xiang Li
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, People's Republic of China
| |
Collapse
|
43
|
Wo Y, Ma F, Shan Q, Gao D, Jin Y, Sun P. Plasma metabolic profiling reveals that chromium yeast alleviates the negative effects of heat stress in mid-lactation dairy cows. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 13:401-410. [PMID: 37214216 PMCID: PMC10196334 DOI: 10.1016/j.aninu.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 05/24/2023]
Abstract
Chromium yeast (CY) supplementation has the potential to alleviate the negative effects of heat stress in dairy cows, but the mechanism remains elusive. We aimed to identify the metabolic mechanisms whereby CY supplementation alleviates the negative effects of heat stress in mid-lactation dairy cows. Twelve Holstein dairy cows with similar milk yield (24.6 ± 1.5 kg/d), parity (2 or 3) and days in milk (125 ± 8 d) were fed the same basal diet containing 0.09 mg of Cr/kg DM. They were allocated randomly to 2 groups: a control group (CON, without CY supplementation) and a CY group (CY, administered 0.36 mg Cr/kg DM). The experiment was performed over 8 weeks during a hot summer, in which the mean temperature-humidity index was 79.0 ± 3.13 (>72), indicating that the dairy cows were exposed to heat stress. Chromium yeast supplementation reduced rectal temperature (P = 0.032), and increased the lactation performance by increasing the yield of milk (+2.6 kg/d), protein, lactose and total solid, and protein and lactose percentages in the milk of the heat-stressed dairy cows (P < 0.05). Supplementation with CY increased the serum glucose and thyroxine concentrations, but reduced the urea nitrogen, insulin, and triiodothyronine concentrations on d 56 (P < 0.05). Furthermore, plasma metabolomic analysis was performed using liquid chromatography tandem-mass spectrometry, which identified 385 metabolites in the two groups. Subsequently, 16 significantly different metabolites in the plasma, were significantly higher in the CY group (variable importance for the projection >1.0, P < 0.05), and found to be involved in 6 Kyoto Encyclopedia of Genes and Genomes pathways, including those involved in nicotinate and nicotinamide metabolism. Specifically, plasma concentration of nicotinamide was higher after CY supplementation, which might also contribute to the reduction of rectal temperature, the regulation of glucose homeostasis, and an improvement in the lactation performance of heat-stressed dairy cows. In conclusion, CY supplementation reduces rectal temperature, influences metabolism by reducing serum insulin concentration and increasing serum glucose and plasma nicotinamide concentrations, and finally increases lactation performance of heat-stressed dairy cows.
Collapse
|
44
|
Abstract
Our current food system relies on unsustainable practices, which often fail to provide healthy diets to a growing population. Therefore, there is an urgent demand for new sustainable nutrition sources and processes. Microorganisms have gained attention as a new food source solution, due to their low carbon footprint, low reliance on land, water and seasonal variations coupled with a favourable nutritional profile. Furthermore, with the emergence and use of new tools, specifically in synthetic biology, the uses of microorganisms have expanded showing great potential to fulfil many of our dietary needs. In this review, we look at the different applications of microorganisms in food, and examine the history, state-of-the-art and potential to disrupt current foods systems. We cover both the use of microbes to produce whole foods out of their biomass and as cell factories to make highly functional and nutritional ingredients. The technical, economical, and societal limitations are also discussed together with the current and future perspectives.
Collapse
Affiliation(s)
- Alicia E Graham
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
45
|
Maggiolino A, Centoducati G, Casalino E, Elia G, Latronico T, Liuzzi MG, Macchia L, Dahl GE, Ventriglia G, Zizzo N, De Palo P. Use of a commercial feed supplement based on yeast products and microalgae with or without nucleotide addition in calves. J Dairy Sci 2023; 106:4397-4412. [PMID: 37080790 DOI: 10.3168/jds.2022-22656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/30/2022] [Indexed: 04/22/2023]
Abstract
The use of feed additives with antioxidant and immune response modulatory activity could be a useful strategy in suckling calves to reduce morbidity and mortality. This strategy is based on several feed additives tested for these purposes. The aim of the paper is the examination of a commercial feed additive for adult cows for use in calves, with and without nucleotide supplementation. Seventy-five Holstein Friesian male calves were divided in 3 groups, with each calf randomly assigned to a group according to birth order. All calves received 2 L of pooled colostrum within 2 h of birth. The commercial feed supplement group was orally administered with 5 g/head of Decosel (dried brewer's yeast lysate (Saccharomyces cerevisiae), brewer's yeast walls (Saccharomyces cerevisiae), diatoms, spirulina, barley flour, calcium carbonate; Agroteam srl, Torrimpietra, Italy) and the nucleotides + commercial feed supplement group was orally administered with 5 g/head of an additive containing 2.5 g of Decosel and 2.5 g of nucleotides once daily from birth to 25 d. The control group was orally administered 20 mL of fresh water/head once daily. Calves that received the supplement and the nucleotides showed lower rates of protein and metabolizable energy conversion, with longer villi and greater crypt depth in duodenum. Moreover, the commercial feed supplement alone increased antioxidant capacity [2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) and ferric-reducing antioxidant power] in plasma some activity of antioxidant liver enzymes, and peripheral blood mononuclear cell viability after in vitro concanavalin A and H2O2 stimuli. Dietary supplementation with a commercial feed supplement containing yeast products (yeast cell walls and hydrolyzed yeast) and microalgae enhanced the redox balance and gut morphology in calves, allowing calves to improve their immune response, increasing resistance to stress. Moreover, these beneficial effects were strongly potentiated when dietary nucleotides were added to the supplement.
Collapse
Affiliation(s)
- Aristide Maggiolino
- Department of Veterinary Medicine, University of Bari A. Moro, 70010 Valenzano, Italy
| | - Gerardo Centoducati
- Department of Veterinary Medicine, University of Bari A. Moro, 70010 Valenzano, Italy.
| | - Elisabetta Casalino
- Department of Veterinary Medicine, University of Bari A. Moro, 70010 Valenzano, Italy
| | - Gabriella Elia
- Department of Veterinary Medicine, University of Bari A. Moro, 70010 Valenzano, Italy
| | - Tiziana Latronico
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Aldo Moro, 70026 Bari, Italy
| | - Maria Grazia Liuzzi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Aldo Moro, 70026 Bari, Italy
| | - Luigi Macchia
- Department of Emergency and Organ Transplantation, School and Chair of Allergology and Clinical Immunology, University of Bari, Aldo Moro, 70010 Bari, Italy
| | - Geoffrey E Dahl
- Department of Animal Sciences, University of Florida, Gainesville 32608
| | - Gianluca Ventriglia
- Department of Veterinary Medicine, University of Bari A. Moro, 70010 Valenzano, Italy
| | - Nicola Zizzo
- Department of Veterinary Medicine, University of Bari A. Moro, 70010 Valenzano, Italy
| | - Pasquale De Palo
- Department of Veterinary Medicine, University of Bari A. Moro, 70010 Valenzano, Italy
| |
Collapse
|
46
|
Verdier-Metz I, Delbès C, Bouchon M, Rifa E, Theil S, Chaucheyras-Durand F, Chevaux E, Dunière L, Chassard C. Dietary Live Yeast Supplementation Influence on Cow’s Milk, Teat and Bedding Microbiota in a Grass-Diet Dairy System. Microorganisms 2023; 11:microorganisms11030673. [PMID: 36985246 PMCID: PMC10053648 DOI: 10.3390/microorganisms11030673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/09/2023] Open
Abstract
The supplementation of animal feed with microbial additives remains questioning for the traditional or quality label raw milk cheeses with regard to microbial transfer to milk. We evaluated the effect of dietary administration of live yeast on performance and microbiota of raw milk, teat skin, and bedding material of dairy cows. Two balanced groups of cows (21 primiparous 114 ± 24 DIM, 18 multiparous 115 ± 33 DIM) received either a concentrate supplemented with Saccharomyces cerevisiae CNCM I-1077 (1 × 1010 CFU/d) during four months (LY group) or no live yeast (C group). The microbiota in individual milk samples, teat skins, and bedding material were analysed using culture dependent techniques and high-throughput amplicon sequencing. The live yeast supplementation showed a numerical increase on body weight over the experiment and there was a tendency for higher milk yield for LY group. A sequence with 100% identity to that of the live yeast was sporadically found in fungal amplicon datasets of teat skin and bedding material but never detected in milk samples. The bedding material and teat skin from LY group presented a higher abundance of Pichia kudriavzevii reaching 53% (p < 0.05) and 10% (p < 0.05) respectively. A significant proportion of bacterial and fungal ASVs shared between the teat skin and the milk of the corresponding individual was highlighted.
Collapse
Affiliation(s)
- Isabelle Verdier-Metz
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR 0545 Fromage, 20 Côte de Reyne, 15000 Aurillac, France
| | - Céline Delbès
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR 0545 Fromage, 20 Côte de Reyne, 15000 Aurillac, France
| | - Matthieu Bouchon
- Université Clermont Auvergne, INRAE, UE 1414 Herbipôle, Domaine de la Borie, 15190 Marcenat, France
| | - Etienne Rifa
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR 0545 Fromage, 20 Côte de Reyne, 15000 Aurillac, France
| | - Sébastien Theil
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR 0545 Fromage, 20 Côte de Reyne, 15000 Aurillac, France
| | - Frédérique Chaucheyras-Durand
- Lallemand SAS, 19 rue des Briquetiers, 31702 Blagnac, France
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, Site de Theix, 63122 Saint-Genès-Champanelle, France
| | - Eric Chevaux
- Lallemand SAS, 19 rue des Briquetiers, 31702 Blagnac, France
| | - Lysiane Dunière
- Lallemand SAS, 19 rue des Briquetiers, 31702 Blagnac, France
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, Site de Theix, 63122 Saint-Genès-Champanelle, France
| | - Christophe Chassard
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR 0545 Fromage, 20 Côte de Reyne, 15000 Aurillac, France
| |
Collapse
|
47
|
Martins LF, Oh J, Melgar A, Harper M, Wall EW, Hristov AN. Effects of phytonutrients and yeast culture supplementation on lactational performance and nutrient use efficiency in dairy cows. J Dairy Sci 2023; 106:1746-1756. [PMID: 36586803 DOI: 10.3168/jds.2022-22482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/05/2022] [Indexed: 12/31/2022]
Abstract
Yeast culture and phytonutrients are dietary supplements with distinct modes of action, and they may have additive effects on the performance of dairy cattle. The objective of this study was to investigate the effects of a preparation of phytonutrients and a yeast culture from Saccharomyces cerevisiae on lactational performance, total-tract digestibility of nutrients, urinary nitrogen losses, energy metabolism markers, and blood cells in dairy cows. Thirty-six mid-lactation Holstein cows (10 primiparous and 26 multiparous) were used in an 8-wk randomized complete block design experiment with a 2-wk covariate period, 2 wk for adaptation to the diets, and a 4-wk experimental period for data and samples collection. Following a 2-wk covariate period, cows were blocked by days in milk, parity, and milk yield and randomly assigned to 1 of 3 treatments (12 cows per treatment): basal diet supplemented with 14 g/cow per day yeast culture (YC; S. cerevisiae), basal diet supplemented with 1.0 g/cow per day phytonutrients (PN; 5.5% cinnamaldehyde, 9.5% eugenol, and 3.5% capsicum oleoresin), or basal diet supplemented with a combination of YC and PN (YCPN). Treatments were top-dressed once daily on the total mixed ration at time of feeding. Dry matter intake, milk yield, and feed efficiency were not affected by treatments. Milk composition and energy-corrected milk yield were also not affected by supplementation of YC, PN, and YCPN. There were no differences in intake or total-tract digestibility of dietary nutrients among treatments. Compared with YC, the PN and YCPN treatments tended to decrease the proportion of short-chain fatty acids in milk fat. There was an additive effect of YC and PN supplementation on urinary urea nitrogen (UUN) excretion relative to total nitrogen intake. Cows fed a diet supplemented with YCPN had lower UUN excretion than cows in YC and tended to have lower UUN excretion compared with PN. Blood monocytes count and percentage were decreased in cows fed PN and YCPN diets compared with YC. Treatments did not affect concentrations of blood β-hydroxybutyrate and total fatty acids. Overall, lactational performance, digestibility of nutrients, energy metabolism markers, and blood cells were not affected by YC, PN, or YCPN supplementation. A combination of PN and YC had an additive effect on nitrogen excretion in dairy cows.
Collapse
Affiliation(s)
- L F Martins
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - J Oh
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - A Melgar
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - M Harper
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - E W Wall
- Pancosma, Geneva, Switzerland CH-1218
| | - A N Hristov
- Department of Animal Science, The Pennsylvania State University, University Park 16802.
| |
Collapse
|
48
|
Nutritional supplements for the control of avian coccidiosis. ANNALS OF ANIMAL SCIENCE 2023. [DOI: 10.2478/aoas-2023-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Abstract
Coccidiosis is acclaimed as the most prevalent enteric parasitic ailment of poultry. It is caused by an apicomplexan protozoon of the genus Eimeria, which resides in chicken intestinal epithelium leading to intestinal damage. As a result, bloody droppings are there, feed efficiency is reduced, the growth rate is impaired, and egg production is temporarily decreased. Treatment and prevention of coccidiosis are primarily accomplished by inoculating live vaccines and administering anticoccidial drugs. Due to anticoccidials’ continuous and excessive use, the mounting issue is drug resistant Eimeria strains. The poultry industry has managed resistance-related issues by suggesting shuttle and rotation schemes. Furthermore, new drugs have also been developed and introduced, but it takes a long time and causes cost inflation in the poultry industry. Moreover, government disallows growth promoters and drugs at sub-therapeutic doses in poultry due to increased concerns about the drug residues in poultry products. These constraints have motivated scientists to work on alternative ways to control coccidiosis effectively, safely, and sustainably. Using nutritional supplements is a novel way to solve the constraints mentioned above. The intriguing aspects of using dietary supplements against coccidiosis are that they reduce the risk of drug-resistant pathogen strains, ensure healthy, nutritious poultry products, have less reliance on synthetic drugs, and are typically considered environmentally safe. Furthermore, they improve productivity, enhance nonspecific immunity, preventing oxidation of fats (acting as antioxidants) and inflammation (acting as an anti-inflammatory). The present manuscript focuses on the efficacy, possible mechanism of action, applications, and different facets of nutrition supplements (such as organic acids, minerals, vitamins, probiotics, essential oils, amino acids, dietary nucleotides, feed enzymes, and yeast derivatives) as feed additive for treating poultry coccidiosis.
Collapse
|
49
|
The protective effects of Saccharomyces cerevisiae on the growth performance, intestinal health, and antioxidative capacity of mullet ( Liza ramada) fed diets contaminated with aflatoxin B 1. ANNALS OF ANIMAL SCIENCE 2023. [DOI: 10.2478/aoas-2023-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Abstract
Plant protein ingredients are increasingly included in mullet feeds and are expected to be contaminated with mycotoxins (AFB1). Thus, this study investigated the protective role of Saccharomyces cerevisiae against oxidative stress and hepato-renal malfunction induced by AFB1 contamination in mullets. Four diets were formulated, where the first was kept as the control diet, and the second was supplemented with S. cerevisiae at 5 × 106 cells/g. The third diet was supplied with AFB1 at 1 mg/kg, and the fourth was supplemented with S. cerevisiae and AFB1. Mullet fed the control or both AFB1 and S. cerevisiae (yeast/AFB1) had similar FBW, WG, SGR, and FCR (P˃0.05). Mullet treated with S. cerevisiae without AFB1 contamination showed the highest FBW, WG, and SGR (P<0.05), while fish in the AFB1 group had lower FBW, WG, and SGR and higher FCR than fish in the control and yeast/AFB1 groups (P<0.05). Using yeast with AFB1 prevented pathological hazards and improved intestinal structure. Further, yeast combined with AFB1 reduced the degenerative changes and enhanced the histological structure except for a mild inflammatory reaction around the bile duct. Fish in the control or yeast/AFB1 group had higher HB, PCV, RBCs, and WBCs than fish in the AFB1 group (P<0.05). Fish fed the control, or the yeast/AFB1 diets had similar total protein and albumin levels with higher values than fish contaminated with AFB1 (P<0.05). Fish fed the control and yeast/AFB1 diets had similar ALT, AST, urea, and creatinine levels (P˃0.05) and were lower than fish contaminated with AFB1. Additionally, fish fed the control and yeast/AFB1 diets had similar CAT, GPx, SOD, and MDA (P˃0.05) and were lower than fish contaminated with AFB1 (P<0.05). In conclusion, incorporating S. cerevisiae ameliorated the negative impacts of AFB1 toxicity on mullets’ growth, hepato-renal function, and antioxidative capacity.
Collapse
|
50
|
Yeasts and Yeast-based Products in Poultry Nutrition. J APPL POULTRY RES 2023. [DOI: 10.1016/j.japr.2023.100345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
|