1
|
Mukherjee S, Tripathi A. Role of quercetin as a promising antiviral, therapeutic and immunomodulatory mediator against dengue virus induced robust infection in in-vivo Balb/C mice model. Eur J Med Chem 2025; 290:117536. [PMID: 40132497 DOI: 10.1016/j.ejmech.2025.117536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 03/27/2025]
Abstract
Currently, there are no clinically approved antiviral agents against dengue-virus (DENV). This study aimed to determine the prophylactic, antiviral, and therapeutic potential of quercetin by its pre-treatment, co-treatment, and post-treatment [24, 48, and 72 h-post-infection (HPI)] of DENV-infected Balb/C mice through both oral and intraperitoneal (I.P) route, respectively. 80 mg/kg/day and 16 mg/kg/day of quercetin were non-toxic for oral and I.P administration, respectively. I.P. was found to be more effective than oral administration which significantly reduced DENV copy-number in co-treatment group (from day 1, p < 0.01); post-treatment (24hpi),and pretreatment groups (day 3 onwards, p < 0.05). Molecular-docking experiments indicated quercetin could act as a double-edged sword by strongly interacting with DENV envelope-glycoprotein (-8.1 kcal/mol) and NS5-RdRp domain (-8.0 kcal/mol), which are crucial for viral-attachment and replication. MD-simulation of docked complexes indicated their stability defined by low RMSD, RMSF, and stable H-bond with active-site residues. Significant reduction (p < 0.001) in TNF-α, IL-6, ROS-production, and vascular leakage was observed among pre-, co-, and post-treatment (24 and 48 HPI) groups with promising hepatic and renal-protective effects. Pharmacological and functional-molecular interaction networks indicate a significant effect of quercetin on vascular integrity byVEGF-KDR signaling pathway (via PI3K-Akt and Ras signalling), oxygen homeostasis through HIF-1 signalling, and the anti-inflammatory response via PI3K-Akt, IL-6 and its receptor signalling (PPI enrichment P = 3.19e-10).Thus, it can be concluded that I.P. co- and post-treatment (24hpi) of quercetin to DENV-infected mice could effectively reduce viral-titer, pro-inflammatory cytokines, ROS-response, and vascular permeability. Taken together this demonstrates quercetin as an important antiviral candidate against dengue.
Collapse
Affiliation(s)
- Saikat Mukherjee
- Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical, Medicine, Kolkata, West Bengal, India
| | - Anusri Tripathi
- Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical, Medicine, Kolkata, West Bengal, India.
| |
Collapse
|
2
|
Feng C, Li Q, Miao D, Hu X, Huang J, Peng D, Song Y, Zhang D. Mouse models of Tembusu virus infection for differentiating between cluster 2.1 and 2.2 isolates. Vet Microbiol 2025; 304:110474. [PMID: 40101376 DOI: 10.1016/j.vetmic.2025.110474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/09/2025] [Accepted: 03/11/2025] [Indexed: 03/20/2025]
Abstract
Tembusu virus (TMUV) cluster 2.1 and 2.2 strains are known to produce lethal neurological disease in mice inoculated by intracerebral (ic) route. Here, we report the comparative clinicopathological findings following experimental infections of 3-week-old BALB/c and Kunming mice with cluster 2.1 isolate H and cluster 2.2 isolate Y. When infected by the subcutaneous (sc) route, both isolates failed to induce disease in mice. When infected by the ic route, both isolates caused lethal neurological disease in mice, with isolate H presenting markedly higher neurovirulence than isolate Y. Further studies with the Kunming mouse model showed that following sc inoculation, both H and Y isolates failed to replicate in brain and spleen, and that following ic inoculation, isolate H replicated to higher levels in brain and spleen than isolate Y. The findings may help to explain non-neuroinvasive property of clusters 2.1 and 2.2 and suggest that enhanced neurovirulence of cluster 2.1 relative to cluster 2.2 is associated with more efficient replication in the central nervous system and in the periphery. Moreover, isolate H induced significantly higher levels of IFN-β, IL-1β, IL-6, TNF-α, Ifit1, and Ifit2 expression relative to isolate Y, indicating a positive correlation between TMUV neurovirulence and magnitude of antiviral innate immune response. The present work demonstrates that the mouse models allow to differentiate between cluster 2.1 and 2.2 isolates and provides mechanistic insights into TMUV-induced disease.
Collapse
Affiliation(s)
- Chonglun Feng
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China.
| | - Qiong Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China.
| | - Dongying Miao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China.
| | - Xiaoyang Hu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China.
| | - Jingjing Huang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China.
| | - Duo Peng
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China.
| | - Yinuo Song
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China.
| | - Dabing Zhang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
3
|
Henriques P, Rosa A, Caldeira-Araújo H, Vigário AM. Mouse models as a tool to study asymptomatic DENV infections. Front Cell Infect Microbiol 2025; 15:1554090. [PMID: 40207056 PMCID: PMC11979173 DOI: 10.3389/fcimb.2025.1554090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/21/2025] [Indexed: 04/11/2025] Open
Abstract
Asymptomatic outcome accounts for most dengue virus infections and is likely to play an important role in maintaining virus circulation, contributing to its dissemination and shortening inter-epidemic periods. While dengue immunopathogenesis, investigation of potential therapeutics, and vaccine efficacy have been widely studied, only recently have inapparent infections begun to be comprehensively addressed as an integral and important part of the puzzle that is dengue infection. Animal models are one of the tools utilized to study dengue and, among these, mouse models have played an important role in understanding both dengue pathogenesis and the hosts' initial immune response. However, these models have mostly focused on untangling the drivers of disease severity ignoring asymptomatic dengue virus infections. In this mini-review, the authors propose to provide a concise overview of the current state-of-the-art of existing mouse models with potential use for studying asymptomatic dengue virus infections, elaborating on the pros and cons of the several models. Variations in experimental conditions, such as altering the viral load of the inoculum or employing different virus entry routes, especially in mice with partial or transient blockade of the type I interferon response, might be sufficient to obtain both symptomatic and asymptomatic viremic mice. This would enable the study of factors involved in asymptomatic dengue virus infections.
Collapse
Affiliation(s)
- Paulo Henriques
- Projecto Medicina, Faculdade de Ciências da Vida, Universidade da Madeira, Funchal, Portugal
| | - Alexandra Rosa
- Projecto Medicina, Faculdade de Ciências da Vida, Universidade da Madeira, Funchal, Portugal
| | - Helena Caldeira-Araújo
- Projecto Medicina, Faculdade de Ciências da Vida, Universidade da Madeira, Funchal, Portugal
- Centro de Química da Madeira (CQM), Universidade da Madeira, Funchal, Portugal
| | - Ana Margarida Vigário
- Projecto Medicina, Faculdade de Ciências da Vida, Universidade da Madeira, Funchal, Portugal
- Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
| |
Collapse
|
4
|
Akter R, Tasneem F, Das S, Soma MA, Georgakopoulos-Soares I, Juthi RT, Sazed SA. Approaches of dengue control: vaccine strategies and future aspects. Front Immunol 2024; 15:1362780. [PMID: 38487527 PMCID: PMC10937410 DOI: 10.3389/fimmu.2024.1362780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/08/2024] [Indexed: 03/17/2024] Open
Abstract
Dengue, caused by the dengue virus (DENV), affects millions of people worldwide every year. This virus has two distinct life cycles, one in the human and another in the mosquito, and both cycles are crucial to be controlled. To control the vector of DENV, the mosquito Aedes aegypti, scientists employed many techniques, which were later proved ineffective and harmful in many ways. Consequently, the attention shifted to the development of a vaccine; researchers have targeted the E protein, a surface protein of the virus and the NS1 protein, an extracellular protein. There are several types of vaccines developed so far, such as live attenuated vaccines, recombinant subunit vaccines, inactivated virus vaccines, viral vectored vaccines, DNA vaccines, and mRNA vaccines. Along with these, scientists are exploring new strategies of developing improved version of the vaccine by employing recombinant DNA plasmid against NS1 and also aiming to prevent the infection by blocking the DENV life cycle inside the mosquitoes. Here, we discussed the aspects of research in the field of vaccines until now and identified some prospects for future vaccine developments.
Collapse
Affiliation(s)
- Runa Akter
- Department of Pharmacy, Independent University Bangladesh, Dhaka, Bangladesh
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Faria Tasneem
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Shuvo Das
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | | | - Ilias Georgakopoulos-Soares
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Rifat Tasnim Juthi
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Saiful Arefeen Sazed
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
5
|
Henriques P, Rosa A, Caldeira-Araújo H, Soares P, Vigário AM. Flying under the radar - impact and factors influencing asymptomatic DENV infections. Front Cell Infect Microbiol 2023; 13:1284651. [PMID: 38076464 PMCID: PMC10704250 DOI: 10.3389/fcimb.2023.1284651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
The clinical outcome of DENV and other Flaviviruses infections represents a spectrum of severity that ranges from mild manifestations to severe disease, which can ultimately lead to death. Nonetheless, most of these infections result in an asymptomatic outcome that may play an important role in the persistent circulation of these viruses. Also, although little is known about the mechanisms that lead to these asymptomatic infections, they are likely the result of a complex interplay between viral and host factors. Specific characteristics of the infecting viral strain, such as its replicating efficiency, coupled with host factors, like gene expression of key molecules involved in the immune response or in the protection against disease, are among crucial factors to study. This review revisits recent data on factors that may contribute to the asymptomatic outcome of the world's widespread DENV, highlighting the importance of silent infections in the transmission of this pathogen and the immune status of the host.
Collapse
Affiliation(s)
- Paulo Henriques
- Projecto Medicina, Faculdade de Ciências da Vida, Universidade da Madeira, Funchal, Portugal
| | - Alexandra Rosa
- Projecto Medicina, Faculdade de Ciências da Vida, Universidade da Madeira, Funchal, Portugal
| | - Helena Caldeira-Araújo
- Projecto Medicina, Faculdade de Ciências da Vida, Universidade da Madeira, Funchal, Portugal
- CQM-Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | - Pedro Soares
- Department of Biology, CBMA (Centre of Molecular and Environmental Biology), Braga, Portugal
- Department of Biology, Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Braga, Portugal
| | - Ana Margarida Vigário
- Projecto Medicina, Faculdade de Ciências da Vida, Universidade da Madeira, Funchal, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
6
|
Wang Q, Yang J, Li X, Wang W, Wu Y, Li Z, Huang X. HSPA13 modulates type I interferon antiviral pathway and NLRP3 inflammasome to restrict dengue virus infection in macrophages. Int Immunopharmacol 2023; 124:110988. [PMID: 37776769 DOI: 10.1016/j.intimp.2023.110988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/12/2023] [Accepted: 09/22/2023] [Indexed: 10/02/2023]
Abstract
Dengue virus (DENV) is a type of arthropod-borne Flavivirus, which leads to a series of serious diseases like dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). DENV has a devastating health and economic impact worldwide. However, there are no suitable drugs to combat the virus. Here we reported that HSPA13, also known as stress chaperone (STCH), is a member of the HSP70 family and is a key regulator of type I interferon (IFN-I) and pro-inflammatory responses during DENV infection. HSPA13 expression was increased in macrophages infected with DENV or other Flaviviruses like Zika virus (ZIKV), Yellow fever virus (YFV) and Japanese encephalitis virus (JEV). Further, HSPA13 suppressed the replication of DENV and other Flaviviruses (ZIKV, JEV, YFV), which exhibited broad-spectrum antiviral effects. On the one hand, HSPA13 promoted production of IFN-β and interferon-stimulated genes (ISGs, such as ISG15, OAS and IFIT3) by interacting with RIG-I and up-regulating RIG-I expression during DENV infection. On the other hand, HSPA13 enhanced NLRP3 inflammasome activation and IL-1β secretion by interacting with ASC in DENV infection. We identified HSPA13 as a potential anti-DENV target. Our results provide clues for the development of antiviral drugs against DENV based on HSPA13 and reveal novel drug target against Flaviviruses.
Collapse
Affiliation(s)
- Qiaohua Wang
- Foshan Fourth People's Hospital, Foshan, China; Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Jingwen Yang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Xingyu Li
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Wei Wang
- Foshan Fourth People's Hospital, Foshan, China
| | - Yongjian Wu
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Zhijian Li
- Foshan Fourth People's Hospital, Foshan, China.
| | - Xi Huang
- Foshan Fourth People's Hospital, Foshan, China; Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China; The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China.
| |
Collapse
|
7
|
Nemirov K, Authié P, Souque P, Moncoq F, Noirat A, Blanc C, Bourgine M, Majlessi L, Charneau P. Preclinical proof of concept of a tetravalent lentiviral T-cell vaccine against dengue viruses. Front Immunol 2023; 14:1208041. [PMID: 37654495 PMCID: PMC10466046 DOI: 10.3389/fimmu.2023.1208041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/17/2023] [Indexed: 09/02/2023] Open
Abstract
Dengue virus (DENV) is responsible for approximately 100 million cases of dengue fever annually, including severe forms such as hemorrhagic dengue and dengue shock syndrome. Despite intensive vaccine research and development spanning several decades, a universally accepted and approved vaccine against dengue fever has not yet been developed. The major challenge associated with the development of such a vaccine is that it should induce simultaneous and equal protection against the four DENV serotypes, because past infection with one serotype may greatly increase the severity of secondary infection with a distinct serotype, a phenomenon known as antibody-dependent enhancement (ADE). Using a lentiviral vector platform that is particularly suitable for the induction of cellular immune responses, we designed a tetravalent T-cell vaccine candidate against DENV ("LV-DEN"). This vaccine candidate has a strong CD8+ T-cell immunogenicity against the targeted non-structural DENV proteins, without inducing antibody response against surface antigens. Evaluation of its protective potential in the preclinical flavivirus infection model, i.e., mice knockout for the receptor to the type I IFN, demonstrated its significant protective effect against four distinct DENV serotypes, based on reduced weight loss, viremia, and viral loads in peripheral organs of the challenged mice. These results provide proof of concept for the use of lentiviral vectors for the development of efficient polyvalent T-cell vaccine candidates against all DENV serotypes.
Collapse
Affiliation(s)
- Kirill Nemirov
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université de Paris, Virology Department, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Yamin R, Kao KS, MacDonald MR, Cantaert T, Rice CM, Ravetch JV, Bournazos S. Human FcγRIIIa activation on splenic macrophages drives dengue pathogenesis in mice. Nat Microbiol 2023; 8:1468-1479. [PMID: 37429907 PMCID: PMC10753935 DOI: 10.1038/s41564-023-01421-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 06/01/2023] [Indexed: 07/12/2023]
Abstract
Although dengue virus (DENV) infection typically causes asymptomatic disease, DENV-infected patients can experience severe complications. A risk factor for symptomatic disease is pre-existing anti-DENV IgG antibodies. Cellular assays suggested that these antibodies can enhance viral infection of Fcγ receptor (FcγR)-expressing myeloid cells. Recent studies, however, revealed more complex interactions between anti-DENV antibodies and specific FcγRs by demonstrating that modulation of the IgG Fc glycan correlates with disease severity. To investigate the in vivo mechanisms of antibody-mediated dengue pathogenesis, we developed a mouse model for dengue disease that recapitulates the unique complexity of human FcγRs. In in vivo mouse models of dengue disease, we discovered that the pathogenic activity of anti-DENV antibodies is exclusively mediated through engagement of FcγRIIIa on splenic macrophages, resulting in inflammatory sequelae and mortality. These findings highlight the importance of IgG-FcγRIIIa interactions in dengue, with important implications for the design of safer vaccination approaches and effective therapeutic strategies.
Collapse
Affiliation(s)
- Rachel Yamin
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY, USA
| | - Kevin S Kao
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY, USA
| | - Margaret R MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Tineke Cantaert
- Immunology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Jeffrey V Ravetch
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY, USA.
| | - Stylianos Bournazos
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
9
|
Nainggolan L, Dewi BE, Hakiki A, Pranata AJ, Sudiro TM, Martina B, van Gorp E. Association of viral kinetics, infection history, NS1 protein with plasma leakage among Indonesian dengue infected patients. PLoS One 2023; 18:e0285087. [PMID: 37130105 PMCID: PMC10153689 DOI: 10.1371/journal.pone.0285087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 04/14/2023] [Indexed: 05/03/2023] Open
Abstract
OBJECTIVES Plasma leakage, a hallmark of disease in Dengue virus (DENV) infection, is an important clinical manifestation and is often associated with numerous factors such as viral factors. The aim of this study is to investigate the association of virus serotype, viral load kinetics, history of infection, and NS1 protein with plasma leakage. METHODS Subjects with fever ≤ 48 hours and positive DENV infection were included. Serial laboratory tests, viral load measurements, and ultrasonography examination to assess plasma leakage were performed. RESULTS DENV-3 was the most common serotype found in the plasma leakage group (35%). Patients with plasma leakage demonstrated a trend of higher viral load and a longer duration of viremia compared to those without. This was significantly observed on the fourth day of fever (p = 0.037). We found higher viral loads on specific days in patients with plasma leakage in both primary and secondary infections compared to those without. In addition, we also observed more rapid viral clearance in patients with secondary infection. NS1 protein, especially after 4 days of fever, was associated with higher peak viral load level, even though it was not statistically significant (p = 0.470). However, pairwise comparison demonstrated that peak viral load level in the group of patients with circulating NS1 detected for 7 days was significantly higher than the 5-day group (p = 0.037). CONCLUSION DENV-3 was the most common serotype to cause plasma leakage. Patients with plasma leakage showed a trend of higher viral load and a longer duration of viremia. Higher level of viral load was observed significantly on day 5 in patients with primary infection and more rapid viral clearance was observed in patients with secondary infection. Longer duration of circulating NS1 protein was also seen to be positively correlated with higher peak viral load level although not statistically significant.
Collapse
Affiliation(s)
- Leonard Nainggolan
- Division of Tropical and Infectious Disease, Department of Internal Medicine, Cipto Mangunkusumo Hospital, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Beti Ernawati Dewi
- Department of Microbiology, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Arif Hakiki
- Division of Tropical and Infectious Disease, Department of Internal Medicine, Cipto Mangunkusumo Hospital, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Antony Joseph Pranata
- Department of Microbiology, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | | | - Byron Martina
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Eric van Gorp
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
10
|
Hou J, Ye W, Chen J. Current Development and Challenges of Tetravalent Live-Attenuated Dengue Vaccines. Front Immunol 2022; 13:840104. [PMID: 35281026 PMCID: PMC8907379 DOI: 10.3389/fimmu.2022.840104] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/03/2022] [Indexed: 01/26/2023] Open
Abstract
Dengue is the most common arboviral disease caused by one of four distinct but closely related dengue viruses (DENV) and places significant economic and public health burdens in the endemic areas. A dengue vaccine will be important in advancing disease control. However, the effort has been challenged by the requirement to induce effective protection against all four DENV serotypes and the potential adverse effect due to the phenomenon that partial immunity to DENV may worsen the symptoms upon subsequent heterotypic infection. Currently, the most advanced dengue vaccines are all tetravalent and based on recombinant live attenuated viruses. CYD-TDV, developed by Sanofi Pasteur, has been approved but is limited for use in individuals with prior dengue infection. Two other tetravalent live attenuated vaccine candidates: TAK-003 by Takeda and TV003 by National Institute of Allergy and Infectious Diseases, have completed phase 3 and phase 2 clinical trials, respectively. This review focuses on the designs and evaluation of TAK-003 and TV003 vaccine candidates in humans in comparison to the licensed CYD-TDV vaccine. We highlight specific lessons from existing studies and challenges that must be overcome in order to develop a dengue vaccine that confers effective and balanced protection against all four DENV serotypes but with minimal adverse effects.
Collapse
Affiliation(s)
- Jue Hou
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), Singapore, Singapore
| | - Weijian Ye
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), Singapore, Singapore
| | - Jianzhu Chen
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), Singapore, Singapore.,Department of Biology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
11
|
Mammalian animal models for dengue virus infection: a recent overview. Arch Virol 2021; 167:31-44. [PMID: 34761286 PMCID: PMC8579898 DOI: 10.1007/s00705-021-05298-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/26/2021] [Indexed: 02/07/2023]
Abstract
Dengue, a rapidly spreading mosquito-borne human viral disease caused by dengue virus (DENV), is a public health concern in tropical and subtropical areas due to its expanding geographical range. DENV can cause a wide spectrum of illnesses in humans, ranging from asymptomatic infection or mild dengue fever (DF) to life-threatening dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Dengue is caused by four DENV serotypes; however, dengue pathogenesis is complex and poorly understood. Establishing a useful animal model that can exhibit dengue-fever-like signs similar to those in humans is essential to improve our understanding of the host response and pathogenesis of DENV. Although several animal models, including mouse models, non-human primate models, and a recently reported tree shrew model, have been investigated for DENV infection, animal models with clinical signs that are similar to those of DF in humans have not yet been established. Although animal models are essential for understanding the pathogenesis of DENV infection and for drug and vaccine development, each animal model has its own strengths and limitations. Therefore, in this review, we provide a recent overview of animal models for DENV infection and pathogenesis, focusing on studies of the antibody-dependent enhancement (ADE) effect in animal models.
Collapse
|
12
|
Morphological Aspects and Viremia Analysis of BALB/c Murine Model Experimentally Infected with Dengue Virus Serotype 4. Viruses 2021; 13:v13101954. [PMID: 34696384 PMCID: PMC8538460 DOI: 10.3390/v13101954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/17/2021] [Accepted: 09/24/2021] [Indexed: 11/17/2022] Open
Abstract
Ever since its brief introduction in the Brazilian territory in 1981, dengue virus serotype 4 (DENV-4) remained absent from the national epidemiological scenario for almost 25 years. The emergence of DENV-4 in 2010 resulted in epidemics in most Brazilian states. DENV-4, however, remains one of the least studied among the four DENV serotypes. Despite being known as a mild serotype, DENV-4 is associated with severe cases and deaths and deserves to be investigated; however, the lack of suitable experimental animal models is a limiting factor for pathogenesis studies. Here, we aimed to investigate the susceptibility and potential tropism of DENV-4 for liver, lung and heart of an immunocompetent mice model, and to evaluate and investigate the resulting morphological and ultrastructural alterations upon viral infection. BALB/c mice were inoculated intravenously with non-neuroadapted doses of DENV-4 isolated from a human case. The histopathological analysis of liver revealed typical alterations of DENV, such as microsteatosis, edema and vascular congestion, while in lung, widespread areas of hemorrhage and interstitial pneumonia were observed. While milder alterations were present in heart, characterized by limited hemorrhage and discrete presence of inflammatory infiltrate, the disorganization of the structure of the intercalated disc is of particular interest. DENV-4 RNA was detected in liver, lung, heart and serum of BALB/c mice through qRT-PCR, while the NS3 viral protein was observed in all of the aforementioned organs through immunohistochemistry. These findings indicate the susceptibility of the model to the serotype and further reinforce the usefulness of BALB/c mice in studying the many alterations caused by DENV.
Collapse
|
13
|
Cavazzoni CB, Bozza VB, Lucas TC, Conde L, Maia B, Mesin L, Schiepers A, Ersching J, Neris RL, Conde JN, Coelho DR, Lima TM, Alvim RG, Castilho LR, de Paula Neto HA, Mohana-Borges R, Assunção-Miranda I, Nobrega A, Victora GD, Vale AM. The immunodominant antibody response to Zika virus NS1 protein is characterized by cross-reactivity to self. J Exp Med 2021; 218:e20210580. [PMID: 34292314 PMCID: PMC8302445 DOI: 10.1084/jem.20210580] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/24/2021] [Accepted: 06/30/2021] [Indexed: 12/20/2022] Open
Abstract
Besides antigen-specific responses to viral antigens, humoral immune response in virus infection can generate polyreactive and autoreactive antibodies. Dengue and Zika virus infections have been linked to antibody-mediated autoimmune disorders, including Guillain-Barré syndrome. A unique feature of flaviviruses is the secretion of nonstructural protein 1 (NS1) by infected cells. NS1 is highly immunogenic, and antibodies targeting NS1 can have both protective and pathogenic roles. In the present study, we investigated the humoral immune response to Zika virus NS1 and found NS1 to be an immunodominant viral antigen associated with the presence of autoreactive antibodies. Through single B cell cultures, we coupled binding assays and BCR sequencing, confirming the immunodominance of NS1. We demonstrate the presence of self-reactive clones in germinal centers after both infection and immunization, some of which present cross-reactivity with NS1. Sequence analysis of anti-NS1 B cell clones showed sequence features associated with pathogenic autoreactive antibodies. Our findings demonstrate NS1 immunodominance at the cellular level as well as a potential role for NS1 in ZIKV-associated autoimmune manifestations.
Collapse
Affiliation(s)
- Cecilia B. Cavazzoni
- Laboratório de Biologia de Linfócitos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY
| | - Vicente B.T. Bozza
- Laboratório de Biologia de Linfócitos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tostes C.V. Lucas
- Laboratório de Biologia de Linfócitos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana Conde
- Laboratório de Biologia de Linfócitos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno Maia
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luka Mesin
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY
| | - Ariën Schiepers
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY
| | - Jonatan Ersching
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY
| | - Romulo L.S. Neris
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jonas N. Conde
- Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diego R. Coelho
- Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tulio M. Lima
- Programa de Engenharia Química, Laboratório de Engenharia de Cultivos Celulares, Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renata G.F. Alvim
- Programa de Engenharia Química, Laboratório de Engenharia de Cultivos Celulares, Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leda R. Castilho
- Programa de Engenharia Química, Laboratório de Engenharia de Cultivos Celulares, Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Heitor A. de Paula Neto
- Laboratório de Alvos Moleculares, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ronaldo Mohana-Borges
- Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Iranaia Assunção-Miranda
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alberto Nobrega
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriel D. Victora
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY
| | - Andre M. Vale
- Laboratório de Biologia de Linfócitos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Calderón A, Guzmán C, Oviedo-Socarras T, Mattar S, Rodríguez V, Castañeda V, Moraes Figueiredo LT. Two Cases of Natural Infection of Dengue-2 Virus in Bats in the Colombian Caribbean. Trop Med Infect Dis 2021; 6:tropicalmed6010035. [PMID: 33809400 PMCID: PMC8005977 DOI: 10.3390/tropicalmed6010035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 11/16/2022] Open
Abstract
Dengue, a mosquito-borne zoonotic disease, is the most common vector-borne disease in tropical and subtropical areas. In this study, we aim to demonstrate biological evidence of dengue virus infection in bats. A cross-sectional study was carried out in the departments of Cordoba and Sucre, Colombia. A total of 286 bats were captured following the ethical protocols of animal experimentation. The specimens were identified and euthanized using a pharmacological treatment with atropine, acepromazine and sodium pentobarbital. Duplicate samples of brain, heart, lung, spleen, liver, and kidney were collected with one set stored in Trizol and the other stored in 10% buffered formalin for histopathological and immunohistochemical analysis using polyclonal antibodies. Brain samples from lactating mice with an intracranial inoculation of DENV-2 were used as a positive control. As a negative control, lactating mouse brains without inoculation and bats brains negative for RT-PCR were included. Tissue sections from each specimen of bat without conjugate were used as staining control. In a specimen of Carollia perspicillata captured in Ayapel (Cordoba) and Phylostomus discolor captured in San Carlos (Cordoba), dengue virus was detected, and sequences were matched to DENV serotype 2. In bats RT-PCR positive for dengue, lesions compatible with viral infections, and the presence of antigens in tissues were observed. Molecular findings, pathological lesions, and detection of antigens in tissues could demonstrate viral DENV-2 replication and may correspond to natural infection in bats. Additional studies are needed to elucidate the exact role of these species in dengue epidemics.
Collapse
Affiliation(s)
- Alfonso Calderón
- Faculty of Veterinary Medicine and Animal Production Husbandry, Institute for Biological Research in the Tropics (IIBT), University of Cordoba, Monteria 230002, Cordoba, Colombia;
| | - Camilo Guzmán
- Department of Pharmacy, Faculty of Health Sciences, Institute for Biological Research in the Tropics (IIBT), University of Cordoba, Monteria 230002, Cordoba, Colombia;
| | - Teresa Oviedo-Socarras
- Research Group on Tropical Animal Production (GIPAT), Faculty of Veterinary Medicine and Animal Production Husbandry, University of Cordoba, Monteria 230002, Cordoba, Colombia;
| | - Salim Mattar
- Faculty of Veterinary Medicine and Animal Production Husbandry, Institute for Biological Research in the Tropics (IIBT), University of Cordoba, Monteria 230002, Cordoba, Colombia;
- Correspondence: or
| | - Virginia Rodríguez
- Bacteriological Program, Microbiological and Biomedical Research Group of Cordoba (GIMBIC), Faculty of Health Sciences, University of Cordoba, Monteria 230002, Cordoba, Colombia;
| | - Víctor Castañeda
- Veterinary Diagnostic Laboratories Network, Colombian Agricultural Institute, Cerete 230550, Cordoba, Colombia;
| | | |
Collapse
|
15
|
Lee PX, Ting DHR, Boey CPH, Tan ETX, Chia JZH, Idris F, Oo Y, Ong LC, Chua YL, Hapuarachchi C, Ng LC, Alonso S. Relative contribution of nonstructural protein 1 in dengue pathogenesis. J Exp Med 2021; 217:151891. [PMID: 32584412 PMCID: PMC7478733 DOI: 10.1084/jem.20191548] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 04/10/2020] [Accepted: 05/13/2020] [Indexed: 12/16/2022] Open
Abstract
Dengue is a major public health concern in the tropical and subtropical world, with no effective treatment. The controversial live attenuated virus vaccine Dengvaxia has boosted the pursuit of subunit vaccine approaches, and nonstructural protein 1 (NS1) has recently emerged as a promising candidate. However, we found that NS1 immunization or passive transfer of NS1 antibodies failed to confer protection in symptomatic dengue mouse models using two non–mouse-adapted DENV2 strains that are highly virulent. Exogenous administration of purified NS1 also failed to worsen in vivo vascular leakage in sublethally infected mice. Neither method of NS1 immune neutralization changed the disease outcome of a chimeric strain expressing a vascular leak-potent NS1. Instead, virus chimerization involving the prME structural region indicated that these proteins play a critical role in driving in vivo fitness and virulence of the virus, through induction of key proinflammatory cytokines. This work highlights that the pathogenic role of NS1 is DENV strain dependent, which warrants reevaluation of NS1 as a universal dengue vaccine candidate.
Collapse
Affiliation(s)
- Pei Xuan Lee
- Infectious Disease Programme and Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Donald Heng Rong Ting
- Infectious Disease Programme and Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Clement Peng Hee Boey
- Infectious Disease Programme and Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Eunice Tze Xin Tan
- Infectious Disease Programme and Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Janice Zuo Hui Chia
- Infectious Disease Programme and Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Fakhriedzwan Idris
- Infectious Disease Programme and Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Yukei Oo
- Infectious Disease Programme and Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Li Ching Ong
- Infectious Disease Programme and Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Yen Leong Chua
- Infectious Disease Programme and Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Lee Ching Ng
- Environmental Health Institute at National Environment Agency, Singapore
| | - Sylvie Alonso
- Infectious Disease Programme and Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| |
Collapse
|
16
|
King CA, Wegman AD, Endy TP. Mobilization and Activation of the Innate Immune Response to Dengue Virus. Front Cell Infect Microbiol 2020; 10:574417. [PMID: 33224897 PMCID: PMC7670994 DOI: 10.3389/fcimb.2020.574417] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/28/2020] [Indexed: 12/17/2022] Open
Abstract
Dengue virus is an important human pathogen, infecting an estimated 400 million individuals per year and causing symptomatic disease in a subset of approximately 100 million. Much of the effort to date describing the host response to dengue has focused on the adaptive immune response, in part because of the well-established roles of antibody-dependent enhancement and T cell original sin as drivers of severe dengue upon heterotypic secondary infection. However, the innate immune system is a crucial factor in the host response to dengue, as it both governs the fate and vigor of the adaptive immune response, and mediates the acute inflammatory response in tissues. In this review, we discuss the innate inflammatory response to dengue infection, focusing on the role of evolutionarily conserved innate immune cells, their effector functions, and clinical course.
Collapse
Affiliation(s)
- Christine A. King
- Department of Microbiology and Immunology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | | | | |
Collapse
|
17
|
Alves RPDS, Andreata-Santos R, de Freitas CL, Pereira LR, Fabris-Maeda DLN, Rodrigues-Jesus MJ, Pereira SS, Carvalho AAVB, Sales NS, Peron JPS, Amorim JH, Ferreira LCDS. Protective Immunity to Dengue Virus Induced by DNA Vaccines Encoding Nonstructural Proteins in a Lethal Challenge Immunocompetent Mouse Model. FRONTIERS IN MEDICAL TECHNOLOGY 2020; 2:558984. [PMID: 35047876 PMCID: PMC8757693 DOI: 10.3389/fmedt.2020.558984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/30/2020] [Indexed: 11/29/2022] Open
Abstract
Dengue virus represents the main arbovirus affecting humans, but there are no effective drugs or available worldwide licensed vaccine formulations capable of conferring full protection against the infection. Experimental studies and results generated after the release of the licensed anti-DENV vaccine demonstrated that induction of high-titer neutralizing antibodies does not represent the sole protection correlate and that, indeed, T cell-based immune responses plays a relevant role in the establishment of an immune protective state. In this context, this study aimed to further demonstrate protective features of immune responses elicited in immunocompetent C57BL/6 mice immunized with three plasmids encoding DENV2 nonstructural proteins (NS1, NS3, and NS5), which were subsequently challenged with a DENV2 strain naturally capable of inducing lethal encephalitis in immunocompetent mouse strains. The animals were immunized intramuscularly with the DNA vaccine mix and complete protection was observed among vaccinated mice. Vaccine induced protection correlated with the cytokine profiles expressed by spleen cells and brain-infiltrating mononuclear cells. The results confirm the pivotal role of cellular immune responses targeting nonstructural DENV proteins and validate the experimental model based on a DENV2 strain capable of infecting and killing immunocompetent mice as a tool for the evaluation of protective immunity induced by anti-DENV vaccines.
Collapse
Affiliation(s)
- Rúbens Prince dos Santos Alves
- Laboratório de Desenvolvimento de Vacinas, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Robert Andreata-Santos
- Laboratório de Desenvolvimento de Vacinas, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Carla Longo de Freitas
- Laboratório de Interações Neuroimunes, Departamento de Imunologia, Universidade de São Paulo, São Paulo, Brazil
| | - Lennon Ramos Pereira
- Laboratório de Desenvolvimento de Vacinas, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Denicar Lina Nascimento Fabris-Maeda
- Laboratório de Desenvolvimento de Vacinas, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Mônica Josiane Rodrigues-Jesus
- Laboratório de Desenvolvimento de Vacinas, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Samuel Santos Pereira
- Laboratório de Desenvolvimento de Vacinas, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | | | - Natiely Silva Sales
- Laboratório de Desenvolvimento de Vacinas, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | | | - Jaime Henrique Amorim
- Laboratório de Microbiologia, Centro das Ciências Biológicas e da Saúde, Universidade Federal Do Oeste da Bahia, Barreiras, Brazil
| | - Luís Carlos de Souza Ferreira
- Laboratório de Desenvolvimento de Vacinas, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
- *Correspondence: Luís Carlos de Souza Ferreira
| |
Collapse
|
18
|
Sarathy VV, Walker DH. Ideal Criteria for Accurate Mouse Models of Vector-Borne Diseases with Emphasis on Scrub Typhus and Dengue. Am J Trop Med Hyg 2020; 103:970-975. [PMID: 32602433 PMCID: PMC7470543 DOI: 10.4269/ajtmh.19-0955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 06/05/2020] [Indexed: 11/07/2022] Open
Abstract
Nine criteria regarding the infectious agent, mode of transmission, portal of entry, route of spread, target organs, target cells, pathologic lesions, incubation period, and modifiable spectrum of disease and outcomes appropriate to the intended experimental purpose are described. To provide context for each criterion, mouse models of two vector-borne zoonotic infectious diseases, scrub typhus and dengue, are summarized. Application of the criteria indicates that intravenous inoculation of Orientia tsutsugamushi into inbred mice is the best current model for life-threatening scrub typhus, and intradermal inoculation accurately models sublethal human scrub typhus, whereas the immunocompromised mouse models of dengue provide disease outcomes most closely associated with human dengue. In addition to addressing basic questions of immune and pathogenic mechanisms, mouse models are useful for preclinical testing of experimental vaccines and therapeutics. The nine criteria serve as guidelines to evaluate and compare models of vector-borne infectious diseases.
Collapse
Affiliation(s)
- Vanessa V. Sarathy
- Department of Pathology, Sealy Institute for Vaccine Sciences, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas
| | - David H. Walker
- Department of Pathology, Sealy Institute for Vaccine Sciences, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
19
|
Non-Human Primate Models of Dengue Virus Infection: A Comparison of Viremia Levels and Antibody Responses during Primary and Secondary Infection among Old World and New World Monkeys. Pathogens 2020; 9:pathogens9040247. [PMID: 32230836 PMCID: PMC7238212 DOI: 10.3390/pathogens9040247] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 12/16/2022] Open
Abstract
Due to the global burden of dengue disease, a vaccine is urgently needed. One of the key points in vaccine development is the development of a robust and reliable animal model of dengue virus infection. Characteristics including the ability to sustain viral replication, demonstration of clinical signs, and immune response that resemble those of human dengue virus infection are vital in animal models. Preclinical studies in vaccine development usually include parameters such as safety evaluation, induction of viremia and antigenemia, immunogenicity, and vaccine effectiveness. Although mice have been used as a model, non-human primates have an advantage over mice because of their relative similarity to humans in their genetic composition and immune responses. This review compares the viremia kinetics and antibody responses of cynomolgus macaques (Macaca fasicularis), common marmosets (Callithrix jacchus), and tamarins (Saguinus midas and Saguinus labitus) and summarize the perspectives and the usefulness along with challenges in dengue vaccine development.
Collapse
|
20
|
In-depth characterization of a novel live-attenuated Mayaro virus vaccine candidate using an immunocompetent mouse model of Mayaro disease. Sci Rep 2020; 10:5306. [PMID: 32210270 PMCID: PMC7093544 DOI: 10.1038/s41598-020-62084-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/24/2020] [Indexed: 02/06/2023] Open
Abstract
Mayaro virus (MAYV) is endemic in South American countries where it is responsible for sporadic outbreaks of acute febrile illness. The hallmark of MAYV infection is a highly debilitating and chronic arthralgia. Although MAYV emergence is a potential threat, there are no specific therapies or licensed vaccine. In this study, we developed a murine model of MAYV infection that emulates many of the most relevant clinical features of the infection in humans and tested a live-attenuated MAYV vaccine candidate (MAYV/IRES). Intraplantar inoculation of a WT strain of MAYV into immunocompetent mice induced persistent hypernociception, transient viral replication in target organs, systemic production of inflammatory cytokines, chemokines and specific humoral IgM and IgG responses. Inoculation of MAYV/IRES in BALB/c mice induced strong specific cellular and humoral responses. Moreover, MAYV/IRES vaccination of immunocompetent and interferon receptor-defective mice resulted in protection from disease induced by the virulent wt MAYV strain. Thus, this study describes a novel model of MAYV infection in immunocompetent mice and highlights the potential role of a live-attenuated MAYV vaccine candidate in host's protection from disease induced by a virulent MAYV strain.
Collapse
|
21
|
Deng SQ, Yang X, Wei Y, Chen JT, Wang XJ, Peng HJ. A Review on Dengue Vaccine Development. Vaccines (Basel) 2020; 8:E63. [PMID: 32024238 PMCID: PMC7159032 DOI: 10.3390/vaccines8010063] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/11/2022] Open
Abstract
Dengue virus (DENV) has become a global health threat with about half of the world's population at risk of infection. Although the disease caused by DENV is self-limiting in the first infection, the antibody-dependent enhancement (ADE) effect increases the mortality in the second infection with a heterotypic virus. Since there is no specific efficient medicine in treatment, it is urgent to develop vaccines to prevent infection and disease progression. Currently, only a live attenuated vaccine, chimeric yellow fever 17D-tetravalent dengue vaccine (CYD-TDV), has been licensed for clinical use in some countries, and many candidate vaccines are still under research and development. This review discusses the progress, strengths, and weaknesses of the five types of vaccines including live attenuated vaccine, inactivated virus vaccine, recombinant subunit vaccine, viral vectored vaccine, and DNA vaccine.
Collapse
Affiliation(s)
- Sheng-Qun Deng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China; (S.-Q.D.); (X.Y.); (Y.W.); (J.-T.C.)
| | - Xian Yang
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China; (S.-Q.D.); (X.Y.); (Y.W.); (J.-T.C.)
| | - Yong Wei
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China; (S.-Q.D.); (X.Y.); (Y.W.); (J.-T.C.)
| | - Jia-Ting Chen
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China; (S.-Q.D.); (X.Y.); (Y.W.); (J.-T.C.)
| | - Xiao-Jun Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Guangdong Medical University, Dongguan 523808, China;
| | - Hong-Juan Peng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China; (S.-Q.D.); (X.Y.); (Y.W.); (J.-T.C.)
| |
Collapse
|
22
|
Zahid K, Shakoor S, Sajid HA, Afzal S, Ali L, Amin I, Shahid M, Idrees M. Advancements in developing an effective and preventive dengue vaccine. Future Virol 2020. [DOI: 10.2217/fvl-2019-0080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Every year millions of people in various tropical and subtropical regions encounter infection with dengue virus. Within the last few decades, its prevalence has increased up to 30-fold globally and presently these viruses have been transmitted in more than 100 countries. Scientists contributed to the development of tetravalent dengue vaccine by adopting numerous approaches including live vaccine, recombinant protein vaccine, DNA vaccine and virus-vectored vaccines. A vaccine should be genetically stable, equally effective against all serotypes, must be in-expensive and commercially available. Chimeric yellow fever virus-tetravalent dengue vaccine (CYD-TDV) is the first licensed vaccine developed by Sanofi Pasteur in December 2015, but this vaccine is not fully effective against different dengue virus serotypes (Sanofi Pasteur, Lyon, France). This review explores the advancements and challenges involved in the development of dengue vaccine.
Collapse
Affiliation(s)
- Khadija Zahid
- Division of Molecular Virology & Infectious Diseases, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Sana Shakoor
- Division of Molecular Virology & Infectious Diseases, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Hina Afzal Sajid
- Division of Molecular Virology & Infectious Diseases, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Samia Afzal
- Division of Molecular Virology & Infectious Diseases, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Liaqat Ali
- Department of Biological Sciences, National University of Modern Sciences, Rawalpindi, Pakistan
| | - Iram Amin
- Division of Molecular Virology & Infectious Diseases, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Muhammad Shahid
- Division of Molecular Virology & Infectious Diseases, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Muhammad Idrees
- Division of Molecular Virology & Infectious Diseases, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| |
Collapse
|
23
|
Humanized Mice in Dengue Research: A Comparison with Other Mouse Models. Vaccines (Basel) 2020; 8:vaccines8010039. [PMID: 31979145 PMCID: PMC7157640 DOI: 10.3390/vaccines8010039] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/10/2020] [Accepted: 01/16/2020] [Indexed: 02/07/2023] Open
Abstract
Dengue virus (DENV) is an arbovirus of the Flaviviridae family and is an enveloped virion containing a positive sense single-stranded RNA genome. DENV causes dengue fever (DF) which is characterized by an undifferentiated syndrome accompanied by fever, fatigue, dizziness, muscle aches, and in severe cases, patients can deteriorate and develop life-threatening vascular leakage, bleeding, and multi-organ failure. DF is the most prevalent mosquito-borne disease affecting more than 390 million people per year with a mortality rate close to 1% in the general population but especially high among children. There is no specific treatment and there is only one licensed vaccine with restricted application. Clinical and experimental evidence advocate the role of the humoral and T-cell responses in protection against DF, as well as a role in the disease pathogenesis. A lot of pro-inflammatory factors induced during the infectious process are involved in increased severity in dengue disease. The advances in DF research have been hampered by the lack of an animal model that recreates all the characteristics of this disease. Experiments in nonhuman primates (NHP) had failed to reproduce all clinical signs of DF disease and during the past decade, humanized mouse models have demonstrated several benefits in the study of viral diseases affecting humans. In DENV studies, some of these models recapitulate specific signs of disease that are useful to test drugs or vaccine candidates. However, there is still a need for a more complete model mimicking the full spectrum of DENV. This review focuses on describing the advances in this area of research.
Collapse
|
24
|
Calderón-Peláez MA, Velandia-Romero ML, Bastidas-Legarda LY, Beltrán EO, Camacho-Ortega SJ, Castellanos JE. Dengue Virus Infection of Blood-Brain Barrier Cells: Consequences of Severe Disease. Front Microbiol 2019; 10:1435. [PMID: 31293558 PMCID: PMC6606788 DOI: 10.3389/fmicb.2019.01435] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 06/06/2019] [Indexed: 01/10/2023] Open
Abstract
More than 500 million people worldwide are infected each year by any of the four-dengue virus (DENV) serotypes. The clinical spectrum caused during these infections is wide and some patients may develop neurological alterations during or after the infection, which could be explained by the cryptic neurotropic and neurovirulent features of flaviviruses like DENV. Using in vivo and in vitro models, researchers have demonstrated that DENV can affect the cells from the blood-brain barrier (BBB) in several ways, which could result in brain tissue damage, neuronal loss, glial activation, tissue inflammation and hemorrhages. The latter suggests that BBB may be compromised during infection; however, it is not clear whether the damage is due to the infection per se or to the local and/or systemic inflammatory response established or activated by the BBB cells. Similarly, the kinetics and cascade of events that trigger tissue damage, and the cells that initiate it, are unknown. This review presents evidence of the BBB cell infection with DENV and the response established toward it by these cells; it also describes the consequences of this response on the nervous tissue, compares these evidence with the one reported with neurotropic viruses of the Flaviviridae family, and shows the complexity and unpredictability of dengue and the neurological alterations induced by it. Clinical evidence and in vitro and in vivo models suggest that this virus uses the bloodstream to enter nerve tissue where it infects the different cells of the neurovascular unit. Each of the cell populations respond individually and collectively and control infection and inflammation, in other cases this response exacerbates the damage leaving irreversible sequelae or causing death. This information will allow us to understand more about the complex disease known as dengue, and its impact on a specialized and delicate tissue like is the nervous tissue.
Collapse
|
25
|
Abdul Ahmad SA, Palanisamy UD, Khoo JJ, Dhanoa A, Syed Hassan S. Efficacy of geraniin on dengue virus type-2 infected BALB/c mice. Virol J 2019; 16:26. [PMID: 30813954 PMCID: PMC6391806 DOI: 10.1186/s12985-019-1127-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/12/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dengue continues to be a major international public health concern. Despite that, there is no clinically approved antiviral for treatment of dengue virus (DENV) infections. In this study, geraniin extracted from the rind of Nephelium lappaceum was shown to inhibit the replication of DENV-2 in both in vitro and in vivo experiments. METHODS The effect of geraniin on DENV-2 RNA synthesis in infected Vero cells was tested using quantitative RT-PCR. The in vivo efficacy of geraniin in inhibiting DENV-2 infection was then tested using BALB/c mice with geraniin administered at three different times. The differences in spleen to body weight ratio, DENV-2 RNA load and liver damage between the three treatment groups as compared to DENV-2 infected mice without geraniin administration were determined on day eight post-infection. RESULTS Quantitative RT-PCR confirmed the decrease in viral RNA synthesis of infected Vero cells when treated with geraniin. Geraniin seemed to provide a protective effect on infected BALB/c mice liver when given at 24 h pre- and 24 h post-infection as liver damage was observed to be very mild even though a significant reduction of DENV-2 RNA load in serum was not observed in these two treatment groups. However, when administered at 72 h post-infection, severe liver damage in the form of necrosis and haemorrhage had prevailed despite a substantial reduction of DENV-2 RNA load in serum. CONCLUSIONS Geraniin was found to be effective in reducing DENV-2 RNA load when administered at 72 h post-infection while earlier administration could prevent severe liver damage caused by DENV-2 infection. These results provide evidence that geraniin is a potential candidate for the development of anti-dengue drug.
Collapse
Affiliation(s)
- Siti Aisyah Abdul Ahmad
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Uma D Palanisamy
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Joon Joon Khoo
- Clinical School Johor Bahru, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 8, Jalan Masjid Abu Bakar, 80100, Johor Bahru, Johor, Malaysia
| | - Amreeta Dhanoa
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Sharifah Syed Hassan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia. .,Infectious Diseases and Health Cluster, Tropical Medicine and Biology Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
26
|
Identification of Differentially Expressed Genes in BALB/c Mouse Liver upon Primary Infection with DENV1 and Sequential Heterologous Infection with DENV2. Pathogens 2018; 7:pathogens7040078. [PMID: 30279404 PMCID: PMC6313771 DOI: 10.3390/pathogens7040078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 09/28/2018] [Accepted: 09/28/2018] [Indexed: 11/30/2022] Open
Abstract
Dengue virus (DENV) results in 100 million cases of infections and 22,000 deaths per year. Liver involvement, thrombocytopenia, haemorrhage and plasma leakage are characteristic manifestations of severe forms of DENV infection. However, the molecular pathways of DENV infection have not been comprehensively studied compared to the host immunological responses. We performed an in vivo study using the BALB/c mouse model with a modified mRNA differential display methodology (GeneFishingTM) using the annealing control primer (ACP) system to capture differentially expressed genes (DEGs) in mice liver upon primary infection with DENV1 and sequential heterologous infection with DENV2. Secondary heterologous infection with DENV2 was carried out at Immunoglobulin IgM and IgG peaks following the primary DENV1 infection with the hope of determining any potential effect antibodies IgM and IgG may have on sequential heterologous infection. 30 DEGs were identified and sequenced across all three treatment groups and they belong to a variety of important pathways such as apoptosis, innate immune response, inflammatory response, metabolic processes and oxidative stress. Analysis of differentially expressed genes in response to viral infection offers valuable knowledge about the dynamic and complex association between host cell and the virus. Furthermore, some DEGs identified support DENV induced liver damage.
Collapse
|
27
|
Watanabe S, Low JGH, Vasudevan SG. Preclinical Antiviral Testing for Dengue Virus Infection in Mouse Models and Its Association with Clinical Studies. ACS Infect Dis 2018; 4:1048-1057. [PMID: 29756760 DOI: 10.1021/acsinfecdis.8b00054] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
At present, there is no licensed antiviral drug against dengue virus (DENV) infection. Mouse models of DENV infection have been widely used for preclinical evaluation of antivirals. However, only in a few instances so far have the data obtained from preclinical mouse model testing been associated with data from clinical studies in humans. In this Review, we focus on the antiviral drugs targeting viral replication that have been tested in animals/humans and discuss how preclinical drug evaluation in suitable mouse/animal models may be more fruitfully used to inform early phase clinical testing.
Collapse
Affiliation(s)
- Satoru Watanabe
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857
| | - Jenny Guek-Hong Low
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857
- Department of Infectious Diseases, Singapore General Hospital, 20 College Road, Singapore 169856
| | - Subhash G. Vasudevan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857
| |
Collapse
|
28
|
Dengue Antiviral Development: A Continuing Journey. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1062:319-332. [PMID: 29845542 DOI: 10.1007/978-981-10-8727-1_22] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dengue fever is a leading cause of illness and mortality in the tropics and subtropics. There are no therapeutics currently available and a recently approved vaccine is not very efficacious demanding an urgent need to develop an effective antiviral. The path to successful dengue drug development depends on availability of relevant preclinical testing models and better understanding of dengue pathogenesis. In recent years, efforts to develop dengue therapeutics have focused on both repurposing approved drugs as well as discovery of new chemical entities that act via virus or host targeted mechanisms. Here, we discuss the various innovative approaches, their outcome, and the lessons gleaned from the development efforts.
Collapse
|
29
|
Miorin L, Maestre AM, Fernandez-Sesma A, García-Sastre A. Antagonism of type I interferon by flaviviruses. Biochem Biophys Res Commun 2017; 492:587-596. [PMID: 28576494 PMCID: PMC5626595 DOI: 10.1016/j.bbrc.2017.05.146] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/20/2017] [Accepted: 05/24/2017] [Indexed: 12/24/2022]
Abstract
The prompt and tightly controlled induction of type I interferon is a central event of the immune defense against viral infection. Flaviviruses comprise a large family of arthropod-borne positive-stranded RNA viruses, many of which represent a serious threat to global human health due to their high rates of morbidity and mortality. All flaviviruses studied so far have been shown to counteract the host's immune response to establish a productive infection and facilitate viral spread. Here, we review the current knowledge on the main strategies that human pathogenic flaviviruses utilize to escape both type I IFN induction and effector pathways. A better understanding of the specific mechanisms by which flaviviruses activate and evade innate immune responses is critical for the development of better therapeutics and vaccines.
Collapse
Affiliation(s)
- Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Ana M Maestre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Ana Fernandez-Sesma
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|
30
|
Transcriptional Profiling Confirms the Therapeutic Effects of Mast Cell Stabilization in a Dengue Disease Model. J Virol 2017; 91:JVI.00617-17. [PMID: 28659489 PMCID: PMC5571258 DOI: 10.1128/jvi.00617-17] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/22/2017] [Indexed: 12/28/2022] Open
Abstract
There are no approved therapeutics for the treatment of dengue disease despite the global prevalence of dengue virus (DENV) and its mosquito vectors. DENV infections can lead to vascular complications, hemorrhage, and shock due to the ability of DENV to infect a variety of immune and nonimmune cell populations. Increasingly, studies have implicated the host response as a major contributor to severe disease. Inflammatory products of various cell types, including responding T cells, mast cells (MCs), and infected monocytes, can contribute to immune pathology. In this study, we show that the host response to DENV infection in immunocompetent mice recapitulates transcriptional changes that have been described in human studies. We found that DENV infection strongly induced metabolic dysregulation, complement signaling, and inflammation. DENV also affected the immune cell content of the spleen and liver, enhancing NK, NKT, and CD8+ T cell activation. The MC-stabilizing drug ketotifen reversed many of these responses without suppressing memory T cell formation and induced additional changes in the transcriptome and immune cell composition of the spleen, consistent with reduced inflammation. This study provides a global transcriptional map of immune activation in DENV target organs of an immunocompetent host and supports the further development of targeted immunomodulatory strategies to treat DENV disease.IMPORTANCE Dengue virus (DENV), which causes febrile illness, is transmitted by mosquito vectors throughout tropical and subtropical regions of the world. Symptoms of DENV infection involve damage to blood vessels and, in rare cases, hemorrhage and shock. Currently, there are no targeted therapies to treat DENV infection, but it is thought that drugs that target the host immune response may be effective in limiting symptoms that result from excessive inflammation. In this study, we measured the host transcriptional response to infection in multiple DENV target organs using a mouse model of disease. We found that DENV infection induced metabolic dysregulation and inflammatory responses and affected the immune cell content of the spleen and liver. The use of the mast cell stabilization drug ketotifen reversed many of these responses and induced additional changes in the transcriptome and immune cell repertoire that contribute to decreased dengue disease.
Collapse
|
31
|
Valdés I, Marcos E, Suzarte E, Pérez Y, Brown E, Lazo L, Cobas K, Yaugel M, Rodríguez Y, Gil L, Guillén G, Hermida L. A dose-response study in mice of a tetravalent vaccine candidate composed of domain III-capsid proteins from dengue viruses. Arch Virol 2017; 162:2247-2256. [PMID: 28393307 DOI: 10.1007/s00705-017-3360-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/22/2017] [Indexed: 10/19/2022]
Abstract
Tetra DIIIC is a subunit vaccine candidate based on domain III of the envelope protein and the capsid protein of the four serotypes of dengue virus. This vaccine preparation contains the DIIIC proteins aggregated with a specific immunostimulatory oligodeoxynucleotide (ODN 39M). Tetra DIIIC has already been shown to be immunogenic and protective in mice and monkeys. In this study, we evaluated the immunogenicity in mice of several formulations of Tetra DIIIC containing different amounts of the recombinant proteins. The Tetra DIIIC formulation induced a humoral immune response against the four DENV serotypes, even at the lowest dose assayed. In contrast, the highest level of cell-mediated immunity, measured as frequency of IFNγ-producing cells, was detected in animals immunized with the lowest dose. The protective capacity of the tetravalent formulations was assessed using the mouse model of dengue virus encephalitis. Upon challenge, vaccinated mice showed significantly reduced virus replication in all tested groups. This study provides new information about the functionality of Tetra DIIIC as a vaccine candidate and also supports the crucial role of cell-mediated immunity in protection against dengue virus.
Collapse
Affiliation(s)
- Iris Valdés
- Vaccine Division, Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, P.O. Box 6162, 10 600, Havana 6, Cuba
| | - Ernesto Marcos
- Vaccine Division, Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, P.O. Box 6162, 10 600, Havana 6, Cuba
| | - Edith Suzarte
- Vaccine Division, Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, P.O. Box 6162, 10 600, Havana 6, Cuba
| | - Yusleidi Pérez
- Vaccine Division, Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, P.O. Box 6162, 10 600, Havana 6, Cuba
| | - Enma Brown
- Vaccine Division, Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, P.O. Box 6162, 10 600, Havana 6, Cuba
| | - Laura Lazo
- Vaccine Division, Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, P.O. Box 6162, 10 600, Havana 6, Cuba
| | - Karem Cobas
- Vaccine Division, Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, P.O. Box 6162, 10 600, Havana 6, Cuba
| | - Melyssa Yaugel
- Vaccine Division, Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, P.O. Box 6162, 10 600, Havana 6, Cuba
| | - Yadira Rodríguez
- Vaccine Division, Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, P.O. Box 6162, 10 600, Havana 6, Cuba
| | - Lázaro Gil
- Vaccine Division, Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, P.O. Box 6162, 10 600, Havana 6, Cuba.
| | - Gerardo Guillén
- Vaccine Division, Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, P.O. Box 6162, 10 600, Havana 6, Cuba
| | - Lisset Hermida
- Vaccine Division, Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, P.O. Box 6162, 10 600, Havana 6, Cuba.
| |
Collapse
|
32
|
Vahedi F, Giles EC, Ashkar AA. The Application of Humanized Mouse Models for the Study of Human Exclusive Viruses. Methods Mol Biol 2017; 1656:1-56. [PMID: 28808960 DOI: 10.1007/978-1-4939-7237-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
The symbiosis between humans and viruses has allowed human tropic pathogens to evolve intricate means of modulating the human immune response to ensure its survival among the human population. In doing so, these viruses have developed profound mechanisms that mesh closely with our human biology. The establishment of this intimate relationship has created a species-specific barrier to infection, restricting the virus-associated pathologies to humans. This specificity diminishes the utility of traditional animal models. Humanized mice offer a model unique to all other means of study, providing an in vivo platform for the careful examination of human tropic viruses and their interaction with human cells and tissues. These types of animal models have provided a reliable medium for the study of human-virus interactions, a relationship that could otherwise not be investigated without questionable relevance to humans.
Collapse
Affiliation(s)
- Fatemeh Vahedi
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Hamilton, ON, Canada, L8N 3Z5
- MG DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, Hamilton, ON, Canada, L8N 3Z5
| | - Elizabeth C Giles
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Hamilton, ON, Canada, L8N 3Z5
- MG DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, Hamilton, ON, Canada, L8N 3Z5
| | - Ali A Ashkar
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Hamilton, ON, Canada, L8N 3Z5.
- MG DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, Hamilton, ON, Canada, L8N 3Z5.
| |
Collapse
|
33
|
Gil L, Cobas K, Lazo L, Marcos E, Hernández L, Suzarte E, Izquierdo A, Valdés I, Blanco A, Puentes P, Romero Y, Pérez Y, Guzmán MG, Guillén G, Hermida L. A Tetravalent Formulation Based on Recombinant Nucleocapsid-like Particles from Dengue Viruses Induces a Functional Immune Response in Mice and Monkeys. THE JOURNAL OF IMMUNOLOGY 2016; 197:3597-3606. [PMID: 27683751 DOI: 10.4049/jimmunol.1600927] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/29/2016] [Indexed: 11/19/2022]
Abstract
Despite the considerable effort that has been invested in elucidating the mechanisms of protection and immunopathogenesis associated with dengue virus infections, a reliable correlate of protection against the disease remains to be found. Neutralizing Abs, long considered the prime component of a protective response, can exacerbate disease severity when present at subprotective levels, and a growing body of data is challenging the notion that their titers are positively correlated with disease protection. Consequently, the protective role of cell-mediated immunity in the control of dengue infections has begun to be studied. Although earlier research implicated cellular immunity in dengue immunopathogenesis, a wealth of newer data demonstrated that multifunctional CD8+ T cell responses are instrumental for avoiding the more severe manifestations of dengue disease. In this article, we describe a new tetravalent vaccine candidate based on recombinant dengue virus capsid proteins, efficiently produced in Escherichia coli and purified using a single ion-exchange chromatography step. After aggregation to form nucleocapsid-like particles upon incubation with an oligodeoxynucleotide containing immunostimulatory CpG motifs, these Ags induce, in mice and monkeys, an IFN-γ-secreting cell response that significantly reduces viral load after challenge without the contribution of antiviral Abs. Therefore, this new vaccine candidate may not carry the risk for disease enhancement associated with Ab-based formulations.
Collapse
Affiliation(s)
- Lázaro Gil
- Center for Genetic Engineering and Biotechnology, Havana 10 600, Cuba; and
| | - Karem Cobas
- Center for Genetic Engineering and Biotechnology, Havana 10 600, Cuba; and
| | - Laura Lazo
- Center for Genetic Engineering and Biotechnology, Havana 10 600, Cuba; and
| | - Ernesto Marcos
- Center for Genetic Engineering and Biotechnology, Havana 10 600, Cuba; and
| | - Laura Hernández
- Center for Genetic Engineering and Biotechnology, Havana 10 600, Cuba; and
| | - Edith Suzarte
- Center for Genetic Engineering and Biotechnology, Havana 10 600, Cuba; and
| | - Alienys Izquierdo
- Pan American Health Organization/World Health Organization Collaborating Center for the Study of Dengue and Its Vector, Department of Virology, Pedro Kourí Tropical Medicine Institute, Havana 17 100, Cuba
| | - Iris Valdés
- Center for Genetic Engineering and Biotechnology, Havana 10 600, Cuba; and
| | - Aracelys Blanco
- Center for Genetic Engineering and Biotechnology, Havana 10 600, Cuba; and
| | - Pedro Puentes
- Center for Genetic Engineering and Biotechnology, Havana 10 600, Cuba; and
| | - Yaremis Romero
- Center for Genetic Engineering and Biotechnology, Havana 10 600, Cuba; and
| | - Yusleidi Pérez
- Center for Genetic Engineering and Biotechnology, Havana 10 600, Cuba; and
| | - María G Guzmán
- Pan American Health Organization/World Health Organization Collaborating Center for the Study of Dengue and Its Vector, Department of Virology, Pedro Kourí Tropical Medicine Institute, Havana 17 100, Cuba
| | - Gerardo Guillén
- Center for Genetic Engineering and Biotechnology, Havana 10 600, Cuba; and
| | - Lisset Hermida
- Center for Genetic Engineering and Biotechnology, Havana 10 600, Cuba; and
| |
Collapse
|
34
|
Huang YL, Chen ST, Liu RS, Chen YH, Lin CY, Huang CH, Shu PY, Liao CL, Hsieh SL. CLEC5A is critical for dengue virus-induced osteoclast activation and bone homeostasis. J Mol Med (Berl) 2016; 94:1025-37. [PMID: 27033255 PMCID: PMC4992505 DOI: 10.1007/s00109-016-1409-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 01/27/2016] [Accepted: 03/04/2016] [Indexed: 12/31/2022]
Abstract
Abstract Osteoclasts are bone tissue macrophages critical to maintain bone homeostasis. However, whether osteoclasts are susceptible to flaviviral infections and involved in dengue virus (DV)-induced disease pathogenesis is still unknown. In this study, we found that osteoclasts were preferentially susceptible to DV infection and produced similar amounts of cytokines and infectious virions as macrophages. Interestingly, DV-induced cytokine secretion and nuclear translocation of the transcription factor NFATc1 in osteoclast via the Syk-coupled myeloid C-type lectin member 5A (CLEC5A). Moreover, DV caused transient inflammatory reaction in bone tissue and upregulated osteolytic activity to release C-telopeptide of type I collagen (CTX-1) from bone tissue. Furthermore, DV-induced osteolytic activity was attenuated in CLEC5A-deficient mice, and administration of antagonistic anti-CLEC5A mAb inhibited DV-activated osteolytic activity and reduced CTX-1 serum level in vivo. This observation suggests that osteoclasts serve as a novel target for DV, and transient upregulation of osteolytic activity may contribute to the clinical symptoms in dengue patients. Key messages Cultured osteoclasts were susceptible to DV infection. Osteoclasts produced similar amounts of cytokines and infectious virions as macrophages. DV induced nuclear translocation of NFATc1 in osteoclast via CLEC5A. DV caused transient inflammatory reaction in bone tissue and upregulated osteolytic activity. Antagonistic anti-CLEC5A mAb inhibited DV-activated osteolytic activity in vivo.
Electronic supplementary material The online version of this article (doi:10.1007/s00109-016-1409-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ya-Lang Huang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Szu-Ting Chen
- Department of Microbiology and Immunology, Taipei Medical University, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Genomics Research Center, Academia Sinica, 128, Academia Road, Sec. 2, Nankang District, Taipei, 115, Taiwan
| | - Ren-Shyan Liu
- Molecular and Genetic Imaging Core, Department of Nuclear Medicine, National Yang-Ming University Medical School and Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yen-Hsu Chen
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Chun-Yu Lin
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Chung-Hao Huang
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Pei-Yun Shu
- Divisions of Infectious Disease, Center for Disease Control, Taipei, Taiwan
| | - Ching-Len Liao
- Institute of Infectious Diseases and Vaccinology, National Health Research Institute, Taipei, Taiwan
| | - Shie-Liang Hsieh
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan. .,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan. .,Genomics Research Center, Academia Sinica, 128, Academia Road, Sec. 2, Nankang District, Taipei, 115, Taiwan. .,Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
35
|
Ti J, Zhang M, Li Z, Li X, Diao Y. Duck Tembusu Virus Exhibits Pathogenicity to Kunming Mice by Intracerebral Inoculation. Front Microbiol 2016; 7:190. [PMID: 26925054 PMCID: PMC4759286 DOI: 10.3389/fmicb.2016.00190] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 02/03/2016] [Indexed: 12/02/2022] Open
Abstract
In this study, Kunming mice were used as the animal models to study the pathogenicity of TMUV. Three groups of 3-week-old female Kunming mice (n = 15 mice per group) were infected with the SDSG strain of TMUV in 50 μL allantoic fluid (104.8 ELD50/0.2 ml) respectively by the intracerebral (i.c.), subcutaneous (s.c.) and intranasal (i.n.) routes. The control group (n = 15 mice) was inoculated with 50 μL sterile phosphate-buffered saline. Clinical signs, gross, and microscopic lesions, viral loads in different tissues, and serum antibody titers were examined and recorded. Kunming mice infected intracerebrally showed typical clinical symptoms, including severe hindlimb paralysis, weight loss and death. Only dead mice presented severe intestinal mucosal edema. No gross lesions were observed in mice sequentially euthanized. However, microscopic lesions in the brain, spleen, liver, kidney, and lung were very typical including varying degrees of viral encephalitis, lymphocytes depletion, liver cell necrosis and nephritis, etc. Viral loads in different tissues were detected by the SYBR Green I real-time PCR assay. Viral loads in the brain, liver, and spleen were first detected and maintained a longer time, which indicated that these organs may be the target organs of TMUV. The level of viral loads was consistent with the severity of clinical signs and microscopic lesions in different tissues. The neutralizing antibody began to seroconvert at 8 dpi. Clinical signs, microscopic lesions, viral loads and serum neutralizing antibodies weren’t observed in other groups. In summary, TMUV can cause systemic infections and death in Kunming mice by i.c., which provides some experimental basis for further study of the significance of TMUV in public health.
Collapse
Affiliation(s)
- Jinfeng Ti
- Zoology Institute, Shan Dong Agricultural UniversityTai'an, China; Shandong Vocational Animal Science and Veterinary CollegeWeifang, China
| | - Min Zhang
- Zoology Institute, Shan Dong Agricultural University Tai'an, China
| | - Zhijie Li
- Shandong Vocational Animal Science and Veterinary College Weifang, China
| | - Xiuli Li
- Zoology Institute, Shan Dong Agricultural University Tai'an, China
| | - Youxiang Diao
- Zoology Institute, Shan Dong Agricultural University Tai'an, China
| |
Collapse
|
36
|
Oliveira ERA, Amorim JFS, Paes MV, Azevedo AS, Gonçalves AJS, Costa SM, Mantuano-Barradas M, Póvoa TF, de Meis J, Basílio-de-Oliveira CA, Nogueira ACMA, Alves AMB. Peripheral effects induced in BALB/c mice infected with DENV by the intracerebral route. Virology 2015; 489:95-107. [PMID: 26748331 DOI: 10.1016/j.virol.2015.12.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 10/06/2015] [Accepted: 12/15/2015] [Indexed: 12/17/2022]
Abstract
The lack of an immunocompetent animal model for dengue mimicking the disease in humans is a limitation for advances in this field. Inoculation by intracerebral route of neuroadapted dengue strains in mice is normally lethal and provides a straightforward readout parameter for vaccine testing. However, systemic effects of infection and the immune response elicited in this model remain poorly described. In the present work, BALB/c mice infected by the intracerebral route with neuroadapted DENV2 exhibited several evidences of systemic involvement. DENV-inoculated mice presented virus infective particles in the brain followed by viremia, especially in late stages of infection. Infection induced cellular and humoral responses, with presence of activated T cells in spleen and blood, lymphocyte infiltration and tissue damages in brain and liver, and an increase in serum levels of some pro-inflammatory cytokines. Data highlighted an interplay between the central nervous system commitment and peripheral effects under this experimental condition.
Collapse
Affiliation(s)
- E R A Oliveira
- Laboratory of Biotechnology and Physiology of Viral Infections, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - J F S Amorim
- Laboratory of Biotechnology and Physiology of Viral Infections, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - M V Paes
- Laboratory of Biotechnology and Physiology of Viral Infections, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - A S Azevedo
- Laboratory of Biotechnology and Physiology of Viral Infections, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - A J S Gonçalves
- Laboratory of Biotechnology and Physiology of Viral Infections, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - S M Costa
- Laboratory of Biotechnology and Physiology of Viral Infections, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - M Mantuano-Barradas
- Laboratory of Biotechnology and Physiology of Viral Infections, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - T F Póvoa
- Laboratory of Biotechnology and Physiology of Viral Infections, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - J de Meis
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - C A Basílio-de-Oliveira
- Pathological Anatomy, Hospital Gaffrée Guinle, Federal University from the State of Rio de Janeiro (UNIRIO), RJ, Brazil
| | - A C M A Nogueira
- Laboratory of Biotechnology and Physiology of Viral Infections, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - A M B Alves
- Laboratory of Biotechnology and Physiology of Viral Infections, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| |
Collapse
|
37
|
Sarathy VV, Milligan GN, Bourne N, Barrett ADT. Mouse models of dengue virus infection for vaccine testing. Vaccine 2015; 33:7051-60. [PMID: 26478201 PMCID: PMC5563257 DOI: 10.1016/j.vaccine.2015.09.112] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 09/10/2015] [Accepted: 09/16/2015] [Indexed: 01/09/2023]
Abstract
Dengue is a mosquito-borne disease caused by four serologically and genetically related viruses termed DENV-1 to DENV-4. With an annual global burden of approximately 390 million infections occurring in the tropics and subtropics worldwide, an effective vaccine to combat dengue is urgently needed. Historically, a major impediment to dengue research has been development of a suitable small animal infection model that mimics the features of human illness in the absence of neurologic disease that was the hallmark of earlier mouse models. Recent advances in immunocompromised murine infection models have resulted in development of lethal DENV-2, DENV-3 and DENV-4 models in AG129 mice that are deficient in both the interferon-α/β receptor (IFN-α/β R) and the interferon-γ receptor (IFN-γR). These models mimic many hallmark features of dengue disease in humans, such as viremia, thrombocytopenia, vascular leakage, and cytokine storm. Importantly AG129 mice develop lethal, acute, disseminated infection with systemic viral loads, which is characteristic of typical dengue illness. Infected AG129 mice generate an antibody response to DENV, and antibody-dependent enhancement (ADE) models have been established by both passive and maternal transfer of DENV-immune sera. Several steps have been taken to refine DENV mouse models. Viruses generated by peripheral in vivo passages incur substitutions that provide a virulent phenotype using smaller inocula. Because IFN signaling has a major role in immunity to DENV, mice that generate a cellular immune response are desired, but striking the balance between susceptibility to DENV and intact immunity is complicated. Great strides have been made using single-deficient IFN-α/βR mice for DENV-2 infection, and conditional knockdowns may offer additional approaches to provide a panoramic view that includes viral virulence and host immunity. Ultimately, the DENV AG129 mouse models result in reproducible lethality and offer multiple disease parameters to evaluate protection by candidate vaccines.
Collapse
Affiliation(s)
- Vanessa V Sarathy
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, United States; Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Gregg N Milligan
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, United States; Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Nigel Bourne
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, United States; Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Alan D T Barrett
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, United States; Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States; Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX, United States; Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States.
| |
Collapse
|
38
|
Abstract
Dengue is a rapidly expanding global health problem. Development of a safe and efficacious tetravalent vaccine along with strategic application of vector control activities represents a promising approach to reducing the global disease burden. Although many vaccine development challenges exist, numerous candidates are in clinical development and one has been tested in three clinical endpoint studies. The results of these studies have raised numerous questions about how we measure vaccine immunogenicity and how these readouts are associated with clinical outcomes in vaccine recipients who experience natural infection. In this review the authors discuss the dengue vaccine pipeline, development challenges, the dengue vaccine-immunologic profiling intersection, and research gaps.
Collapse
|
39
|
Trials and tribulations on the path to developing a dengue vaccine. Vaccine 2015; 33 Suppl 4:D24-31. [DOI: 10.1016/j.vaccine.2015.05.095] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 05/17/2015] [Accepted: 05/18/2015] [Indexed: 01/08/2023]
|
40
|
Palacios-González C. Human dignity and the creation of human-nonhuman chimeras. MEDICINE, HEALTH CARE, AND PHILOSOPHY 2015; 18:487-499. [PMID: 25981681 PMCID: PMC4591198 DOI: 10.1007/s11019-015-9644-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this work I present a detailed critique of the dignity-related arguments that have been advanced against the creation of human-nonhuman chimeras that could possess human-like mental capacities. My main claim is that the arguments so far advanced are incapable of grounding a principled objection against the creation of such creatures. I conclude that these arguments have one, or more, of the following problems: (a) they confuse the ethical assessment of the creation of chimeras with the ethical assessment of how such creatures would be treated in specific contexts (e.g. in the laboratory), (b) they misrepresent how a being could be treated solely as means towards others' ends,
Collapse
Affiliation(s)
- César Palacios-González
- Institute for Science Ethics and Innovation, The University of Manchester, Oxford Road, Stopford Building, Room 3.383, Manchester, M13 9PL, UK.
| |
Collapse
|
41
|
Islam R, Salahuddin M, Ayubi MS, Hossain T, Majumder A, Taylor-Robinson AW, Mahmud-Al-Rafat A. Dengue epidemiology and pathogenesis: images of the future viewed through a mirror of the past. Virol Sin 2015; 30:326-43. [PMID: 26494479 PMCID: PMC8200867 DOI: 10.1007/s12250-015-3624-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 10/07/2015] [Indexed: 12/18/2022] Open
Abstract
Every year, millions of individuals throughout the world are seriously affected by dengue virus. The unavailability of a vaccine and of anti-viral drugs has made this mosquito-borne disease a serious health concern. Not only does dengue cause fatalities but it also has a profoundly negative economic impact. In recent decades, extensive research has been performed on epidemiology, vector biology, life cycle, pathogenesis, vaccine development and prevention. Although dengue research is still not at a stage to suggest definite hopes of a cure, encouraging significant advances have provided remarkable progress in the fight against infection. Recent developments indicate that both anti-viral drug and vaccine research should be pursued, in parallel with vector control programs.
Collapse
Affiliation(s)
- Rashedul Islam
- Bio-Resources Technology and Industrial Biotechnology Laboratory, Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Mohammed Salahuddin
- Bio-Resources Technology and Industrial Biotechnology Laboratory, Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Md Salahuddin Ayubi
- Bio-Resources Technology and Industrial Biotechnology Laboratory, Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Tahmina Hossain
- Bio-Resources Technology and Industrial Biotechnology Laboratory, Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Apurba Majumder
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, 9100, Bangladesh
| | - Andrew W Taylor-Robinson
- School of Medical & Applied Sciences, Central Queensland University, Rockhampton, 4701, Australia
| | - Abdullah Mahmud-Al-Rafat
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, 9100, Bangladesh.
- Research and Development (R&D) Department, Incepta Vaccine Limited, Zirabo, Savar, Dhaka, 1341, Bangladesh.
| |
Collapse
|
42
|
Sarathy VV, Infante E, Li L, Campbell GA, Wang T, Paessler S, Robert Beatty P, Harris E, Milligan GN, Bourne N, Barrett ADT. Characterization of lethal dengue virus type 4 (DENV-4) TVP-376 infection in mice lacking both IFN-α/β and IFN-γ receptors (AG129) and comparison with the DENV-2 AG129 mouse model. J Gen Virol 2015; 96:3035-3048. [PMID: 26296350 PMCID: PMC4635480 DOI: 10.1099/jgv.0.000246] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 07/06/2015] [Indexed: 01/13/2023] Open
Abstract
Dengue is a mosquito-borne disease caused by four related but distinct dengue viruses, DENV-1 to DENV-4. Dengue is endemic in most tropical countries, and over a third of the world's population is at risk of being infected. Although the global burden is high, no vaccine or antiviral is licensed to combat this disease. An obstacle complicating dengue research is the lack of animal challenge models that mimic human disease. Advances in immunocompromised murine infection models resulted in development of lethal DENV-2, DENV-3 and DENV-4 models in AG129 mice, which are deficient in both the IFN-α/β receptor (IFN-α/βR) and the IFN-γ receptor (IFN-γR). These models mimic features of dengue disease in humans. Here, we characterized lethal infection of AG129 mice by DENV-4 strain TVP-376 and found that AG129 mice developed clinical signs of illness and high viral loads in multiple tissues and succumbed 5 days after infection. Moreover, the splenic and hepatic histopathology of TVP-376-infected mice demonstrated the presence of cell activation and destruction of tissue architecture. Furthermore, infected mice had heightened levels of circulating cytokines. Comparison of the virulence phenotypes of DENV-4 strain TVP-376 and DENV-2 strain D2S10 revealed that TVP-376-induced mortality occurred in the absence of both IFN-α/βR and IFN-γR signalling, but not with intact signalling from the IFN-γR, whereas D2S10 required the absence of IFN-α/βR signalling only, indicating that it is more virulent than TVP-376. In conclusion, TVP-376 is lethal in AG129 mice, and this model provides a useful platform to investigate vaccine candidates and antivirals against DENV-4.
Collapse
Affiliation(s)
- Vanessa V. Sarathy
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ernesto Infante
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Li Li
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Gerald A. Campbell
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Tian Wang
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Slobodan Paessler
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
- Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - P. Robert Beatty
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, California, USA
| | - Eva Harris
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, USA
| | - Gregg N. Milligan
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Nigel Bourne
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Alan D. T. Barrett
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
- Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
43
|
Tang WW, Grewal R, Shresta S. Influence of antibodies and T cells on dengue disease outcome: insights from interferon receptor-deficient mouse models. Curr Opin Virol 2015; 13:61-6. [PMID: 26001278 DOI: 10.1016/j.coviro.2015.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 04/23/2015] [Accepted: 04/23/2015] [Indexed: 10/23/2022]
Abstract
Dengue virus (DENV) is a globally important mosquito-borne virus that causes a spectrum of diseases ranging from dengue fever (DF) to dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS), affecting 3.6 billion people in 128 countries [1,2(•)]. There is an urgent need for a drug or vaccine against DENV, yet none are presently available. In fact, results from recent Phase IIb and III trials of an attenuated tetrameric vaccine revealed that the vaccine provided limited protection against DENV serotype 2 in DENV-immune people, and no protection against any serotype in naïve individuals [3-5], highlighting the difficulties associated with dengue vaccine development. A challenge in the development of a DENV vaccine is that a vaccine must protect against all four DENV serotypes, which co-circulate in endemic areas. Further complicating DENV vaccine development is that the correlates of protection are not fully defined, mechanisms regulating the generation of protective antibody and T cell responses against all four DENV serotypes are as yet to be deciphered, and the adaptive immune response may actually contribute to severe disease. Recent studies using the only available animal model of DHF/DSS in mice lacking one or more components of the interferon (IFN) system have begun to provide crucial insights into the protective versus pathogenic nature of both antibody and T cell responses to DENV. Herein, we highlight key studies using the IFN receptor-deficient mouse models toward understanding the contribution of antibodies and T cells in impacting the outcome of DENV infection.
Collapse
Affiliation(s)
- William W Tang
- La Jolla Institute for Allergy & Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Rajvir Grewal
- La Jolla Institute for Allergy & Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Sujan Shresta
- La Jolla Institute for Allergy & Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA.
| |
Collapse
|
44
|
Suzarte E, Gil L, Valdés I, Marcos E, Lazo L, Izquierdo A, García A, López L, Álvarez M, Pérez Y, Castro J, Romero Y, Guzmán MG, Guillén G, Hermida L. A novel tetravalent formulation combining the four aggregated domain III-capsid proteins from dengue viruses induces a functional immune response in mice and monkeys. Int Immunol 2015; 27:367-79. [PMID: 25795768 DOI: 10.1093/intimm/dxv011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 03/16/2015] [Indexed: 11/14/2022] Open
Abstract
Our group developed a subunit vaccine candidate against dengue virus based on two different viral regions: the domain III of the envelope protein and the capsid protein. The novel chimeric protein from dengue-2 virus [domain III-capsid (DIIIC-2)], when presented as aggregated incorporating oligodeoxynucleotides, induced anti-viral and neutralizing antibodies, a cellular immune response and conferred significant protection to mice and monkeys. The remaining constructs were already obtained and properly characterized. Based on this evidence, this work was aimed at assessing the immune response in mice of the chimeric proteins DIIIC of each serotype, as monovalent and tetravalent formulations. Here, we demonstrated the immunogenicity of each protein in terms of humoral and cell-mediated immunity, without antigen competition on the mixture forming the formulation tetra DIIIC. Accordingly, significant protection was afforded as measured by the limited viral load in the mouse encephalitis model. The assessment of the tetravalent formulation in non-human primates was also conducted. In this animal model, it was demonstrated that the formulation induced neutralizing antibodies and memory cell-mediated immune response with IFN-γ-secreting and cytotoxic capacity, regardless the route of immunization used. Taken together, we can assert that the tetravalent formulation of DIIIC proteins constitutes a promising vaccine candidate against dengue virus, and propose it for further efficacy experiments in monkeys or in the dengue human infection model, as it has been recently proposed.
Collapse
Affiliation(s)
- Edith Suzarte
- Vaccine Division, Center for Genetic Engineering and Biotechnology, Havana 6 10 600, Cuba
| | - Lázaro Gil
- Vaccine Division, Center for Genetic Engineering and Biotechnology, Havana 6 10 600, Cuba
| | - Iris Valdés
- Vaccine Division, Center for Genetic Engineering and Biotechnology, Havana 6 10 600, Cuba
| | - Ernesto Marcos
- Vaccine Division, Center for Genetic Engineering and Biotechnology, Havana 6 10 600, Cuba
| | - Laura Lazo
- Vaccine Division, Center for Genetic Engineering and Biotechnology, Havana 6 10 600, Cuba
| | - Alienys Izquierdo
- Pan American Health Organization/Word Health Organization Collaborating Center for the Study of Dengue and its Vector, Department of Virology, Pedro Kourí Tropical Medicine Institute, Havana 13 11 400, Cuba
| | - Angélica García
- Pan American Health Organization/Word Health Organization Collaborating Center for the Study of Dengue and its Vector, Department of Virology, Pedro Kourí Tropical Medicine Institute, Havana 13 11 400, Cuba
| | - Lázaro López
- Vaccine Division, Center for Genetic Engineering and Biotechnology, Havana 6 10 600, Cuba
| | - Maylin Álvarez
- Pan American Health Organization/Word Health Organization Collaborating Center for the Study of Dengue and its Vector, Department of Virology, Pedro Kourí Tropical Medicine Institute, Havana 13 11 400, Cuba
| | - Yusleydis Pérez
- Vaccine Division, Center for Genetic Engineering and Biotechnology, Havana 6 10 600, Cuba
| | - Jorge Castro
- Vaccine Division, Center for Genetic Engineering and Biotechnology, Havana 6 10 600, Cuba
| | - Yaremis Romero
- Vaccine Division, Center for Genetic Engineering and Biotechnology, Havana 6 10 600, Cuba
| | - María G Guzmán
- Pan American Health Organization/Word Health Organization Collaborating Center for the Study of Dengue and its Vector, Department of Virology, Pedro Kourí Tropical Medicine Institute, Havana 13 11 400, Cuba
| | - Gerardo Guillén
- Vaccine Division, Center for Genetic Engineering and Biotechnology, Havana 6 10 600, Cuba
| | - Lisset Hermida
- Vaccine Division, Center for Genetic Engineering and Biotechnology, Havana 6 10 600, Cuba
| |
Collapse
|
45
|
Pijlman GP. Enveloped virus-like particles as vaccines against pathogenic arboviruses. Biotechnol J 2015; 10:659-70. [DOI: 10.1002/biot.201400427] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 11/27/2014] [Accepted: 12/22/2014] [Indexed: 12/26/2022]
|
46
|
Mathew A, Townsley E, Ennis FA. Elucidating the role of T cells in protection against and pathogenesis of dengue virus infections. Future Microbiol 2015; 9:411-25. [PMID: 24762312 DOI: 10.2217/fmb.13.171] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Dengue viruses (DENV) cause significantly more human disease than any other arbovirus, with hundreds of thousands of cases leading to severe disease in thousands annually. Antibodies and T cells induced by primary infection with DENV have the potential for both positive (protective) and negative (pathological) effects during subsequent DENV infections. In this review, we summarize studies that have examined T-cell responses in humans following natural infection and vaccination. We discuss studies that support a role for T cells in protection against and those that support a role for the involvement of T cells in the pathogenesis of severe disease. The mechanisms that lead to severe disease are complex, and T-cell responses are an important component that needs to be further evaluated for the development of safe and efficacious DENV vaccines.
Collapse
Affiliation(s)
- Anuja Mathew
- Division of Infectious Diseases & Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | |
Collapse
|
47
|
Kumar ASM, Reddy GECV, Rajmane Y, Nair S, Pai Kamath S, Sreejesh G, Basha K, Chile S, Ray K, Nelly V, Khadpe N, Kasturi R, Ramana V. siRNAs encapsulated in recombinant capsid protein derived from Dengue serotype 2 virus inhibits the four serotypes of the virus and proliferation of cancer cells. J Biotechnol 2014; 193:23-33. [PMID: 25444872 DOI: 10.1016/j.jbiotec.2014.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/28/2014] [Accepted: 11/03/2014] [Indexed: 12/23/2022]
Abstract
siRNA delivery potential of the Dengue virus capsid protein in cultured cells was recently reported, but target knockdown potential in the context of specific diseases has not been explored. In this study we have evaluated the utility of the protein as an siRNA carrier for anti Dengue viral and anti cancer applications using cell culture systems. We show that target specific siRNAs delivered using the capsid protein inhibit infection by the four serotypes of Dengue virus and proliferation of two cancer cell lines. Our data confirm the potential of the capsid for anti Dengue viral and anti cancer RNAi applications. In addition, we have optimized a fermentation strategy to improve the yield of Escherichia coli expressed D2C protein since the reported yields of E. coli expressed flaviviral capsid proteins are low.
Collapse
Affiliation(s)
- A S Manoj Kumar
- Therapeutic Proteins Molecular Biology Group, Dhirubhai Ambani Life Sciences Centre, Rabale, Navi Mumbai 400 701, Maharashtra, India.
| | - G E C Vidyadhar Reddy
- Therapeutic Proteins Molecular Biology Group, Dhirubhai Ambani Life Sciences Centre, Rabale, Navi Mumbai 400 701, Maharashtra, India
| | - Yogesh Rajmane
- Therapeutic Proteins Molecular Biology Group, Dhirubhai Ambani Life Sciences Centre, Rabale, Navi Mumbai 400 701, Maharashtra, India
| | - Soumya Nair
- Therapeutic Proteins Molecular Biology Group, Dhirubhai Ambani Life Sciences Centre, Rabale, Navi Mumbai 400 701, Maharashtra, India
| | - Sangita Pai Kamath
- Therapeutic Proteins Molecular Biology Group, Dhirubhai Ambani Life Sciences Centre, Rabale, Navi Mumbai 400 701, Maharashtra, India
| | - Greeshma Sreejesh
- Therapeutic Proteins Molecular Biology Group, Dhirubhai Ambani Life Sciences Centre, Rabale, Navi Mumbai 400 701, Maharashtra, India
| | - Khalander Basha
- Therapeutic Proteins Molecular Biology Group, Dhirubhai Ambani Life Sciences Centre, Rabale, Navi Mumbai 400 701, Maharashtra, India
| | - Shailaja Chile
- Therapeutic Proteins Molecular Biology Group, Dhirubhai Ambani Life Sciences Centre, Rabale, Navi Mumbai 400 701, Maharashtra, India
| | - Kriti Ray
- Therapeutic Proteins Molecular Biology Group, Dhirubhai Ambani Life Sciences Centre, Rabale, Navi Mumbai 400 701, Maharashtra, India
| | - Vivant Nelly
- Therapeutic Proteins Process Development Group, Dhirubhai Ambani Life Sciences Centre, Rabale, Navi Mumbai 400 701, Maharashtra, India
| | - Nilesh Khadpe
- Therapeutic Proteins Process Development Group, Dhirubhai Ambani Life Sciences Centre, Rabale, Navi Mumbai 400 701, Maharashtra, India
| | - Ravishankar Kasturi
- Therapeutic Proteins Process Development Group, Dhirubhai Ambani Life Sciences Centre, Rabale, Navi Mumbai 400 701, Maharashtra, India
| | - Venkata Ramana
- Therapeutic Proteins Molecular Biology Group, Dhirubhai Ambani Life Sciences Centre, Rabale, Navi Mumbai 400 701, Maharashtra, India
| |
Collapse
|
48
|
Zellweger RM, Eddy WE, Tang WW, Miller R, Shresta S. CD8+ T cells prevent antigen-induced antibody-dependent enhancement of dengue disease in mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 193:4117-24. [PMID: 25217165 PMCID: PMC4185219 DOI: 10.4049/jimmunol.1401597] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Dengue virus (DENV) causes pathologies ranging from the febrile illness dengue fever to the potentially lethal severe dengue disease. A major risk factor for developing severe dengue disease is the presence of subprotective DENV-reactive Abs from a previous infection (or from an immune mother), which can induce Ab-dependent enhancement of infection (ADE). However, infection in the presence of subprotective anti-DENV Abs does not always result in severe disease, suggesting that other factors influence disease severity. In this study we investigated how CD8(+) T cell responses influence the outcome of Ab-mediated severe dengue disease. Mice were primed with aluminum hydroxide-adjuvanted UV-inactivated DENV prior to challenge with DENV. Priming failed to induce robust CD8(+) T cell responses, and it induced nonneutralizing Ab responses that increased disease severity upon infection. Transfer of exogenous DENV-activated CD8(+) T cells into primed mice prior to infection prevented Ab-dependent enhancement and dramatically reduced viral load. Our results suggest that in the presence of subprotective anti-DENV Abs, efficient CD8(+) T cell responses reduce the risk of Ab-mediated severe dengue disease.
Collapse
Affiliation(s)
- Raphaël M Zellweger
- Center for Infectious Disease, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - William E Eddy
- Center for Infectious Disease, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - William W Tang
- Center for Infectious Disease, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Robyn Miller
- Center for Infectious Disease, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Sujan Shresta
- Center for Infectious Disease, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| |
Collapse
|
49
|
Zhu X, He Z, Hu Y, Wen W, Lin C, Yu J, Pan J, Li R, Deng H, Liao S, Yuan J, Wu J, Li J, Li M. MicroRNA-30e* suppresses dengue virus replication by promoting NF-κB-dependent IFN production. PLoS Negl Trop Dis 2014; 8:e3088. [PMID: 25122182 PMCID: PMC4133224 DOI: 10.1371/journal.pntd.0003088] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/30/2014] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs have been shown to contribute to a repertoire of host-pathogen interactions during viral infection. Our previous study demonstrated that microRNA-30e* (miR-30e*) directly targeted the IκBα 3'-UTR and disrupted the NF-κB/IκBα negative feedback loop, leading to hyperactivation of NF-κB. This current study investigated the possible role of miR-30e* in the regulation of innate immunity associated with dengue virus (DENV) infection. We found that DENV infection could induce miR-30e* expression in DENV-permissive cells, and such an overexpression of miR-30e* upregulated IFN-β and the downstream IFN-stimulated genes (ISGs) such as OAS1, MxA and IFITM1, and suppressed DENV replication. Furthermore, suppression of IκBα mediates the enhancing effect of miR-30e* on IFN-β-induced antiviral response. Collectively, our findings suggest a modulatory role of miR-30e* in DENV induced IFN-β signaling via the NF-κB-dependent pathway. Further investigation is needed to evaluate whether miR-30e* has an anti-DENV effect in vivo.
Collapse
Affiliation(s)
- Xun Zhu
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Province Key Laboratory of Functional Molecules in Oceanic Microorganism (Sun Yat-sen University), Bureau of Education, Guangzhou, China
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhenjian He
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Province Key Laboratory of Functional Molecules in Oceanic Microorganism (Sun Yat-sen University), Bureau of Education, Guangzhou, China
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yiwen Hu
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Province Key Laboratory of Functional Molecules in Oceanic Microorganism (Sun Yat-sen University), Bureau of Education, Guangzhou, China
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Weitao Wen
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Province Key Laboratory of Functional Molecules in Oceanic Microorganism (Sun Yat-sen University), Bureau of Education, Guangzhou, China
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Cuiji Lin
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Province Key Laboratory of Functional Molecules in Oceanic Microorganism (Sun Yat-sen University), Bureau of Education, Guangzhou, China
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jianchen Yu
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Province Key Laboratory of Functional Molecules in Oceanic Microorganism (Sun Yat-sen University), Bureau of Education, Guangzhou, China
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jing Pan
- Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ran Li
- Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Haijing Deng
- Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shaowei Liao
- Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jie Yuan
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Province Key Laboratory of Functional Molecules in Oceanic Microorganism (Sun Yat-sen University), Bureau of Education, Guangzhou, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jueheng Wu
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Province Key Laboratory of Functional Molecules in Oceanic Microorganism (Sun Yat-sen University), Bureau of Education, Guangzhou, China
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jun Li
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Province Key Laboratory of Functional Molecules in Oceanic Microorganism (Sun Yat-sen University), Bureau of Education, Guangzhou, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Mengfeng Li
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Province Key Laboratory of Functional Molecules in Oceanic Microorganism (Sun Yat-sen University), Bureau of Education, Guangzhou, China
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- * E-mail:
| |
Collapse
|
50
|
Mores CN, Christofferson RC, Davidson SA. The role of the mosquito in a dengue human infection model. J Infect Dis 2014; 209 Suppl 2:S71-8. [PMID: 24872400 DOI: 10.1093/infdis/jiu110] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recent efforts to combat the growing global threat of dengue disease, including deployment of phase IIb vaccine trials, has continued to be hindered by uncertainty surrounding equitable immune responses of serotypes, relative viral fitness of vaccine vs naturally occurring strains, and the importance of altered immune environments due to natural delivery routes. Human infection models can significantly improve our understanding of the importance of certain phenotypic characteristics of viral strains, and inform strain selection and trial design. With human models, we can further assess the importance of the natural delivery route of DENV and/or the accompanying mosquito salivary milieu. Accordingly, we discuss the use of mosquitoes in such a human infection model with DENV, identify important considerations, and make preliminary recommendations for deployment of such a mosquito improved DENV human infection model (miDHIM).
Collapse
Affiliation(s)
- Christopher N Mores
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | - Rebecca C Christofferson
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | - Silas A Davidson
- Department of Entomology, Walter Reed Army Institute of Research, Silver Spring, Maryland
| |
Collapse
|