1
|
Bessa LJ, Egas C, Pires C, Proença L, Mascarenhas P, Pais RJ, Barroso H, Machado V, Botelho J, Alcoforado G, Mendes JJ, Alves R. Linking peri-implantitis to microbiome changes in affected implants, healthy implants, and saliva: a cross-sectional pilot study. Front Cell Infect Microbiol 2025; 15:1543100. [PMID: 40313461 PMCID: PMC12043654 DOI: 10.3389/fcimb.2025.1543100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/26/2025] [Indexed: 05/03/2025] Open
Abstract
Introduction The rising use of dental implants is accompanied by an expected increase in peri-implant diseases, particularly peri-implantitis (PI), which poses a significant threat to implant success and necessitates a thorough understanding of its pathogenesis for effective management. Methods To gain deeper insights into the role and impact of the peri-implant microbiome in the pathogenesis and progression of PI, we analyzed 100 samples of saliva and subgingival biofilm from 40 participants with healthy implants (HI group) or with co-occurrence of diagnosed PI-affected implants and healthy implants (PI group) using shotgun metagenomic sequencing. We identified the most discriminative species distinguishing healthy from diseased study groups through log ratios and differential ranking analyses. Results and discussion Mogibacterium timidum, Schaalia cardiffensis, Parvimonas micra, Filifactor alocis, Porphyromonas endodontalis, Porphyromonas gingivalis and Olsenella uli were associated with the subgingival peri-implant biofilm. In contrast, Neisseria sp oral taxon 014, Haemophilus parainfluenzae, Actinomyces naeslundii, Rothia mucilaginosa and Rothia aeria were more prevalent in the healthy peri-implant biofilm. Functional pathways such as arginine and polyamine biosynthesis, including putrescine and citrulline biosynthesis, showed stronger correlations with PI-affected implants. In contrast, peri-implant health was characterized by the predominance of pathways involved in purine and pyrimidine deoxyribonucleotide de novo biosynthesis, glucose and glucose-1-phosphate degradation, and tetrapyrrole biosynthesis. Our findings reveal that healthy implants in PI-free oral cavities differ significantly in microbial composition and functional pathways compared to healthy implants co-occurring with PI-affected implants, which more closely resemble PI-associated profiles. This pattern extended to salivary samples, where microbial and functional biomarkers follow similar trends.
Collapse
Affiliation(s)
- Lucinda J. Bessa
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Almada, Portugal
| | - Conceição Egas
- CNC-UC – Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech, Cantanhede, Portugal
- CIBB – Center for Innovative Biomedicine and Biotechnology, University of Coimbra, UC-Biotech, Cantanhede, Portugal
- Genoinseq – Next Generation Sequencing Unit, Biocant, Cantanhede, Portugal
| | - Carolina Pires
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Almada, Portugal
| | - Luís Proença
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Almada, Portugal
| | - Paulo Mascarenhas
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Almada, Portugal
| | - Ricardo J. Pais
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Almada, Portugal
- Bioinformatics R&D, Bioenhancer Systems Ltd, Manchester, United Kingdom
| | - Helena Barroso
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Almada, Portugal
| | - Vanessa Machado
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Almada, Portugal
| | - João Botelho
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Almada, Portugal
| | - Gil Alcoforado
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Almada, Portugal
| | - José João Mendes
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Almada, Portugal
| | - Ricardo Alves
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Almada, Portugal
| |
Collapse
|
2
|
Shenasa N, Hamed Ahmed M, Abdul Kareem R, Jaber Zrzor A, Salah Mansoor A, Athab ZH, Bayat H, Diznab FA. Review of carbonaceous nanoparticles for antibacterial uses in various dental infections. Nanotoxicology 2025; 19:180-215. [PMID: 39885656 DOI: 10.1080/17435390.2025.2454277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/26/2024] [Accepted: 01/10/2025] [Indexed: 02/01/2025]
Abstract
The mouth cavity is the second most complex microbial community in the human body. It is composed of bacteria, viruses, fungi, and protozoa. An imbalance in the oral microbiota may lead to various conditions, including caries, soft tissue infections, periodontitis, root canal infections, peri-implantitis (PI), pulpitis, candidiasis, and denture stomatitis. Additionally, several locally administered antimicrobials have been suggested for dentistry in surgical and non-surgical applications. The main drawbacks are increased antimicrobial resistance, the risk of upsetting the natural microbiota, and hypersensitivity responses. Because of their unique physiochemical characteristics, nanoparticles (NPs) can circumvent antibiotic-resistance mechanisms and exert antimicrobial action via a variety of new bactericidal routes. Because of their anti-microbial properties, carbon-based NPs are becoming more and more effective antibacterial agents. Periodontitis, mouth infections, PI, dentin and root infections, and other dental diseases are among the conditions that may be treated using carbon NPs (CNPs) like graphene oxide and carbon dots. An outline of the scientific development of multifunctional CNPs concerning oral disorders will be given before talking about the significant influence of CNPs on dental health. Some of these illnesses include Periodontitis, oral infections, dental caries, dental pulp disorders, dentin and dental root infections, and PI. We also review the remaining research and application barriers for carbon-based NPs and possible future problems.
Collapse
Affiliation(s)
- Naghmeh Shenasa
- Science Endodontics Department, Shahrekord University of Medical, Shahrekord, Iran
| | | | | | - Athmar Jaber Zrzor
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Hannaneh Bayat
- Dental Surgery, Tehran University of Medical Science, Tehran, Iran
| | - Fatemeh Abedi Diznab
- Department of Orthodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Vargas BDS, Vargas BSF, Clemente-Napimoga JT, Hammock BD, Abdalla HB, Van Dyke TE, Napimoga MH. Soluble epoxide hydrolase inhibition impairs triggering receptor expressed on myeloid cells-1 in periodontal tissue. J Periodontal Res 2025; 60:278-286. [PMID: 39343738 PMCID: PMC11953063 DOI: 10.1111/jre.13350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/28/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024]
Abstract
AIMS Periodontitis is a prevalent inflammatory disorder affecting the oral cavity, driven by dysbiotic oral biofilm and host immune response interactions. While the major clinical focus of periodontitis treatment is currently controlling oral biofilm, understanding the immune response is crucial to prevent disease progression. Soluble epoxide hydrolase (sEH) inhibition has shown promise in preventing alveolar bone resorption. Triggering receptors expressed on myeloid cells (TREMs) play pivotal roles in regulating inflammation and bone homeostasis, and dysregulation of TREM signaling is implicated in periodontitis. Here, we investigated the impact of sEH inhibition on TREM 1 and 2 expression, associated with inflammatory cytokines, and histologically assessed the inflammatory infiltrate in periodontal tissue. METHODS The experimental periodontitis model was induced by placing a ligature around the upper second molar. For 14 days, animals were treated daily with a sEH inhibitor (TPPU) or vehicle. The alveolar bone loss was examined using a methylene blue stain. Gingival tissues were used to measure the mRNA expression of TREM-1, TREM-2, IKKβ, NF-κB, IL-1β, IL-6, IL-8, and TNF-α by RT-qPCR. Another set of experiments was performed to determine the histological inflammatory scores. RESULTS In a ligature-induced periodontitis model, sEH inhibition prevented alveolar bone loss and reduced TREM1 expression, albeit with a slight elevation compared to the disease-free group. In contrast, TREM2 expression remained elevated, suggesting sustained immunomodulation favoring resolution. The inhibition of sEH reduced the expression of NF-κB, IL-1β, and TNF-α, while no differences were found in the expression of IL-6, IL-8, and IKKβ. In histological analysis, sEH inhibition reduced the inflammatory leukocyte infiltrate in periodontal tissues close to the ligature. CONCLUSION These findings underscore the potential of sEH inhibition to modulate periodontal inflammation by regulating TREM-1 alongside decreased IL-1β and TNF-α expression, highlighting a promising therapeutic approach for periodontitis management.
Collapse
Affiliation(s)
- Breno da Silva Vargas
- Laboratory of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto de Pesquisa São Leopoldo Mandic, Campinas, Brazil
| | - Bruno Sérgio Ferreira Vargas
- Laboratory of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto de Pesquisa São Leopoldo Mandic, Campinas, Brazil
| | - Juliana Trindade Clemente-Napimoga
- Laboratory of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto de Pesquisa São Leopoldo Mandic, Campinas, Brazil
| | - Bruce D. Hammock
- Department of Entomology and UCD Comprehensive Cancer Center, University of California, Davis, California, USA
| | - Henrique B. Abdalla
- Laboratory of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto de Pesquisa São Leopoldo Mandic, Campinas, Brazil
| | - Thomas E. Van Dyke
- Department of Immunology and Inflammation, The ADA Forsyth Institute, Cambridge, MA, USA
- Department of Oral Medicine, Infection, and Immunity, Faculty of Medicine, Harvard University, Boston, MA, USA
| | - Marcelo H. Napimoga
- Laboratory of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto de Pesquisa São Leopoldo Mandic, Campinas, Brazil
| |
Collapse
|
4
|
Bessa LJ, Egas C, Botelho J, Machado V, Alcoforado G, Mendes JJ, Alves R. Unveiling the Resistome Landscape in Peri-Implant Health and Disease. J Clin Med 2025; 14:931. [PMID: 39941602 PMCID: PMC11818638 DOI: 10.3390/jcm14030931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/23/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
Background: The human oral microbiome is a critical reservoir for antibiotic resistance; however, subgingival peri-implant biofilms remain underexplored in this context. We aimed to explore the prevalence and distribution of antibiotic resistance genes (ARGs) in metagenomes derived from saliva and subgingival peri-implant biofilms. Methods: A total of 100 metagenome datasets from 40 individuals were retrieved from the Sequence Read Archive (SRA) database. Of these, 20 individuals had exclusively healthy implants and 20 had both healthy and affected implants with peri-implantitis. ARGs and their taxonomic assignments were identified using the ABRicate tool, and plasmid detection was performed with PlasmidFinder. Results: Four plasmid replicons were identified in 72 metagenomes, and 55 distinct ARGs from 13 antibiotic classes were detected in 89 metagenomes. ARGs conferring resistance to macrolides-lincosamides-streptogramins, tetracyclines, beta-lactams, and fluoroquinolones were the most prevalent. The msr(D) and mef(A) genes showed the highest prevalence, except in saliva samples from individuals with healthy implants, where mef(A) ranked fourth. A pairwise PERMANOVA of principal coordinate analysis based on Jaccard distances revealed that saliva samples exhibited significantly greater ARG diversity than subgingival biofilm samples (p < 0.05). However, no significant differences were observed between healthy and peri-implantitis-affected subgingival biofilm groups (p > 0.05). The taxonomic origins of ARGs were also analyzed to understand their distribution and potential impact on oral microbial communities. Conclusions: Resistome profiles associated with both peri-implant health and disease showed no significant differences and higher salivary abundance of ARGs compared to subgingival biofilm samples.
Collapse
Affiliation(s)
- Lucinda J. Bessa
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511 Caparica, Almada, Portugal; (J.B.); (V.M.); (G.A.); (J.J.M.); (R.A.)
| | - Conceição Egas
- CNC-UC—Center for Neuroscience and Cell Biology, Polo I, University of Coimbra, Rua Larga, Edifício FMUC, Piso 1, 3004-504 Coimbra, Portugal;
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Rua Larga, Edifício FMUC, Piso 1, 3004-504 Coimbra, Portugal
- Genoinseq—Next Generation Sequencing Unit, Biocant, BiocantPark, Núcleo 04, Lote 8, 3060-222 Cantanhede, Portugal
| | - João Botelho
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511 Caparica, Almada, Portugal; (J.B.); (V.M.); (G.A.); (J.J.M.); (R.A.)
| | - Vanessa Machado
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511 Caparica, Almada, Portugal; (J.B.); (V.M.); (G.A.); (J.J.M.); (R.A.)
| | - Gil Alcoforado
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511 Caparica, Almada, Portugal; (J.B.); (V.M.); (G.A.); (J.J.M.); (R.A.)
| | - José João Mendes
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511 Caparica, Almada, Portugal; (J.B.); (V.M.); (G.A.); (J.J.M.); (R.A.)
| | - Ricardo Alves
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511 Caparica, Almada, Portugal; (J.B.); (V.M.); (G.A.); (J.J.M.); (R.A.)
| |
Collapse
|
5
|
Silbereisen A, Bao K, Wolski W, Nanni P, Kunz L, Afacan B, Emingil G, Bostanci N. Probing the salivary proteome for prognostic biomarkers in response to non-surgical periodontal therapy. J Clin Periodontol 2025; 52:56-67. [PMID: 38660744 PMCID: PMC11671166 DOI: 10.1111/jcpe.13990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/04/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024]
Abstract
AIM This prospective study investigated the salivary proteome before and after periodontal therapy. MATERIALS AND METHODS Ten systemically healthy, non-smoking, stage III, grade C periodontitis patients underwent non-surgical periodontal treatment. Full-mouth periodontal parameters were measured, and saliva (n = 30) collected pre- (T0), and one (T1) and six (T6) months post-treatment. The proteome was investigated by label-free quantitative proteomics. Protein expression changes were modelled over time, with significant protein regulation considered at false discovery rate <0.05. RESULTS Treatment significantly reduced bleeding scores, percentages of sites with pocket depth ≥5 mm, plaque and gingival indexes. One thousand seven hundred and thirteen proteins were identified and 838 proteins (human = 757, bacterial = 81) quantified (≥2 peptides). At T1, 80 (T1 vs. T0: 60↑:20↓), and at T6, 118 human proteins (T6 vs. T0: 67↑:51↓) were regulated. The salivary proteome at T6 versus T1 remained stable. Highest protein activity post- versus pre-treatment was observed for cellular movement and inflammatory response. The small proline-rich protein 3 (T1 vs. T0: 5.4-fold↑) and lymphocyte-specific protein 1 (T6 vs. T0: 4.6-fold↓) were the top regulated human proteins. Proteins from Neisseria mucosa and Treponema socranskii (T1 vs. T0: 8.0-fold↓, 4.9-fold↓) were down-regulated. CONCLUSIONS Periodontal treatment reduced clinical disease parameters and these changes were reflected in the salivary proteome. This underscores the potential of utilizing saliva biomarkers as prognostic tools for monitoring treatment outcomes.
Collapse
Affiliation(s)
- Angelika Silbereisen
- Division of Oral Health and Periodontology, Department of Dental MedicineKarolinska InstitutetStockholmSweden
| | - Kai Bao
- Division of Oral Health and Periodontology, Department of Dental MedicineKarolinska InstitutetStockholmSweden
| | - Witold Wolski
- Functional Genomics Center ZurichETH Zurich and University of ZurichZurichSwitzerland
| | - Paolo Nanni
- Functional Genomics Center ZurichETH Zurich and University of ZurichZurichSwitzerland
| | - Laura Kunz
- Functional Genomics Center ZurichETH Zurich and University of ZurichZurichSwitzerland
| | - Beral Afacan
- Department of Periodontology, Faculty of DentistryAdnan Menderes UniversityAydınTurkey
| | - Gülnur Emingil
- Department of Periodontology, School of DentistryEge UniversityİzmirTurkey
| | - Nagihan Bostanci
- Division of Oral Health and Periodontology, Department of Dental MedicineKarolinska InstitutetStockholmSweden
| |
Collapse
|
6
|
Kleine Bardenhorst S, Hagenfeld D, Matern J, Prior K, Harks I, Eickholz P, Lorenz K, Kim TS, Kocher T, Meyle J, Kaner D, Jockel-Schneider Y, Harmsen D, Ehmke B. The role of the oral microbiota in the causal effect of adjunctive antibiotics on clinical outcomes in stage III-IV periodontitis patients. MICROBIOME 2024; 12:220. [PMID: 39462428 PMCID: PMC11515798 DOI: 10.1186/s40168-024-01945-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/07/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND Periodontitis, a prevalent chronic inflammatory disease, offers insights into the broader landscape of chronic inflammatory conditions. The progression and treatment outcomes of periodontitis are closely related to the oral microbiota's composition. Adjunctive systemic Amoxicillin 500 mg and Metronidazole 400 mg, often prescribed thrice daily for 7 days to enhance periodontal therapy's efficacy, have lasting effects on the oral microbiome. However, the precise mechanism through which the oral microbiome influences clinical outcomes in periodontitis patients remains debated. This investigation explores the pivotal role of the oral microbiome's composition in mediating the outcomes of adjunctive systemic antibiotic treatment. METHODS Subgingival plaque samples from 10 periodontally healthy and 163 periodontitis patients from a randomized clinical trial on periodontal therapy were analyzed. Patients received either adjunctive amoxicillin/metronidazole or a placebo after mechanical periodontal treatment. Microbial samples were collected at various intervals up to 26 months post-therapy. Using topic models, we identified microbial communities associated with normobiotic and dysbiotic states, validated with 86 external and 40 internal samples. Logistic regression models evaluated the association between these microbial communities and clinical periodontitis parameters. A Directed Acyclic Graph (DAG) determined the mediating role of oral microbiota in the causal path of antibiotic treatment effects on clinical outcomes. RESULTS We identified clear distinctions between dysbiotic and normobiotic microbial communities, differentiating healthy from periodontitis subjects. Dysbiotic states consistently associated with below median %Pocket Probing Depth ≥ 5 mm (OR = 1.26, 95% CI [1.14-1.42]) and %Bleeding on Probing (OR = 1.09, 95% CI [1.00-1.18]). Factors like microbial response to treatment, smoking, and age were predictors of clinical attachment loss progression, whereas sex and antibiotic treatment were not. Further, we showed that the oral microbial treatment response plays a crucial role in the causal effect of antibiotic treatment on clinical treatment outcomes. CONCLUSIONS The shift towards a normobiotic subgingival microbiome, primarily induced by adjunctive antibiotics, underscores the potential for microbiome-targeted interventions to enhance therapeutic efficacy in chronic inflammatory conditions. This study reaffirms the importance of understanding the oral microbiome's role in periodontal health and paves the way for future research exploring personalized treatment strategies based on individual microbiome profiles. Video Abstract.
Collapse
Affiliation(s)
- Sven Kleine Bardenhorst
- Department of Periodontology and Operative Dentistry, Muenster University Hospital, Albert-Schweitzer-Campus 1, Building W30, Münster, 48149, Germany
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Daniel Hagenfeld
- Department of Periodontology and Operative Dentistry, Muenster University Hospital, Albert-Schweitzer-Campus 1, Building W30, Münster, 48149, Germany.
| | - Johannes Matern
- Department of Periodontology and Operative Dentistry, Muenster University Hospital, Albert-Schweitzer-Campus 1, Building W30, Münster, 48149, Germany
| | - Karola Prior
- Department of Periodontology and Operative Dentistry, Muenster University Hospital, Albert-Schweitzer-Campus 1, Building W30, Münster, 48149, Germany
| | - Inga Harks
- Department of Periodontology and Operative Dentistry, Muenster University Hospital, Albert-Schweitzer-Campus 1, Building W30, Münster, 48149, Germany
| | - Peter Eickholz
- Department of Periodontology, Center for Dentistry and Oral Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Katrin Lorenz
- Department of Periodontology, TU Dresden, Dresden, Germany
| | - Ti-Sun Kim
- Department of Conservative Dentistry, Section of Periodontology, Clinic for Oral, Dental and Maxillofacial Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Kocher
- Department of Restorative Dentistry, Periodontology, Endodontology, and Preventive and Pediatric Dentistry, University Medicine Greifswald, Greifswald, Germany
| | - Jörg Meyle
- Department of Periodontology, University of Giessen, Giessen, Germany
| | - Doğan Kaner
- Departments of Periodontology and Synoptic Dentistry, Charite-Universitätsmedizin Berlin, Berlin, Germany
- Department of Periodontology, Dental School, Faculty of Health, University of Witten/Herdecke, Witten, Germany
| | | | - Dag Harmsen
- Department of Periodontology and Operative Dentistry, Muenster University Hospital, Albert-Schweitzer-Campus 1, Building W30, Münster, 48149, Germany
| | - Benjamin Ehmke
- Department of Periodontology and Operative Dentistry, Muenster University Hospital, Albert-Schweitzer-Campus 1, Building W30, Münster, 48149, Germany
| |
Collapse
|
7
|
Parveen S, Alqahtani AS, Aljabri MY, Bajonaid A, Khan SS, Hassan AAHAA, Dawood T. Nationwide exploration: assessing oral microbiome knowledge among dental professionals in Saudi Arabia and its implications for oral health care. BMC Oral Health 2024; 24:1028. [PMID: 39217310 PMCID: PMC11366131 DOI: 10.1186/s12903-024-04770-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The relationship between the microbiome and oral health is intricate, yet there is a lack of comprehensive knowledge regarding the microbiome's impact on oral health. Integrating knowledge regarding the oral microbiome and its significance in oral and systemic diseases holds profound implications for dental professionals in patient care and professional development. This study assessed dental professionals' oral microbiome comprehension and knowledge levels in Saudi Arabia and its implications for oral healthcare. METHODS Data were gathered using a cross-sectional design by administering a comprehensive online questionnaire to 253 dental professionals from diverse demographic backgrounds. The questionnaire, administered in English, was divided into four sections: (1) Microbiome awareness and understanding, (2) Diet, nutrition, and microbiome relationship, (3) Microbiome and oral and systemic diseases, and (4) Counselling, education, and implications. Statistical analyses were used to identify and understand underlying patterns, including descriptive statistics, chi-squared tests, ANOVA, and post hoc tests. The Spearman rank correlation coefficient was applied to assess self-rated knowledge. RESULTS Of the 253 participants, 94.6% were familiar with the term "microbiome." Merely 13% of participants considered the oral microbiome to be the second most diverse, following the gut microbiome. About 39.9% of participants knew the connection between oral mucosal diseases and the oral microbiome. Furthermore, only 6.7% thought there was a connection between systemic diseases and the oral microbiome. Participant comprehension of oral microbiome questions averaged 9.19 out of 13, with 83.7% scoring "good". There were significant differences in knowledge scores among dental specializations (F = 7.082, P < 0.001) and years of professional experience (F = 4.755, P = 0.003). Significantly, 53.8% of participants had uncertain self-perceptions of their knowledge of the oral microbiome, while only 0.8% rated their understanding as 'very good'. CONCLUSION Our findings reveal that dental professionals have varying levels of awareness and comprehension of the oral microbiome. Despite widespread awareness, understanding its diversity and implications for oral and systemic health remains limited. It is essential to address these gaps in knowledge through future research and educational interventions, considering the vital part that dental professionals play in promoting oral health through personalised dietary recommendations, lifestyle changes, and hygiene practices. These initiatives may promote a robust oral microbial community, enhance patient outcomes, and advance oral healthcare locally and globally.
Collapse
Affiliation(s)
- Sameena Parveen
- Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jazan University, Jazan, Kingdom of Saudi Arabia.
| | - Ahmed Shaher Alqahtani
- Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Mohammed Y Aljabri
- Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Amal Bajonaid
- Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Samar Saeed Khan
- Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jazan University, Jazan, Kingdom of Saudi Arabia
| | | | - Tazeen Dawood
- Department of Preventive Dental Sciences, College of Dentistry, Jazan University, Jazan, Kingdom of Saudi Arabia
| |
Collapse
|
8
|
Peterson BW, Tjakkes GH, Renkema AM, Manton DJ, Ren Y. The oral microbiota and periodontal health in orthodontic patients. Periodontol 2000 2024. [PMID: 39031969 DOI: 10.1111/prd.12594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/14/2024] [Accepted: 06/28/2024] [Indexed: 07/22/2024]
Abstract
The oral microbiota develops within the first 2 years of childhood and becomes distinct from the parents by 4 years-of-age. The oral microbiota plays an important role in the overall health/symbiosis of the individual. Deviations from the state of symbiosis leads to dysbiosis and an increased risk of pathogenicity. Deviations can occur not only from daily life activities but also from orthodontic interventions. Orthodontic appliances are formed from a variety of biomaterials. Once inserted, they serve as a breeding ground for microbial attachment, not only from new surface areas and crevices but also from material physicochemical interactions different than in the symbiotic state. Individuals undergoing orthodontic treatment show, compared with untreated people, qualitative and quantitative differences in activity within the oral microbiota, induced by increased retention of supra- and subgingival microbial plaque throughout the treatment period. These changes are at the root of the main undesirable effects, such as gingivitis, white spot lesions (WSL), and more severe caries lesions. Notably, the oral microbiota profile in the first weeks of orthodontic intervention might be a valuable indicator to predict and identify higher-risk individuals with respect to periodontal health and caries risk within an otherwise healthy population. Antimicrobial coatings have been used to dissuade microbes from adhering to the biomaterial; however, they disrupt the host microbiota, and several bacterial strains have become resistant. Smart biomaterials that can reduce the antimicrobial load preventing microbial adhesion to orthodontic appliances have shown promising results, but their complexity has kept many solutions from reaching the clinic. 3D printing technology provides opportunities for complex chemical syntheses to be performed uniformly, reducing the cost of producing smart biomaterials giving hope that they may reach the clinic in the near future. The purpose of this review is to emphasize the importance of the oral microbiota during orthodontic therapy and to use innovative technologies to better maintain its healthy balance during surgical procedures.
Collapse
Affiliation(s)
- Brandon W Peterson
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Geerten-Has Tjakkes
- Centre for Dentistry and Oral Hygiene, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Anne-Marie Renkema
- Department of Orthodontics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - David J Manton
- Centre for Dentistry and Oral Hygiene, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Yijin Ren
- Department of Orthodontics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
9
|
Lira-Junior R, Aogáin MM, Crncalo E, Ekberg NR, Chotirmall SH, Pettersson S, Gustafsson A, Brismar K, Bostanci N. Effects of intermittent fasting on periodontal inflammation and subgingival microbiota. J Periodontol 2024; 95:640-649. [PMID: 38655661 DOI: 10.1002/jper.23-0676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/21/2024] [Accepted: 03/29/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Studies on the impact of intermittent fasting on periodontal health are still scarce. Thus, this study evaluated the effects of long-term intermittent fasting on periodontal health and the subgingival microbiota. METHODS This pilot study was part of a nonrandomized controlled trial. Overweight/obese participants (n = 14) entered an intermittent fasting program, specifically the 5:2 diet, in which they restricted caloric intake to about a quarter of the normal total daily caloric expenditure for two nonconsecutive days/week. Subjects underwent a thorough clinical and laboratory examination, including an assessment of their periodontal condition, at baseline and 6 months after starting the diet. Additionally, subgingival microbiota was assessed by 16S rRNA gene sequencing. RESULTS After 6 months of intermittent fasting, weight, body mass index, C-reactive protein, hemoglobin A1c (HbA1c), and the cholesterol profile improved significantly (p < 0.05). Moreover, significant reductions were observed in bleeding on probing (p = 0.01) and the presence of shallow periodontal pockets after fasting (p < 0.001), while no significant change was seen in plaque index (p = 0.14). While we did not observe significant changes in α- or β-diversity of the subgingival microbiota related to dietary intervention (p > 0.05), significant differences were seen in the abundances of several taxa among individuals exhibiting ≥60% reduction (good responders) in probing pocket depth of 4-5 mm compared to those with <60% reduction (bad responders). CONCLUSION Intermittent fasting decreased systemic and periodontal inflammation. Although the subgingival microbiota was unaltered by this intervention, apparent taxonomic variability was observed between good and bad responders.
Collapse
Affiliation(s)
- Ronaldo Lira-Junior
- Section of Oral Diagnostics and Surgery, Division of Oral Diagnostics and Rehabilitation, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Micheál Mac Aogáin
- Biochemical Genetics Laboratory, Department of Biochemistry, St. James's Hospital, Dublin, Ireland
- Clinical Biochemistry Unit, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Eva Crncalo
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Neda Rajamand Ekberg
- Department of Molecular Medicine and Surgery, Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | - Sven Pettersson
- Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
| | - Anders Gustafsson
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kerstin Brismar
- Department of Molecular Medicine and Surgery, Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Nagihan Bostanci
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
Ebersole JL, Hasturk H, Huber M, Gellibolian R, Markaryan A, Zhang XD, Miller CS. Realizing the clinical utility of saliva for monitoring oral diseases. Periodontol 2000 2024; 95:203-219. [PMID: 39010260 DOI: 10.1111/prd.12581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/01/2024] [Accepted: 05/16/2024] [Indexed: 07/17/2024]
Abstract
In the era of personalized/precision health care, additional effort is being expended to understand the biology and molecular mechanisms of disease processes. How these mechanisms are affected by individual genetics, environmental exposures, and behavioral choices will encompass an expanding role in the future of optimally preventing and treating diseases. Considering saliva as an important biological fluid for analysis to inform oral disease detection/description continues to expand. This review provides an overview of saliva as a diagnostic fluid and the features of various biomarkers that have been reported. We emphasize the use of salivary biomarkers in periodontitis and transport the reader through extant literature, gaps in knowledge, and a structured approach toward validating and determine the utility of biomarkers in periodontitis. A summation of the findings support the likelihood that a panel of biomarkers including both host molecules and specific microorganisms will be required to most effectively identify risk for early transition to disease, ongoing disease activity, progression, and likelihood of response to standard periodontal therapy. The goals would be to develop predictive algorithms that serve as adjunctive diagnostic tools which provide the clinician and patient important information for making informed clinical decisions.
Collapse
Affiliation(s)
- Jeffrey L Ebersole
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - Hatice Hasturk
- Immunology and Inflammation, Center for Clinical and Translational Research, The ADA Forsyth Institute, Cambridge, Massachusetts, USA
| | - Michaell Huber
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | | | | | - Xiaohua D Zhang
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, Kentucky, USA
| | - Craig S Miller
- Department of Oral Health Practice, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
11
|
Manoil D, Parga A, Bostanci N, Belibasakis GN. Microbial diagnostics in periodontal diseases. Periodontol 2000 2024; 95:176-193. [PMID: 38797888 DOI: 10.1111/prd.12571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/27/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024]
Abstract
Microbial analytical methods have been instrumental in elucidating the complex microbial etiology of periodontal diseases, by shaping our understanding of subgingival community dynamics. Certain pathobionts can orchestrate the establishment of dysbiotic communities that can subvert the host immune system, triggering inflammation and tissue destruction. Yet, diagnosis and management of periodontal conditions still rely on clinical and radiographic examinations, overlooking the well-established microbial etiology. This review summarizes the chronological emergence of periodontal etiological models and the co-evolution with technological advances in microbial detection. We additionally review the microbial analytical approaches currently accessible to clinicians, highlighting their value in broadening the periodontal assessment. The epidemiological importance of obtaining culture-based antimicrobial susceptibility profiles of periodontal taxa for antibiotic resistance surveillance is also underscored, together with clinically relevant analytical approaches to guide antibiotherapy choices, when necessary. Furthermore, the importance of 16S-based community and shotgun metagenomic profiling is discussed in outlining dysbiotic microbial signatures. Because dysbiosis precedes periodontal damage, biomarker identification offers early diagnostic possibilities to forestall disease relapses during maintenance. Altogether, this review highlights the underutilized potential of clinical microbiology in periodontology, spotlighting the clinical areas most conductive to its diagnostic implementation for enhancing prevention, treatment predictability, and addressing global antibiotic resistance.
Collapse
Affiliation(s)
- Daniel Manoil
- Division of Cariology and Endodontics, University Clinics of Dental Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Ana Parga
- Division of Cariology and Endodontics, University Clinics of Dental Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Microbiology and Parasitology, CIBUS-Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Nagihan Bostanci
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Georgios N Belibasakis
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden
| |
Collapse
|
12
|
Agab Hamed N, Khudhur Abdljalel M, Ibrahim Sood L. Investigating the Salivary Microbiome Through Meta-Genomics: A Clinical Study on Periodontal Health. IRANIAN JOURNAL OF MEDICAL MICROBIOLOGY 2024; 18:97-105. [DOI: 10.30699/ijmm.18.2.97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
13
|
Veenman F, van Dijk A, Arredondo A, Medina-Gomez C, Wolvius E, Rivadeneira F, Àlvarez G, Blanc V, Kragt L. Oral microbiota of adolescents with dental caries: A systematic review. Arch Oral Biol 2024; 161:105933. [PMID: 38447351 DOI: 10.1016/j.archoralbio.2024.105933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 03/08/2024]
Abstract
OBJECTIVE This systematic review summarizes the current knowledge on the association between the oral microbiota and dental caries in adolescents. DESIGN An electronic search was carried out across five databases. Studies were included if they conducted research on generally healthy adolescents, applied molecular-based microbiological analyses and assessed caries status. Data extraction was performed by two reviewers and the Newcastle-Ottawa Scale was applied for quality assessment. RESULTS In total, 3935 records were reviewed which resulted in a selection of 20 cross-sectional studies (published 2005-2022) with a sample size ranging from 11 to 614 participants including adolescents between 11 and 19 years. The studies analyzed saliva, dental biofilm or tongue swabs with Checkerboard DNA-DNA hybridization, (q)PCR or Next-Generation Sequencing methods. Prevotella denticola, Scardoviae Wiggsiae, Streptococcus sobrinus and Streptococcus mutans were the most frequently reported species presenting higher abundance in adolescents with caries. The majority of the studies reported that the microbial diversity was similar between participants with and without dental caries. CONCLUSION This systematic review is the first that shows how the oral microbiota composition in adolescents appears to differ between those with and without dental caries, suggesting certain taxa may be associated with increased caries risk. However, there is a need to replicate and expand these findings in larger, longitudinal studies that also focus on caries severity and take adolescent-specific factors into account.
Collapse
Affiliation(s)
- Francien Veenman
- Department of Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands; The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.
| | - Anne van Dijk
- Department of Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Alexandre Arredondo
- Department of Microbiology, DENTAID Research Center, Cerdanyola del Vallès, Spain
| | - Carolina Medina-Gomez
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands; Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Eppo Wolvius
- Department of Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands; The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Fernando Rivadeneira
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands; Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Gerard Àlvarez
- Department of Microbiology, DENTAID Research Center, Cerdanyola del Vallès, Spain
| | - Vanessa Blanc
- Department of Microbiology, DENTAID Research Center, Cerdanyola del Vallès, Spain
| | - Lea Kragt
- Department of Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands; The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
14
|
Araujo MG, de Souza DFN, Souza LDPSS, Matarazzo F. Characteristics of healthy peri-implant tissues. Br Dent J 2024; 236:759-763. [PMID: 38789752 DOI: 10.1038/s41415-024-7396-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/26/2024]
Abstract
This article forms part of the themed issue on dental implants, with the general dentist being the main intended reader and with particular relevance to primary care dental professionals. It aims to describe the various characteristics of the implant in health, address contemporary developments in implant dentistry and offer some novel insights on the prevention of peri-implant diseases. A healthy implant exhibits specific histological, clinical and radiographic characteristics. Understanding such aspects leads to proper diagnosis and measures to maintain tissue integrity and prevent the development and progression of peri-implant diseases. Moreover, internationally and widely accepted definitions and recommendations based on expert consensus have been put forward to guide day-to-day clinical practice. This information should provide general practitioners with the means necessary to achieve the best possible outcome for their patients.
Collapse
Affiliation(s)
| | | | | | - Flavia Matarazzo
- Department of Dentistry, State University of Maringá, Maringá, Paraná, Brazil
| |
Collapse
|
15
|
Weatherspoon DJ, Kirk GD, Piggott DA, Thumbigere-Math V, Dye BA, Macek MD. Baltimore oral epidemiology, disease effects, and HIV evaluation study (BEEHIVE) study protocol: a prospective cohort study. BMC Oral Health 2024; 24:439. [PMID: 38600460 PMCID: PMC11008028 DOI: 10.1186/s12903-024-04200-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND As antiretroviral therapy has become widely available and highly effective, HIV has evolved to a manageable, chronic disease. Despite this health advancement, people living with HIV (PLWH) are at an increased risk for age-related non-communicable diseases (NCDs) compared to HIV-uninfected individuals. Similarly, PLWH are at an increased risk for selected oral diseases. PLWH with a history of injecting drugs experience an even greater burden of disease than their counterparts. The overall objective of the Baltimore Oral Epidemiology, Disease Effects, and HIV Evaluation (BEEHIVE) study is to determine the combined effects of HIV infection and NCDs on oral health status. The specific aims of the study are to: (1) determine to what extent HIV status influences access to and utilization of oral health care services; (2) determine to what extent HIV status affects self-reported and clinical oral health status; (3) determine to what extent HIV status influences the progression of periodontitis; and (4) determine to what extent HIV status impacts the periodontitis-associated oral microbiome signature. METHODS The BEEHIVE study uses a prospective cohort study design to collect data from participants at baseline and at a 24-month follow-up visit. Data are collected through questionnaire assessments, clinical examinations, and evaluation of oral microbiological samples to determine the drivers of oral disease among a high-risk population of PLWH with a history of injection drug use and prevalent comorbid NCDs. The established AIDS Linked to the Intravenous Experience (ALIVE) cohort serves as the source of participants for the BEEHIVE Study. DISCUSSION Upon completion of the BEEHIVE study, the knowledge gained will be important in informing future clinical and preventive interventions that can be implemented into medical and dental practice to ultimately help eliminate long-standing oral health inequities that PLWH experience.
Collapse
Affiliation(s)
- Darien J Weatherspoon
- University of Maryland School of Dentistry, 650 West Baltimore Street, Room 2209, Baltimore, MD, 21201, USA
| | - Gregory D Kirk
- Johns Hopkins Medicine, 615 North Wolfe Street, Room E6533, Baltimore, MD, 21205, USA
| | - Damani A Piggott
- Johns Hopkins Medicine, 600 North Wolfe Street, Baltimore, MD, 21287, USA
| | - Vivek Thumbigere-Math
- University of Maryland School of Dentistry, 650 West Baltimore Street, Room 2209, Baltimore, MD, 21201, USA
| | - Bruce A Dye
- University of Colorado School of Dental Medicine, Mail Stop F843 13065 East 17th Avenue, Room 104L, Aurora, CO, 80045, USA
| | - Mark D Macek
- University of Maryland School of Dentistry, 650 West Baltimore Street, Room 2207, Baltimore, MD, 21201, USA.
| |
Collapse
|
16
|
Marzbali MY, Banakar M, Mousavi SM, Lai CW. Oral metagenomics changes the game in carcinogenesis. MICROBIAL METAGENOMICS IN EFFLUENT TREATMENT PLANT 2024:185-201. [DOI: 10.1016/b978-0-443-13531-6.00007-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
17
|
Lin CS, Chen TC, Verhoeff MC, Lobbezoo F, Trulsson M, Fuh JL. An umbrella review on the association between factors of oral health and cognitive dysfunction. Ageing Res Rev 2024; 93:102128. [PMID: 38007045 DOI: 10.1016/j.arr.2023.102128] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/27/2023]
Abstract
An increasing number of systematic reviews and meta-analyses have been published on the association between oral health and cognitive dysfunction, also known as oral-cognitive links. However, there is great diversity in the oral and cognitive factors included in these studies, with different opinions for clinical practice drawn from the evidence. To understand which oral and cognitive factors are involved in those associations, we conducted an umbrella review of 28 systematic reviews, including 12 meta-analyses, on oral-cognitive links. We found that (a) periodontal diseases, oral microbiome, and dementia were frequently studied, while other factors, such as mastication and mild cognitive impairment, were less commonly investigated, and (b) severe deterioration of oral health, such as severe periodontitis or extensive tooth loss, rather than the presence of oral diseases alone, was strongly associated with cognitive dysfunction. In conclusion, the diversity of oral and cognitive factors included in the review studies reflects the complexity of oral-cognitive links. Clarifying the factors helps to form evidence-based clinical advice for healthcare.
Collapse
Affiliation(s)
- Chia-Shu Lin
- Department of Dentistry, National Yang Ming Chiao Tung University, Taiwan; Institute of Brain Science, National Yang Ming Chiao Tung University, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taiwan; Oral Medicine Innovation Center, National Yang Ming Chiao Tung University, Taiwan.
| | - Ta-Chung Chen
- Division of Prosthodontics, Department of Stomatology, Taipei Veterans General Hospital, Taiwan
| | - Merel Charlotte Verhoeff
- Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Frank Lobbezoo
- Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Mats Trulsson
- Division of Oral Diagnostics and Rehabilitation, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden; Academic Center for Geriatric Dentistry, Karolinska Institutet, Stockholm, Sweden
| | - Jong-Ling Fuh
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taiwan; Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
18
|
Zhou QM, Zheng L. Research progress on the relationship between Paneth cells-susceptibility genes, intestinal microecology and inflammatory bowel disease. World J Clin Cases 2023; 11:8111-8125. [PMID: 38130785 PMCID: PMC10731169 DOI: 10.12998/wjcc.v11.i34.8111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/26/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a disorder of the immune system and intestinal microecosystem caused by environmental factors in genetically susceptible people. Paneth cells (PCs) play a central role in IBD pathogenesis, especially in Crohn's disease development, and their morphology, number and function are regulated by susceptibility genes. In the intestine, PCs participate in the formation of the stem cell microenvironment by secreting antibacterial particles and play a role in helping maintain the intestinal microecology and intestinal mucosal homeostasis. Moreover, PC proliferation and maturation depend on symbiotic flora in the intestine. This paper describes the interactions among susceptibility genes, PCs and intestinal microecology and their effects on IBD occurrence and development.
Collapse
Affiliation(s)
- Qi-Ming Zhou
- Department of Nephrology, Lanxi Hospital of Traditional Chinese Medicine, Lanxi 321100, Zhejiang Province, China
| | - Lie Zheng
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an 710003, Shaanxi Province, China
| |
Collapse
|
19
|
Balan P, Belibasakis G, Ivanovski S, Bostanci N, Seneviratne CJ. Community dynamics of subgingival microbiome in periodontitis and targets for microbiome modulation therapy. Crit Rev Microbiol 2023; 49:726-738. [PMID: 36260510 DOI: 10.1080/1040841x.2022.2133594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/24/2022] [Accepted: 09/29/2022] [Indexed: 11/03/2022]
Abstract
The microbial aetiology for periodontitis has been widely studied and deciphered for more than a century. The evolving and changing concepts about periodontal microbiology can be attributed to continuously developing laboratory techniques. The current sequencing platforms have not only expanded the catalog of periodontal pathogens but have also facilitated the understanding of functional interactions of the ecological framework. However, the translation of this new knowledge to advance periodontal therapeutics is minimal. We contend that novel clinical interventions directed beyond conventional therapies need to be emphasized. A clear understanding of the structural and functional dynamics of subgingival microbiota is a pre-requisite for developing any microbiome-based interventions for applications in periodontal health care. In this review, we discuss the 16 s-rRNA gene sequencing-based knowledge of the subgingival microbial community structure, its interactions and functions, and our perspective on the potential to engineer it for periodontal therapeutics. Harnessing this next-generation sequencing-based knowledge, microbiome modulation therapies are poised to change microbiome therapeutics' face.
Collapse
Affiliation(s)
- Preethi Balan
- Singapore Oral Microbiomics Initiative, National Dental Research Institute Singapore, National Dental Center, Singapore, Singapore
- Oral Health Academic Clinical Program, Duke NUS Medical School, Singapore, Singapore
| | | | - Saso Ivanovski
- School of Dentistry, University of Queensland, Queensland, Australia
| | - Nagihan Bostanci
- Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Chaminda Jayampath Seneviratne
- Singapore Oral Microbiomics Initiative, National Dental Research Institute Singapore, National Dental Center, Singapore, Singapore
- Oral Health Academic Clinical Program, Duke NUS Medical School, Singapore, Singapore
- School of Dentistry, University of Queensland, Queensland, Australia
| |
Collapse
|
20
|
Araujo LDC, da Silva RAB, Silva CMPC, Salvador SLS, Messora MR, Furlaneto FAC, Mastrange MDA, Pucinelli CM, da Silva LAB. Bifidobacterium animalis subsp. lactis HN019 has antimicrobial activity against endodontic pathogens in vitro. Braz J Microbiol 2023; 54:2289-2295. [PMID: 37632683 PMCID: PMC10484865 DOI: 10.1007/s42770-023-01083-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/25/2023] [Indexed: 08/28/2023] Open
Abstract
The aim of the present study was to evaluate, in vitro, the antimicrobial activity of the probiotic Bifidobacterium animalis subsp. lactis HN019, through the well technique, against 10 microorganisms can be found involved in endodontic infections. The antimicrobial activity of the probiotic was performed on Streptococcus mutans, Streptococcus sobrinus, Lacticaseibacillus casei, Enterococcus faecalis, Staphylococcus aureus, Candida albicans, Porphyromonas gingivalis, Porphyromonas endodontalis, Fusobacterium nucleatum and Prevotella intermedia. For the control group, it was used non-pathogenic bacteria Escherichia coli, Saccharomyces cerevisiae, and Kocuria rizhopilla. After 48 to 72 h of incubation of the petri dishes containing the culture medium, the microorganism strains, and the probiotic, the plates were examined to assess the uniformity of microbial growth, presence of contaminants, and the halo of inhibition. After visual inspection, the reading of the halo of inhibition was performed with the aid of a digital caliper using a reflected light source to illuminate the inverted plate on a black, opaque background after removing the cap. Thus, 3 values were obtained from each bacterial inoculum, which were added and divided by three to obtain the average of the values. The results of the in vitro study demonstrated that the probiotic B. animalis subsp. lactis HN019 promoted the inhibition of all strains of the pathogens evaluated, with the exception of Candida albicans, demonstrating antimicrobial activity on these microorganisms.
Collapse
Affiliation(s)
- Lisa Danielly Curcino Araujo
- Department of Pediatric Dentistry, Faculty of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.
| | - Raquel Assed Bezerra da Silva
- Department of Pediatric Dentistry, Faculty of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Sérgio Luiz Sousa Salvador
- Department of Clinical Analyses, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Michel Reis Messora
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Flávia Aparecida Chaves Furlaneto
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Marina Del Arco Mastrange
- Department of Clinical Analyses, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Carolina Maschietto Pucinelli
- Department of Pediatric Dentistry, Faculty of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Léa Assed Bezerra da Silva
- Department of Pediatric Dentistry, Faculty of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
21
|
Santacroce L, Passarelli PC, Azzolino D, Bottalico L, Charitos IA, Cazzolla AP, Colella M, Topi S, Godoy FG, D’Addona A. Oral microbiota in human health and disease: A perspective. Exp Biol Med (Maywood) 2023; 248:1288-1301. [PMID: 37688509 PMCID: PMC10625343 DOI: 10.1177/15353702231187645] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2023] Open
Abstract
The evolution of medical knowledge about oral microbiota has increased awareness of its important role for the entire human body health. A wide range of microbial species colonizing the oral cavity interact both with each other and with their host through complex pathways. Usually, these interactions lead to a harmonious coexistence (i.e. eubiosis). However, several factors - including diet, poor oral hygiene, tobacco smoking, and certain medications, among others - can disrupt this weak homeostatic balance (i.e. dysbiosis) with potential implications on both oral (i.e. development of caries and periodontal disease) and systemic health. This article is thus aimed at providing an overview on the importance of oral microbiota in mediating several physiological and pathological conditions affecting human health. In this context, strategies based on oral hygiene and diet as well as the role of probiotics supplementation are discussed.
Collapse
Affiliation(s)
- Luigi Santacroce
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University Hospital of Bari, Bari 70124, Italy
| | - Pier Carmine Passarelli
- Department of Head, Neck and Sense Organs, Division of Oral Surgery and Implantology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Domenico Azzolino
- Geriatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Lucrezia Bottalico
- Department of Clinical Disciplines, School of Technical Medical Sciences, University of Elbasan “A. Xhuvani,” Elbasan 3001, Albania
| | - Ioannis Alexandros Charitos
- Department of Clinical Disciplines, School of Technical Medical Sciences, University of Elbasan “A. Xhuvani,” Elbasan 3001, Albania
- Istituti Clinici Scientifici Maugeri IRCCS, Institute of Bari, Bari 70124, Italy
| | - Angela Pia Cazzolla
- Department of Clinical and Experimental Medicine, Riuniti University Hospital of Foggia, Foggia 71122, Italy
| | - Marica Colella
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University Hospital of Bari, Bari 70124, Italy
| | - Skender Topi
- Department of Clinical Disciplines, School of Technical Medical Sciences, University of Elbasan “A. Xhuvani,” Elbasan 3001, Albania
| | - Franklin Garcia Godoy
- Bioscience Research Center, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- The Forsyth Institute, Cambridge, MA 02142, USA
- Department of Surgery, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Antonio D’Addona
- Department of Head, Neck and Sense Organs, Division of Oral Surgery and Implantology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| |
Collapse
|
22
|
Kövér Z, Johansen Nordskag V, Bán Á, Gajdács M, Urbán E. The role of Actinomyces spp. and related organisms in cervicofacial infections: Pathomechanism, diagnosis and therapeutic aspects. Anaerobe 2023; 82:102767. [PMID: 37482285 DOI: 10.1016/j.anaerobe.2023.102767] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/26/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
Members of the Actinomyces genus and Actinomyces-like organisms (ALOs; namely Actinotignum, Arcanobacterium, Schaalia and Varibaculum) are Gram-positive, non-spore-forming rods that are commensal members of the human oral cavity, gastrointestinal tract, female genital tract and skin microbiota. Cervicofacial actinomycosis or "lumpy jaw syndrome" - the chronic, suppurative granulomatous disease caused by Actinomyces spp. And ALOs - is characterized by an initially slow and unspecific disease-presentation, which often mimics other pathologies, followed by the formation of painful abscesses and severe tissue destruction. Actinomycosis has been described as a rare disease, however, reliable epidemiological data are lacking. In addition, there is increasing awareness regarding the role of Actinomyces spp. in the development of osteoradionecrosis and medication-related osteonecrosis of the jaw. The aim of this narrative review is to succinctly summarize the current advances regarding the microbiological, clinical, diagnostic and therapeutic aspects of cervicofacial actinomycosis, in addition to the roles of Actinomyces species and ALOs as members of the oral microbiota and in dental biofilm, in other dental infections (caries, root canal infection, periapical infection, periodontitis) and osteonecrosis of the jaw, in the context of recent taxonomic changes affecting the genus. Our paper aims to be a blueprint for dentists, other physicians, microbiologists and researchers regarding the multifaceted field of cervicofacial actinomycosis.
Collapse
Affiliation(s)
- Zsanett Kövér
- Department of Dentistry, Oral and Maxillofacial Surgery, Medical School, University of Pécs, Tüzér U. 1., 7623, Pécs, Hungary.
| | - Vidar Johansen Nordskag
- Department of Dentistry, Oral and Maxillofacial Surgery, Medical School, University of Pécs, Tüzér U. 1., 7623, Pécs, Hungary.
| | - Ágnes Bán
- Department of Dentistry, Oral and Maxillofacial Surgery, Medical School, University of Pécs, Tüzér U. 1., 7623, Pécs, Hungary.
| | - Márió Gajdács
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, Tisza Lajos krt. 64-66., 6725, Szeged, Hungary.
| | - Edit Urbán
- Department of Medical Microbiology and Immunology, Clinical Center, University of Pécs, Szigeti út 12., 7624, Pécs, Hungary.
| |
Collapse
|
23
|
Basilicata M, Pieri M, Marrone G, Nicolai E, Di Lauro M, Paolino V, Tomassetti F, Vivarini I, Bollero P, Bernardini S, Noce A. Saliva as Biomarker for Oral and Chronic Degenerative Non-Communicable Diseases. Metabolites 2023; 13:889. [PMID: 37623833 PMCID: PMC10456419 DOI: 10.3390/metabo13080889] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/26/2023] Open
Abstract
Saliva is a very complex fluid and it is essential to maintain several physiological processes and functions, including oral health, taste, digestion and immunological defenses. Saliva composition and the oral microbiome can be influenced by several factors, like diet and smoking habits, and their alteration can represent an important access point for pathogens and, thus, for systemic illness onset. In this review, we explore the potentiality of saliva as a new tool for the early detection of some pathological conditions, such as oral diseases, chronic degenerative non-communicable diseases, among these chronic kidney disease (CKD). We also examined the possible correlation between oral and systemic diseases and oral and gut microbiota dysbiosis. In particular, we deeply analyzed the relationship between oral diseases and CKD. In this context, some salivary parameters can represent a new device to detect either oral or systemic pathologies. Moreover, the positive modulation of oral and gut microbiota induced by prebiotics, postbiotics, or symbiotics could represent a new possible adjuvant therapy in the clinical management of oral diseases and CKD.
Collapse
Affiliation(s)
- Michele Basilicata
- UOSD Special Care Dentistry, Policlinico Tor Vergata, 00133 Rome, Italy
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Massimo Pieri
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy
- Department of Laboratory Medicine, “Tor Vergata” University Hospital, Viale Oxford 81, 00133 Rome, Italy
| | - Giulia Marrone
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Eleonora Nicolai
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Manuela Di Lauro
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Vincenza Paolino
- UOSD Special Care Dentistry, Policlinico Tor Vergata, 00133 Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Flaminia Tomassetti
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Ilaria Vivarini
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Patrizio Bollero
- UOSD Special Care Dentistry, Policlinico Tor Vergata, 00133 Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Sergio Bernardini
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy
- Department of Laboratory Medicine, “Tor Vergata” University Hospital, Viale Oxford 81, 00133 Rome, Italy
| | - Annalisa Noce
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- UOSD Nephrology and Dialysis, Policlinico Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
24
|
Abola I, Gudra D, Ustinova M, Fridmanis D, Emulina DE, Skadins I, Brinkmane A, Lauga-Tunina U, Gailite L, Auzenbaha M. Oral Microbiome Traits of Type 1 Diabetes and Phenylketonuria Patients in Latvia. Microorganisms 2023; 11:1471. [PMID: 37374973 DOI: 10.3390/microorganisms11061471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Some metabolic disorder treatments require patients to follow a specific diet or to consume supplements that, over time, can lead to oral microbiome alterations. Well-known disorders requiring such treatment are phenylketonuria (PKU), an inborn error of amino acid metabolism, and type 1 diabetes (T1D), a metabolic disorder that requires a specific diet regimen. Therefore, the aim of this study was to investigate the oral health and microbiome characteristics that might contribute to caries activity and periodontal disease risk in PKU and T1D patients. In this cross-sectional study, 45 PKU patients, 24 T1D patients, and 61 healthy individuals between the ages of 12 and 53 years were examined. Their anamnestic data and dental status were assessed by one dentist. Microbial communities were detected from saliva-isolated DNA using 16S rRNA gene V3-V4 sequencing on Illumina MiSeq sequencing platform. Results revealed that the PKU patient group displayed the highest number of extracted teeth (on average 1.34), carious teeth (on average 4.95), and carious activity (44.44% of individuals) compared to the T1D and CTRL groups. The lowest numbers of filled teeth (on average 5.33) and extracted teeth (on average 0.63) per individual were observed in T1D patients. Gingivitis appeared more often in the T1D group; however, possible risk of periodontal disease was seen in both the T1D and PKU patient groups. The highest number of differentially abundant genera was detected in the PKU group (n = 20), with enrichment of Actinomyces (padj = 4.17 × 10-22), Capnocytophaga (padj = 8.53 × 10-8), and Porphyromonas (padj = 1.18 × 10-5) compared to the CTRL group. In conclusion, the dental and periodontal health of PKU patients was found to be significantly inferior compared to T1D patients and healthy controls. T1D patients showed early signs of periodontal disease. Several genera that correlate with periodontal disease development were found in both groups, thus suggesting that T1D and PKU patients should seek early and regular dental advice and be educated about proper oral hygiene practices.
Collapse
Affiliation(s)
- Iveta Abola
- Scientific Laboratory of Molecular Genetics, Rīga Stradiņš University, LV-1007 Riga, Latvia
- Department of Conservative Dentistry and Oral Health, Rīga Stradiņš University, LV-1007 Riga, Latvia
| | - Dita Gudra
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia
| | - Maija Ustinova
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia
| | - Davids Fridmanis
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia
| | | | - Ingus Skadins
- Scientific Laboratory of Molecular Genetics, Rīga Stradiņš University, LV-1007 Riga, Latvia
- Department of Biology and Microbiology, Rīga Stradiņš University, LV-1007 Riga, Latvia
| | - Anda Brinkmane
- Department of Conservative Dentistry and Oral Health, Rīga Stradiņš University, LV-1007 Riga, Latvia
| | - Una Lauga-Tunina
- Department of Endocrinology, Children's Clinical University Hospital, LV-1004 Riga, Latvia
| | - Linda Gailite
- Scientific Laboratory of Molecular Genetics, Rīga Stradiņš University, LV-1007 Riga, Latvia
| | - Madara Auzenbaha
- Scientific Laboratory of Molecular Genetics, Rīga Stradiņš University, LV-1007 Riga, Latvia
- Department of Biology and Microbiology, Rīga Stradiņš University, LV-1007 Riga, Latvia
- Clinic of Medical Genetics and Prenatal Diagnostics, Children's Clinical University Hospital, LV-1004 Riga, Latvia
- European Reference Network for Hereditary Metabolic Disorders, Children's Clinical University Hospital, LV-1004 Riga, Latvia
| |
Collapse
|
25
|
Bruno JS, Al-Qadami GH, Laheij AMGA, Bossi P, Fregnani ER, Wardill HR. From Pathogenesis to Intervention: The Importance of the Microbiome in Oral Mucositis. Int J Mol Sci 2023; 24:ijms24098274. [PMID: 37175980 PMCID: PMC10179181 DOI: 10.3390/ijms24098274] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/11/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Oral mucositis (OM) is a common and impactful toxicity of standard cancer therapy, affecting up to 80% of patients. Its aetiology centres on the initial destruction of epithelial cells and the increase in inflammatory signals. These changes in the oral mucosa create a hostile environment for resident microbes, with oral infections co-occurring with OM, especially at sites of ulceration. Increasing evidence suggests that oral microbiome changes occur beyond opportunistic infection, with a growing appreciation for the potential role of the microbiome in OM development and severity. This review collects the latest articles indexed in the PubMed electronic database which analyse the bacterial shift through 16S rRNA gene sequencing methodology in cancer patients under treatment with oral mucositis. The aims are to assess whether changes in the oral and gut microbiome causally contribute to oral mucositis or if they are simply a consequence of the mucosal injury. Further, we explore the emerging role of a patient's microbial fingerprint in OM development and prediction. The maintenance of resident bacteria via microbial target therapy is under constant improvement and should be considered in the OM treatment.
Collapse
Affiliation(s)
- Julia S Bruno
- Instituto de Ensino e Pesquisa, Hospital Sírio-Libanês, São Paulo 01308-060, Brazil
| | - Ghanyah H Al-Qadami
- School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide 5005, Australia
| | - Alexa M G A Laheij
- Department of Oral Medicine, Academic Centre for Dentistry (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands
- Department of Preventive Dentistry, Academic Centre for Dentistry (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands
- Department of Oral Maxillofacial Surgery, Amsterdam UMC, University of Amsterdam, 1081 LA Amsterdam, The Netherlands
| | - Paolo Bossi
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25121 Brescia, Italy
| | - Eduardo R Fregnani
- Instituto de Ensino e Pesquisa, Hospital Sírio-Libanês, São Paulo 01308-060, Brazil
| | - Hannah R Wardill
- School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide 5005, Australia
- The Supportive Oncology Research Group, Precision Cancer Medicine Theme, The South Australian Health and Medical Research Institute, Adelaide 5000, Australia
| |
Collapse
|
26
|
Malcangi G, Patano A, Guglielmo M, Sardano R, Palmieri G, Di Pede C, de Ruvo E, Inchingolo AD, Mancini A, Inchingolo F, Bordea IR, Dipalma G, Inchingolo AM. Precision Medicine in Oral Health and Diseases: A Systematic Review. J Pers Med 2023; 13:jpm13050725. [PMID: 37240895 DOI: 10.3390/jpm13050725] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Precision medicine (PM) is personalized medicine that can develop targeted medical therapies for the individual patient, in which "omics" sciences lead to an integration of data that leads to highly predictive models of the functioning of the individual biological system. They enable rapid diagnosis, assessment of disease dynamics, identification of targeted treatment protocols, and reduction of costs and psychological stress. "Precision dentistry" (DP) is one promising application that need further investigation; the purpose of this paper is therefore to give physicians an overview of the knowledge they need to enhance treatment planning and patient response to therapy. A systematic literature review was conducted on the PubMed, Scopus, and Web of Science databases by analyzing the articles examining the role of precision medicine in dentistry. PM aims to shed light on cancer prevention strategies, by identifying risk factors, and on malformations such as orofacial cleft. Another application is pain management by repurposing drugs created for other diseases to target biochemical mechanisms. The significant heritability of traits regulating bacterial colonization and local inflammatory responses is another result of genomic research, and is useful for DP in the field of caries and periodontitis. This approach may also be useful in the field of orthodontics and regenerative dentistry. The possibility of creating an international network of databases will lead to the diagnosis, prediction, and prevention of disease outbreaks, providing significant economic savings for the world's health care systems.
Collapse
Affiliation(s)
- Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Assunta Patano
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70121 Bari, Italy
| | | | - Roberta Sardano
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Giulia Palmieri
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Chiara Di Pede
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Elisabetta de Ruvo
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70121 Bari, Italy
| | | | - Antonio Mancini
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Ioana Roxana Bordea
- Department of Oral Rehabilitation, Faculty of Dentistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70121 Bari, Italy
| | | |
Collapse
|
27
|
Larissa P, Gambrill B, de Carvalho RDP, Picolo MZD, Cavalli V, Boaro LCC, Prokopovich P, Cogo-Müller K. Development, characterization and antimicrobial activity of multilayer silica nanoparticles with chlorhexidine incorporated into dental composites. Dent Mater 2023; 39:469-477. [PMID: 36934036 DOI: 10.1016/j.dental.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/12/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023]
Abstract
OBJECTIVE In this study a dentistry nanocomposite with prolonged antibacterial activity using silica nanoparticles (SNPs) loaded with chlorhexidine (CHX) was developed. METHODS SNPs were coated with the Layer-by-Layer technique. Dental composites were prepared with organic matrix of BisGMA/TEGDMA and SNPs with or without CHX (0, 10, 20 or 30% w/w). The physicochemical properties of the developed material were evaluated and agar diffusion method was used to test the antibacterial. In addition, the biofilm inhibitory activity of the composites was evaluated against S. mutans. RESULTS SNPs were rounded with diameters about 50 nm, the organic load increased with increasing deposited layers. Material samples with SNPs loaded with CHX (CHX-SNPs) showed the highest values of post-gel volumetric shrinkage, that ranged from 0.3% to 0.81%. Samples containing CHX-SNPs 30% w/w showed the highest values of flexural strength and modulus of elasticity. Only samples containing SNPs-CHX showed growth inhibition against S. mutans, S. mitis and S. gordonii in a concentration-dependent manner. The composites with CHX-SNPs reduced the biofilm formation of S. mutans biofilm at 24 h and 72 h. SIGNIFICANCE The nanoparticle studied acted as fillers and did not interfere with the evaluated physicochemical properties while providing antimicrobial activity against streptococci. Therefore, this initial study is a step forward to the synthesis of experimental composites with improved performance using CHX-SNPs.
Collapse
Affiliation(s)
- Pavanello Larissa
- Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil
| | - Benjamin Gambrill
- School of Pharmacy and Pharmaceutical Science, Cardiff University, Cardiff, United Kingdom
| | | | | | - Vanessa Cavalli
- Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil
| | | | - Polina Prokopovich
- School of Pharmacy and Pharmaceutical Science, Cardiff University, Cardiff, United Kingdom.
| | - Karina Cogo-Müller
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil
| |
Collapse
|
28
|
Bornes RS, Montero J, Correia ARM, Rosa NRDN. Use of bioinformatic strategies as a predictive tool in implant-supported oral rehabilitation: A scoping review. J Prosthet Dent 2023; 129:322.e1-322.e8. [PMID: 36710172 DOI: 10.1016/j.prosdent.2022.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 01/29/2023]
Abstract
STATEMENT OF PROBLEM The use of bioinformatic strategies is growing in dental implant protocols. The current expansion of Omics sciences and artificial intelligence (AI) algorithms in implant dentistry applications have not been documented and analyzed as a predictive tool for the success of dental implants. PURPOSE The purpose of this scoping review was to analyze how artificial intelligence algorithms and Omics technologies are being applied in the field of oral implantology as a predictive tool for dental implant success. MATERIAL AND METHODS The Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews checklist was followed. A search strategy was created at PubMed and Web of Science to answer the question "How is bioinformatics being applied in the area of oral implantology as a predictive tool for implant success?" RESULTS Thirteen articles were included in this review. Only 3 applied bioinformatic models combining AI algorithms and Omics technologies. These studies highlighted 2 key points for the creation of precision medicine: deep population phenotyping and the integration of Omics sciences in clinical protocols. Most of the studies identified applied AI only in the identification and classification of implant systems, quantification of peri-implant bone loss, and 3-dimensional bone analysis, planning implant placement. CONCLUSIONS The conventional criteria currently used as a technique for the diagnosis and monitoring of dental implants are insufficient and have low accuracy. Models that apply AI algorithms combined with precision methodologies-biomarkers-are extremely useful in the creation of precision medicine, allowing medical dentists to forecast the success of the implant. Tools that integrate the different types of data, including imaging, molecular, risk factor, and implant characteristics, are needed to make a more accurate and personalized prediction of implant success.
Collapse
Affiliation(s)
- Rita Silva Bornes
- Guest Lecturer, Universidade Católica Portuguesa, Faculty of Dental Medicine (FMD), Center for Interdisciplinary Research in Health (CIIS), Viseu, Portugal.
| | - Javier Montero
- Full professor in Prosthodontics, Department of Surgery, Faculty of Medicine, University of Salamanca, Salamanca, Spain
| | - André Ricardo Maia Correia
- Assistant Professor, Universidade Católica Portuguesa, Faculty of Dental Medicine (FMD), Center for Interdisciplinary Research in Health (CIIS), Viseu, Portugal
| | - Nuno Ricardo das Neves Rosa
- Assistant Professor, Universidade Católica Portuguesa, Faculty of Dental Medicine (FMD), Center for Interdisciplinary Research in Health (CIIS), Viseu, Portugal
| |
Collapse
|
29
|
Applications of Mass Spectrometry in Dentistry. Biomedicines 2023; 11:biomedicines11020286. [PMID: 36830822 PMCID: PMC9953492 DOI: 10.3390/biomedicines11020286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Mass Spectrometry (MS) is one of the fastest-developing methods in analytical instrumentation. As a highly sensitive, universal detector, it can identify known and unknown compounds, which can indeed be found in a minimal concentration. This review aims to highlight the significant milestones in MS applications in dentistry during recent decades. MS can be applied in three different fields of dentistry: (1) in research of dental materials and chemical agents, (2) in laboratory analysis of biospecimens, and (3) as a real-time diagnostic tool in service of oral surgery and pathology. MS applications on materials and agents may focus on numerous aspects, such as their clinical behavior, possible toxicity, or antimicrobial properties. MS is also a valuable, non-invasive tool for biomarkers' detection in saliva and has found great application in -omics technologies as it achieves efficient structure-finding in metabolites. As metabolites are located beyond the central dogma, this technique can provide a complete understanding of cellular functions. Thus, it is possible to determine the biological profile in normal and pathological conditions, detect various oral or systematic diseases and conditions, and predict their course. Lastly, some promising advances concerning the surgical approach to potentially oral malignant or malignant disorders exist. This breakthrough method provides a comprehensive approach to dental materials research and biomarker discovery in dental and craniofacial tissues. The current availability of various 'OMIC' approaches paves the way for individualized dentistry and provides suggestions for clinical applications in the point-of-care hubs.
Collapse
|
30
|
Canullo L, Rakic M, Corvino E, Burton M, Krumbeck JA, Chittoor Prem A, Ravidà A, Ignjatović N, Sculean A, Menini M, Pesce P. Effect of argon plasma pre-treatment of healing abutments on peri-implant microbiome and soft tissue integration: a proof-of-concept randomized study. BMC Oral Health 2023; 23:27. [PMID: 36650477 PMCID: PMC9843976 DOI: 10.1186/s12903-023-02729-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
PURPOSE Biofilm-free implant surface is ultimate prerequisite for successful soft and bone tissue integration. Objective of the study was to estimate the effects of argon plasma healing abutment pre-treatment (PT) on peri-implant soft-tissue phenotype (PiSP), inflammation, plaque accumulation and the microbiome (PiM) between non-treated (NPT) and treated (PT) abutments following 3-months healing period. The hypothesis was that cell-conductive and antimicrobial properties of PT would yield optimal conditions for soft tissue integration. MATERIAL AND METHODS Two months following second-phase surgery, microbiological and clinical parameters were assessed around thirty-six healing abutments with two types of microtopography, smooth surface (MACHINED) and ultrathin threaded microsurface (ROUGH). A two level randomization schema was used to achieve equal distribution and abutments were randomly divided into rough and machined groups, and then divided into PT and NPT groups. PiM was assessed using next-generation DNA sequencing. RESULTS PiM bacterial composition was highly diverse already two months post-implantation, consisting of key-stone pathogens, early and late colonizers, while the mycobiome was less diverse. PT was associated with lower plaque accumulation and inflammation without significant impact on PiSP, while in NPT clinical parameters were increased and associated with periopathogens. NPT mostly harbored late colonizers, while PT exerted higher abundance of early colonizers suggesting less advanced plaque formation. Interaction analysis in PT demonstrated S. mitis co-occurrence with pro-healthy Rothia dentocariosa and co-exclusion with Parvimonas micra, Porphyromonas endodontalis and Prevotella oris. PiSP parameters were generally similar between the groups, but significant association between PiM and keratinized mucosa width was observed in both groups, with remarkably more expressed diversity in NPT compared to PT. PT resulted in significantly lower BOP and PI around rough and machined abutments, respectively, without specific effect on PiM and PiSP. CONCLUSIONS PT contributed to significantly the less advanced biofilm accumulation and inflammation without specific effects on PiSP.
Collapse
Affiliation(s)
- Luigi Canullo
- grid.5734.50000 0001 0726 5157Department of Periodontology, University of Bern, Bern, Switzerland ,grid.5606.50000 0001 2151 3065Department of Surgical Sciences (DISC), University of Genoa, Genoa, Italy
| | - Mia Rakic
- grid.4795.f0000 0001 2157 7667ETEP (Etiology and Therapy of Periodontal Diseases) Research Group, University Complutense of Madrid, Madrid, Spain
| | - Emilio Corvino
- grid.8404.80000 0004 1757 2304University of Florence, Florence, Italy
| | - Maria Burton
- Zymo Research Corporation, 17062 Murphy Ave, Irvine, CA 92614 USA
| | - Janina A. Krumbeck
- Zymo Research Corporation, 17062 Murphy Ave, Irvine, CA 92614 USA ,Pangea Laboratory, 14762 Bentley Cir., Tustin, CA 92780 USA
| | | | | | - Nenad Ignjatović
- grid.419857.60000 0001 2221 9722Institute of Technical Science of the Serbian Academy of Sciences and Arts, 11000 Belgrade, Serbia
| | - Anton Sculean
- grid.5734.50000 0001 0726 5157Department of Periodontology, University of Bern, Bern, Switzerland
| | - Maria Menini
- grid.5606.50000 0001 2151 3065Department of Surgical Sciences (DISC), University of Genoa, Genoa, Italy
| | - Paolo Pesce
- grid.5606.50000 0001 2151 3065Department of Surgical Sciences (DISC), University of Genoa, Genoa, Italy
| |
Collapse
|
31
|
Parga A, Muras A, Otero-Casal P, Arredondo A, Soler-Ollé A, Àlvarez G, Alcaraz LD, Mira A, Blanc V, Otero A. The quorum quenching enzyme Aii20J modifies in vitro periodontal biofilm formation. Front Cell Infect Microbiol 2023; 13:1118630. [PMID: 36816581 PMCID: PMC9932050 DOI: 10.3389/fcimb.2023.1118630] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Recent studies have revealed the presence of N-acyl-homoserine lactones (AHLs) quorum sensing (QS) signals in the oral environment. Yet, their role in oral biofilm development remains scarcely investigated. The use of quorum quenching (QQ) strategies targeting AHLs has been described as efficient for the control of pathogenic biofilms. Here, we evaluate the use of a highly active AHL-targeting QQ enzyme, Aii20J, to modulate oral biofilm formation in vitro. Methods The effect of the QQ enzyme was studied in in vitro multispecies biofilms generated from oral samples taken from healthy donors and patients with periodontal disease. Subgingival samples were used as inocula, aiming to select members of the microbiota of the periodontal pocket niche in the in vitro biofilms. Biofilm formation abilities and microbial composition were studied upon treating the biofilms with the QQ enzyme Aii20J. Results and Discussion The addition of the enzyme resulted in significant biofilm mass reductions in 30 - 60% of the subgingival-derived biofilms, although standard AHLs could not be found in the supernatants of the cultured biofilms. Changes in biofilm mass were not accompanied by significant alterations of bacterial relative abundance at the genus level. The investigation of 125 oral supragingival metagenomes and a synthetic subgingival metagenome revealed a surprisingly high abundance and broad distribution of homologous of the AHL synthase HdtS and several protein families of AHL receptors, as well as an enormous presence of QQ enzymes, pointing to the existence of an intricate signaling network in oral biofilms that has been so far unreported, and should be further investigated. Together, our findings support the use of Aii20J to modulate polymicrobial biofilm formation without changing the microbiome structure of the biofilm. Results in this study suggest that AHLs or AHL-like molecules affect oral biofilm formation, encouraging the application of QQ strategies for oral health improvement, and reinforcing the importance of personalized approaches to oral biofilm control.
Collapse
Affiliation(s)
- Ana Parga
- Department of Microbiology and Parasitology, CIBUS-Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Andrea Muras
- Department of Microbiology and Parasitology, CIBUS-Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Paz Otero-Casal
- Department of Surgery and Medical-Surgical Specialties, Faculty of Medicine and Odontology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Unit of Oral Health, Santa Comba-Negreira, (CS) SERGAS, Santiago de Compostela, Spain
| | - Alexandre Arredondo
- Department of Microbiology, Dentaid Research Center, Cerdanyola Del Vallès, Spain
| | - Agnès Soler-Ollé
- Department of Microbiology, Dentaid Research Center, Cerdanyola Del Vallès, Spain
| | - Gerard Àlvarez
- Department of Microbiology, Dentaid Research Center, Cerdanyola Del Vallès, Spain
| | - Luis D. Alcaraz
- Department of Cellular Biology, Faculty of Sciences, National Autonomous University of Mexico, Coyoacán, Mexico
| | - Alex Mira
- Department of Genomics and Health, FISABIO Foundation, Valencia, Spain
| | - Vanessa Blanc
- Department of Microbiology, Dentaid Research Center, Cerdanyola Del Vallès, Spain
| | - Ana Otero
- Department of Microbiology and Parasitology, CIBUS-Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- *Correspondence: Ana Otero,
| |
Collapse
|
32
|
Àlvarez G, Arredondo A, Isabal S, Teughels W, Laleman I, Contreras MJ, Isbej L, Huapaya E, Mendoza G, Mor C, Nart J, Blanc V, León R. Association of nine pathobionts with periodontitis in four South American and European countries. J Oral Microbiol 2023; 15:2188630. [PMID: 36950255 PMCID: PMC10026778 DOI: 10.1080/20002297.2023.2188630] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023] Open
Abstract
Aim Our aim was to compare the prevalence and load of nine pathobionts in subgingival samples of healthy individuals and periodontitis patients from four different countries. Methods Five hundred and seven subgingival biofilm samples were collected from healthy subjects and periodontitis patients in Belgium, Chile, Peru and Spain. The prevalence and load of Eubacterium brachy, Filifactor alocis, Fretibacterium fastidiosum, Porphyromonas endodontalis, Porphyromonas gingivalis, Selenomonas sputigena, Treponema denticola, Tannerella forsythia and Treponema socranskii were measured by quantitative PCR. Results The association with periodontitis of all species, except for T. socranskii, was confirmed in all countries but Peru, where only P. endodontalis, P. gingivalis and T. denticola were found to be significantly associated. Moreover, most species showed higher loads at greater CAL and PPD, but not where there was BOP. Through Principal Component Analysis, samples showed clearly different distributions by diagnosis, despite observing a smaller separation in Peruvian samples. Conclusions Unlike prevalence, relative load was found to be a reliable variable to discriminate the association of the species with periodontitis. Based on this, F. alocis, P. endodontalis, P. gingivalis, T. denticola and T. forsythia may be biomarkers of disease in Belgium, Chile and Spain, due to their significantly higher abundance in periodontitis patients.
Collapse
Affiliation(s)
- Gerard Àlvarez
- Department of Microbiology, DENTAID Research Center, Cerdanyola del Vallès, Spain
| | - Alexandre Arredondo
- Department of Microbiology, DENTAID Research Center, Cerdanyola del Vallès, Spain
| | - Sergio Isabal
- Department of Microbiology, DENTAID Research Center, Cerdanyola del Vallès, Spain
| | - Wim Teughels
- Department of Oral Health Sciences, KU Leuven, Belgium & Dentistry, University Hospitals Leuven, Leuven, Belgium
| | - Isabelle Laleman
- Department of Oral Health Sciences, KU Leuven, Belgium & Dentistry, University Hospitals Leuven, Leuven, Belgium
| | - María José Contreras
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Lorena Isbej
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Pharmacology and Toxicology Programme, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Enrique Huapaya
- Department of Periodontology, School of Dentistry, Universidad Científica del Sur, Lima, Peru
| | - Gerardo Mendoza
- Department of Periodontology, School of Dentistry, Universidad Científica del Sur, Lima, Peru
- Department of Periodontics, University of Pennsylvania, School of dental Medicine, Philadelphia, Pennsylvania, USA
| | - Carolina Mor
- Department of Periodontology, Universitat Internacional de Catalunya, Barcelona, Spain
| | - José Nart
- Department of Periodontology, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Vanessa Blanc
- Department of Microbiology, DENTAID Research Center, Cerdanyola del Vallès, Spain
| | - Rubén León
- Department of Microbiology, DENTAID Research Center, Cerdanyola del Vallès, Spain
- CONTACT Rubén León Department of Microbiology, DENTAID Research Center, Ronda Can Fatjó no. 10, 08290, Cerdanyola del Vallès, Spain
| |
Collapse
|
33
|
Zhang Q, Guan L, Guo J, Chuan A, Tong J, Ban J, Tian T, Jiang W, Wang S. Application of fluoride disturbs plaque microecology and promotes remineralization of enamel initial caries. J Oral Microbiol 2022; 14:2105022. [PMID: 35923900 PMCID: PMC9341347 DOI: 10.1080/20002297.2022.2105022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background The caries-preventive effect of topical fluoride application has been corroborated by a number of clinical studies. However, the effect of fluoride on oral microecology remains unclear. Objective To monitor the effect of fluoride on dental plaque microecology and demineralization/remineralization balance of enamel initial caries. Methods Three-year-old children were enrolled and treated with fluoride at baseline and 6 months. International Caries Detection and Assessment System II indices of 52 subjects were measured at baseline, 3, 6, and 12 months. Supragingival plaque samples of 12 subjects were collected at baseline, 3 and 14 days for 16S rRNA sequencing. Results Changes in microbial community structure were observed at 3 days after fluoridation. Significant changes in the relative abundance of microorganisms were observed after fluoride application, especially Capnocytophaga, unidentified Prevotellaceae and Rothia. Functional prediction revealed that cell movement, carbohydrate and energy metabolism were affected significantly after fluoride application. Fluoride significantly inhibited enamel demineralization and promoted remineralization of early demineralized caries enamel at 3 months. Conclusion Fluoride application significantly inhibited the progression of enamel initial caries and reversed the demineralization process, possibly by disturbing dental plaque microecology and modulating the physicochemical action of demineralization/remineralization. This deepened our understanding of caries-preventive effects and mechanisms of fluoride.
Collapse
Affiliation(s)
- Qianxia Zhang
- Department of Operative Dentistry & Endodontics, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, School of Stomatology, the Fourth Military Medical University, Xi’an, PR China
| | - Lingxia Guan
- Department of Preventive Dentistry, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi’an, PR China
| | - Jing Guo
- Department of Preventive Dentistry, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi’an, PR China
| | - Aiyun Chuan
- Department of Operative Dentistry & Endodontics, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, School of Stomatology, the Fourth Military Medical University, Xi’an, PR China
| | - Juan Tong
- Department of Preventive Dentistry, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi’an, PR China
| | - Jinghao Ban
- Department of Preventive Dentistry, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi’an, PR China
| | - Tian Tian
- Department of VIP Dental Care, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, The Fourth Military Medical University, Xi’an, PR China
| | - Wenkai Jiang
- Department of Operative Dentistry & Endodontics, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, School of Stomatology, the Fourth Military Medical University, Xi’an, PR China
| | - Shengchao Wang
- Department of Operative Dentistry & Endodontics, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, School of Stomatology, the Fourth Military Medical University, Xi’an, PR China
| |
Collapse
|
34
|
Bessa LJ, Botelho J, Machado V, Alves R, Mendes JJ. Managing Oral Health in the Context of Antimicrobial Resistance. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16448. [PMID: 36554332 PMCID: PMC9778414 DOI: 10.3390/ijerph192416448] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 05/25/2023]
Abstract
The oral microbiome plays a major role in shaping oral health/disease state; thus, a main challenge for dental practitioners is to preserve or restore a balanced oral microbiome. Nonetheless, when pathogenic microorganisms install in the oral cavity and are incorporated into the oral biofilm, oral infections, such as gingivitis, dental caries, periodontitis, and peri-implantitis, can arise. Several prophylactic and treatment approaches are available nowadays, but most of them have been antibiotic-based. Given the actual context of antimicrobial resistance (AMR), antibiotic stewardship in dentistry would be a beneficial approach to optimize and avoid inappropriate or even unnecessary antibiotic use, representing a step towards precision medicine. Furthermore, the development of new effective treatment options to replace the need for antibiotics is being pursued, including the application of photodynamic therapy and the use of probiotics. In this review, we highlight the advances undergoing towards a better understanding of the oral microbiome and oral resistome. We also provide an updated overview of how dentists are adapting to better manage the treatment of oral infections given the problem of AMR.
Collapse
Affiliation(s)
- Lucinda J. Bessa
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz—Cooperativa de Ensino Superior, Caparica, 2829-511 Almada, Portugal
| | - João Botelho
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz—Cooperativa de Ensino Superior, Caparica, 2829-511 Almada, Portugal
- Clinical Research Unit (CRU), CiiEM, Egas Moniz—Cooperativa de Ensino Superior, Caparica, 2829-511 Almada, Portugal
- Evidence-Based Hub, CiiEM, Egas Moniz—Cooperativa de Ensino Superior, Caparica, 2829-511 Almada, Portugal
| | - Vanessa Machado
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz—Cooperativa de Ensino Superior, Caparica, 2829-511 Almada, Portugal
- Clinical Research Unit (CRU), CiiEM, Egas Moniz—Cooperativa de Ensino Superior, Caparica, 2829-511 Almada, Portugal
- Evidence-Based Hub, CiiEM, Egas Moniz—Cooperativa de Ensino Superior, Caparica, 2829-511 Almada, Portugal
| | - Ricardo Alves
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz—Cooperativa de Ensino Superior, Caparica, 2829-511 Almada, Portugal
- Clinical Research Unit (CRU), CiiEM, Egas Moniz—Cooperativa de Ensino Superior, Caparica, 2829-511 Almada, Portugal
| | - José João Mendes
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz—Cooperativa de Ensino Superior, Caparica, 2829-511 Almada, Portugal
- Clinical Research Unit (CRU), CiiEM, Egas Moniz—Cooperativa de Ensino Superior, Caparica, 2829-511 Almada, Portugal
- Evidence-Based Hub, CiiEM, Egas Moniz—Cooperativa de Ensino Superior, Caparica, 2829-511 Almada, Portugal
| |
Collapse
|
35
|
Carda-Diéguez M, Moazzez R, Mira A. Functional changes in the oral microbiome after use of fluoride and arginine containing dentifrices: a metagenomic and metatranscriptomic study. MICROBIOME 2022; 10:159. [PMID: 36171634 PMCID: PMC9520947 DOI: 10.1186/s40168-022-01338-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 07/27/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Tooth decay is one of the most prevalent diseases worldwide, and efficient tooth brushing with a fluoride-containing dentifrice is considered fundamental to caries prevention. Fluoride-containing dentifrices have been extensively studied in relation to enamel resistance to demineralization. Arginine (Arg) has also been proposed as a promising prebiotic to promote pH buffering through ammonia production. Here, we present the first metagenomic (DNA sequencing of the whole microbial community) and metatranscriptomic (RNAseq of the same community) analyses of human dental plaque to evaluate the effect of brushing with fluoride (Fl) and a Fl+Arg containing dentifrices on oral microbial composition and activity. Fifty-three patients were enrolled in a longitudinal clinical intervention study with two arms, including 26 caries-active and 27 caries-free adults. After a minimum 1-week washout period, dental plaque samples were collected at this post-washout baseline, 3 months after the use of a 1450-ppm fluoride dentifrice, and after 6 months of using a 1450-ppm fluoride with 1.5% arginine dentifrice. RESULTS There was a shift in both the composition and activity of the plaque microbiome after 3 months of brushing with the fluoride-containing toothpaste compared to the samples collected at the 1-week post-washout period, both for caries-active and caries-free sites. Although several caries-associated bacteria were reduced, there was also an increase in several health- and periodontitis-associated bacteria. Over 400 genes changed proportion in the metagenome, and between 180 and 300 genes changed their expression level depending on whether caries-free or caries-active sites were analyzed. The metagenome and metatranscriptome also changed after the subjects brushed with the Fl+Arg dentifrice. There was a further decrease of both caries- and periodontitis-associated organisms. In both caries-free and caries-active sites, a decrease of genes from the arginine biosynthesis pathway was also observed, in addition to an increase in the expression of genes associated with the arginine deiminase pathway, which catabolizes arginine into ammonia, thereby buffering acidic pH. Bacterial richness and diversity were not affected by either of the two treatments in the two arms of the study. CONCLUSIONS Our data demonstrate that long-term use of both assayed dentifrices changes the bacterial composition and functional profiles of human dental plaque towards a healthier microbial community, both in caries-free and caries-active sites. This observation was especially apparent for the Fl+Arg dentifrice. Thus, we conclude that the preventive benefits of tooth brushing go beyond the physical removal of dental plaque and that the active ingredients formulated within dentifrices have a positive effect not only on enamel chemistry but also on the metabolism of oral microbial populations. Video Abstract.
Collapse
Affiliation(s)
| | - Rebecca Moazzez
- Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Alex Mira
- Genomics and Health Department, FISABIO Institute, Valencia, Spain.
- Network of Epidemiology and Public Health, CIBERESP, Madrid, Spain.
| |
Collapse
|
36
|
Paqué PN, Hjerppe J, Zuercher AN, Jung RE, Joda T. Salivary biomarkers as key to monitor personalized oral healthcare and precision dentistry: A scoping review. FRONTIERS IN ORAL HEALTH 2022; 3:1003679. [PMID: 36338569 PMCID: PMC9632857 DOI: 10.3389/froh.2022.1003679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/01/2022] [Indexed: 11/15/2022] Open
Abstract
Personalized Oral Healthcare has recently become the new trend word in medicine and dentistry. In this context, saliva diagnostics using various biomarkers seem to be the gateway to personalized dental diagnostics and therapy. But the terminology is not (yet) uniformly defined, furthermore it is unclear to what extent which salivary markers play a relevant role in the therapeutic decision making. In this Scoping Review, an electronic search was conducted in PubMed and Web of Science databases using medical subject headings (MESH terms) "saliva", "biomarker", "personality/persons", and "dentistry". Only human studies were included, in which repeated salivary measurements were performed to analyze monitoring effects with at least ten patients per group. PRISMA-ScR and Tricco guidelines were followed: (i) to examine what salivary biomarkers have been explored in terms of personalized oral healthcare and precision dentistry, (ii) to investigate the clinical relevance for oral health and its correlation to systemic health, and (iii) to summarize an outlook for future developments based on these results. Out of 899 studies, a total of 57 were included for data extraction in this Scoping Review, mainly focusing on periodontal therapy and patient monitoring. Salivary biomarkers have shown the potential to change the field of dentistry in all dental disciplines as a key for personalized workflows. The increasing interest in dental research is obvious, demonstrated by the growing number of publications in recent years. At this time, however, the predominant discipline is periodontology, which allows biomarker-based monitoring of the disease prevention and progression. The studies included showed heterogeneous methods using manifolds biomarkers. Therefore, no uniformly accepted concept can be presented today. Further clinical research with well-defined outcomes including standardized procedures is necessary.
Collapse
Affiliation(s)
- Pune Nina Paqué
- Clinic of Reconstructive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Jenni Hjerppe
- Clinic of Reconstructive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Anina N. Zuercher
- Clinic of Reconstructive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Ronald E. Jung
- Clinic of Reconstructive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Tim Joda
- Clinic of Reconstructive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
- Department of Reconstructive Dentistry, University Center of Dental Medicine, University of Basel, Basel, Switzerland
| |
Collapse
|
37
|
Claesson R, Johansson A, Belibasakis GN. Clinical laboratory diagnostics in dentistry: Application of microbiological methods. FRONTIERS IN ORAL HEALTH 2022; 3:983991. [PMID: 36160119 PMCID: PMC9493047 DOI: 10.3389/froh.2022.983991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/10/2022] [Indexed: 12/05/2022] Open
Abstract
Diagnosis and treatment in dentistry are based on clinical examination of the patients. Given that the major oral diseases are of microbial biofilm etiology, it can be expected that performing microbiological analysis on samples collected from the patient could deliver supportive evidence to facilitate the decision-making process by the clinician. Applicable microbiological methods range from microscopy, to culture, to molecular techniques, which can be performed easily within dedicated laboratories proximal to the clinics, such as ones in academic dental institutions. Periodontal and endodontic infections, along with odontogenic abscesses, have been identified as conditions in which applied clinical microbiology may be beneficial for the patient. Administration of antimicrobial agents, backed by microbiological analysis, can yield more predictable treatment outcomes in refractory or early-occurring forms of periodontitis. Confirming a sterile root canal using a culture-negative sample during endodontic treatment may ensure the longevity of its outcome and prevent secondary infections. Susceptibility testing of samples obtained from odontogenic abscesses may facilitate the selection of the appropriate antimicrobial treatment to prevent further spread of the infection.
Collapse
Affiliation(s)
- Rolf Claesson
- Division of Oral Microbiology, Department of Odontology, Umeå University, Umeå, Sweden
- *Correspondence: Rolf Claesson
| | - Anders Johansson
- Division of Oral Microbiology, Department of Odontology, Umeå University, Umeå, Sweden
| | - Georgios N. Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
38
|
Analysis of Human and Microbial Salivary Proteomes in Children Offers Insights on the Molecular Pathogenesis of Molar-Incisor Hypomineralization. Biomedicines 2022; 10:biomedicines10092061. [PMID: 36140166 PMCID: PMC9495719 DOI: 10.3390/biomedicines10092061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
Molar incisor hypomineralization is a complex developmental enamel defect that affects the permanent dentition of children with significant functional and aesthetic implications. Saliva is an ideal diagnostic tool and ensures patients’ compliance by diminishing the discomfort especially in pediatric population. Lately, salivary proteome analysis has progressively evolved in various biomedical disciplines. As changes in saliva composition are associated with oral diseases, it is reasonable to assume that the saliva proteome of MIH-affected children might be altered compared to healthy children. This study analyzed the human and microbial salivary proteome in children with MIH in order to identify salivary markers indicative of the pathology. The conducted proteomic analysis generated a comprehensive dataset comprising a total of 1515 high confidence identifications and revealed a clear discrimination between the two groups. Statistical comparison identified 142 differentially expressed proteins, while the pathway analysis indicated deregulation of inflammation, immune response mechanisms, and defense response to bacteria in MIH patients. Bacterial proteome analysis showed a lower diversity for the microbial species, which highlights the dysbiotic environment established in the MIH pathology.
Collapse
|
39
|
Zubri NSM, Ramasamy K, Rahman NZA. Characterization and potential oral probiotic properties of Lactobacillus plantarum FT 12 and Lactobacillus brevis FT 6 isolated from Malaysian fermented food. Arch Oral Biol 2022; 143:105515. [PMID: 36084351 DOI: 10.1016/j.archoralbio.2022.105515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 07/25/2022] [Accepted: 08/01/2022] [Indexed: 11/02/2022]
Abstract
OBJECTIVE This study aims to characterise the lactic acid bacteria (LAB) isolated from local Malaysian fermented foods with oral probiotics properties. DESIGN The LAB strains isolated from Malaysian fermented foods, Lactobacillus brevis FT 6 and Lactobacillus plantarum FT 12, were assessed for their antimicrobial properties against Porphyromonas gingivalis ATCC 33277 via disc diffusion assay. Anti-biofilm properties were determined by treating the overnight P. gingivalis ATCC 33277 biofilm with different concentrations of LAB cell-free supernatant (LAB CFS). Quantification of biofilm was carried out by measuring the optical density of stained biofilm. The ability of L. brevis FT 6 and L. plantarum FT 12 to tolerate salivary amylase was also investigated. Acid production with different sugars was carried out by pH measurement and screening for potential antimicrobial organic acid by disc diffusion assay of neutralised probiotics CFS samples. In this study, L. rhamnosus ATCC 7469, a commercial strain was used to compare the efficacy of the isolated strain with the commercial strain. RESULTS Lactobacillus brevis FT 6 and L. plantarum FT 12 possess antimicrobial activity against P. gingivalis with inhibition diameters of more than 10 mm, and the results were comparable with L. rhamnosus ATCC 7469. The MIC and MBC assay results for all tested strains were recorded to be 25 µl/µl concentration. All LAB CFS reduced biofilm formation proportionally to the CFS concentration and tolerated salivary amylase with more than 50% viability. Overnight cultures of all lactic acid bacteria strains showed a pH reduction and neutralised CFS of all lactic acid bacteria strains did not show any inhibition towards P. gingivalis. CONCLUSIONS These results indicate that the isolated probiotics have the potential as probiotics to be used as a supportive oral health treatment, especially against a periodontal pathogen, P. gingivalis.
Collapse
|
40
|
Giordano-Kelhoffer B, Lorca C, March Llanes J, Rábano A, del Ser T, Serra A, Gallart-Palau X. Oral Microbiota, Its Equilibrium and Implications in the Pathophysiology of Human Diseases: A Systematic Review. Biomedicines 2022; 10:biomedicines10081803. [PMID: 36009350 PMCID: PMC9405223 DOI: 10.3390/biomedicines10081803] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 02/06/2023] Open
Abstract
Imbalances of the oral microbiota and dysbiosis have traditionally been linked to the occurrence of teeth and oral diseases. However, recent findings indicate that this microbiota exerts relevant influence in systemic health. Dysbiosis of the oral microbiota is implicated in the apparition and progression of cardiovascular, neurodegenerative and other major human diseases. In fact, the oral microbiota are the second most diverse and largely populated microbiota of the human body and its relationships with systemic health, although widely explored, they still lack of proper integration. The purpose of this systematic review is thus to widely examine the implications of oral microbiota in oral, cardiovascular and neurodegenerative diseases to offer integrative and up-to-date interpretations. To achieve that aim, we identified a total of 121 studies curated in PUBMED from the time interval January 2003–April 2022, which after careful screening resulted in 79 studies included. The reviewed scientific literature provides plausible vias of implication of dysbiotic oral microbiota in systemic human diseases, and encourages further research to continue elucidating the highly relevant and still poorly understood implications of this niche microbiota in systemic health. PROSPERO Registration Number: CRD42022299692. This systematic review follows relevant PRISMA guidelines.
Collapse
Affiliation(s)
- Barbara Giordano-Kelhoffer
- Faculty of Dentistry, Universitat Internacional de Catalunya (UIC), 08017 Barcelona, Spain;
- Bioengineering Institute of Technology, Faculty of Health Sciences, Universitat Internacional de Catalunya (UIC), 08017 Barcelona, Spain
- Faculty of Health Sciences, Valencian International University, 46002 Valencia, Spain
- Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRB Lleida), Neuroscience Area, +Pec Proteomics Research Group (+PPRG), University Hospital Arnau de Vilanova (HUAV), 25198 Lleida, Spain;
| | - Cristina Lorca
- Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRB Lleida), Neuroscience Area, +Pec Proteomics Research Group (+PPRG), University Hospital Arnau de Vilanova (HUAV), 25198 Lleida, Spain;
- IMDEA—Food Research Institute, +Pec Proteomics, Campus of International Excellence UAM + CSIC, Old Cantoblanco Hospital, 8 Crta. Canto Blanco, 28049 Madrid, Spain
| | - Jaume March Llanes
- NeuroPGA Research Group—Psychology Department, University of Lleida (UdL), 25001 Lleida, Spain;
| | - Alberto Rábano
- Alzheimer’s Centre Reina Sofia—CIEN Foundation, 28031 Madrid, Spain; (A.R.); (T.d.S.)
| | - Teodoro del Ser
- Alzheimer’s Centre Reina Sofia—CIEN Foundation, 28031 Madrid, Spain; (A.R.); (T.d.S.)
| | - Aida Serra
- IMDEA—Food Research Institute, +Pec Proteomics, Campus of International Excellence UAM + CSIC, Old Cantoblanco Hospital, 8 Crta. Canto Blanco, 28049 Madrid, Spain
- Correspondence: (A.S.); (X.G.-P.); Tel.: +34-91-7278-100 (A.S.); +34-97-3702-224 (X.G.-P.)
| | - Xavier Gallart-Palau
- Faculty of Health Sciences, Valencian International University, 46002 Valencia, Spain
- Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRB Lleida), Neuroscience Area, +Pec Proteomics Research Group (+PPRG), University Hospital Arnau de Vilanova (HUAV), 25198 Lleida, Spain;
- Psychology Department, University of Lleida (UdL), 25001 Lleida, Spain
- Correspondence: (A.S.); (X.G.-P.); Tel.: +34-91-7278-100 (A.S.); +34-97-3702-224 (X.G.-P.)
| |
Collapse
|
41
|
Aguilar-Gálvez D, Maguiña-Mercedes JC. [The dentobiome and the minimum intervention in dentistry]. REVISTA CIENTÍFICA ODONTOLÓGICA 2022; 10:e124. [PMID: 38389552 PMCID: PMC10880718 DOI: 10.21142/2523-2754-1003-2022-124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/16/2022] [Indexed: 02/24/2024] Open
Abstract
All of us who observe the chilling figures of children with dental caries on a daily basis and more recently the more frequent presence of enamel alterations and among them incisor molar hypomineralization, we begin to think what really happens with that tissue considered the strongest. of the human body; however, it bows down to an acid attack resulting from bacterial metabolism. And the question arises: Could it be that the tooth is already born with a predisposition to develop certain microorganisms? This comprehensive review of the literature, summarizing the authors' perspectives; aims to explore the knowledge about the biome and apply it to the dental organ and make available the definition of dentobiome, as an appropriate term for dental flora. Starting from this knowledge, apply it to better understand today the execution of the philosophy of minimal intervention and the development of materials that must be biocompatible with the dental structure but must also prevent dysbiosis and establish homeostasis in the tooth.
Collapse
Affiliation(s)
- Denisse Aguilar-Gálvez
- División de Odontopediatría, Carrera de Estomatología de la Universidad Científica del Sur. Lima, Perú. Universidad Científica del Sur División de Odontopediatría Carrera de Estomatología Universidad Científica del Sur Lima Peru
| | | |
Collapse
|
42
|
Ide M, Karimova M, Setterfield J. Oral Health, Antimicrobials and Care for Patients With Chronic Oral Diseases – A Review of Knowledge and Treatment Strategies. FRONTIERS IN ORAL HEALTH 2022; 3:866695. [PMID: 35747534 PMCID: PMC9210540 DOI: 10.3389/froh.2022.866695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/04/2022] [Indexed: 11/19/2022] Open
Abstract
Periodontal and chronic oral mucosal diseases are significant life impacting conditions which may co-exist and synergistically act to cause more severe and widespread oral pathology with enhanced challenges in effective management. Clinicians regularly observe these effects and struggle to effectively manage both problems in many patients. There is limited understanding of many basic and applied scientific elements underpinning potentially shared aetiopathological features and management. Recent developments in translational science provide an opportunity to greater improve knowledge and subsequently care for patients with these problems.
Collapse
|
43
|
Lima NG, Monteiro RM, Torres CP, de Souza-Gabriel AE, Watanabe E, Borsatto MC. Influence of antimicrobial photodynamic therapy with different pre-irradiation times on children's dental biofilm: randomized clinical trial. Eur Arch Paediatr Dent 2022; 23:897-904. [PMID: 35666375 DOI: 10.1007/s40368-022-00716-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 05/03/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE Photodynamic therapy (PDT) is effective in reducing pathogenic microorganisms in the oral cavity and in preventing dental diseases. This study evaluated the pre-irradiation time using PDT (diode laser associated with 0.01% methylene blue) to decrease the number of microorganisms in the visible plaque in permanent teeth. METHODS This randomized clinical trial included 108 homologous lower permanent first molars (36 and 46) with biofilm from 54 children aged six to 12 years. PDT was performed (0.01% methylene blue photosensitizer/therapeutic laser-InGaAIP), according to the following protocols: Group 1, biofilm collection of the distal area of the lingual surface of 36 µm before PDT; group 2, mesial area of the lingual surface of 36 µm 1 min after PDT; group 3, area of the lingual surface of 46 µm before PDT; and group 4, mesial area of the lingual surface of 46 µm 5 min after PDT. RESULTS After statistical analysis, significant differences were observed between the groups (p = 0.000). In groups 2 and 4, the number of bacteria tended to decrease, with a more evident bacterial reduction in group 4. CONCLUSIONS Pre-irradiation reduced the number of colony-forming units of mature bacterial biofilms in vivo. A time of 5 min resulted in a greater reduction in the number of colony-forming units. CLINICAL TRIAL REGISTRATION ReBEC Identifier: RBR-6bqfp3; Date of Register: March 2nd, 2020. Retrospectively Registered.
Collapse
Affiliation(s)
- N G Lima
- Department of Pediatric Clinics, Departamento de Clínica Infantil, Faculdade de Odontologia de Ribeirão Preto, Ribeirão Preto Dental School, University of São Paulo (USP), Av. do Café, s/n Subsetor Oeste 11, Ribeirão Prêto, SP, 14040-940, Brazil
| | - R M Monteiro
- Department of Fundamental Nursing, The College of Nursing, University of São Paulo, Ribeirão Prêto, SP, Brazil
| | - C P Torres
- Department of Pediatric Clinics, Departamento de Clínica Infantil, Faculdade de Odontologia de Ribeirão Preto, Ribeirão Preto Dental School, University of São Paulo (USP), Av. do Café, s/n Subsetor Oeste 11, Ribeirão Prêto, SP, 14040-940, Brazil
| | - A E de Souza-Gabriel
- Department of Restorative Dentistry, Ribeirão Preto Dental School, University of São Paulo, Ribeirão Prêto, SP, Brazil
| | - E Watanabe
- Department of Restorative Dentistry, Ribeirão Preto Dental School, University of São Paulo, Ribeirão Prêto, SP, Brazil
| | - M C Borsatto
- Department of Pediatric Clinics, Departamento de Clínica Infantil, Faculdade de Odontologia de Ribeirão Preto, Ribeirão Preto Dental School, University of São Paulo (USP), Av. do Café, s/n Subsetor Oeste 11, Ribeirão Prêto, SP, 14040-940, Brazil.
| |
Collapse
|
44
|
Citizen-science reveals changes in the oral microbiome in Spain through age and lifestyle factors. NPJ Biofilms Microbiomes 2022; 8:38. [PMID: 35585074 PMCID: PMC9117221 DOI: 10.1038/s41522-022-00279-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/21/2022] [Indexed: 12/20/2022] Open
Abstract
The relevance of the human oral microbiome to our understanding of human health has grown in recent years as microbiome studies continue to develop. Given the links of the oral cavity with the digestive, respiratory and circulatory systems, the composition of the oral microbiome is relevant beyond just oral health, impacting systemic processes across the body. However, we still have a very limited understanding about intrinsic and extrinsic factors that shape the composition of the healthy oral microbiome. Here, we followed a citizen-science approach to assess the relative impact on the oral microbiome of selected biological, social, and lifestyle factors in 1648 Spanish individuals. We found that the oral microbiome changes across age, with middle ages showing a more homogeneous composition, and older ages showing more diverse microbiomes with increased representation of typically low abundance taxa. By measuring differences within and between groups of individuals sharing a given parameter, we were able to assess the relative impact of different factors in driving specific microbial compositions. Chronic health disorders present in the analyzed population were the most impactful factors, followed by smoking and the presence of yeasts in the oral cavity. Finally, we corroborate findings in the literature that relatives tend to have more similar oral microbiomes, and show for the first time a similar effect for classmates. Multiple intrinsic and extrinsic factors jointly shape the oral microbiome. Comparative analysis of metabarcoding data from a large sample set allows us to disentangle the individual effects.
Collapse
|
45
|
Laugisch O, Auschill TM, Tumbrink A, Sculean A, Arweiler NB. Influence of Anti-Infective Periodontal Therapy on Subgingival Microbiota Evaluated by Chair-Side Test Compared to qPCR—A Clinical Follow-Up Study. Antibiotics (Basel) 2022; 11:antibiotics11050577. [PMID: 35625221 PMCID: PMC9137526 DOI: 10.3390/antibiotics11050577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/14/2022] [Accepted: 04/21/2022] [Indexed: 01/27/2023] Open
Abstract
A chair-side test (CST) for five periodontal pathogens (Aggregatibacter actinomycetemcomitans, A.a.; Porphyromonas gingivalis, P.g.; Prevotella intermedia, P.i.; Treponema denticola, T.d.; Tannerella forsythia, T.f.) was compared with qPCR in a previous clinical study on 100 periodontitis patients at first diagnosis (T0). Following non-surgical treatment alone (SRP) or in combination with systemic or local antibiotics, 74 patients (57.4 ± 13.5 years) were again tested at the same sites from 14 to 24 months after T0. Bacterial elimination (%; compared to T0) was determined for each single species and compared between both test systems. In all patients, all five pathogens could not be fully eliminated regardless of therapy or test method. Tested with CST, the mean elimination ranged from 90% for SRP + Amoxicillin/Metronidazole to 59.13% for SRP only. The corresponding qPCR values were 30% and 29.6%. Only A.a. was eradicated in 100% by SRP + Amoxicillin/Metronidazole tested by CST, and it was 80% when qPCR was the test method. CST agreed with qPCR in 98.7% in the detection of A.a., and 74.3%, 78.4%, 73.0%, and 48.7% for P.g., P.i., T.d., and T.f., respectively. Neither conventional treatment nor the additional use of antibiotics—even with the correct indication—could completely eradicate the tested pathogens or prevent pocket reinfection.
Collapse
Affiliation(s)
- Oliver Laugisch
- Department of Periodontology and Peri-Implant Diseases, Philipps-University, 35039 Marburg, Germany; (O.L.); (T.M.A.); (A.T.)
| | - Thorsten M. Auschill
- Department of Periodontology and Peri-Implant Diseases, Philipps-University, 35039 Marburg, Germany; (O.L.); (T.M.A.); (A.T.)
| | - Anne Tumbrink
- Department of Periodontology and Peri-Implant Diseases, Philipps-University, 35039 Marburg, Germany; (O.L.); (T.M.A.); (A.T.)
- Private Practice, 48324 Sendenhorst, Germany
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland;
| | - Nicole B. Arweiler
- Department of Periodontology and Peri-Implant Diseases, Philipps-University, 35039 Marburg, Germany; (O.L.); (T.M.A.); (A.T.)
- Correspondence:
| |
Collapse
|
46
|
Zhang Y, Li Y, Yang Y, Wang Y, Cao X, Jin Y, Xu Y, Li SC, Zhou Q. Periodontal and Peri-Implant Microbiome Dysbiosis Is Associated With Alterations in the Microbial Community Structure and Local Stability. Front Microbiol 2022; 12:785191. [PMID: 35145492 PMCID: PMC8821947 DOI: 10.3389/fmicb.2021.785191] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/07/2021] [Indexed: 12/14/2022] Open
Abstract
Periodontitis and peri-implantitis are common biofilm-mediated infectious diseases affecting teeth and dental implants and have been considered to be initiated with microbial dysbiosis. To further understand the essence of oral microbiome dysbiosis in terms of bacterial interactions, community structure, and microbial stability, we analyzed 64 plaque samples from 34 participants with teeth or implants under different health conditions using metagenomic sequencing. After taxonomical annotation, we computed the inter-species correlations, analyzed the bacterial community structure, and calculated the microbial stability in supra- and subgingival plaques from hosts with different health conditions. The results showed that when inflammation arose, the subgingival communities became less connective and competitive with fewer hub species. In contrast, the supragingival communities tended to be more connective and competitive with an increased number of hub species. Besides, periodontitis and peri-implantitis were associated with significantly increased microbial stability in subgingival microbiome. These findings indicated that the periodontal and peri-implant dysbiosis is associated with aberrant alterations in the bacterial correlations, community structures, and local stability. The highly connected hub species, as well as the major contributing species of negative correlations, should also be given more concern in future studies.
Collapse
Affiliation(s)
- Yuchen Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Implant Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Yinhu Li
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yuguang Yang
- Department of Advanced Manufacturing and Robotics, College of Engineering, Peking University, Beijing, China
| | - Yiqing Wang
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, China
| | - Xiao Cao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Implant Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Yu Jin
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Implant Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Yue Xu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of General Dentistry and Emergency Room, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Shuai Cheng Li
- Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Qin Zhou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Implant Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
47
|
Krasnokutskyy O, Goncharuk-Khomyn M, Rusyn V, Tukalo I, Myhal O, Pal Y. Gingival Recession Treatment with the Use of Xenogeneic Matrix: Optimization of Patient-Centered Outcomes by the Digital Soft Tissue Design. PESQUISA BRASILEIRA EM ODONTOPEDIATRIA E CLÍNICA INTEGRADA 2022. [DOI: 10.1590/pboci.2022.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Affiliation(s)
| | | | | | | | - Ostap Myhal
- Danylo Halytsky Lviv National Medical University, Ukraine
| | | |
Collapse
|
48
|
Barb JJ, Maki KA, Kazmi N, Meeks BK, Krumlauf M, Tuason RT, Brooks AT, Ames NJ, Goldman D, Wallen GR. The oral microbiome in alcohol use disorder: a longitudinal analysis during inpatient treatment. J Oral Microbiol 2021; 14:2004790. [PMID: 34880965 PMCID: PMC8648028 DOI: 10.1080/20002297.2021.2004790] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Background Alcohol use disorder (AUD)-induced disruption of oral microbiota can lead to poor oral health; there have been no studies published examining the longitudinal effects of alcohol use cessation on the oral microbiome. Aim To investigate the oral microbiome during alcohol cessation during inpatient treatment for AUD. Methods Up to 10 oral tongue brushings were collected from 22 AUD patients during inpatient treatment at the National Institutes of Health. Alcohol use history, smoking, and periodontal disease status were measured. Oral microbiome samples were sequenced using 16S rRNA gene sequencing. Results Alpha diversity decreased linearly during treatment across the entire cohort (P = 0.002). Alcohol preference was associated with changes in both alpha and beta diversity measures. Characteristic tongue dorsum genera from the Human Microbiome Project such as Streptococcus, Prevotella, Veillonella and Haemophilus were highly correlated in AUD. Oral health-associated genera that changed longitudinally during abstinence included Actinomyces, Capnocytophaga, Fusobacterium, Neisseria and Prevotella. Conclusion The oral microbiome in AUD is affected by alcohol preference. Patients with AUD often have poor oral health but abstinence and attention to oral care improve dysbiosis, decreasing microbiome diversity and periodontal disease-associated genera while improving acute oral health.
Collapse
Affiliation(s)
- J J Barb
- Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, Bethesda, MD, USA
| | - K A Maki
- Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, Bethesda, MD, USA
| | - N Kazmi
- Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, Bethesda, MD, USA
| | - B K Meeks
- Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, Bethesda, MD, USA
| | - M Krumlauf
- Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, Bethesda, MD, USA
| | - R T Tuason
- Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, Bethesda, MD, USA
| | - A T Brooks
- Center for Scientific Review, National Institutes of Health, Bethesda, Md, USA
| | - N J Ames
- National Institutes of Health, Clinical Center, Bethesda, MD, USA
| | - D Goldman
- Office of the Clinical Director, Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Md, USA
| | - G R Wallen
- Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, Bethesda, MD, USA
| |
Collapse
|
49
|
Mooney EC, Holden SE, Xia XJ, Li Y, Jiang M, Banson CN, Zhu B, Sahingur SE. Quercetin Preserves Oral Cavity Health by Mitigating Inflammation and Microbial Dysbiosis. Front Immunol 2021; 12:774273. [PMID: 34899728 PMCID: PMC8663773 DOI: 10.3389/fimmu.2021.774273] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/08/2021] [Indexed: 11/21/2022] Open
Abstract
Failure to attenuate inflammation coupled with consequent microbiota changes drives the development of bone-destructive periodontitis. Quercetin, a plant-derived polyphenolic flavonoid, has been linked with health benefits in both humans and animals. Using a systematic approach, we investigated the effect of orally delivered Quercetin on host inflammatory response, oral microbial composition and periodontal disease phenotype. In vivo, quercetin supplementation diminished gingival cytokine expression, inflammatory cell infiltrate and alveolar bone loss. Microbiome analyses revealed a healthier oral microbial composition in Quercetin-treated versus vehicle-treated group characterized by reduction in the number of pathogenic species including Enterococcus, Neisseria and Pseudomonas and increase in the number of non-pathogenic Streptococcus sp. and bacterial diversity. In vitro, Quercetin diminished inflammatory cytokine production through modulating NF-κB:A20 axis in human macrophages following challenge with oral bacteria and TLR agonists. Collectively, our findings reveal that Quercetin supplement instigates a balanced periodontal tissue homeostasis through limiting inflammation and fostering an oral cavity microenvironment conducive of symbiotic microbiota associated with health. This proof of concept study provides key evidence for translational studies to improve overall health.
Collapse
Affiliation(s)
- Erin C. Mooney
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Sara E. Holden
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University, Richmond, VA, United States
| | - Xia-Juan Xia
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Yajie Li
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Min Jiang
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Camille N. Banson
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Bin Zhu
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Sinem Esra Sahingur
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
50
|
Pytko-Polończyk J, Stawarz-Janeczek M, Kryczyk-Poprawa A, Muszyńska B. Antioxidant-Rich Natural Raw Materials in the Prevention and Treatment of Selected Oral Cavity and Periodontal Diseases. Antioxidants (Basel) 2021; 10:antiox10111848. [PMID: 34829719 PMCID: PMC8614929 DOI: 10.3390/antiox10111848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/11/2022] Open
Abstract
Antioxidant-rich natural raw materials have been used for thousands of years in traditional medicine. In the past decade, there has been increasing interest in naturotherapy, which is a practice of using products with a natural origin. Natural products can be effective in the treatment and prevention of oral and dental diseases, among others. Such raw materials used in dentistry are characterized by antioxidant, anti-inflammatory, antibacterial, antiviral, antiedematous, astringent, anticoagulant, dehydrating, vitaminizing, and-above all-regenerative properties. Reports have shown that a relationship exists between oral diseases and the qualitative and quantitative composition of the microbiota colonizing the oral cavity. This review aimed to analyze the studies focusing on the microbiome colonizing the oral cavity in the context of using natural raw materials especially herbs, plant extracts, and isolated biologically active compounds as agents in the prevention and treatment of oral and periodontal diseases such as dental caries as well as mucosal changes associated with salivary secretion disorder. The present work discusses selected plant ingredients exhibiting an antioxidant activity with potential for the treatment of selected oral cavity and periodontal diseases.
Collapse
Affiliation(s)
- Jolanta Pytko-Polończyk
- Department of Integrated Dentistry, Faculty of Medicine, Institute of Dentistry, Jagiellonian University Medical College, Montelupich Street 4, 31-155 Kraków, Poland;
| | - Magdalena Stawarz-Janeczek
- Department of Integrated Dentistry, Faculty of Medicine, Institute of Dentistry, Jagiellonian University Medical College, Montelupich Street 4, 31-155 Kraków, Poland;
- Correspondence: (M.S.-J.); (A.K.-P.)
| | - Agata Kryczyk-Poprawa
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna Street 9, 30-688 Kraków, Poland
- Correspondence: (M.S.-J.); (A.K.-P.)
| | - Bożena Muszyńska
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna Street 9, 30-688 Kraków, Poland;
| |
Collapse
|