1
|
Raka F, Hoffman S, Nady A, Guan H, Zhang R, Wang H, Khan WI, Adeli K. Peripheral Serotonin Controls Dietary Fat Absorption and Chylomicron Secretion via 5-HT4 Receptor in Males. Endocrinology 2024; 165:bqae112. [PMID: 39248655 PMCID: PMC11417612 DOI: 10.1210/endocr/bqae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/09/2024] [Accepted: 09/06/2024] [Indexed: 09/10/2024]
Abstract
Postprandial dyslipidemia is commonly present in people with type 2 diabetes and obesity and is characterized by overproduction of apolipoprotein B48-containing chylomicron particles from the intestine. Peripheral serotonin is emerging as a regulator of energy homeostasis with profound implications for obesity; however, its role in dietary fat absorption and chylomicron production is unknown. Chylomicron production was assessed in Syrian golden hamsters by administering an olive oil gavage and IP poloxamer to inhibit lipoprotein clearance. Administration of serotonin or selective serotonin reuptake inhibitor, fluoxetine, increased postprandial plasma triglyceride (TG) and TG-rich lipoproteins. Conversely, inhibiting serotonin synthesis pharmacologically by p-chlorophenylalanine (PCPA) led to a reduction in both the size and number of TG-rich lipoprotein particles, resulting in lower plasma TG and apolipoprotein B48 levels. The effects of PCPA occurred independently of gastric emptying and vagal afferent signaling. Inhibiting serotonin synthesis by PCPA led to increased TG within the intestinal lumen and elevated levels of TG and cholesterol in the stool when exposed to a high-fat/high-cholesterol diet. These findings imply compromised fat absorption, as evidenced by reduced lipase activity in the duodenum and lower levels of serum bile acids, which are indicative of intestinal bile acids. During the postprandial state, mRNA levels for serotonin receptors (5-HTRs) were upregulated in the proximal intestine. Administration of cisapride, a 5-HT4 receptor agonist, alleviated reductions in postprandial lipemia caused by serotonin synthesis inhibition, indicating that serotonin controls dietary fat absorption and chylomicron secretion via 5-HT4 receptor.
Collapse
Affiliation(s)
- Fitore Raka
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Simon Hoffman
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Asal Nady
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Henry Guan
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Rianna Zhang
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Huaqing Wang
- Department of Pathology & Molecular Medicine and Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Waliul I Khan
- Department of Pathology & Molecular Medicine and Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Khosrow Adeli
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
2
|
Gugliucci A. The chylomicron saga: time to focus on postprandial metabolism. Front Endocrinol (Lausanne) 2024; 14:1322869. [PMID: 38303975 PMCID: PMC10830840 DOI: 10.3389/fendo.2023.1322869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/28/2023] [Indexed: 02/03/2024] Open
Abstract
Since statins have had such tremendous therapeutic success over the last three decades, the field of atherosclerosis has become somewhat LDL-centric, dismissing the relevance of triglycerides (TG), particularly chylomicrons, in atherogenesis. Nonetheless, 50% of patients who take statins are at risk of developing atherosclerotic cardiovascular disease (ASCVD) and are unable to achieve their goal LDL-C levels. This residual risk is mediated, in part by triglyceride rich lipoproteins (TRL) and their remnants. Following his seminal investigation on the subject, Zilversmit proposed that atherosclerosis is a postprandial event in 1979 (1-4). In essence, the concept suggests that remnant cholesterol-rich chylomicron (CM) and very-low density lipoprotein (VLDL) particles play a role in atherogenesis. Given the foregoing, this narrative review addresses the most recent improvements in our understanding of postprandial dyslipidemia. The primary metabolic pathways of chylomicrons are discussed, emphasizing the critical physiological role of lipoprotein lipase and apoCIII, the importance of these particles' fluxes in the postprandial period, their catabolic rate, the complexities of testing postprandial metabolism, and the role of angiopoietin-like proteins in the partition of CM during the fed cycle. The narrative is rounded out by the dysregulation of postprandial lipid metabolism in insulin resistance states and consequent CVD risk, the clinical evaluation of postprandial dyslipidemia, current research limits, and potential future study directions.
Collapse
Affiliation(s)
- Alejandro Gugliucci
- Glycation, Oxidation and Disease Laboratory, Department of Research, Touro University California, Vallejo, CA, United States
| |
Collapse
|
3
|
Kyhl LK, Nordestgaard BG, Tybjærg-Hansen A, Nielsen SF. High fat in blood and body and increased risk of clinically diagnosed non-alcoholic fatty liver disease in 105,981 individuals. Atherosclerosis 2023; 376:1-10. [PMID: 37253311 DOI: 10.1016/j.atherosclerosis.2023.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND AND AIMS High caloric diets rich in fat and carbohydrates lead to increased fat accumulation in adipose tissue and blood. This may lead to increased risk of non-alcoholic fatty liver disease. We hypothesized that baseline high nonfasting plasma triglycerides, body mass index (BMI), and waist circumference, individually and combined, associate with increased risk of clinically diagnosed non-alcoholic fatty liver disease during follow-up. METHODS Cohort of 105,981 white Danish individuals recruited in 2003-2015 with end of follow-up on December 13th, 2018. Mean follow-up was 9.2 years during which time 418 were clinically diagnosed at hospitals with non-alcoholic fatty liver disease. RESULTS Risk of clinically diagnosed non-alcoholic fatty liver disease increased with higher plasma triglycerides, higher BMI, and with higher waist circumference, continuously and stepwise using multivariable adjusted hazard ratios and cumulative incidences. Combining clinical categories of plasma triglycerides with BMI or waist circumference categories, illustrated an almost additive risk with increasing categories. Compared with plasma triglycerides of <1 mmol/L and BMI <25 kg/m2, the multivariable adjusted hazard ratio was 5.2(95% confidence interval: 1.3-21.6) for individuals with both plasma triglycerides of ≥5 mmol/L and BMI ≥35 kg/m2. The corresponding hazard ratio for individuals with plasma triglycerides ≥5 mmol/L and waist circumference was >88 cm for women and >102 cm for men was 4.8(2.3-9.7). Triglyceride results were more pronounced in women versus men. CONCLUSIONS High fat in blood and body measured by plasma triglycerides, BMI, and waist circumference, individually and especially combined, are associated with up to a 5-fold increased risk of clinically diagnosed non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Lærke Kristine Kyhl
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Børge Grønne Nordestgaard
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Anne Tybjærg-Hansen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Sune Fallgaard Nielsen
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
4
|
Krysa JA, Ball GDC, Vine DF, Jetha M, Proctor SD. ApoB-lipoprotein remnant dyslipidemia and high-fat meal intolerance is associated with markers of cardiometabolic risk in youth with obesity. Pediatr Obes 2021; 16:e12745. [PMID: 33150705 DOI: 10.1111/ijpo.12745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Cardiovascular disease (CVD) originates in childhood and risk is exacerbated in obesity. Mechanisms of the etiologic link between early adiposity and CVD-risk remain unclear. Postprandial or non-fasting dyslipidemia is characterized by elevated plasma triglycerides (TG) and intestinal-apolipoprotein(apo)B48-remnants following a high-fat meal and is a known CVD-risk factor in adults. The aim of this study was to determine (a) whether the fasting concentration of apoB48-remnants can predict impaired non-fasting apoB48-lipoprotein metabolism (fat intolerance) and (b) the relationship of these biomarkers with cardiometabolic risk factors in youth with or without obesity. METHODS We assessed fasting and non-fasting lipids in youth without obesity (n = 22, 10 males, 12 females) and youth with obesity (n = 13, 5 males, 8 females) with a mean BMI Z-score of 0.19 ± 0.70 and 2.25 ± 0.31 (P = .04), respectively. RESULTS Fasting and non-fasting apoB48-remnants were elevated in youth with obesity compared to youth without obesity (apoB48: 18.04 ± 1.96 vs 8.09 ± 0.59, P < .0001, and apoB48AUC : 173.0 ± 20.86 vs 61.99 ± 3.44, P < .001). Furthermore, fasting plasma apoB48-remnants were positively correlated with the non-fasting response in apoB48AUC (r = 0.84, P < .0001) as well as other cardiometabolic risk factors including HOMA-IR (r = 0.61, P < .001) and leptin (r = 0.56, P < .0001). CONCLUSION Fasting apoB48-remnants are elevated in youth with obesity and predict apoB48 postprandial dyslipidemia. ApoB48-remnants are associated with the extent of fat intolerance and appear to be potential biomarker of CVD-risk in youth.
Collapse
Affiliation(s)
- Jacqueline A Krysa
- Division of Nutrition, Metabolic and Cardiovascular Diseases Laboratory, University of Alberta, Edmonton, Alberta, Canada
| | - Geoff D C Ball
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Donna F Vine
- Division of Nutrition, Metabolic and Cardiovascular Diseases Laboratory, University of Alberta, Edmonton, Alberta, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Mary Jetha
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Spencer D Proctor
- Division of Nutrition, Metabolic and Cardiovascular Diseases Laboratory, University of Alberta, Edmonton, Alberta, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
5
|
Taskinen MR, Björnson E, Matikainen N, Söderlund S, Pietiläinen KH, Ainola M, Hakkarainen A, Lundbom N, Fuchs J, Thorsell A, Andersson L, Adiels M, Packard CJ, Borén J. Effects of liraglutide on the metabolism of triglyceride-rich lipoproteins in type 2 diabetes. Diabetes Obes Metab 2021; 23:1191-1201. [PMID: 33502078 DOI: 10.1111/dom.14328] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/08/2021] [Accepted: 01/23/2021] [Indexed: 01/07/2023]
Abstract
AIM To elucidate the impact of liraglutide on the kinetics of apolipoprotein (apo)B48- and apoB100-containing triglyceride-rich lipoproteins in subjects with type 2 diabetes (T2D) after a single fat-rich meal. MATERIALS AND METHODS Subjects with T2D were included in a study to investigate postprandial apoB48 and apoB100 metabolism before and after 16 weeks on l.8 mg/day liraglutide (n = 14) or placebo (n = 4). Stable isotope tracer and compartmental modelling techniques were used to determine the impact of liraglutide on chylomicron and very low-density lipoprotein (VLDL) production and clearance after a single fat-rich meal. RESULTS Liraglutide reduced apoB48 synthesis in chylomicrons by 60% (p < .0001) and increased the triglyceride/apoB48 ratio (i.e. the size) of chylomicrons (p < .001). Direct clearance of chylomicrons, a quantitatively significant pathway pretreatment, decreased by 90% on liraglutide (p < .001). Liraglutide also reduced VLDL1 -triglyceride secretion (p = .017) in parallel with reduced liver fat. Chylomicron-apoB48 production and particle size were related to insulin sensitivity (p = .015 and p < .001, respectively), but these associations were perturbed by liraglutide. CONCLUSIONS In a physiologically relevant setting that mirrored regular feeding in subjects with T2D, liraglutide promoted potentially beneficial changes on postprandial apoB48 metabolism. Using our data in an integrated metabolic model, we describe how the action of liraglutide in T2D on chylomicron and VLDL kinetics could lead to decreased generation of remnant lipoproteins.
Collapse
Affiliation(s)
- Marja-Riitta Taskinen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Elias Björnson
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Niina Matikainen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Endocrinology, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
| | - Sanni Söderlund
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Endocrinology, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
| | - Kirsi H Pietiläinen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Endocrinology, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
| | - Mari Ainola
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Antti Hakkarainen
- HUS Medical Imaging Center, Radiology, Helsinki University Hospital, University of Helsinki, Finland
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Nina Lundbom
- HUS Medical Imaging Center, Radiology, Helsinki University Hospital, University of Helsinki, Finland
| | - Johannes Fuchs
- Proteomics Core Facility at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Annika Thorsell
- Proteomics Core Facility at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Linda Andersson
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Martin Adiels
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Chris J Packard
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Jan Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Laboratory/Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
6
|
Ho-Plagaro A, Santiago-Fernandez C, Rodríguez-Díaz C, Lopez-Gómez C, Garcia-Serrano S, Rodríguez-Pacheco F, Valdes S, Rodríguez-Cañete A, Alcaín-Martínez G, Ruiz-Santana N, Vázquez-Pedreño L, García-Fuentes E. Different Expression of Duodenal Genes Related to Insulin Resistance Between Nonobese Women and Those with Severe Obesity. Obesity (Silver Spring) 2020; 28:1708-1717. [PMID: 32729246 DOI: 10.1002/oby.22902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/14/2020] [Accepted: 05/07/2020] [Indexed: 12/26/2022]
Abstract
OBJECTIVE The study aim was to identify changes in duodenal gene expression associated with the development of insulin resistance according to the BMI of women. METHODS Duodenal samples were assessed by microarray in four groups of women, nonobese women and women with severe obesity, with both low and high insulin resistance. RESULTS There was a group of shared downregulated differentially expressed genes (DEGs) related to tissue homeostasis and antimicrobial humoral response in women with higher insulin resistance both with severe obesity and without obesity. In the exclusive DEGs found in severe obesity, downregulated DEGs related to the regulation of the defense response to bacterium and cell adhesion, involving pathways related to the immune system, inflammation, and xenobiotic metabolism, were observed. In the exclusive DEGs from nonobese women with higher insulin resistance, upregulated DEGs mainly related to the regulation of lipoprotein lipase activity, very low-density lipoprotein particle remodeling, lipid metabolic process, antigen processing, and the presentation of peptide antigen were found. CONCLUSIONS Independent of BMI, higher insulin resistance was associated with a downregulation of duodenal DEGs mainly related to the immune system, inflammation, and xenobiotic metabolism. Also, intestinal lipoprotein metabolism may have a certain relevance in the regulation of insulin resistance in nonobese women.
Collapse
Affiliation(s)
- Ailec Ho-Plagaro
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Málaga, Spain
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Málaga, Spain
| | - Concepción Santiago-Fernandez
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Málaga, Spain
- Departamento de Medicina y Dermatología, Universidad de Málaga, Málaga, Spain
| | - Cristina Rodríguez-Díaz
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Carlos Lopez-Gómez
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Sara Garcia-Serrano
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, Málaga, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas-CIBERDEM, Málaga, Spain
| | - Francisca Rodríguez-Pacheco
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Sergio Valdes
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, Málaga, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas-CIBERDEM, Málaga, Spain
| | - Alberto Rodríguez-Cañete
- Unidad de Gestión Clínica de Cirugía General, Digestiva y Trasplantes, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Guillermo Alcaín-Martínez
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Natalia Ruiz-Santana
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Luis Vázquez-Pedreño
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Eduardo García-Fuentes
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| |
Collapse
|
7
|
Yu Y, Raka F, Adeli K. The Role of the Gut Microbiota in Lipid and Lipoprotein Metabolism. J Clin Med 2019; 8:jcm8122227. [PMID: 31861086 PMCID: PMC6947520 DOI: 10.3390/jcm8122227] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/06/2019] [Accepted: 12/08/2019] [Indexed: 12/12/2022] Open
Abstract
Both environmental and genetic factors contribute to relative species abundance and metabolic characteristics of the intestinal microbiota. The intestinal microbiota and accompanying microbial metabolites differ substantially in those who are obese or have other metabolic disorders. Accumulating evidence from germ-free mice and antibiotic-treated animal models suggests that altered intestinal gut microbiota contributes significantly to metabolic disorders involving impaired glucose and lipid metabolism. This review will summarize recent findings on potential mechanisms by which the microbiota affects intestinal lipid and lipoprotein metabolism including microbiota dependent changes in bile acid metabolism which affects bile acid signaling by bile acid receptors FXR and TGR5. Microbiota changes also involve altered short chain fatty acid signaling and influence enteroendocrine cell function including GLP-1/GLP-2-producing L-cells which regulate postprandial lipid metabolism.
Collapse
Affiliation(s)
- Yijing Yu
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (Y.Y.); (F.R.)
| | - Fitore Raka
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (Y.Y.); (F.R.)
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Khosrow Adeli
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (Y.Y.); (F.R.)
- Departments of Laboratory Medicine & Pathobiology and Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
- Correspondence: ; Tel.: +416-813-8682
| |
Collapse
|
8
|
Abstract
Accumulating clinical evidence has suggested serum triglyceride (TG) is a leading predictor of atherosclerotic cardiovascular disease, comparable to low-density lipoprotein (LDL)-cholesterol (C) in populations with type 2 diabetes, which exceeds the predictive power of hemoglobinA1c. Atherogenic dyslipidemia in diabetes consists of elevated serum concentrations of TG-rich lipoproteins (TRLs), a high prevalence of small dense low-density lipoprotein (LDL), and low concentrations of cholesterol-rich high-density lipoprotein (HDL)2-C. A central lipoprotein abnormality is an increase in large TG-rich very-low-density lipoprotein (VLDL)1, and other lipoprotein abnormalities are metabolically linked to increased TRLs. Insulin critically regulates serum VLDL concentrations by suppressing hepatic VLDL production and stimulating VLDL removal by activation of lipoprotein lipase. It is still debated whether hyperinsulinemia compensatory for insulin resistance is causally associated with the overproduction of VLDL. This review introduces experimental and clinical observations revealing that insulin resistance, but not hyperinsulinemia stimulates hepatic VLDL production. LDL and HDL consist of heterogeneous particles with different size and density. Cholesterol-depleted small dense LDL and cholesterol-rich HDL2 subspecies are particularly affected by insulin resistance and can be named “Metabolic LDL and HDL,” respectively. We established the direct assays for quantifying small dense LDL-C and small dense HDL(HDL3)-C, respectively. Subtracting HDL3-C from HDL-C gives HDL2-C. I will explain clinical relevance of measurements of LDL and HDL subspecies determined by our assays. Diabetic kidney disease (DKD) substantially worsens plasma lipid profile thereby potentiated atherogenic risk. Finally, I briefly overview pathophysiology of dyslipidemia associated with DKD, which has not been so much taken up by other review articles.
Collapse
Affiliation(s)
- Tsutomu Hirano
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine
| |
Collapse
|
9
|
Tran TTT, Postal BG, Demignot S, Ribeiro A, Osinski C, Pais de Barros JP, Blachnio-Zabielska A, Leturque A, Rousset M, Ferré P, Hajduch E, Carrière V. Short Term Palmitate Supply Impairs Intestinal Insulin Signaling via Ceramide Production. J Biol Chem 2016; 291:16328-38. [PMID: 27255710 DOI: 10.1074/jbc.m115.709626] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Indexed: 12/16/2022] Open
Abstract
The worldwide prevalence of metabolic diseases is increasing, and there are global recommendations to limit consumption of certain nutrients, especially saturated lipids. Insulin resistance, a common trait occurring in obesity and type 2 diabetes, is associated with intestinal lipoprotein overproduction. However, the mechanisms by which the intestine develops insulin resistance in response to lipid overload remain unknown. Here, we show that insulin inhibits triglyceride secretion and intestinal microsomal triglyceride transfer protein expression in vivo in healthy mice force-fed monounsaturated fatty acid-rich olive oil but not in mice force-fed saturated fatty acid-rich palm oil. Moreover, when mouse intestine and human Caco-2/TC7 enterocytes were treated with the saturated fatty acid, palmitic acid, the insulin-signaling pathway was impaired. We show that palmitic acid or palm oil increases ceramide production in intestinal cells and that treatment with a ceramide analogue partially reproduces the effects of palmitic acid on insulin signaling. In Caco-2/TC7 enterocytes, ceramide effects on insulin-dependent AKT phosphorylation are mediated by protein kinase C but not by protein phosphatase 2A. Finally, inhibiting de novo ceramide synthesis improves the response of palmitic acid-treated Caco-2/TC7 enterocytes to insulin. These results demonstrate that a palmitic acid-ceramide pathway accounts for impaired intestinal insulin sensitivity, which occurs within several hours following initial lipid exposure.
Collapse
Affiliation(s)
- Thi Thu Trang Tran
- From the Centre de Recherche des Cordeliers, INSERM, UPMC Univ Paris 06, Sorbonne Universités, Université Paris Descartes, Sorbonne Paris Cité, Ecole Pratique des Hautes Etudes (EPHE), Université Paris Sciences et Lettres, Université Paris Diderot, CNRS, Institute of Cardiometabolism and Nutrition, F-75006 Paris, France
| | - Bárbara Graziela Postal
- From the Centre de Recherche des Cordeliers, INSERM, UPMC Univ Paris 06, Sorbonne Universités, Université Paris Descartes, Sorbonne Paris Cité, Ecole Pratique des Hautes Etudes (EPHE), Université Paris Sciences et Lettres, Université Paris Diderot, CNRS, Institute of Cardiometabolism and Nutrition, F-75006 Paris, France
| | - Sylvie Demignot
- From the Centre de Recherche des Cordeliers, INSERM, UPMC Univ Paris 06, Sorbonne Universités, Université Paris Descartes, Sorbonne Paris Cité, Ecole Pratique des Hautes Etudes (EPHE), Université Paris Sciences et Lettres, Université Paris Diderot, CNRS, Institute of Cardiometabolism and Nutrition, F-75006 Paris, France
| | - Agnès Ribeiro
- From the Centre de Recherche des Cordeliers, INSERM, UPMC Univ Paris 06, Sorbonne Universités, Université Paris Descartes, Sorbonne Paris Cité, Ecole Pratique des Hautes Etudes (EPHE), Université Paris Sciences et Lettres, Université Paris Diderot, CNRS, Institute of Cardiometabolism and Nutrition, F-75006 Paris, France
| | - Céline Osinski
- From the Centre de Recherche des Cordeliers, INSERM, UPMC Univ Paris 06, Sorbonne Universités, Université Paris Descartes, Sorbonne Paris Cité, Ecole Pratique des Hautes Etudes (EPHE), Université Paris Sciences et Lettres, Université Paris Diderot, CNRS, Institute of Cardiometabolism and Nutrition, F-75006 Paris, France
| | | | | | - Armelle Leturque
- From the Centre de Recherche des Cordeliers, INSERM, UPMC Univ Paris 06, Sorbonne Universités, Université Paris Descartes, Sorbonne Paris Cité, Ecole Pratique des Hautes Etudes (EPHE), Université Paris Sciences et Lettres, Université Paris Diderot, CNRS, Institute of Cardiometabolism and Nutrition, F-75006 Paris, France
| | - Monique Rousset
- From the Centre de Recherche des Cordeliers, INSERM, UPMC Univ Paris 06, Sorbonne Universités, Université Paris Descartes, Sorbonne Paris Cité, Ecole Pratique des Hautes Etudes (EPHE), Université Paris Sciences et Lettres, Université Paris Diderot, CNRS, Institute of Cardiometabolism and Nutrition, F-75006 Paris, France
| | - Pascal Ferré
- INSERM UMRS 1138, Sorbonne Universités, UPMC Univ Paris 06, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Institute of Cardiometabolism and Nutrition (ICAN), Centre de Recherche des Cordeliers, F-75006 Paris, France
| | - Eric Hajduch
- INSERM UMRS 1138, Sorbonne Universités, UPMC Univ Paris 06, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Institute of Cardiometabolism and Nutrition (ICAN), Centre de Recherche des Cordeliers, F-75006 Paris, France
| | - Véronique Carrière
- From the Centre de Recherche des Cordeliers, INSERM, UPMC Univ Paris 06, Sorbonne Universités, Université Paris Descartes, Sorbonne Paris Cité, Ecole Pratique des Hautes Etudes (EPHE), Université Paris Sciences et Lettres, Université Paris Diderot, CNRS, Institute of Cardiometabolism and Nutrition, F-75006 Paris, France,
| |
Collapse
|
10
|
Abstract
Ageing is associated with a prolonged and exaggerated postprandial lipaemia. This study aimed to examine the contribution of alterations in chylomicron synthesis, size and lipid composition to increased lipaemia. Healthy older (60-75 years; n 15) and younger (20-25 years; n 15) subjects consumed a high-fat breakfast. Chylomicron dynamics and fatty acid composition were analysed for 5 h in the postprandial state. Plasma TAG levels were elevated following the meal in the older subjects, relative to younger subjects (P<0·01). For older subjects compared with younger subjects, circulating chylomicron particle size was smaller (P<0·05), with greater apoB content (P<0·05) at all postprandial time points. However, total chylomicron TAG concentration between the groups was unaltered post-meal. Compared with younger subjects, the older subjects exhibited a greater proportion of oleic acid in the TAG and phospholipid (PL) fraction (P<0·05), plus lower proportions of linoleic acid in the TAG fraction of the chylomicrons (P<0·01). Thus, following the ingestion of a high-fat meal, older individuals demonstrate both smaller, more numerous chylomicrons, with a greater total MUFA and lower PUFA contents. These data suggest that the increased postprandial lipaemia of ageing cannot be attributed to increased chylomicron TAG. Rather, ageing is associated with changes in chylomicron particle size, apoB content and fatty acid composition of the chylomicron TAG and PL fractions.
Collapse
|
11
|
D’Aquila T, Sirohi D, Grabowski JM, Hedrick VE, Paul LN, Greenberg AS, Kuhn RJ, Buhman KK. Characterization of the proteome of cytoplasmic lipid droplets in mouse enterocytes after a dietary fat challenge. PLoS One 2015; 10:e0126823. [PMID: 25992653 PMCID: PMC4436333 DOI: 10.1371/journal.pone.0126823] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 04/08/2015] [Indexed: 01/23/2023] Open
Abstract
Dietary fat absorption by the small intestine is a multistep process that regulates the uptake and delivery of essential nutrients and energy. One step of this process is the temporary storage of dietary fat in cytoplasmic lipid droplets (CLDs). The storage and mobilization of dietary fat is thought to be regulated by proteins that associate with the CLD; however, mechanistic details of this process are currently unknown. In this study we analyzed the proteome of CLDs isolated from enterocytes harvested from the small intestine of mice following a dietary fat challenge. In this analysis we identified 181 proteins associated with the CLD fraction, of which 37 are associated with known lipid related metabolic pathways. We confirmed the localization of several of these proteins on or around the CLD through confocal and electron microscopy, including perilipin 3, apolipoprotein A-IV, and acyl-CoA synthetase long-chain family member 5. The identification of the enterocyte CLD proteome provides new insight into potential regulators of CLD metabolism and the process of dietary fat absorption.
Collapse
Affiliation(s)
- Theresa D’Aquila
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana, United States of America
| | - Devika Sirohi
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| | - Jeffrey M. Grabowski
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
- Department of Entomology, Purdue University, West Lafayette, Indiana, United States of America
| | - Victoria E. Hedrick
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| | - Lake N. Paul
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| | - Andrew S. Greenberg
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, United States of America
| | - Richard J. Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| | - Kimberly K. Buhman
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
12
|
Shimizu M, Li J, Inoue J, Sato R. Quercetin represses apolipoprotein B expression by inhibiting the transcriptional activity of C/EBPβ. PLoS One 2015; 10:e0121784. [PMID: 25875015 PMCID: PMC4398426 DOI: 10.1371/journal.pone.0121784] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 02/04/2015] [Indexed: 11/18/2022] Open
Abstract
Quercetin is one of the most abundant polyphenolic flavonoids found in fruits and vegetables and has anti-oxidative and anti-obesity effects. Because the small intestine is a major absorptive organ of dietary nutrients, it is likely that highly concentrated food constituents, including polyphenols, are present in the small intestinal epithelial cells, suggesting that food factors may have a profound effect in this tissue. To identify novel targets of quercetin in the intestinal enterocytes, mRNA profiling using human intestinal epithelial Caco-2 cells was performed. We found that mRNA levels of some apolipoproteins, particularly apolipoprotein B (apoB), are downregulated in the presence of quercetin. On the exposure of Caco-2 cells to quercetin, both mRNA and protein levels of apoB were decreased. Promoter analysis of the human apoB revealed that quercetin response element is localized at the 5′-proximal promoter region, which contains a conserved CCAAT enhancer-binding protein (C/EBP)-response element. We found that quercetin reduces the promoter activity of apoB, driven by the enforced expression of C/EBPβ. Quercetin had no effect on either mRNA or protein levels of C/EBPβ. In contrast, we found that quercetin inhibits the transcriptional activity of C/EBPβ but not its recruitment to the apoB promoter. On the exposure of Caco-2 cells to quercetin 3-O-glucuronide, which is in a cell-impermeable form, no notable change in apoB mRNA was observed, suggesting an intracellular action of quercetin. In vitro interaction experiments using quercetin-conjugated beads revealed that quercetin binds to C/EBPβ. Our results describe a novel regulatory mechanism of transcription of apolipoprotein genes by quercetin in the intestinal enterocytes.
Collapse
Affiliation(s)
- Makoto Shimizu
- Department of Applied Biological Chemistry, The University of Tokyo 1-1-1 Yayoi, Bunkyo, Tokyo, Japan
| | - Juan Li
- Department of Applied Biological Chemistry, The University of Tokyo 1-1-1 Yayoi, Bunkyo, Tokyo, Japan
| | - Jun Inoue
- Department of Applied Biological Chemistry, The University of Tokyo 1-1-1 Yayoi, Bunkyo, Tokyo, Japan
| | - Ryuichiro Sato
- Department of Applied Biological Chemistry, The University of Tokyo 1-1-1 Yayoi, Bunkyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
13
|
KIM ILYOUNG, PARK SANGHEE, TROMBOLD JUSTINR, COYLE EDWARDF. Effects of Moderate- and Intermittent Low-Intensity Exercise on Postprandial Lipemia. Med Sci Sports Exerc 2014; 46:1882-90. [DOI: 10.1249/mss.0000000000000324] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Hazim J, Hlais S, Ghattas H, Shatila D, Bassil M, Obeid O. Phosphorus supplement alters postprandial lipemia of healthy male subjects: a pilot cross-over trial. Lipids Health Dis 2014; 13:109. [PMID: 25002136 PMCID: PMC4109374 DOI: 10.1186/1476-511x-13-109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/05/2014] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Epidemiological studies have found a U-shaped relationship between serum phosphorus and cardiovascular disease (CVD). The mechanism(s) behind such a relationship are poorly understood. Phosphorus (P) is reported to improve insulin sensitivity, which is involved in lipid metabolism, and thus we were interested in determining the impact of phosphorus ingestion on postprandial lipemia, a recognized CVD risk factor. FINDINGS A within-subject study design was conducted, whereby 8 healthy male subjects received a high fat meal (330 Kcal; 69% energy from fat; 35 mg of phosphorus) with placebo or phosphorus (500 mg) in a random order. Postprandial blood samples (~10 ml) were collected every hour for 6 hours after meal ingestion. Changes in different parameters were analyzed using a 2-factor repeated-measure ANOVA. In the phosphorus (P) supplemented group, postprandial serum P increased (p=0.00), while changes in insulin, non-esterified fatty acids (NEFA) and triglyceride (TG) were not significantly different than that of placebo. Concurrently, phosphorus supplementation increased postprandial concentrations of apolipoprotein B48 (ApoB48) (p<0.05) and decreased that of apolipoprotein B100 (ApoB100) (p<0.05). CONCLUSIONS Phosphorus supplementation (500 mg) of the meal seems to alter the different components of postprandial lipemia. These findings highlight the potential role of phosphorus in CVD.
Collapse
Affiliation(s)
| | | | | | | | | | - Omar Obeid
- Department of Nutrition and Food Science, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, P,O, Box 11-0236, Lebanon.
| |
Collapse
|
15
|
Veilleux A, Grenier É, Marceau P, Carpentier AC, Richard D, Levy E. Intestinal Lipid Handling. Arterioscler Thromb Vasc Biol 2014; 34:644-53. [DOI: 10.1161/atvbaha.113.302993] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Alain Veilleux
- From the Department of Nutrition, Université de Montréal, Research Center, CHU Sainte-Justine, Montréal, Québec, Canada (A.V., É.G., E.L.); Department of Surgery, Université Laval, Québec, Canada (P.M.); Department of Medicine, Université de Sherbrooke, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Canada (A.C.C.); Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada (D.R.); and Laboratoire de Lipidologie, Métabolisme et Nutrition,
| | - Émilie Grenier
- From the Department of Nutrition, Université de Montréal, Research Center, CHU Sainte-Justine, Montréal, Québec, Canada (A.V., É.G., E.L.); Department of Surgery, Université Laval, Québec, Canada (P.M.); Department of Medicine, Université de Sherbrooke, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Canada (A.C.C.); Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada (D.R.); and Laboratoire de Lipidologie, Métabolisme et Nutrition,
| | - Picard Marceau
- From the Department of Nutrition, Université de Montréal, Research Center, CHU Sainte-Justine, Montréal, Québec, Canada (A.V., É.G., E.L.); Department of Surgery, Université Laval, Québec, Canada (P.M.); Department of Medicine, Université de Sherbrooke, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Canada (A.C.C.); Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada (D.R.); and Laboratoire de Lipidologie, Métabolisme et Nutrition,
| | - André C. Carpentier
- From the Department of Nutrition, Université de Montréal, Research Center, CHU Sainte-Justine, Montréal, Québec, Canada (A.V., É.G., E.L.); Department of Surgery, Université Laval, Québec, Canada (P.M.); Department of Medicine, Université de Sherbrooke, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Canada (A.C.C.); Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada (D.R.); and Laboratoire de Lipidologie, Métabolisme et Nutrition,
| | - Denis Richard
- From the Department of Nutrition, Université de Montréal, Research Center, CHU Sainte-Justine, Montréal, Québec, Canada (A.V., É.G., E.L.); Department of Surgery, Université Laval, Québec, Canada (P.M.); Department of Medicine, Université de Sherbrooke, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Canada (A.C.C.); Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada (D.R.); and Laboratoire de Lipidologie, Métabolisme et Nutrition,
| | - Emile Levy
- From the Department of Nutrition, Université de Montréal, Research Center, CHU Sainte-Justine, Montréal, Québec, Canada (A.V., É.G., E.L.); Department of Surgery, Université Laval, Québec, Canada (P.M.); Department of Medicine, Université de Sherbrooke, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Canada (A.C.C.); Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada (D.R.); and Laboratoire de Lipidologie, Métabolisme et Nutrition,
| |
Collapse
|
16
|
Buttet M, Traynard V, Tran TTT, Besnard P, Poirier H, Niot I. From fatty-acid sensing to chylomicron synthesis: role of intestinal lipid-binding proteins. Biochimie 2013; 96:37-47. [PMID: 23958439 DOI: 10.1016/j.biochi.2013.08.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 08/05/2013] [Indexed: 12/31/2022]
Abstract
Today, it is well established that the development of obesity and associated diseases results, in part, from excessive lipid intake associated with a qualitative imbalance. Among the organs involved in lipid homeostasis, the small intestine is the least studied even though it determines lipid bioavailability and largely contributes to the regulation of postprandial hyperlipemia (triacylglycerols (TG) and free fatty acids (FFA)). Several Lipid-Binding Proteins (LBP) are expressed in the small intestine. Their supposed intestinal functions were initially based on what was reported in other tissues, and took no account of the physiological specificity of the small intestine. Progressively, the identification of regulating factors of intestinal LBP and the description of the phenotype of their deletion have provided new insights into cellular and molecular mechanisms involved in fat absorption. This review will discuss the physiological contribution of each LBP in the main steps of intestinal absorption of long-chain fatty acids (LCFA): uptake, trafficking and reassembly into chylomicrons (CM). Moreover, current data indicate that the small intestine is able to adapt its lipid absorption capacity to the fat content of the diet, especially through the coordinated induction of LBP. This adaptation requires the existence of a mechanism of intestinal lipid sensing. Emerging data suggest that the membrane LBP CD36 may operate as a lipid receptor that triggers an intracellular signal leading to the modulation of the expression of LBP involved in CM formation. This event could be the starting point for the optimized synthesis of large CM, which are efficiently degraded in blood. Better understanding of this intestinal lipid sensing might provide new approaches to decrease the prevalence of postprandial hypertriglyceridemia, which is associated with cardiovascular diseases, insulin resistance and obesity.
Collapse
Affiliation(s)
- Marjorie Buttet
- Physiologie de la Nutrition et Toxicologie Team (NUTox), UMR U866 INSERM, Université de Bourgogne, AgroSup Dijon, 1 Esplanade Erasme, 21000 Dijon, France
| | | | | | | | | | | |
Collapse
|
17
|
Demignot S, Beilstein F, Morel E. Triglyceride-rich lipoproteins and cytosolic lipid droplets in enterocytes: key players in intestinal physiology and metabolic disorders. Biochimie 2013; 96:48-55. [PMID: 23871915 DOI: 10.1016/j.biochi.2013.07.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 07/08/2013] [Indexed: 02/07/2023]
Abstract
During the post-prandial phase, intestinal triglyceride-rich lipoproteins (TRL) i.e. chylomicrons are the main contributors to the serum lipid level, which is linked to coronary artery diseases. Hypertriglyceridemia can originate from decreased clearance or increased production of TRL. During lipid absorption, enterocytes produce and secrete chylomicrons and transiently store lipid droplets (LDs) in the cytosol. The dynamic fluctuation of triglycerides in cytosolic LDs suggests that they contribute to TRL production and may thus control the length and amplitude of the post-prandial hypertriglyceridemia. In this review, we will describe the recent advances in the characterization of enterocytic LDs. The role of LDs in chylomicron production and secretion as well as potential previously unsuspected functions in the metabolism of vitamins, steroids and prostaglandins and in viral infection will also be discussed.
Collapse
Affiliation(s)
- Sylvie Demignot
- Université Pierre et Marie Curie, UMR S 872, Centre de Recherche des Cordeliers, Paris, France; Inserm, U 872, Paris, France; Ecole Pratique des Hautes Etudes, Laboratoire de Pharmacologie Cellulaire et Moléculaire, Paris, France; Université Paris Descartes, UMR S 872, Paris, France; Institut de Cardiométabolisme et Nutrition (ICAN), Paris, France.
| | | | | |
Collapse
|
18
|
Rol del enterocito en la dislipemia de la resistencia insulínica. ACTA ACUST UNITED AC 2013; 60:179-89. [DOI: 10.1016/j.endonu.2012.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 05/31/2012] [Accepted: 06/04/2012] [Indexed: 01/06/2023]
|
19
|
Tinahones FJ, Garrido-Sánchez L, Murri M, García-Fuentes E, Cardona F. Particular characteristics of the metabolic syndrome in patients with morbid obesity. ACTA ACUST UNITED AC 2013; 60:127-35. [DOI: 10.1016/j.endonu.2012.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 09/08/2012] [Accepted: 09/12/2012] [Indexed: 10/27/2022]
|
20
|
Watts GF, Chan DC. Novel insights into the regulation of postprandial lipemia by glucagon-like peptides: significance for diabetes. Diabetes 2013; 62:336-8. [PMID: 23349538 PMCID: PMC3554347 DOI: 10.2337/db12-1098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Gerald F Watts
- School of Medicine and Pharmacology, University of Western Australia, Perth, Western Australia.
| | | |
Collapse
|
21
|
Beilstein F, Bouchoux J, Rousset M, Demignot S. Proteomic analysis of lipid droplets from Caco-2/TC7 enterocytes identifies novel modulators of lipid secretion. PLoS One 2013; 8:e53017. [PMID: 23301014 PMCID: PMC3534623 DOI: 10.1371/journal.pone.0053017] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 11/22/2012] [Indexed: 12/22/2022] Open
Abstract
In enterocytes, the dynamic accumulation and depletion of triacylglycerol (TAG) in lipid droplets (LD) during fat absorption suggests that cytosolic LD-associated TAG contribute to TAG-rich lipoprotein (TRL) production. To get insight into the mechanisms controlling the storage/secretion balance of TAG, we used as a tool hepatitis C virus core protein, which localizes onto LDs, and thus may modify their protein coat and decrease TRL secretion. We compared the proteome of LD fractions isolated from Caco-2/TC7 enterocytes expressing or not hepatitis C virus core protein by a differential proteomic approach (isobaric tag for relative and absolute quantitation (iTRAQ) labeling coupled with liquid chromatography and tandem mass spectrometry). We identified 42 proteins, 21 being involved in lipid metabolism. Perilipin-2/ADRP, which is suggested to stabilize long term-stored TAG, was enriched in LD fractions isolated from Caco-2/TC7 expressing core protein while perilipin-3/TIP47, which is involved in LD synthesis from newly synthesized TAG, was decreased. Endoplasmic reticulum-associated proteins were strongly decreased, suggesting reduced interactions between LD and endoplasmic reticulum, where TRL assembly occurs. For the first time, we show that 17β-hydroxysteroid dehydrogenase 2 (DHB2), which catalyzes the conversion of 17-keto to 17 β-hydroxysteroids and which was the most highly enriched protein in core expressing cells, is localized to LD and interferes with TAG secretion, probably through its capacity to inactivate testosterone. Overall, we identified potential new players of lipid droplet dynamics, which may be involved in the balance between lipid storage and secretion, and may be altered in enterocytes in pathological conditions such as insulin resistance, type II diabetes and obesity.
Collapse
Affiliation(s)
- Frauke Beilstein
- Université Pierre et Marie Curie, UMR S 872, Les Cordeliers, Paris, France
- Inserm, U 872, Paris, France
- Ecole Pratique des Hautes Etudes, Laboratoire de Pharmacologie Cellulaire et Moléculaire, Paris, France
- Université Paris Descartes, UMR S 872, Paris, France
| | - Julien Bouchoux
- Université Pierre et Marie Curie, UMR S 872, Les Cordeliers, Paris, France
- Inserm, U 872, Paris, France
- Ecole Pratique des Hautes Etudes, Laboratoire de Pharmacologie Cellulaire et Moléculaire, Paris, France
- Université Paris Descartes, UMR S 872, Paris, France
| | - Monique Rousset
- Université Pierre et Marie Curie, UMR S 872, Les Cordeliers, Paris, France
- Inserm, U 872, Paris, France
- Université Paris Descartes, UMR S 872, Paris, France
- Institut de Cardiométabolisme et Nutrition (ICAN), Paris, France
| | - Sylvie Demignot
- Université Pierre et Marie Curie, UMR S 872, Les Cordeliers, Paris, France
- Inserm, U 872, Paris, France
- Ecole Pratique des Hautes Etudes, Laboratoire de Pharmacologie Cellulaire et Moléculaire, Paris, France
- Université Paris Descartes, UMR S 872, Paris, France
- Institut de Cardiométabolisme et Nutrition (ICAN), Paris, France
- * E-mail:
| |
Collapse
|
22
|
Mangat R, Warnakula S, Borthwick F, Hassanali Z, Uwiera RRE, Russell JC, Cheeseman CI, Vine DF, Proctor SD. Arterial retention of remnant lipoproteins ex vivo is increased in insulin resistance because of increased arterial biglycan and production of cholesterol-rich atherogenic particles that can be improved by ezetimibe in the JCR:LA-cp rat. J Am Heart Assoc 2012; 1:e003434. [PMID: 23316299 PMCID: PMC3541624 DOI: 10.1161/jaha.112.003434] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 08/14/2012] [Indexed: 12/13/2022]
Abstract
BACKGROUND Literature supports the "response-to-retention" hypothesis-that during insulin resistance, impaired metabolism of remnant lipoproteins can contribute to accelerated cardiovascular disease progression. We used the JCR:LA-cp rat model of metabolic syndrome (MetS) to determine the extent of arterial accumulation of intestinal-derived remnants ex vivo and potential mechanisms that contribute to exacerbated cholesterol deposition in insulin resistance. METHODS AND RESULTS Arteries from control and MetS (insulin-resistant) JCR:LA-cp rats were perfused ex vivo with Cy5-labeled remnant lipoproteins, and their arterial retention was quantified by confocal microscopy. Arterial proteoglycans were isolated from control and MetS rats at 6, 12, and 32 weeks of age. There was a significant increase in the arterial retention of remnants and in associated cholesterol accumulation in MetS rats as compared to control rats. Mechanistic studies reveal that increased cholesterol deposition is a result of greater arterial biglycan content; longer glycosaminoglycans and increased production of cholesterol-rich intestinal-derived remnants, as compared to controls. Additionally, perfusion of vessels treated with ezetimibe, alone or in combination with simvastatin, with remnants isolated from the respective treatment group reduced ex vivo arterial retention of remnant-derived cholesterol ex vivo as compared to untreated controls. CONCLUSIONS Increased progression of atherosclerotic cardiovascular disease in MetS and type 2 diabetes mellitus might be explained in part by an increase in the arterial retention of cholesterol-rich remnants. Furthermore, ezetimibe alone or in combination treatment with simvastatin could be beneficial in ameliorating atherosclerotic cardiovascular disease in insulin resistance and MetS.
Collapse
Affiliation(s)
- Rabban Mangat
- Metabolic and Cardiovascular Diseases Laboratory, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Xiao C, Bandsma RHJ, Dash S, Szeto L, Lewis GF. Exenatide, a Glucagon-like Peptide-1 Receptor Agonist, Acutely Inhibits Intestinal Lipoprotein Production in Healthy Humans. Arterioscler Thromb Vasc Biol 2012; 32:1513-9. [DOI: 10.1161/atvbaha.112.246207] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Objectives—
Incretin-based therapies for the treatment of type 2 diabetes mellitus improve plasma lipid profiles and postprandial lipemia, but their exact mechanism of action remains unclear. Here, we examined the acute effect of the glucagon-like peptide-1 receptor agonist, exenatide, on intestinal and hepatic triglyceride-rich lipoprotein production and clearance in healthy humans.
Methods and Results—
Fifteen normolipidemic, normoglycemic men underwent 2 studies each (SC 10 μg exenatide versus placebo), 4 to 6 weeks apart, in random order, in which triglyceride-rich lipoprotein particle kinetics were examined with a primed, constant infusion of deuterated leucine and analyzed by multicompartmental modeling under pancreatic clamp conditions. A fed state was maintained during each study by infusing a high-fat, mixed macronutrient, liquid formula at a constant rate directly into the duodenum via a nasoduodenal tube. Exenatide significantly suppressed the plasma concentration and production rate of triglyceride-rich lipoprotein-apolipoprotein B-48, but not of triglyceride-rich lipoprotein-apolipoprotein B-100.
Conclusions—
These results suggest a possible direct effect of exenatide on intestinal lipoprotein particle production, independent of changes in weight gain and satiety as seen in long-term studies and independent of changes in gastric emptying. This finding expands our understanding of the effects of exenatide in metabolic regulation beyond its primary therapeutic role in regulation of glucose homeostasis.
Clinical Trial Registration—
URL:
http://www.clinicaltrials.gov
, NCT01056549.
Collapse
Affiliation(s)
- Changting Xiao
- From the Departments of Medicine and Physiology, Division of Endocrinology and Metabolism, University of Toronto, Toronto, ON, Canada (C.X., S.D., L.S., G.F.L.); and Division of Pediatric Gastroenterology, Hepatology and Nutrition, Beatrix Children’s Hospital, University Medical Center Groningen, Groningen, the Netherlands (R.H.J.B.)
| | - Robert H. J. Bandsma
- From the Departments of Medicine and Physiology, Division of Endocrinology and Metabolism, University of Toronto, Toronto, ON, Canada (C.X., S.D., L.S., G.F.L.); and Division of Pediatric Gastroenterology, Hepatology and Nutrition, Beatrix Children’s Hospital, University Medical Center Groningen, Groningen, the Netherlands (R.H.J.B.)
| | - Satya Dash
- From the Departments of Medicine and Physiology, Division of Endocrinology and Metabolism, University of Toronto, Toronto, ON, Canada (C.X., S.D., L.S., G.F.L.); and Division of Pediatric Gastroenterology, Hepatology and Nutrition, Beatrix Children’s Hospital, University Medical Center Groningen, Groningen, the Netherlands (R.H.J.B.)
| | - Linda Szeto
- From the Departments of Medicine and Physiology, Division of Endocrinology and Metabolism, University of Toronto, Toronto, ON, Canada (C.X., S.D., L.S., G.F.L.); and Division of Pediatric Gastroenterology, Hepatology and Nutrition, Beatrix Children’s Hospital, University Medical Center Groningen, Groningen, the Netherlands (R.H.J.B.)
| | - Gary F. Lewis
- From the Departments of Medicine and Physiology, Division of Endocrinology and Metabolism, University of Toronto, Toronto, ON, Canada (C.X., S.D., L.S., G.F.L.); and Division of Pediatric Gastroenterology, Hepatology and Nutrition, Beatrix Children’s Hospital, University Medical Center Groningen, Groningen, the Netherlands (R.H.J.B.)
| |
Collapse
|
24
|
Xiao C, Lewis GF. Regulation of chylomicron production in humans. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:736-46. [DOI: 10.1016/j.bbalip.2011.09.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 09/20/2011] [Accepted: 09/21/2011] [Indexed: 12/18/2022]
|
25
|
Nogueira JP, Maraninchi M, Béliard S, Padilla N, Duvillard L, Mancini J, Nicolay A, Xiao C, Vialettes B, Lewis GF, Valéro R. Absence of acute inhibitory effect of insulin on chylomicron production in type 2 diabetes. Arterioscler Thromb Vasc Biol 2012; 32:1039-44. [PMID: 22308041 DOI: 10.1161/atvbaha.111.242073] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Overproduction of intestinally derived apoB-48-containing triglyceride-rich lipoproteins (TRLs) (chylomicrons) has recently been described in type 2 diabetes, as is known for hepatic TRL-apoB-100 (very-low-density lipoprotein) production. Furthermore, insulin acutely inhibits both intestinal and hepatic TRL production, whereas this acute inhibitory effect on very-low-density lipoprotein production is blunted in type 2 diabetes. It is not currently known whether this acute effect on chylomicron production is similarly blunted in humans with type 2 diabetes. METHODS AND RESULTS We investigated the effect of acute hyperinsulinemia on TRL metabolism in 18 type 2 diabetic men using stable isotope methodology. Each subject underwent 1 control (saline infusion [SAL]) lipoprotein turnover study followed by a second study, under 1 of the 3 following clamp conditions: (1) hyperinsulinemic-euglycemic, (2) hyperinsulinemic-hyperglycemic, or (3) hyperinsulinemic-euglycemic plus intralipid and heparin. TRL-apoB-48 and TRL-apoB-100 production and clearance rates were not different between SAL and clamp and between the different clamp conditions, except for significantly lower TRL-apoB-100 clearance and production rates in hyperinsulinemic-euglycemic plus intralipid and heparin clamp compared with SAL. CONCLUSIONS This is the first demonstration in individuals with type 2 diabetes that chylomicron production is resistant to the normal acute suppressive effect of insulin. This phenomenon may contribute to the highly prevalent dyslipidemia of type 2 diabetes and potentially to atherosclerosis. Clinical Trial Registration- URL: http://www.clinicaltrials.gov. Unique identifier: NCT00950209.
Collapse
Affiliation(s)
- Juan-Patricio Nogueira
- Unité Mixte de Recherche Institut National de la Recherche Agronomique, University of la Méditerranée, Marseille, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW In prediabetes and diabetes, hyperglycemia is often accompanied by fasting and postprandial hyperlipidemia. Incretin-based therapies are in increasing clinical use for treating hyperglycemia, but recent evidence emphasizes their ability to improve lipoprotein abnormalities. This is significant as heightened postprandial chylomicron levels during insulin resistance contribute to atherogenic diabetic dyslipidemia. This review summarises the evidence supporting a beneficial effect of incretin-based therapies on diabetic dyslipidemia through modulation of intestinal lipoprotein metabolism. RECENT FINDINGS Preclinical and clinical trials have involved administering dipeptidyl peptidase IV inhibitors and glucagon-like peptide-1 receptor (GLP-1R) agonists to healthy and insulin-resistant individuals. Results indicate that enhancing GLP-1R signalling decreases postprandial apoB48-containing triglyceride-rich lipoproteins. These effects may be direct or may be secondary to reduced gastric emptying, increased insulin secretion, or enhanced chylomicron clearance. SUMMARY Enhancing GLP-1R activity improves intestinal lipoprotein metabolism. GLP-1-mediated control of postprandial chylomicron production may be lost in type 2 diabetes in which the incretin response is impaired and in which associated dyslipidemia involves an excess of atherogenic chylomicron remnants. Further human studies are needed to better establish the impact of incretin-based therapies on dyslipidemia, as this offers a major new therapeutic approach to reduce cardiovascular risk in type 2 diabetic patients.
Collapse
Affiliation(s)
- Sarah Farr
- Molecular Structure and Function Research Institute, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
27
|
Effects of 3-month Mediterranean-type diet on postprandial TAG and apolipoprotein B48 in the Medi-RIVAGE cohort. Public Health Nutr 2011; 14:2302-8. [DOI: 10.1017/s1368980011002552] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractObjectiveTo determine the postprandial lipaemia response before and after intervention with healthy diets in the Medi-RIVAGE cohort of subjects with moderate risk factors of CVD.DesignOne hundred and thirty-five adults (fifty-two men and eighty-three women) followed either a Mediterranean-type (MED) diet or a low-fat American Heart Association-type diet in a parallel design for 3 months. At entry and after 3 months, lipids, glucose and insulin were measured in the fasting samples; TAG and apolipoprotein B48 (ApoB48; a marker of intestinally derived chylomicrons) levels were measured in the fasting and postprandial samples after a standard test meal.ResultsThe MED diet only lowered (P< 0·028) fasting TAG and both diets reduced TAG and ApoB48 levels 5 h after the test meal. The overall 5 h postprandial ApoB48 response (area under curve (AUC)/incremental AUC) was lowered after both diets but this effect was more marked after the MED-diet intervention. Whatever the TAG level at entry, normo- and hyper TAG subjects showed a reduction in the postprandial ApoB48 levels after 3-month diets. BMI at entry did not impact the effect of diets given subjects with BMI < or >25 kg/m2showed reduced postprandial ApoB48. Men and women displayed comparable postprandial changes after dietary challenges.ConclusionsA MED diet appears efficient to improve postprandial lipaemia, a recently acknowledged CVD risk, in men and women at moderate cardiovascular risk.
Collapse
|
28
|
Carpentier AC, Labbé SM, Grenier-Larouche T, Noll C. Abnormal dietary fatty acid metabolic partitioning in insulin resistance and Type 2 diabetes. ACTA ACUST UNITED AC 2011. [DOI: 10.2217/clp.11.60] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
29
|
Tinahones FJ, Queipo-Ortuño MI, Clemente-Postigo M, Fernnadez-Garcia D, Mingrone G, Cardona F. Postprandial hypertriglyceridemia predicts improvement in insulin resistance in obese patients after bariatric surgery. Surg Obes Relat Dis 2011; 9:213-8. [PMID: 22153002 DOI: 10.1016/j.soard.2011.08.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 08/04/2011] [Accepted: 08/23/2011] [Indexed: 11/16/2022]
Abstract
BACKGROUND Morbidly obese patients have associated diseases, such as diabetes, hypertension, hyperlipidemia, and cardiovascular disease. Bariatric surgery improves these obesity-related co-morbidities, including insulin resistance. Evidence has shown that patients with morbid obesity have postprandial hypertriglyceridemia (HTG) and that this type of HTG is related to the degree of insulin resistance. Also, bariatric surgery produces a dramatic reduction in triglyceride levels. However, it is unknown whether patients with postprandial HTG have a different clinical evolution after bariatric surgery. The setting of our study was a university hospital. METHODS We studied 57 morbidly obese patients who had mild or severe postprandial HTG after fat overload (<30 mg/dL or >90 mg/dL increase in triglycerides, respectively). All the patients underwent bariatric surgery. After surgery, the anthropometric and biochemical variables and the Homeostasis Model Assessment of Insulin Resistance were measured for 1 year at 0, 15, 30, 45, 90, 180, and 365 days after surgery. RESULTS The patients with more severe postprandial HTG had a greater percentage of change in the Homeostasis Model Assessment of Insulin Resistance at 30, 90, and 180 days after surgery than the patients with less severe postprandial HTG. Multiple regression analysis showed that the postprandial triglyceride levels predict the variation in the Homeostasis Model Assessment of Insulin Resistance index, more so than did traditional variables, such as anthropometric, inflammatory, or hormonal data. CONCLUSION The postprandial HTG level might be the best predictor of improved insulin resistance in morbidly obese patients after bariatric surgery.
Collapse
|
30
|
The REV-ERBs and RORs: molecular links between circadian rhythms and lipid homeostasis. Future Med Chem 2011; 3:623-38. [PMID: 21526899 DOI: 10.4155/fmc.11.9] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Research efforts spanning the past two decades have established a clear link between nuclear receptor function, regulation of the circadian clock and lipid homeostasis. As such, this family of receptors represents an important area of research. Recent advances in the field have identified two nuclear receptor subfamilies, the REV-ERBs and the 'retinoic acid receptor-related orphan receptors' (RORs), as critical regulators of the circadian clock with significant roles in lipid homeostasis. In this review, the latest information garnered from cutting-edge research on these two nuclear receptor subfamilies will be discussed. Through direct targeting of the REV-ERBs and RORs with synthetic ligands, generation of novel tools aimed at characterizing their function in vivo have been developed, which may lead to novel therapeutics for the treatment of metabolic disorders.
Collapse
|
31
|
Trevaskis NL, Charman WN, Porter CJH. Acute hypertriglyceridemia promotes intestinal lymphatic lipid and drug transport: a positive feedback mechanism in lipid and drug absorption. Mol Pharm 2011; 8:1132-9. [PMID: 21604764 DOI: 10.1021/mp100462d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Elevated systemic levels of triglyceride-rich lipoproteins (TRL) are a risk factor for the development of atherosclerosis. In patients with metabolic syndrome (MetS), intestinal TRL overproduction contributes to high systemic TRL levels, and recent studies suggest that systemic changes in MetS such as increases in plasma fatty acids and insulin resistance stimulate intestinal TRL production. The current study has examined whether increases in systemic TRL influence intestinal lipid transport and lipoprotein assembly pathways and evaluates the impact of these changes on the absorption and lymphatic transport of lipids and a model lipophilic drug (halofantrine). Mesenteric lymph-duct or bile-duct cannulated rats were administered IV saline or (14)C-labeled chylomicron (CM) (to increase systemic TRL) and intraduodenal (3)H lipids and drug. Changes to biliary lipid output and lymphatic lipid and drug transport were subsequently examined. Increasing systemic TRL concentrations stimulated a significant increase in lymphatic lipid and drug transport. The increased lipids in lymph were not derived from bile or the intestinal blood supply (fatty acid or IV infused (14)C-CM). Rather, an increase in lymphatic transport of duodenally sourced lipids was evident. Increasing plasma levels of TRL therefore stimulated lipid absorption and lymphatic transport via a positive feedback process. The data also suggest that the changes to intestinal TRL formation that result from raised systemic TRL levels may impact on the absorption of highly lipophilic drugs and therefore the reproducibility of drug treatments.
Collapse
Affiliation(s)
- Natalie L Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Royal Parade, Parkville, Victoria, Australia 3052
| | | | | |
Collapse
|
32
|
Oikawa S. [Obesity: Progress in diagnosis and treatment; Topics, III. Obesity and its complications; 3. Obesity and dyslipidemia]. NIHON NAIKA GAKKAI ZASSHI. THE JOURNAL OF THE JAPANESE SOCIETY OF INTERNAL MEDICINE 2011; 100:950-957. [PMID: 21626831 DOI: 10.2169/naika.100.950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Affiliation(s)
- Shinichi Oikawa
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Nippon Medical School, Japan
| |
Collapse
|
33
|
Abstract
Correction of diabetic dyslipidaemia in diabetic patients is the most important factor in reducing cardiac risk. Diabetic dyslipidaemia is characterized by elevated triglycerides, low total high-density lipoprotein (HDL) and small dense low-density lipoprotein (LDL) particles. The most important therapeutic goal in diabetic dyslipidaemia is correction of the non-HDL-cholesterol (HDL-C) level. Glycaemic control with particular attention to postprandial glucose control plays a role not only in improving dyslipidaemia but also in lowering cardiac events. Pioglitazone is particularly effective for improving the manifestations of diabetic dyslipidaemia, in addition to its favorable effects on systemic inflammation and hyperglycaemia. Use of statins in addition to lifestyle change is recommended in most if not all type 2 diabetic patients and the goal should be to lower the LDL to a level recommended for the patient with existing cardiovascular disease (CVD) (non-HDL-C level <100 mg/dl). In addition, therapies for normalization of HDL and triglyceride levels should be deployed. Most patients with type 2 diabetes (T2D) will require combining a lipid-lowering therapy with therapeutic lifestyle changes to achieve optimal lipid levels. Combinations usually include two or more of the following: a statin, nicotinic acid, omega-3 fats and bile acid sequestrants (BASs). Fibrates may also be of use in diabetic patients with persistently elevated triglycerides and depressed HDL-C levels, although their role in lowering adverse CV events is questionable.
Collapse
Affiliation(s)
- D S H Bell
- Department of Endocrinology, University of Alabama, Birmingham, AL 35205, USA.
| | | | | |
Collapse
|
34
|
EZAKI O. The Optimal Dietary Fat to Carbohydrate Ratio to Prevent Obesity in the Japanese Population: A Review of the Epidemiological, Physiological and Molecular Evidence. J Nutr Sci Vitaminol (Tokyo) 2011; 57:383-93. [DOI: 10.3177/jnsv.57.383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Chan DC, Watts GF. Dyslipidaemia in the metabolic syndrome and type 2 diabetes: pathogenesis, priorities, pharmacotherapies. Expert Opin Pharmacother 2010; 12:13-30. [PMID: 20629587 DOI: 10.1517/14656566.2010.502529] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
IMPORTANCE OF THE FIELD Dyslipoproteinaemia is a cardinal feature of the metabolic syndrome that accelerates atherosclerosis. It is usually characterized by high plasma concentrations of triglyceride-rich and apolipoprotein B (apoB)-containing lipoproteins, with depressed concentrations of high-density lipoprotein (HDL). Drug interventions are essential for normalizing metabolic dyslipidaemia. AREAS COVERED IN THIS REVIEW This review discusses the mechanisms and treatment for dyslipidaemia in the metabolic syndrome and type 2 diabetes. WHAT THE READER WILL GAIN A comprehensive understanding of the pathophysiology and pharmacotherapy of dyslipidaemia in the metabolic syndrome and diabetes. TAKE HOME MESSAGE Dysregulation of lipoprotein metabolism may be due to a combination of overproduction of triglyceride-rich lipoproteins, decreased catabolism of apoB-containing particles, and increased catabolism of HDL particles. These abnormalities may be consequent on a global metabolic effect of insulin resistance and an excess of both visceral and hepatic fat. Lifestyle modifications may favourably alter lipoprotein transport in the metabolic syndrome. Patients with dyslipidaemia and established cardiovascular disease should receive a statin as first-line therapy. Combination with other lipid-regulating agents, such as ezetimibe, fibrates, niacins and fish oils may optimize the benefit of statin on atherogenic dyslipidaemia.
Collapse
Affiliation(s)
- Dick C Chan
- University of Western Australia, Metabolic Research Centre, School of Medicine and Pharmacology, GPO Box X2213, Perth, WA 6847, Australia.
| | | |
Collapse
|
36
|
Mangat R, Warnakula S, Wang Y, Russell J, Uwiera R, Vine D, Proctor S. Model of intestinal chylomicron over-production and Ezetimibe treatment: Impact on the retention of cholesterol in arterial vessels. ATHEROSCLEROSIS SUPP 2010; 11:17-24. [DOI: 10.1016/j.atherosclerosissup.2010.04.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 04/12/2010] [Accepted: 04/18/2010] [Indexed: 01/28/2023]
|
37
|
King AJ, Segreti JA, Larson KJ, Souers AJ, Kym PR, Reilly RM, Collins CA, Voorbach MJ, Zhao G, Mittelstadt SW, Cox BF. In vivo efficacy of acyl CoA: diacylglycerol acyltransferase (DGAT) 1 inhibition in rodent models of postprandial hyperlipidemia. Eur J Pharmacol 2010; 637:155-61. [PMID: 20385122 DOI: 10.1016/j.ejphar.2010.03.056] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 03/30/2010] [Indexed: 12/25/2022]
Abstract
Postprandial serum triglyceride concentrations have recently been identified as a major, independent risk factor for future cardiovascular events. As a result, postprandial hyperlipidemia has emerged as a potential therapeutic target. The purpose of this study was two-fold. Firstly, to describe and characterize a standardized model of postprandial hyperlipidemia in multiple rodent species; and secondly, apply these rodent models to the evaluation of a novel class of pharmacologic agent; acyl CoA:diacylglycerol acyltransferase (DGAT) 1 inhibitors. Serum triglycerides were measured before and for 4h after oral administration of a standardized volume of corn oil, to fasted C57BL/6, ob/ob, apoE(-/-) and CD-1 mice; Sprague-Dawley and JCR/LA-cp rats; and normolipidemic and hyperlipidemic hamsters. Intragastric administration of corn oil increased serum triglycerides in all animals evaluated, however the magnitude and time-course of the postprandial triglyceride excursion varied. The potent and selective DGAT-1 inhibitor A-922500 (0.03, 0.3 and 3 mg/kg, p.o.), dose-dependently attenuated the maximal postprandial rise in serum triglyceride concentrations in all species tested. At the highest dose of DGAT-1 inhibitor, the postprandial triglyceride response was abolished. This study provides a comprehensive characterization of the time-course of postprandial hyperlipidemia in rodents. In addition, the ability of DGAT-1 inhibitors to attenuate postprandial hyperlipidemia in multiple rodent models, including those that feature insulin resistance, is documented. Exaggerated postprandial hyperlipidemia is inherent to insulin-resistant states in humans and contributes to the substantially elevated cardiovascular risk observed in these patients. Therefore, by attenuating postprandial hyperlipidemia, DGAT-1 inhibition may represent a novel therapeutic approach to reduce cardiovascular risk.
Collapse
Affiliation(s)
- Andrew J King
- Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois 60064, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Tushuizen ME, Pouwels PJ, Bontemps S, Rustemeijer C, Matikainen N, Heine RJ, Taskinen MR, Diamant M. Postprandial lipid and apolipoprotein responses following three consecutive meals associate with liver fat content in type 2 diabetes and the metabolic syndrome. Atherosclerosis 2010; 211:308-14. [PMID: 20227695 DOI: 10.1016/j.atherosclerosis.2010.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 01/31/2010] [Accepted: 02/01/2010] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Liver fat is associated with dyslipidemia following a fat load. Previous studies demonstrated that alimentary fat is temporarily retained within enterocytes and mobilized by subsequently ingested nutrients. As this potentially contributes to cumulative postprandial hyperlipidemia, we assessed postprandial lipoprotein changes and their association with liver fat following 3 consecutive meals during a 24 h period in males with type 2 diabetes, and men with the metabolic syndrome (MetS). METHODS Plasma lipids were measured in 14 type 2 diabetic, 14 MetS and 14 healthy age-matched males, following a standardized breakfast (t=0 h), lunch (t=4 h) and diner (t=8 h). Blood samples were collected before and at t=2, 4, 6, 8, 12, 16, 20 and 24 h following breakfast. Liver fat was measured by proton magnetic resonance spectroscopy. RESULTS Type 2 diabetic (mean age 55 (4.2) years; HbA1c 7.2 (1.1)%) and MetS men had similar BMI, waist, blood pressure and triglycerides. 24 h-AUC triglycerides, ApoB, and cholesterol-rich-remnants, but not ApoB-48, differed significantly among groups (calculated by ANOVA, all P<0.05). Liver fat was independently associated with 24 h-AUC triglycerides, ApoB and cholesterol-rich-remnants (r=0.57, P<0.001, r=0.38, P=0.017; r=0.48, P=0.002, respectively), but not with 24 h-AUC ApoB-48 (r=0.22, P=0.18). CONCLUSIONS In type 2 diabetes and the MetS exposure to 3 consecutive meals produced exaggerated 24 h triglyceride, ApoB and cholesterol-rich-remnant concentrations, which were closely associated with liver fat. Instead, ApoB-48 peak was delayed in type 2 diabetes, but not related to liver fat. In addition to liver fat, other mechanisms, including local intestinal processes, determine atherogenic postprandial lipoprotein changes following 3 consecutive meals during 24 h.
Collapse
Affiliation(s)
- Maarten E Tushuizen
- Department of Endocrinology/Diabetes Center, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Hodson L, Fielding BA. Trafficking and partitioning of fatty acids: the transition from fasted to fed state. ACTA ACUST UNITED AC 2010. [DOI: 10.2217/clp.09.72] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
40
|
Hammoud A, Gastaldi M, Maillot M, Mercier CS, Defoort C, Lairon D, Planells R. APOB-516 T allele homozygous subjects are unresponsive to dietary changes in a three-month primary intervention study targeted to reduce fat intake. GENES AND NUTRITION 2009; 5:29-37. [PMID: 19841959 DOI: 10.1007/s12263-009-0155-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 09/29/2009] [Indexed: 11/30/2022]
Abstract
Dietary guidelines aim to control fat intake and reduce cardiovascular risk but an important interindividual variability occurs among subjects. The objective was to investigate whether the response of lipid and glucose homeostasis parameters after a three-month diet aimed at reducing cardiovascular risk could be modulated by the -516C/T polymorphism in the apolipoprotein B gene (APOB). Middle-aged men (n = 69) and women (n = 100) with moderate cardiovascular disease risk were advised to reduce total energy and fat intakes and replace saturated dietary fat by monounsaturated and polyunsaturated fat. Subjects were genotyped for APOB-516C/T polymorphism. At the entry and at the end of the three-month period, fasting and postprandial plasma lipid analyses were performed. At entry, subjects homozygous for the APOB-516 T allele exhibited significantly lower fasting plasma concentrations of apolipoprotein B 48, triglycerides and triglyceride-rich lipoproteins-triglycerides compared to C carrier subjects. After the diet period, while C carrier subjects presented a clear improvement of most biological parameters, paradoxically T/T subjects did not modify them. In addition, the apoB 48 postprandial response after a standardized mixed test meal was not improved in T/T subjects after the three-month diet, contrary to C allele carriers. Even though their phenotype at entry does not show any significant increase of risk factors when compared to other groups, subjects homozygous for the APOB-516 T allele are unresponsive to a healthy diet that improves cardiovascular risk status in the whole population.
Collapse
|
41
|
King AJ, Segreti JA, Larson KJ, Souers AJ, Kym PR, Reilly RM, Zhao G, Mittelstadt SW, Cox BF. Diacylglycerol acyltransferase 1 inhibition lowers serum triglycerides in the Zucker fatty rat and the hyperlipidemic hamster. J Pharmacol Exp Ther 2009; 330:526-31. [PMID: 19478132 DOI: 10.1124/jpet.109.154047] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
Acyl CoA/diacylglycerol acyltransferase (DGAT) 1 is one of two known DGAT enzymes that catalyze the final and only committed step in triglyceride biosynthesis. The purpose of this study was to test the hypothesis that chronic inhibition of DGAT-1 with a small-molecule inhibitor will reduce serum triglyceride concentrations in both genetic and diet-induced models of hypertriglyceridemia. Zucker fatty rats and diet-induced dyslipidemic hamsters were dosed orally with A-922500 (0.03, 0.3, and 3-mg/kg), a potent and selective DGAT-1 inhibitor, for 14 days. Serum triglycerides were significantly reduced by the 3 mg/kg dose of the DGAT-1 inhibitor in both the Zucker fatty rat (39%) and hyperlipidemic hamster (53%). These serum triglyceride changes were accompanied by significant reductions in free fatty acid levels by 32% in the Zucker fatty rat and 55% in the hyperlipidemic hamster. In addition, high-density lipoprotein-cholesterol was significantly increased (25%) in the Zucker fatty rat by A-922500 administered at 3 mg/kg. This study provides the first report that inhibition of DGAT-1, the final and only committed step of triglyceride synthesis, with a selective small-molecule inhibitor, significantly reduces serum triglyceride levels in both genetic and diet-induced animal models of hypertriglyceridemia. The results of this study support further investigation of DGAT-1 inhibition as a novel therapeutic approach to the treatment of hypertriglyceridemia in humans, and they suggest that inhibition of triglyceride synthesis may have more diverse beneficial effects on serum lipid profiles beyond triglyceride lowering.
Collapse
Affiliation(s)
- Andrew J King
- Department of Integrative Pharmacology, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois 60064, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Wilke MS, French MA, Goh YK, Ryan EA, Jones PJ, Clandinin MT. Synthesis of specific fatty acids contributes to VLDL-triacylglycerol composition in humans with and without type 2 diabetes. Diabetologia 2009; 52:1628-37. [PMID: 19536518 DOI: 10.1007/s00125-009-1405-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 04/30/2009] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS It is recommended that patients with diabetes reduce their intake of saturated fat and increase their intake of monounsaturated fat or carbohydrate. However, high-carbohydrate diets may result in higher saturated fatty acids in VLDL-triacylglycerol. This is attributed to de novo lipogenesis, although synthesis of specific fatty acids is rarely measured. The objective of this study was to examine the contribution of de novo fatty acid synthesis to VLDL-triacylglycerol composition. It was hypothesised that levels of total and de novo synthesised fatty acids would increase with increased carbohydrate intake in diabetic participants. METHODS Seven individuals with type 2 diabetes mellitus and seven matched non-diabetic controls consumed two diets differing in fat energy (lower fat <25%, higher fat >35%) for 3 days in a randomised crossover design. Blood samples were drawn before and 24 h after the ingestion of (2)H-labelled water. RESULTS In the control participants, the higher-fat diet resulted in a 40% reduction in VLDL-triacylglycerol fatty acids because of decreases in myristic, palmitic, palmitoleic and linoleic acids, but the opposite trend occurred in participants with diabetes. The lower-fat diet increased the fractional synthesis rate by 35% and 25% in the control and diabetes participants, respectively (range: 0-33%). Palmitate accounted for 71% of fatty acids synthesised (range: 44-84% total de novo synthesised fatty acids). CONCLUSIONS/INTERPRETATION (2)H incorporation was used for the first time in humans showing variability in the synthesis rate of specific fatty acids, even palmitic acid. A lower-fat diet stimulated saturated fatty acid synthesis at high rates, but no net stimulation of synthesis of any fatty acid occurred in the diabetes group. The implications of this finding for our understanding of lipid metabolism in diabetes require further investigation.
Collapse
Affiliation(s)
- M S Wilke
- Alberta Institute for Human Nutrition, University of Alberta, 4-10 Agriculture-Forestry Centre, Edmonton, AB, Canada
| | | | | | | | | | | |
Collapse
|
43
|
Su JW, Ugo Nzekwu MM, Ball GD, Jetha MM, Proctor SD. Postprandial lipemia as an early predictor of cardiovascular complications in childhood obesity. J Clin Lipidol 2009; 3:78-84. [DOI: 10.1016/j.jacl.2009.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 02/04/2009] [Accepted: 02/08/2009] [Indexed: 12/18/2022]
|
44
|
Hegele RA, Reue K. Hoofbeats, zebras, and insights into insulin resistance. J Clin Invest 2009; 119:249-51. [PMID: 19244606 DOI: 10.1172/jci38420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In this issue of the JCI, Semple and colleagues report phenotypic evaluation of patients with a germline mutation in the gene encoding serine/threonine kinase AKT2 (see the related article beginning on page 315). Their findings support the idea that the postreceptor actions of insulin in the liver--suppression of gluconeogenesis and stimulation of lipogenesis--are mediated through divergent pathways that can be uncoupled. The results appear to refine the arrangement of crucial steps along these pathways and show how comprehensive study of the phenotype, "deep phenotyping," of patients who carry rare mutations might complement other types of experiments to elucidate complex pathways and mechanisms.
Collapse
Affiliation(s)
- Robert A Hegele
- Blackburn Cardiovascular Genetics Laboratory, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.
| | | |
Collapse
|