1
|
Erritzøe-Jervild M, Møller SN, Kruuse C, Stenør C. Immune checkpoint inhibitor-related CNS vasculitis - A systematic review and report of 6 cases. J Stroke Cerebrovasc Dis 2025; 34:108265. [PMID: 39984148 DOI: 10.1016/j.jstrokecerebrovasdis.2025.108265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICI) represent an important new class of immunotherapy used in cancer treatment. Though effective, immune-related adverse events (irAE) are reported, including cerebral vasculitis (nirVasculitis). In this systematic review, we aim to identify clinical and laboratory features of nirVasculitis and exemplify these in six local clinical cases. OBSERVATIONS We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Two independent researchers searched, identified, and extracted data from both PubMed and Embase to identify reports on nirVasculitis. Based on current criteria for diagnostic certainty patients were categorized as having definite, probable, or possible nirVasculitis. 20 cases described relevant symptomatology and met our inclusion criteria. Non-small-cell lung cancer (55 %) was the most frequent cancer type. Most cases (95 %) received a programmed death-1 (PD-1) inhibitor. One patient had definite vasculitis, seven probable vasculitis, and twelve possible vasculitis. Signs and symptoms included aphasia (n = 5), loss of consciousness (n = 7), confusion (n = 8), unilateral sensory or motor dysfunction (n = 5), and fever or headache (n = 9). All patients had brain imaging and seventeen underwent a lumbar puncture. Of these, 64.7 % had pleocytosis and 52.9 % elevated protein in cerebrospinal fluid. Nineteen patients received corticosteroids. Eight patients fully or partially recovered. Eight patients died due to nirVasculitis, three to advanced cancer, and one lost to follow-up. CONCLUSIONS There are few clinical reports of nirVasculitis which may be due to underreporting or rarity of complications. Guidelines for diagnostics and reporting may improve awareness and early recognition to initiate important immunosuppressive treatment.
Collapse
Affiliation(s)
- Mai Erritzøe-Jervild
- University of Copenhagen, Copenhagen, Denmark; Neurovascular Research Unit (NVRU), Department of Neurology, Copenhagen University Hospital - Herlev and Gentofte Copenhagen, Denmark.
| | | | - Christina Kruuse
- University of Copenhagen, Copenhagen, Denmark; Neurovascular Research Unit (NVRU), Department of Neurology, Copenhagen University Hospital - Herlev and Gentofte Copenhagen, Denmark; Department of Brain- and Spinal Cord Injury, Neuroscience Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Christian Stenør
- University of Copenhagen, Copenhagen, Denmark; Neurovascular Research Unit (NVRU), Department of Neurology, Copenhagen University Hospital - Herlev and Gentofte Copenhagen, Denmark
| |
Collapse
|
2
|
Liu H, Yong T, Zhang X, Wei Z, Bie N, Xu S, Zhang X, Li S, Zhang J, Zhou P, Yang X, Gan L. Spatial Regulation of Cancer-Associated Fibroblasts and Tumor Cells via pH-Responsive Bispecific Antibody Delivery for Enhanced Chemo-Immunotherapy Synergy. ACS NANO 2025; 19:11756-11773. [PMID: 40114589 DOI: 10.1021/acsnano.4c13277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
The effectiveness of chemotherapy is often compromised by physiological barriers and an immunosuppressive tumor microenvironment. Cancer-associated fibroblasts (CAFs) significantly contribute to the reconfiguration of the tumor extracellular matrix (ECM) and the suppression of immune responses, making them crucial targets for therapeutic intervention. Here, a tumor acidic microenvironment-responsive delivery system that utilizes tumor cell-derived microparticles (MPs) as carriers for the chemotherapeutic agent doxorubicin (DOX) and the bispecific antibody YM101 targeting both TGF-β and PD-L1 is developed (DOX@MPs-YM101) to spatially regulate both CAFs and tumor cells for enhanced chemotherapeutic efficacy. DOX@MPs-YM101 efficiently targets tumor tissues and releases DOX@MPs and YM101 in response to the acidic tumor microenvironment. YM101 reprograms CAFs and reduces the tumor ECM, facilitating tumor accumulation and deep penetration of DOX@MPs-YM101. DOX@MPs are highly internalized into tumor cells, triggering immunogenic cell death (ICD) and activating CD8+ T cell-mediated antitumor immunity. The reprogramming of CAFs by YM101 further promotes the accumulation of CD8+ T cells and reduces the number of immunosuppressive cells within the tumors. Additionally, YM101 effectively neutralizes PD-L1 on tumor cells induced by DOX@MPs, restoring CD8+ T cell activity and generating long-term antitumor immune memory to prevent tumor recurrence. Our findings highlight the potential of DOX@MPs-YM101 to improve chemotherapy in cancer treatment.
Collapse
Affiliation(s)
- Haojie Liu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tuying Yong
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaoqiong Zhang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhaohan Wei
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Nana Bie
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shiyi Xu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaojuan Zhang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shiyu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jing Zhang
- Wuhan YZY Biopharma Co., Ltd., Wuhan 430074, China
| | - Pengfei Zhou
- Wuhan YZY Biopharma Co., Ltd., Wuhan 430074, China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lu Gan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
3
|
Li J, Gao K, Liu Y, Ning Z, Yang X, Chen W, Shen L. Actinidia eriantha polysaccharide prevents gastric cancer invasion and metastasis via inhibition of PD-1/PD-L1 regulation of macrophage polarization. Int J Biol Macromol 2025; 304:140763. [PMID: 39922338 DOI: 10.1016/j.ijbiomac.2025.140763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/25/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
Actinidia eriantha polysaccharide (AEPS), an active component of the Chinese herbal medicine Radix Actinidia chinensis, has anticancer effects. Here, we investigated the therapeutic potential of AEPS in gastric cancer through in vivo, in vitro, and in silico analyses. In our gastric cancer xenograft mouse model, AEPS effectively reduced tumor volume and weight. In the human gastric adenocarcinoma cell line AGS, AEPS inhibited migration and invasion without affecting proliferation; this result was validated in a fluorescent-labeled lung metastasis mouse model. Mass cytometry revealed that AEPS enhanced macrophage proportions in gastric cancer tissues. Bioinformatics analysis revealed a strong increase in PD-1-regulated M2 macrophage proportions in patients with gastric cancer, shortening their survival time and worsening their prognosis. In the coculture system of interleukin-4-induced human monocytic leukemia cells and AGS cells, AEPS treatment downregulated PD-1/PD-L1 and M2 macrophage-related marker expression but promoted TAM polarization toward the M1 phenotype. These findings facilitated the elucidation of the mechanism underlying the treatment effects of AEPS against gastric cancer. Finally, AEPS-PD-1 antibody combination therapy further enhanced the anticancer effects of AEPS in vivo, suggesting its potential as a basis to develop novel therapeutics for gastric cancer.
Collapse
Affiliation(s)
- Jinxia Li
- Hunan University of Chinese Medicine, Changsha 410208, China; Provincial Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Kun Gao
- Institute of Basic Theory of TCM, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ying Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zixin Ning
- Institute of Basic Theory of TCM, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaoyu Yang
- Institute of Basic Theory of TCM, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wei Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Key Laboratory for Accurate Diagnosis and Treatment of Abdominal Infection in Zhejiang Province, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China.
| | - Li Shen
- Institute of Basic Theory of TCM, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
4
|
Jacob S, Jacob SA, Thoppil J. Targeting sepsis through inflammation and oxidative metabolism. World J Crit Care Med 2025; 14:101499. [DOI: 10.5492/wjccm.v14.i1.101499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/22/2024] [Accepted: 11/12/2024] [Indexed: 12/11/2024] Open
Abstract
Infection is a public health problem and represents a spectrum of disease that can result in sepsis and septic shock. Sepsis is characterized by a dysregulated immune response to infection. Septic shock is the most severe form of sepsis which leads to distributive shock and high mortality rates. There have been significant advances in sepsis management mainly focusing on early identification and therapy. However, complicating matters is the lack of reliable diagnostic tools and the poor specificity and sensitivity of existing scoring tools i.e., systemic inflammatory response syndrome criteria, sequential organ failure assessment (SOFA), or quick SOFA. These limitations have underscored the modest progress in reducing sepsis-related mortality. This review will focus on novel therapeutics such as oxidative stress targets, cytokine modulation, endothelial cell modulation, etc., that are being conceptualized for the management of sepsis and septic shock.
Collapse
Affiliation(s)
- Salena Jacob
- Halmos College of Arts and Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328, United States
| | - Sanjana Ann Jacob
- Dell School of Medicine, University of Texas at Austin Medical School, Austin, TX 78712, United States
| | - Joby Thoppil
- Emergency Medicine, UT Southwestern Medical Center, Dallas, TX 75390, United States
| |
Collapse
|
5
|
Kani ER, Karaviti E, Karaviti D, Gerontiti E, Paschou IA, Saltiki K, Stefanaki K, Psaltopoulou T, Paschou SA. Pathophysiology, diagnosis, and management of immune checkpoint inhibitor-induced diabetes mellitus. Endocrine 2025; 87:875-890. [PMID: 39316333 DOI: 10.1007/s12020-024-04050-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/14/2024] [Indexed: 09/25/2024]
Abstract
Immune Checkpoint Inhibitors (ICIs) have revolutionized cancer treatment, offering hope for patients with various malignancies. However, along with their remarkable anticancer effects, ICIs can also trigger immune-related adverse events (irAEs). One such noteworthy complication is the development of Diabetes Mellitus (DM), which particularly resembles Type 1 Diabetes Mellitus (T1DM). The aim of this review is to provide insights into the epidemiology, pathophysiology, diagnostic issues, and treatment considerations of ICI-induced DM (ICI-DM), emphasizing the importance of early recognition and management to mitigate adverse outcomes. Although still rare, the incidence has increased with the widespread use of ICIs, especially PD-1/PD-L1 blockers (from 0.2% to 1.9%). Factors affecting the development of ICI-DM, such as specific ICIs, patient demographics, and genetic predispositions, are discussed. The complex interplay between immune dysregulation and pancreatic β-cell destruction contributes to diagnostic challenges, with presentations varying from asymptomatic hyperglycemia to diabetic ketoacidosis (DKA). Management strategies prioritize meticulous glycemic and electrolyte regulation along with tailored intravenous insulin therapy in cases of DKA. DM remission is rare, therefore treatment with both long-acting insulin at bedtime and short-acting insulin before meals is needed in longterm. Total daily insulin requirements can be estimated at 0.3-0.4 units/kg/day for most patients as a starting dose.
Collapse
Affiliation(s)
- Eleni-Rafaela Kani
- Endocrine Unit and Diabetes Center, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleftheria Karaviti
- Endocrine Unit and Diabetes Center, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitra Karaviti
- Endocrine Unit and Diabetes Center, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni Gerontiti
- Endocrine Unit and Diabetes Center, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioanna A Paschou
- First Department of Dermatology and Venereology, Andreas Syggros Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina Saltiki
- Endocrine Unit and Diabetes Center, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina Stefanaki
- Endocrine Unit and Diabetes Center, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodora Psaltopoulou
- Endocrine Unit and Diabetes Center, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Stavroula A Paschou
- Endocrine Unit and Diabetes Center, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
6
|
Mehta A, Motavaf M, Nebo I, Luyten S, Osei-Opare KD, Gru AA. Advancements in Melanoma Treatment: A Review of PD-1 Inhibitors, T-VEC, mRNA Vaccines, and Tumor-Infiltrating Lymphocyte Therapy in an Evolving Landscape of Immunotherapy. J Clin Med 2025; 14:1200. [PMID: 40004731 PMCID: PMC11856346 DOI: 10.3390/jcm14041200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/08/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Melanoma, an aggressive skin cancer, presents significant therapeutic challenges. Consequently, innovative treatment strategies beyond conventional chemotherapy, radiation, and surgery are actively explored. This review discusses the evolution of immunotherapy in advanced melanoma, highlighting PD-1/PD-L1 inhibitors, mRNA vaccines, Talimogene Laherparepvec (T-VEC), and tumor-infiltrating lymphocyte (TIL) therapies. PD-1/PD-L1 inhibitors such as pembrolizumab and nivolumab block immune checkpoints, promoting T-cell cytotoxic activity and improving overall survival in patients with advanced melanoma. T-VEC, a modified oncolytic herpes virus, promotes a systemic anti-tumor response while simultaneously lysing malignant cells. mRNA vaccines, such as Moderna's mRNA-4157/V940, take advantage of malignant-cell-specific neoantigens to amplify the adaptive immune response while protecting healthy tissue. TIL therapy is a form of therapy involving ex vivo expansion and reinfusion of the patient's tumor-specific lymphocytes and has been shown to provide durable tumor control. While these therapies have demonstrated promising clinical outcomes, challenges such as tumor resistance, high financial burden, and limited accessibility pose challenges to their widespread use. This review explores combination therapies such as PD-L1 inhibitors with mRNA vaccines, or TIL therapy, which aim to enhance treatment through synergistic approaches. Further research is required to optimize these combinations, address barriers preventing their use, and control adverse events.
Collapse
Affiliation(s)
- Apoorva Mehta
- Columbia University Vagelos College of Physicians and Surgeons, 630 W 168th St, New York, NY 10032, USA; (I.N.); (S.L.); (K.D.O.-O.)
| | - Mateen Motavaf
- Duke University School of Medicine, Durham, NC 27710, USA;
| | - Ikenna Nebo
- Columbia University Vagelos College of Physicians and Surgeons, 630 W 168th St, New York, NY 10032, USA; (I.N.); (S.L.); (K.D.O.-O.)
| | - Sophia Luyten
- Columbia University Vagelos College of Physicians and Surgeons, 630 W 168th St, New York, NY 10032, USA; (I.N.); (S.L.); (K.D.O.-O.)
| | - Kofi D. Osei-Opare
- Columbia University Vagelos College of Physicians and Surgeons, 630 W 168th St, New York, NY 10032, USA; (I.N.); (S.L.); (K.D.O.-O.)
| | - Alejandro A. Gru
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY 10032, USA;
| |
Collapse
|
7
|
Kalogriopoulos NA, Tei R, Yan Y, Klein PM, Ravalin M, Cai B, Soltesz I, Li Y, Ting AY. Synthetic GPCRs for programmable sensing and control of cell behaviour. Nature 2025; 637:230-239. [PMID: 39633047 PMCID: PMC11666456 DOI: 10.1038/s41586-024-08282-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 10/24/2024] [Indexed: 12/07/2024]
Abstract
Synthetic receptors that mediate antigen-dependent cell responses are transforming therapeutics, drug discovery and basic research1,2. However, established technologies such as chimeric antigen receptors3 can only detect immobilized antigens, have limited output scope and lack built-in drug control3-7. Here we engineer synthetic G-protein-coupled receptors (GPCRs) that are capable of driving a wide range of native or non-native cellular processes in response to a user-defined antigen. We achieve modular antigen gating by engineering and fusing a conditional auto-inhibitory domain onto GPCR scaffolds. Antigen binding to a fused nanobody relieves auto-inhibition and enables receptor activation by drug, thus generating programmable antigen-gated G-protein-coupled engineered receptors (PAGERs). We create PAGERs that are responsive to more than a dozen biologically and therapeutically important soluble and cell-surface antigens in a single step from corresponding nanobody binders. Different PAGER scaffolds allow antigen binding to drive transgene expression, real-time fluorescence or endogenous G-protein activation, enabling control of diverse cellular functions. We demonstrate multiple applications of PAGER, including induction of T cell migration along a soluble antigen gradient, control of macrophage differentiation, secretion of therapeutic antibodies and inhibition of neuronal activity in mouse brain slices. Owing to its modular design and generalizability, we expect PAGERs to have broad utility in discovery and translational science.
Collapse
Affiliation(s)
| | - Reika Tei
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Yuqi Yan
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Peter M Klein
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Matthew Ravalin
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Bo Cai
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Yulong Li
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, School of Life Sciences, Peking University, Beijing, China
| | - Alice Y Ting
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Department of Biology, Stanford University, Stanford, CA, USA.
- Department of Chemistry, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub-San Francisco, San Francisco, CA, USA.
- Phil & Penny Knight Initiative for Brain Resilience at the Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
8
|
Sun Y, Yang S. Autoimmune side-effect of immunotherapy in lung cancer treatment revealed from large-scale cohort. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.03.24318450. [PMID: 39677478 PMCID: PMC11643146 DOI: 10.1101/2024.12.03.24318450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Although immune checkpoint inhibitors have illustrated strong benefits in patient survival and have been widely acknowledged in treating lung cancer, they may be subject to increased risk of immune-related adverse effects (irAEs). Although existing literature have studied the mechanisms of irAEs of immunotherapy, it is difficult to quantify such effect, especially at a large-scale real-world population level. In this paper, the autoimmune-related risk of multiple immune checkpoint inhibitors is compared with that of chemotherapy based on Medicaid and CHIP TAF (T-MSIS Analytic File) data of over 100,000 patient samples from 2012 to 2018. Results show that the irAEs of immunotherapy is significantly higher than chemotherapy in both unadjusted and adjusted samples from the dataset. Analysis on subpopulation and specific disease types further shows that certain immunotherapy treatments are associated with higher risk of irAEs, and the risk of certain autoimmune diseases may vary. We also illustrate the robustness of our conclusion through additional sensitivity analysis, confirming the necessity of keeping track of autoimmune side effects of immune checkpoint inhibitors for medicine researchers. Our methods are also available to evaluate effectiveness and side effects of novel therapies at a large-scale population level.
Collapse
Affiliation(s)
- Yan Sun
- H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, 755 Ferst Dr NW, Atlanta, 30318, Georgia, USA
| | - Shihao Yang
- H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, 755 Ferst Dr NW, Atlanta, 30318, Georgia, USA
| |
Collapse
|
9
|
Liu L, Lan P, Wu G, Zhu X, Shi H, Li Y, Li R, Zhao L, Xu J, Xu M. Prognostic value of soluble programmed death-1 and soluble programmed death ligand-1 in severe traumatic brain injury patients. Sci Rep 2024; 14:23791. [PMID: 39394380 PMCID: PMC11470018 DOI: 10.1038/s41598-024-74520-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/26/2024] [Indexed: 10/13/2024] Open
Abstract
Patients with traumatic brain injury (TBI) frequently exhibit concomitant immunosuppression. In this study, we evaluated the predictive values of soluble programmed death-1 (sPD-1) and soluble programmed death ligand-1 (sPD-L1) in patients with severe TBI. Peripheral blood sPD-1 and sPD-L1 levels were measured within 48 h of patient admission. A total of 20 healthy volunteers and 82 patients were enrolled in this study. The levels of sPD-1 and sPD-L1 were upregulated in patients with severe TBI (P < 0.001). They were significantly increased in the post-TBI severe pneumonia group and among non-survivors (P < 0.001). The area under the curves (AUCs) for sPD-1 and sPD-L1 levels to predict severe pneumonia were 0.714 and 0.696, respectively, and the AUCs to predict mortality were 0.758 and 0.735. The levels of sPD-1 and sPD-L1 are correlated with the GCS scores at admission, APACHE II scores, length of MV, and time elapsed to mortality. The levels of sPD-1 and sPD-L1 emerged as independent predictive factors for severe pneumonia and mortality. This study demonstrates that upregulation of sPD-1 and sPD-L1 in severe TBI patients is significantly associated with severe pneumonia and mortality, suggesting their potential as predictive biomarkers for these outcomes.
Collapse
Affiliation(s)
- Lei Liu
- Department of Internal Medicine, the Affiliated Hospital of China University of Petroleum (East China), Qingdao, 266580, China
| | - Pengpeng Lan
- Neurological Intensive Care Department, Shengli Oilfield Central Hospital, Dongying City, 257000, Shandong Province, China
| | - Guiping Wu
- Neurological Intensive Care Department, Shengli Oilfield Central Hospital, Dongying City, 257000, Shandong Province, China
| | - Xiaojie Zhu
- Department of Respiratory Medicine, Dongying District People's Hospital, Dongying City, 257000, Shandong Province, China
| | - Hongfeng Shi
- Neurological Intensive Care Department, Shengli Oilfield Central Hospital, Dongying City, 257000, Shandong Province, China
| | - Yan Li
- Neurological Intensive Care Department, Shengli Oilfield Central Hospital, Dongying City, 257000, Shandong Province, China
| | - Ruili Li
- Neurological Intensive Care Department, Shengli Oilfield Central Hospital, Dongying City, 257000, Shandong Province, China
| | - Ling Zhao
- Department of Nursing, Shengli Oilfield Central Hospital, Dongying City, 257000, Shandong Province, China
| | - Juan Xu
- Neurological Intensive Care Department, Shengli Oilfield Central Hospital, Dongying City, 257000, Shandong Province, China.
| | - Min Xu
- Neurological Intensive Care Department, Shengli Oilfield Central Hospital, Dongying City, 257000, Shandong Province, China.
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
10
|
Xiang J, Wang Y, Shi L, Qiu J, Gan L, Xu Z, Zhang H, Deng J, Wang Z, Xu F, Zeng L. Optimal Timing of PD-1/PD-L1 Blockade Protects Organ Function During Sepsis. Inflammation 2024:10.1007/s10753-024-02113-3. [PMID: 39174864 DOI: 10.1007/s10753-024-02113-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/11/2024] [Accepted: 07/22/2024] [Indexed: 08/24/2024]
Affiliation(s)
- Jing Xiang
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Burns and Combined Injury, Army Medical University, Chongqing, 400042, China
- Department of Pharmacy, Chongqing Red Cross Hospital, People's Hospital of Jiangbei District, Chongqing, 400020, China
| | - Yuanyang Wang
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Langtian Shi
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Burns and Combined Injury, Army Medical University, Chongqing, 400042, China
| | - Jinchao Qiu
- Department of Emergency, the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, 550001, China
| | - Lebin Gan
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Burns and Combined Injury, Army Medical University, Chongqing, 400042, China
| | - Zhe Xu
- Department of Emergency, the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, 550001, China
| | - Huacai Zhang
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Burns and Combined Injury, Army Medical University, Chongqing, 400042, China
| | - Jin Deng
- Department of Emergency, the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, 550001, China
| | - Zhen Wang
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Burns and Combined Injury, Army Medical University, Chongqing, 400042, China
| | - Fang Xu
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Ling Zeng
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Burns and Combined Injury, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
11
|
Gromadzka G, Czerwińska J, Krzemińska E, Przybyłkowski A, Litwin T. Wilson's Disease-Crossroads of Genetics, Inflammation and Immunity/Autoimmunity: Clinical and Molecular Issues. Int J Mol Sci 2024; 25:9034. [PMID: 39201720 PMCID: PMC11354778 DOI: 10.3390/ijms25169034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Wilson's disease (WD) is a rare, autosomal recessive disorder of copper metabolism caused by pathogenic mutations in the ATP7B gene. Cellular copper overload is associated with impaired iron metabolism. Oxidative stress, cuproptosis, and ferroptosis are involved in cell death in WD. The clinical picture of WD is variable. Hepatic/neuropsychiatric/other symptoms may manifest in childhood/adulthood and even old age. It has been shown that phenotypic variability may be determined by the type of ATP7B genetic variants as well as the influence of various genetic/epigenetic, environmental, and lifestyle modifiers. In 1976, immunological abnormalities were first described in patients with WD. These included an increase in IgG and IgM levels and a decrease in the percentage of T lymphocytes, as well as a weakening of their bactericidal effect. Over the following years, it was shown that there is a bidirectional relationship between copper and inflammation. Changes in serum cytokine concentrations and the relationship between cytokine gene variants and the clinical course of the disease have been described in WD patients, as well as in animal models of this disease. Data have also been published on the occurrence of antinuclear antibodies (ANAs), antineutrophil cytoplasmic antibodies (ANCAs), anti-muscle-specific tyrosine kinase antibodies, and anti-acetylcholine receptor antibodies, as well as various autoimmune diseases, including systemic lupus erythematosus (SLE), myasthenic syndrome, ulcerative colitis, multiple sclerosis (MS), polyarthritis, and psoriasis after treatment with d-penicillamine (DPA). The occurrence of autoantibodies was also described, the presence of which was not related to the type of treatment or the form of the disease (hepatic vs. neuropsychiatric). The mechanisms responsible for the occurrence of autoantibodies in patients with WD are not known. It has also not been clarified whether they have clinical significance. In some patients, WD was differentiated or coexisted with an autoimmune disease, including autoimmune hepatitis or multiple sclerosis. Various molecular mechanisms may be responsible for immunological abnormalities and/or the inflammatory processes in WD. Their better understanding may be important for explaining the reasons for the diversity of symptoms and the varied course and response to therapy, as well as for the development of new treatment regimens for WD.
Collapse
Affiliation(s)
- Grażyna Gromadzka
- Department of Biomedical Sciences, Faculty of Medicine, Collegium Medicum, Cardinal Stefan Wyszynski University, Wóycickiego Street 1/3, 01-938 Warsaw, Poland
| | - Julia Czerwińska
- Students Scientific Association “Immunis”, Cardinal Stefan Wyszynski University, Dewajtis Street 5, 01-815 Warsaw, Poland
| | - Elżbieta Krzemińska
- Students Scientific Association “Immunis”, Cardinal Stefan Wyszynski University, Dewajtis Street 5, 01-815 Warsaw, Poland
| | - Adam Przybyłkowski
- Department of Gastroenterology and Internal Medicine, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland;
| | - Tomasz Litwin
- Second Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957 Warsaw, Poland;
| |
Collapse
|
12
|
Sangani PS, Yazdani S, Khalili-Tanha G, Ghorbani E, Al-Hayawi IS, Fiuji H, Khazaei M, Hassanian SM, Kiani M, Ghayour-Mobarhan M, Ferns GA, Nazari E, Avan A. The therapeutic impact of programmed death - 1 in the treatment of colorectal cancer. Pathol Res Pract 2024; 259:155345. [PMID: 38805760 DOI: 10.1016/j.prp.2024.155345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/27/2024] [Accepted: 05/09/2024] [Indexed: 05/30/2024]
Abstract
Colorectal cancer (CRC) is the most common type of newly diagnosed cancer. Metastatic spread and multifactorial chemoresistance have limited the benefits of current therapies. Hence, it is imperative to identify new therapeutic agents to increase treatment efficacy. One of CRC's most promising immunotherapeutic targets is programmed death-1 (PD-1), a cell surface receptor that regulates immune responses. In this paper, we provide an overview of the therapeutic impact of PD-1 in the treatment of CRC. Cancer cells can exploit the PD-1 pathway by upregulating its programmed death-ligand 1 (PD-L1) ligand to evade immune surveillance. The binding of PD-L1 to PD-1 inhibits T cell function, leading to tumor immune escape. PD-1 inhibitors, such as pembrolizumab and nivolumab, block the PD-1/PD-L1 interaction. Clinical trials evaluating PD-1 inhibitors in advanced CRC have shown promising results. In patients with microsatellite instability-high (MSI-H) or mismatch repair-deficient (dMMR) tumors characterized by high mutation rates and increased immunogenicity, PD-1 blockade has demonstrated remarkable efficacy. As a result, pembrolizumab and nivolumab have received accelerated approval by regulatory authorities for the treatment of MSI-H/dMMR metastatic CRC. Additionally, combination approaches, such as combining PD-1 inhibitors with other immunotherapies or targeted agents, are being explored. Despite the success of PD-1 inhibitors in CRC, challenges still exist. Immune-related adverse events can occur and require close monitoring. In conclusion, PD-1 inhibitors have demonstrated significant therapeutic impact, particularly in patients with MSI-H/dMMR tumors.
Collapse
Affiliation(s)
- Pooria Salehi Sangani
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soroush Yazdani
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghazaleh Khalili-Tanha
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elnaz Ghorbani
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hamid Fiuji
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - MohammadAli Kiani
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Elham Nazari
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq; School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, 2 George St, Brisbane City, QLD 4000, Australia; Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
13
|
Studentova H, Hola K, Melichar B, Spisarova M. Neopterin as a potential prognostic and predictive biomarker in metastatic renal cell carcinoma treated with immune checkpoint inhibitors. Expert Rev Anticancer Ther 2024; 24:339-345. [PMID: 38596831 DOI: 10.1080/14737140.2024.2341734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/08/2024] [Indexed: 04/11/2024]
Abstract
INTRODUCTION Immunotherapy represents a significant and essential component of renal carcinoma therapy (RCC), but the selection of an optimal regimen for an individual patient remains unclear. Despite significant improvements in therapeutic options for RCC, predictive biomarkers for immunotherapeutic agents remain elusive. Neopterin is a biomarker of cell-mediated immune response, with concentrations increased in different disorders, including cancer. High neopterin levels herald, in general, a poor prognosis. AREAS COVERED This review briefly overviews the contemporary clinical data on biomarkers in metastatic RCC therapy, focusing on neopterin. EXPERT OPINION Elevated neopterin levels have been observed in tumors of different primary locations. Research indicates that neopterin may serve as a potential biomarker for assessing the inflammatory status associated with certain cancers. However, it is necessary to interpret neopterin levels in the context of a comprehensive clinical evaluation, as elevated neopterin alone is not specific to cancer and can be influenced by other factors, including comorbid conditions. Neopterin has also been identified as a prognostic biomarker. An increasing neopterin level in serum and urine is associated with advanced cancer, but the role as a potential predictor of response to immunotherapy has yet to be established. A reliable biomarker for optimal therapy selection in metastatic RCC is still putative.
Collapse
Affiliation(s)
- Hana Studentova
- Department of Oncology, University Hospital, Olomouc, Czech Republic
- Department of Oncology, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - Katerina Hola
- Department of Oncology, University Hospital, Olomouc, Czech Republic
- Department of Oncology, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - Bohuslav Melichar
- Department of Oncology, University Hospital, Olomouc, Czech Republic
- Department of Oncology, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - Martina Spisarova
- Department of Oncology, University Hospital, Olomouc, Czech Republic
- Department of Oncology, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| |
Collapse
|
14
|
Shah SA, Oakes RS, Jewell CM. Advancing immunotherapy using biomaterials to control tissue, cellular, and molecular level immune signaling in skin. Adv Drug Deliv Rev 2024; 209:115315. [PMID: 38670230 PMCID: PMC11111363 DOI: 10.1016/j.addr.2024.115315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/20/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
Immunotherapies have been transformative in many areas, including cancer treatments, allergies, and autoimmune diseases. However, significant challenges persist in extending the reach of these technologies to new indications and patients. Some of the major hurdles include narrow applicability to patient groups, transient efficacy, high cost burdens, poor immunogenicity, and side effects or off-target toxicity that results from lack of disease-specificity and inefficient delivery. Thus, there is a significant need for strategies that control immune responses generated by immunotherapies while targeting infection, cancer, allergy, and autoimmunity. Being the outermost barrier of the body and the first line of host defense, the skin presents a unique immunological interface to achieve these goals. The skin contains a high concentration of specialized immune cells, such as antigen-presenting cells and tissue-resident memory T cells. These cells feature diverse and potent combinations of immune receptors, providing access to cellular and molecular level control to modulate immune responses. Thus, skin provides accessible tissue, cellular, and molecular level controls that can be harnessed to improve immunotherapies. Biomaterial platforms - microneedles, nano- and micro-particles, scaffolds, and other technologies - are uniquely capable of modulating the specialized immunological niche in skin by targeting these distinct biological levels of control. This review highlights recent pre-clinical and clinical advances in biomaterial-based approaches to target and modulate immune signaling in the skin at the tissue, cellular, and molecular levels for immunotherapeutic applications. We begin by discussing skin cytoarchitecture and resident immune cells to establish the biological rationale for skin-targeting immunotherapies. This is followed by a critical presentation of biomaterial-based pre-clinical and clinical studies aimed at controlling the immune response in the skin for immunotherapy and therapeutic vaccine applications in cancer, allergy, and autoimmunity.
Collapse
Affiliation(s)
- Shrey A Shah
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD 20742, USA
| | - Robert S Oakes
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD 20742, USA; Department of Veterans Affairs, VA Maryland Health Care System, 10. N Green Street, Baltimore, MD 21201, USA
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD 20742, USA; Department of Veterans Affairs, VA Maryland Health Care System, 10. N Green Street, Baltimore, MD 21201, USA; Robert E. Fischell Institute for Biomedical Devices, 8278 Paint Branch Drive, College Park, MD 20742, USA; Department of Microbiology and Immunology, University of Maryland Medical School, Baltimore, MD, 21201, USA; Marlene and Stewart Greenebaum Cancer Center, 22 S. Greene Street, Suite N9E17, Baltimore, MD, 21201, USA.
| |
Collapse
|
15
|
Lin X, Kang K, Chen P, Zeng Z, Li G, Xiong W, Yi M, Xiang B. Regulatory mechanisms of PD-1/PD-L1 in cancers. Mol Cancer 2024; 23:108. [PMID: 38762484 PMCID: PMC11102195 DOI: 10.1186/s12943-024-02023-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/10/2024] [Indexed: 05/20/2024] Open
Abstract
Immune evasion contributes to cancer growth and progression. Cancer cells have the ability to activate different immune checkpoint pathways that harbor immunosuppressive functions. The programmed death protein 1 (PD-1) and programmed cell death ligands (PD-Ls) are considered to be the major immune checkpoint molecules. The interaction of PD-1 and PD-L1 negatively regulates adaptive immune response mainly by inhibiting the activity of effector T cells while enhancing the function of immunosuppressive regulatory T cells (Tregs), largely contributing to the maintenance of immune homeostasis that prevents dysregulated immunity and harmful immune responses. However, cancer cells exploit the PD-1/PD-L1 axis to cause immune escape in cancer development and progression. Blockade of PD-1/PD-L1 by neutralizing antibodies restores T cells activity and enhances anti-tumor immunity, achieving remarkable success in cancer therapy. Therefore, the regulatory mechanisms of PD-1/PD-L1 in cancers have attracted an increasing attention. This article aims to provide a comprehensive review of the roles of the PD-1/PD-L1 signaling in human autoimmune diseases and cancers. We summarize all aspects of regulatory mechanisms underlying the expression and activity of PD-1 and PD-L1 in cancers, including genetic, epigenetic, post-transcriptional and post-translational regulatory mechanisms. In addition, we further summarize the progress in clinical research on the antitumor effects of targeting PD-1/PD-L1 antibodies alone and in combination with other therapeutic approaches, providing new strategies for finding new tumor markers and developing combined therapeutic approaches.
Collapse
Affiliation(s)
- Xin Lin
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Kuan Kang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Pan Chen
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Mei Yi
- Department of Dermotology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- FuRong Laboratory, Changsha, 410078, Hunan, China.
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China.
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
16
|
Cho T, Wierk A, Gertsenstein M, Rodgers CE, Uetrecht J, Henderson JT. The development and characterization of a CRISPR/Cas9-mediated PD-1 functional knockout rat as a tool to study idiosyncratic drug reactions. Toxicol Sci 2024; 198:233-245. [PMID: 38230816 PMCID: PMC10964746 DOI: 10.1093/toxsci/kfae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024] Open
Abstract
Idiosyncratic drug reactions are rare but serious adverse drug reactions unrelated to the known therapeutic properties of the drug and manifest in only a small percentage of the treated population. Animal models play an important role in advancing mechanistic studies examining idiosyncratic drug reactions. However, to be useful, they must possess similarities to those seen clinically. Although mice currently represent the dominant mammalian genetic model, rats are advantageous in many areas of pharmacologic study where their physiology can be examined in greater detail and is more akin to that seen in humans. In the area of immunology, this includes autoimmune responses and susceptibility to diabetes, in which rats more accurately mimic disease states in humans compared with mice. For example, oral nevirapine treatment can induce an immune-mediated skin rash in humans and rats, but not in mice due to the absence of the sulfotransferase required to form reactive metabolites of nevirapine within the skin. Using CRISPR-mediated gene editing, we developed a modified line of transgenic rats in which a segment of IgG-like ectodomain containing the core PD-1 interaction motif containing the native ligand and therapeutic antibody domain in exon 2 was deleted. Removal of this region critical for mediating PD-1/PD-L1 interactions resulted in animals with an increased immune response resulting in liver injury when treated with amodiaquine.
Collapse
Affiliation(s)
- Tiffany Cho
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Antonia Wierk
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Marina Gertsenstein
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Christopher E Rodgers
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Jack Uetrecht
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Jeffrey T Henderson
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
17
|
Jungbauer F, Affolter A, Brochhausen C, Lammert A, Ludwig S, Merx K, Rotter N, Huber L. Risk factors for immune-related adverse effects during CPI therapy in patients with head and neck malignancies - a single center study. Front Oncol 2024; 14:1287178. [PMID: 38420014 PMCID: PMC10899674 DOI: 10.3389/fonc.2024.1287178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction Checkpoint inhibitors, such as PD1 inhibitors, represent an important pillar in the therapy of advanced malignancies of the head and neck region. The most relevant complications are immune-related adverse effects (irAEs), which represent an immense burden for patients. Currently, no sufficient stratification measures are available to identify patients at increased risk of irAEs. The aim of this retrospective study was to examine whether demographic, histopathological, clinical, or laboratory values at the start of CPI therapy represent a risk factor for the later occurrence of autoimmune complications. Material and methods Data from 35 patients between 2018 and 2021 who received therapy with nivolumab or pembrolizumab for head and neck malignancy were analyzed and assessed for any associations with the subsequent occurrence of irAEs. Results IrAE developed in 37% of patients, with pneumonitis being the most common form (14%). Pneumonitis was found in patients with an average significantly lower T-stage of primary tumors. An increase in basophilic leukocytes was found in patients with dermatitis later in the course. When thyroiditis developed later, the patients had a higher CPS score and lower monocyte levels. Discussion Even though individual laboratory values at the beginning of therapy might show a statistical association with the later occurrence of irAEs, neither demographic, histopathological, nor laboratory chemistry values seem to be able to generate a sound and reliable risk profile for this type of complication. Therefore, patients need to be educated and sensitized to irAEs, and regular screening for irAEs should be carried out.
Collapse
Affiliation(s)
- Frederic Jungbauer
- Department of Otorhinolaryngology, Head- and Neck-Surgery, University Medical Centre Mannheim, Heidelberg University, Mannheim, Germany
| | - Annette Affolter
- Department of Otorhinolaryngology, Head- and Neck-Surgery, University Medical Centre Mannheim, Heidelberg University, Mannheim, Germany
| | - Christoph Brochhausen
- Department of Pathology, University Medical Centre Mannheim, Heidelberg University, Mannheim, Germany
| | - Anne Lammert
- Department of Otorhinolaryngology, Head- and Neck-Surgery, University Medical Centre Mannheim, Heidelberg University, Mannheim, Germany
| | - Sonja Ludwig
- Department of Otorhinolaryngology, Head- and Neck-Surgery, University Medical Centre Mannheim, Heidelberg University, Mannheim, Germany
| | - Kirsten Merx
- Department of Hematology and Oncology, University Medical Centre Mannheim, Heidelberg University, Mannheim, Germany
| | - Nicole Rotter
- Department of Otorhinolaryngology, Head- and Neck-Surgery, University Medical Centre Mannheim, Heidelberg University, Mannheim, Germany
| | - Lena Huber
- Department of Otorhinolaryngology, Head- and Neck-Surgery, University Medical Centre Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
18
|
Chen Y, Guo DZ, Zhu CL, Ren SC, Sun CY, Wang Y, Wang JF. The implication of targeting PD-1:PD-L1 pathway in treating sepsis through immunostimulatory and anti-inflammatory pathways. Front Immunol 2023; 14:1323797. [PMID: 38193090 PMCID: PMC10773890 DOI: 10.3389/fimmu.2023.1323797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024] Open
Abstract
Sepsis currently remains a major contributor to mortality in the intensive care unit (ICU), with 48.9 million cases reported globally and a mortality rate of 22.5% in 2017, accounting for almost 20% of all-cause mortality worldwide. This highlights the urgent need to improve the understanding and treatment of this condition. Sepsis is now recognized as a dysregulation of the host immune response to infection, characterized by an excessive inflammatory response and immune paralysis. This dysregulation leads to secondary infections, multiple organ dysfunction syndrome (MODS), and ultimately death. PD-L1, a co-inhibitory molecule expressed in immune cells, has emerged as a critical factor in sepsis. Numerous studies have found a significant association between the expression of PD-1/PD-L1 and sepsis, with a particular focus on PD-L1 expressed on neutrophils recently. This review explores the role of PD-1/PD-L1 in immunostimulatory and anti-inflammatory pathways, illustrates the intricate link between PD-1/PD-L1 and sepsis, and summarizes current therapeutic approaches against PD-1/PD-L1 in the treatment and prognosis of sepsis in preclinical and clinical studies.
Collapse
Affiliation(s)
- Yu Chen
- School of Basic Medicine, Naval Medical University, Shanghai, China
| | - De-zhi Guo
- School of Basic Medicine, Naval Medical University, Shanghai, China
| | - Cheng-long Zhu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Shi-chun Ren
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chen-yan Sun
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yi Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jia-feng Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
19
|
Ailioaie LM, Ailioaie C, Litscher G. Gut Microbiota and Mitochondria: Health and Pathophysiological Aspects of Long COVID. Int J Mol Sci 2023; 24:17198. [PMID: 38139027 PMCID: PMC10743487 DOI: 10.3390/ijms242417198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
The current understanding of long COVID (LC) is still limited. This review highlights key findings regarding the role of gut microbiota, mitochondria, and the main pathophysiological aspects of LC revealed by clinical studies, related to the complex interplay between infection, intestinal dysbiosis, dysfunctional mitochondria, and systemic inflammation generated in a vicious circle, reflecting the molecular and cellular processes from the "leaky gut" to the "leaky electron transport chain (ETC)" into a quantum leap. The heterogeneity of LC has hindered progress in deciphering all the pathophysiological mechanisms, and therefore, the approach must be multidisciplinary, with a special focus not only on symptomatic management but also on addressing the underlying health problems of the patients. It is imperative to further assess and validate the effects of COVID-19 and LC on the gut microbiome and their relationship to infections with other viral agents or pathogens. Further studies are needed to better understand LC and expand the interdisciplinary points of view that are required to accurately diagnose and effectively treat this heterogeneous condition. Given the ability of SARS-CoV-2 to induce autoimmunity in susceptible patients, they should be monitored for symptoms of autoimmune disease after contracting the viral infection. One question remains open, namely, whether the various vaccines developed to end the pandemic will also induce autoimmunity. Recent data highlighted in this review have revealed that the persistence of SARS-CoV-2 and dysfunctional mitochondria in organs such as the heart and, to a lesser extent, the kidneys, liver, and lymph nodes, long after the organism has been able to clear the virus from the lungs, could be an explanation for LC.
Collapse
Affiliation(s)
- Laura Marinela Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania; (L.M.A.); (C.A.)
| | - Constantin Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania; (L.M.A.); (C.A.)
| | - Gerhard Litscher
- President of the International Society for Medical Laser Applications (ISLA Transcontinental), German Vice President of the German-Chinese Research Foundation (DCFG) for TCM, Honorary President of the European Federation of Acupuncture and Moxibustion Societies, Honorary Professor of China Beijing International Acupuncture Training Center, China Academy of Chinese Medical Sciences, Former Head of Two Research Units and the TCM Research Center at the Medical University of Graz, Auenbruggerplatz, 8036 Graz, Austria
| |
Collapse
|
20
|
Zeng Y, Ng JPL, Wang L, Xu X, Law BYK, Chen G, Lo HH, Yang L, Yang J, Zhang L, Qu L, Yun X, Zhong J, Chen R, Zhang D, Wang Y, Luo W, Qiu C, Huang B, Liu W, Liu L, Wong VKW. Mutant p53 R211* ameliorates inflammatory arthritis in AIA rats via inhibition of TBK1-IRF3 innate immune response. Inflamm Res 2023; 72:2199-2219. [PMID: 37935918 PMCID: PMC10656327 DOI: 10.1007/s00011-023-01809-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 09/12/2023] [Accepted: 10/16/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is an autoimmune inflammation disease characterized by imbalance of immune homeostasis. p53 mutants are commonly described as the guardian of cancer cells by conferring them drug-resistance and immune evasion. Importantly, p53 mutations have also been identified in RA patients, and this prompts the investigation of its role in RA pathogenesis. METHODS The cytotoxicity of disease-modifying anti-rheumatic drugs (DMARDs) against p53 wild-type (WT)/mutant-transfected RA fibroblast-like synoviocytes (RAFLSs) was evaluated by MTT assay. Adeno-associated virus (AAV) was employed to establish p53 WT/R211* adjuvant-induced arthritis (AIA) rat model. The arthritic condition of rats was assessed by various parameters such as micro-CT analysis. Knee joint samples were isolated for total RNA sequencing analysis. The expressions of cytokines and immune-related genes were examined by qPCR, ELISA assay and immunofluorescence. The mechanistic pathway was determined by immunoprecipitation and Western blotting in vitro and in vivo. RESULTS Among p53 mutants, p53R213* exhibited remarkable DMARD-resistance in RAFLSs. However, AAV-induced p53R211* overexpression ameliorated inflammatory arthritis in AIA rats without Methotrexate (MTX)-resistance, and our results discovered the immunomodulatory effect of p53R211* via suppression of T-cell activation and T helper 17 cell (Th17) infiltration in rat joint, and finally downregulated expressions of pro-inflammatory cytokines. Total RNA sequencing analysis identified the correlation of p53R211* with immune-related pathways. Further mechanistic studies revealed that p53R213*/R211* instead of wild-type p53 interacted with TANK-binding kinase 1 (TBK1) and suppressed the innate immune TBK1-Interferon regulatory factor 3 (IRF3)-Stimulator of interferon genes (STING) cascade. CONCLUSIONS This study unravels the role of p53R213* mutant in RA pathogenesis, and identifies TBK1 as a potential anti-inflammatory target.
Collapse
Affiliation(s)
- Yaling Zeng
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Jerome P L Ng
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Linna Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Xiongfei Xu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Betty Yuen Kwan Law
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Guobing Chen
- Department of Microbiology and Immunology, Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510630, China
| | - Hang Hong Lo
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Lijun Yang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Jiujie Yang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Lei Zhang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Liqun Qu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Xiaoyun Yun
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Jing Zhong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Ruihong Chen
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Dingqi Zhang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Yuping Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Weidan Luo
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Congling Qiu
- Department of Microbiology and Immunology, Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510630, China
| | - Baixiong Huang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Wenfeng Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Liang Liu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China.
| | - Vincent Kam Wai Wong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China.
| |
Collapse
|
21
|
Li F, Zhou Z, Wang L, Li B, Jin M, Liu J, Chen Y, He Y, Ren B, Shen H, Liu L. A study of programmed death-1/programmed death ligand and iodine-induced autoimmune thyroiditis in NOD.H-2h4 mice. ENVIRONMENTAL TOXICOLOGY 2023; 38:2574-2584. [PMID: 37598415 DOI: 10.1002/tox.23893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/14/2023] [Accepted: 07/01/2023] [Indexed: 08/22/2023]
Abstract
Excess iodine will trigger the occurrence of autoimmune thyroiditis (AIT), and programmed death-1 (PD-1)/programmed death ligand (PD-L) will also contribute to the development of AIT. The purpose of this study was to explore the role that negative regulatory signals mediated by PD-1/PD-L play in the development of spontaneous autoimmune thyroiditis (SAT) in NOD.H-2h4 mice when they are exposed to iodine. Programmed death ligand 1 (PD-L1) antibody was administered intraperitoneally to NOD.H-2h4 mice. The relevant indicators were determined by flow cytometry, real-time quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, immunohistochemistry, pathological hematoxylin and eosin staining, and arsenic-cerium catalytic spectrophotometry. Results showed that the level of urinary iodine, the level of thyroid lymphocyte infiltration, the level of thyroglobulin antibodies (TgAb) and interferon (IFN-γ)/tumor necrosis factor (TNF-α)/interleukin (IL-2)/IL-17, and the relative expression of PD-1/PD-L1/programmed death-2 (PD-L2) increased with the intervention of excess iodine. After the intervention of the PD-L1 antibody, the expression of PD-1/PD-L1/PD-L2 in different degrees was inhibited, but the level of thyroid lymphocyte infiltration and serum TgAb/IFN-γ/TNF-α/ IL-2/IL-17 did not decrease. Collectively, although PD-1/PD-L participates in the occurrence of SAT and induces inflammation, administration of the PD-L1 antibody does not effectively improve the pathological process of SAT. More research is needed to determine whether PD-1/PD-L intervention can treat autoimmune thyroid disease.
Collapse
Affiliation(s)
- Fan Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, People's Republic of China
- Control Infection Department, Xi'an First Hospital, Xi'an, People's Republic of China
| | - Zheng Zhou
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, People's Republic of China
| | - Lingbo Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, People's Republic of China
| | - Baoxiang Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, People's Republic of China
| | - Meihui Jin
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, People's Republic of China
| | - Jinjin Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, People's Republic of China
| | - Yun Chen
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, People's Republic of China
| | - Yanhong He
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, People's Republic of China
| | - Bingxuan Ren
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, People's Republic of China
| | - Hongmei Shen
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, People's Republic of China
| | - Lixiang Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, People's Republic of China
| |
Collapse
|
22
|
Paroli M, Sirinian MI. When Autoantibodies Are Missing: The Challenge of Seronegative Rheumatoid Arthritis. Antibodies (Basel) 2023; 12:69. [PMID: 37987247 PMCID: PMC10660552 DOI: 10.3390/antib12040069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/25/2023] [Accepted: 10/23/2023] [Indexed: 11/22/2023] Open
Abstract
Seronegative rheumatoid arthritis (SNRA) is characterized by the absence of both rheumatoid factor (RF) and antibodies against the cyclic citrullinated protein (ACPA) in serum. However, the differences between the two forms of RA are more complex and have not yet been definitively characterized. Several lines of evidences support the idea that there are specific elements of the two forms, including genetic background, epidemiology, pathogenesis, severity of progression over time, and response to therapy. Clinical features that may differentiate SNRA from SPRA are also suggested by data obtained from classical radiology and newer imaging techniques. Although new evidence seems to provide additional help in differentiating the two forms of RA, their distinguishing features remain largely elusive. It should also be emphasized that the distinctive features of RA forms, if not properly recognized, can lead to the underdiagnosis of SNRA, potentially missing the period called the "window of opportunity" that is critical for early diagnosis, timely treatment, and better prognosis. This review aims to summarize the data provided in the scientific literature with the goal of helping clinicians diagnose SNRA as accurately as possible, with emphasis on the most recent findings available.
Collapse
Affiliation(s)
- Marino Paroli
- Center for Allergy and Immunology, Department of Clinical, Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome c/o Polo Pontino, 04100 Latina, Italy
| | | |
Collapse
|
23
|
Wang RN, Yu Q, Wang XB, Zhu D, Li GL, Li ZX, Jiang W, Li W, Dang YJ. Bis(benzonitrile) dichloroplatinum (II) interrupts PD-1/PD-L1 interaction by binding to PD-1. Acta Pharmacol Sin 2023; 44:2103-2112. [PMID: 37193754 PMCID: PMC10545660 DOI: 10.1038/s41401-023-01092-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 04/10/2023] [Indexed: 05/18/2023]
Abstract
Checkpoint inhibitors such as PD-1/PD-L1 antibody therapeutics are a promising option for the treatment of multiple cancers. Due to the inherent limitations of antibodies, great efforts have been devoted to developing small-molecule PD-1/PD-L1 signaling pathway inhibitors. In this study we established a high-throughput AlphaLISA assay to discover small molecules with new skeletons that could block PD-1/PD-L1 interaction. We screened a small-molecule library of 4169 compounds including natural products, FDA approved drugs and other synthetic compounds. Among the 8 potential hits, we found that cisplatin, a first-line chemotherapeutic drug, reduced AlphaLISA signal with an EC50 of 8.3 ± 2.2 μM. Furthermore, we showed that cisplatin-DMSO adduct, but not semplice cisplatin, inhibited PD-1/PD-L1 interaction. Thus, we assessed several commercial platinum (II) compounds, and found that bis(benzonitrile) dichloroplatinum (II) disturbed PD-1/PD-L1 interaction (EC50 = 13.2 ± 3.5 μM). Its inhibitory activity on PD-1/PD-L1 interaction was confirmed in co-immunoprecipitation and PD-1/PD-L1 signaling pathway blockade bioassays. Surface plasmon resonance assay revealed that bis(benzonitrile) dichloroplatinum (II) bound to PD-1 (KD = 2.08 μM) but not PD-L1. In immune-competent wild-type mice but not in immunodeficient nude mice, bis(benzonitrile) dichloroplatinum (II) (7.5 mg/kg, i.p., every 3 days) significantly suppressed the growth of MC38 colorectal cancer xenografts with increasing tumor-infiltrating T cells. These data highlight that platinum compounds are potential immune checkpoint inhibitors for the treatment of cancers.
Collapse
Affiliation(s)
- Rui-Na Wang
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qian Yu
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiao-Bo Wang
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Di Zhu
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Guo-Long Li
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, China
| | - Zeng-Xia Li
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wei Jiang
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Wei Li
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, China.
| | - Yong-Jun Dang
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
24
|
Hipp AV, Bengsch B, Globig AM. Friend or Foe - Tc17 cell generation and current evidence for their importance in human disease. DISCOVERY IMMUNOLOGY 2023; 2:kyad010. [PMID: 38567057 PMCID: PMC10917240 DOI: 10.1093/discim/kyad010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/12/2023] [Accepted: 07/19/2023] [Indexed: 04/04/2024]
Abstract
The term Tc17 cells refers to interleukin 17 (IL-17)-producing CD8+ T cells. While IL-17 is an important mediator of mucosal defense, it is also centrally involved in driving the inflammatory response in immune-mediated diseases, such as psoriasis, multiple sclerosis, and inflammatory bowel disease. In this review, we aim to gather the current knowledge on the phenotypic and transcriptional profile, the in vitro and in vivo generation of Tc17 cells, and the evidence pointing towards a relevant role of Tc17 cells in human diseases such as infectious diseases, cancer, and immune-mediated diseases.
Collapse
Affiliation(s)
- Anna Veronika Hipp
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Bertram Bengsch
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Anna-Maria Globig
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| |
Collapse
|
25
|
Zhao Y, Qu Y, Hao C, Yao W. PD-1/PD-L1 axis in organ fibrosis. Front Immunol 2023; 14:1145682. [PMID: 37275876 PMCID: PMC10235450 DOI: 10.3389/fimmu.2023.1145682] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023] Open
Abstract
Fibrosis is a pathological tissue repair activity in which many myofibroblasts are activated and extracellular matrix are excessively accumulated, leading to the formation of permanent scars and finally organ failure. A variety of organs, including the lung, liver, kidney, heart, and skin, can undergo fibrosis under the stimulation of various exogenous or endogenous pathogenic factors. At present, the pathogenesis of fibrosis is still not fully elucidated, but it is known that the immune system plays a key role in the initiation and progression of fibrosis. Immune checkpoint molecules are key regulators to maintain immune tolerance and homeostasis, among which the programmed cell death protein 1/programmed death ligand 1 (PD-1/PD-L1) axis has attracted much attention. The exciting achievements of tumor immunotherapy targeting PD-1/PD-L1 provide new insights into its use as a therapeutic target for other diseases. In recent years, the role of PD-1/PD-L1 axis in fibrosis has been preliminarily explored, further confirming the close relationship among PD-1/PD-L1 signaling, immune regulation, and fibrosis. This review discusses the structure, expression, function, and regulatory mechanism of PD-1 and PD-L1, and summarizes the research progress of PD-1/PD-L1 signaling in fibrotic diseases.
Collapse
Affiliation(s)
| | | | | | - Wu Yao
- *Correspondence: Wu Yao, ; Changfu Hao,
| |
Collapse
|
26
|
Jeong S, Shin WY, Oh YH. Immunotherapy for NAFLD and NAFLD-related hepatocellular carcinoma. Front Endocrinol (Lausanne) 2023; 14:1150360. [PMID: 37020584 PMCID: PMC10069645 DOI: 10.3389/fendo.2023.1150360] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/06/2023] [Indexed: 04/07/2023] Open
Abstract
The progression of non-alcoholic fatty liver disease (NAFLD), the most common liver disease, leads to non-alcoholic steatohepatitis and hepatocellular carcinoma. Despite the increasing incidence and prevalence of NAFLD, its therapeutic and preventive strategies to lower the disease burden is limited. In recent years, immunotherapy, including anti-programmed cell death 1/programmed cell death 1 ligand 1 treatment, has emerged as a potential approach to reach satisfactory modulation for the progression of NAFLD and treatment of NAFLD-related hepatocellular carcinoma. However, the effectiveness of immunotherapy against NAFLD and NAFLD-related hepatocellular carcinoma is in the early phase and it is yet not advanced. In addition, conflicting results are being reported regarding the prognosis of patients with NAFLD-related hepatocellular carcinoma and high expression of programmed cell death 1/programmed cell death 1 ligand 1. Herein, this review will discuss and elucidate the attempts and underlying mechanisms of immunotherapy against NAFLD and NAFLD-related hepatocellular carcinoma.
Collapse
Affiliation(s)
- Seogsong Jeong
- Department of Biomedical Informatics, CHA University School of Medicine, CHA University, Seongnam, Republic of Korea
- Institute for Biomedical Informatics, School of Medicine, CHA University, Seongnam, Republic of Korea
| | - Woo-Young Shin
- Department of Family medicine, Chung-Ang University Gwangmyeong Hospital, Chung-Ang University College of Medicine, Gwangmyeong, Republic of Korea
| | - Yun Hwan Oh
- Department of Family medicine, Chung-Ang University Gwangmyeong Hospital, Chung-Ang University College of Medicine, Gwangmyeong, Republic of Korea
| |
Collapse
|
27
|
Zhang T, Yu-Jing L, Ma T. Role of regulation of PD-1 and PD-L1 expression in sepsis. Front Immunol 2023; 14:1029438. [PMID: 36969168 PMCID: PMC10035551 DOI: 10.3389/fimmu.2023.1029438] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
Long term immunosuppression is problematic during sepsis. The PD-1 and PD-L1 immune checkpoint proteins have potent immunosuppressive functions. Recent studies have revealed several features of PD-1 and PD-L1 and their roles in sepsis. Here, we summarize the overall findings of PD-1 and PD-L1 by first reviewing the biological features of PD-1 and PD-L1 and then discussing the mechanisms that control the expression of PD-1 and PD-L1. We then review the functions of PD-1 and PD-L1 in physiological settings and further discuss PD-1 and PD-L1 in sepsis, including their involvement in several sepsis-related processes and their potential therapeutic relevance in sepsis. In general, PD-1 and PD-L1 have critical roles in sepsis, indicating that their regulation may be a potential therapeutic target for sepsis.
Collapse
Affiliation(s)
- Teng Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Li Yu-Jing
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Tao Ma
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Tao Ma,
| |
Collapse
|
28
|
Marini W, Wilson BE, Reedijk M. Targeting Notch-Driven Cytokine Secretion: Novel Therapies for Triple Negative Breast Cancer. DNA Cell Biol 2023; 42:73-81. [PMID: 36579947 DOI: 10.1089/dna.2022.0578] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Compared with other breast cancer subtypes, triple negative breast cancer (TNBC) is an aggressive malignancy with a high recurrence rate and reduced overall survival. Immune checkpoint inhibition (ICI) has shown modest results in this subgroup, highlighting the need for improved targeted therapeutic options. Notch is a defining feature of TNBC and drives the expression of interleukin-1 beta (IL1β) and C-C motif chemokine ligand 2 (CCL2). These cytokines are involved in the recruitment of tumor-associated macrophages (TAMs) to the tumor, resulting in immune evasion and tumor progression. Targeting Notch, IL1β or CCL2 may reduce TAM recruitment and resistance to ICI, illuminating the potential of combination immunotherapy in TNBC.
Collapse
Affiliation(s)
- Wanda Marini
- Division of General Surgery, University of Toronto, Toronto, Ontario, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Brooke E Wilson
- Department of Oncology, Queen's University, Kingston, Ontario, Canada.,Division of Cancer Care and Epidemiology, Queen's Cancer Research Institute, Kingston, Ontario, Canada
| | - Michael Reedijk
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
29
|
Wu X, Wang N, Liang J, Wang B, Jin Y, Liu B, Yang Y. Is the Triggering of PD-L1 Dimerization a Potential Mechanism for Food-Derived Small Molecules in Cancer Immunotherapy? A Study by Molecular Dynamics. Int J Mol Sci 2023; 24:ijms24021413. [PMID: 36674929 PMCID: PMC9864258 DOI: 10.3390/ijms24021413] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/04/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
Using small molecules to inhibit the PD-1/PD-L1 pathway is an important approach in cancer immunotherapy. Natural compounds such as capsaicin, zucapsaicin, 6-gingerol and curcumin have been proposed to have anticancer immunologic functions by downregulating the PD-L1 expression. PD-L1 dimerization promoted by small molecules was recently reported to be a potential mechanism to inhibit the PD-1/PD-L1 pathway. To clarify the molecular mechanism of such compounds on PD-L1 dimerization, molecular docking and molecular dynamics simulations were performed. The results evidenced that these compounds could inhibit PD-1/PD-L1 interactions by directly targeting PD-L1 dimerization. Binding free energy calculations showed that capsaicin, zucapsaicin, 6-gingerol and curcumin have strong binding ability with the PD-L1 dimer, where the affinities of them follow the trend of zucapsaicin > capsaicin > 6-gingerol ≈ curcumin. Analysis by residue energy decomposition, contact numbers and nonbonded interactions revealed that these compounds have a tight interaction with the C-sheet, F-sheet and G-sheet fragments of the PD-L1 dimer, which were also involved in the interactions with PD-1. Moreover, non-polar interactions between these compounds and the key residues Ile54, Tyr56, Met115 and Ala121 play a key role in stabilizing the protein−ligand complexes in solution, in which the 4′-hydroxy-3′-methoxyphenyl group and the carbonyl group of zucapsaicin, capsaicin, 6-ginger and curcumin were significant for the complexation of small molecules with the PD-L1 dimer. The conformational variations of these complexes were further analyzed by free energy landscape (FEL) and principal component analysis (PCA) and showed that these small molecules could make the structure of dimers more stable. This work provides a mechanism insight for food-derived small molecules blocking the PD-1/PD-L1 pathway via directly targeting the PD-L1 dimerization and offers theoretical guidance to discover more effective small molecular drugs in cancer immunotherapy.
Collapse
|
30
|
Ibrahiem AT, Eladl E, Toraih EA, Fawzy MS, Abdelwahab K, Elnaghi K, Emarah Z, Shaalan AAM, Ehab Z, Soliman NA. Prognostic Value of BRAF, Programmed Cell Death 1 (PD1), and PD Ligand 1 (PDL1) Protein Expression in Colon Adenocarcinoma. Diagnostics (Basel) 2023; 13:237. [PMID: 36673047 PMCID: PMC9858159 DOI: 10.3390/diagnostics13020237] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023] Open
Abstract
Patients with colorectal cancer in different stages show variable outcomes/therapeutic responses due to their distinct tumoral biomarkers and biological features. In this sense, this study aimed to explore the prognostic utility of BRAF, programmed death-1 (PD1), and its ligand (PDL1) protein signatures in colon adenocarcinoma. The selected protein markers were explored in 64 archived primary colon adenocarcinomas in relation to clinicopathological features. BRAF overexpression was found in 39% of the cases and was significantly associated with grade 3, N1, advanced Dukes stage, presence of relapse, and shorter overall survival (OS). PD1 expression in the infiltrating immune cells (IICs) exhibited significant association with T2/T3, N0/M0, early Dukes stage, and absence of relapse. PDL1 expression in IICs is significantly associated with advanced nodal stage/distant metastasis, advanced Dukes stage, and shorter OS. Meanwhile, PDL1 expression in neoplastic cells (NC) was associated with the advanced lymph node/Dukes stage. A positive combined expression pattern of PDL1 in NC/IICs was associated with poor prognostic indices. Tumor PDL1 expression can be an independent predictor of OS and DFS. The multivariate analyses revealed that short OS was independently associated with the RT side location of the tumor, PD1 expression in stromal IICs, and PDL1 expression in NC. In conclusion, overexpression of BRAF in colon adenocarcinoma is considered a poor prognostic pathological marker. In addition, PDL1 expression in NC is considered an independent prognostic factor for DFS/OS. Combined immunohistochemical assessment for BRAF and PD1/PDL1 protein expressions in colon adenocarcinoma might be beneficial for selecting patients for future targeted therapy.
Collapse
Affiliation(s)
- Afaf T. Ibrahiem
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Entsar Eladl
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
- Department of Laboratory Medicine and pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Eman A. Toraih
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
- Medical Genetics Unit, Histology and Cell Biology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Manal S. Fawzy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar 73213, Saudi Arabia
| | - Khaled Abdelwahab
- Surgical Oncology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Khaled Elnaghi
- Medical Oncology Unit, Oncology Center, Internal Medicine Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
- Oncology Center, King Abdullah Medical City, Makkah 24246, Saudi Arabia
| | - Ziad Emarah
- Medical Oncology Unit, Oncology Center, Internal Medicine Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
- Oncology Center, King Abdullah Medical City, Makkah 24246, Saudi Arabia
| | - Aly A. M. Shaalan
- Department of Anatomy, Faculty of Medicine, Jazan University, Jazan 82621, Saudi Arabia
- Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ziad Ehab
- Faculty of Medicine, Mansoura University, Mansoura 21955, Egypt
| | - Nahed A. Soliman
- Department of Pathology, Faculty of Medicine, Helwan University, Cairo 11795, Egypt
| |
Collapse
|
31
|
0.1% Nano-silver mediates PD-1/PD-L1 pathway and alleviates chronic apical periodontitis in rats. Odontology 2023; 111:154-164. [PMID: 36057921 DOI: 10.1007/s10266-022-00735-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 08/17/2022] [Indexed: 01/12/2023]
Abstract
This study was to investigate whether the programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) and T-helper 17 (Th17)/regulatory T (Treg) balance are associated with chronic apical periodontitis (CAP) relived by 0.1% nano-silver. CAP rat models were established by opening the first molars of the right and left mandible and exposing the pulp cavity to the oral cavity. CAP model was verified by cone-beam computed tomography, X-ray digital radiovisiography, and hematoxylin-eosin (H and E) staining. The rats were randomly divided into the sham, Ca(OH)2, and 0.1% nano-silver groups (n = 12 in each group) 2 weeks after surgery. The pathological changes in the apical area were detected by H and E staining. PD-1, PD-L1, RORγT, IL-17, and Foxp3 in periapical tissues were detected by qRT-PCR and immunohistochemistry. Th17/Treg and PD-1/PD-L1 were analyzed by flow cytometry. After 7, 14, and 21 days of 0.1% nano-silver treatment, inflammatory cells in the apical region were slightly reduced and inflammatory infiltration was relieved compared with the sham group. RORγT, IL-17, PD-1, and PD-L1 decreased and Foxp3 increased after 7, 14, and 21 days of 0.1% nano-silver treatment compared with the sham group (p < 0.05); however, there were no significant differences with Ca(OH)2 group (p > 0.05). Flow cytometry revealed that 0.1% nano-silver solution decreased Th17/Treg and PD-1/PD-L1 ratio. 0.1% Nano-silver significantly reduced the inflammation of CAP in rats. PD-1/PD-L1 was included in Th17/Treg balance restored by 0.1% nano-silver.
Collapse
|
32
|
Abdeladhim M, Karnell JL, Rieder SA. In or out of control: Modulating regulatory T cell homeostasis and function with immune checkpoint pathways. Front Immunol 2022; 13:1033705. [PMID: 36591244 PMCID: PMC9799097 DOI: 10.3389/fimmu.2022.1033705] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/16/2022] [Indexed: 12/16/2022] Open
Abstract
Regulatory T cells (Tregs) are the master regulators of immunity and they have been implicated in different disease states such as infection, autoimmunity and cancer. Since their discovery, many studies have focused on understanding Treg development, differentiation, and function. While there are many players in the generation and function of truly suppressive Tregs, the role of checkpoint pathways in these processes have been studied extensively. In this paper, we systematically review the role of different checkpoint pathways in Treg homeostasis and function. We describe how co-stimulatory and co-inhibitory pathways modulate Treg homeostasis and function and highlight data from mouse and human studies. Multiple checkpoint pathways are being targeted in cancer and autoimmunity; therefore, we share insights from the clinic and discuss the effect of experimental and approved therapeutics on Treg biology.
Collapse
|
33
|
Olfactory Ecto-mesenchymal Stem Cell-derived Exosomes Ameliorate Murine Sjögren's Syndrome via Suppressing Tfh Cell Response. RHEUMATOLOGY AND IMMUNOLOGY RESEARCH 2022; 3:198-207. [PMID: 36879843 PMCID: PMC9984929 DOI: 10.2478/rir-2022-0035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/13/2022] [Indexed: 02/09/2023]
Abstract
Objectives To investigate the effect of olfactory ecto-mesenchymal stem cell-derived exosomes (OE-MSC-Exos) on T follicular helper (Tfh) cell response and their implication in treating experimental Sjögrens syndrome (ESS). Methods C57BL/6 mice were immunized with salivary glands (SG) proteins to induce ESS mouse model. OE-MSC-Exos were added to the Tfh cell polarization condition, and the proportion of Tfh cells was detected by FCM. The PD-L1 of OE-MSCs was silenced with small interfering RNA to extract siPD-L1-OE-MSC-Exos. Results We found that transfer of OE-MSC-Exos markedly attenuated disease progression and reduced Tfh cell response in mice with ESS. In culture, OE-MSC-Exos potently inhibited the differentiation of Tfh cells from naïve T cells. Moreover, OE-MSC-Exos expressed high level of the ligand for the programmed cell death protein 1 (PD-L1), knocking down PD-L1 expression in OE-MSC-Exos significantly decreased their capacity to suppress Tfh cell differentiation in vitro. Consistently, transfer of OE-MSC-Exos with PD-L1 knockdown exhibited profoundly diminished therapeutic effect in ESS mice, accompanied with sustained Tfh cell response and high levels of autoantibody production. Conclusion Our results suggest that OE-MSC-Exos may exert their therapeutic effect in ameliorating ESS progression via suppressing Tfh cell response in a PD-L1-dependent manner.
Collapse
|
34
|
Gleue CA, Xie F, Deschaine M, Dasari S, Sartori-Valinotti JC, Torgerson RR, Davis MDP, Charlesworth MC, Meves A, Lehman JS. Differential proteomic expression in indolent vulvar lichen sclerosus, transforming vulvar lichen sclerosus and normal vulvar tissue. Exp Dermatol 2022; 31:1920-1926. [PMID: 35960231 DOI: 10.1111/exd.14660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/21/2022] [Accepted: 08/10/2022] [Indexed: 12/14/2022]
Abstract
Vulvar lichen sclerosus (VLS) confers approximately 3% risk of malignant transformation to vulvar squamous cell carcinoma (VSCC). We used unbiased proteomic methods to identify differentially expressed proteins in tissue of patients with VLS who developed VSCC compared to those who did not. We used laser capture microdissection- and nanoLC-tandem mass spectrometry to assess protein expression in individuals in normal vulvar tissue (NVT, n = 4), indolent VLS (no VSCC after at least 5 years follow-up, n = 5) or transforming VSCC (preceding VSCC, n = 5). Interferon-γ and antigen-presenting pathways are overexpressed in indolent and transforming VLS compared to NVT. There was differential expression of malignancy-related proteins in transforming VLS compared to indolent VLS (CAV1 overexpression, AKAP12 underexpression), particularly in the EIF2 translation pathway, which has been previously implicated in carcinogenesis. Results of this study provide additional molecular evidence supporting the concept that VLS is a risk factor for VSCC and highlights possible future biomarkers and/or therapeutic targets.
Collapse
Affiliation(s)
- Casey A Gleue
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Fangyi Xie
- Department of Dermatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Maria Deschaine
- Department of Dermatology, Florida State University, Pensacola, Florida, USA
| | - Surendra Dasari
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Rochelle R Torgerson
- Department of Dermatology, Mayo Clinic, Rochester, Minnesota, USA.,Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, Minnesota, USA
| | - Mark D P Davis
- Department of Dermatology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Alexander Meves
- Department of Dermatology, Mayo Clinic, Rochester, Minnesota, USA.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Julia S Lehman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA.,Department of Dermatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
35
|
Jiang L, Zhang J, Fang M, Qin Y, Huang Y, Tao R. Analysis of subgingival micro-organisms based on multi-omics and Treg/Th17 balance in type 2 diabetes with/without periodontitis. Front Microbiol 2022; 13:939608. [PMID: 36519166 PMCID: PMC9743466 DOI: 10.3389/fmicb.2022.939608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/10/2022] [Indexed: 01/02/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) and periodontitis are common and interrelated diseases, resulting in altered host response microbiota. The subgingival micro-organisms play a key role in periodontitis pathogenesis. To assess the shift of subgingival microbiome and metabolome in T2DM, we performed an analysis of the subgingival microbiome in patients with T2DM (n = 20) compared with non-diabetes (ND) subjects (n = 21). Furthermore, patients were subdivided into 10 T2DM with periodontitis (DP), 10 T2DM without periodontitis (DNP), 10 periodontitis (P), and 11 healthy control (H) groups. 16SrRNA gene sequencing combined with ultra high-performance liquid chromatography-mass spectrometry (UHPLC-MS) based metabolomics was performed in all participants. T lymphocyte immunity was analyzed by flow cytometry. Furthermore, the network relationship among subgingival micro-organisms, metabolites, blood glucose level, and T lymphocyte immunity were analyzed. The results showed that the difference of the subgingival microbiome from healthy to periodontitis status was less prominent in T2DM compared with ND, though the clinical signs of disease were similar. The bacteria Eubacterium nodatum group, Filifactor, Fretibacterium, Peptostreptococcus, and Desulfovibrio, amongst others, may be important in the pathopoiesia of periodontitis in the T2DM state. In addition, some dominant bacteria showed network relationships. The Treg/Th17 ratio was lower in the DP and DNP groups than in the P and H groups-though that of P was lower than for H. The percentage of CD4+/CD8+ PD1 and CD8+ PDL1 was higher in the DP and DNP groups than in the H group; the percentage of CD8+ PDL1 was higher in the DP than P groups. Subgingival micro-organisms in periodontitis had a significant metabolic shift in terms of their signature metabolites. Butyrate metabolism and phenylalanine metabolism may play a role in the pathogenesis of periodontitis with/without T2DM. Specifically, biphenyl degradation, tryptophan metabolism, and the two-component system may play important roles in periodontitis with T2DM. Lastly, the network relationship among subgingival micro-organisms, metabolites, blood glucose level, and T lymphocyte immunity were unbalanced. This study identified the changes in the subgingival microbiome associated with periodontitis in T2DM, as well as the associated network between bacterial flora, metabolism dysbiosis, and immune regulation.
Collapse
Affiliation(s)
- Lanlan Jiang
- Department of Periodontics and Oral Medicine, College of Stomatology, Guangxi Medical University, Nanning, China
- Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning, China
- Guangxi Key Laboratory of the Rehabilitation and Reconstruction for Oral and Maxillofacial Research, Nanning, China
| | - Jiaming Zhang
- Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning, China
| | - Meifei Fang
- Department of Periodontics and Oral Medicine, College of Stomatology, Guangxi Medical University, Nanning, China
| | - Yingfen Qin
- Department of Endocrinology, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Yuxiao Huang
- Department of Periodontics and Oral Medicine, College of Stomatology, Guangxi Medical University, Nanning, China
| | - Renchuan Tao
- Department of Periodontics and Oral Medicine, College of Stomatology, Guangxi Medical University, Nanning, China
- Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning, China
- Guangxi Key Laboratory of the Rehabilitation and Reconstruction for Oral and Maxillofacial Research, Nanning, China
| |
Collapse
|
36
|
Wang J, Tu S, Chavda VP, Chen ZS, Chen X. Successes and failures of immunotherapy for gastric cancer. Drug Discov Today 2022; 27:103343. [PMID: 36075377 DOI: 10.1016/j.drudis.2022.103343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/13/2022] [Accepted: 08/31/2022] [Indexed: 11/03/2022]
Abstract
Many exploratory clinical studies have been conducted on immune checkpoint inhibitors (ICIs) as new therapeutic approaches for the first-line treatment of patients with advanced gastric cancer. Despite varying interpretations of the successes and failures of this clinical research, most analyses have focused on the results from the perspective of exploring the superiority of immunotherapy. Consequently, the role of chemotherapy as an important partner of immunotherapy in first-line combination therapy regimens for gastric cancer has attracted less attention. Here, we explore and analyze first-line immunotherapies for gastric cancer from the perspective of chemotherapy, to understand reasons for the failure of studies and to indicate directions for future clinical research.
Collapse
Affiliation(s)
- Jianzheng Wang
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Shuiping Tu
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St John's University, Queens, NY 11439, USA.
| | - Xiaobing Chen
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China.
| |
Collapse
|
37
|
Saha P, Mell B, Golonka RM, Bovilla VR, Abokor AA, Mei X, Yeoh BS, Doris PA, Gewirtz AT, Joe B, Vijay-Kumar M. Selective IgA Deficiency in Spontaneously Hypertensive Rats With Gut Dysbiosis. Hypertension 2022; 79:2239-2249. [PMID: 35950503 PMCID: PMC9458624 DOI: 10.1161/hypertensionaha.122.19307] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/07/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND The spontaneously hypertensive rat (SHR) is extensively used to study hypertension. Gut microbiota dysbiosis is a notable feature in SHR for reasons unknown. Immunoglobulin A (IgA) is a major host factor required for gut microbiota homeostasis. We hypothesized that inadequate IgA contributes to gut microbiota dysbiosis in SHR. METHODS IgA was measured in feces, cecum, serum, liver, gut-associated lymphoid tissue, and milk from SHR and Wistar Kyoto rats. IgA regulatory factors like IgM, IgG, and pIgR (polymeric immunoglobulin receptor) were analyzed. IgA and IgG antibodies and blood pressure (BP) were measured before and after administrating a bacterial antigen (ie, flagellin). RESULTS Compared with Wistar Kyoto rats, SHR displayed remarkably near-deficient IgA levels accompanied by compensatory increases in serum IgM and IgG and gut-liver pIgR expression. Inadequate milk IgA in SHR emphasized this immune defect stemmed from the neonatal stage. Reduced IgA+ B cells in circulation and Peyer patches indicated a possible reason for the lower IgA in SHR. Noteworthy, a genetic insufficiency was unlikely because administering flagellin to SHR induced anti-flagellin IgA antibodies. This immune response surprisingly accelerated hypertension development in SHR, suggesting IgA quiescence may help maintain lower BP. CONCLUSIONS This study is the first to reveal IgA deficiency in SHR as one host factor associated with gut microbiota dysbiosis and invigorates future research to determine the pathophysiological role of IgA in hypertension.
Collapse
Affiliation(s)
- Piu Saha
- UT Microbiome Consortium, Center for Hypertension and Precision Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Blair Mell
- UT Microbiome Consortium, Center for Hypertension and Precision Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Rachel M. Golonka
- UT Microbiome Consortium, Center for Hypertension and Precision Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Venugopal R. Bovilla
- UT Microbiome Consortium, Center for Hypertension and Precision Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Ahmed A. Abokor
- UT Microbiome Consortium, Center for Hypertension and Precision Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Xue Mei
- UT Microbiome Consortium, Center for Hypertension and Precision Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Beng San Yeoh
- UT Microbiome Consortium, Center for Hypertension and Precision Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Peter A. Doris
- Brown Foundation Institute of Molecular Medicine, University of Texas McGovern Medical School, Houston, TX 77030, USA
| | - Andrew T. Gewirtz
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Bina Joe
- UT Microbiome Consortium, Center for Hypertension and Precision Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Matam Vijay-Kumar
- UT Microbiome Consortium, Center for Hypertension and Precision Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| |
Collapse
|
38
|
Suszczyk D, Skiba W, Zardzewiały W, Pawłowska A, Włodarczyk K, Polak G, Tarkowski R, Wertel I. Clinical Value of the PD-1/PD-L1/PD-L2 Pathway in Patients Suffering from Endometriosis. Int J Mol Sci 2022; 23:ijms231911607. [PMID: 36232911 PMCID: PMC9570092 DOI: 10.3390/ijms231911607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022] Open
Abstract
The interaction between dendritic cells (DCs) and T cells mediated by the programmed cell death 1 (PD-1)/programmed cell death ligand 1 (PD-L1)/programmed cell death ligand 2 (PD-L2) pathway is the most important point in regulating immunological tolerance and autoimmunity. Disturbances in the quantity, maturity, and activity of DCs may be involved in the implantation and growth of endometrial tissue outside the uterus in endometriosis (EMS). However, little is known about the role of the immune checkpoint pathways in EMS. In our study, we examined the expression of PD-L1/PD-L2 on myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) in the peripheral blood (PB) and peritoneal fluid (PF) of both EMS patients (n = 72) and healthy subjects (n = 20) via flow cytometry. The concentration of soluble PD-L1 and PD-L2 in the plasma and PF of EMS patients and the control group were determined using ELISA. We demonstrated an elevated percentage of mDCs, mDCs and pDCs with the PD-L1or PD-L2 expression, and a higher concentration of the soluble forms of PD-L1 and PD-L2 in the PF than in the plasma of EMS patients. We conclude that the peritoneal cavity environment and the PD-1/PD-L1/PD-L2 axis may play an important role in the modulation of immune response and the development and/or progression of EMS.
Collapse
Affiliation(s)
- Dorota Suszczyk
- Independent Laboratory of Cancer Diagnostics and Immunology, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
- Correspondence:
| | - Wiktoria Skiba
- Independent Laboratory of Cancer Diagnostics and Immunology, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Witold Zardzewiały
- Students’ Scientific Association, Independent Laboratory of Cancer Diagnostics and Immunology, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Anna Pawłowska
- Independent Laboratory of Cancer Diagnostics and Immunology, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Karolina Włodarczyk
- Independent Laboratory of Cancer Diagnostics and Immunology, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Grzegorz Polak
- I Chair and Department of Gynaecologic Oncology and Gynaecology, Medical University of Lublin, Staszica 16, 20-081 Lublin, Poland
| | - Rafał Tarkowski
- I Chair and Department of Gynaecologic Oncology and Gynaecology, Medical University of Lublin, Staszica 16, 20-081 Lublin, Poland
| | - Iwona Wertel
- Independent Laboratory of Cancer Diagnostics and Immunology, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| |
Collapse
|
39
|
Fazeli P, Talepoor AG, Faghih Z, Gholijani N, Ataollahi MR, Ali‐Hassanzadeh M, Moravej H, Kalantar K. The frequency of CD4+ and CD8+ circulating T stem cell memory in type 1 diabetes. Immun Inflamm Dis 2022; 10:e715. [PMID: 36169248 PMCID: PMC9500591 DOI: 10.1002/iid3.715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/27/2022] [Accepted: 09/13/2022] [Indexed: 11/07/2022] Open
Abstract
INTRODUCTION The frequencies and functions of T stem cell memory (TSCM) subsets vary in autoimmune diseases. We evaluated the frequencies of CD4+ and CD8+ TSCM subsets as well as their PD-1 expression levels in patients with T1D. METHODS Blood samples were collected from new case (NC) (n = 15), and long-term (LT) (n = 15) groups and healthy controls (n = 15). Five subsets of T cells including TCM(CD4+ /CD8+ CCR7+ CD45RO+ CD95+ ), TCMhi (CD4+ /CD8+ CCR7+ CD45ROhi CD95+ ), TEM(CD4+ /CD8+ CCR7- CD45RO+ CD95+ ), TSCM(CD4+ /CD8+ CCR7+ CD45RO- CD95+ ), and T naive (CD4+ /CD8+ CCR7+ CD45RO- CD95- ) were detected by flow-cytometry. RESULTS The frequency of CD4+ TSCM was higher in NC patients than LT patients and controls (p < .0001 and p = .0086, respectively). A higher percentage of the CD8+ T naive cells was shown in NC patients as compared with LT and healthy individuals (p = .0003 and p = .0002, respectively). An increased level of PD-1 expression was observed on the CD4+ TCM and TCMhi cells in LT patients as compared with healthy controls (p = .0037 and p = .0145, respectively). Also, the higher PD-1 expression was observed on the CD8+ TCM and TCMhi in NC and LT patients as compared with controls (p = .0068 and p < .0001; p = .0012 and p = .0012, respectively). CONCLUSION Considering TSCMs' capacities to generate all memory and effector T cells, our results may suggest a potential association between the increased frequencies of TSCMs and T1D progression.
Collapse
Affiliation(s)
- Pooriya Fazeli
- Department of ImmunologySchool of MedicineShiraz University of Medical SciencesShirazIran
| | - Atefe Ghamar Talepoor
- Department of ImmunologySchool of MedicineShiraz University of Medical SciencesShirazIran
| | - Zahra Faghih
- Shiraz Institute for Cancer ResearchSchool of MedicineShiraz University of Medical SciencesShirazIran
| | - Nasser Gholijani
- Autoimmune Diseases Research CenterShiraz University of Medical SciencesShirazIran
| | | | | | - Hossein Moravej
- Department of PediatricsSchool of MedicineShiraz University of Medical SciencesShirazIran
| | - Kurosh Kalantar
- Department of ImmunologySchool of MedicineShiraz University of Medical SciencesShirazIran
- Autoimmune Diseases Research CenterShiraz University of Medical SciencesShirazIran
| |
Collapse
|
40
|
The Expression Levels and Concentrations of PD-1 and PD-L1 Proteins in Septic Patients: A Systematic Review. Diagnostics (Basel) 2022; 12:diagnostics12082004. [PMID: 36010357 PMCID: PMC9407082 DOI: 10.3390/diagnostics12082004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Sepsis is a series of life-threatening organ dysfunction caused by an impaired host response to infection. A large number of molecular studies of sepsis have revealed complex interactions between infectious agents and hosts that result in heterogeneous manifestations of sepsis. Sepsis can cause immunosuppression and increase the expression of checkpoint inhibitor molecules, including programmed death protein (PD-1) and programmed death ligand 1 (PD-L1), and thus PD-1 and PD-L1 are thought to be useful as diagnostic and prognostic tools for sepsis. PD-1 is an inhibitor of both adaptive and innate immune responses, and is expressed on activated T lymphocytes, natural killer (NK) cells, B lymphocytes, macrophages, dendritic cells (DCs), and monocytes, whereas PD-L1 is expressed on macrophages, some activated T and B cells, and mesenchymal stem cells as well as various non-hematopoietic cells. This systematic review aims to assess the PD-1 and PD-L1 protein expression levels and concentrations in septic and other infectious patients.
Collapse
|
41
|
Yong J, Gröger S, von Bremen J, Meyle J, Ruf S. Immunorthodontics: PD-L1, a Novel Immunomodulator in Cementoblasts, Is Regulated by HIF-1α under Hypoxia. Cells 2022; 11:cells11152350. [PMID: 35954195 PMCID: PMC9367578 DOI: 10.3390/cells11152350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 02/04/2023] Open
Abstract
Recent studies have revealed that hypoxia alters the PD-L1 expression in periodontal cells. HIF-1α is a key regulator for PD-L1. As hypoxia presents a hallmark of an orthodontically induced microenvironment, hypoxic stimulation of PD-L1 expression may play vital roles in immunorthodontics and orthodontically induced inflammatory root resorption (OIIRR). This study aims to investigate the hypoxic regulation of PD-L1 in cementoblasts, and its interaction with hypoxia-induced HIF-1α expression. The cementoblast (OCCM-30) cells (M. Somerman, NIH, NIDCR, Bethesda, Maryland) were cultured in the presence and absence of cobalt (II) chloride (CoCl2). Protein expression of PD-L1 and HIF-1α as well as their gene expression were evaluated by Western blotting and RT-qPCR. Immunofluorescence was applied to visualize the localization of the proteins within cells. The HIF-1α inhibitor (HY-111387, MedChemExpress) was added, and CRISPR/Cas9 plasmid targeting HIF-1α was transferred for further investigation by flow cytometry analysis. Under hypoxic conditions, cementoblasts undergo an up-regulation of PD-L1 expression at protein and mRNA levels. Silencing of HIF-1α using CRISPR/Cas9 indicated a major positive correlation with HIF-1α in regulating PD-L1 expression. Taken together, these findings show the influence of hypoxia on PD-L1 expression is modulated in a HIF-1α dependent manner. The HIF-1α/PD-L1 pathway may play a role in the immune response of cementoblasts. Thus, combined HIF-1α/PD-L1 inhibition could be of possible therapeutic relevance for OIIRR prevention.
Collapse
Affiliation(s)
- Jiawen Yong
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (S.G.); (J.v.B.); (S.R.)
- Department of Periodontology, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany;
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310003, China
- Correspondence: or ; Tel.: +49-641-99-46131
| | - Sabine Gröger
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (S.G.); (J.v.B.); (S.R.)
- Department of Periodontology, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | - Julia von Bremen
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (S.G.); (J.v.B.); (S.R.)
| | - Joerg Meyle
- Department of Periodontology, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | - Sabine Ruf
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (S.G.); (J.v.B.); (S.R.)
| |
Collapse
|
42
|
Madadi S, Mohammadinejad S, Alizadegan A, Hojjat-Farsangi M, Dolati S, Samadi Kafil H, Jadidi-Niaragh F, Soltani-Zangbar MS, Motavalli R, Etemadi J, Eghbal-Fard S, Aghebati-Maleki L, Danaii S, Taghavi S, Yousefi M. Expression level of immune checkpoint inhibitory factors in preeclampsia. Hum Immunol 2022; 83:628-636. [PMID: 35906120 DOI: 10.1016/j.humimm.2022.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/11/2022] [Accepted: 07/19/2022] [Indexed: 11/15/2022]
Abstract
Preeclampsia (PE) is a severe complication in pregnancy, and its symptoms (proteinuria and hypertension) manifest after 20 weeks of gestation, affecting up to 8 % of pregnancies. The pregnant women's immune system uses different tolerance mechanisms to deal with a semi-allogeneic fetus. The T-cell subsets including CD8+, CD4+, and Treg play a critical role in maintaining pregnancies. The expression of immune checkpoint molecules in T-cells can ensure pregnancy at the feto-maternal interface by controlling immune responses. This research aims to evaluate the expression level of immune checkpoint factors, including PD-1, LAG-3, CTLA-4, and TIM-3 in normal pregnant women and PE patients. Decidual tissue was collected from 50 participants (25 PE and 25 control). For evaluating the genes expression, real-time PCR was employed. The western blot was used to assess the proteins level. The results of real-time PCR indicated significantly decreased expression level of these immune checkpoints in PE patients. In parallel to gene expression results, the protein level of PD-1, LAG-3, CTLA-4, and TIM-3 in the PE group was also reduced. We revealed that the profile of proteins and genes expression of immune checkpoints in the decidua of PE mothers are different from normal pregnancy and these results indicate aberrant expression of immune checkpoints such as PD-1, LAG-3, CTLA-4, and TIM-3 may cause maladaptation immune response which results in PE manifestation.
Collapse
Affiliation(s)
- Sahar Madadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sina Mohammadinejad
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Alizadegan
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Sanam Dolati
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Jadidi-Niaragh
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Sadegh Soltani-Zangbar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roza Motavalli
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalal Etemadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shadi Eghbal-Fard
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Shahla Danaii
- Gynecology Department, Eastern Azerbaijan ACECR ART Center, Eastern Azerbaijan Branch of ACECR, Tabriz, Iran
| | - Simin Taghavi
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
43
|
Wozniakova M, Skarda J, Raska M. The Role of Tumor Microenvironment and Immune Response in Colorectal Cancer Development and Prognosis. Pathol Oncol Res 2022; 28:1610502. [PMID: 35936516 PMCID: PMC9350736 DOI: 10.3389/pore.2022.1610502] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022]
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide. The patient’s prognosis largely depends on the tumor stage at diagnosis. The pathological TNM Classification of Malignant Tumors (pTNM) staging of surgically resected cancers represents the main prognostic factor and guidance for decision-making in CRC patients. However, this approach alone is insufficient as a prognostic predictor because clinical outcomes in patients at the same histological tumor stage can still differ. Recently, significant progress in the treatment of CRC has been made due to improvements in both chemotherapy and surgical management. Immunotherapy-based approaches are one of the most rapidly developing areas of tumor therapy. This review summarizes the current knowledge about the tumor microenvironment (TME), immune response and its interactions with CRC development, immunotherapy and prognosis.
Collapse
Affiliation(s)
- Maria Wozniakova
- Institute of Pathology and Molecular Genetics, University Hospital Ostrava, Ostrava, Czechia
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czechia
- *Correspondence: Maria Wozniakova,
| | - Jozef Skarda
- Institute of Pathology and Molecular Genetics, University Hospital Ostrava, Ostrava, Czechia
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czechia
| | - Milan Raska
- Department of Immunology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czechia
| |
Collapse
|
44
|
Liao Z, Kong Y, Zeng L, Wan Q, Hu J, Cai Y. Effects of high-fat diet on thyroid autoimmunity in the female rat. BMC Endocr Disord 2022; 22:179. [PMID: 35840950 PMCID: PMC9287994 DOI: 10.1186/s12902-022-01093-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND While contributions of dyslipidemia to autoimmune diseases have been described, its impact on thyroid autoimmunity (TA) is less clear. Programmed cell death 1(PD-1)/PD-ligand 1 (PD-L1) immune checkpoint is crucial in preventing autoimmune attack while its blockade exacerbates TA. We thus unveiled the effect of high-fat diet (HFD) on TA, focusing on the contribution of PD-1/PD-L1. METHODS Female Sprague Dawley (SD) rats were randomly fed with a regular diet or HFD (60% calories from fat) for 24 weeks. Then, thyroid ultrasonography was performed and samples were collected for lipid and thyroid-related parameter measure. RESULTS HFD rats exhibited hyperlipemia and abnormal biosynthesis of the unsaturated fatty acid in serum detected by lipidomics. These rats displayed a relatively lower echogenicity and increased inflammatory infiltration in thyroid accompanied by rising serum thyroid autoantibody levels and hypothyroidism, mimicking human Hashimoto's thyroiditis. These alterations were concurrent with decreased mRNA and immunostaining of intrathyroidal PD-1 and also serum PD-1 levels but not the PD-L1 expression, suggesting a role of a PD-1 pathway. Meanwhile, the infiltration of B and T cell, a key cellular event inhibited by the PD-1 signals, was enhanced in the thyroid of HFD rats, along with thyroid fibrosis and apoptosis. CONCLUSIONS Our data suggest that HFD triggers TA through a mechanism possibly involving downregulation of PD-1-related immunosuppression, providing a novel insight into the link between dyslipidemia and autoimmune toxicities.
Collapse
Affiliation(s)
- Zhengzheng Liao
- Department of Pharmacy, the First Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, People's Republic of China
| | - Ying Kong
- Department of Pharmacy, the First Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, People's Republic of China
| | - Liang Zeng
- Department of Otorhinolaryngology, Head & Neck Surgery, the First Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, People's Republic of China
| | - Qing Wan
- Department of Pharmacy, the First Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, People's Republic of China
| | - Jinfang Hu
- Department of Pharmacy, the First Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, People's Republic of China.
| | - Yaojun Cai
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, People's Republic of China.
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Jiangxi, 330006, Nanchang, People's Republic of China.
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Jiangxi, 330006, Nanchang, People's Republic of China.
| |
Collapse
|
45
|
Chye A, Allen I, Barnet M, Burnett DL. Insights Into the Host Contribution of Endocrine Associated Immune-Related Adverse Events to Immune Checkpoint Inhibition Therapy. Front Oncol 2022; 12:894015. [PMID: 35912205 PMCID: PMC9329613 DOI: 10.3389/fonc.2022.894015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/10/2022] [Indexed: 12/12/2022] Open
Abstract
Blockade of immune checkpoints transformed the paradigm of systemic cancer therapy, enabling substitution of a cytotoxic chemotherapy backbone to one of immunostimulation in many settings. Invigorating host immune cells against tumor neo-antigens, however, can induce severe autoimmune toxicity which in many cases requires ongoing management. Many immune-related adverse events (irAEs) are clinically and pathologically indistinguishable from inborn errors of immunity arising from genetic polymorphisms of immune checkpoint genes, suggesting a possible shared driver for both conditions. Many endocrine irAEs, for example, have analogous primary genetic conditions with varied penetrance and severity despite consistent genetic change. This is akin to onset of irAEs in response to immune checkpoint inhibitors (ICIs), which vary in timing, severity and nature despite a consistent drug target. Host contribution to ICI response and irAEs, particularly those of endocrine origin, such as thyroiditis, hypophysitis, adrenalitis and diabetes mellitus, remains poorly defined. Improved understanding of host factors contributing to ICI outcomes is essential for tailoring care to an individual’s unique genetic predisposition to response and toxicity, and are discussed in detail in this review.
Collapse
Affiliation(s)
- Adrian Chye
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW, Australia
- Department of Medical Oncology, The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
| | - India Allen
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW, Australia
| | - Megan Barnet
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW, Australia
- Department of Medical Oncology, The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
- *Correspondence: Megan Barnet, ; Deborah L. Burnett,
| | - Deborah L. Burnett
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW, Australia
- *Correspondence: Megan Barnet, ; Deborah L. Burnett,
| |
Collapse
|
46
|
Rayati Damavandi A, Zolfaghari Baghbadorani P, Kardideh B, Fouladseresht H, Golabi M, Ghezelbash B, Andalib S, Eskandari N, Mirniam SM, Fathi F. The Association of Programmed Death 1 Gene Polymorphisms of PD1.3 G/A and PD1.5 C/T with Risk of COVID-19 in an Iranian Population: A Case-Control Study. Viral Immunol 2022; 35:483-490. [PMID: 35512734 DOI: 10.1089/vim.2022.0030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Programmed death 1 (PD-1) has a central role in maintaining T cell tolerance and terminating cellular responses after eliminating antigens. Variation in PD-1 gene products caused by polymorphisms has been linked to several malignancies and autoimmune diseases. However, there is little known about the effects of its single-nucleotide polymorphisms (SNPs) on viral infections, particularly COVID-19. The primary aim of this study was to explore the function of genotypes, alleles, and haplotypes of two SNPs within the programmed cell death protein 1 (PDCD1) gene at PD1.3 G/A and PD1.5 C/T on susceptibility to COVID-19 in an Iranian population. The secondary objective was to evaluate the effects of these SNPs on the outcome of the disease. We got blood samples from COVID-19 patients (n = 195) and healthy subjects (n = 500) for genotypic determination of PD1.3 G/A (rs11568821) and PD1.5 C/T (rs2227981) SNPs, using the polymerase chain reaction-restriction fragment length polymorphism method, and constructed four haplotypes for PDCD1 SNPs. We used Pearson's chi-squared test, Fisher's exact test, and T-test for this study and incorporated effect sizes of odds ratio (OR) and standardized mean difference. The frequency of CT genotype of PD1.5 was meaningfully higher in COVID-19 patients (49.2%) than in healthy subjects (37.4%) (p = 0.005). However, these significant differences were not observed in the frequencies of PD1.3 genotypes between the two groups (p > 0.05). Of all estimated haplotypes for PDCD1, only AT was significantly and largely associated with COVID-19 susceptibility (p = 0.01, OR: 7.79 [95% confidence interval = 1.56-38.79]), however, this finding is inconclusive. In addition, the present study showed that the PD1.3 and PD1.5 SNPs were not associated with the outcome of the disease (p > 0.05). These results may propose that the PD1.5 CT genotype and AT haplotype of PDCD1 indecisively contribute to COVID-19 susceptibility in the Iranian population.
Collapse
Affiliation(s)
- Amirmasoud Rayati Damavandi
- Students' Scientific Research Center, Exceptional Talents Development Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Bahareh Kardideh
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hamed Fouladseresht
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marjan Golabi
- Department of Medical Immunology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Behrooz Ghezelbash
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shahrzad Andalib
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nahid Eskandari
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Mehdi Mirniam
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farshid Fathi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
47
|
Nguyen J, Finkelman BS, Escobar D, Xue Y, Wolniak K, Pezhouh M. Over-expression of Programmed Death Ligand 1 (PD-L1) in Refractory Inflammatory Bowel Disease (IBD). Hum Pathol 2022; 126:19-27. [PMID: 35489437 DOI: 10.1016/j.humpath.2022.04.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/04/2022]
Abstract
Programmed death ligand 1 (PD-L1) dysregulation has been implicated in chronic inflammatory diseases, but its role in regulating intestinal mucosa inflammation is still unclear. The aim of this study was to assess PD-L1 expression in the intestinal mucosa of patients with refractory inflammatory bowel disease (IBD) compared to controls. We evaluated PD-L1 expression by immunohistochemistry in colectomy specimens of patients with ulcerative colitis (UC) and Crohn disease (CD) compared to controls. PD-L1 expression was assessed in colonic epithelium and inflammatory cells, along with the location of the inflammatory cells expressing PD-L1. All cases were stained with CD3, CD4, CD8, FOXP3, CD20, CD68, and CD90 immunostains to determine the types of cells expressing PD-L1. The UC group showed significantly higher PD-L1 expression in the colonic epithelium compared to both CD and control groups (both P<0.001), and CD was also significantly higher than the control group (P=0.004). Both UC and CD groups showed similar PD-L1 expression in the inflammatory infiltrate, but significantly higher than the control group (both P<0.001). Among both IBD groups, higher IBD activity was associated with higher levels of PD-L1 expression in the colonic epithelium (P<0.05) and inflammatory infiltrate (P<0.001). When comparing PD-L1 expression to lineage specific markers, CD3+, CD4+ T cells, CD68+ macrophages, and CD90+ colonic stromal cells appeared to be expressing PD-L1. These findings implicate a role for PD-L1 in the dysregulation of the immune response in refractory IBD. Further studies are warranted to better understand the role of the immune regulatory pathways in intestinal mucosa.
Collapse
Affiliation(s)
- Jessica Nguyen
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611
| | - Brian S Finkelman
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD, 21287
| | - David Escobar
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611
| | - Yue Xue
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611
| | - Kristy Wolniak
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611
| | - Maryam Pezhouh
- Department of Pathology, University of California, San Diego, CA, 92037.
| |
Collapse
|
48
|
Muscari I, Fierabracci A, Adorisio S, Moretti M, Cannarile L, Thi Minh Hong V, Ayroldi E, Delfino DV. Glucocorticoids and natural killer cells: A suppressive relationship. Biochem Pharmacol 2022; 198:114930. [PMID: 35149054 DOI: 10.1016/j.bcp.2022.114930] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 11/02/2022]
Abstract
Glucocorticoids exert their pharmacological actions by mimicking and amplifying the function of the endogenous glucocorticoid system's canonical physiological stress response. They affect the immune system at the levels of inflammation and adaptive and innate immunity. These effects are the basis for therapeutic use of glucocorticoids. Innate immunity is the body's first line of defense against disease conditions. It is relatively nonspecific and, among its mediators, natural killer (NK) cells link innate and acquired immunity. NK cell numbers are altered in patients with auto immune diseases, and research suggests that interactions between glucocorticoids and natural killer cells are critical for successful glucocorticoid therapy. The aim of this review is to summarize these interactions while highlighting the latest and most important developments in this field. Production and release in the blood of endogenous glucocorticoids are strictly regulated by the hypothalamus-pituitary adrenal axis. A self-regulatory mechanism prevents excessive plasma levels of these hormones. However, exogenous stimuli such as stress, inflammation, infections, cancer, and autoimmune disease can trigger the hypothalamus-pituitary-adrenal axis response and lead to excessive systemic release of glucocorticoids. Thus, stress stimuli, such as sleep deprivation, intense exercise, depression, viral infections, and cancer, can result in release of glucocorticoids and associated immunosuppressant effects. Among these effects are decreases in the numbers and activities of NK cells in inflammatory and autoimmune diseases (e.g., giant cell arteritis, polymyalgia rheumatica, and familial hypogammaglobulinemia).
Collapse
Affiliation(s)
- Isabella Muscari
- Section of Onco-hematology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Alessandra Fierabracci
- Infectivology and Clinical Trials Research Department, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Sabrina Adorisio
- Foligno Nursing School, Department of Medicine and Surgery, University of Perugia, Foligno, PG, Italy
| | - Marina Moretti
- Section of Onco-hematology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Lorenza Cannarile
- Section of Pharmacology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Emira Ayroldi
- Section of Pharmacology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Domenico V Delfino
- Foligno Nursing School, Department of Medicine and Surgery, University of Perugia, Foligno, PG, Italy; Section of Pharmacology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy.
| |
Collapse
|
49
|
Saad AA. Targeting cancer-associated glycans as a therapeutic strategy in leukemia. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2049901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Ashraf Abdullah Saad
- Unit of Pediatric Hematologic Oncology and BMT, Sultan Qaboos University Hospital, Muscat, Oman
| |
Collapse
|
50
|
Ghosh N, Bass AR. Checkpoint Inhibitor-Associated Autoimmunity: What a Rheumatologist Needs to Know. J Clin Rheumatol 2022; 28:e659-e666. [PMID: 31743272 DOI: 10.1097/rhu.0000000000001209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Nilasha Ghosh
- From the Division of Rheumatology, Department of Medicine, Hospital for Special Surgery; and Weill Cornell Medicine, New York, NY
| | | |
Collapse
|