1
|
Zhang C, Sun G, Jin H, Wei Y, Zheng S, Wang X, Zhao X, Zhang D, Jia J. Double-negative T cells in combination with ursodeoxycholic acid ameliorates immune-mediated cholangitis in mice. BMC Med 2025; 23:209. [PMID: 40189495 PMCID: PMC11974204 DOI: 10.1186/s12916-025-04043-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 03/27/2025] [Indexed: 04/09/2025] Open
Abstract
BACKGROUND Primary biliary cholangitis (PBC) is a liver-specific autoimmune disease. Treatment of PBC with ursodeoxycholic acid (UDCA) is not sufficient to prevent disease progression. Our previous study revealed that the number of hepatic double-negative T cells (DNT), which are unique regulatory T cells, was reduced in PBC patients. However, whether replenishment of DNT can prevent the progression of PBC remains unclear. METHODS DnTGFβRII (Tg) mice and 2OA-BSA-immunized mice received DNT alone or in combination with oral UDCA. After 6-12 weeks of treatment, these mice were assessed for serological changes, liver pathological manifestations and intrahepatic immune responses. RESULTS Adoptive transfer of DNT alone significantly decreased serum levels of alanine transaminase (ALT), aspartate transaminase (AST), antimitochondrial antibody M2 (AMA-M2) and immunoglobulin M (IgM) in both Tg and 2OA-BSA-immunized PBC mouse models. In addition, DNT exhibited a strong killing effect on liver T cells and strong inhibition of their proliferation, but did not significantly improve the histology of PBC liver. However, combination therapy with DNT and oral UDCA predominantly ameliorated liver inflammation and significantly inhibited hepatic T and B cells. In vitro further study revealed that UDCA up-regulated the proliferation of DNT, increased the expression of the functional molecule perforin, and reduced the expression of NKG2A and endothelial cell protein C receptor (EPCR) through the farnesoid X receptor (FXR)/JNK signaling pathway in both mice and human DNT. CONCLUSIONS A single transfer of DNT ameliorated PBC in mice, while combination therapy of DNT with oral UDCA displayed a better efficacy, with stronger inhibition of hepatic T and B cells. This study highlights the potential application of DNT-based combination therapy for PBC, especially for UDCA non-responders.
Collapse
Affiliation(s)
- Chunpan Zhang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- National Clinical Research Center for Digestive Disease, Beijing, 100050, China
| | - Guangyong Sun
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 South Gongti Road, Beijing, 100020, China
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Hua Jin
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 South Gongti Road, Beijing, 100020, China
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Yunxiong Wei
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 South Gongti Road, Beijing, 100020, China
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Shimeng Zheng
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 South Gongti Road, Beijing, 100020, China
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Xiyu Wang
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 South Gongti Road, Beijing, 100020, China
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Xinyan Zhao
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- National Clinical Research Center for Digestive Disease, Beijing, 100050, China
| | - Dong Zhang
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 South Gongti Road, Beijing, 100020, China.
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
- Beijing Laboratory of Oral Health, Capital Medical University School of Basic Medicine, Beijing, 100069, China.
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
- State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
- National Clinical Research Center for Digestive Disease, Beijing, 100050, China.
| |
Collapse
|
2
|
Steri M, Orrù V, Sidore C, Mulas A, Pitzalis M, Busonero F, Maschio A, Serra V, Dei M, Lai S, Virdis F, Lobina M, Loizedda A, Marongiu M, Masala M, Floris M, Curreli N, Balaci L, Loi F, Pilia MG, Delitala A, Fiorillo E, Schlessinger D, Zoledziewska M. TYK2 :p.Pro1104Ala Variant Protects Against Autoimmunity by Modulating Immune Cell Levels. Immunology 2025; 174:462-469. [PMID: 39835539 PMCID: PMC11885862 DOI: 10.1111/imm.13902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/23/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
The TYK2:p.Pro1104Ala (rs34536443) hypomorph variant has been associated with protection against numerous autoimmune disorders. Thus, its mechanism of action becomes of great interest. Here, consistent with the participation of activated immune cells in autoimmunity, we show that the variant regulates the levels of immune cells at a human, general population level and is associated particularly with higher levels of T and B lymphocytes, especially the naïve (non-activated) compartment. Also, consistent with a protective function in autoimmunity, the level of regulatory CD4+ T cells was increased. Thus, this variant decreases immune activation thereby protecting from autoimmunity. Our work links the cellular mechanism regulated by the TYK2:p.Pro1104Ala variant to autoimmunity protection and supports TYK2 as a therapeutic target in autoimmunity.
Collapse
Affiliation(s)
- Maristella Steri
- Institute of Genetic and Biomedical Research (IRGB)Italian National Research Council (CNR)MonserratoSardiniaItaly
| | - Valeria Orrù
- Institute of Genetic and Biomedical Research (IRGB)Italian National Research Council (CNR)MonserratoSardiniaItaly
| | - Carlo Sidore
- Institute of Genetic and Biomedical Research (IRGB)Italian National Research Council (CNR)MonserratoSardiniaItaly
| | - Antonella Mulas
- Institute of Genetic and Biomedical Research (IRGB)Italian National Research Council (CNR)MonserratoSardiniaItaly
| | - Maristella Pitzalis
- Institute of Genetic and Biomedical Research (IRGB)Italian National Research Council (CNR)MonserratoSardiniaItaly
| | - Fabio Busonero
- Institute of Genetic and Biomedical Research (IRGB)Italian National Research Council (CNR)MonserratoSardiniaItaly
| | - Andrea Maschio
- Institute of Genetic and Biomedical Research (IRGB)Italian National Research Council (CNR)MonserratoSardiniaItaly
| | - Valentina Serra
- Institute of Genetic and Biomedical Research (IRGB)Italian National Research Council (CNR)MonserratoSardiniaItaly
| | - Mariano Dei
- Institute of Genetic and Biomedical Research (IRGB)Italian National Research Council (CNR)MonserratoSardiniaItaly
| | - Sandra Lai
- Institute of Genetic and Biomedical Research (IRGB)Italian National Research Council (CNR)MonserratoSardiniaItaly
| | - Francesca Virdis
- Institute of Genetic and Biomedical Research (IRGB)Italian National Research Council (CNR)MonserratoSardiniaItaly
| | - Monia Lobina
- Institute of Genetic and Biomedical Research (IRGB)Italian National Research Council (CNR)MonserratoSardiniaItaly
| | - Annalisa Loizedda
- Institute of Genetic and Biomedical Research (IRGB)Italian National Research Council (CNR)MonserratoSardiniaItaly
| | - Michele Marongiu
- Institute of Genetic and Biomedical Research (IRGB)Italian National Research Council (CNR)MonserratoSardiniaItaly
| | - Marco Masala
- Institute of Genetic and Biomedical Research (IRGB)Italian National Research Council (CNR)MonserratoSardiniaItaly
| | - Matteo Floris
- Department of Biomedical SciencesUniversity of SassariSassariItaly
| | - Nicolò Curreli
- Institute of Genetic and Biomedical Research (IRGB)Italian National Research Council (CNR)MonserratoSardiniaItaly
| | - Lenuta Balaci
- Institute of Genetic and Biomedical Research (IRGB)Italian National Research Council (CNR)MonserratoSardiniaItaly
| | - Francesco Loi
- Institute of Genetic and Biomedical Research (IRGB)Italian National Research Council (CNR)MonserratoSardiniaItaly
| | - Maria Grazia Pilia
- Institute of Genetic and Biomedical Research (IRGB)Italian National Research Council (CNR)MonserratoSardiniaItaly
| | - Alessandro Delitala
- Department of Medicine, Surgery and PharmacyUniversity of SassariSassariItaly
| | - Edoardo Fiorillo
- Institute of Genetic and Biomedical Research (IRGB)Italian National Research Council (CNR)MonserratoSardiniaItaly
| | - David Schlessinger
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA)National Institutes of Health (NIH)BaltimoreMarylandUSA
| | - Magdalena Zoledziewska
- Institute of Genetic and Biomedical Research (IRGB)Italian National Research Council (CNR)MonserratoSardiniaItaly
| |
Collapse
|
3
|
Wang Q, Li S, Wei Y, Xu C, Liu X, Wang X, Chai W, Mou W, Chen X, Li C, Wang C, Gui J. An increase in IL-10-producing DNT cells is associated with the pathogenesis of pediatric SLE. Clin Immunol 2025; 276:110490. [PMID: 40158789 DOI: 10.1016/j.clim.2025.110490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that causes immune system overactivity and organ damage. Among T-cell subsets involved in SLE, CD4 and CD8 double-negative αβT (DNT) cells have attracted attention in recent years, although their role in SLE remains poorly understood. Examining the minute intricacies, particularly signaling pathway modifications is crucial, as it may unveil potential therapeutic targets and lead to the development of more effective treatments. Our study found increased DNT cells in pediatric SLE patients, with elevated IL-10 signaling. These IL-10-producing DNT cells were positively related to disease activity defined by SLE Disease Activity Index (SLEDAI), and were further elevated in patients with lupus nephritis. Additionally, our results indicated that IL-10-producing DNT cells correlated positively with anti-Sm autoantibodies. Collectively, our study revealed that modulation of IL-10 production within DNT-cell subset could affect both immune regulation and autoantibody production, contributing to the immunological dysregulation in SLE.
Collapse
Affiliation(s)
- Qixin Wang
- Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Shipeng Li
- Department of Rheumatology, National Centre for Children's Health, Beijing Children's Hospital, Capital Medical University, No. 56 Nan Li Shi Lu, Beijing 100045, China
| | - Yannan Wei
- Inner Mongolia Xilingol League Central Hospital, Xilinhaote 026000, China
| | - Chen Xu
- Inner Mongolia Xilingol League Central Hospital, Xilinhaote 026000, China
| | - Xiangjun Liu
- Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Xiaolin Wang
- Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Wenjia Chai
- Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Wenjun Mou
- Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Xi Chen
- Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Caifeng Li
- Department of Rheumatology, National Centre for Children's Health, Beijing Children's Hospital, Capital Medical University, No. 56 Nan Li Shi Lu, Beijing 100045, China.
| | - Caisheng Wang
- Inner Mongolia Xilingol League Central Hospital, Xilinhaote 026000, China.
| | - Jingang Gui
- Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China.
| |
Collapse
|
4
|
Dai X, Fan Y, Zhao X. Systemic lupus erythematosus: updated insights on the pathogenesis, diagnosis, prevention and therapeutics. Signal Transduct Target Ther 2025; 10:102. [PMID: 40097390 PMCID: PMC11914703 DOI: 10.1038/s41392-025-02168-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/26/2024] [Accepted: 01/26/2025] [Indexed: 03/19/2025] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic inflammatory illness with heterogeneous clinical manifestations covering multiple organs. Diversified types of medications have been shown effective for alleviating SLE syndromes, ranging from cytokines, antibodies, hormones, molecular inhibitors or antagonists, to cell transfusion. Drugs developed for treating other diseases may benefit SLE patients, and agents established as SLE therapeutics may be SLE-inductive. Complexities regarding SLE therapeutics render it essential and urgent to identify the mechanisms-of-action and pivotal signaling axis driving SLE pathogenesis, and to establish innovative SLE-targeting approaches with desirable therapeutic outcome and safety. After introducing the research history of SLE and its epidemiology, we categorized primary determinants driving SLE pathogenesis by their mechanisms; combed through current knowledge on SLE diagnosis and grouped them by disease onset, activity and comorbidity; introduced the genetic, epigenetic, hormonal and environmental factors predisposing SLE; and comprehensively categorized preventive strategies and available SLE therapeutics according to their functioning mechanisms. In summary, we proposed three mechanisms with determinant roles on SLE initiation and progression, i.e., attenuating the immune system, restoring the cytokine microenvironment homeostasis, and rescuing the impaired debris clearance machinery; and provided updated insights on current understandings of SLE regarding its pathogenesis, diagnosis, prevention and therapeutics, which may open an innovative avenue in the fields of SLE management.
Collapse
Affiliation(s)
- Xiaofeng Dai
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China.
| | - Yuting Fan
- Tissue Engineering and Stem Cell Experiment Center, Tumor Immunotherapy Technology Engineering Research Center, Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550004, P. R. China
- Department of Gastroenterology, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550001, P. R. China
| | - Xing Zhao
- Tissue Engineering and Stem Cell Experiment Center, Tumor Immunotherapy Technology Engineering Research Center, Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550004, P. R. China.
| |
Collapse
|
5
|
Niu Z, Mao L, Han L, Niu J, Zhang X, Wei G. The effects of immune cell phenotypes and plasma metabolomes on diabetic foot ulcer: a Mendelian randomization study and mediation analysis. Arch Dermatol Res 2025; 317:460. [PMID: 39987406 DOI: 10.1007/s00403-025-03942-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/24/2024] [Accepted: 02/03/2025] [Indexed: 02/24/2025]
Abstract
This study investigates the causal relationships between plasma metabolites, immune cell phenotypes, and diabetic foot ulcer (DFU). A Mendelian randomization (MR) study was conducted, which included 731 immune cell phenotypes, 1400 metabolites, and DFU. The primary analytical approach was the inverse variance-weighted method. Sensitivity analyses were performed to assess heterogeneity and pleiotropy, and MR analyses in the reverse direction were conducted to examine the possibility of reverse causation. In addition, a mediation analysis was performed to reveal how metabolites mediate the impact of immune cells on DFU. Through MR, reverse MR and sensitivity analysis, the casualty was found in 17 immune cell phenotypes and 18 metabolites. A total of 15 mediating relationships were identified through mediation analysis, including 9 metabolites and 10 immune cell phenotypes. Among them, the highest mediation proportion was citrulline levels mediating CD24+ CD27+ AC (absolute count, B cell panel) to DFU, with a proportion of 11.60%. In conclusion, the study identified causal relationships between 10 immune cell phenotypes mediated by 9 metabolites. These discoveries offered fresh perspectives on the processes behind DFU and laid the groundwork for subsequent studies to create specific treatments for DFU.
Collapse
Affiliation(s)
- Zehao Niu
- Department of Burns and Plastic Surgery, The 83 Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Department of Plastic Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Libin Mao
- Department of Outpatient, The 83 Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Liu Han
- Department of Plastic Surgery, Southwest Hospital, Army Medical University, Chongqing, China
- Department of General Practice, 66284 Military Hospital, Beijing, China
| | - Jun Niu
- Department of Burns and Plastic Surgery, The 83 Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Xuhui Zhang
- Department of Orthopedics, The 83 Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.
| | - Guoxing Wei
- Department of Burns and Plastic Surgery, The 83 Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
6
|
Wang Z, Gao H, Ma X, Zhu D, Zhao L, Xiao W. Adrenic acid: A promising biomarker and therapeutic target (Review). Int J Mol Med 2025; 55:20. [PMID: 39575474 PMCID: PMC11611323 DOI: 10.3892/ijmm.2024.5461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/06/2024] [Indexed: 01/05/2025] Open
Abstract
Adrenic acid is a 22‑carbon unsaturated fatty acid that is widely present in the adrenal gland, liver, brain, kidney and vascular system that plays a regulatory role in various pathophysiological processes, such as inflammatory reactions, lipid metabolism, oxidative stress, vascular function, and cell death. Adrenic acid is a potential biomarker for various ailments, including metabolic, neurodegenerative and cardiovascular diseases and cancer. In addition, adrenic acid is influenced by the pharmacological properties of several natural products, such as astragaloside IV, evodiamine, quercetin, kaempferol, Berberine‑baicalin and prebiotics, so it is a promising new target for clinical treatment and drug development. However, the molecular mechanisms by which adrenic acid exerts are unclear. The present study systematically reviewed the biosynthesis and metabolism of adrenic acid, focusing on intrinsic mechanisms that influence the progression of metabolic, cardiovascular and neurological disease. These mechanisms regulate several key processes, including immuno‑inflammatory response, oxidative stress, vascular function and cell death. In addition, the present study explored the potential clinical translational value of adrenic acid as a biomarker and therapeutic target. To the best of our knowledge, the present study is first systematic summary of the mechanisms of action of adrenic acid across a range of diseases. The present study provides understanding of the wide range of metabolic activities of adrenic acid and a basis for further exploring the pathogenesis and therapeutic targets of various diseases.
Collapse
Affiliation(s)
- Ze Wang
- Shanghai Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Haoyang Gao
- Shanghai Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Xiaotong Ma
- Shanghai Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Danlin Zhu
- Shanghai Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Linlin Zhao
- Shanghai Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, P.R. China
- School of Physical Education, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Weihua Xiao
- Shanghai Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, P.R. China
| |
Collapse
|
7
|
Chen Y, Man-Tak Chu J, Liu JX, Duan YJ, Liang ZK, Zou X, Wei M, Xin WJ, Xu T, Tin-Chun Wong G, Feng X. Double negative T cells promote surgery-induced neuroinflammation, microglial engulfment and cognitive dysfunction via the IL-17/CEBPβ/C3 pathway in adult mice. Brain Behav Immun 2025; 123:965-981. [PMID: 39491565 DOI: 10.1016/j.bbi.2024.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/11/2024] [Accepted: 10/26/2024] [Indexed: 11/05/2024] Open
Abstract
CD3(+) CD4(-) CD8(-) double negative T cells (DNTs) manifest themselves in autoimmune diseases and associated inflammation. In the central nervous system, the increased presence of DNTs is associated with the progression of neurological conditions and brain injury. Active DNTs that produce IL-17 have been regarded as a pro-inflammatory phenotype. The IL-17 signaling pathway mediates neuroinflammatory responses by inducing glial activation and producing inflammatory factors. Neuroinflammation is considered integral to the pathogenesis of perioperative neurocognitive disorders (PNDs), commonly developed after surgery in susceptible patients. We and others have demonstrated a significant role for complement C3 in surgery-induced neuroinflammation and cognitive impairment but the regulatory mechanisms for this remain unexplored. We hypothesized that surgery induces DNT infiltration into the CNS that in turn upregulates complement C3 expression and this causes changes that contribute to cognitive impairment. Using an adult murine abdominal surgery model, we investigated perioperative changes in cognitive performance, quantifying the presence of T cell subsets and phenotype, IL-17 signaling pathway activation, glial cell activation and C3 expression in the brain. Postoperative IL-17 specific inhibitor GSK2981278 administration or preoperatively conditional CEBPβ knock-down by AAV9 viral vector were then applied to evaluate the effect of inhibiting IL-17 signaling pathway on postoperative C3 expression and cognitive performance. The results showed an increased hippocampus infiltration of DNTs with augmented IL-17 production, along with C3 upregulation and cognitive impairment. Both inhibition of IL-17 or knock-down of CEBPβ significantly suppressed C3 expression, synaptic engulfment by microglia and attenuated cognitive impairment. These findings indicate that DNTs promote postoperative neuroinflammation and cognitive impairment via the IL-17/CEBPβ/C3 pathway and targeting this IL-17 axis could be a potential therapeutic strategy to ameliorate postoperative neuroinflammation and cognitive impairment.
Collapse
Affiliation(s)
- Ying Chen
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - John Man-Tak Chu
- Department of Anaesthesiology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Room K424, 4Th Floor, Block K, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China
| | - Jia-Xin Liu
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yu-Juan Duan
- Neuroscience Program, Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Zheng-Kai Liang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Xin Zou
- Neuroscience Program, Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Ming Wei
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Wen-Jun Xin
- Neuroscience Program, Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Ting Xu
- Neuroscience Program, Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| | - Gordon Tin-Chun Wong
- Department of Anaesthesiology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Room K424, 4Th Floor, Block K, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China.
| | - Xia Feng
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
8
|
Shi Z, Qin H, Wu H. Single-Cell Transcriptome Reveals the Heterogeneity of T Cells in Mice with Systemic Lupus Erythematosus and Neuronal Inflammation. J Inflamm Res 2024; 17:11375-11402. [PMID: 39735894 PMCID: PMC11675326 DOI: 10.2147/jir.s474211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 12/03/2024] [Indexed: 12/31/2024] Open
Abstract
Introduction Systemic lupus erythematosus is a heterogeneous autoimmune disease. A burst of autoimmune reactions in various systems can lead to severe clinical conditions closely associated with mortality. T cells serve as mediators that drive the occurrence and maintenance of inflammatory processes. Methods In this work, we employed single-cell transcriptome sequencing (scRNA-seq) involving 27704 cells from the brain and spleen tissues of MRL/lpr mice and 25355 healthy controls from BALB/c mice to explore the heterogeneity of T cells and their migration from the spleen to the brain. Results We identified a distinct group of double-negative T cells in systemic lupus erythematosus (SLE) mice that significantly expressed Eomes and other specific markers. We used the analysis of pseudotime trajectory and enrichment to show that double-negative T cells in SLE mice are strongly associated with cellular senescence and exhaustion. Additionally, we focused on the interactions among DNT, astrocytes, and microglia in the mice brain. We observed greater expression of MDK-related ligand‒receptor pairs between astrocytes and double-negative T cells, indicating that MDK may be a therapeutic target for treating neuroinflammation in SLE. Discussion This research sheds light on the intricate dynamics of immune responses in mice with SLE, specifically highlighting the role of double-negative T cells and their connection to cellular senescence. The exploration of interactions between T cells, astrocytes, and microglia in the mice brain unveils potential avenues for therapeutic intervention, particularly in addressing neuronal inflammation in SLE.
Collapse
Affiliation(s)
- Zhijie Shi
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Haihong Qin
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Hao Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
9
|
Bacherini D, Maggi L, Faraldi F, Sodi A, Vannozzi L, Mazzoni A, Capone M, Virgili G, Vicini G, Falsini B, Cosmi L, Viggiano P, Rizzo S, Annunziato F, Giansanti F, Liotta F. CD3+CD4-CD8- Double-Negative Lymphocytes Are Increased in the Aqueous Humor of Patients with Retinitis Pigmentosa: Their Possible Role in Mediating Inflammation. Int J Mol Sci 2024; 25:13163. [PMID: 39684872 DOI: 10.3390/ijms252313163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/24/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Recently, evidence has supported a significant role for immune and oxidative-mediated damage underlying the pathogenesis of different types of retinal diseases, including retinitis pigmentosa (RP). Our study aimed to evaluate the presence of immune cells and mediators in patients with RP using flow cytometric analysis of peripheral blood (PB) and aqueous humor (AH) samples. We recruited 12 patients with RP and nine controls undergoing cataract surgery. Flow cytometric analysis of PB and AH samples provided a membrane staining that targeted surface molecules (CD14, CD16, CD19, CD3, CD4, CD8, and CD161) identifying monocytes, natural killer (NK) cells, B cells, T cells, and T subpopulations, respectively. Moreover, lymphocytes were polyclonally stimulated to evaluate cytokine (CK) production at single-cell level. The circulating immune cell distribution was comparable between patients with RP and controls. Conversely, in the AH of controls we could detect no cells, while in the RP AH samples we found infiltrating leukocytes, consisting of T (CD3+), B (CD19+), NK (CD16+CD3-) cells, and monocytes (CD14+). In patients with RP, the frequency of most infiltrating immune cell populations was similar between the AH and PB. However, among T cell subpopulations, the frequency of CD3+CD4+ T cells was significantly lower in the RP AH compared to RP PB, whereas CD3+CD4-CD8- double-negative (DN) T cells were significantly higher in the RP AH compared to RP PB. Cytokine production analysis revealed a trend toward an increased frequency of CD3+CD8-CD161+IFN-ɣ-producing cells and a decreased frequency of CD3+CD8+IL-4-producing cells in the RP AH compared to RP PB. The detection of immune cells, particularly DN T cells, and a Th1-skewed phenotype in RP AH suggests immune-mediated and inflammatory mechanisms in the disease.
Collapse
Affiliation(s)
- Daniela Bacherini
- Department of Neurosciences, Psychology, Drug Research and Child Health Eye Clinic, University of Florence, AOU Careggi, 50139 Florence, Italy
| | - Laura Maggi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Francesco Faraldi
- Ophthalmology Unit, Surgical Department, A.O. Ordine Mauriziano, 10128 Turin, Italy
| | - Andrea Sodi
- Department of Neurosciences, Psychology, Drug Research and Child Health Eye Clinic, University of Florence, AOU Careggi, 50139 Florence, Italy
| | - Lorenzo Vannozzi
- Department of Neurosciences, Psychology, Drug Research and Child Health Eye Clinic, University of Florence, AOU Careggi, 50139 Florence, Italy
| | - Alessio Mazzoni
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Manuela Capone
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Gianni Virgili
- Department of Neurosciences, Psychology, Drug Research and Child Health Eye Clinic, University of Florence, AOU Careggi, 50139 Florence, Italy
| | - Giulio Vicini
- Department of Neurosciences, Psychology, Drug Research and Child Health Eye Clinic, University of Florence, AOU Careggi, 50139 Florence, Italy
| | - Benedetto Falsini
- UOC Oculistica, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Department of Head and Neck and Sensory Organs, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Lorenzo Cosmi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Pasquale Viggiano
- Department of Translational Biomedicine Neuroscience, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Stanislao Rizzo
- UOC Oculistica, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Department of Head and Neck and Sensory Organs, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Consiglio Nazionale delle Ricerche, Istituto di Neuroscienze, 56124 Pisa, Italy
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Fabrizio Giansanti
- Department of Neurosciences, Psychology, Drug Research and Child Health Eye Clinic, University of Florence, AOU Careggi, 50139 Florence, Italy
| | - Francesco Liotta
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| |
Collapse
|
10
|
Dossybayeva K, Zhubanova G, Mussayeva A, Mukusheva Z, Dildabayeva A, Nauryzbayeva G, Akhmaltdinova L, Orumbayeva U, Tanko M, Poddighe D. Nonspecific increase of αβTCR + double-negative T cells in pediatric rheumatic diseases. World J Pediatr 2024; 20:1283-1292. [PMID: 39604769 PMCID: PMC11634929 DOI: 10.1007/s12519-024-00854-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/17/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND An increased number of double-negative T (DNT) cells expressing the αβ T cell receptor (αβ+DNT cells) is one of the diagnostic criteria for autoimmune lymphoproliferative syndrome (ALPS). Moreover, these cells are expanded in a widely used murine model for lupus. However, the homeostasis of αβ+DNT cells remains inadequately investigated in rheumatic disorders, especially in pediatric patients. METHODS In this cross-sectional, prospective, and observational study, children with rheumatic disorders and healthy controls were recruited to analyze the quantity and characteristics of circulating DNT cells using flow cytometry. RESULTS Overall, the two study groups did not differ in their total DNT cell pool in the bloodstream. However, the number of αβ+DNT cells was significantly higher in rheumatic children than that in the controls, whereas the γδ+DNT cells remained similar. This expansion in the circulating pool of αβ+DNT cells was comparable across different rheumatic diseases, all showing significant differences from the controls in this regard. Moreover, no significant correlation was found between αβ+DNT cell numbers and disease activity. CONCLUSIONS These preliminary results indicate that circulating αβ+DNT cells are significantly expanded in children with rheumatic disorders; however, this finding appears to be a nonspecific (disease-unrelated) marker of autoimmunity. Further and larger studies are necessary to better investigate and define the role of DNT cells in pediatric rheumatic diseases.
Collapse
Affiliation(s)
- Kuanysh Dossybayeva
- Department of Medicine, Nazarbayev University School of Medicine (NUSOM), 010000, Astana, Kazakhstan
| | - Gulsamal Zhubanova
- Department of Medicine, Nazarbayev University School of Medicine (NUSOM), 010000, Astana, Kazakhstan
| | - Assel Mussayeva
- Department of Medicine, Nazarbayev University School of Medicine (NUSOM), 010000, Astana, Kazakhstan
| | - Zaure Mukusheva
- Program of Pediatric Rheumatology, Clinical Academic Department of Pediatrics, University Medical Center, Astana, Kazakhstan
| | - Aiken Dildabayeva
- Program of Pediatric Rheumatology, Clinical Academic Department of Pediatrics, University Medical Center, Astana, Kazakhstan
| | - Galiya Nauryzbayeva
- Clinical Academic Department of Laboratory Medicine, Pathology and Genetics, Republican Diagnostic Center, University Medical Center, Astana, Kazakhstan
| | - Lyudmila Akhmaltdinova
- Clinical Academic Department of Pediatrics, National Research Center for Maternal and Child Health (NRCMCH), University Medical Center(UMC), 010000, Astana, Kazakhstan
| | - Ulbolsyn Orumbayeva
- Clinical Academic Department of Laboratory Medicine, Pathology and Genetics, Republican Diagnostic Center, University Medical Center, Astana, Kazakhstan
| | - Matthew Tanko
- Department of Medicine, Nazarbayev University School of Medicine (NUSOM), 010000, Astana, Kazakhstan
- Clinical Academic Department of Laboratory Medicine, Pathology and Genetics, Republican Diagnostic Center, University Medical Center, Astana, Kazakhstan
| | - Dimitri Poddighe
- Department of Medicine, Nazarbayev University School of Medicine (NUSOM), 010000, Astana, Kazakhstan.
- Clinical Academic Department of Pediatrics, National Research Center for Maternal and Child Health (NRCMCH), University Medical Center(UMC), 010000, Astana, Kazakhstan.
- College of Health Sciences, VinUniversity, Gia Lam District, Hanoi, Vietnam.
| |
Collapse
|
11
|
Poddighe D, Maulenkul T, Dossybayeva K, Zhubanova G, Mukusheva Z, Akhmaltdinova L. Double-negative T cells in pediatric rheumatic diseases. Clin Exp Pediatr 2024; 67:632-640. [PMID: 39265625 PMCID: PMC11621738 DOI: 10.3345/cep.2023.01760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 09/14/2024] Open
Abstract
Double-negative (CD4-CD8-) T (DNT) cells have been implicated in autoimmune lymphoproliferative syndrome (ALPS), where their expansion inside the circulating pool of T cells represents a diagnostic criterion. Recent experimental evidence has supported the immunomodulatory roles of DNT cells, and studies in adult patients have suggested that they may be altered in some immune-mediated conditions. This study aimed to retrieve available data on circulating DNT cells in pediatric rheumatic disorders that do not arise in the context of ALPS through a systematic literature review of 3 scientific databases (PubMed, Scopus, and Web of Science). The final output of the systematic literature search consisted of 8 manuscripts, including cross-sectional (n=6) and longitudinal (n=2) studies. Overall, the pooled population of patients includes children affected with pediatric systemic lupus erythematosus (n= 104), juvenile idiopathic arthritis (n=92), Behçet's disease (n=15), mixed connective tissue disease (n=8), juvenile dermatomyositis (n=6), and Kawasaki disease/multisystem inflammatory disease in children (n=1 and n=14, respectively); moreover, one study also included 11 children with a high titer of antinuclear antibody but no diagnosis of rheumatic disease. All studies except one included a control group. The number of DNT cells were increased in most studies of children with rheumatic diseases. Even if such a limited number of studies and their great heterogeneity in several methodological aspects do not allow for reliable conclusions about the relevance of DNT cells in specific rheumatic conditions in children, this cell population deserves further investigation in this pathological setting through well-designed clinical studies.
Collapse
Affiliation(s)
- Dimitri Poddighe
- Department of Medicine, Nazarbayev University School of Medicine (NUSOM), Astana, Kazakhstan
- Clinical Academic Department of Pediatrics, National Research Center for Maternal and Child Health, University Medical Center, Astana, Kazakhstan
- College of Health Sciences, VinUniversity, Hanoi, Vietnam
| | - Tilektes Maulenkul
- Department of Medicine, Nazarbayev University School of Medicine (NUSOM), Astana, Kazakhstan
- Clinical Academic Department of Pediatrics, National Research Center for Maternal and Child Health, University Medical Center, Astana, Kazakhstan
| | - Kuanysh Dossybayeva
- Department of Medicine, Nazarbayev University School of Medicine (NUSOM), Astana, Kazakhstan
| | - Gulsamal Zhubanova
- Department of Medicine, Nazarbayev University School of Medicine (NUSOM), Astana, Kazakhstan
| | - Zaure Mukusheva
- Program of Pediatric Rheumatology, Clinical Academic Department of Pediatrics, University Medical Center, Astana, Kazakhstan
| | - Lyudmila Akhmaltdinova
- Department of Medicine, Nazarbayev University School of Medicine (NUSOM), Astana, Kazakhstan
| |
Collapse
|
12
|
Ai N, Zhang Y, Yang J, Zhang Y, Zhao X, Feng H. Genetically predicted blood metabolites mediate the association between circulating immune cells and severe COVID-19: A Mendelian randomization study. Medicine (Baltimore) 2024; 103:e40509. [PMID: 39560514 PMCID: PMC11575977 DOI: 10.1097/md.0000000000040509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/24/2024] [Indexed: 11/20/2024] Open
Abstract
Investigating the causal relationship between circulating immune cells, blood metabolites, and severe COVID-19 and revealing the role of blood metabolite-mediated circulating immune cells in disease onset and progression. Genetic variation data of 731 circulating immune cells, 1400 blood metabolites, and severe COVID-19 from genome-wide association study open-access database (https://gwas.mrcieu.ac.uk) were used as instrumental variables for bidirectional and two-step Mendelian randomization analysis. The study identified 11 circulating immune cells with unidirectional causality to severe COVID-19. Two-step Mendelian randomization analysis showed 10 blood metabolites were causally associated with severe COVID-19, and blood Myristate and Citrulline to phosphate ratio mediated the association of circulating effector memory double negative % DN and CD8dim natural killer T cell % T cells, respectively, with severe COVID-19 (Myristate mediated effect ratio was 10.20%, P = .011; Citrulline to phosphate ratio mediated effect ratio was -9.21%, P = .017). This study provides genetic evidence assessing the causal relationship between circulating immune cells, blood metabolites, and severe COVID-19, elucidates the role of blood metabolite-mediated circulating immune cells in severe COVID-19 development, and offers new insights into severe COVID-19 etiology and related preventive and targeted therapeutic strategies.
Collapse
Affiliation(s)
- Ning Ai
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yan Zhang
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jing Yang
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yu Zhang
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xuejing Zhao
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Huifen Feng
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
13
|
Zhang HM, Yao B, Li L, Guo SS, Deng HY, Ren YP. Causal relationship between OHSS and immune cells: A Mendelian randomization study. J Reprod Immunol 2024; 165:104314. [PMID: 39173334 DOI: 10.1016/j.jri.2024.104314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/22/2024] [Accepted: 08/06/2024] [Indexed: 08/24/2024]
Abstract
OBJECTIVE To confirm the causal relationship between immune cells and Ovarian Hyperstimulation Syndrome. DESIGN Obtaining data, collecting single nucleotide polymorphisms, detecting instrumental variables heterogeneity, assessing causality, and assessing bidirectional causality. SUBJECTS A two sample Mendelian study to confirm the causal relationship between immune cells and Ovarian Hyperstimulation Syndrome. EXPOSURE Immune cell phenotype (including 22 million SNPs from GWAS on 3757 European individuals). MAIN OUTCOME MEASURES Inverse variance weighting, one-sample analysis, MR-Egger, weighted median and weighted mode are used to assess the causal relationship between 731 immunophenotypes and Ovarian Hyperstimulation Syndrome. The weighted median and Mendelian Randomization multi-effect residuals and Mendelian Randomization multi-effect residuals and outlier tests are used to assess bidirectional causality between this two. RESULTS After False Discovery Rate correction, 9 immunophenotypes were found to be significantly associated with the risk of Ovarian Hyperstimulation Syndrome. B cell panel: IgD+ AC (OR, 0.90) 、CD19 on CD24+ CD27+ (OR, 0.86) 、BAFF-R on CD20- CD38 (OR, -1.22); Mature T cell group panel: EM DN (CD4 -CD8-) AC (OR, 1.46); Myeloid cell panel: Mo MDSC AC (OR, 1.13) 、CD45 on CD33br HLA-DR+ (OR, 0.87); Monocyte panel: HLA-DR on monocyte (OR, 0.86) 、CCR2 on CD14+ CD16+ monocyte (OR, 1.15) 、cDC panel: HLA-DR on myeloid DC (OR, 0.89). CONCLUSION This study shows the potential link between OHSS and immune cells by genetic means, providing new ideas for future clinical and basic research.
Collapse
Affiliation(s)
- Hai-Ming Zhang
- Department of Histology and Embryology, School of Preclinical Medical, Zunyi Medical University, Zunyi, Guizhou, China
| | - Bo Yao
- Department of Histology and Embryology, School of Preclinical Medical, Zunyi Medical University, Zunyi, Guizhou, China; Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Li Li
- Department of Histology and Embryology, School of Preclinical Medical, Zunyi Medical University, Zunyi, Guizhou, China
| | - Shi-Shi Guo
- Department of Histology and Embryology, School of Preclinical Medical, Zunyi Medical University, Zunyi, Guizhou, China
| | - Hong-Yi Deng
- Department of Histology and Embryology, School of Preclinical Medical, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yan-Ping Ren
- Department of Histology and Embryology, School of Preclinical Medical, Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
14
|
Esmail Nia G, Mohammadi M, Sharifizadeh M, Ghalamfarsa G, Bolhassani A. The role of T regulatory cells in the immunopathogenesis of HIV: Clinical implications. Braz J Infect Dis 2024; 28:103866. [PMID: 39163991 PMCID: PMC11402453 DOI: 10.1016/j.bjid.2024.103866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/31/2024] [Indexed: 08/22/2024] Open
Abstract
Human Immunodeficiency Virus (HIV) infection is among the most challenging issues in the healthcare system, presenting significant financial and hygiene problems with a wide range of clinical manifestations. Despite the hopeful outcomes of Antiretroviral Therapies (ARTs), the current strategies for the treatment of patients with HIV infection have not shown clinical significance for all subjects, which is mainly due to the complexity of the disease. Therefore, the need for collaborative and interdisciplinary research focused on deciphering the multifaceted cellular, and molecular immunopathogenesis of HIV remains essential in the development of innovative and more efficacious therapeutic approaches. T-regulatory (Treg) cells function as suppressors of effector T-cell responses contributing to the inhibition of autoimmune disorders and the limitation of chronic inflammatory diseases. Notably, these cells can play substantial roles in regulating immune responses, immunopathogenesis, viral persistence and disease progression, and affect therapeutic responses in HIV patients. In this review, we aim elucidating the role of T-regulatory cells (Tregs) in the immunopathogenesis of HIV, including immunological fatigue and seroconversion. In particular, the focus of the current study is exploration of novel immunotherapeutic approaches to target HIV or related co-infections.
Collapse
Affiliation(s)
- Giti Esmail Nia
- Pasteur Institute of Iran, Department of Hepatitis and AIDS, Tehran, Iran
| | - Marzieh Mohammadi
- Pasteur Institute of Iran, Biotechnology Research Center, Department of Molecular Medicine, Tehran, Iran
| | - Maedeh Sharifizadeh
- Islamic Azad University, Faculty of Biological Sciences, Tonekabon Branch, Department of Genetic, Tonekabon, Iran
| | - Ghasem Ghalamfarsa
- Yasuj University of Medical Science, Cellular and Molecular Research Center, Yasuj, Iran
| | - Azam Bolhassani
- Pasteur Institute of Iran, Department of Hepatitis and AIDS, Tehran, Iran.
| |
Collapse
|
15
|
Karwig L, Moore PF, Alber G, Eschke M. Distinct characteristics of unique immunoregulatory canine non-conventional TCRαβ pos CD4 negCD8α neg double-negative T cell subpopulations. Front Immunol 2024; 15:1439213. [PMID: 39185407 PMCID: PMC11341405 DOI: 10.3389/fimmu.2024.1439213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/12/2024] [Indexed: 08/27/2024] Open
Abstract
Conventional CD4pos regulatory T (Treg) cells characterized by expression of the key transcription factor forkhead box P3 (FoxP3) are crucial to control immune responses, thereby maintaining homeostasis and self-tolerance. Within the substantial population of non-conventional T cell receptor (TCR)αβpos CD4negCD8αneg double-negative (dn) T cells of dogs, a novel FoxP3pos Treg-like subset was described that, similar to conventional CD4pos Treg cells, is characterized by high expression of CD25. Noteworthy, human and murine TCRαβpos regulatory dn T cells lack FoxP3. Immunosuppressive capacity of canine dn T cells was hypothesized based on expression of inhibitory molecules (interleukin (IL)-10, cytotoxic T-lymphocyte associated protein 4, CTLA4). Here, to verify their regulatory function, the dnCD25pos (enriched for FoxP3pos Treg-like cells) and the dnCD25neg fraction, were isolated by fluorescence-activated cell sorting from peripheral blood mononuclear cells (PBMC) of Beagle dogs and analyzed in an in vitro suppression assay in comparison to conventional CD4posCD25pos Treg cells (positive control) and CD4posCD25neg T cells (negative control). Canine dnCD25pos T cells suppressed the Concanavalin A-driven proliferation of responder PBMC to a similar extent as conventional CD4posCD25pos Treg cells. Albeit to a lesser extent than FoxP3-enriched dn and CD4posCD25pos populations, even dnCD25neg T cells reduced the proliferation of responder cells. This is remarkable, as dnCD25neg T cells have a FoxP3neg phenotype comparable to non-suppressive CD4posCD25neg T cells. Both, CD25pos and CD25neg dn T cells, can mediate suppression independent of cell-cell contact and do not require additional signals from CD4posCD25neg T cells to secrete inhibitory factors in contrast to CD4posCD25pos T cells. Neutralization of IL-10 completely abrogated the suppression by dnCD25pos and CD4posCD25pos Treg cells in a Transwell™ system, while it only partially reduced suppression by dnCD25neg T cells. Taken together, unique canine non-conventional dnCD25pos FoxP3pos Treg-like cells are potent suppressor cells in vitro. Moreover, inhibition of proliferation of responder T cells by the dnCD25neg fraction indicates suppressive function of a subset of dn T cells even in the absence of FoxP3. The identification of unique immunoregulatory non-conventional dn T cell subpopulations of the dog in vitro is of high relevance, given the immunotherapeutic potential of manipulating regulatory T cell responses in vivo.
Collapse
Affiliation(s)
- Laura Karwig
- Institute of Immunology/Molecular Pathogenesis, Center for Biotechnology and Biomedicine, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Peter F. Moore
- Department of Veterinary Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Gottfried Alber
- Institute of Immunology/Molecular Pathogenesis, Center for Biotechnology and Biomedicine, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Maria Eschke
- Institute of Immunology/Molecular Pathogenesis, Center for Biotechnology and Biomedicine, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| |
Collapse
|
16
|
Zhu H, Jiang J, Yang M, Zhao M, He Z, Tang C, Song C, Zhao M, Akbar AN, Reddy V, Pan W, Li S, Tan Y, Wu H, Lu Q. Topical application of a BCL-2 inhibitor ameliorates imiquimod-induced psoriasiform dermatitis by eliminating senescent cells. J Dermatol Sci 2024; 115:54-63. [PMID: 38960840 DOI: 10.1016/j.jdermsci.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 05/27/2024] [Accepted: 06/14/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Psoriasis is an inflammatory skin disease with unclear pathogenesis and unmet therapeutic needs. OBJECTIVE To investigate the role of senescent CD4+ T cells in psoriatic lesion formation and explore the application of senolytics in treating psoriasis. METHODS We explored the expression levels of p16INK4a and p21, classical markers of cellular senescence, in CD4+ T cells from human psoriatic lesions and imiquimod (IMQ)-induced psoriatic lesions. We prepared a senolytic gel using B-cell lymphoma 2 (BCL-2) inhibitor ABT-737 and evaluated its therapeutic efficacy in treating psoriasis. RESULTS Using multispectrum immunohistochemistry (mIHC) staining, we detected increased expression levels of p16INK4a and p21 in CD4+ T cells from psoriatic lesions. After topical application of ABT-737 gel, significant alleviation of IMQ-induced psoriatic lesions was observed, with milder pathological alterations. Mechanistically, ABT-737 gel significantly decreased the percentage of senescent cells, expression of T cell receptor (TCR) α and β chains, and expression of Tet methylcytosine dioxygenase 2 (Tet2) in IMQ-induced psoriatic lesions, as determined by mIHC, high-throughput sequencing of the TCR repertoire, and RT-qPCR, respectively. Furthermore, the severity of psoriatic lesions in CD4creTet2f/f mice was milder than that in Tet2f/f mice in the IMQ-induced psoriasis model. CONCLUSION We revealed the roles of senescent CD4+ T cells in developing psoriasis and highlighted the therapeutic potential of topical ABT-737 gel in treating psoriasis through the elimination of senescent cells, modulation of the TCR αβ repertoire, and regulation of the TET2-Th17 cell pathway.
Collapse
Affiliation(s)
- Huan Zhu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jiao Jiang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China; Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Ming Yang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Mingming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhenghao He
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Congli Tang
- Nanjing ARP Biotechnology Co., Ltd, Nanjing, China
| | - Cailing Song
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Arne N Akbar
- Division of Medicine, University College London, London, United Kingdom
| | - Venkat Reddy
- Centre for Rheumatology, Division of Medicine, University College London, London, United Kingdom
| | - Wenjing Pan
- National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Matemal and Child Health Care Hospital, school of Basic Medical Sciences, Hengyang Medical school, University of South China, Changsha, China
| | - Song Li
- National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Matemal and Child Health Care Hospital, school of Basic Medical Sciences, Hengyang Medical school, University of South China, Changsha, China
| | - Yixin Tan
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China.
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China; Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China.
| |
Collapse
|
17
|
Okamura K, Wang L, Nagayama S, Yamashita M, Tate T, Matsumoto S, Takamatsu M, Kitano S, Kiyotani K, Nakamura Y. Characterization of double-negative T cells in colorectal cancers and their corresponding lymph nodes. Oncoimmunology 2024; 13:2373530. [PMID: 38979545 PMCID: PMC11229752 DOI: 10.1080/2162402x.2024.2373530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/24/2024] [Indexed: 07/10/2024] Open
Abstract
TCRαβ+ CD4- CD8- double-negative T (DNT) cells are minor populations in peripheral blood, and their roles have mostly been discussed in inflammation and autoimmunity. However, the functions of DNT cells in tumor microenvironment remain to be elucidated. We investigated their characteristics, possible origins and functions in colorectal cancer tissues as well as their corresponding tumor-draining lymph nodes. We found a significant enrichment of DNT cells in tumor tissues compared with their corresponding lymph nodes, especially in tumors with lower T cell infiltration. T cell receptor (TCR) sequence analysis of CD4+ T, CD8+ T and DNT cells indicated that TCR sequences detected in DNT cells were found in CD8+ T cells, but rarely in CD4+ T cells, suggesting that a part of DNT cells was likely to be originated from CD8+ T cells. Through a single-cell transcriptomic analysis of DNT cells, we found that a DNT cell cluster, which showed similar phenotypes to central memory CD8+ T cells with low expression of effector and exhaustion markers, revealed some specific gene expression patterns, including higher GZMK expression. Moreover, in flow cytometry analysis, we found that DNT cells lost production of cytotoxic mediators. These findings imply that DNT cells might function as negative regulators of anti-tumor immune responses in tumor microenvironment.
Collapse
Affiliation(s)
- Kazumi Okamura
- Project for Immunogenomics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Lifang Wang
- Project for Immunogenomics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Satoshi Nagayama
- Department of Gastroenterological and Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
- Depart of Surgery, Uji-Tokusyukai Medical Center, Uji-shi, Kyoto, Japan
| | - Makiko Yamashita
- Division of Cancer Immunotherapy Development, Department of Advanced Medical Development, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Tomohiro Tate
- Project for Immunogenomics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Saki Matsumoto
- Project for Immunogenomics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Manabu Takamatsu
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Shigehisa Kitano
- Division of Cancer Immunotherapy Development, Department of Advanced Medical Development, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kazuma Kiyotani
- Project for Immunogenomics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
- Laboratory of Immunogenomics, Center for Intractable Diseases and ImmunoGenomics (CiDIG), National Institute of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki-shi, Osaka, Japan
| | - Yusuke Nakamura
- Project for Immunogenomics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
- Laboratory of Immunogenomics, Center for Intractable Diseases and ImmunoGenomics (CiDIG), National Institute of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki-shi, Osaka, Japan
| |
Collapse
|
18
|
Liao J, Zhang Y, Tang Z, Liu P, He L. Causal relationships between peripheral immune cells and Alzheimer's disease: a two-sample Mendelian randomization study. Neurol Sci 2024; 45:3117-3124. [PMID: 38267604 DOI: 10.1007/s10072-024-07324-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/08/2024] [Indexed: 01/26/2024]
Abstract
OBJECTIVE Previous research suggests that peripheral immune cells may play a role in the development of Alzheimer's disease (AD). Our study aims to determine if the composition of peripheral immune cells directly contributes to the occurrence of AD. METHODS We utilized a two-sample Mendelian randomization (MR) approach to examine the association between peripheral immune cells and AD.The primary analysis method used was the inverse variance weighted (IVW) method, and we also conducted analyses using MR Egger, weighted median, simple mode, and weighted mode methods to ensure the accuracy of the results.Heterogeneity and horizontal pleiotropy were evaluated using Cochran's Q statistics and the MR Egger intercept, respectively. RESULTS The study found a significant correlation between increased IgD + CD24- AC cells (Odds Ratio [OR] = 1.03, 95% Confidence Interval [CI] = 1.01-1.06, P = 0.0172), increased CD4 + %leukocyte (OR = 1.08, 95% CI = 1.02-1.14, P = 0.0086), and increased CD4 + CD8dim AC cells (OR = 1.06, 95% CI = 1.01-1.11, P = 0.0218), with an increased susceptibility to AD. Conversely, an increase in EM DN (CD4-CD8-) %T cells (OR = 0.95, 95% CI = 0.92-0.99, P = 0.0164) and an increase in DN (CD4-CD8-) AC cells (OR = 0.93, 95% CI = 0.88-0.99, P = 0.0145) were associated with a protective effect against AD. CONCLUSION Our findings establish a causal link between peripheral immune cells and AD. This study is the first to examine the relationship between peripheral immune cells and AD using MR, offering valuable insights for early diagnosis and treatment decisions.
Collapse
Affiliation(s)
- Jing Liao
- Ruikang Hospital, Affiliated to Guangxi University of Chinese Medicine, 10 Huadong Road, Xingning District, Nanning City, Guangxi, 53000, China.
| | - Yongquan Zhang
- Ruikang Hospital, Affiliated to Guangxi University of Chinese Medicine, 10 Huadong Road, Xingning District, Nanning City, Guangxi, 53000, China
| | - Zhanhong Tang
- First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning City, Guangxi, 530021, China
| | - Pinjing Liu
- Ruikang Hospital, Affiliated to Guangxi University of Chinese Medicine, 10 Huadong Road, Xingning District, Nanning City, Guangxi, 53000, China
| | - Luoyi He
- Ruikang Hospital, Affiliated to Guangxi University of Chinese Medicine, 10 Huadong Road, Xingning District, Nanning City, Guangxi, 53000, China
| |
Collapse
|
19
|
Peng L, Wang P, Xu X, Chen D, Xu F, Yang F, Yang S, Xia H, Liu ZH, Qin W. Inhibition of receptor interacting protein kinase-1 (RIPK1) in the treatment of murine lupus. Lupus Sci Med 2024; 11:e001146. [PMID: 38906550 PMCID: PMC11191810 DOI: 10.1136/lupus-2024-001146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/07/2024] [Indexed: 06/23/2024]
Abstract
OBJECTIVE Systemic lupus erythematosus (SLE) is a type of autoimmune disease that involves multiple organs involved as well as cytokine dysregulation. The treatment of SLE is still challenging due to the side effects of the different drugs used. Receptor-interacting protein kinase 1 (RIPK1) is a kinase involved in T cell homeostasis and autoinflammation. Although clinical trials have shown that RIPK1 inhibition exhibits significant efficacy in different autoimmune diseases, its role in SLE remains unclear. METHODS MRL/lpr lupus-prone mice received RIPK1 inhibitor ZJU37 or vehicle intraperitoneally for 10 weeks. A BM12-induced chronic graft-versus-host-disease (cGVHD) lupus-like model was introduced in RIPK1 D138N mice or C57BL/6 mice. Nephritis, serum autoantibody levels, dysregulation of adaptive immune response and cytokines were compared in treated and untreated mice. RESULTS ZJU37 alleviated the clinical features of the MRL/lpr mice including nephritis and anti-dsDNA antibody production. In addition, ZJU37 treatment reduced the proportion of double-negative T cells in the spleen and the cytokines of TNFα, IFN-γ, IL-6, IL-17 and IL-1β in the serum. Moreover, RIPK1 D138N mice were able to prevent the cGVHD lupus-like model from SLE attack, manifesting as anti-dsDNA antibody production, the proliferation of germinal centre B cells, plasma cells, and T follicular helper cells as well as IgG and C3 deposits in kidneys. CONCLUSION RIPK1 inhibition has a protective effect in the mouse model of SLE and can potentially become a new therapeutic target for SLE in humans.
Collapse
Affiliation(s)
- Lin Peng
- National Clinical Research Center for Kidney Disease, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Pengcheng Wang
- National Clinical Research Center for Kidney Disease, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Xiaodong Xu
- National Clinical Research Center for Kidney Disease, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Dacheng Chen
- National Clinical Research Center for Kidney Disease, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Feng Xu
- National Clinical Research Center for Kidney Disease, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Fan Yang
- National Clinical Research Center for Kidney Disease, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Shuying Yang
- Department of Biochemistry and Molecular Medical Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hongguang Xia
- Department of Biochemistry and Molecular Medical Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhi-Hong Liu
- National Clinical Research Center for Kidney Disease, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Weisong Qin
- National Clinical Research Center for Kidney Disease, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
20
|
Cao S, Jiang J, Yin H, Wang L, Lu Q. Abnormal energy metabolism in the pathogenesis of systemic lupus erythematosus. Int Immunopharmacol 2024; 134:112149. [PMID: 38692019 DOI: 10.1016/j.intimp.2024.112149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/20/2024] [Accepted: 04/21/2024] [Indexed: 05/03/2024]
Abstract
Systemic lupus erythematosus (SLE) is a severe autoimmune disease with significant socioeconomic impact worldwide. Orderly energy metabolism is essential for normal immune function, and disordered energy metabolism is increasingly recognized as an important contributor to the pathogenesis of SLE. Disorders of energy metabolism are characterized by increased reactive oxygen species, ATP deficiency, and abnormal metabolic pathways. Oxygen and mitochondria are critical for the production of ATP, and both mitochondrial dysfunction and hypoxia affect the energy production processes. In addition, several signaling pathways, including mammalian target of rapamycin (mTOR)/adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) signaling and the hypoxia-inducible factor (HIF) pathway also play important regulatory roles in energy metabolism. Furthermore, drugs with clear clinical effects on SLE, such as sirolimus, metformin, and tacrolimus, have been proven to improve the disordered energy metabolism of immune cells, suggesting the potential of targeting energy metabolism for the treatment of SLE. Moreover, several metabolic modulators under investigation are expected to have potential therapeutic effects in SLE. This review aimed to gain insights into the role and mechanism of abnormal energy metabolism in the pathogenesis of SLE, and summarizes the progression of metabolic modulator in the treatment of SLE.
Collapse
Affiliation(s)
- Shumei Cao
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, 210042, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Jiao Jiang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, 210042, China
| | - Haoyuan Yin
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, 210042, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Lai Wang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, 210042, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China.
| | - Qianjin Lu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, 210042, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
21
|
Zhou D, Zhao S, He K, Liu Q, Zhang F, Pu Z, Xiao L, Zhang L, Chen S, Qian X, Wu X, Shen Y, Yu L, Zhang H, Jin J, Xu M, Wang X, Zhu D, Xie Z, Xu X. Longitudinal dynamic single-cell mass cytometry analysis of peripheral blood mononuclear cells in COVID-19 patients within 6 months after viral RNA clearance. BMC Infect Dis 2024; 24:567. [PMID: 38844850 PMCID: PMC11157885 DOI: 10.1186/s12879-024-09464-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 06/03/2024] [Indexed: 06/09/2024] Open
Abstract
This study investigates the longitudinal dynamic changes in immune cells in COVID-19 patients over an extended period after recovery, as well as the interplay between immune cells and antibodies. Leveraging single-cell mass spectrometry, we selected six COVID-19 patients and four healthy controls, dissecting the evolving landscape within six months post-viral RNA clearance, alongside the levels of anti-spike protein antibodies. The T cell immunophenotype ascertained via single-cell mass spectrometry underwent validation through flow cytometry in 37 samples. Our findings illuminate that CD8 + T cells, gamma-delta (gd) T cells, and NK cells witnessed an increase, in contrast to the reduction observed in monocytes, B cells, and double-negative T (DNT) cells over time. The proportion of monocytes remained significantly elevated in COVID-19 patients compared to controls even after six-month. Subpopulation-wise, an upsurge manifested within various T effector memory subsets, CD45RA + T effector memory, gdT, and NK cells, whereas declines marked the populations of DNT, naive and memory B cells, and classical as well as non-classical monocytes. Noteworthy associations surfaced between DNT, gdT, CD4 + T, NK cells, and the anti-S antibody titer. This study reveals the changes in peripheral blood mononuclear cells of COVID-19 patients within 6 months after viral RNA clearance and sheds light on the interactions between immune cells and antibodies. The findings from this research contribute to a better understanding of immune transformations during the recovery from COVID-19 and offer guidance for protective measures against reinfection in the context of viral variants.
Collapse
Affiliation(s)
- Diwenxin Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Shuai Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Keting He
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Qiuhong Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Fen Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Zhangya Pu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Lanlan Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Lingjian Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Shangci Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Xiaohan Qian
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Xiaoxin Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Yangfan Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Ling Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Huafen Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Jiandi Jin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Min Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Xiaoyan Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Danhua Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Zhongyang Xie
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China.
| | - Xiaowei Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China.
| |
Collapse
|
22
|
Wu X, Hu C, Wu T, Du X, Peng Z, Xue W, Chen Y, Dong L. Mendelian randomization evidence based on European ancestry for the causal effects of leukocyte telomere length on prostate cancer. Hum Genomics 2024; 18:56. [PMID: 38831447 PMCID: PMC11145789 DOI: 10.1186/s40246-024-00622-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 05/15/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Several lines of evidence suggest that leukocyte telomere length (LTL) can affect the development of prostate cancer (PC). METHODS Here, we employed single nucleoside polymorphisms (SNPs) as instrumental variables (IVs) for LTL (n = 472,174) and conducted Mendelian randomization analysis to estimate their causal impact on PCs (79,148 patients/61,106 controls and 6311 patients/88,902 controls). RESULTS Every 1-s.d extension of LTL increased the risk of PCs by 34%. Additionally, the analysis of candidate mediators between LTL and PCs via two-step Mendelian randomization revealed that among the 23 candidates, Alzheimer's disease, liver iron content, sex hormone binding global levels, naive CD4-CD8-T cell% T cell, and circulating leptin levels played substantial mediating roles. There is no robust evidence to support the reverse causal relationship between LTL and the selected mediators of PCs. Adjusting for the former four mediators, rather than adjusting for circulating leptin levels, decreased the impact of LTL on PCs. CONCLUSION This study provides potential intervention measures for preventing LTL-induced PCs.
Collapse
Affiliation(s)
- Xinrui Wu
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Cong Hu
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Tianyang Wu
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Xinxing Du
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Zehong Peng
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Wei Xue
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China.
| | - Yonghui Chen
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China.
| | - Liang Dong
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China.
| |
Collapse
|
23
|
Rodríguez-Rodríguez N, Rosetti F, Crispín JC. CD8 is down(regulated) for tolerance. Trends Immunol 2024; 45:442-453. [PMID: 38782625 DOI: 10.1016/j.it.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024]
Abstract
Activated CD8+ T cells directly kill target cells. Therefore, the regulation of their function is central to avoiding immunopathology. Mechanisms that curb effector functions in CD4+ and CD8+ T cells are mostly shared, yet important differences occur. Here, we focus on the control of CD8+ T cell activity and discuss the importance of a poorly understood aspect of tolerance that directly impairs engagement of target cells: the downregulation of CD8. We contextualize this process and propose that it represents a key element during CD8+ T cell modulation.
Collapse
Affiliation(s)
| | - Florencia Rosetti
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - José C Crispín
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico; Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey, Mexico.
| |
Collapse
|
24
|
Pan T, Ding P, Huang A, Tang B, Song K, Sun G, Wu Y, Yang S, Chen X, Wang D, Zhu X. Reconstitution of double-negative T cells after cord blood transplantation and its predictive value for acute graft-versus-host disease. Chin Med J (Engl) 2024; 137:1207-1217. [PMID: 37620289 PMCID: PMC11101234 DOI: 10.1097/cm9.0000000000002807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND With an increasing number of patients with hematological malignancies being treated with umbilical cord blood transplantation (UCBT), the correlation between immune reconstitution (IR) after UCBT and graft-versus-host disease (GVHD) has been reported successively, but reports on double-negative T (DNT) cell reconstitution and its association with acute GVHD (aGVHD) after UCBT are lacking. METHODS A population-based observational study was conducted among 131 patients with hematological malignancies who underwent single-unit UCBT as their first transplant at the Department of Hematology, the First Affiliated Hospital of USTC, between August 2018 and June 2021. IR differences were compared between the patients with and without aGVHD. RESULTS The absolute number of DNT cells in the healthy Chinese population was 109 (70-157)/μL, accounting for 5.82 (3.98-8.19)% of lymphocytes. DNT cells showed delayed recovery and could not reach their normal levels even one year after transplantation. Importantly, the absolute number and percentage of DNT cells were significantly higher in UCBT patients without aGVHD than in those with aGVHD within one year ( F = 4.684, P = 0.039 and F = 5.583, P = 0.026, respectively). In addition, the number of DNT cells in the first month after transplantation decreased significantly with the degree of aGVHD increased, and faster DNT cell reconstitution in the first month after UCBT was an independent protective factor for aGVHD (HR = 0.46, 95% confidence interval [CI]: 0.23-0.93; P = 0.031). CONCLUSIONS Compared to the number of DNT cells in Chinese healthy people, the reconstitution of DNT cells in adults with hematological malignancies after UCBT was slow. In addition, the faster reconstitution of DNT cells in the early stage after transplantation was associated with a lower incidence of aGVHD.
Collapse
Affiliation(s)
- Tianzhong Pan
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Anhui Provincial Key Laboratory of Blood Research and Applications, Hefei, Anhui, 230001, China
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Peng Ding
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Aijie Huang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Baolin Tang
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Anhui Provincial Key Laboratory of Blood Research and Applications, Hefei, Anhui, 230001, China
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Kaidi Song
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Guangyu Sun
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Anhui Provincial Key Laboratory of Blood Research and Applications, Hefei, Anhui, 230001, China
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Yue Wu
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Anhui Provincial Key Laboratory of Blood Research and Applications, Hefei, Anhui, 230001, China
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Shiying Yang
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Anhui Provincial Key Laboratory of Blood Research and Applications, Hefei, Anhui, 230001, China
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Xingchi Chen
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Anhui Provincial Key Laboratory of Blood Research and Applications, Hefei, Anhui, 230001, China
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Dongyao Wang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Xiaoyu Zhu
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Anhui Provincial Key Laboratory of Blood Research and Applications, Hefei, Anhui, 230001, China
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| |
Collapse
|
25
|
Zhang D, Alip M, Chen H, Wu D, Zhu H, Han Y, Yuan X, Feng X, Sun L, Wang D. Immune profiling analysis of double-negative T cells in patients with systemic sclerosis. Clin Rheumatol 2024; 43:1623-1634. [PMID: 38436769 DOI: 10.1007/s10067-024-06920-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/28/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
OBJECTIVE To construct a molecular immune map of patients with systemic sclerosis (SSc) by mass flow cytometry, and compare the number and molecular expression of double-negative T (DNT) cell subsets between patients and healthy controls (HC). METHODS Peripheral blood mononuclear cells (PBMCs) were extracted from the peripheral blood of 17 SSc patients and 9 HC. A 42-channel panel was set up to perform mass cytometry by time of flight (CyTOF) analysis for DNT subgroups. Flow cytometry was used to validate subpopulation functions. The clinical data of patients were collected for correlation analysis. RESULTS Compared with HC, the number of total DNT cells decreased in SSc patients. Six DNT subsets were obtained from CyTOF analysis, in which the proportion of cluster1 increased, while the proportion of cluster3 decreased. Further analysis revealed that cluster1 was characterized by high expression of CD28 and CCR7, and cluster3 was characterized by high expression of CD28 and CCR5. After in vitro stimulation, cluster1 secreted more IL-4 and cluster3 secreted more IL-10 in SSc patients compared to HC. Clinical correlation analysis suggested that cluster1 may play a pathogenic role while cluster3 may play a protective role in SSc. ROC curve analysis further revealed that cluster3 may be a potential indicator for determining disease activity in SSc patients. CONCLUSION We found a new CCR5+CD28+ DNT cell subset, which played a protective role in the pathogenesis of SSc. Key Points • The number of DNT cells decreased in SSc patients' peripheral blood. • DNT cells do not infiltrate in the skin but secrete cytokines to participate in the pathogenesis of SSc. • A CCR5+CD28+ DNT cell population may play a protective role in SSc.
Collapse
Affiliation(s)
- Dongdong Zhang
- Department of Rheumatology and Immunology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University. Nanjing, Jiangsu, 210008, China
| | - Mihribangvl Alip
- Department of Rheumatology and Immunology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University. Nanjing, Jiangsu, 210008, China
| | - Hongzhen Chen
- Department of Rheumatology and Immunology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University. Nanjing, Jiangsu, 210008, China
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine Nanjing, Jiangsu, 210008, China
| | - Dan Wu
- Department of Rheumatology and Immunology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University. Nanjing, Jiangsu, 210008, China
| | - Huimin Zhu
- Department of Rheumatology and Immunology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University. Nanjing, Jiangsu, 210008, China
| | - Yichen Han
- Department of Rheumatology and Immunology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University. Nanjing, Jiangsu, 210008, China
| | - Xinran Yuan
- Department of Rheumatology and Immunology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University. Nanjing, Jiangsu, 210008, China
| | - Xuebing Feng
- Department of Rheumatology and Immunology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University. Nanjing, Jiangsu, 210008, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University. Nanjing, Jiangsu, 210008, China.
| | - Dandan Wang
- Department of Rheumatology and Immunology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University. Nanjing, Jiangsu, 210008, China.
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine Nanjing, Jiangsu, 210008, China.
| |
Collapse
|
26
|
Liu H, Liu H, Zhou L, Wen S, Liu T, Ju L, Liu Y. THE RELATIONSHIP BETWEEN CIRCULATING IMMUNE CELL PHENOTYPES AND SEPSIS: A MENDELIAN RANDOMIZATION STUDY. Shock 2024; 61:577-584. [PMID: 38517244 DOI: 10.1097/shk.0000000000002334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
ABSTRACT Objective: The role of immune cells in sepsis remains unclear, and there is some controversy. Here, we aim to systematically assess whether distinct immune cell phenotypes impact the susceptibility to sepsis. Methods: In this study, we harnessed publicly available summary-level data from genome-wide association studies (GWASs). The selection of genetic variations strongly associated with 731 phenotypes of circulating immune cells served as instrumental variables (IVs). Using a two-sample Mendelian randomization (MR) analysis, we investigated the relationships between different immunophenotypes and the occurrence of sepsis, as well as the 28-day mortality. The MR study utilized the inverse variance weighting (IVW) method as the main analytical approach. In addition, we incorporated four other MR methods for supplementary causal inference, including weighted median (WME), MR-Egger regression, simple mode, and weighted mode. Furthermore, the robustness of the results was affirmed through multiple sensitivity analyses. Results: The results of the IVW method indicated that a total of 36 immunophenotypes are associated with the risk of sepsis. We also identified 34 immunophenotypes with a causal association with the 28-day mortality. Interestingly, before multiple testing corrections, 11 immunophenotypes were determined to have consistent causal relationships with both the occurrence of sepsis and the 28-day mortality. Notably, after false discovery rate (FDR) correction, four immunophenotypes were found to be significantly correlated with susceptibility to sepsis: CD45RA- CD4+ %CD4+ (odds ratio [OR], 1.355; 95% confidence interval [CI], 1.139~1.611; P < 0.001, PFDR = 0.192), HLA DR on HLA DR+ NK (OR, 0.818; 95% CI, 0.726~0.922; P = 0.001, PFDR = 0.192), IgD+ CD24+ %B cell (OR, 0.626; 95% CI, 0.473~0.828; P = 0.001, PFDR = 0.192), and TD DN (CD4- CD8-) AC (OR, 0.655; 95% CI, 0.510~0.840; P < 0.001, PFDR = 0.192). Following FDR correction, only one immunophenotype was confirmed to be negatively correlated with the 28-day mortality: CD39 on CD39+ CD8br (OR, 0.820; 95% CI, 0.737~0.912; P < 0.001, PFDR = 0.184). Conclusion: This study, for the first time, has uncovered indicative evidence of a causal relationship between circulating immune cell phenotypes and varying degrees of sepsis through genetic means. These findings underscore the significance of immune cells in the pathogenesis of sepsis.
Collapse
Affiliation(s)
- Hongmei Liu
- Department of Critical Care Medicine, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Hai Liu
- Kunming Medical University, Kunming, Yunnan, China
| | - Li Zhou
- Department of Critical Care Medicine, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Shu Wen
- Department of Intensive Care Unit, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Tiankuang Liu
- Department of Critical Care Medicine, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Linqin Ju
- Department of Critical Care Medicine, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Yiwen Liu
- Department of Critical Care Medicine, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
27
|
Wang Y, Yang X, Ma J, Chen S, Gong P, Dai P. Thyroid dysfunction (TD) induced by PD-1/PD-L1 inhibitors in advanced lung cancer. Heliyon 2024; 10:e27077. [PMID: 38449616 PMCID: PMC10915392 DOI: 10.1016/j.heliyon.2024.e27077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/29/2024] [Accepted: 02/23/2024] [Indexed: 03/08/2024] Open
Abstract
Background Thyroid Dysfunction (TD) is a common immune-related adverse events (irAEs) in the treatment of advanced lung cancer with programmed cell death protein 1 (PD-1) and programmed death 1 ligand (PD-L1) inhibitors, with incidence accounting for 6-8% of all irAEs. The incidence of TD is receiving increasing attention from clinicians, given its potential impact on clinical efficacy. However, the molecular mechanisms, biomarkers, and clinical impact of TD resulting from PD-1/PD-L1 inhibitor treatment in advanced lung cancer are unclear. Objective To present a comprehensive review of current advancements in research about the molecular mechanisms, influential factors, and clinical manifestations in the treatment of advanced lung cancer with PD-1 and PD-L1 inhibitors, as well as the correlation between TD and the efficacy of PD-1 and PD-L1 inhibitors. Methods A systematic search was conducted using PubMed, Web of Science, Cochrane Library, Embase and Google Scholar databases, with the keywords including thyroid dysfunction, efficacy, mechanisms, immune checkpoint inhibitors, PD-1/PD-L1 inhibitors, and advanced lung cancer. Results PD-1/PD-L1 inhibitors can induce T cell-mediated destructive thyroiditis, thyroid autoantibody-mediated autoimmunity, and a decrease in the number of immunosuppressive monocytes (circulating cluster of differentiation (CD)14+ human leukocyte antigen (HLA)-DRlow/negatives monocytes, CD14+ HLA-DR + lo/neg), leading to TD. Several factors, including peripheral blood inflammatory markers, body mass index (BMI), baseline thyroid-stimulating hormone (TSH) level, gender, smoking history, hypertension, and previous opioid use, may also contribute to the development of TD. However, there is currently a lack of reliable predictive biomarkers for TD, although anti-thyroid antibodies, TSH levels, and peripheral blood inflammatory markers are expected to be predictive.Interestingly, some studies suggested a positive correlation between TD and clinical efficacy, i.e., patients experiencing TD showed better outcomes in objective response rate (ORR), disease control rate (DCR), progression-free survival (PFS), and overall survival (OS), compared with those without TD. However, most of these studies were single-center and had small sample sizes, so more multi-center studies are needed to provide further data support. Conclusion TD resulting from PD-1/PD-L1 inhibitor treatment in advanced lung cancer may be associated with good clinical outcomes. The clarification of the molecular mechanisms underlying TD and the identification of reliable predictive biomarkers will guide clinicians in managing TD in this patient population.
Collapse
Affiliation(s)
- Yanling Wang
- School of Medicine, Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China
| | - Xiaoxuan Yang
- School of Medicine, Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China
| | - Jia Ma
- Department of General Surgery, Shanghai Jian Gong Hospital, Shanghai, 200434, People's Republic of China
| | - Shenglan Chen
- School of Medicine, Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China
| | - Ping Gong
- School of Medicine, Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China
- Department of Oncology, The Third Affiliated Hospital of School of Medicine of Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China
| | - Ping Dai
- Department of Radiotherapy, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, People's Republic of China
- Department of Molecular Radiation Oncology, German Cancer Research Center (DKFZ), Neuenheimer Feld 280, 69120, Heidelberg, Germany
| |
Collapse
|
28
|
Baumgartner F, Bamopoulos SA, Faletti L, Hsiao HJ, Holz M, Gonzalez-Menendez I, Solé-Boldo L, Horne A, Gosavi S, Özerdem C, Singh N, Liebig S, Ramamoorthy S, Lehmann M, Demel U, Kühl AA, Wartewig T, Ruland J, Wunderlich FT, Schick M, Walther W, Rose-John S, Haas S, Quintanilla-Martinez L, Feske S, Ehl S, Glauben R, Keller U. Activation of gp130 signaling in T cells drives T H17-mediated multi-organ autoimmunity. Sci Signal 2024; 17:eadc9662. [PMID: 38377177 DOI: 10.1126/scisignal.adc9662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 01/31/2024] [Indexed: 02/22/2024]
Abstract
The IL-6-gp130-STAT3 signaling axis is a major regulator of inflammation. Activating mutations in the gene encoding gp130 and germline gain-of-function mutations in STAT3 (STAT3GOF) are associated with multi-organ autoimmunity, severe morbidity, and adverse prognosis. To dissect crucial cellular subsets and disease biology involved in activated gp130 signaling, the gp130-JAK-STAT3 axis was constitutively activated using a transgene, L-gp130, specifically targeted to T cells. Activating gp130 signaling in T cells in vivo resulted in fatal, early onset, multi-organ autoimmunity in mice that resembled human STAT3GOF disease. Female mice had more rapid disease progression than male mice. On a cellular level, gp130 signaling induced the activation and effector cell differentiation of T cells, promoted the expansion of T helper type 17 (TH17) cells, and impaired the activity of regulatory T cells. Transcriptomic profiling of CD4+ and CD8+ T cells from these mice revealed commonly dysregulated genes and a gene signature that, when applied to human transcriptomic data, improved the segregation of patients with transcriptionally diverse STAT3GOF mutations from healthy controls. The findings demonstrate that increased gp130-STAT3 signaling leads to TH17-driven autoimmunity that phenotypically resembles human STAT3GOF disease.
Collapse
Affiliation(s)
- Francis Baumgartner
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité (Junior) (Digital) Clinician Scientist Program, 10178 Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, a partnership between DKFZ and Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Stefanos A Bamopoulos
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité (Junior) (Digital) Clinician Scientist Program, 10178 Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, a partnership between DKFZ and Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Laura Faletti
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, University Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Hsiang-Jung Hsiao
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Maximilian Holz
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, a partnership between DKFZ and Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Irene Gonzalez-Menendez
- Institute of Pathology and Neuropathology, Comprehensive Cancer Center, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," Eberhard Karls University, 72076 Tübingen, Germany
- German Cancer Consortium (DKTK), partner site Tübingen, a partnership between DKFZ and Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
| | - Llorenç Solé-Boldo
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany
| | - Arik Horne
- German Cancer Consortium (DKTK), partner site Berlin, a partnership between DKFZ and Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) Heidelberg, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sanket Gosavi
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Ceren Özerdem
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany
| | - Nikita Singh
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Sven Liebig
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Senthilkumar Ramamoorthy
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, University Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, 79110 Freiburg, Germany
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Malte Lehmann
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- iPATH.Berlin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany
| | - Uta Demel
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité (Junior) (Digital) Clinician Scientist Program, 10178 Berlin, Germany
| | - Anja A Kühl
- iPATH.Berlin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany
| | - Tim Wartewig
- Institute for Clinical Chemistry and Pathobiochemistry, Technische Universität München, 81675 Munich, Germany
- Center of Molecular and Cellular Oncology, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Jürgen Ruland
- Institute for Clinical Chemistry and Pathobiochemistry, Technische Universität München, 81675 Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, a partnership between DKFZ and Technische Universität München, 81675 Munich, Germany
| | - Frank T Wunderlich
- Obesity and Cancer, Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
| | - Markus Schick
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, a partnership between DKFZ and Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Wolfgang Walther
- Experimental and Clinical Research Center, Charité Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Robert-Rössle Str. 10, 13125 Berlin, Germany
- EPO GmbH Berlin-Buch, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany
| | - Simon Haas
- German Cancer Consortium (DKTK), partner site Berlin, a partnership between DKFZ and Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany
- Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ) and DKFZ - ZMBH Alliance, 69120 Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Comprehensive Cancer Center, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," Eberhard Karls University, 72076 Tübingen, Germany
- German Cancer Consortium (DKTK), partner site Tübingen, a partnership between DKFZ and Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
| | - Stefan Feske
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, University Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Rainer Glauben
- German Cancer Consortium (DKTK), partner site Berlin, a partnership between DKFZ and Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Ulrich Keller
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, a partnership between DKFZ and Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
29
|
Zhang Y, Du L, Wang C, Jiang Z, Duan Q, Li Y, Xie Z, He Z, Sun Y, Huang L, Lu L, Wen C. Neddylation is a novel therapeutic target for lupus by regulating double negative T cell homeostasis. Signal Transduct Target Ther 2024; 9:18. [PMID: 38221551 PMCID: PMC10788348 DOI: 10.1038/s41392-023-01709-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 10/15/2023] [Accepted: 11/15/2023] [Indexed: 01/16/2024] Open
Abstract
Systemic lupus erythematosus (SLE), a severe autoimmune disorder, is characterized by systemic inflammatory response, autoantibody accumulation and damage to organs. The dysregulation of double-negative (DN) T cells is considered as a crucial commander during SLE. Neddylation, a significant type of protein post-translational modification (PTM), has been well-proved to regulate T cell-mediated immune response. However, the function of neddylation in SLE is still unknown. Here, we reported that neddylation inactivation with MLN4924, a specific inhibitor of NEDD8-activating enzyme E1 (NAE1), or genetic abrogation of Ube2m in T cells decreased DN T cell accumulation and attenuated murine lupus development. Further investigations revealed that inactivation of neddylation blocked Bim ubiquitination degradation and maintained Bim level in DN T cells, contributing to the apoptosis of the accumulated DN T cells in lupus mice. Then double knockout (KO) lupus-prone mice (Ube2m-/-Bim-/-lpr) were generated and results showed that loss of Bim reduced Ube2m deficiency-induced apoptosis in DN T cells and reversed the alleviated lupus progression. Our findings identified that neddylation inactivation promoted Bim-mediated DN T cell apoptosis and attenuated lupus progression. Clinically, we also found that in SLE patients, the proportion of DN T cells was raised and their apoptosis was reduced. Moreover, compared to healthy groups, SLE patients exhibited decreased Bim levels and elevated Cullin1 neddylation levels. Meantime, the inhibition of neddylation induced Bim-dependent apoptosis of DN T cells isolated from SLE patients. Altogether, our findings provide the direct evidence about the function of neddylation during lupus, suggesting a promising therapeutic approach for this disease.
Collapse
Affiliation(s)
- Yun Zhang
- Key Laboratory of Chinese medicine rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Lijun Du
- Key Laboratory of Chinese medicine rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Chenxi Wang
- Key Laboratory of Chinese medicine rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zhangsheng Jiang
- Key Laboratory of Chinese medicine rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qingchi Duan
- Key Laboratory of Chinese medicine rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yiping Li
- Key Laboratory of Chinese medicine rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zhijun Xie
- Key Laboratory of Chinese medicine rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zhixing He
- Key Laboratory of Chinese medicine rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yi Sun
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
- Cancer Center of Zhejiang University, Hangzhou, 310029, China
| | - Lin Huang
- Key Laboratory of Chinese medicine rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China.
- Chongqing International Institute for Immunology, Chongqing, 400038, China.
| | - Chengping Wen
- Key Laboratory of Chinese medicine rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
30
|
Poddighe D, Dossybayeva K, Kozhakhmetov S, Rozenson R, Assylbekova M. Double-Negative T (DNT) Cells in Patients with Systemic Lupus Erythematosus. Biomedicines 2024; 12:166. [PMID: 38255272 PMCID: PMC10812956 DOI: 10.3390/biomedicines12010166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Double-negative T (DNT) cells are a rare and unconventional T-lymphocyte subpopulation lacking both CD4 and CD8 markers. Their immunopathological roles and clinical relevance have yet to be elucidated. Beyond autoimmune lymphoproliferative syndrome (ALPS), these cells may also play a role in rheumatic disorders, including systemic lupus erythematosus (SLE); indeed, these two diseases share several autoimmune manifestations (including nephritis). Moreover, one of the main experimental murine models used to investigate lupus, namely the MRL/lpr mouse, is characterized by an expansion of DNT cells, which can support the production of pathogenic autoantibodies and/or modulate the immune response in this context. However, lupus murine models are not completely consistent with their human SLE counterpart, of course. In this mini review, we summarize and analyze the most relevant clinical studies investigating the DNT cell population in SLE patients. Overall, based on the present literature review and analysis, DNT cell homeostasis seems to be altered in patients with SLE. Indeed, most of the available clinical studies (which include both adults and children) reported an increased DNT cell percentage in SLE patients, especially during the active phases, even though no clear correlation with disease activity and/or inflammatory parameters has been clearly established. Well-designed, standardized, and longitudinal clinical studies focused on DNT cell population are needed, in order to further elucidate the actual contribution of these cells in SLE pathogenesis and their interactions with other immune cells (also implicated and/or altered in SLE, such as basophils), and clarify whether their expansion and/or immunophenotypic aspects may have any immunopathological relevance (and, then, represent potential disease markers and, in perspective, even therapeutic targets) or are just an unspecific epiphenomenon of autoimmunity.
Collapse
Affiliation(s)
- Dimitri Poddighe
- School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan;
- Clinical Academic Department of Pediatrics, National Research Center for Maternal and Child Health, University Medical Center, Astana 010000, Kazakhstan;
| | | | - Samat Kozhakhmetov
- Center for Life Science, National Laboratory Astana, Astana 010000, Kazakhstan;
| | - Rafail Rozenson
- Department of Children’s Diseases n.1, Astana Medical University, Astana 010000, Kazakhstan;
| | - Maykesh Assylbekova
- Clinical Academic Department of Pediatrics, National Research Center for Maternal and Child Health, University Medical Center, Astana 010000, Kazakhstan;
| |
Collapse
|
31
|
Li J, Gong Y, Wang Y, Huang H, Du H, Cheng L, Ma C, Cai Y, Han H, Tao J, Li G, Cheng P. Classification of regulatory T cells and their role in myocardial ischemia-reperfusion injury. J Mol Cell Cardiol 2024; 186:94-106. [PMID: 38000204 DOI: 10.1016/j.yjmcc.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is closely related to the final infarct size in acute myocardial infarction (AMI). Therefore, reducing MIRI can effectively improve the prognosis of AMI patients. At the same time, the healing process after AMI is closely related to the local inflammatory microenvironment. Regulatory T cells (Tregs) can regulate various physiological and pathological immune inflammatory responses and play an important role in regulating the immune inflammatory response after AMI. However, different subtypes of Tregs have different effects on MIRI, and the same subtype of Tregs may also have different effects at different stages of MIRI. This article systematically reviews the classification and function of Tregs, as well as the role of various subtypes of Tregs in MIRI. A comprehensive understanding of the role of each subtype of Tregs can help design effective methods to control immune reactions, reduce MIRI, and provide new potential therapeutic options for AMI.
Collapse
Affiliation(s)
- Junlin Li
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Department of Cardiology, The Second People's Hospital of Neijiang, Neijiang 641100, China
| | - Yajun Gong
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yiren Wang
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Huihui Huang
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Huan Du
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Lianying Cheng
- Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Cui Ma
- Department of Mathematics, Army Medical University, Chongqing 400038, China
| | - Yongxiang Cai
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Hukui Han
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Jianhong Tao
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Gang Li
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Panke Cheng
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Chengdu 610072, China.
| |
Collapse
|
32
|
Carlsson E, Cowell-McGlory T, Hedrich CM. cAMP responsive element modulator α promotes effector T cells in systemic autoimmune diseases. Immunology 2023; 170:470-482. [PMID: 37435993 DOI: 10.1111/imm.13680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/01/2023] [Indexed: 07/13/2023] Open
Abstract
T lymphocytes play a crucial role in adaptive immunity. Dysregulation of T cell-derived inflammatory cytokine expression and loss of self-tolerance promote inflammation and tissue damage in several autoimmune/inflammatory diseases, including systemic lupus erythematosus (SLE) and psoriasis. The transcription factor cAMP responsive element modulator α (CREMα) plays a key role in the regulation of T cell homeostasis. Increased expression of CREMα is a hallmark of the T cell-mediated inflammatory diseases SLE and psoriasis. Notably, CREMα regulates the expression of effector molecules through trans-regulation and/or the co-recruitment of epigenetic modifiers, including DNA methyltransferases (DNMT3a), histone-methyltransferases (G9a) and histone acetyltransferases (p300). Thus, CREMα may be used as a biomarker for disease activity and/or target for future targeted therapeutic interventions.
Collapse
Affiliation(s)
- Emil Carlsson
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Taylor Cowell-McGlory
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Christian M Hedrich
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
- Department of Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, UK
- Paediatric Excellence Initiative, NIHR Great Ormond Street Biomedical Research Centre, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, UK
| |
Collapse
|
33
|
Failing C, Blase JR, Walkovich K. Understanding the Spectrum of Immune Dysregulation Manifestations in Autoimmune Lymphoproliferative Syndrome and Autoimmune Lymphoproliferative Syndrome-like Disorders. Rheum Dis Clin North Am 2023; 49:841-860. [PMID: 37821199 DOI: 10.1016/j.rdc.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
As a disorder of immune dysregulation, autoimmune lymphoproliferative syndrome (ALPS) stems from pathogenic variants in the first apoptosis signal-mediated apoptosis (Fas) and Fas-ligand pathway that result in elevations of CD3+ TCRαβ+ CD4- CD8- T cells along with chronic lymphoproliferation, a heightened risk for malignancy, and importantly for the rheumatologist, increased risk of autoimmunity. While immune cytopenias are the most encountered autoimmune phenomena, there is increasing appreciation for ocular, musculoskeletal, pulmonary and renal inflammatory manifestations similar to more common rheumatology diseases. Additionally, ALPS-like conditions that share similar clinical features and opportunities for targeted therapy are increasingly recognized via genetic testing, highlighting the need for rheumatologists to be facile in the recognition and diagnosis of this spectrum of disorders. This review will focus on clinical and laboratory features of both ALPS and ALPS-like disorders with the intent to provide a framework for rheumatologists to understand the pathophysiologic drivers and discriminate between diagnoses.
Collapse
Affiliation(s)
- Christopher Failing
- Sanford Health, Fargo, ND, USA; University of North Dakota School of Medicine and Health Sciences, Grand Folks, ND, USA.
| | - Jennifer R Blase
- University of Michigan, 1500 East Medical Center Drive, D4202 Medical Professional Building, Ann Arbor, MI 48109, USA
| | - Kelly Walkovich
- University of Michigan, 1500 East Medical Center Drive, D4202 Medical Professional Building, Ann Arbor, MI 48109, USA
| |
Collapse
|
34
|
Song X, Zhang Y, Zhao L, Fan J, Peng T, Ma Y, Guo N, Wang X, Liu X, Liu Z, Wang L. Analyzation of the Peripheral Blood Mononuclear Cells Atlas and Cell Communication of Rheumatoid Arthritis Patients Based on Single-Cell RNA-Seq. J Immunol Res 2023; 2023:6300633. [PMID: 37600067 PMCID: PMC10439836 DOI: 10.1155/2023/6300633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/22/2023] Open
Abstract
Background Rheumatoid arthritis (RA) is a common chronic inflammatory autoimmune disease with a multifactorial etiology. Peripheral blood is the main channel of the immune system, and peripheral blood mononuclear cells (PBMCs) are the immune cells that initiate the autoimmune inflammatory process. However, there are few reports on the mechanisms of peripheral blood immunity in RA. Methods ScRNA-seq was performed on four RA samples and integrated with single-cell transcriptome data from four healthy control samples downloaded from publicly available databases for analysis. Results A total of 52,073 cells were used for descending clustering analysis to map RA peripheral blood immune cells at single-cell resolution. Redimensional clustering analysis of four major immune cells (T cells, monocytes, B cells, and natural killer cells) revealed that double-negative T (DNT) cells were significantly altered in abundance and function. And a number of genes (including SOCS3, cAMP-responsive element modulator (CREM), B2M, MTFP1, RSRP1, and YWHAB) were specifically downregulated in DNT cells. RA T cells, especially DNT cells, exhibit significant metabolic defects and dysfunction, mainly in the form of inhibition of oxidative phosphorylation, ATP synthesis, and major histocompatibility complex (MHC)-I-mediated antigen presentation. In addition, cellular communication networks were established, and it was evident that RA is significantly attenuated in the number and intensity of cellular communication. Monocytes and T cells play key roles in the process of the immune inflammatory response through CCL and MHC-related pathways. Conclusions This study describes the landscape of the peripheral blood immune system and cell communication in RA, characterizes the abundance of PBMCs, gene expression profiles, and changes in signaling pathways in RA patients, and identifies several key cell subpopulations (DNT and classic monocytes) and specific genes (SOCS3, CREM, B2M, MTFP1, RSRP1, and YWHAB). Meanwhile, we propose that classic monocytes in peripheral blood may migrate to sites of inflammation in synovial tissue under the chemotaxis of the chemokines CCL3 and CCL3L1, differentiate into macrophages, secrete proinflammatory cytokines, and thus participate in the inflammatory response. These findings provide new insights for the future elucidation of the peripheral blood immune mechanisms of RA and the search for new clinical therapeutic targets.
Collapse
Affiliation(s)
- Xinqiang Song
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
- College of Medicine, Xinyang Normal University, Xinyang 464000, China
| | - Yu Zhang
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Lijun Zhao
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Jinke Fan
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Tao Peng
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Ying Ma
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | | | - Xiaotong Wang
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Xudong Liu
- School of Medicine, Chongqing University, Chongqing 400044, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Zhe Liu
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
| | - Lei Wang
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
35
|
Zhou X, Lyu C, Chen X, Ye Y, Lei Y, Liu Y, Zhang T, Yang Y. Fufang Shengdi mixture alleviates psoriasis-like skin inflammation via promoting Annexin-A proteins expression. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116329. [PMID: 36940737 DOI: 10.1016/j.jep.2023.116329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine believes that "blood fever" is an important cause of psoriasis. Fufang Shengdi mixture (FFSD), based on the Hongban Decoction, is composed of Rehmannia glutinosa (Gaertn.) DC., Raw gypsum (Chinese: Sheng Shi Gao), and Lonicera japonica Thunb (Caprifoliaceae). FFSD has effects on nourishing Yin, clearing heat, connecting collaterals, and cooling blood. In modern medical explanation, FFSD has the effects of anti-inflammatory and immunosuppression. Our study proved that FFSD can suppress immunity and ameliorate the symptoms of imiquimod-induced psoriasis in mice. AIM OF THE STUDY This study evaluated the efficacy and possible mechanism of FFSD in psoriasis mice. METHODS AND MATERIALS First, the main components of FFSD were analyzed using high-performance liquid chromatography-tandem high-resolution mass spectrometry (HPLC-HRMS). An imiquimod (IMQ)-induced psoriasis mouse model was used to evaluate the efficacy of FFSD orally. Psoriasis area and severity index (PASI) scores were recorded throughout the course of the mice to reflect the severity of psoriasis. Hematoxylin-eosin staining was used to observe the pathological changes in skin lesions. Enzyme-linked immunosorbent assay (ELISA) was performed to test the level of IFN-γ and TNF-α in plasma. To further investigate the immunopharmacological effect of FFSD, we used chicken ovalbumin (OVA) to induce immunoreaction in mice. ELISA was used to detect the levels of anti-OVA antibody, IFN-γ and TNF-α in mice. Flow cytometry was performed to quantify the ratio of cell types in peripheral blood mononuclear cells (PBMCs) to evaluate the effect of FFSD on immunosuppression. Proteomics and bioinformatics analyzes were performed to find the regulation pathway of the immunosuppressive effect of FFSD. Finally, quantitative PCR (qPCR) and immunohistochemistry were used to measure the upregulation of Annexin-A proteins (ANXAs) in the skin lesion tissue of IMQ-induced mouse. RESULTS On the basis of knowing the composition of FFSD, we first proved the efficacy of FFSD in alleviating IMQ-induced psoriasis in mice. Second, we further clarified the pharmacological effect of FFSD on immunosuppression via OVA-induced mice. Subsequently, it was found that the significant up-regulation of ANXAs was caused by FFSD through proteomics analysis, and the finding was proved in the IMQ-induced psoriasis mouse model. CONCLUSIONS This study elucidates the immunosuppressive pharmacological effect of FFSD on improving psoriasis through up-regulating ANXAs.
Collapse
Affiliation(s)
- Xiaoying Zhou
- Shanghai University of Traditional Chinese Medicine Science and Technology Experiment Center, Shanghai, 201203, China.
| | - Chunming Lyu
- Shanghai University of Traditional Chinese Medicine Science and Technology Experiment Center, Shanghai, 201203, China.
| | - Xingmi Chen
- Shanghai University of Traditional Chinese Medicine Science and Technology Experiment Center, Shanghai, 201203, China.
| | - Yuhan Ye
- Shanghai University of Traditional Chinese Medicine Science and Technology Experiment Center, Shanghai, 201203, China.
| | - Yuanyuan Lei
- Shanghai University of Traditional Chinese Medicine Science and Technology Experiment Center, Shanghai, 201203, China.
| | - Ying Liu
- Shanghai University of Traditional Chinese Medicine Science and Technology Experiment Center, Shanghai, 201203, China.
| | - Tong Zhang
- Shanghai University of Traditional Chinese Medicine School of Pharmacy, Shanghai, 201203, China.
| | - Yang Yang
- Shanghai University of Traditional Chinese Medicine Science and Technology Experiment Center, Shanghai, 201203, China.
| |
Collapse
|
36
|
Parthasarathy S, Shen Z, Carrillo-Salinas FJ, Iyer V, Vogell A, Illanes D, Wira CR, Rodriguez-Garcia M. Aging modifies endometrial dendritic cell function and unconventional double negative T cells in the human genital mucosa. Immun Ageing 2023; 20:34. [PMID: 37452337 PMCID: PMC10347869 DOI: 10.1186/s12979-023-00360-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 07/01/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Immune function in the genital mucosa balances reproduction with protection against pathogens. As women age, genital infections, and gynecological cancer risk increase, however, the mechanisms that regulate cell-mediated immune protection in the female genital tract and how they change with aging remain poorly understood. Unconventional double negative (DN) T cells (TCRαβ + CD4-CD8-) are thought to play important roles in reproduction in mice but have yet to be characterized in the human female genital tract. Using genital tissues from women (27-77 years old), here we investigated the impact of aging on the induction, distribution, and function of DN T cells throughout the female genital tract. RESULTS We discovered a novel site-specific regulation of dendritic cells (DCs) and unconventional DN T cells in the genital tract that changes with age. Human genital DCs, particularly CD1a + DCs, induced proliferation of DN T cells in a TFGβ dependent manner. Importantly, induction of DN T cell proliferation, as well as specific changes in cytokine production, was enhanced in DCs from older women, indicating subset-specific regulation of DC function with increasing age. In human genital tissues, DN T cells represented a discrete T cell subset with distinct phenotypical and transcriptional profiles compared to CD4 + and CD8 + T cells. Single-cell RNA and oligo-tag antibody sequencing studies revealed that DN T cells represented a heterogeneous population with unique homeostatic, regulatory, cytotoxic, and antiviral functions. DN T cells showed relative to CD4 + and CD8 + T cells, enhanced expression of inhibitory checkpoint molecules and genes related to immune regulatory as well as innate-like anti-viral pathways. Flow cytometry analysis demonstrated that DN T cells express tissue residency markers and intracellular content of cytotoxic molecules. Interestingly, we demonstrate age-dependent and site-dependent redistribution and functional changes of genital DN T cells, with increased cytotoxic potential of endometrial DN T cells, but decreased cytotoxicity in the ectocervix as women age, with implications for reproductive failure and enhanced susceptibility to infections respectively. CONCLUSIONS Our deep characterization of DN T cell induction and function in the female genital tract provides novel mechanistic avenues to improve reproductive outcomes, protection against infections and gynecological cancers as women age.
Collapse
Affiliation(s)
| | - Zheng Shen
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | | | - Vidya Iyer
- Department of Gynecology and Obstetrics, Tufts Medical Center, Boston, MA, USA
| | - Alison Vogell
- Department of Gynecology and Obstetrics, Tufts Medical Center, Boston, MA, USA
| | - Diego Illanes
- Department of Gynecology and Obstetrics, Tufts Medical Center, Boston, MA, USA
| | - Charles R Wira
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | | |
Collapse
|
37
|
Wu J, Guo Q, Zhu J, Wu Y, Wang S, Liang S, Ju X, Wu X. Developing a nomogram for preoperative prediction of cervical cancer lymph node metastasis by multiplex immunofluorescence. BMC Cancer 2023; 23:485. [PMID: 37254049 PMCID: PMC10228122 DOI: 10.1186/s12885-023-10932-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 05/08/2023] [Indexed: 06/01/2023] Open
Abstract
BACKGROUND Most traditional procedures can destroy tissue natural structure, and the information on spatial distribution and temporal distribution of immune milieu in situ would be lost. We aimed to explore the potential mechanism of pelvic lymph node (pLN) metastasis of cervical cancer (CC) by multiplex immunofluorescence (mIF) and construct a nomogram for preoperative prediction of pLN metastasis in patients with CC. METHODS Patients (180 IB1-IIA2 CC patients of 2009 FIGO (International Federation of Gynecology and Obstetrics)) were divided into two groups based on pLN status. Tissue microarray (TMA) was prepared and tumor-infiltrating immune markers were assessed by mIF. Multivariable logistic regression analysis and nomogram were used to develop the predicting model. RESULTS Multivariable logistic regression analysis constructs a predictive model and the area under the curve (AUC) can reach 0.843. By internal validation with the remaining 40% of cases, a new ROC curve has emerged and the AUC reached 0.888. CONCLUSIONS This study presents an immune nomogram, which can be conveniently used to facilitate the preoperative individualized prediction of LN metastasis in patients with CC.
Collapse
Affiliation(s)
- Jiangchun Wu
- Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, 200032, Shanghai, China
| | - Qinhao Guo
- Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, 200032, Shanghai, China
| | - Jun Zhu
- Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, 200032, Shanghai, China
| | - Yong Wu
- Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, 200032, Shanghai, China
| | - Simin Wang
- Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, 200032, Shanghai, China
| | - Siyuan Liang
- Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xingzhu Ju
- Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China.
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, 200032, Shanghai, China.
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200000, PR China.
| | - Xiaohua Wu
- Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China.
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, 200032, Shanghai, China.
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200000, PR China.
| |
Collapse
|
38
|
Zhu Y, Wang S, Yang Y, Shen B, Wang A, Zhang X, Zhang X, Li N, Gao Z, Liu Y, Zhu J, Wei Z, Guan J, Su K, Liu F, Gu M, Yin S. Adenoid lymphocyte heterogeneity in pediatric adenoid hypertrophy and obstructive sleep apnea. Front Immunol 2023; 14:1186258. [PMID: 37283767 PMCID: PMC10239814 DOI: 10.3389/fimmu.2023.1186258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/09/2023] [Indexed: 06/08/2023] Open
Abstract
Introduction Adenoid hypertrophy is the main cause of obstructive sleep apnea in children. Previous studies have suggested that pathogenic infections and local immune system disorders in the adenoids are associated with adenoid hypertrophy. The abnormalities in the number and function of various lymphocyte subsets in the adenoids may play a role in this association. However, changes in the proportion of lymphocyte subsets in hypertrophic adenoids remain unclear. Methods To identify patterns of lymphocyte subsets in hypertrophic adenoids, we used multicolor flow cytometry to analyze the lymphocyte subset composition in two groups of children: the mild to moderate hypertrophy group (n = 10) and the severe hypertrophy group (n = 5). Results A significant increase in naïve lymphocytes and a decrease in effector lymphocytes were found in severe hypertrophic adenoids. Discussion This finding suggests that abnormal lymphocyte differentiation or migration may contribute to the development of adenoid hypertrophy. Our study provides valuable insights and clues into the immunological mechanism underlying adenoid hypertrophy.
Collapse
Affiliation(s)
- Yaxin Zhu
- Department of Otolaryngology Head and Neck Surgery and Center of Sleep Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengming Wang
- Department of Otolaryngology Head and Neck Surgery and Center of Sleep Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingchao Yang
- Department of Otolaryngology Head and Neck Surgery and Center of Sleep Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bojun Shen
- Department of Otolaryngology Head and Neck Surgery and Center of Sleep Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Anzhao Wang
- Department of Otolaryngology Head and Neck Surgery and Center of Sleep Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoman Zhang
- Department of Otolaryngology Head and Neck Surgery and Center of Sleep Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxu Zhang
- Department of Otolaryngology Head and Neck Surgery and Center of Sleep Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Niannian Li
- Department of Otolaryngology Head and Neck Surgery and Center of Sleep Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenfei Gao
- Department of Otolaryngology Head and Neck Surgery and Center of Sleep Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuenan Liu
- Department of Otolaryngology Head and Neck Surgery and Center of Sleep Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingyu Zhu
- Department of Otolaryngology Head and Neck Surgery and Center of Sleep Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhicheng Wei
- Department of Otolaryngology Head and Neck Surgery and Center of Sleep Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Guan
- Department of Otolaryngology Head and Neck Surgery and Center of Sleep Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kaiming Su
- Department of Otolaryngology Head and Neck Surgery and Center of Sleep Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Liu
- Department of Otolaryngology Head and Neck Surgery and Center of Sleep Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meizhen Gu
- Department of Otolaryngology Head and Neck Surgery, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shankai Yin
- Department of Otolaryngology Head and Neck Surgery and Center of Sleep Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
39
|
Briceño O, Peralta-Prado A, Garrido-Rodríguez D, Romero-Mora K, Chávez-Torres M, Pinto Cardoso S, Alvarado de la Barrera C, Reyes-Terán G, Ávila-Ríos S. Double-Negative T Cell Number and Phenotype Alterations Before and After Effective Antiretroviral Treatment in Persons Living with HIV. AIDS Res Hum Retroviruses 2023; 39:104-113. [PMID: 36511386 DOI: 10.1089/aid.2022.0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Double-negative (DN) T cells represent a small and phenotypically heterogeneous population that display regulatory functions. In HIV infection, DN T cells are decreased in peripheral blood and have been negatively associated with T cell activation. This study was aimed at describing the dynamics and phenotypic characteristics of DN T cells in peripheral blood of people living with HIV (PLHIV) before and after antiretroviral therapy (ART) initiation. We included 41 newly diagnosed, ART-naive individuals with advanced HIV infection, who were followed up for 6 months after ART initiation. The control group included 34 people without HIV (PWHIV), on preexposure prophylaxis for HIV infection. DN T cells in peripheral blood were characterized by flow cytometry. The absolute counts of DN T cells were lower in PLHIV than in PWHIV (p = 0.0223), and were particularly low in individuals with advanced HIV disease (p = 0.0311). Activation of DN T cells before ART initiation was directly associated with viral load (VL) (p = 0.0081, r = 0.4083) and inversely associated with CD4+ T cell counts (p = 0.0004, r = -0.4041). Compared with PWHIV, DN T cells of PLHIV expressed higher levels of CD57 (p = 0.0019), Ki67 (p = 0.0065), PD-1 (p = 0.0187), and CD38/HLA-DR (p < 0.0001). After 6 months on ART, expression of Ki67, PD-1, and CD38/HLA-DR on DN T cells returned to similar levels to those observed in PWHIV (p > 0.05 in all cases). However, expression of CD57 decreased only in individuals that start ART with high VL (p = 0.0127). DN T cell counts are decreased in HIV infection. Low DN T cell counts remained despite ART-induced immune reconstitution and viremia control. DN T cell phenotype is altered during chronic untreated infection with a high proportion of proliferating, activated, exhausted, and senescent cells. Most markers return to levels similar to those observed in PWHIV after ART. The impact of altered phenotype of DN T and their regulatory functions warrants further exploration.
Collapse
Affiliation(s)
- Olivia Briceño
- Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Amy Peralta-Prado
- Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Daniela Garrido-Rodríguez
- Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Karla Romero-Mora
- Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Monserrat Chávez-Torres
- Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Sandra Pinto Cardoso
- Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Claudia Alvarado de la Barrera
- Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Gustavo Reyes-Terán
- Institutos Nacionales de Salud y Hospitales de Alta Especialidad, Secretaría de Salud de México, Ciudad de Mexico, Mexico
| | - Santiago Ávila-Ríos
- Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| |
Collapse
|
40
|
Innate and adaptive immune abnormalities underlying autoimmune diseases: the genetic connections. SCIENCE CHINA. LIFE SCIENCES 2023:10.1007/s11427-021-2187-3. [PMID: 36738430 PMCID: PMC9898710 DOI: 10.1007/s11427-021-2187-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/10/2022] [Indexed: 02/05/2023]
Abstract
With the exception of an extremely small number of cases caused by single gene mutations, most autoimmune diseases result from the complex interplay between environmental and genetic factors. In a nutshell, etiology of the common autoimmune disorders is unknown in spite of progress elucidating certain effector cells and molecules responsible for pathologies associated with inflammatory and tissue damage. In recent years, population genetics approaches have greatly enriched our knowledge regarding genetic susceptibility of autoimmunity, providing us with a window of opportunities to comprehensively re-examine autoimmunity-associated genes and possible pathways. In this review, we aim to discuss etiology and pathogenesis of common autoimmune disorders from the perspective of human genetics. An overview of the genetic basis of autoimmunity is followed by 3 chapters detailing susceptibility genes involved in innate immunity, adaptive immunity and inflammatory cell death processes respectively. With such attempts, we hope to expand the scope of thinking and bring attention to lesser appreciated molecules and pathways as important contributors of autoimmunity beyond the 'usual suspects' of a limited subset of validated therapeutic targets.
Collapse
|
41
|
Snelgrove SL, Susanto O, Yeung L, Hall P, Norman MU, Corbett AJ, Kitching AR, Hickey MJ. T-cell receptor αβ + double-negative T cells in the kidney are predominantly extravascular and increase in abundance in response to ischemia-reperfusion injury. Immunol Cell Biol 2023; 101:49-64. [PMID: 36222375 PMCID: PMC10953373 DOI: 10.1111/imcb.12595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 01/03/2023]
Abstract
T-cell receptor+ CD4- CD8- double-negative (DN) T cells are a population of T cells present in low abundance in blood and lymphoid organs, but enriched in various organs including the kidney. Despite burgeoning interest in these cells, studies examining their abundance in the kidney have reported conflicting results. Here we developed a flow cytometry strategy to clearly segregate DN T cells from other immune cells in the mouse kidney and used it to characterize their phenotype and response in renal ischemia-reperfusion injury (IRI). These experiments revealed that in the healthy kidney, most DN T cells are located within the renal parenchyma and exhibit an effector memory phenotype. In response to IRI, the number of renal DN T cells is unaltered after 24 h, but significantly increased by 72 h. This increase is not related to alterations in proliferation or apoptosis. By contrast, adoptive transfer studies indicate that circulating DN T cells undergo preferential recruitment to the postischemic kidney. Furthermore, DN T cells show the capacity to upregulate CD8, both in vivo following adoptive transfer and in response to ex vivo activation. Together, these findings provide novel insights regarding the phenotype of DN T cells in the kidney, including their predominant extravascular location, and show that increases in their abundance in the kidney following IRI occur in part as a result of increased recruitment from the circulation. Furthermore, the observation that DN T cells can upregulate CD8 in vivo has important implications for detection and characterization of DN T cells in future studies.
Collapse
Affiliation(s)
- Sarah L Snelgrove
- Centre for Inflammatory Diseases, Monash University Department of MedicineMonash Medical CentreClaytonVICAustralia
| | - Olivia Susanto
- Centre for Inflammatory Diseases, Monash University Department of MedicineMonash Medical CentreClaytonVICAustralia
| | - Louisa Yeung
- Centre for Inflammatory Diseases, Monash University Department of MedicineMonash Medical CentreClaytonVICAustralia
| | - Pamela Hall
- Centre for Inflammatory Diseases, Monash University Department of MedicineMonash Medical CentreClaytonVICAustralia
| | - M Ursula Norman
- Centre for Inflammatory Diseases, Monash University Department of MedicineMonash Medical CentreClaytonVICAustralia
| | - Alexandra J Corbett
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and ImmunityThe University of MelbourneMelbourneVICAustralia
| | - A Richard Kitching
- Centre for Inflammatory Diseases, Monash University Department of MedicineMonash Medical CentreClaytonVICAustralia
- Departments of Nephrology and Paediatric NephrologyMonash Medical CentreClaytonVICAustralia
| | - Michael J Hickey
- Centre for Inflammatory Diseases, Monash University Department of MedicineMonash Medical CentreClaytonVICAustralia
| |
Collapse
|
42
|
Frequency and functional profile of circulating TCRαβ + double negative T cells in HIV/TB co-infection. BMC Infect Dis 2022; 22:890. [PMID: 36443691 PMCID: PMC9703676 DOI: 10.1186/s12879-022-07807-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/26/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Increased frequency of circulating double negative T (DNT, CD4-CD8-CD3+) cells with protective immune function has been observed in human immunodeficiency virus (HIV) infection and tuberculosis (TB). Here the role of circulating TCRαβ+ DNT cells was further investigated in HIV/TB co-infection. METHODS A cross-sectional study was conducted to investigate the frequency and functional profiles of peripheral TCRαβ+ DNT cells including apoptosis, chemokine and cytokine expression among healthy individuals and patients with TB, HIV infection and HIV/TB co-infection by cell surface staining and intracellular cytokine staining combined with flow cytometry. RESULTS Significantly increased frequency of TCRαβ+ DNT cells was observed in HIV/TB co-infection than that in TB (p < 0.001), HIV infection (p = 0.039) and healthy controls (p < 0.001). Compared with TB, HIV/TB co-infection had higher frequency of Fas expression (p = 0.007) and lower frequency of Annexin V expression on TCRαβ+ DNT cells (p = 0.049), and the frequency of Annexin V expression on Fas+TCRαβ+ DNT cells had no significant difference. TCRαβ+ DNT cells expressed less CCR5 in HIV/TB co-infection than that in TB (p = 0.014), and more CXCR4 in HIV/TB co-infection than that in HIV infection (p = 0.043). Compared with healthy controls, TB and HIV/TB co-infection had higher frequency of TCRαβ+ DNT cells secreting Granzyme A (p = 0.046; p = 0.005). In TB and HIV/TB co-infection, TCRαβ+ DNT cells secreted more granzyme A (p = 0.002; p = 0.002) and perforin (p < 0.001; p = 0.017) than CD4+ T cells but similar to CD8+ T cells. CONCLUSIONS Reduced apoptosis may take part in the mechanism of increased frequency of peripheral TCRαβ+ DNT cells in HIV/TB co-infection. TCRαβ+ DNT cells may play a cytotoxic T cells-like function in HIV/TB co-infection.
Collapse
|
43
|
Ruder J, Docampo MJ, Rex J, Obahor S, Naghavian R, Müller AM, Schanz U, Jelcic I, Martin R. Dynamics of T cell repertoire renewal following autologous hematopoietic stem cell transplantation in multiple sclerosis. Sci Transl Med 2022; 14:eabq1693. [DOI: 10.1126/scitranslmed.abq1693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Autologous hematopoietic stem cell transplantation (aHSCT) is a highly effective treatment of multiple sclerosis (MS). It depletes autoreactive cells and subsequently renews adaptive immune cells. The possible proinflammatory potential of surviving T cells early after aHSCT has not been studied. Here, we examined the dynamics of new and surviving T cells in 27 patients after aHSCT by multidimensional flow cytometry, T cell receptor (TCR) sequencing, specificity testing, telomere length profiling, and HLA genotyping. Early after aHSCT, naïve T cells are barely detectable, whereas effector memory (EM) T cells quickly reconstitute to pre-aHSCT values. EM CD4+T cells early after aHSCT have shorter telomeres, have higher expression of senescence and exhaustion markers, and proliferate less than those before aHSCT. We find a median TCR repertoire overlap of 26% between the early post-aHSCT EM CD4+T cells and pre-aHSCT, indicating persistence of EM CD4+T cells early after transplantation. The EM CD4+TCR repertoire overlap declines to 15% at 12 months after aHSCT, whereas the naïve TCR repertoire entirely renews. HLA-DR–associated EM CD4+T cell reactivity toward MS-related antigens decreased after aHSCT, whereas reactivity toward EBV increased. Our data show substantial survival of pre-aHSCT EM CD4+T cells early after transplantation but complete renewal of the T cell repertoire by nascent T cells later.
Collapse
Affiliation(s)
- Josefine Ruder
- Neuroimmunology and Multiple Sclerosis Research Section (NIMS), Department of Neurology, University and University Hospital Zurich, 8091 Zurich, Switzerland
| | - María José Docampo
- Neuroimmunology and Multiple Sclerosis Research Section (NIMS), Department of Neurology, University and University Hospital Zurich, 8091 Zurich, Switzerland
| | - Jordan Rex
- Neuroimmunology and Multiple Sclerosis Research Section (NIMS), Department of Neurology, University and University Hospital Zurich, 8091 Zurich, Switzerland
| | - Simon Obahor
- Neuroimmunology and Multiple Sclerosis Research Section (NIMS), Department of Neurology, University and University Hospital Zurich, 8091 Zurich, Switzerland
| | - Reza Naghavian
- Neuroimmunology and Multiple Sclerosis Research Section (NIMS), Department of Neurology, University and University Hospital Zurich, 8091 Zurich, Switzerland
| | - Antonia M.S. Müller
- Department of Medical Oncology and Hematology, University and University Hospital Zurich, 8091 Zurich, Switzerland
| | - Urs Schanz
- Department of Medical Oncology and Hematology, University and University Hospital Zurich, 8091 Zurich, Switzerland
| | - Ilijas Jelcic
- Neuroimmunology and Multiple Sclerosis Research Section (NIMS), Department of Neurology, University and University Hospital Zurich, 8091 Zurich, Switzerland
| | - Roland Martin
- Neuroimmunology and Multiple Sclerosis Research Section (NIMS), Department of Neurology, University and University Hospital Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
44
|
Korbi F, Zamali I, Rekik R, Ben Hmid A, Hidri M, Kammoun Rebai W, Jelili Z, Masmoudi S, Rahal SK, Ben Ayed A, Ben Ahmed M. Double-negative T cells are increased in HIV-infected patients under antiretroviral therapy. Medicine (Baltimore) 2022; 101:e30182. [PMID: 36086717 PMCID: PMC10980362 DOI: 10.1097/md.0000000000030182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/07/2022] [Indexed: 11/27/2022] Open
Abstract
Double-negative T (DNT) cells are a T-cell subset with a CD4-CD8- phenotype. They represent 1% to 5% of circulating lymphocytes, but an increase in this proportion can be found during lymphoproliferative and autoimmune diseases. This increase has also been reported in persons with HIV (PWH). The aim of this work was to better describe the proportion of DNT cell subset in PWH. We retrospectively collected 984 samples from PWH referred for lymphocyte immunophenotyping over a 7.5-year period. Quantification of DNT cells was performed by flow cytometry. DNT cell proportion was calculated by subtracting the CD4+ and CD8+ subsets proportions from the total of T cells. A total of 984 blood samples from PWH were collected. Mean CD4 T-cell count was decreased in such patients while DNT cell frequency was increased with a mean of 6.7%. More than half of the patients had a DNT cell proportion >5%. Patients with DNT cell proportion over 5% exhibited significantly reduced CD3+ and CD4+ T-cell counts, while CD8+ T-cell count was unchanged compared to patients with normal DNT cell rates. Interestingly, DNT cell percentage was negatively correlated with CD4 and CD3 T-cell counts in all included patients. Moreover, the DNT cell proportion was significantly increased in subjects with CD4+ T cells <200/mm3 compared to those with CD4+ T cells >200/mm3. Interestingly, DNT cell proportions were significantly higher in patients with high viral load compared with those presenting undetectable viral load. HIV infection is associated with an increase in DNT cell proportion. This increase is more frequent as the CD4 count is decreased and the viral load is increased. DNT cell subset should not be omitted when interpreting immunophenotyping in PWH as it appears to be associated with disease progression in patients under antiretroviral therapy.
Collapse
Affiliation(s)
- Fatma Korbi
- Department of Clinical Immunology, Pasteur Institute of Tunis, Tunis, Tunisia
| | - Imen Zamali
- Department of Clinical Immunology, Pasteur Institute of Tunis, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, 1068, Tunis, Tunisia
| | - Raja Rekik
- Department of Clinical Immunology, Pasteur Institute of Tunis, Tunis, Tunisia
| | - Ahlem Ben Hmid
- Department of Clinical Immunology, Pasteur Institute of Tunis, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, 1068, Tunis, Tunisia
| | - Mouldi Hidri
- Department of Clinical Immunology, Pasteur Institute of Tunis, Tunis, Tunisia
| | - Wafa Kammoun Rebai
- Laboratory of Biomedical Genomics and Oncogenetics, Pasteur Institute of Tunis, Tunis, Tunisia
| | | | | | | | | | - Mélika Ben Ahmed
- Department of Clinical Immunology, Pasteur Institute of Tunis, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, 1068, Tunis, Tunisia
| |
Collapse
|
45
|
Duan W, Zhang B, Li X, Chen W, Jia S, Xin Z, Jian Q, Jian F, Chou D, Chen Z. Single-cell transcriptome profiling reveals intra-tumoral heterogeneity in human chordomas. Cancer Immunol Immunother 2022; 71:2185-2195. [DOI: 10.1007/s00262-022-03152-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/04/2022] [Indexed: 10/19/2022]
|
46
|
Establishing Reference Values for Peripheral Blood Lymphocyte Subsets of Healthy Children in China Using a Single Platform. J Immunol Res 2022; 2022:5603566. [PMID: 36033395 PMCID: PMC9402384 DOI: 10.1155/2022/5603566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/21/2022] [Accepted: 07/19/2022] [Indexed: 11/26/2022] Open
Abstract
Lymphocyte subsets significantly change during childhood; thus, age-matched reference values derived from healthy children are crucial. We established reference values for lymphocyte subsets, including T cells (CD3+), CD4 T cells (CD3 + CD4+), CD8 T cells (CD3 + CD8+), double negative T (DNT) cells (CD3 + CD4-CD8-), B cells (CD3-CD19+), NK cells (CD3-CD56+), and NKT-like cells (CD3 + CD56+) in the peripheral blood of 813 healthy children. We used the method of the international standard document (Clinical Laboratory Standard Institute C28-A3) to establish reference intervals with a single platform. First, we used the Skewness and Kurtosis test to analyze the normality of the data. The nonnormally distributed data was transformed into approximately normal distribution by the Box-Cox transformation. Second, we used the Tukey's method to eliminate outliers. Further, all the subjects were grouped into subgroups according to sex (male and female) and age (0–1 month, 2–12 months, 1–3 years, 4–6 years, and 7–18 years). We used the standard normal deviation test (Z-test) to evaluate whether age and sex were possible grouping factors. The analyses indicated age to be an important factor associated with changes in lymphocyte subsets. The absolute number of lymphocyte subsets and total number of lymphocytes, T cells, CD4 T cells, CD8 T cells, and B cells gradually increase from birth to 12 months and then gradually decrease with age. Furthermore, CD4 T cells and the ratio of CD4+/CD8+ gradually decrease with age. In contrast, CD8 T and DNT cells gradually increase with age. The percentage and number of NK and NKT-like cells gradually increase with age and remain stable between 1 and 18 years of age. In conclusion, the age-related reference intervals established in healthy children in this study can aid in monitoring and assessing the changes in immune levels in diseased conditions.
Collapse
|
47
|
Liu Y, Chen XQ, Wang F, Cheng B, Zhou G. Melatonin relieves Th17/CD4−CD8− T cells inflammatory responses via nuclear-receptor dependent manner in peripheral blood of primary Sjögren’s syndrome. Int Immunopharmacol 2022; 109:108778. [DOI: 10.1016/j.intimp.2022.108778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 11/26/2022]
|
48
|
Zhang L, Wei Y, Wang D, Du J, Wang X, Li B, Jiang M, Zhang M, Chen N, Deng M, Song C, Chen D, Wu L, Xiao J, Liang H, Zhao H, Kong Y. Elevated Foxp3+ double-negative T cells are associated with disease progression during HIV infection. Front Immunol 2022; 13:947647. [PMID: 35967422 PMCID: PMC9365964 DOI: 10.3389/fimmu.2022.947647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/29/2022] [Indexed: 11/14/2022] Open
Abstract
Persistent immune activation, which occurs during the whole course of HIV infection, plays a pivotal role in CD4+ T cells depletion and AIDS progression. Furthermore, immune activation is a key factor that leads to impaired immune reconstitution after long-term effective antiretroviral therapy (ART), and is even responsible for the increased risk of developing non-AIDS co-morbidities. Therefore, it’s imperative to identify an effective intervention targeting HIV-associated immune activation to improve disease management. Double negative T cells (DNT) were reported to provide immunosuppression during HIV infection, but the related mechanisms remained puzzled. Foxp3 endows Tregs with potent suppressive function to maintain immune homeostasis. However, whether DNT cells expressed Foxp3 and the accurate function of these cells urgently needed to be investigated. Here, we found that Foxp3+ DNT cells accumulated in untreated people living with HIV (PLWH) with CD4+ T cell count less than 200 cells/µl. Moreover, the frequency of Foxp3+ DNT cells was negatively correlated with CD4+ T cell count and CD4/CD8 ratio, and positively correlated with immune activation and systemic inflammation in PLWH. Of note, Foxp3+ DNT cells might exert suppressive regulation by increased expression of CD39, CD25, or vigorous proliferation (high levels of GITR and ki67) in ART-naive PLWH. Our study underlined the importance of Foxp3+ DNT cells in the HIV disease progression, and suggest that Foxp3+ DNT may be a potential target for clinical intervention for the control of immune activation during HIV infection.
Collapse
Affiliation(s)
- Leidan Zhang
- Peking University Ditan Teaching Hospital, Beijing, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yuqing Wei
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Di Wang
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Juan Du
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xinyue Wang
- Peking University Ditan Teaching Hospital, Beijing, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Bei Li
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Meiqing Jiang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Mengyuan Zhang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Na Chen
- Peking University Ditan Teaching Hospital, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Meiju Deng
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Chuan Song
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Danying Chen
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Liang Wu
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Jiang Xiao
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Hongyuan Liang
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Hongxin Zhao
- Peking University Ditan Teaching Hospital, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yaxian Kong, ; Hongxin Zhao,
| | - Yaxian Kong
- Peking University Ditan Teaching Hospital, Beijing, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yaxian Kong, ; Hongxin Zhao,
| |
Collapse
|
49
|
Qin H, Wang T, Zhang H. Identification of Immune-Related Subtypes and Characterization of Tumor Microenvironment Infiltration in Kidney Renal Clear Cell Carcinoma. Front Genet 2022; 13:906113. [PMID: 35846133 PMCID: PMC9277187 DOI: 10.3389/fgene.2022.906113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/09/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Tumor microenvironment (TME) plays indisputable role in the progression of cancers. Immune cell infiltration (ICI) in TME was related to the prognosis of tumor patients. In this paper, we identified the pattern of immune-related ICI subtypes based on the TME immune infiltration pattern. Methods: The data from kidney renal clear cell carcinoma data (KIRC) was downloaded from the TCGA database. The distinct ICI subtypes were identified using CIBERSORT and ESTIMATE algorithms. The gene subgroups were identified based on DEGs in ICI subtypes. The single sample gene set enrichment analysis (ssGSEA) was used to ascertain the ICI score. Kaplan-Meier curve with log-rank test was conducted to analyze the survival probability of patients with KIRC in different subtypes. Results: The patients with high ICI scores exhibited a longer survival time and lower expression of checkpoint-related and immune activity-related genes. The high ICI score clusters were positively related to TMB. The patients in the low TMB subgroups have a favorable prognosis. The prediction ICI score did not affect the TMB status, and the low TMB subgroups + low/high ICI score subgroups exhibited better survival. Conclusion: In all, the tumor immune microenvironment, ICI score, and TMB were important determinants of KIRC patients’ survival outcomes. The TMB + ICI score may be a potential biomarker for predicting the prognosis of patients and for targeted immunotherapies to treating KIRC.
Collapse
Affiliation(s)
- Huisheng Qin
- Department of Urology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Tiancheng Wang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Hui Zhang
- Department of Oncology, Affiliated Hospital of Jining Medical University, Jining, China
| |
Collapse
|
50
|
Newman-Rivera AM, Kurzhagen JT, Rabb H. TCRαβ+ CD4-/CD8- "double negative" T cells in health and disease-implications for the kidney. Kidney Int 2022; 102:25-37. [PMID: 35413379 PMCID: PMC9233047 DOI: 10.1016/j.kint.2022.02.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/10/2022] [Accepted: 02/28/2022] [Indexed: 12/22/2022]
Abstract
Double negative (DN) T cells, one of the least studied T lymphocyte subgroups, express T cell receptor αβ but lack CD4 and CD8 coreceptors. DN T cells are found in multiple organs including kidney, lung, heart, gastrointestinal tract, liver, genital tract, and central nervous system. DN T cells suppress inflammatory responses in different disease models including experimental acute kidney injury, and significant evidence supports an important role in the pathogenesis of systemic lupus erythematosus. However, little is known about these cells in other kidney diseases. Therefore, it is important to better understand different functions of DN T cells and their signaling pathways as promising therapeutic targets, particularly with the increasing application of T cell-directed therapy in humans. In this review, we aim to summarize studies performed on DN T cells in normal and diseased organs in the setting of different disease models with a focus on kidney.
Collapse
Affiliation(s)
| | | | - Hamid Rabb
- Nephrology Division, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|