1
|
Van Dender C, Vandewalle J, Libert C. Balancing metabolism and regeneration in liver diseases through HNF4α targeting. Trends Endocrinol Metab 2025:S1043-2760(25)00078-5. [PMID: 40328612 DOI: 10.1016/j.tem.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/31/2025] [Accepted: 04/08/2025] [Indexed: 05/08/2025]
Abstract
Transcription factor hepatocyte nuclear factor 4 alpha (HNF4α) is considered the master regulator of hepatocyte differentiation. During homeostasis, HNF4α maintains liver identity by supporting metabolism while inhibiting proliferation. It is downregulated in response to both acute and chronic insults; however, although this supports hepatic regeneration in mild acute settings, severe or chronic downregulation may further compromise liver function and lead to a lethal outcome. Here, we provide an overview of liver diseases associated with downregulation, altered expression, or dysfunction of HNF4α and suggest the potential underlying mechanisms. We further propose that therapy with Hnf4a mRNA or HNF4α agonists to reactivate HNF4α may be beneficial in pathophysiological contexts characterized by loss of liver function.
Collapse
Affiliation(s)
- Céline Van Dender
- Center for Inflammation Research, Vlaams Instituut voor Biotechnologie (VIB), Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jolien Vandewalle
- Center for Inflammation Research, Vlaams Instituut voor Biotechnologie (VIB), Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Claude Libert
- Center for Inflammation Research, Vlaams Instituut voor Biotechnologie (VIB), Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
2
|
McGill MR. The Role of Mechanistic Biomarkers in Understanding Acetaminophen Hepatotoxicity in Humans. Drug Metab Dispos 2024; 52:729-739. [PMID: 37918967 PMCID: PMC11257692 DOI: 10.1124/dmd.123.001281] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/18/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023] Open
Abstract
Our understanding of the fundamental molecular mechanisms of acetaminophen (APAP) hepatotoxicity began in 1973 to 1974, when investigators at the US National Institutes of Health published seminal studies demonstrating conversion of APAP to a reactive metabolite that depletes glutathione and binds to proteins in the liver in mice after overdose. Since then, additional groundbreaking experiments have demonstrated critical roles for mitochondrial damage, oxidative stress, nuclear DNA fragmentation, and necrotic cell death as well. Over the years, some investigators have also attempted to translate these mechanisms to humans using human specimens from APAP overdose patients. This review presents those studies and summarizes what we have learned about APAP hepatotoxicity in humans so far. Overall, the mechanisms of APAP hepatotoxicity in humans strongly resemble those discovered in experimental mouse and cultured hepatocyte models, and emerging biomarkers also suggest similarities in liver repair. The data not only validate the first mechanistic studies of APAP-induced liver injury performed 50 years ago but also demonstrate the human relevance of numerous studies conducted since then. SIGNIFICANCE STATEMENT: Human studies using novel translational, mechanistic biomarkers have confirmed that the fundamental mechanisms of acetaminophen (APAP) hepatotoxicity discovered in rodent models since 1973 are the same in humans. Importantly, these findings have guided the development and understanding of treatments such as N-acetyl-l-cysteine and 4-methylpyrazole over the years. Additional research may improve not only our understanding of APAP overdose pathophysiology in humans but also our ability to predict and treat serious liver injury in patients.
Collapse
Affiliation(s)
- Mitchell R McGill
- Department of Environmental Health Sciences, Fay W. Boozman College of Public Health; Department of Pharmacology and Toxicology, College of Medicine; and Department of Pathology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
3
|
Xu CY, Jiang J, An Y, Ye PF, Zhang CC, Sun NN, Miao SN, Chai MQ, Liu WM, Yang M, Zhu WH, Yu JJ, Yu MM, Sun WY, Qiu H, Zhang SH, Wei W. Angiotensin II type-2 receptor signaling facilitates liver injury repair and regeneration via inactivation of Hippo pathway. Acta Pharmacol Sin 2024; 45:1201-1213. [PMID: 38491160 PMCID: PMC11130245 DOI: 10.1038/s41401-024-01249-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 02/21/2024] [Indexed: 03/18/2024]
Abstract
The angiotensin II type 2 receptor (AT2R) is a well-established component of the renin-angiotensin system and is known to counteract classical activation of this system and protect against organ damage. Pharmacological activation of the AT2R has significant therapeutic benefits, including vasodilation, natriuresis, anti-inflammatory activity, and improved insulin sensitivity. However, the precise biological functions of the AT2R in maintaining homeostasis in liver tissue remain largely unexplored. In this study, we found that the AT2R facilitates liver repair and regeneration following acute injury by deactivating Hippo signaling and that interleukin-6 transcriptionally upregulates expression of the AT2R in hepatocytes through STAT3 acting as a transcription activator binding to promoter regions of the AT2R. Subsequently, elevated AT2R levels activate downstream signaling via heterotrimeric G protein Gα12/13-coupled signals to induce Yap activity, thereby contributing to repair and regeneration processes in the liver. Conversely, a deficiency in the AT2R attenuates regeneration of the liver while increasing susceptibility to acetaminophen-induced liver injury. Administration of an AT2R agonist significantly enhances the repair and regeneration capacity of injured liver tissue. Our findings suggest that the AT2R acts as an upstream regulator in the Hippo pathway and is a potential target in the treatment of liver damage.
Collapse
Affiliation(s)
- Chang-Yong Xu
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Ji Jiang
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Yue An
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Peng-Fei Ye
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Cun-Cun Zhang
- School of Nursing, Anhui Medical University, Hefei, 230032, China
| | - Ning-Ning Sun
- School of Nursing, Anhui Medical University, Hefei, 230032, China
| | - Sai-Nan Miao
- School of Nursing, Anhui Medical University, Hefei, 230032, China
| | - Meng-Qi Chai
- School of Nursing, Anhui Medical University, Hefei, 230032, China
| | - Wen-Min Liu
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Mei Yang
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Wei-Hua Zhu
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Jing-Jing Yu
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Man-Man Yu
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Wu-Yi Sun
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Huan Qiu
- School of Nursing, Anhui Medical University, Hefei, 230032, China.
| | - Shi-Hao Zhang
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China.
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China.
| |
Collapse
|
4
|
Kotulkar M, Paine-Cabrera D, Abernathy S, Robarts DR, Parkes WS, Lin-Rahardja K, Numata S, Lebofsky M, Jaeschke H, Apte U. Role of HNF4alpha-cMyc interaction in liver regeneration and recovery after acetaminophen-induced acute liver injury. Hepatology 2023; 78:1106-1117. [PMID: 37021787 PMCID: PMC10523339 DOI: 10.1097/hep.0000000000000367] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 03/01/2023] [Indexed: 04/07/2023]
Abstract
BACKGROUND AND AIMS Overdose of acetaminophen (APAP) is the major cause of acute liver failure in the western world. We report a novel signaling interaction between hepatocyte nuclear factor 4 alpha (HNF4α) cMyc and nuclear factor erythroid 2-related factor 2 (Nrf2) during liver injury and regeneration after APAP overdose. APPROACH AND RESULTS APAP-induced liver injury and regeneration were studied in male C57BL/6J (WT) mice, hepatocyte-specific HNF4α knockout mice (HNF4α-KO), and HNF4α-cMyc double knockout mice (DKO). C57BL/6J mice treated with 300 mg/kg maintained nuclear HNF4α expression and exhibited liver regeneration, resulting in recovery. However, treatment with 600-mg/kg APAP, where liver regeneration was inhibited and recovery was delayed, showed a rapid decline in HNF4α expression. HNF4α-KO mice developed significantly higher liver injury due to delayed glutathione recovery after APAP overdose. HNF4α-KO mice also exhibited significant induction of cMyc, and the deletion of cMyc in HNF4α-KO mice (DKO mice) reduced the APAP-induced liver injury. The DKO mice had significantly faster glutathione replenishment due to rapid induction in Gclc and Gclm genes. Coimmunoprecipitation and ChIP analyses revealed that HNF4α interacts with Nrf2 and affects its DNA binding. Furthermore, DKO mice showed significantly faster initiation of cell proliferation resulting in rapid liver regeneration and recovery. CONCLUSIONS These data show that HNF4α interacts with Nrf2 and promotes glutathione replenishment aiding in recovery from APAP-induced liver injury, a process inhibited by cMyc. These studies indicate that maintaining the HNF4α function is critical for regeneration and recovery after APAP overdose.
Collapse
Affiliation(s)
- Manasi Kotulkar
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Huffman AM, Syed M, Rezq S, Anderson CD, Yanes Cardozo LL, Romero DG. Loss of microRNA-21 protects against acetaminophen-induced hepatotoxicity in mice. Arch Toxicol 2023; 97:1907-1925. [PMID: 37179516 PMCID: PMC10919897 DOI: 10.1007/s00204-023-03499-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 04/17/2023] [Indexed: 05/15/2023]
Abstract
Acetaminophen (APAP)-induced Acute Liver Failure (ALF) is recognized as the most common cause of ALF in Western societies. APAP-induced ALF is characterized by coagulopathy, hepatic encephalopathy, multi-organ failure, and death. MicroRNAs are small, non-coding RNAs that regulate gene expression at the post-transcriptional level. MicroRNA-21 (miR-21) is dynamically expressed in the liver and is involved in the pathophysiology of both acute and chronic liver injury models. We hypothesize that miR-21genetic ablation attenuates hepatotoxicity following acetaminophen intoxication. Eight-week old miR-21knockout (miR21KO) or wild-type (WT) C57BL/6N male mice were injected with acetaminophen (APAP, 300 mg/kg BW) or saline. Mice were sacrificed 6 or 24 h post-injection. MiR21KO mice presented attenuation of liver enzymes ALT, AST, LDH compared with WT mice 24 h post-APAP treatment. Moreover, miR21KO mice had decreased hepatic DNA fragmentation and necrosis than WT mice after 24 h of APAP treatment. APAP-treated miR21KO mice showed increased levels of cell cycle regulators CYCLIN D1 and PCNA, increased autophagy markers expression (Map1LC3a, Sqstm1) and protein (LC3AB II/I, p62), and an attenuation of the APAP-induced hypofibrinolytic state via (PAI-1) compared with WT mice 24 post-APAP treatment. MiR-21 inhibition could be a novel therapeutic approach to mitigate APAP-induced hepatotoxicity and enhance survival during the regenerative phase, particularly to alter regeneration, autophagy, and fibrinolysis. Specifically, miR-21 inhibition could be particularly useful when APAP intoxication is detected at its late stages and the only available therapy is minimally effective.
Collapse
Affiliation(s)
- Alexandra M Huffman
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS, 39216, USA.
- Women's Health Research Center, University of Mississippi Medical Center, Jackson, MS, 39216, USA.
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, MS, 39216, USA.
| | - Maryam Syed
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS, 39216, USA
- Women's Health Research Center, University of Mississippi Medical Center, Jackson, MS, 39216, USA
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Samar Rezq
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS, 39216, USA
- Women's Health Research Center, University of Mississippi Medical Center, Jackson, MS, 39216, USA
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, MS, 39216, USA
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Christopher D Anderson
- Department of Surgery, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Licy L Yanes Cardozo
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, 39216, USA
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS, 39216, USA
- Women's Health Research Center, University of Mississippi Medical Center, Jackson, MS, 39216, USA
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Damian G Romero
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS, 39216, USA.
- Women's Health Research Center, University of Mississippi Medical Center, Jackson, MS, 39216, USA.
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, MS, 39216, USA.
| |
Collapse
|
6
|
Abstract
Liver regeneration is a compensatory response to tissue injury and loss. It is known that liver regeneration plays a crucial role in recovery following acetaminophen (APAP)-induced hepatotoxicity, which is the major cause of acute liver failure (ALF) in the US. Regeneration increases proportional to the extent of liver injury upon APAP overdose, ultimately leading to regression of injury and spontaneous recovery in most cases. However, severe APAP overdose results in impaired liver regeneration and unchecked progression of liver injury, leading to failed recovery and mortality. Inter-communication between various cell types in the liver is important for effective regenerative response following APAP hepatotoxicity. Various non-parenchymal cells such macrophages, stellate cells, and endothelial cells produce mediators crucial for proliferation of hepatocytes. Liver regeneration is orchestrated by synchronized actions of several proliferative signaling pathways involving numerous kinases, nuclear receptors, transcription factors, transcriptional co-activators, which are activated by cytokines, growth factors, and endobiotics. Overt activation of anti-proliferative signaling pathways causes cell-cycle arrest and impaired liver regeneration after severe APAP overdose. Stimulating liver regeneration by activating proliferating signaling and suppressing anti-proliferative signaling in liver can prove to be important in developing novel therapeutics for APAP-induced ALF.
Collapse
Affiliation(s)
- Bharat Bhushan
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Udayan Apte
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
7
|
Cathelicidin promotes liver repair after acetaminophen-induced liver injury in mice. JHEP Rep 2023; 5:100687. [PMID: 36923240 PMCID: PMC10009536 DOI: 10.1016/j.jhepr.2023.100687] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 02/01/2023] Open
Abstract
Background & Aims Acetaminophen (APAP)-induced acute liver injury (AILI) is a leading cause of acute liver failure (ALF). N-acetylcysteine (NAC) is only effective within 24 h after APAP intoxication, raising an urgent need for alternative approaches to treat this disease. This study aimed to test whether cathelicidin (Camp), which is a protective factor in chronic liver diseases, protects mice against APAP-induced liver injury and ALF. Methods A clinically relevant AILI model and an APAP-induced ALF model were generated in mice. Genetic and pharmacological approaches were used to interfere with the levels of cathelicidin in vivo. Results An increase in hepatic pro-CRAMP/CRAMP (the precursor and mature forms of mouse cathelicidin) was observed in APAP-intoxicated mice. Upregulated cathelicidin was derived from liver-infiltrating neutrophils. Compared with wild-type littermates, Camp knockout had no effect on hepatic injury but dampened hepatic repair in AILI and reduced survival in APAP-induced ALF. CRAMP administration reversed impaired liver recovery observed in APAP-challenged Camp knockout mice. Delayed CRAMP, CRAMP(1-39) (the extended form of CRAMP), or LL-37 (the mature form of human cathelicidin) treatment exhibited a therapeutic benefit for AILI. Co-treatment of cathelicidin and NAC in AILI displayed a stronger hepatoprotective effect than NAC alone. A similar additive effect of CRAMP(1-39)/LL-37 and NAC was observed in APAP-induced ALF. The pro-reparative role of cathelicidin in the APAP-damaged liver was attributed to an accelerated resolution of inflammation at the onset of liver repair, possibly through enhanced neutrophil phagocytosis of necrotic cell debris in an autocrine manner. Conclusions Cathelicidin reduces APAP-induced liver injury and ALF in mice by promoting liver recovery via facilitating inflammation resolution, suggesting a therapeutic potential for late-presenting patients with AILI with or without ALF. Impact and implications Acetaminophen-induced acute liver injury is a leading cause of acute liver failure. The efficacy of N-acetylcysteine, the only clinically approved drug against acetaminophen-induced acute liver injury, is significantly reduced for late-presenting patients. We found that cathelicidin exhibits a great therapeutic potential in mice with acetaminophen-induced liver injury or acute liver failure, which makes up for the limitation of N-acetylcysteine therapy by specifically promoting liver repair after acetaminophen intoxication. The pro-reparative role of cathelicidin, as a key effector molecule of neutrophils, in the APAP-injured liver is attributed to an accelerated resolution of inflammation at the onset of liver repair, possibly through enhanced phagocytic function of neutrophils in an autocrine manner.
Collapse
Key Words
- AILI, acetaminophen-induced acute liver injury
- ALF, acute liver failure
- ALT, alanine aminotransferase
- APAP, acetaminophen
- Acetaminophen
- CRAMP, cathelicidin-related antimicrobial peptide
- CYP2E1, cytochrome P450 2E1
- Cathelicidin
- EGF, endothelial growth factor
- FPR2/ALX, formyl peptide receptor type 2/lipoxin A4 receptor
- GSH, glutathione
- Inflammation resolution
- JNK, c-Jun N-terminal kinase
- KO, knockout
- Liver repair
- Mac-1, macrophage-1 antigen
- NAC, N-acetylcysteine
- NAPQI, N-acetyl-p-benzoquinone imine
- NPC, non-parenchymal cell
- Neutrophils
- Phagocytosis
- ROS, reactive oxygen species
- TLR4, Toll-like receptor 4
- WT, wild-type
- hCAP18, human cationic antimicrobial protein
- α-SMA, alpha-smooth muscle actin
Collapse
|
8
|
Liu XL, Tan Y, Yu F, Ji SR, Zhao MH. Combination of anti-C1qA08 and anti-mCRP a.a.35-47 antibodies is associated with renal prognosis of patients with lupus nephritis. Front Immunol 2023; 14:1181561. [PMID: 37138875 PMCID: PMC10150958 DOI: 10.3389/fimmu.2023.1181561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/31/2023] [Indexed: 05/05/2023] Open
Abstract
Objective The aim of this study is to explore the prevalence and clinicopathological associations between anti-C1qA08 antibodies and anti-monomeric CRP (mCRP) a.a.35-47 antibodies and to explore the interaction between C1q and mCRP. Methods Ninety patients with biopsy-proven lupus nephritis were included from a Chinese cohort. Plasma samples collected on the day of renal biopsy were tested for anti-C1qA08 antibodies and anti-mCRP a.a.35-47 antibodies. The associations between these two autoantibodies and clinicopathologic features and long-term prognosis were analyzed. The interaction between C1q and mCRP was further investigated by ELISA, and the key linear epitopes of the combination of cholesterol binding sequence (CBS; a.a.35-47) and C1qA08 were tested by competitive inhibition assays. The surface plasmon resonance (SPR) was used to further verify the results. Results The prevalence of anti-C1qA08 antibodies and anti-mCRP a.a.35-47 antibodies were 50/90 (61.1%) and 45/90 (50.0%), respectively. Levels of anti-C1qA08 antibodies and anti-mCRP a.a.35-47 antibodies were negatively correlated with serum C3 concentrations ((0.5(0.22-1.19) g/L vs. 0.39(0.15-1.38) g/L, P=0.002) and (0.48(0.44-0.88) g/L vs. 0.41(0.15-1.38) g/L, P=0.028), respectively. Levels of anti-C1qA08 antibodies were correlated with the score of fibrous crescents and tubular atrophy (r=-0.256, P=0.014 and r=-0.25, P=0.016, respectively). The patients with double positive antibodies showed worse renal prognosis than that of the double negative group (HR 0.899 (95% CI: 0.739-1.059), P=0.0336). The binding of mCRP to C1q was confirmed by ELISA. The key linear epitopes of the combination were a.a.35-47 and C1qA08, which were confirmed by competitive inhibition experiments and SPR. Conclusion The combination of anti-C1qA08 and anti-mCRP a.a.35-47 autoantibodies could predict a poor renal outcome. The key linear epitopes of the combination of C1q and mCRP were C1qA08 and a.a.35-47. A08 was an important epitope for the classical pathway complement activation and a.a.35-47 could inhibit this process.
Collapse
Affiliation(s)
- Xiao-Ling Liu
- Ministry of Education (MOE) Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease (CKD) Prevention and Treatment, Ministry of Education of China, Beijing, China
- Research Units of Diagnosis and Treatment of lmmune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Ying Tan
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease (CKD) Prevention and Treatment, Ministry of Education of China, Beijing, China
- Research Units of Diagnosis and Treatment of lmmune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Ying Tan,
| | - Feng Yu
- Department of Nephrology, Peking University International Hospital, Beijing, China
| | - Shang-Rong Ji
- Ministry of Education (MOE) Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Ming-Hui Zhao
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease (CKD) Prevention and Treatment, Ministry of Education of China, Beijing, China
- Research Units of Diagnosis and Treatment of lmmune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Angileri KM, Bagia NA, Feschotte C. Transposon control as a checkpoint for tissue regeneration. Development 2022; 149:dev191957. [PMID: 36440631 PMCID: PMC10655923 DOI: 10.1242/dev.191957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 10/03/2022] [Indexed: 11/29/2022]
Abstract
Tissue regeneration requires precise temporal control of cellular processes such as inflammatory signaling, chromatin remodeling and proliferation. The combination of these processes forms a unique microenvironment permissive to the expression, and potential mobilization of, transposable elements (TEs). Here, we develop the hypothesis that TE activation creates a barrier to tissue repair that must be overcome to achieve successful regeneration. We discuss how uncontrolled TE activity may impede tissue restoration and review mechanisms by which TE activity may be controlled during regeneration. We posit that the diversification and co-evolution of TEs and host control mechanisms may contribute to the wide variation in regenerative competency across tissues and species.
Collapse
Affiliation(s)
- Krista M. Angileri
- Department of Molecular Biology and Genetics, Cornell University, 526 Campus Rd, Ithaca, NY 14850, USA
| | - Nornubari A. Bagia
- Department of Molecular Biology and Genetics, Cornell University, 526 Campus Rd, Ithaca, NY 14850, USA
| | - Cedric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, 526 Campus Rd, Ithaca, NY 14850, USA
| |
Collapse
|
10
|
Wang J, Zhang L, Shi Q, Yang B, He Q, Wang J, Weng Q. Targeting innate immune responses to attenuate acetaminophen-induced hepatotoxicity. Biochem Pharmacol 2022; 202:115142. [PMID: 35700755 DOI: 10.1016/j.bcp.2022.115142] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/02/2022]
Abstract
Acetaminophen (APAP) hepatotoxicity is an important cause of acute liver failure, resulting in massive deaths in many developed countries. Currently, the metabolic process of APAP in the body has been well studied. However, the underlying mechanism of APAP-induced liver injury remains elusive. Increasing clinical and experimental evidences indicate that the innate immune responses are involved in the pathogenesis of APAP-induced acute liver injury (AILI), in which immune cells have dual roles of inducing inflammation to exacerbate hepatotoxicity and removing dead cells and debris to help liver regeneration. In this review, we summarize the latest findings of innate immune cells involved in AILI, particularly emphasizing the activation of innate immune cells and their different roles during the injury and repair phases. Moreover, current available treatments are discussed according to the different roles of innate immune cells in the development of AILI. This review aims to update the knowledge about innate immune responses in the pathogenesis of AILI, and provide potential therapeutic interventions for AILI.
Collapse
Affiliation(s)
- Jincheng Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lulu Zhang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qi Shi
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jiajia Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
11
|
Gu R, Liang A, Liao G, To I, Shehu A, Ma X. Roles of Cofactors in Drug-Induced Liver Injury: Drug Metabolism and Beyond. Drug Metab Dispos 2022; 50:646-654. [PMID: 35221288 PMCID: PMC9132098 DOI: 10.1124/dmd.121.000457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 02/22/2022] [Indexed: 11/22/2022] Open
Abstract
Drug-induced liver injury (DILI) remains one of the major concerns for healthcare providers and patients. Unfortunately, it is difficult to predict and prevent DILI in the clinic because detailed mechanisms of DILI are largely unknown. Many risk factors have been identified for both "intrinsic" and "idiosyncratic" DILI, suggesting that cofactors are an important aspect in understanding DILI. This review outlines the cofactors that potentiate DILI and categorizes them into two types: (1) the specific cofactors that target metabolic enzymes, transporters, antioxidation defense, immune response, and liver regeneration; and (2) the general cofactors that include inflammation, age, gender, comorbidity, gut microbiota, and lifestyle. The underlying mechanisms by which cofactors potentiate DILI are also discussed. SIGNIFICANCE STATEMENT: This review summarizes the risk factors for DILI, which can be used to predict and prevent DILI in the clinic. This work also highlights the gaps in the DILI field and provides future perspectives on the roles of cofactors in DILI.
Collapse
Affiliation(s)
- Ruizhi Gu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences (R.G., A.S., X.M.) and School of Pharmacy (A.L., G.L., I.T.), University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alina Liang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences (R.G., A.S., X.M.) and School of Pharmacy (A.L., G.L., I.T.), University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Grace Liao
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences (R.G., A.S., X.M.) and School of Pharmacy (A.L., G.L., I.T.), University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Isabelle To
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences (R.G., A.S., X.M.) and School of Pharmacy (A.L., G.L., I.T.), University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Amina Shehu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences (R.G., A.S., X.M.) and School of Pharmacy (A.L., G.L., I.T.), University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xiaochao Ma
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences (R.G., A.S., X.M.) and School of Pharmacy (A.L., G.L., I.T.), University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
12
|
Cai X, Cai H, Wang J, Yang Q, Guan J, Deng J, Chen Z. Molecular pathogenesis of acetaminophen-induced liver injury and its treatment options. J Zhejiang Univ Sci B 2022; 23:265-285. [PMID: 35403383 DOI: 10.1631/jzus.b2100977] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Acetaminophen, also known as N-acetyl-p-aminophenol (APAP), is commonly used as an antipyretic and analgesic agent. APAP overdose can induce hepatic toxicity, known as acetaminophen-induced liver injury (AILI). However, therapeutic doses of APAP can also induce AILI in patients with excessive alcohol intake or who are fasting. Hence, there is a need to understand the potential pathological mechanisms underlying AILI. In this review, we summarize three main mechanisms involved in the pathogenesis of AILI: hepatocyte necrosis, sterile inflammation, and hepatocyte regeneration. The relevant factors are elucidated and discussed. For instance, N-acetyl-p-benzoquinone imine (NAPQI) protein adducts trigger mitochondrial oxidative/nitrosative stress during hepatocyte necrosis, danger-associated molecular patterns (DAMPs) are released to elicit sterile inflammation, and certain growth factors contribute to liver regeneration. Finally, we describe the current potential treatment options for AILI patients and promising novel strategies available to researchers and pharmacists. This review provides a clearer understanding of AILI-related mechanisms to guide drug screening and selection for the clinical treatment of AILI patients in the future.
Collapse
Affiliation(s)
- Xiaopeng Cai
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Huiqiang Cai
- Department of Clinical Medicine, University of Aarhus, Palle Juul-Jensens Boulevard 82, 8200 Aarhus N, Denmark
| | - Jing Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qin Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jun Guan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jingwen Deng
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China. , .,Department of Pathology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China. ,
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
13
|
3'mRNA sequencing reveals pro-regenerative properties of c5ar1 during resolution of murine acetaminophen-induced liver injury. NPJ Regen Med 2022; 7:10. [PMID: 35087052 PMCID: PMC8795215 DOI: 10.1038/s41536-022-00206-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 12/20/2021] [Indexed: 12/16/2022] Open
Abstract
Murine acetaminophen-induced acute liver injury (ALI) serves as paradigmatic model for drug-induced hepatic injury and regeneration. As major cause of ALI, acetaminophen overdosing is a persistent therapeutic challenge with N-acetylcysteine clinically used to ameliorate parenchymal necrosis. To identify further treatment strategies that serve patients with poor N-acetylcysteine responses, hepatic 3′mRNA sequencing was performed in the initial resolution phase at 24 h/48 h after sublethal overdosing. This approach disclosed 45 genes upregulated (≥5-fold) within this time frame. Focusing on C5aR1, we observed in C5aR1-deficient mice disease aggravation during resolution of intoxication as evidenced by increased liver necrosis and serum alanine aminotransferase. Moreover, decreased hepatocyte compensatory proliferation and increased caspase-3 activation at the surroundings of necrotic cores were detectable in C5aR1-deficient mice. Using a non-hypothesis-driven approach, herein pro-regenerative/-resolving effects of C5aR1 were identified during late acetaminophen-induced ALI. Data concur with protection by the C5a/C5aR1-axis during hepatectomy and emphasize the complex role of inflammation during hepatic regeneration and repair.
Collapse
|
14
|
Clemens MM, Kennon-McGill S, Vazquez JH, Stephens OW, Peterson EA, Johann DJ, Allard FD, Yee EU, McCullough SS, James LP, Finck BN, McGill MR. Exogenous phosphatidic acid reduces acetaminophen-induced liver injury in mice by activating hepatic interleukin-6 signaling through inter-organ crosstalk. Acta Pharm Sin B 2021; 11:3836-3846. [PMID: 35024310 PMCID: PMC8727922 DOI: 10.1016/j.apsb.2021.08.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/26/2021] [Accepted: 08/17/2021] [Indexed: 12/11/2022] Open
Abstract
We previously demonstrated that endogenous phosphatidic acid (PA) promotes liver regeneration after acetaminophen (APAP) hepatotoxicity. Here, we hypothesized that exogenous PA is also beneficial. To test that, we treated mice with a toxic APAP dose at 0 h, followed by PA or vehicle (Veh) post-treatment. We then collected blood and liver at 6, 24, and 52 h. Post-treatment with PA 2 h after APAP protected against liver injury at 6 h, and the combination of PA and N-acetyl-l-cysteine (NAC) reduced injury more than NAC alone. Interestingly, PA did not affect canonical mechanisms of APAP toxicity. Instead, transcriptomics revealed that PA activated interleukin-6 (IL-6) signaling in the liver. Consistent with that, serum IL-6 and hepatic signal transducer and activator of transcription 3 (Stat3) phosphorylation increased in PA-treated mice. Furthermore, PA failed to protect against APAP in IL-6-deficient animals. Interestingly, IL-6 expression increased 18-fold in adipose tissue after PA, indicating that adipose is a source of PA-induced circulating IL-6. Surprisingly, however, exogenous PA did not alter regeneration, despite the importance of endogenous PA in liver repair, possibly due to its short half-life. These data demonstrate that exogenous PA is also beneficial in APAP toxicity and reinforce the protective effects of IL-6 in this model.
Collapse
|
15
|
Sherlock LG, Balasubramaniyan D, Zheng L, Grayck M, McCarthy WC, De Dios RC, Zarate MA, Orlicky DJ, De Dios R, Wright CJ. APAP-induced IκBβ/NFκB signaling drives hepatic IL6 expression and associated sinusoidal dilation. Toxicol Sci 2021; 185:158-169. [PMID: 34726736 DOI: 10.1093/toxsci/kfab131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Acetaminophen (APAP) overdose results in high morbidity and mortality, with limited treatment options. Increased understanding of the cellular signaling pathways activated in response to toxic APAP exposure is needed to provide insight into novel therapeutic strategies. Toxic APAP exposure induces hepatic nuclear factor kappa B (NFκB) activation. NFκB signaling has been identified to mediate the pro-inflammatory response, but also induces a pro-survival and regenerative response. It is currently unknown whether potentiating NFkB activation would be injurious or advantageous after APAP overdose. The NFκB inhibitory protein beta (IκBβ) dictates the duration and degree of the NFκB response following exposure to oxidative injuries. Thus, we sought to determine whether IκBβ/NFκB signaling contributes to APAP-induced hepatic injury. At late time points (24 hours) following toxic APAP exposures, mice expressing only IκBβ (AKBI mice) exhibited increased serologic evidence of hepatic injury. This corresponded with increased histologic injury, specifically related to sinusoidal dilatation. Compared to wild-type (WT) mice, AKBI mice demonstrated sustained hepatic nuclear translocation of the NFκB subunits p65 and p50, and enhanced NFκB target gene expression. This included increased expression of interleukin-6 (Il-6), a known contributor to hepatic sinusoidal dilation. This transcriptional response corresponded with increased plasma protein content of Il-6, as well as increased activation of signal transducer and activator of transcription 3 (STAT3). Impact Statement: IκBβ/NFκB signaling is associated with a pro-inflammatory response, exacerbated Il-6 and STAT3 activation, and this was associated with late development of sinusoidal dilatation. Thus, targeting sustained IκBβ/NFκB signaling may represent a novel therapeutic approach to attenuate late hepatic injury following toxic APAP exposure.
Collapse
Affiliation(s)
- Laura G Sherlock
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | | | - Lijun Zheng
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - Maya Grayck
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - William C McCarthy
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - Robert C De Dios
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - Miguel A Zarate
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - David J Orlicky
- Dept of Pathology, University of Colorado Anschutz School of Medicine, Aurora, CO
| | - Robyn De Dios
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - Clyde J Wright
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| |
Collapse
|
16
|
Gong L, Liao L, Dai X, Xue X, Peng C, Li Y. The dual role of immune response in acetaminophen hepatotoxicity: Implication for immune pharmacological targets. Toxicol Lett 2021; 351:37-52. [PMID: 34454010 DOI: 10.1016/j.toxlet.2021.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 07/16/2021] [Accepted: 08/23/2021] [Indexed: 12/14/2022]
Abstract
Acetaminophen (APAP), one of the most widely used antipyretic and analgesic drugs, principally contributes to drug-induced liver injury when taken at a high dose. APAP-induced liver injury (AILI) results in extensive necrosis of hepatocytes along with the occurrence of multiple intracellular events such as metabolic activation, cell injury, and signaling pathway activation. However, the specific role of the immune response in AILI remains controversial for its complicated regulatory mechanisms. A variety of inflammasomes, immune cells, inflammatory mediators, and signaling transduction pathways are activated in AILI. These immune components play antagonistic roles in aggravating the liver injury or promoting regeneration. Recent experimental studies indicated that natural products showed remarkable therapeutic effects against APAP hepatotoxicity due to their favorable efficacy. Therefore, this study aimed to review the present understanding of the immune response in AILI and attempted to establish ties among a series of inflammatory cascade reactions. Also, the immune molecular mechanisms of natural products in the treatment of AILI were extensively reviewed, thus providing a fundamental basis for exploring the potential pharmacological targets associated with immune interventions.
Collapse
Affiliation(s)
- Lihong Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Li Liao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xuyang Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xinyan Xue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
17
|
Dong J, Viswanathan S, Adami E, Schafer S, Kuthubudeen FF, Widjaja AA, Cook SA. The pro-regenerative effects of hyperIL6 in drug-induced liver injury are unexpectedly due to competitive inhibition of IL11 signaling. eLife 2021; 10:68843. [PMID: 34435951 PMCID: PMC8445623 DOI: 10.7554/elife.68843] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/24/2021] [Indexed: 01/20/2023] Open
Abstract
It is generally accepted that IL6-mediated STAT3 signaling in hepatocytes, mediated via glycoprotein 130 (gp130; IL6ST), is beneficial and that the synthetic IL6:IL6ST fusion protein (HyperIL6) promotes liver regeneration. Recently, autocrine IL11 activity that also acts via IL6ST but uses ERK rather than STAT3 to signal, was found to be hepatotoxic. Here we examined whether the beneficial effects of HyperIL6 could reflect unappreciated competitive inhibition of IL11-dependent IL6ST signaling. In human and mouse hepatocytes, HyperIL6 reduced N-acetyl-p-aminophenol (APAP)-induced cell death independent of STAT3 activation and instead, dose-dependently, inhibited IL11-related signaling and toxicities. In mice, expression of HyperIl6 reduced ERK activation and promoted STAT3-independent hepatic regeneration (PCNA, Cyclin D1, Ki67) following administration of either IL11 or APAP. Inhibition of putative intrinsic IL6 trans-signaling had no effect on liver regeneration in mice. Following APAP, mice deleted for Il11 exhibited spontaneous liver repair but HyperIl6, despite robustly activating STAT3, had no effect on liver regeneration in this strain. These data show that synthetic IL6ST binding proteins such as HyperIL6 can have unexpected, on-target effects and suggest IL11, not IL6, as important for liver regeneration.
Collapse
Affiliation(s)
- Jinrui Dong
- Cardiovascular and Metabolic Disorders Program, Duke-National University ofSingapore Medical School, Singapore, Singapore
| | - Sivakumar Viswanathan
- Cardiovascular and Metabolic Disorders Program, Duke-National University ofSingapore Medical School, Singapore, Singapore
| | - Eleonora Adami
- Cardiovascular and Metabolic Disorders Program, Duke-National University ofSingapore Medical School, Singapore, Singapore
| | - Sebastian Schafer
- Cardiovascular and Metabolic Disorders Program, Duke-National University ofSingapore Medical School, Singapore, Singapore
| | - Fathima F Kuthubudeen
- Cardiovascular and Metabolic Disorders Program, Duke-National University ofSingapore Medical School, Singapore, Singapore
| | - Anissa A Widjaja
- Cardiovascular and Metabolic Disorders Program, Duke-National University ofSingapore Medical School, Singapore, Singapore
| | - Stuart A Cook
- Cardiovascular and Metabolic Disorders Program, Duke-National University ofSingapore Medical School, Singapore, Singapore.,National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore.,MRC-London Institute of Medical Sciences, Hammersmith Hospital Campus, London, United Kingdom
| |
Collapse
|
18
|
Su W, Feng M, Liu Y, Cao R, Liu Y, Tang J, Pan K, Lan R, Mao Z. ZnT8 Deficiency Protects From APAP-Induced Acute Liver Injury by Reducing Oxidative Stress Through Upregulating Hepatic Zinc and Metallothioneins. Front Pharmacol 2021; 12:721471. [PMID: 34413780 PMCID: PMC8369884 DOI: 10.3389/fphar.2021.721471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/19/2021] [Indexed: 11/29/2022] Open
Abstract
Zinc transporter 8 (ZnT8) is an important zinc transporter highly expressed in pancreatic islets. Deficiency of ZnT8 leads to a marked decrease in islet zinc, which is thought to prevent liver diseases associated with oxidative stress. Herein, we aimed to investigate whether loss of islet zinc affects the antioxidant capacity of the liver and acute drug-induced liver injury. To address this question, we treated ZnT8 knockout (KO) or wild-type control mice with 300 mg/ kg acetaminophen (APAP) or phosphate-buffered saline (PBS). Unexpectedly, we found that loss of ZnT8 in mice ameliorated APAP-induced injury and was accompanied by inhibition of c-Jun N-terminal kinase (JNK) activation, reduced hepatocyte death, and decreased serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST). An increase in hepatic glutathione (GSH) was observed, corresponding to a decrease in malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) levels. APAP-induced inflammation and glycogen depletion were alleviated. In contrast, no significant changes were observed in cytochrome P450 family 2 subfamily E member 1 (CYP2E1), the main enzyme responsible for drug metabolism. Elevated levels of hepatic zinc and metallothionein (MT) were also observed, which may contribute to the hepatoprotective effect in ZnT8 KO mice. Taken together, these results suggest that ZnT8 deficiency protects the liver from APAP toxicity by attenuating oxidative stress and promoting hepatocyte proliferation. This study provides new insights into the functions of ZnT8 and zinc as key mediators linking pancreatic and hepatic functions.
Collapse
Affiliation(s)
- Wen Su
- School of Basic Medical Sciences, Shenzhen University Medical Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Mingji Feng
- School of Basic Medical Sciences, Shenzhen University Medical Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Yuan Liu
- School of Basic Medical Sciences, Shenzhen University Medical Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Rong Cao
- Department of Nephrology, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yiao Liu
- School of Basic Medical Sciences, Shenzhen University Medical Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Junyao Tang
- School of Basic Medical Sciences, Shenzhen University Medical Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Ke Pan
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Rongfeng Lan
- Department of Cell Biology and Medical Genetics, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Zhuo Mao
- School of Basic Medical Sciences, Shenzhen University Medical Center, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
19
|
Zhang C, Shi X, Su Z, Hu C, Mu X, Pan J, Li M, Teng F, Ling T, Zhao T, Xu C, Ji G, You Q. CD36 deficiency ameliorates drug-induced acute liver injury in mice. Mol Med 2021; 27:57. [PMID: 34092215 PMCID: PMC8182905 DOI: 10.1186/s10020-021-00325-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/01/2021] [Indexed: 12/27/2022] Open
Abstract
Background Acetaminophen (APAP) overdose causes hepatotoxicity and even acute liver failure. Recent studies indicate that sterile inflammation and innate immune cells may play important roles in damage-induced hepatocytes regeneration and liver repair. The scavenger receptor CD36 has its crucial functions in sterile inflammation. However, the roles of CD36 in APAP induced acute liver injury remain unclear and warrant further investigation. Methods WT C57BL/6 J and CD36−/− mice were intraperitoneally injected with APAP (300 mg/kg) after fasting for 16 h. Liver injury was evaluated by serum alanine aminotransferase (ALT) level and liver tissue hematoxylin and eosin (H&E) staining. Liver inflammatory factor expression was determined by real-time polymerase chain reaction (PCR). The protein adducts forming from the metabolite of APAP and the metabolism enzyme cytochrome P450 2E1 (CYP2E1) levels were measured by Western blot. Liver infiltrating macrophages and neutrophils were characterized by flow cytometry. RNA sequencing and Western blot were used to evaluate the effect of damage-associated molecular patterns (DAMP) molecule high mobility group B1 (HMGB1) on WT and CD36−/− macrophages. Moreover, PP2, a Src kinase inhibitor, blocking CD36 signaling, was applied in APAP model. Results The expression of CD36 was increased in the liver of mice after APAP treatment. Compared with WT mice, APAP treated CD36−/− mice show less liver injury. There was no significant difference in APAP protein adducts and CYP2E1 expression between these two strains. However, reduced pro-inflammatory factor mRNA expression and serum IL-1β level were observed in APAP treated CD36−/− mice as well as infiltrating macrophages and neutrophils. Moreover, CD36 deficiency impaired the activation of c-Jun N-terminal kinase (JNK) caused by APAP. Interestingly, the lack of CD36 reduced the activation of extracellular regulated protein kinases (Erk) and v-akt murine thymoma viral oncogene homolog (Akt) induced by HMGB1. RNA transcription sequencing data indicated that HMGB1 has a different effect on WT and CD36−/− macrophages. Furthermore, treatment with PP2 attenuated APAP induced mouse liver injury. Conclusion Our data demonstrated that CD36 deficiency ameliorated APAP-induced acute liver injury and inflammatory responses by decreasing JNK activation. CD36 might serve as a new target to reduce acute liver injury.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Biotherapy, Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Xiao Shi
- Department of Biotherapy, Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Zhongping Su
- Department of Biotherapy, Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Chao Hu
- Department of Biotherapy, Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Xianmin Mu
- Department of Biotherapy, Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Jinshun Pan
- Department of Biotherapy, Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Mengjing Li
- Department of Biotherapy, Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Fengmeng Teng
- Affilated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Tao Ling
- Department of Biotherapy, Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Ting Zhao
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Che Xu
- Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Guozhong Ji
- Department of Biotherapy, Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China.
| | - Qiang You
- Department of Biotherapy, Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China. .,Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China.
| |
Collapse
|
20
|
Michalopoulos GK, Bhushan B. Liver regeneration: biological and pathological mechanisms and implications. Nat Rev Gastroenterol Hepatol 2021; 18:40-55. [PMID: 32764740 DOI: 10.1038/s41575-020-0342-4] [Citation(s) in RCA: 550] [Impact Index Per Article: 137.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/24/2020] [Indexed: 02/08/2023]
Abstract
The liver is the only solid organ that uses regenerative mechanisms to ensure that the liver-to-bodyweight ratio is always at 100% of what is required for body homeostasis. Other solid organs (such as the lungs, kidneys and pancreas) adjust to tissue loss but do not return to 100% of normal. The current state of knowledge of the regenerative pathways that underlie this 'hepatostat' will be presented in this Review. Liver regeneration from acute injury is always beneficial and has been extensively studied. Experimental models that involve partial hepatectomy or chemical injury have revealed extracellular and intracellular signalling pathways that are used to return the liver to equivalent size and weight to those prior to injury. On the other hand, chronic loss of hepatocytes, which can occur in chronic liver disease of any aetiology, often has adverse consequences, including fibrosis, cirrhosis and liver neoplasia. The regenerative activities of hepatocytes and cholangiocytes are typically characterized by phenotypic fidelity. However, when regeneration of one of the two cell types fails, hepatocytes and cholangiocytes function as facultative stem cells and transdifferentiate into each other to restore normal liver structure. Liver recolonization models have demonstrated that hepatocytes have an unlimited regenerative capacity. However, in normal liver, cell turnover is very slow. All zones of the resting liver lobules have been equally implicated in the maintenance of hepatocyte and cholangiocyte populations in normal liver.
Collapse
Affiliation(s)
- George K Michalopoulos
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Bharat Bhushan
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
21
|
Bhushan B, Apte U. Acetaminophen Test Battery (ATB): A Comprehensive Method to Study Acetaminophen-Induced Acute Liver Injury. Gene Expr 2020; 20:125-138. [PMID: 32443984 PMCID: PMC7650012 DOI: 10.3727/105221620x15901763757677] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Acetaminophen (APAP) overdose is the major cause of acute liver failure (ALF) in the Western world. Extensive research is ongoing to identify the mechanisms of APAP-induced ALF. APAP-induced acute liver injury is also one of the most commonly studied drug-induced liver injury models in the field of hepatotoxicity. APAP toxicity is triphasic and includes three mechanistically interlinked but temporally distinct phases of initiation, progression, and recovery/regeneration. Despite how commonly it is studied, the methods to study APAP toxicity differ significantly, often leading to confusing and contradictory data. There are number of reviews on mechanisms of APAP toxicity, but a detailed mechanism-based comprehensive method and list of assays that covers all phases of APAP hepatotoxicity are missing. The goal of this review is to provide a standard protocol and guidelines to study APAP toxicity in mice including a test battery that can help investigators to comprehensively analyze APAP toxicity in the specific context of their hypothesis. Further, we will identify the major roadblocks and common technical problems that can significantly affect the results. This acetaminophen test battery (ATB) will be an excellent guide for scientists studying this most common and clinically relevant drug-induced liver injury and will also be helpful as a roadmap for hypothesis development to study novel mechanisms.
Collapse
Affiliation(s)
- Bharat Bhushan
- *Department of Pathology and Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Udayan Apte
- †Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
22
|
Current etiological comprehension and therapeutic targets of acetaminophen-induced hepatotoxicity. Pharmacol Res 2020; 161:105102. [DOI: 10.1016/j.phrs.2020.105102] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/03/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023]
|
23
|
McGill MR, Hinson JA. The development and hepatotoxicity of acetaminophen: reviewing over a century of progress. Drug Metab Rev 2020; 52:472-500. [PMID: 33103516 DOI: 10.1080/03602532.2020.1832112] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Acetaminophen (APAP) was first synthesized in the 1800s, and came on the market approximately 65 years ago. Since then, it has become one of the most used drugs in the world. However, it is also a major cause of acute liver failure. Early investigations of the mechanisms of toxicity revealed that cytochrome P450 enzymes catalyze formation of a reactive metabolite in the liver that depletes glutathione and covalently binds to proteins. That work led to the introduction of N-acetylcysteine (NAC) as an antidote for APAP overdose. Subsequent studies identified the reactive metabolite N-acetyl-p-benzoquinone imine, specific P450 enzymes involved, the mechanism of P450-mediated oxidation, and major adducted proteins. Significant gaps remain in our understanding of the mechanisms downstream of metabolism, but several events appear critical. These events include development of an initial oxidative stress, reactive nitrogen formation, altered calcium flux, JNK activation and mitochondrial translocation, inhibition of mitochondrial respiration, the mitochondrial permeability transition, and nuclear DNA fragmentation. Additional research is necessary to complete our knowledge of the toxicity, such as the source of the initial oxidative stress, and to greatly improve our understanding of liver regeneration after APAP overdose. A better understanding of these mechanisms may lead to additional treatment options. Even though NAC is an excellent antidote, its effectiveness is limited to the first 16 hours following overdose.
Collapse
Affiliation(s)
- Mitchell R McGill
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, Little Rock, AR, USA.,Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jack A Hinson
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
24
|
Saad KM, Shaker ME, Shaaban AA, Abdelrahman RS, Said E. The c-Met inhibitor capmatinib alleviates acetaminophen-induced hepatotoxicity. Int Immunopharmacol 2020; 81:106292. [PMID: 32062076 DOI: 10.1016/j.intimp.2020.106292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 02/08/2023]
Abstract
Acetaminophen (APAP)-induced hepatotoxicity comes among the most frequent humans' toxicities caused by drugs. So far, therapeutic interventions for such type of drug-induced toxicity are still limited. In the current study, we examined the influence of capmatinib (Cap), a novel c-Met inhibitor, on APAP-induced hepatotoxicity in mice when administered 2 h prior, 2 h post and 4 h post APAP-challenge. The results revealed that Cap administration significantly attenuated APAP-induced liver injury when administered only 2 h prior and post APAP-administration. Cap hepatoprotective effect was mediated by lowering the excessive formation of lipid peroxidation and nitrosative stress products caused by APAP. Besides, Cap attenuated APAP-induced overproduction and release of proinflammatory mediators like TNF-α, IL-1β, IL-17A, IL-6, and MCP-1. Cap treatment also led to avoidance of APAP-subsequent repair by abating APAP-induced elevation of hepatic IL-22 and PCNA expressions. In conclusion, c-Met receptor inhibition may be a potential strategy for alleviating APAP-hepatotoxicity, especially when administered in the early phase of intoxication.
Collapse
Affiliation(s)
- Kareem M Saad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed E Shaker
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Department of Pharmacology, Faculty of Pharmacy, Jouf University, Sakaka 2014, Saudi Arabia.
| | - Ahmed A Shaaban
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Aqaba University of Technology, Aqaba 77110, Jordan
| | - Rehab S Abdelrahman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Taibah University, Al Madinah Al-Munawwarah 30001, Saudi Arabia
| | - Eman Said
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
25
|
Li F, Cao L, Parikh S, Zuo R. Three-Dimensional Spheroids With Primary Human Liver Cells and Differential Roles of Kupffer Cells in Drug-Induced Liver Injury. J Pharm Sci 2020; 109:1912-1923. [PMID: 32145211 DOI: 10.1016/j.xphs.2020.02.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/19/2020] [Accepted: 02/28/2020] [Indexed: 02/06/2023]
Abstract
Drug-induced liver injury (DILI) remains a challenge and a leading risk for drug discovery. Three-dimensional liver spheroids made from primary human hepatocytes (PHHs) with, or without, other liver cell types can provide more physiological relevance. In comparison to conventional 2-dimensional monolayer culture, our tests with 100 drugs of known DILI status indicate that PHH spheroids are significantly more sensitive in detecting drug-induced hepatotoxicity. To evaluate the role of Kupffer cells (KCs) in drug-induced liver toxicity, we have established conditions for generating co-culture spheroids with PHH and KCs. Inflammatory responses as shown by interleukin 6 secretion can be recapitulated in co-culture spheroids when treated with endotoxin lipopolysaccharides. KCs potentiated the cytotoxicity induced by trovafloxacin in co-culture spheroids at 48 h, but the differences between PHH spheroids and co-culture spheroids became less obvious after a 5-day treatment. Interestingly, a protective role of KCs was shown in co-culture spheroids treated with both acetaminophen and lipopolysaccharides. Additional tests with 14 DILI compounds comparing PHH spheroids and co-culture spheroids showed differential roles of KCs that were compound dependent. In summary, these 3-dimensional liver spheroid models are useful tools to understand the complex mechanisms underlying DILI.
Collapse
Affiliation(s)
- Feng Li
- Corning Life Sciences, Bedford, Massachusetts 01730.
| | - Li Cao
- Corning Life Sciences, Bedford, Massachusetts 01730
| | - Sweta Parikh
- Corning Life Sciences, Bedford, Massachusetts 01730
| | - Rongjun Zuo
- Corning Life Sciences, Bedford, Massachusetts 01730
| |
Collapse
|
26
|
Hu C, Zhao L, Wu Z, Li L. Transplantation of mesenchymal stem cells and their derivatives effectively promotes liver regeneration to attenuate acetaminophen-induced liver injury. Stem Cell Res Ther 2020; 11:88. [PMID: 32106875 PMCID: PMC7047366 DOI: 10.1186/s13287-020-01596-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/29/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023] Open
Abstract
Acetaminophen (APAP)-induced injury is a common clinical phenomenon that not only occurs in a dose-dependent manner but also occurs in some idiosyncratic individuals in a dose-independent manner. APAP overdose generally results in acute liver injury via the initiation of oxidative stress, endoplasmic reticulum (ER) stress, autophagy, liver inflammation, and microcirculatory dysfunction. Liver transplantation is the only effective strategy for treating APAP-induced liver failure, but liver transplantation is inhibited by scarce availability of donor liver grafts, acute graft rejection, lifelong immunosuppression, and unbearable costs. Currently, N-acetylcysteine (NAC) effectively restores liver functions early after APAP intake, but it does not protect against APAP-induced injury at the late stage. An increasing number of animal studies have demonstrated that mesenchymal stem cells (MSCs) significantly attenuate acute liver injury through their migratory capacity, hepatogenic differentiation, immunoregulatory capacity, and paracrine effects in acute liver failure (ALF). In this review, we comprehensively discuss the mechanisms of APAP overdose-induced liver injury and current therapies for treating APAP-induced liver injury. We then comprehensively summarize recent studies about transplantation of MSC and MSC derivatives for treating APAP-induced liver injury. We firmly believe that MSCs and their derivatives will effectively promote liver regeneration and liver injury repair in APAP overdose-treated animals and patients. To this end, MSC-based therapies may serve as an effective strategy for patients who are waiting for liver transplantation during the early and late stages of APAP-induced ALF in the near future.
Collapse
Affiliation(s)
- Chenxia Hu
- Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Lingfei Zhao
- Kidney Disease Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Zhongwen Wu
- Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Lanjuan Li
- Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China. .,National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
27
|
Bhushan B, Gunewardena S, Edwards G, Apte U. Comparison of liver regeneration after partial hepatectomy and acetaminophen-induced acute liver failure: A global picture based on transcriptome analysis. Food Chem Toxicol 2020; 139:111186. [PMID: 32045647 DOI: 10.1016/j.fct.2020.111186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 12/19/2022]
Abstract
Liver regenerates following surgical removal and after drug-induced liver injury (DILI). However, most of the mechanisms of liver regeneration were identified using partial hepatectomy (PHX) model rather than using DILI models. We compared mechanisms of liver regeneration following PHX and after acetaminophen (APAP) overdose, a DILI model, using transcriptomic approach. Kinetics of hepatocyte proliferation and global gene expression profiles were studied in male C57BL/6J mice either subjected to PHX or following APAP overdose. Liver regeneration was much more synchronized after PHX as compared to APAP overdose. Transcriptomics analysis revealed activation of common upstream regulators in both models including growth factors HGF, EGF and VEGF; and cytokines IL6 and TNFα. However, magnitude of activation and temporality was significantly differed between the two models. HGF and VEGF showed similar activation between PHX and APAP but activation of EGF was significantly stronger in the APAP model. Activation of IL6 and TNFα transcriptional programs was delayed but remarkably higher in APAP. These dissimilarities could be attributed to inherent differences in the two models including significant injury and inflammation exclusively in the APAP model. This study highlights need to study mechanisms of liver regeneration after DILI separately from the mechanisms of regeneration PHX.
Collapse
Affiliation(s)
- Bharat Bhushan
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Genea Edwards
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Udayan Apte
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
28
|
Clemens MM, McGill MR, Apte U. Mechanisms and biomarkers of liver regeneration after drug-induced liver injury. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2019; 85:241-262. [PMID: 31307589 DOI: 10.1016/bs.apha.2019.03.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Liver, the major metabolic organ in the body, is known for its remarkable capacity to regenerate. Whereas partial hepatectomy (PHx) is a popular model for the study of liver regeneration, the liver also regenerates after acute injury, but less is known about the mechanisms that drive it. Recent studies have shown that liver regeneration is critical for survival in acute liver failure (ALF), which is usually due to drug-induced liver injury (DILI). It is sometimes assumed that the signaling pathways involved are similar to those that regulate regeneration after PHx, but there are likely to be critical differences. A better understanding of regeneration mechanisms after DILI and hepatotoxicity in general could lead to development of new therapies for ALF patients and new biomarkers to predict patient outcome. Here, we summarize what is known about the mechanisms of liver regeneration and repair after hepatotoxicity. We also review the literature in the emerging field of liver regeneration biomarkers.
Collapse
Affiliation(s)
- Melissa M Clemens
- Interdisciplinary Biomedical Sciences Graduate Program, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Mitchell R McGill
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States.
| | - Udayan Apte
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
29
|
Clemens MM, Kennon-McGill S, Apte U, James LP, Finck BN, McGill MR. The inhibitor of glycerol 3-phosphate acyltransferase FSG67 blunts liver regeneration after acetaminophen overdose by altering GSK3β and Wnt/β-catenin signaling. Food Chem Toxicol 2019; 125:279-288. [PMID: 30654094 PMCID: PMC6443093 DOI: 10.1016/j.fct.2019.01.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/23/2018] [Accepted: 01/13/2019] [Indexed: 12/15/2022]
Abstract
Repair mechanisms after acetaminophen (APAP) hepatotoxicity are poorly understood. We recently discovered that phosphatidic acid (PA) increases in mice and humans after APAP overdose, and is critical for liver regeneration. Here, we hypothesized that PA inhibits glycogen synthase kinase-3β (GSK3β), a component of canonical Wnt/β-catenin signaling, after APAP overdose. To test that, we treated mice with 300 mg/kg APAP at 0 h followed by vehicle or 20 mg/kg of the glycerol 3-phosphate acyltransferase inhibitor FSG67 at 3, 24 and 48 h. Some mice also received the GSK3 inhibitor L803-mts. Blood and liver were collected at multiple time points. Consistent with our earlier results, FSG67 did not affect toxicity (ALT, histology), APAP bioactivation (total glutathione), or oxidative stress (oxidized glutathione), but did reduce expression of proliferating cell nuclear antigen (PCNA) at 52 h. We then measured GSK3β phosphorylation and found it was dramatically decreased by FSG67 at 24 h, before PCNA dropped. Expression of cyclin D1, downstream of Wnt/β-catenin, was also reduced. To determine if the effect of FSG67 on GSK3β is important, we treated mice with FSG67 and L803-mts after APAP. Importantly, L803-mts rescued hepatocyte proliferation and survival. Our data indicate PA and lysoPA may support recovery after APAP overdose by inhibiting GSK3β.
Collapse
Affiliation(s)
- Melissa M Clemens
- Dept. of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Interdisciplinary Biomedical Sciences Graduate Program, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Stefanie Kennon-McGill
- Dept. of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Udayan Apte
- Dept. of Pharmacology, Toxicology, and Therapeutics, School of Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Laura P James
- Dept. of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Brian N Finck
- Div. of Geriatrics and Nutritional Sciences, Dept. of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Mitchell R McGill
- Dept. of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Dept. of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Center for Dietary Supplement Research, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
30
|
Liver Regeneration after Acetaminophen Hepatotoxicity: Mechanisms and Therapeutic Opportunities. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:719-729. [PMID: 30653954 DOI: 10.1016/j.ajpath.2018.12.006] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/11/2018] [Accepted: 12/17/2018] [Indexed: 12/26/2022]
Abstract
Acetaminophen (N-acetyl-para-aminophenol; APAP) overdose is the most common cause of acute liver failure in the Western world, with limited treatment opportunities. For years, research on APAP overdose has been focused on investigating the mechanisms of hepatotoxicity, with limited success in advancing therapeutic strategies. Acute liver injury after any insult, including APAP overdose, is followed by compensatory liver regeneration, which promotes recovery and is a crucial determinant of the final outcome. Liver regeneration after APAP-induced liver injury is dose dependent and impaired after severe APAP overdose. Although robust regenerative response is associated with spontaneous recovery and survival, impaired regeneration results in faster progression of injury and death after APAP overdose. APAP hepatotoxicity-induced liver regeneration involves a complex time- and dose-dependent interplay of several signaling mediators, including growth factors, cytokines, angiogenic factors, and other mitogenic pathways. Compared with the liver injury, which is established before most patients seek medical attention and has proved difficult to manipulate, liver regeneration can be potentially modulated even in late-stage APAP-induced acute liver failure. Despite recent efforts to study the mechanisms of liver regeneration after APAP-induced liver injury, more comprehensive research in this area is required, especially regarding factors that contribute to impaired regenerative response, to develop novel regenerative therapies for APAP-induced acute liver failure.
Collapse
|
31
|
Prevention of acetaminophen-induced liver injury by alginate. Toxicol Appl Pharmacol 2019; 363:72-78. [DOI: 10.1016/j.taap.2018.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 01/01/2023]
|
32
|
Takasu S, Yokoo Y, Ishii Y, Kijima A, Ogawa K, Umemura T. Molecular Pathological Differences in Global Gene Expression between Two Sustained Proliferative Lesions, Nodular Regenerative Hepatocellular Hyperplasia and Hepatocellular Adenoma, in Mice. Toxicol Pathol 2018; 47:44-52. [PMID: 30572783 DOI: 10.1177/0192623318810200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Long-term exposure to piperonyl butoxide (PBO) induces multiple nodular masses along with hepatocellular tumors in the liver of mice. The histopathological features of the nodules led to our diagnosis of nodular regenerative hepatocellular hyperplasia (NRH). However, because of the lack of data on the biological characteristics of NRH, whether this lesion is truly nonneoplastic remains unknown. In this study, the molecular characteristics of NRH were compared with those of hepatocellular adenoma (HCA) by global gene expression analysis. Six-week-old male ICR mice were fed a diet containing 6,000 ppm PBO for 43 weeks to induce NRH and HCA development. Complementary DNA microarray analysis was performed using messenger RNA extracted from NRH and HCA frozen sections collected by laser microdissection. Hierarchical cluster analysis showed that all NRH samples clustered together but were separate from the HCA cluster. Pathway analysis revealed activation of the cell cycle and Delta-Notch signaling in both lesions, but the latter was more upregulated in HCA. Downregulation of cytochrome p450 enzymes was observed in NRH, but not in HCA. These results imply that NRH differs from HCA in terms of not only morphological but also molecular characteristics.
Collapse
Affiliation(s)
- Shinji Takasu
- 1 Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Yuh Yokoo
- 1 Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Yuji Ishii
- 1 Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Aki Kijima
- 1 Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Kumiko Ogawa
- 1 Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Takashi Umemura
- 1 Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan.,2 Laboratory of Animal Pathology, Faculty of Animal Health Technology, Yamazaki University of Animal Health Technology, Hachioji, Tokyo, Japan
| |
Collapse
|
33
|
Li YZ, Ma ZN, Sun YS, Ren S, Jiang S, Zhang WZ, Wang Z, Li W. Protective effects of extracts of Schisandra chinensis stems against acetaminophen-induced hepatotoxicity via regulation of MAPK and caspase-3 signaling pathways. Chin J Nat Med 2018; 16:700-713. [PMID: 30269847 DOI: 10.1016/s1875-5364(18)30110-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Indexed: 12/11/2022]
Abstract
The present study was designed to evaluate protective activity of an ethanol extract of the stems of Schisandra chinensis (SCE) and explore its possible molecular mechanisms on acetaminophen (APAP) induced hepatotoxicity in a mouse model. The results of HPLC analysis showed that the main components of SCE included schisandrol A, schisandrol B, deoxyschisandrin, schisandrin B, and schisandrin C and their contents were 5.83, 7.11, 2.13, 4.86, 0.42 mg·g-1, respectively. SCE extract was given for 7 consecutive days before a single hepatotoxic dose of APAP (250 mg·kg-1) was injected to mice. Our results showed that SCE pretreatment ameliorated liver dysfunction and oxidative stress, which was evidenced by significant decreases in aspartate transaminase (AST), alanine aminotransferase (ALT), malondialdehyde (MDA) contents and elevations in reduced glutathione (GSH) and superoxide dismutase (SOD) levels. These findings were associated with the result that the SCE pretreatment significantly decreased expression levels of 4-hydroxynonenal (4-HNE) and 3-nitrotyrosine (3-NT). SCE also significantly decreased the expression levels of Bax, mitogen- activated protein kinase (MAPK), and cleaved caspase-3 by APAP exposure. Furthermore, supplementation with SCE suppressed the expression levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), suggesting alleviation of inflammatory response. In summary, these findings from the present study clearly demonstrated that SCE exerted significant alleviation in APAP-induced oxidative stress, inflammation and apoptosis mainly via regulating MAPK and caspase-3 signaling pathways.
Collapse
Affiliation(s)
- Yan-Zi Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Zhi-Na Ma
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Yin-Shi Sun
- Institute of Special Wild Economic Animals and Plant, Chinese Academy of Agricultural Sciences (CAAS), Changchun 132109, China
| | - Shen Ren
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Shuang Jiang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Wei-Zhe Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
34
|
Woolbright BL, Jaeschke H. Mechanisms of Inflammatory Liver Injury and Drug-Induced Hepatotoxicity. CURRENT PHARMACOLOGY REPORTS 2018; 4:346-357. [PMID: 30560047 PMCID: PMC6294466 DOI: 10.1007/s40495-018-0147-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW This article provides a brief overview of mechanisms of inflammatory liver injury and how this applies to drug hepatotoxicity with a particular emphasis on the role of inflammation in acetaminophen-induced liver injury. RECENT FINDINGS Significant progress has been made in the last decade in our understanding of the initiation of sterile inflammation after necrotic cell death by the release of damage-associated molecular patterns and their recognition by toll-like receptors and others on macrophages. These events trigger the formation of cytokines and chemokines directly or with assistance of inflammasome activation thereby activating and recruiting leukocytes including neutrophils and monocyte-derived macrophages into the necrotic areas. Although this sterile inflammatory response is mainly geared towards the removal of necrotic cell debris and preparation of regeneration, there are conditions where these innate immune cells can aggravate the initial injury. The mechanisms and controversial findings of the innate immunity are being discussed in detail. In contrast, drug metabolism and formation of a reactive metabolite that binds to proteins in the absence of extensive cell death, can induce an adaptive immune response, which eventually also results in severe liver injury. However, the initiating event appears to be the formation of protein adducts, which act as haptens to activate an adaptive immune response. Overall, these mechanisms are less well understood. SUMMARY The past decade has revolutionized our understanding of the mechanisms that control the interplay between cell death and innate or adaptive immune responses. This report provides an update on these mechanisms.
Collapse
Affiliation(s)
| | - Hartmut Jaeschke
- Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
35
|
Borude P, Bhushan B, Apte U. DNA Damage Response Regulates Initiation of Liver Regeneration Following Acetaminophen Overdose. Gene Expr 2018; 18:115-123. [PMID: 29540258 PMCID: PMC5954624 DOI: 10.3727/105221618x15205260749346] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Acetaminophen (APAP) overdose is the leading cause of acute liver failure (ALF) with limited treatment options. It is known that liver regeneration following APAP-induced ALF is a deciding factor in the final outcome. Previous studies from our laboratory using an incremental dose model involving a regenerating (300 mg/kg, APAP300) and a nonregenerating (600 mg/kg, APAP600) dose of APAP in mice have revealed several proregenerative pathways that regulate regeneration after APAP overdose. Here we report that DNA damage and repair mechanisms regulate initiation of liver regeneration following APAP overdose. Mice treated with nonregenerating APAP600 dose showed prolonged expression of pH2AX, a marker of the DNA double-strand break (DSB), compared with APAP300. In regenerating APAP300 dose-treated mice, H2AX was rapidly dephosphorylated at Tyr142, indicating timely DNA repair. Expression of several DNA repair proteins was substantially lower with APAP600. Poly(ADP) ribose polymerase (PARP) activation, involved in DNA repair, was significantly higher in the APAP300 group compared to the APAP600 group. Activation of p53, the major cell cycle checkpoint protein, was significantly higher with APAP600 as demonstrated by substantially higher expression of its target genes. Taken together, these data show that massive DNA DSB occurs in high-dose APAP toxicity, and lack of prompt DSB repair after APAP overdose leads to prolonged growth arrest and proliferative senescence, resulting in inhibited liver regeneration.
Collapse
Affiliation(s)
- Prachi Borude
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Bharat Bhushan
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Udayan Apte
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
36
|
Lutkewitte AJ, Schweitzer GG, Kennon-McGill S, Clemens MM, James LP, Jaeschke H, Finck BN, McGill MR. Lipin deactivation after acetaminophen overdose causes phosphatidic acid accumulation in liver and plasma in mice and humans and enhances liver regeneration. Food Chem Toxicol 2018. [PMID: 29534981 DOI: 10.1016/j.fct.2018.03.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Andrew J Lutkewitte
- Div. of Geriatrics and Nutritional Sciences, Dept. of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| | - George G Schweitzer
- Div. of Geriatrics and Nutritional Sciences, Dept. of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| | - Stefanie Kennon-McGill
- Dept. of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Melissa M Clemens
- Interdisciplinary Biomedical Sciences Graduate Program, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Laura P James
- Dept. of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Hartmut Jaeschke
- Dept. of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Brian N Finck
- Div. of Geriatrics and Nutritional Sciences, Dept. of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| | - Mitchell R McGill
- Dept. of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
37
|
Apte U, Bhushan B, Dadhania V. Hepatic Defenses Against Toxicity: Liver Regeneration and Tissue Repair. COMPREHENSIVE TOXICOLOGY 2018:368-396. [DOI: 10.1016/b978-0-12-801238-3.64918-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
38
|
Alvarez-Sola G, Uriarte I, Latasa MU, Jimenez M, Barcena-Varela M, Santamaría E, Urtasun R, Rodriguez-Ortigosa C, Prieto J, Corrales FJ, Baulies A, García-Ruiz C, Fernandez-Checa JC, Berraondo P, Fernandez-Barrena MG, Berasain C, Avila MA. Engineered fibroblast growth factor 19 protects from acetaminophen-induced liver injury and stimulates aged liver regeneration in mice. Cell Death Dis 2017; 8:e3083. [PMID: 28981086 PMCID: PMC5682649 DOI: 10.1038/cddis.2017.480] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/31/2017] [Accepted: 08/09/2017] [Indexed: 02/07/2023]
Abstract
The liver displays a remarkable regenerative capacity triggered upon tissue injury or resection. However, liver regeneration can be overwhelmed by excessive parenchymal destruction or diminished by pre-existing conditions hampering repair. Fibroblast growth factor 19 (FGF19, rodent FGF15) is an enterokine that regulates liver bile acid and lipid metabolism, and stimulates hepatocellular protein synthesis and proliferation. FGF19/15 is also important for liver regeneration after partial hepatectomy (PH). Therefore recombinant FGF19 would be an ideal molecule to stimulate liver regeneration, but its applicability may be curtailed by its short half-life. We developed a chimaeric molecule termed Fibapo in which FGF19 is covalently coupled to apolipoprotein A-I. Fibapo retains FGF19 biological activities but has significantly increased half-life and hepatotropism. Here we evaluated the pro-regenerative activity of Fibapo in two clinically relevant models where liver regeneration may be impaired: acetaminophen (APAP) poisoning, and PH in aged mice. The only approved therapy for APAP intoxication is N-acetylcysteine (NAC) and no drugs are available to stimulate liver regeneration. We demonstrate that Fibapo reduced liver injury and boosted regeneration in APAP-intoxicated mice. Fibapo improved survival of APAP-poisoned mice when given at later time points, when NAC is ineffective. Mechanistically, Fibapo accelerated recovery of hepatic glutathione levels, potentiated cell growth-related pathways and increased functional liver mass. When Fibapo was administered to old mice prior to PH, liver regeneration was markedly increased. The exacerbated injury developing in these mice upon PH was attenuated, and the hepatic biosynthetic capacity was enhanced. Fibapo reversed metabolic and molecular alterations that impede regeneration in aged livers. It reduced liver steatosis and downregulated p21 and hepatocyte nuclear factor 4 α (Hnf4α) levels, whereas it stimulated Foxm1b gene expression. Together our findings indicate that FGF19 variants retaining the metabolic and growth-promoting effects of this enterokine may be valuable for the stimulation of liver regeneration.
Collapse
Affiliation(s)
- Gloria Alvarez-Sola
- CIBERehd, Instituto de Salud Carlos III, Clinica Universidad de Navarra, Avda, Pio XII, n 36, Pamplona 31008, Spain
| | - Iker Uriarte
- CIBERehd, Instituto de Salud Carlos III, Clinica Universidad de Navarra, Avda, Pio XII, n 36, Pamplona 31008, Spain
| | - Maria U Latasa
- Hepatology Programme, CIMA, Idisna, Universidad de Navarra, Avda, Pio XII, n 55, Pamplona 31008, Spain
| | - Maddalen Jimenez
- Hepatology Programme, CIMA, Idisna, Universidad de Navarra, Avda, Pio XII, n 55, Pamplona 31008, Spain
| | - Marina Barcena-Varela
- Hepatology Programme, CIMA, Idisna, Universidad de Navarra, Avda, Pio XII, n 55, Pamplona 31008, Spain
| | - Eva Santamaría
- CIBERehd, Instituto de Salud Carlos III, Clinica Universidad de Navarra, Avda, Pio XII, n 36, Pamplona 31008, Spain
| | - Raquel Urtasun
- Hepatology Programme, CIMA, Idisna, Universidad de Navarra, Avda, Pio XII, n 55, Pamplona 31008, Spain
| | - Carlos Rodriguez-Ortigosa
- CIBERehd, Instituto de Salud Carlos III, Clinica Universidad de Navarra, Avda, Pio XII, n 36, Pamplona 31008, Spain
- Hepatology Programme, CIMA, Idisna, Universidad de Navarra, Avda, Pio XII, n 55, Pamplona 31008, Spain
| | - Jesús Prieto
- CIBERehd, Instituto de Salud Carlos III, Clinica Universidad de Navarra, Avda, Pio XII, n 36, Pamplona 31008, Spain
- Hepatology Programme, CIMA, Idisna, Universidad de Navarra, Avda, Pio XII, n 55, Pamplona 31008, Spain
| | - Fernando J Corrales
- Hepatology Programme, CIMA, Idisna, Universidad de Navarra, Avda, Pio XII, n 55, Pamplona 31008, Spain
- CIBERehd, Instituto de Salud Carlos III, Barcelona, Spain
| | - Anna Baulies
- CIBERehd, Instituto de Salud Carlos III, Barcelona, Spain
- Department of Cell Death and Proliferation, Instituto de Investigaciones Biomédicas de Barcelona, CSIC and Liver Unit-Hospital Clinic-IDIBAPS, Barcelona, Spain
- Research Center for ALPD, Keck School of Medicine, University of Southern California, Los Angeles 90033, CA, USA
| | - Carmen García-Ruiz
- CIBERehd, Instituto de Salud Carlos III, Barcelona, Spain
- Department of Cell Death and Proliferation, Instituto de Investigaciones Biomédicas de Barcelona, CSIC and Liver Unit-Hospital Clinic-IDIBAPS, Barcelona, Spain
- Research Center for ALPD, Keck School of Medicine, University of Southern California, Los Angeles 90033, CA, USA
| | - Jose C Fernandez-Checa
- CIBERehd, Instituto de Salud Carlos III, Barcelona, Spain
- Department of Cell Death and Proliferation, Instituto de Investigaciones Biomédicas de Barcelona, CSIC and Liver Unit-Hospital Clinic-IDIBAPS, Barcelona, Spain
- Research Center for ALPD, Keck School of Medicine, University of Southern California, Los Angeles 90033, CA, USA
| | - Pedro Berraondo
- Immunology and Immunotherapy Programme, CIMA, Idisna, Universidad de Navarra, Avda, Pio XII, n 55, Pamplona 31008, Spain
| | - Maite G Fernandez-Barrena
- CIBERehd, Instituto de Salud Carlos III, Clinica Universidad de Navarra, Avda, Pio XII, n 36, Pamplona 31008, Spain
- Hepatology Programme, CIMA, Idisna, Universidad de Navarra, Avda, Pio XII, n 55, Pamplona 31008, Spain
| | - Carmen Berasain
- CIBERehd, Instituto de Salud Carlos III, Clinica Universidad de Navarra, Avda, Pio XII, n 36, Pamplona 31008, Spain
- Hepatology Programme, CIMA, Idisna, Universidad de Navarra, Avda, Pio XII, n 55, Pamplona 31008, Spain
| | - Matías A Avila
- CIBERehd, Instituto de Salud Carlos III, Clinica Universidad de Navarra, Avda, Pio XII, n 36, Pamplona 31008, Spain
- Hepatology Programme, CIMA, Idisna, Universidad de Navarra, Avda, Pio XII, n 55, Pamplona 31008, Spain
| |
Collapse
|
39
|
Nakagawa J, Koyama Y, Kawakami A, Ueki Y, Tsukamoto H, Horiuchi T, Nagano S, Uchino A, Ota T, Akahoshi M, Akashi K. A novel scoring system based on common laboratory tests predicts the efficacy of TNF-inhibitor and IL-6 targeted therapy in patients with rheumatoid arthritis: a retrospective, multicenter observational study. Arthritis Res Ther 2017; 19:185. [PMID: 28800780 PMCID: PMC5553584 DOI: 10.1186/s13075-017-1387-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 07/17/2017] [Indexed: 01/02/2023] Open
Abstract
Background Currently, although several categories of biological disease-modifying antirheumatic drugs (bDMARDs) are available, there are few data informing selection of initial treatment for individual patients with rheumatoid arthritis (RA). Therefore, tumor necrosis factor inhibitor (TNF-i) and tocilizumab (TCZ) are treated as equivalent treatments in the recent disease management recommendations. We focused on two anticytokine therapies, TCZ and TNF-i, and aimed to develop a scoring system that predicts a better treatment for each RA patient before starting an IL-6 or a TNF-i. Methods The expression of IL-6 and TNF-α mRNA in peripheral blood from 45 newly diagnosed RA patients was measured by DNA microarrays to evaluate cytokine activation. Next, laboratory indices immediately before commencing treatment and disease activity score improvement ratio after 6 months in 98 patients treated with TCZ or TNF-i were retrospectively analyzed. Some indices correlated with TCZ efficacy were selected and their cutoff values were defined by receiver operating characteristic (ROC) analysis to develop a scoring system to discriminate between individuals more likely to respond to TCZ or TNF-i. The validity of the scoring system was verified in these 98 patients and an additional 228 patients. Results There was significant inverse correlation between the expression of IL-6 and TNF-α mRNA in newly diagnosed RA patients. The analysis of 98 patients revealed significant correlation between TCZ efficacy and platelet counts, hemoglobin, aspartate aminotransferase, and alanine aminotransferase; in contrast, there was no similar correlation in the TNF-i group. The cutoff values were defined by ROC analysis to develop a scoring system (1 point/item, maximum of 4 points). A good TCZ response was predicted if the score was ≥2; in contrast, TNF-i seemed to be preferable if the score was ≤1. Similar results were obtained in a validation study of an additional 228 patients. If the case scored ≥3, the good responder rates of TCZ/TNF-i were 75.0%/37.9% (p < 0.01) and the non-responder rates were 3.1%/27.6% (p < 0.01), respectively. Conclusions The score is easily calculated from common laboratory results. It appears useful for identifying a better treatment at the time of selecting either an IL-6 or a TNF inhibitor.
Collapse
Affiliation(s)
- Jin Nakagawa
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan
| | - Yoshinobu Koyama
- Japanese Red-Cross Okayama Hospital, Center for Autoimmune Diseases, Division of Rheumatology, 2-1-1 Aoe, Kita-ku, Okayama, 700-8607, Japan.
| | - Atsushi Kawakami
- Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan
| | - Yukitaka Ueki
- Rheumatic and Collagen Disease Center, Sasebo Chuo Hospital, Sasebo, 857-1195, Japan
| | - Hiroshi Tsukamoto
- Department of Rheumatology, Shin-Kokura Hospital, Kitakyushu, 803-8505, Japan
| | - Takahiko Horiuchi
- Department of Internal Medicine and Clinical Immunology, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan
| | - Shuji Nagano
- Center for Rheumatic Diseases, Iizuka Hospital, Iizuka, 820-8505, Japan
| | - Ayumi Uchino
- Center for Rheumatic Diseases, Iizuka Hospital, Iizuka, 820-8505, Japan
| | - Toshiyuki Ota
- Center for Rheumatic Diseases, Iizuka Hospital, Iizuka, 820-8505, Japan
| | - Mitsuteru Akahoshi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan
| |
Collapse
|
40
|
Joseph Martin S, Evan Prince S. Comparative Modulation of Levels of Oxidative Stress in the Liver of Anti‐Tuberculosis Drug Treated Wistar Rats by Vitamin B12, Beta‐Carotene, and
Spirulina fusiformis
: Role of NF‐κB, iNOS, IL‐6, and IL‐10. J Cell Biochem 2017; 118:3825-3833. [DOI: 10.1002/jcb.26032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/05/2017] [Indexed: 12/27/2022]
|
41
|
Jiang WP, Huang SS, Matsuda Y, Saito H, Uramaru N, Ho HY, Wu JB, Huang GJ. Protective Effects of Tormentic Acid, a Major Component of Suspension Cultures of Eriobotrya japonica Cells, on Acetaminophen-Induced Hepatotoxicity in Mice. Molecules 2017; 22:molecules22050830. [PMID: 28524081 PMCID: PMC6154347 DOI: 10.3390/molecules22050830] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/11/2017] [Accepted: 05/15/2017] [Indexed: 12/12/2022] Open
Abstract
An acetaminophen (APAP) overdose can cause hepatotoxicity and lead to fatal liver damage. The hepatoprotective effects of tormentic acid (TA) on acetaminophen (APAP)-induced liver damage were investigated in mice. TA was intraperitoneally (i.p.) administered for six days prior to APAP administration. Pretreatment with TA prevented the elevation of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), total bilirubin (T-Bil), total cholesterol (TC), triacylglycerol (TG), and liver lipid peroxide levels in APAP-treated mice and markedly reduced APAP-induced histological alterations in liver tissues. Additionally, TA attenuated the APAP-induced production of nitric oxide (NO), reactive oxygen species (ROS), tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1β), and IL-6. Furthermore, the Western blot analysis showed that TA blocked the protein expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2), as well as the inhibition of nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) activation in APAP-injured liver tissues. TA also retained the superoxidase dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) in the liver. These results suggest that the hepatoprotective effects of TA may be related to its anti-inflammatory effect by decreasing thiobarbituric acid reactive substances (TBARS), iNOS, COX-2, TNF-α, IL-1β, and IL-6, and inhibiting NF-κB and MAPK activation. Antioxidative properties were also observed, as shown by heme oxygenase-1 (HO-1) induction in the liver, and decreases in lipid peroxides and ROS. Therefore, TA may be a potential therapeutic candidate for the prevention of APAP-induced liver injury by inhibiting oxidative stress and inflammation.
Collapse
Affiliation(s)
- Wen-Ping Jiang
- School of Pharmacy, China Medical University, No. 91, Hsueh-Shih R., Taichung 40402, Taiwan.
| | - Shyh-Shyun Huang
- School of Pharmacy, China Medical University, No. 91, Hsueh-Shih R., Taichung 40402, Taiwan.
| | - Yoshikazu Matsuda
- Nihon Pharmaceutical University, 10281, Komuro, Ina-machi, Kitaadachi-gun, Saitama 3620806, Japan.
| | - Hiroshi Saito
- Nihon Pharmaceutical University, 10281, Komuro, Ina-machi, Kitaadachi-gun, Saitama 3620806, Japan.
| | - Naoto Uramaru
- Nihon Pharmaceutical University, 10281, Komuro, Ina-machi, Kitaadachi-gun, Saitama 3620806, Japan.
| | - Hui-Ya Ho
- Jen Li Biotech Company Ltd., Taiping District, Taichung 41143, Taiwan.
| | - Jin-Bin Wu
- School of Pharmacy, China Medical University, No. 91, Hsueh-Shih R., Taichung 40402, Taiwan.
| | - Guan-Jhong Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
42
|
Abstract
BACKGROUND The liver has a number of functions in innate immunity. These functions predispose the liver to innate immune-mediated liver injury when inflammation goes unchecked. Significant progress has been made in the last 25 years on sterile inflammatory liver injury in a number of models; however, a great deal of controversy and many questions about the nature of sterile inflammation still exist. AIM The goal of this article is to review sterile inflammatory liver injury using both a basic approach to what constitutes the inflammatory injury, and through examination of current models of liver injury and inflammation. This information will be tied to human patient conditions when appropriate. RELEVANCE FOR PATIENTS Inflammation is one of the most critical factors for managing in-patient liver disease in a number of scenarios. More information is needed for both scientists and clinicians to develop rational treatments.
Collapse
Affiliation(s)
- Benjamin L Woolbright
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
43
|
Mühl H. STAT3, a Key Parameter of Cytokine-Driven Tissue Protection during Sterile Inflammation - the Case of Experimental Acetaminophen (Paracetamol)-Induced Liver Damage. Front Immunol 2016; 7:163. [PMID: 27199988 PMCID: PMC4852172 DOI: 10.3389/fimmu.2016.00163] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 04/15/2016] [Indexed: 12/12/2022] Open
Abstract
Acetaminophen (APAP, N-acetyl-p-aminophenol, or paracetamol) overdosing is a prevalent cause of acute liver injury. While clinical disease is initiated by overt parenchymal hepatocyte necrosis in response to the analgetic, course of intoxication is substantially influenced by associated activation of innate immunity. This process is supposed to be set in motion by release of danger-associated molecular patterns (DAMPs) from dying hepatocytes and is accompanied by an inflammatory cytokine response. Murine models of APAP-induced liver injury emphasize the complex role that DAMPs and cytokines play in promoting either hepatic pathogenesis or resolution and recovery from intoxication. Whereas the function of key inflammatory cytokines is controversially discussed, a subclass of specific cytokines capable of efficiently activating the hepatocyte signal transducer and activator of transcription (STAT)-3 pathway stands out as being consistently protective in murine models of APAP intoxication. Those include foremost interleukin (IL)-6, IL-11, IL-13, and IL-22. Above all, activation of STAT3 under the influence of these cytokines has the capability to drive hepatocyte compensatory proliferation, a key principle of the regenerating liver. Herein, the role of these specific cytokines during experimental APAP-induced liver injury is highlighted and discussed in a broader perspective. In hard-to-treat or at-risk patients, standard therapy may fail and APAP intoxication can proceed toward a fatal condition. Focused administration of recombinant STAT3-activating cytokines may evolve as novel therapeutic approach under those ill-fated conditions.
Collapse
Affiliation(s)
- Heiko Mühl
- Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe-University Frankfurt am Main , Frankfurt am Main , Germany
| |
Collapse
|
44
|
Baskaran UL, Sabina EP. The food supplement coenzyme Q10 and suppression of antitubercular drug-induced hepatic injury in rats: the role of antioxidant defence system, anti-inflammatory cytokine IL-10. Cell Biol Toxicol 2015; 31:211-9. [PMID: 26374116 DOI: 10.1007/s10565-015-9305-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/07/2015] [Indexed: 01/30/2023]
Abstract
INTRODUCTION Isoniazid (INH) and rifampicin (RIF), the most common anti-tubercular therapy, causes hepatotoxicity through a multi-step mechanism in certain individuals. The present study was an attempt to evaluate the hepatoprotective effect of coenzyme Q10 against INH + RIF-induced hepatotoxicity in Wistar albino rats. METHODS Hepatotoxicity was induced by the oral administration of INH + RIF (50 mg/kg b.w. each/day) in normal saline water for 28 days. The hepatoprotective effect of coenzyme Q10 (10 mg/kg b.w./day) was compared with that of the standard drug silymarin (25 mg/kg b.w./day). Animals were sacrificed at the end of the study period, and blood and liver were collected for biochemical, immunological and histological analyses. RESULTS Evaluation of biochemical parameters showed that coenzyme Q10 treatment caused significant (P < 0.05) reduction in the elevated levels of serum liver function markers and restored normal levels of total protein, albumin and lipids in INH + RIF-treated rats. Also, it was observed that coenzyme Q10 was able to restore normal levels of enzymic antioxidants, reduced glutathione and lipid peroxidation in the INH + RIF-treated rats. Coenzyme Q10 was found to effectively reduce the extent of liver damage caused due to INH + RIF. In addition, the levels of IL-10 and IL-6 were significantly elevated in the INH + RIF-induced rats treated with CoQ10. CONCLUSION Our study indicates the protective role of coenzyme Q10 in attenuating the hepatotoxic effects of INH + RIF in a rat model and that it could be used as a food supplement during anti-tubercular therapy.
Collapse
Affiliation(s)
| | - Evan Prince Sabina
- School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
45
|
Anti-Inflammatory Property of Plantago major Leaf Extract Reduces the Inflammatory Reaction in Experimental Acetaminophen-Induced Liver Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:347861. [PMID: 26300946 PMCID: PMC4537734 DOI: 10.1155/2015/347861] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/16/2015] [Accepted: 07/21/2015] [Indexed: 11/18/2022]
Abstract
Hepatic injury induces inflammatory process and cell necrosis. Plantago major is traditionally used for various diseases. This study aimed to determine the anti-inflammatory property of P. major leaf extracts on inflammatory reaction following acetaminophen (APAP) hepatotoxicity. Thirty male Sprague-Dawley rats were divided into 5 groups, namely, normal control (C), APAP, aqueous (APAP + AQ), methanol (APAP + MT), and ethanol (APAP + ET) extract treated groups. All APAP groups received oral APAP (2 g/kg) at day 0. Then, 1000 mg/kg dose of P. major extracts was given for six days. The levels of liver transaminases were measured at day 1 and day 7 after APAP induction. At day 7, the blood and liver tissue were collected to determine plasma cytokines and tissue 11β-HSD type 1 enzyme. The in vitro anti-inflammatory activities of methanol, ethanol, and aqueous extracts were 26.74 ± 1.6%, 21.69 ± 2.81%, and 12.23 ± 3.15%, respectively. The ALT and AST levels were significantly higher in the APAP groups at day 1 whereas the enzyme levels of all groups showed no significant difference at day 7. The extracts treatment significantly reduced the proinflammatory cytokine levels and significantly increased the 11β-HSD type 1 enzyme activity (p < 0.05). In conclusion, the P. major extracts attenuate the inflammatory reaction following APAP-induced liver injury.
Collapse
|
46
|
Scheiermann P, Bachmann M, Härdle L, Pleli T, Piiper A, Zwissler B, Pfeilschifter J, Mühl H. Application of IL-36 receptor antagonist weakens CCL20 expression and impairs recovery in the late phase of murine acetaminophen-induced liver injury. Sci Rep 2015; 5:8521. [PMID: 25687687 PMCID: PMC4330543 DOI: 10.1038/srep08521] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 01/22/2015] [Indexed: 12/14/2022] Open
Abstract
Overdosing of the analgesic acetaminophen (APAP, paracetamol) is a major cause of acute liver injury. Whereas toxicity is initiated by hepatocyte necrosis, course of disease is regulated by mechanisms of innate immunity having the potential to serve in complex manner pathogenic or pro-regenerative functions. Interleukin (IL)-36γ has been identified as novel IL-1-like cytokine produced by and targeting epithelial (-like) tissues. Herein, we investigated IL-36γ in acute liver disease focusing on murine APAP-induced hepatotoxicity. Enhanced expression of hepatic IL-36γ and its prime downstream chemokine target CCL20 was detected upon liver injury. CCL20 expression coincided with the later regeneration phase of intoxication. Primary murine hepatocytes and human Huh7 hepatocellular carcinoma cells indeed displayed enhanced IL-36γ expression when exposed to inflammatory cytokines. Administration of IL-36 receptor antagonist (IL-36Ra) decreased hepatic CCL20 in APAP-treated mice. Unexpectedly, IL-36Ra likewise increased late phase hepatic injury as detected by augmented serum alanine aminotransferase activity and histological necrosis which suggests disturbed tissue recovery upon IL-36 blockage. Finally, we demonstrate induction of IL-36γ in inflamed livers of endotoxemic mice. Observations presented introduce IL-36γ as novel parameter in acute liver injury which may contribute to the decision between unleashed tissue damage and initiation of liver regeneration during late APAP toxicity.
Collapse
Affiliation(s)
- Patrick Scheiermann
- 1] pharmazentrum frankfurt/ZAFES, University Hospital Goethe-University Frankfurt [2] Clinic for Anesthesiology, University Hospital Ludwig-Maximilians-University Munich
| | - Malte Bachmann
- pharmazentrum frankfurt/ZAFES, University Hospital Goethe-University Frankfurt
| | - Lorena Härdle
- pharmazentrum frankfurt/ZAFES, University Hospital Goethe-University Frankfurt
| | - Thomas Pleli
- Medical Clinic I, University Hospital Goethe-University Frankfurt, Germany
| | - Albrecht Piiper
- Medical Clinic I, University Hospital Goethe-University Frankfurt, Germany
| | - Bernhard Zwissler
- Clinic for Anesthesiology, University Hospital Ludwig-Maximilians-University Munich
| | - Josef Pfeilschifter
- pharmazentrum frankfurt/ZAFES, University Hospital Goethe-University Frankfurt
| | - Heiko Mühl
- pharmazentrum frankfurt/ZAFES, University Hospital Goethe-University Frankfurt
| |
Collapse
|
47
|
Liu A, Tanaka N, Sun L, Guo B, Kim JH, Krausz KW, Fang Z, Jiang C, Yang J, Gonzalez FJ. Saikosaponin d protects against acetaminophen-induced hepatotoxicity by inhibiting NF-κB and STAT3 signaling. Chem Biol Interact 2014; 223:80-86. [PMID: 25265579 PMCID: PMC4376644 DOI: 10.1016/j.cbi.2014.09.012] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 09/10/2014] [Accepted: 09/12/2014] [Indexed: 11/19/2022]
Abstract
Overdose of acetaminophen (APAP) can cause acute liver injury that is sometimes fatal, requiring efficient pharmacological intervention. The traditional Chinese herb Bupleurum falcatum has been widely used for the treatment of several liver diseases in eastern Asian countries, and saikosaponin d (SSd) is one of its major pharmacologically-active components. However, the efficacy of Bupleurum falcatum or SSd on APAP toxicity remains unclear. C57/BL6 mice were administered SSd intraperitoneally once daily for 5days, followed by APAP challenge. Biochemical and pathological analysis revealed that mice treated with SSd were protected against APAP-induced hepatotoxicity. SSd markedly suppressed phosphorylation of nuclear factor kappa B (NF-κB) and signal transducer and activator of transcription 3 (STAT3) and reversed the APAP-induced increases in the target genes of NF-κB, such as pro-inflammatory cytokine Il6 and Ccl2, and those of STAT3, such as Socs3, Fga, Fgb and Fgg. SSd also enhanced the expression of the anti-inflammatory cytokine Il10 mRNA. Collectively, these results demonstrate that SSd protects mice from APAP-induced hepatotoxicity mainly through down-regulating NF-κB- and STAT3-mediated inflammatory signaling. This study unveils one of the possible mechanisms of hepatoprotection caused by Bupleurum falcatum and/or SSd.
Collapse
Affiliation(s)
- Aiming Liu
- Medical School of Ningbo University, Ningbo 315211, China; Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| | - Naoki Tanaka
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Lu Sun
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Bin Guo
- Hunan Normal University, Changsha 410081, China
| | - Jung-Hwan Kim
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Kristopher W Krausz
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Zhongze Fang
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Changtao Jiang
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Julin Yang
- Ningbo College of Health Sciences, Ningbo 315100, China
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
48
|
Bhushan B, Walesky C, Manley M, Gallagher T, Borude P, Edwards G, Monga SPS, Apte U. Pro-regenerative signaling after acetaminophen-induced acute liver injury in mice identified using a novel incremental dose model. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:3013-25. [PMID: 25193591 DOI: 10.1016/j.ajpath.2014.07.019] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/23/2014] [Accepted: 07/15/2014] [Indexed: 12/12/2022]
Abstract
Acetaminophen (APAP) overdose results in acute liver failure and has limited treatment options. Previous studies show that stimulating liver regeneration is critical for survival after APAP overdose, but the mechanisms remain unclear. In this study, we identified major signaling pathways involved in liver regeneration after APAP-induced acute liver injury using a novel incremental dose model. Liver injury and regeneration were studied in C57BL/6 mice treated with either 300 mg/kg (APAP300) or 600 mg/kg (APAP600) APAP. Mice treated with APAP300 developed extensive liver injury and robust liver regeneration. In contrast, APAP600-treated mice exhibited significant liver injury but substantial inhibition of liver regeneration, resulting in sustained injury and decreased survival. The inhibition of liver regeneration in the APAP600 group was associated with cell cycle arrest and decreased cyclin D1 expression. Several known regenerative pathways, including the IL-6/STAT-3 and epidermal growth factor receptor/c-Met/mitogen-activated protein kinase pathways, were activated, even at APAP600, where regeneration was inhibited. However, canonical Wnt/β-catenin and NF-κB pathways were activated only in APAP300-treated mice, where liver regeneration was stimulated. Furthermore, overexpression of a stable form of β-catenin, where serine 45 is mutated to aspartic acid, in mice resulted in improved liver regeneration after APAP overdose. Taken together, our incremental dose model has identified a differential role of several signaling pathways in liver regeneration after APAP overdose and highlighted canonical Wnt signaling as a potential target for regenerative therapies for APAP-induced acute liver failure.
Collapse
Affiliation(s)
- Bharat Bhushan
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Chad Walesky
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Michael Manley
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Tara Gallagher
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Prachi Borude
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Genea Edwards
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Satdarshan P S Monga
- Department of Pathology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Udayan Apte
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
49
|
Jaeschke H, Xie Y, McGill MR. Acetaminophen-induced Liver Injury: from Animal Models to Humans. J Clin Transl Hepatol 2014; 2:153-61. [PMID: 26355817 PMCID: PMC4521247 DOI: 10.14218/jcth.2014.00014] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/06/2014] [Accepted: 06/12/2014] [Indexed: 02/06/2023] Open
Abstract
Drug-induced liver injury is an important clinical problem and a challenge for drug development. Whereas progress in understanding rare and unpredictable (idiosyncratic) drug hepatotoxicity is severely hampered by the lack of relevant animal models, enormous insight has been gained in the area of predictable hepatotoxins, in particular acetaminophen-induced liver injury, from a broad range of experimental models. Importantly, mechanisms of toxicity obtained with certain experimental systems, such as in vivo mouse models, primary mouse hepatocytes, and metabolically competent cell lines, are being confirmed in translational studies in patients and in primary human hepatocytes. Despite this progress, suboptimal models are still being used and experimental data can be confusing, leading to controversial conclusions. Therefore, this review attempts to discuss mechanisms of drug hepatotoxicity using the most studied drug acetaminophen as an example. We compare the various experimental models that are used to investigate mechanisms of acetaminophen hepatotoxicity, discuss controversial topics in the mechanisms, and assess how these experimental findings can be translated to the clinic. The success with acetaminophen in demonstrating the clinical relevance of experimental findings could serve as an example for the study of other drug toxicities.
Collapse
Affiliation(s)
- Hartmut Jaeschke
- Correspondence to: Hartmut Jaeschke, Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA. Tel: +1-913-588-7969, Fax: +1-913-588-7501. E-mail:
| | | | | |
Collapse
|
50
|
Igarashi I, Maejima T, Kai K, Arakawa S, Teranishi M, Sanbuissho A. Role of connexin 32 in acetaminophen toxicity in a knockout mice model. EXPERIMENTAL AND TOXICOLOGIC PATHOLOGY : OFFICIAL JOURNAL OF THE GESELLSCHAFT FUR TOXIKOLOGISCHE PATHOLOGIE 2014; 66:103-10. [PMID: 24263089 DOI: 10.1016/j.etp.2013.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 09/03/2013] [Accepted: 10/21/2013] [Indexed: 01/28/2023]
Abstract
Gap junctional intercellular communication (GJIC), by which glutathione (GSH) and inorganic ions are transmitted to neighboring cells, is recognized as being largely involved in toxic processes of chemicals. We examined acetaminophen (APAP)-induced hepatotoxicity clinicopathologically using male wild-type mice and mice lacking the gene for connexin32, a major gap junction protein in the liver [knockout (Cx32KO) mice]. When APAP was intraperitoneally administered at doses of 100, 200, or 300mg/kg, hepatic centrilobular necrosis with elevated plasma aminotransferase activities was observed in wild-type mice receiving 300mg/kg, and in Cx32KO mice given 100mg/kg or more. At 200mg/kg or more, hepatic GSH and GSSG contents decreased significantly and the effect was more severe in wild-type mice than in Cx32KO mice. On the other hand, markedly decreased GSH staining was observed in the hepatic centrilobular zones of Cx32KO mice compared to that of wild-type mice. These results demonstrate that Cx32KO mice are more susceptible to APAP hepatotoxicity than wild-type mice, and indicate that the distribution of GSH of the centrilobular zones in the hepatic lobules, rather than GSH and GSSG contents in the liver, is important in APAP hepatotoxicity. In conclusion, Cx32 protects against APAP-induced hepatic centrilobular necrosis in mice, which may be through the GSH transmission to neighboring hepatocytes by GJIC.
Collapse
Affiliation(s)
- Isao Igarashi
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co. Ltd., Fukuroi, Shizuoka 437-0065, Japan.
| | - Takanori Maejima
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co. Ltd., Fukuroi, Shizuoka 437-0065, Japan
| | - Kiyonori Kai
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co. Ltd., Fukuroi, Shizuoka 437-0065, Japan
| | - Shingo Arakawa
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co. Ltd., Fukuroi, Shizuoka 437-0065, Japan
| | - Munehiro Teranishi
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co. Ltd., Fukuroi, Shizuoka 437-0065, Japan
| | - Atsushi Sanbuissho
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co. Ltd., Fukuroi, Shizuoka 437-0065, Japan
| |
Collapse
|