1
|
Fu W, Yang K, Wu M, Wang Y. Terminal deoxynucleotidyl transferase (TdT) based template-free signal amplification for the detection of exosomes in MUC1-positive cells. J Pharm Biomed Anal 2024; 253:116539. [PMID: 39454542 DOI: 10.1016/j.jpba.2024.116539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024]
Abstract
The Mucin1 (MUC1) protein, involved in cytoprotective and signaling pathways, is abnormally elevated in various cancers, making it a key cancer indicator. Exosomes, which reflect the status of their originating cells, offer potential for cancer diagnosis. Thus, developing a method to detect MUC1-positive exosomes is crucial for the early diagnosis of certain cancers. In this study, we developed a highly sensitive, specific, and simple UV-visible signal amplification method to detect MUC1-positive exosomes using terminal deoxynucleotidyl transferase (TdT). Initially, exosomes were captured on magnetic beads using a CD63 aptamer(apt). The Primer-AuNPs-MUC1 apt complex which we synthesized by low pH loading method was then attached MUC1 proteins on the surface of the exosomes to create a sandwich structure. TdT catalyzed the extension of Biotin-dATP at the 3' end of the primer, introducing multiple biotin sites into the sandwich structure. These sites subsequently bound multiple streptavidin-horseradish peroxidase (streptavidin-HRP), which catalyzed the oxidative color change of the substrate, which can be detected by colorimetric method. This method can detect A549 exosomes in the range of 1.4E+6 to 4.2E+8 particles/mL and shows high specificity for cell lines with different MUC1 expression. Additionally, it successfully distinguished cholangiocarcinoma (CCA) patients (n=11) from healthy individuals (n=7) in clinical serum assays, demonstrating good performance in real sample detection.
Collapse
Affiliation(s)
- Wenchang Fu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kaige Yang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingyuan Wu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; Engineering Research Center of Cell and Therapeutic Antibody (Ministry of Education), School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yan Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
2
|
McKellar J, Rebendenne A, Wencker M, Moncorgé O, Goujon C. Mammalian and Avian Host Cell Influenza A Restriction Factors. Viruses 2021; 13:522. [PMID: 33810083 PMCID: PMC8005160 DOI: 10.3390/v13030522] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/27/2022] Open
Abstract
The threat of a new influenza pandemic is real. With past pandemics claiming millions of lives, finding new ways to combat this virus is essential. Host cells have developed a multi-modular system to detect incoming pathogens, a phenomenon called sensing. The signaling cascade triggered by sensing subsequently induces protection for themselves and their surrounding neighbors, termed interferon (IFN) response. This response induces the upregulation of hundreds of interferon-stimulated genes (ISGs), including antiviral effectors, establishing an antiviral state. As well as the antiviral proteins induced through the IFN system, cells also possess a so-called intrinsic immunity, constituted of antiviral proteins that are constitutively expressed, creating a first barrier preceding the induction of the interferon system. All these combined antiviral effectors inhibit the virus at various stages of the viral lifecycle, using a wide array of mechanisms. Here, we provide a review of mammalian and avian influenza A restriction factors, detailing their mechanism of action and in vivo relevance, when known. Understanding their mode of action might help pave the way for the development of new influenza treatments, which are absolutely required if we want to be prepared to face a new pandemic.
Collapse
Affiliation(s)
- Joe McKellar
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, CEDEX 5, 34293 Montpellier, France; (J.M.); (A.R.)
| | - Antoine Rebendenne
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, CEDEX 5, 34293 Montpellier, France; (J.M.); (A.R.)
| | - Mélanie Wencker
- Centre International de Recherche en Infectiologie, INSERM/CNRS/UCBL1/ENS de Lyon, 69007 Lyon, France;
| | - Olivier Moncorgé
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, CEDEX 5, 34293 Montpellier, France; (J.M.); (A.R.)
| | - Caroline Goujon
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, CEDEX 5, 34293 Montpellier, France; (J.M.); (A.R.)
| |
Collapse
|
3
|
Heublein S, Page S, Mayr D, Schmoeckel E, Trillsch F, Marmé F, Mahner S, Jeschke U, Vattai A. Potential Interplay of the Gatipotuzumab Epitope TA-MUC1 and Estrogen Receptors in Ovarian Cancer. Int J Mol Sci 2019; 20:ijms20020295. [PMID: 30642093 PMCID: PMC6359481 DOI: 10.3390/ijms20020295] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/17/2018] [Accepted: 12/24/2018] [Indexed: 12/20/2022] Open
Abstract
Anti-tumor efficacy of Gatipotuzumab, a therapeutic antibody targeting Tumor-Associated Mucin-1 (TA-MUC1), in relapsed ovarian cancer (OC) appeared to be rather heterogeneous. Whether adding a second anti-neoplastic drug may augment response towards Gatipotuzumab, has not been elucidated so far. Since it is known that anti-MUC1 antibodies may alter estrogen receptor activity in breast cancer, this potential interplay was investigated in OC. The correlation between TA-MUC1, estrogen receptors (ERs) and another 12 protein markers as well as their correlation with clinico-pathological parameters in 138 ovarian cancer cases was studied. Finally, Gatipotuzumab and 4-Hydroxy-TTamoxifen (4-OHT) as well as the combination of both was tested for its impact on cell viability in COV318, OV-90, OVCAR-3, and SKOV-3 cells. A strong positive correlation between TA-MUC1 and ERs was detected in OC tissue. Those cases missing ERs but staining positive for TA-MUC1 had significantly reduced overall survival. The combination of 4-OHT and Gatipotuzumab significantly reduced cell viability and was more effective than treatment with Gatipotuzumab alone. Co-stimulation with Gatipotuzumab enhanced the efficacy of 4-OHT in OVCAR-3 and SKOV-3. The data suggest an interplay of TA-MUC1 and ERs in OC. Whether the combination of Gatipotuzumab and TTamoxifen may enhance efficacy of either of the two drugs in vivo, or may even translate into a clinically relevant benefit over the respective monotherapies, remains to be investigated.
Collapse
Affiliation(s)
- Sabine Heublein
- Department of Obstetrics and Gynecology, Ludwig-Maximilians University of Munich, University Hospital, 81377 Munich, Germany.
- Department of Obstetrics and Gynecology, University of Heidelberg, 69117 Heidelberg, Germany.
| | - Sabina Page
- Department of Obstetrics and Gynecology, Ludwig-Maximilians University of Munich, University Hospital, 81377 Munich, Germany.
| | - Doris Mayr
- Department of Pathology, Ludwig-Maximilians University of Munich, 81377 Munich, Germany.
| | - Elisa Schmoeckel
- Department of Pathology, Ludwig-Maximilians University of Munich, 81377 Munich, Germany.
| | - Fabian Trillsch
- Department of Obstetrics and Gynecology, Ludwig-Maximilians University of Munich, University Hospital, 81377 Munich, Germany.
| | - Frederik Marmé
- Department of Obstetrics and Gynecology, University of Heidelberg, 69117 Heidelberg, Germany.
| | - Sven Mahner
- Department of Obstetrics and Gynecology, Ludwig-Maximilians University of Munich, University Hospital, 81377 Munich, Germany.
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, Ludwig-Maximilians University of Munich, University Hospital, 81377 Munich, Germany.
| | - Aurelia Vattai
- Department of Obstetrics and Gynecology, Ludwig-Maximilians University of Munich, University Hospital, 81377 Munich, Germany.
| |
Collapse
|
4
|
The cell surface mucin MUC1 limits the severity of influenza A virus infection. Mucosal Immunol 2017; 10:1581-1593. [PMID: 28327617 DOI: 10.1038/mi.2017.16] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/26/2017] [Indexed: 02/04/2023]
Abstract
Cell surface mucin (cs-mucin) glycoproteins are constitutively expressed at the surface of respiratory epithelia where pathogens such as influenza A virus (IAV) gain entry into cells. Different members of the cs-mucin family each express a large and heavily glycosylated extracellular domain that towers above other receptors on the epithelial cell surface, a transmembrane domain that enables shedding of the extracellular domain, and a cytoplasmic tail capable of triggering signaling cascades. We hypothesized that IAV can interact with the terminal sialic acids presented on the extracellular domain of cs-mucins, resulting in modulation of infection efficiency. Utilizing human lung epithelial cells, we found that IAV associates with the cs-mucin MUC1 but not MUC13 or MUC16. Overexpression of MUC1 by epithelial cells or the addition of sialylated synthetic MUC1 constructs, reduced IAV infection in vitro. In addition, Muc1-/- mice infected with IAV exhibited enhanced morbidity and mortality, as well as greater inflammatory mediator responses compared to wild type mice. This study implicates the cs-mucin MUC1 as a critical and dynamic component of the innate host response that limits the severity of influenza and provides the foundation for exploration of MUC1 in resolving inflammatory disease.
Collapse
|
5
|
van Putten JPM, Strijbis K. Transmembrane Mucins: Signaling Receptors at the Intersection of Inflammation and Cancer. J Innate Immun 2017; 9:281-299. [PMID: 28052300 DOI: 10.1159/000453594] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 11/19/2016] [Indexed: 12/18/2022] Open
Abstract
Mucosal surfaces line our body cavities and provide the interaction surface between commensal and pathogenic microbiota and the host. The barrier function of the mucosal layer is largely maintained by gel-forming mucin proteins that are secreted by goblet cells. In addition, mucosal epithelial cells express cell-bound mucins that have both barrier and signaling functions. The family of transmembrane mucins consists of diverse members that share a few characteristics. The highly glycosylated extracellular mucin domains inhibit invasion by pathogenic bacteria and can form a tight mesh structure that protects cells in harmful conditions. The intracellular tails of transmembrane mucins can be phosphorylated and connect to signaling pathways that regulate inflammation, cell-cell interactions, differentiation, and apoptosis. Transmembrane mucins play important roles in preventing infection at mucosal surfaces, but are also renowned for their contributions to the development, progression, and metastasis of adenocarcinomas. In general, transmembrane mucins seem to have evolved to monitor and repair damaged epithelia, but these functions can be highjacked by cancer cells to yield a survival advantage. This review presents an overview of the current knowledge of the functions of transmembrane mucins in inflammatory processes and carcinogenesis in order to better understand the diverse functions of these multifunctional proteins.
Collapse
Affiliation(s)
- Jos P M van Putten
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | | |
Collapse
|
6
|
Wang Z, Xia N, Shi J, Li S, Zhao Y, Wang H, Liu L. Electrochemical Aptasensor for Determination of Mucin 1 by P-Aminophenol Redox Cycling. ANAL LETT 2014. [DOI: 10.1080/00032719.2014.905953] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
7
|
Immobilization of redox-labeled hairpin DNA aptamers on gold: Electrochemical quantitation of epithelial tumor marker mucin 1. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.02.088] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Molecular beacon-based quantitiation of epithelial tumor marker mucin 1. Bioorg Med Chem Lett 2012; 22:6081-4. [PMID: 22959521 DOI: 10.1016/j.bmcl.2012.08.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 08/07/2012] [Accepted: 08/10/2012] [Indexed: 11/24/2022]
Abstract
Mucin 1 (Muc1) is a glycoprotein expressed on most epithelial cell surfaces, which has been confirmed as a useful biomarker for the diagnosis of early cancers. In this study, we demonstrate that a quantum dot (QD)-aptamer beacon acts by folding-induced dissociation of a DNA intercalating dye, BOBO-3, in the presence of the target molecules, Muc1. Release of intercalated BOBO-3s from the QD-conjugated aptamers results in a decrease in QD fluorescence resonance energy transfer (FRET)-mediated BOBO-3 emission, allowing for label-free Muc1 detection and quantitation. We attain highly specific and wide-range detection (from 50nM to 20μM) of Muc1, suggesting that our QD-aptamer beacon can be a potential alternative to immuno-based assays for Muc1 detection. The detection methodology is expected to be improved for the early diagnosis of different types of epithelial cancers of large populations.
Collapse
|
9
|
Konowalchuk JD, Agrawal B. MUC1 is a novel costimulatory molecule of human T cells and functions in an AP-1-dependent manner. Hum Immunol 2012; 73:448-55. [PMID: 22425740 DOI: 10.1016/j.humimm.2012.02.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 02/23/2012] [Accepted: 02/27/2012] [Indexed: 10/28/2022]
Abstract
MUC1 mucin, primarily known as an epithelial antigen, has been demonstrated to be expressed on activated human T cells. In the present study, we first examined the expression of MUC1 on different subsets of T cells (naive, effector, effector/memory). MUC1 appears to be strongly upregulated on activated CD4(+) T cells in comparison with CD8(+) T cells. The cytoplasmic tail of MUC1 contains both immune tyrosine-based activation and inhibitory motifs; therefore, we investigated whether MUC1 can also act as a costimulatory molecule on human T cells. Nonpurified T-cell cultures from human peripheral blood exhibited enhanced proliferation and an increase in cytokine production when CD3 and MUC1 were cross-linked and coligated. The intracellular mechanism of MUC1-mediated costimulation was determined to be mediated by the calcium-dependent NF-AT pathway. We further demonstrated that the cytoplasmic tail of MUC1 binds to the AP-1 transcription factors c-Fos and c-Jun, with c-Fos binding constitutively and c-Jun binding only after MUC1 stimulation. Their nuclear migration is then facilitated in a CD3-dependent manner. Our findings clearly demonstrate that MUC1 is a novel T-cell costimulatory molecule involved in immune regulation. These studies delineate important mechanisms of T-cell activation and regulation.
Collapse
Affiliation(s)
- Jeffrey D Konowalchuk
- Department of Surgery, Faculty of Medicine, Dentistry, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | | |
Collapse
|
10
|
Kato K, Lillehoj EP, Park YS, Umehara T, Hoffman NE, Madesh M, Kim KC. Membrane-tethered MUC1 mucin is phosphorylated by epidermal growth factor receptor in airway epithelial cells and associates with TLR5 to inhibit recruitment of MyD88. THE JOURNAL OF IMMUNOLOGY 2012; 188:2014-22. [PMID: 22250084 DOI: 10.4049/jimmunol.1102405] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
MUC1 is a membrane-tethered mucin glycoprotein expressed on the apical surface of mucosal epithelial cells. Previous in vivo and in vitro studies established that MUC1 counterregulates airway inflammation by suppressing TLR signaling. In this article, we elucidate the mechanism by which MUC1 inhibits TLR5 signaling. Overexpression of MUC1 in HEK293 cells dramatically reduced Pseudomonas aeruginosa-stimulated IL-8 expression and decreased the activation of NF-κB and MAPK compared with cells not expressing MUC1. However, overexpression of MUC1 in HEK293 cells did not affect NF-κB or MAPK activation in response to TNF-α. Overexpression of MyD88 abrogated the ability of MUC1 to inhibit NF-κB activation, and MUC1 overexpression inhibited flagellin-induced association of TLR5/MyD88 compared with controls. The MUC1 cytoplasmic tail associated with TLR5 in all cells tested, including HEK293T cells, human lung adenocarcinoma cell line A549 cells, and human and mouse primary airway epithelial cells. Activation of epidermal growth factor receptor tyrosine kinase with TGF-α induced phosphorylation of the MUC1 cytoplasmic tail at the Y46EKV sequence and increased association of MUC1/TLR5. Finally, in vivo experiments demonstrated increased immunofluorescence colocalization of Muc1/TLR5 and Muc1/phosphotyrosine staining patterns in mouse airway epithelium and increased Muc1 tyrosine phosphorylation in mouse lung homogenates following P. aeruginosa infection. In conclusion, epidermal growth factor receptor tyrosine phosphorylates MUC1, leading to an increase in its association with TLR5, thereby competitively and reversibly inhibiting recruitment of MyD88 to TLR5 and downstream signaling events. This unique ability of MUC1 to control TLR5 signaling suggests its potential role in the pathogenesis of chronic inflammatory lung diseases.
Collapse
Affiliation(s)
- Kosuke Kato
- Department of Physiology, Center for Inflammation, Translational and Clinical Lung Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Overexpression of MUC1 enhances proangiogenic activity of non-small-cell lung cancer cells through activation of Akt and extracellular signal-regulated kinase pathways. Lung 2011; 189:453-60. [PMID: 21959954 DOI: 10.1007/s00408-011-9327-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Accepted: 09/14/2011] [Indexed: 12/13/2022]
Abstract
BACKGROUND Angiogenesis is an important process required for tumor progression. Mucin 1 (MUC1) is a transmembrane glycoprotein that is aberrantly upregulated in many types of cancer, including non-small-cell lung cancer (NSCLC). However, the biological significance of MUC1 overexpression in lung cancer angiogenesis is not completely understood. METHODS We showed that enforced expression of MUC1 in two NSCLC cell lines, A549 and NCI-H460, which have a low level of endogenous MUC1, promoted their ability to induce vascular endothelial growth factor (VEGF)-dependent endothelial cell migration and tube formation. RESULTS There was a significant increase in VEGF expression in MUC1-overexpressing NSCLC cells. Moreover, MUC1 overexpression resulted in a marked elevation in phosphorylated Akt and extracellular signal-regulated kinase (ERK)1/2, indicative of activation of both signaling pathways. Most importantly, inhibition of Akt or ERK signaling using specific chemical inhibitors restrained the proangiogenic activity of MUC1-overexpressing NSCLC cells. CONCLUSIONS Taken together, our present data demonstrate that the aberrant upregulation of MUC1 favors tumor angiogenesis in NSCLC, likely through the activation of both Akt and ERK pathways and elevation of VEGF production. MUC1 may thus be a potential antiangiogenic target in NSCLC.
Collapse
|
12
|
Cheng AKH, Su H, Wang YA, Yu HZ. Aptamer-based detection of epithelial tumor marker mucin 1 with quantum dot-based fluorescence readout. Anal Chem 2010; 81:6130-9. [PMID: 19572710 DOI: 10.1021/ac901223q] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mucin 1 (MUC1) is a glycoprotein expressed on most epithelial cell surfaces, which has been confirmed as a useful biomarker for the diagnosis of early cancers. In this paper, we report an aptamer-based, quantitative detection protocol for MUC1 using a 3-component DNA hybridization system with quantum dot (QD)-labeling: in the absence of MUC1 peptides, strong fluorescence is observed upon mixing the three specially designed DNA strands (quencher, QD-labeled reporter, and the MUC1 aptamer stem); in the presence of MUC1 peptides, a successive decrease in fluorescence intensity is detected since the MUC1 peptide binds to the aptamer strand in such a way to allow the quencher and fluorescence reporter to be brought into close proximity (which leads to the occurrence of fluorescence resonance energy transfer, FRET, between the quencher and QD). The detection limit for MUC1 with this novel approach is in the nanomolar (nM) level, and a linear response can be established for the approximate range found in blood serum. This study also provided further insight into the aptamer/analyte binding site/mode for MUC1, which augments the possibility of improving this detection methodology for the early diagnosis of different types of epithelial cancers of large populations.
Collapse
Affiliation(s)
- Alan K H Cheng
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | | | | | | |
Collapse
|
13
|
Guang W, Ding H, Czinn SJ, Kim KC, Blanchard TG, Lillehoj EP. Muc1 cell surface mucin attenuates epithelial inflammation in response to a common mucosal pathogen. J Biol Chem 2010; 285:20547-57. [PMID: 20430889 DOI: 10.1074/jbc.m110.121319] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Helicobacter pylori infection of the gastric mucosa causes an active-chronic inflammation that is strongly linked to the development of duodenal and gastric ulcers and stomach cancer. However, greater than 80% of individuals infected with H. pylori are asymptomatic beyond histologic inflammation, and it is unknown what factors influence the incidence and character of bacterial-associated gastritis and related disorders. Because previous studies demonstrated that the Muc1 epithelial glycoprotein inhibited inflammation during acute lung infection by Pseudomonas aeruginosa, we asked whether Muc1 might also counter-regulate gastric inflammation in response to H. pylori infection. Muc1(-/-) mice displayed increased bacterial colonization of the stomach and greater TNF-alpha and keratinocyte chemoattractant transcript levels compared with Muc1(+/+) mice after experimental H. pylori infection. Knockdown of Muc1 expression in AGS human gastric epithelial cells by RNA interference was associated with increased phosphorylation of IkappaBalpha, augmented activation and nuclear translocation of NF-kappaB, and enhanced production of interleulin-8 compared with Muc1-expressing cells. Conversely, Muc1 overexpression was correlated with decreased NF-kappaB activation, reduced interleulin-8 production, and diminished IkappaB kinase beta (IKKbeta)/IKKgamma coimmunoprecipitation compared with cells expressing Muc1 endogenously. Cotransfection of AGS cells with Muc1 plus IKKbeta, but not a catalytically inactive IKKbeta mutant, reversed the Muc1 inhibitory effect. Finally, Muc1 formed a coimmunoprecipitation complex with IKKgamma but not with IKKbeta. These results are consistent with the hypothesis that Muc1 binds to IKKgamma, thereby inhibiting formation of the catalytically active IKK complex and blocking the ability of H. pylori to stimulate IkappaBalpha phosphorylation, NF-kappaB activation, and downstream inflammatory responses.
Collapse
Affiliation(s)
- Wei Guang
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | |
Collapse
|
14
|
Kato K, Lillehoj EP, Kai H, Kim KC. MUC1 expression by human airway epithelial cells mediates Pseudomonas aeruginosa adhesion. Front Biosci (Elite Ed) 2010; 2:68-77. [PMID: 20036855 DOI: 10.2741/e67] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Human MUC1 (Muc1 in animals) is an extensively O-glycosylated membrane-tethered mucin expressed on the surface of epithelial cells and some cells of the hematopoietic system. Recently, we showed that the hamster Muc1 on Chinese hamster ovary (CHO) cells served as a binding site for Pseudomonas aeruginosa (PA) through interaction between bacterial flagellin and the Muc1 ectodomain. Because CHO cells are known to produce an atypical pattern of protein glycosylation, we determined whether or not PA interacted with MUC1 endogenously expressed on human airway epithelial cells. Knock down of MUC1 expression in bronchial (NuLi-1) or alveolar (A549) epithelial cells by RNA interference significantly reduced PA binding to the cells. Conversely, over-expression of MUC1 in HEK293 cells increased bacterial adherence. By confocal microscopy, PA and MUC1 were colocalized on the surface of NuLi-1 cells. Taken together, these results confirm our previous observations in CHO cells and suggest that MUC1 serves as a binding site for PA on the surface of airway epithelial cells, which may have important consequences in the pathogenesis of PA lung infections.
Collapse
Affiliation(s)
- Kosuke Kato
- Department of Physiology and Lung Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | |
Collapse
|
15
|
Guang W, Kim KC, Lillehoj EP. MUC1 mucin interacts with calcium-modulating cyclophilin ligand. Int J Biochem Cell Biol 2009; 41:1354-60. [PMID: 19135167 PMCID: PMC3718471 DOI: 10.1016/j.biocel.2008.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 12/01/2008] [Accepted: 12/08/2008] [Indexed: 11/25/2022]
Abstract
MUC1 is an integral membrane glycoprotein expressed on epithelial and hematopoietic cells with a COOH-terminus (CT) that mediates intracellular signal transduction. To better understand MUC1-dependent signaling, we searched for proteins binding to its CT using the yeast two-hybrid system with the MUC1 CT as bait and a human epithelial cell cDNA library as prey. Of the six positive clones identified, all encoded calcium-modulating cyclophilin ligand (CAML). The MUC1 CT interacted with CAML in transformed yeast cells as revealed by growth on selective media and in situ X-alpha-galactosidase activity. Binding of the MUC1 CT to CAML in human epithelial cells was confirmed by reciprocal coimmunoprecipitations, confocal microscopy, protein crosslinking, and coupled transcription/translation analyses. By deletion mutagenesis, the NH(2)-terminus of CAML was responsible for binding to the MUC1 CT. Finally, transfection of cells with plasmids encoding MUC1 and CAML increased intracellular calcium levels compared with cells transfected with either plasmid alone, suggesting a possible biological significance of the MUC1-CAML interaction.
Collapse
Affiliation(s)
- Wei Guang
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201 United States
| | - K. Chul Kim
- Lovelace Respiratory Research Institute, Albuquerque, NM 87108, United States
| | - Erik P. Lillehoj
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201 United States
| |
Collapse
|
16
|
Rubinstein DB, Karmely M, Pichinuk E, Ziv R, Benhar I, Feng N, Smorodinsky NI, Wreschner DH. The MUC1 oncoprotein as a functional target: Immunotoxin binding to α/β junction mediates cell killing. Int J Cancer 2009; 124:46-54. [DOI: 10.1002/ijc.23910] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Kim KC, Lillehoj EP. MUC1 mucin: a peacemaker in the lung. Am J Respir Cell Mol Biol 2008; 39:644-7. [PMID: 18617677 DOI: 10.1165/rcmb.2008-0169tr] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
MUC1 is a membrane-tethered mucin expressed on the surface of epithelial cells lining mucosal surfaces. Recent studies have begun to elucidate the physiologic function of MUC1 in the airways, pointing to an antiinflammatory role that is initiated late in the course of bacterial infection and is mediated through inhibition of TLR signaling. These new findings have great potential for clinical applications in controlling excessive and prolonged lung inflammation. This review briefly summarizes the protein structural features of MUC1 relevant to its function, the discovery of its antiinflammatory properties, and potential directions for future avenues of study.
Collapse
Affiliation(s)
- K Chul Kim
- Immunology and Asthma Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico 87108-5127, USA.
| | | |
Collapse
|
18
|
McAuley JL, Linden SK, Png CW, King RM, Pennington HL, Gendler SJ, Florin TH, Hill GR, Korolik V, McGuckin MA. MUC1 cell surface mucin is a critical element of the mucosal barrier to infection. J Clin Invest 2007; 117:2313-24. [PMID: 17641781 PMCID: PMC1913485 DOI: 10.1172/jci26705] [Citation(s) in RCA: 321] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Accepted: 05/08/2007] [Indexed: 12/11/2022] Open
Abstract
Cell surface mucin glycoproteins are highly expressed by all mucosal tissues, yet their physiological role is currently unknown. We hypothesized that cell surface mucins protect mucosal cells from infection. A rapid progressive increase in gastrointestinal expression of mucin 1 (Muc1) cell surface mucin followed infection of mice with the bacterial pathogen Campylobacter jejuni. In the first week following oral infection, C. jejuni was detected in the systemic organs of the vast majority of Muc1(-/-) mice but never in Muc1(+/+) mice. Although C. jejuni entered gastrointestinal epithelial cells of both Muc1(-/-) and Muc1(+/+) mice, small intestinal damage as manifested by increased apoptosis and enucleated and shed villous epithelium was more common in Muc1(-/-) mice. Using radiation chimeras, we determined that prevention of systemic infection in wild-type mice was due exclusively to epithelial Muc1 rather than Muc1 on hematopoietic cells. Expression of MUC1-enhanced resistance to C. jejuni cytolethal distending toxin (CDT) in vitro and CDT null C. jejuni showed lower gastric colonization in Muc1(-/-) mice in vivo. We believe this is the first in vivo experimental study to demonstrate that cell surface mucins are a critical component of mucosal defence and that the study provides the foundation for exploration of their contribution to epithelial infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Julie L. McAuley
- Mucosal Diseases Program, Mater Medical Research Institute and The University of Queensland, South Brisbane, Queensland, Australia.
Institute for Glycomics, Griffith University Institute for Glycomics, Gold Coast, Queensland, Australia.
Department of Biochemistry and Molecular Biology and Tumor Biology Program, Mayo Clinic College of Medicine, Scottsdale, Arizona, USA.
Division of Infectious Diseases and Immunology, Queensland Institute of Medical Research, Herston, Queensland, Australia
| | - Sara K. Linden
- Mucosal Diseases Program, Mater Medical Research Institute and The University of Queensland, South Brisbane, Queensland, Australia.
Institute for Glycomics, Griffith University Institute for Glycomics, Gold Coast, Queensland, Australia.
Department of Biochemistry and Molecular Biology and Tumor Biology Program, Mayo Clinic College of Medicine, Scottsdale, Arizona, USA.
Division of Infectious Diseases and Immunology, Queensland Institute of Medical Research, Herston, Queensland, Australia
| | - Chin Wen Png
- Mucosal Diseases Program, Mater Medical Research Institute and The University of Queensland, South Brisbane, Queensland, Australia.
Institute for Glycomics, Griffith University Institute for Glycomics, Gold Coast, Queensland, Australia.
Department of Biochemistry and Molecular Biology and Tumor Biology Program, Mayo Clinic College of Medicine, Scottsdale, Arizona, USA.
Division of Infectious Diseases and Immunology, Queensland Institute of Medical Research, Herston, Queensland, Australia
| | - Rebecca M. King
- Mucosal Diseases Program, Mater Medical Research Institute and The University of Queensland, South Brisbane, Queensland, Australia.
Institute for Glycomics, Griffith University Institute for Glycomics, Gold Coast, Queensland, Australia.
Department of Biochemistry and Molecular Biology and Tumor Biology Program, Mayo Clinic College of Medicine, Scottsdale, Arizona, USA.
Division of Infectious Diseases and Immunology, Queensland Institute of Medical Research, Herston, Queensland, Australia
| | - Helen L. Pennington
- Mucosal Diseases Program, Mater Medical Research Institute and The University of Queensland, South Brisbane, Queensland, Australia.
Institute for Glycomics, Griffith University Institute for Glycomics, Gold Coast, Queensland, Australia.
Department of Biochemistry and Molecular Biology and Tumor Biology Program, Mayo Clinic College of Medicine, Scottsdale, Arizona, USA.
Division of Infectious Diseases and Immunology, Queensland Institute of Medical Research, Herston, Queensland, Australia
| | - Sandra J. Gendler
- Mucosal Diseases Program, Mater Medical Research Institute and The University of Queensland, South Brisbane, Queensland, Australia.
Institute for Glycomics, Griffith University Institute for Glycomics, Gold Coast, Queensland, Australia.
Department of Biochemistry and Molecular Biology and Tumor Biology Program, Mayo Clinic College of Medicine, Scottsdale, Arizona, USA.
Division of Infectious Diseases and Immunology, Queensland Institute of Medical Research, Herston, Queensland, Australia
| | - Timothy H. Florin
- Mucosal Diseases Program, Mater Medical Research Institute and The University of Queensland, South Brisbane, Queensland, Australia.
Institute for Glycomics, Griffith University Institute for Glycomics, Gold Coast, Queensland, Australia.
Department of Biochemistry and Molecular Biology and Tumor Biology Program, Mayo Clinic College of Medicine, Scottsdale, Arizona, USA.
Division of Infectious Diseases and Immunology, Queensland Institute of Medical Research, Herston, Queensland, Australia
| | - Geoff R. Hill
- Mucosal Diseases Program, Mater Medical Research Institute and The University of Queensland, South Brisbane, Queensland, Australia.
Institute for Glycomics, Griffith University Institute for Glycomics, Gold Coast, Queensland, Australia.
Department of Biochemistry and Molecular Biology and Tumor Biology Program, Mayo Clinic College of Medicine, Scottsdale, Arizona, USA.
Division of Infectious Diseases and Immunology, Queensland Institute of Medical Research, Herston, Queensland, Australia
| | - Victoria Korolik
- Mucosal Diseases Program, Mater Medical Research Institute and The University of Queensland, South Brisbane, Queensland, Australia.
Institute for Glycomics, Griffith University Institute for Glycomics, Gold Coast, Queensland, Australia.
Department of Biochemistry and Molecular Biology and Tumor Biology Program, Mayo Clinic College of Medicine, Scottsdale, Arizona, USA.
Division of Infectious Diseases and Immunology, Queensland Institute of Medical Research, Herston, Queensland, Australia
| | - Michael A. McGuckin
- Mucosal Diseases Program, Mater Medical Research Institute and The University of Queensland, South Brisbane, Queensland, Australia.
Institute for Glycomics, Griffith University Institute for Glycomics, Gold Coast, Queensland, Australia.
Department of Biochemistry and Molecular Biology and Tumor Biology Program, Mayo Clinic College of Medicine, Scottsdale, Arizona, USA.
Division of Infectious Diseases and Immunology, Queensland Institute of Medical Research, Herston, Queensland, Australia
| |
Collapse
|
19
|
Lillehoj EP, Lu W, Kiser T, Goldblum SE, Kim KC. MUC1 inhibits cell proliferation by a beta-catenin-dependent mechanism. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1773:1028-38. [PMID: 17524503 PMCID: PMC2349984 DOI: 10.1016/j.bbamcr.2007.04.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Revised: 04/16/2007] [Accepted: 04/16/2007] [Indexed: 10/23/2022]
Abstract
beta-Catenin binds to the cytoplasmic region of the type 1 membrane glycoprotein MUC1. In the current study, we utilized HEK293T cells expressing the full-length MUC1 protein, or a CD8/MUC1 fusion protein containing only the MUC1 cytoplasmic tail, to investigate the effects of beta-catenin binding to MUC1 on downstream beta-catenin-dependent events. Compared with HEK293T cells transfected with empty vector or CD8 alone, expression of the MUC1 cytoplasmic tail inhibited beta-catenin binding to E-cadherin, decreased translocation of beta-catenin into the nucleus, reduced activation of the LEF-1 transcription factor, and blocked expression of the cyclin D1 and c-Myc proteins. Furthermore, expression of MUC1 was associated with decreased cell proliferation, either in the context of the transfected HEK293T cells, or when comparing wild type (Muc1(+/+)) vs. knockout (Muc1(-/-)) mouse primary tracheal epithelial cells. We conclude that MUC1 inhibits cell proliferation through a beta-catenin/LEF-1/cyclin D1/c-Myc pathway.
Collapse
Affiliation(s)
- Erik P Lillehoj
- Department of Pediatrics, University of Maryland School of Medicine, 655 West Baltimore Street, BRB 13-029, Baltimore, MD 21201, USA.
| | | | | | | | | |
Collapse
|
20
|
Kato K, Lu W, Kai H, Kim KC. Phosphoinositide 3-kinase is activated by MUC1 but not responsible for MUC1-induced suppression of Toll-like receptor 5 signaling. Am J Physiol Lung Cell Mol Physiol 2007; 293:L686-92. [PMID: 17586693 DOI: 10.1152/ajplung.00423.2006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
MUC1 is a membrane-tethered mucin-like glycoprotein expressed on the surface of various mucosal epithelial cells as well as hematopoietic cells. Recently, we showed that MUC1 suppresses flagellin-induced Toll-like receptor (TLR) 5 signaling both in vivo and in vitro through cross talk with TLR5. In this study, we determined whether phosphoinositide 3-kinase (PI3K), a negative regulator of TLR5 signaling, is involved in the cross talk between MUC1 and TLR5 using various genetically modified epithelial cell lines. Our results showed 1) activation of MUC1 induced recruitment of the PI3K regulatory subunit p85 to the MUC1 cytoplasmic tail (CT) as well as Akt phosphorylation, 2) MUC1-induced Akt phosphorylation required the presence of Tyr(20) within the PI3K binding motif of the MUC1 CT, and 3) mutation of Tyr(20) or pharmacological inhibition of PI3K activation failed to block MUC1-induced suppression of TLR5 signaling. We conclude that whereas PI3K is downstream of MUC1 activation and negatively regulates TLR5 signaling, it is not responsible for MUC1-induced suppression of TLR5 signaling.
Collapse
Affiliation(s)
- Kosuke Kato
- Immunology and Asthma Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico 87108-5127, USA
| | | | | | | |
Collapse
|
21
|
Koga T, Kuwahara I, Lillehoj EP, Lu W, Miyata T, Isohama Y, Kim KC. TNF-alpha induces MUC1 gene transcription in lung epithelial cells: its signaling pathway and biological implication. Am J Physiol Lung Cell Mol Physiol 2007; 293:L693-701. [PMID: 17575006 DOI: 10.1152/ajplung.00491.2006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The current study was conducted to elucidate the mechanism through which TNF-alpha stimulates expression of MUC1, a membrane-tethered mucin. A549 human lung alveolar cells treated with TNF-alpha exhibited significantly higher MUC1 protein levels in detergent lysates compared with cells treated with vehicle alone. Increased MUC1 protein levels were correlated with significantly higher levels of MUC1 mRNA in TNF-alpha-treated cells compared with controls. However, TNF-alpha did not alter MUC1 transcript stability, implying increased de novo transcription induced by the cytokine. TNF-alpha increased MUC1 gene promoter activity in A549 cells transfected with a promoter-luciferase reporter plasmid. Both U0126, an inhibitor of MEK1/2, and dominant negative ERK1 prevented TNF-alpha-induced MUC1 promoter activation, and anti-TNFR1 antibody blocked TNF-alpha-stimulated ERK1/2 activation. MUC1 promoter activation by TNF-alpha also was blocked by mithramycin A, an inhibitor of Sp1, as well as either deletion or mutation of a putative Sp1 binding site in the MUC1 promoter located between nucleotides -99 and -90. TNF-alpha-stimulated binding of Sp1 to the MUC1 promoter in intact cells was demonstrated by chromatin immunoprecipitation assay. We conclude that TNF-alpha induces MUC1 gene transcription through a TNFR1 --> MEK1/2 --> ERK1 --> Sp1 pathway.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/metabolism
- Binding Sites
- Cell Line, Tumor
- Cell Survival/drug effects
- Dose-Response Relationship, Drug
- Epithelial Cells/drug effects
- Epithelial Cells/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Lung/cytology
- Lung/drug effects
- Lung/metabolism
- Mice
- Mitogen-Activated Protein Kinase 3/metabolism
- Mucin-1
- Mucins/genetics
- Mucins/metabolism
- Promoter Regions, Genetic/genetics
- Protein Binding/drug effects
- RNA Stability/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Signal Transduction/drug effects
- Sp1 Transcription Factor/metabolism
- Time Factors
- Transcription, Genetic/drug effects
- Tumor Necrosis Factor-alpha/pharmacology
Collapse
Affiliation(s)
- Takeshi Koga
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico 87108, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Hattrup CL, Gendler SJ. MUC1 alters oncogenic events and transcription in human breast cancer cells. Breast Cancer Res 2007; 8:R37. [PMID: 16846534 PMCID: PMC1779460 DOI: 10.1186/bcr1515] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2006] [Revised: 06/14/2006] [Accepted: 06/20/2006] [Indexed: 11/10/2022] Open
Abstract
Introduction MUC1 is an oncoprotein whose overexpression correlates with aggressiveness of tumors and poor survival of cancer patients. Many of the oncogenic effects of MUC1 are believed to occur through interaction of its cytoplasmic tail with signaling molecules. As expected for a protein with oncogenic functions, MUC1 is linked to regulation of proliferation, apoptosis, invasion, and transcription. Methods To clarify the role of MUC1 in cancer, we transfected two breast cancer cell lines (MDA-MB-468 and BT-20) with small interfering (si)RNA directed against MUC1 and analyzed transcriptional responses and oncogenic events (proliferation, apoptosis and invasion). Results Transcription of several genes was altered after transfection of MUC1 siRNA, including decreased MAP2K1 (MEK1), JUN, PDGFA, CDC25A, VEGF and ITGAV (integrin αv), and increased TNF, RAF1, and MMP2. Additional changes were seen at the protein level, such as increased expression of c-Myc, heightened phosphorylation of AKT, and decreased activation of MEK1/2 and ERK1/2. These were correlated with cellular events, as MUC1 siRNA in the MDA-MB-468 line decreased proliferation and invasion, and increased stress-induced apoptosis. Intriguingly, BT-20 cells displayed similar levels of apoptosis regardless of siRNA, and actually increased proliferation after MUC1 siRNA. Conclusion These results further the growing knowledge of the role of MUC1 in transcription, and suggest that the regulation of MUC1 in breast cancer may be more complex than previously appreciated. The differences between these two cell lines emphasize the importance of understanding the context of cell-specific signaling events when analyzing the oncogenic functions of MUC1, and caution against generalizing the results of individual cell lines without adequate confirmation in intact biological systems.
Collapse
Affiliation(s)
- Christine L Hattrup
- Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
| | - Sandra J Gendler
- Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
| |
Collapse
|
23
|
Thompson EJ, Shanmugam K, Hattrup CL, Kotlarczyk KL, Gutierrez A, Bradley JM, Mukherjee P, Gendler SJ. Tyrosines in the MUC1 cytoplasmic tail modulate transcription via the extracellular signal-regulated kinase 1/2 and nuclear factor-kappaB pathways. Mol Cancer Res 2006; 4:489-97. [PMID: 16849524 DOI: 10.1158/1541-7786.mcr-06-0038] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Much of the ability of the MUC1 oncoprotein to foster tumorigenesis and tumor progression likely originates from the interaction of its cytoplasmic tail with proteins involved in oncogenic signaling. Many of these interactions are regulated by phosphorylation, as the cytoplasmic tail contains seven highly conserved tyrosines and several serine/threonine phosphorylation sites. We have developed a cell line-based model system to study the effects of tyrosine phosphorylation on MUC1 signaling, with particular emphasis on its effects on gene transcription. COS-7 cells, which lack endogenous MUC1, were stably infected with wild-type MUC1 or a MUC1 construct lacking all seven tyrosines (MUC1 Y0) and analyzed for effects on transcription mediated by the extracellular signal-regulated kinase 1/2 (ERK1/2) and nuclear factor-kappaB (NF-kappaB) pathways. COS.MUC1 Y0 cells showed heightened active ERK1/2 with increased activator protein-1 (AP-1) and signal transducer and activator of transcription 3 (STAT3) transcriptional activity; there was also a simultaneous decrease in NF-kappaB transcriptional activity and nuclear localization. These changes altered the phenotype of COS.MUC1 Y0 cells, as this line displayed increased invasion and enhanced [(3)H]thymidine incorporation. Analysis of the three lines also showed significant differences in their cell cycle profile and bromodeoxyuridine incorporation when the cells were serum starved. These data support the growing evidence that MUC1 is involved in transcriptional regulation and link MUC1 for the first time to the NF-kappaB pathway.
Collapse
|
24
|
Singh PK, Hollingsworth MA. Cell surface-associated mucins in signal transduction. Trends Cell Biol 2006; 16:467-76. [PMID: 16904320 DOI: 10.1016/j.tcb.2006.07.006] [Citation(s) in RCA: 310] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 07/12/2006] [Accepted: 07/27/2006] [Indexed: 12/17/2022]
Abstract
Mucins are heavily glycosylated high molecular weight glycoproteins, which are involved in the protection and lubrication of luminal epithelial surfaces. Transmembrane mucins also engage in signal transduction, through extracellular domain-mediated ligand binding or by interacting with receptors for growth and differentiation factors. The cytoplasmic tail of MUC1 (MUC1CT), the best characterized of the transmembrane mucins, is involved in several signaling pathways, including those involving Ras, beta-catenin, p120 catenin, p53 and estrogen receptor alpha. MUC1CT also forms complexes with transcription factors, and then translocates to the nucleus by an unknown mechanism, where it is believed to influence the transcription of their target genes. MUC1CT has also been proposed to localize to mitochondrial membranes under conditions of genotoxic stress, where it attenuates the apoptotic pathway in response and confers resistance to apoptosis-inducing drugs.
Collapse
Affiliation(s)
- Pankaj K Singh
- Eppley Institute for Research in Cancer and Allied Diseases, Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA
| | | |
Collapse
|
25
|
Kuwahara I, Lillehoj EP, Hisatsune A, Lu W, Isohama Y, Miyata T, Kim KC. Neutrophil elastase stimulates MUC1 gene expression through increased Sp1 binding to the MUC1 promoter. Am J Physiol Lung Cell Mol Physiol 2005; 289:L355-62. [PMID: 15849214 DOI: 10.1152/ajplung.00040.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We previously reported MUC1 was a cell surface receptor for Pseudomonas aeruginosa, and binding of bacteria to cells was significantly reduced by pretreatment with neutrophil elastase (NE) (Lillehoj EP, Hyun SW, Kim BT, Zhang XG, Lee DI, Rowland S, and Kim KC. Am J Physiol Lung Cell Mol Physiol 280: L181-L187, 2001). The current study was conducted to ascertain NE effects on MUC1 gene transcription, and MUC1 protein synthesis and degradation. A549 human lung carcinoma cells treated with NE exhibited significantly higher MUC1 protein levels in detergent lysates compared with cells treated with vehicle alone. Also, MUC1 protein shed into cell-conditioned medium was rapidly and completely degraded by NE. Actinomycin D blocked NE-stimulated increase in MUC1 protein expression, suggesting a mechanism of increased gene transcription that was confirmed by measurement of quantitatively greater MUC1 mRNA levels in NE-treated cells compared with controls. However, NE did not alter MUC1 mRNA stability, implying increased de novo transcription induced by the protease. NE increased promoter activity in A549 cells transfected with MUC1 gene promoter-luciferase reporter plasmid. This effect of NE was completely blocked by mithramycin A, an inhibitor of Sp1, as well as mutation of one of the putative Sp1 binding sites in MUC1 promoter located at -99/-90 relative to transcription initiation site. EMSA revealed NE enhanced binding of Sp1 to this 10-bp segment in a time-dependent manner. These results indicate the increase in MUC1 gene transcription by NE is mediated through increase in Sp1 binding to -99/-90 segment of MUC1 promoter.
Collapse
Affiliation(s)
- Ippei Kuwahara
- Dept. of Pharmaceutical Sciences, School of Pharmacy, Univ. of Maryland, 20 Penn St., Baltimore, MD 21201, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Levitin F, Baruch A, Weiss M, Stiegman K, Hartmann ML, Yoeli-Lerner M, Ziv R, Zrihan-Licht S, Shina S, Gat A, Lifschitz B, Simha M, Stadler Y, Cholostoy A, Gil B, Greaves D, Keydar I, Zaretsky J, Smorodinsky N, Wreschner DH. A Novel Protein Derived from the MUC1 Gene by Alternative Splicing and Frameshifting. J Biol Chem 2005; 280:10655-63. [PMID: 15623537 DOI: 10.1074/jbc.m406943200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Genes that have been designated the name "MUC" code for proteins comprising mucin domains. These proteins may be involved in barrier and protective functions. The first such gene to be characterized and sequenced is the MUC1 gene. Here we report a novel small protein derived from the MUC1 gene by alternative splicing that does not contain the hallmark of mucin proteins, the mucin domain. This protein termed MUC1/ZD retains the same N-terminal MUC1 sequences as all of the other known MUC1 protein isoforms. The common N-terminal sequences comprise the signal peptide and a subsequent stretch of 30 amino acids. In contrast, the MUC1/ZD C-terminal 43 amino acids are novel and result from a reading frameshift engendered by a splicing event that forms MUC1/ZD. The expression of MUC1/ZD at the protein level in human tissues is demonstrated by Western blotting, immunohistochemistry, immunoprecipitation, and an ELISA. Utilization was made of affinity-purified MUC1/ZD-specific polyclonal antibodies as well as two different monoclonal antibodies that are monospecific for the MUC1/ZD protein. The MUC1/ZD protein is expressed in tissues as an oligomeric complex composed of monomers linked by disulfide bonds contributed by MUC1/ZD cysteine residues. MUC1/ZD protein expression did not parallel that of the tandem-repeat array-containing MUC1 protein. Results presented here demonstrate for the first time the expression of a novel MUC1 protein isoform MUC1/ZD, which is generated by an alternative splicing event that both deletes the tandem-repeat array and leads to a C-terminal reading frameshift.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/chemistry
- Base Sequence
- Blotting, Western
- Cell Line
- Cell Line, Tumor
- Cloning, Molecular
- Cysteine/chemistry
- DNA, Complementary/metabolism
- Disulfides
- Electrophoresis, Gel, Two-Dimensional
- Electrophoresis, Polyacrylamide Gel
- Enzyme-Linked Immunosorbent Assay
- Frameshift Mutation
- Green Fluorescent Proteins/metabolism
- Humans
- Hybridomas/metabolism
- Immunoblotting
- Immunohistochemistry
- Immunoprecipitation
- Mice
- Models, Genetic
- Molecular Sequence Data
- Mucin-1/chemistry
- Mucin-1/genetics
- Protein Isoforms
- Protein Structure, Tertiary
- Recombinant Fusion Proteins/metabolism
- Recombinant Proteins
- Reverse Transcriptase Polymerase Chain Reaction
- Skin/metabolism
Collapse
Affiliation(s)
- Fiana Levitin
- Department of Cell Research and Immunology, Tel-Aviv University, Ramat Aviv 69978, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|