1
|
Miao L, Chen B, Jing L, Zeng T, Chen Y. TPD52 as a Potential Prognostic Biomarker and its Correlation with Immune Infiltrates in Uterine Corpus Endometrial Carcinoma: Bioinformatic Analysis and Experimental Verification. Recent Pat Anticancer Drug Discov 2025; 20:71-88. [PMID: 38305309 DOI: 10.2174/0115748928267447231107101539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/15/2023] [Accepted: 10/04/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND Aberrant expression of tumor protein D52 (TPD52) is associated with some tumors. The role of TPD52 in uterine corpus endometrial carcinoma (UCEC) remains uncertain. OBJECTIVE We aimed to investigate the involvement of TPD52 in the pathogenesis of UCEC. METHODS We employed bioinformatics analysis and experimental validation in our study. RESULTS Our findings indicated that elevated TPD52 expression in UCEC was significantly associated with various clinical factors, including clinical stage, race, weight, body mass index (BMI), histological type, histological grade, surgical approach, and age (p < 0.01). Furthermore, high TPD52 expression was a predictor of poorer overall survival (OS), progress-free survival (PFS), and disease-specific survival (DSS) (p = 0.011, p = 0.006, and p = 0.003, respectively). TPD52 exhibited a significant correlation with DSS (HR: 2.500; 95% CI: 1.153-5.419; p = 0.02). TPD52 was involved in GPCR ligand binding and formation of the cornified envelope in UCEC. Moreover, TPD52 expression was found to be associated with immune infiltration, immune checkpoints, tumor mutation burden (TMB)/ microsatellite instability (MSI), and mRNA stemness indices (mRNAsi). The somatic mutation rate of TPD52 in UCEC was 1.9%. A ceRNA network of AC011447.7/miR-1-3p/TPD52 was constructed. There was excessive TPD52 protein expression. The upregulation of TPD52 expression in UCEC cell lines was found to be statistically significant. CONCLUSION TPD52 is upregulated in UCEC and may be a useful patent for prognostic biomarkers of UCEC, which may have important value for clinical treatment and supervision of UCEC patients.
Collapse
Affiliation(s)
- Lu Miao
- Department of Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, 215026, Suzhou, Jiangsu, China
- Department of Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221009, Jiangsu, China
| | - Buze Chen
- Department of Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221009, Jiangsu, China
| | - Li Jing
- Department of Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221009, Jiangsu, China
| | - Tian Zeng
- Department of Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221009, Jiangsu, China
| | - Youguo Chen
- Department of Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, 215026, Suzhou, Jiangsu, China
| |
Collapse
|
2
|
Watanabe M, Mukudai Y, Kindaichi N, Nara M, Yamada K, Abe Y, Houri A, Shimane T, Shirota T. Tumor Protein D53 (TPD53): Involvement in Malignant Transformation of Low-Malignant Oral Squamous Cell Carcinoma Cells. Biomedicines 2024; 12:2725. [PMID: 39767632 PMCID: PMC11727615 DOI: 10.3390/biomedicines12122725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 01/16/2025] Open
Abstract
Background/Objectives: The tumor protein D52 (TPD52) family includes TPD52, TPD53, TPD54, and TPD55. The balance between TPD52 and TPD54 expression plays an important role in high-malignant oral squamous cell carcinoma (OSCC) cells. However, the relationship between TPD53 and OSCC cells (particularly low-malignant OSCC cells) remains unclear. In the present study, we investigated the role of TPD53 in the malignant transformation of low-malignant OSCC cells. Methods: Temporal changes in the expression of TPD52 family members at the protein and mRNA levels in OSCC cells and normal human epidermal keratinocytes (NHEK) were examined. Results: The mRNA expression of TPD53 increased in HSC-3 and HSC-4 cells in a time-dependent manner. Similar results for protein expression were observed. The effects of TPD53 on anchorage-dependent and anchorage-independent proliferation, cell cycle, invasion and migration, epithelial-mesenchymal transition (EMT), and matrix metalloproteinase (MMP) activities in HSC-3 and HSC-4 cells were assayed. Finally, using the HSC-3-xenograft-nude-mice model, these effects were examined in vivo. Overexpression of TPD53 increased cell viability and the percentage of cells in the S phase. Furthermore, overexpression of TPD53 increased cell invasion, migration, and MMP activities, regardless of its effect on EMT. Notably, these effects were more pronounced in HSC-3 than in HSC-4 cells. Overexpression of TPD53 enhanced tumor formation and growth in mouse xenografts, corroborating the results of in vitro experiments. Conclusions: The present study revealed novel and important functions of TPD53 in the proliferation and invasion of low-malignant OSCC cells.
Collapse
Affiliation(s)
| | - Yoshiki Mukudai
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, 2-1-1 Kitasenzoku, Ota-ku, Tokyo 145-8515, Japan; (M.W.); (T.S.)
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Lu M, Xia H, Xu J, Liao Z, Li Y, Peng H. Overexpression of TPD52L2 in HNSCC: prognostic significance and correlation with immune infiltrates. BMC Oral Health 2024; 24:1191. [PMID: 39375696 PMCID: PMC11460091 DOI: 10.1186/s12903-024-04977-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 09/30/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Evidence has been presented that the tumor protein D52 (TPD52) family plays a critical role in tumor development and progression. As a member of the TPD52 family, the changes in TPD52L2 gene status are instrumental in kinds of cancer development. However, its effects on patient prognosis and immune infiltration in Head and Neck Squamous Carcinoma (HNSCC) are still poorly understood. METHODS The Tumor Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and c-BioPortal database was used to explore the expression pattern, prognostic value, and variation of gene status in HNSCC. The LinkedOmics database was used to obtain the co-expression genes of TPD52L2 and identify the diagnostic value of TPD52L2 in HNSCC. The correlations between TPD52L2 expression and six main types of immune cell infiltrations and immune signatures were explored using Tumor Immune Estimation Resource (TIMER). The correlation between TPD52L2 expression and immune checkpoint genes (ICGs) was analyzed by TCGA database. Immunohistochemistry (IHC) was performed to validate the expression of three ICGs (PDL1, PDL2, EGFR) and TPD52L2 using 5 paired HNSCC and normal head and neck tissues. Polymerase Chain Reaction (PCR) and Western Blot (WB) of HNSCC and normal head and neck cell lines were performed to verify the high level of TPD52L2 mRNA and protein expression. protein expression of TPD52L2 in pan-cancer was also validated using UALCAN. RESULTS TPD52L2 was overexpressed in tumor tissues, and it predicted worse survival status in HNSCC. ROC analysis suggested that TPD52L2 had a diagnostic value. Multivariate Cox analysis identified TPD52L2 as an independent negative prognostic marker of overall survival. Functional network analysis suggested that TPD52L2 was associated with immune-related signaling pathways, cell migration pathways, and cancer-related pathways. High expression of TPD52L2 was associated with a more mutant frequency of TP53. Notably, we found that the expression of TPD52L2 was closely negatively correlated with the infiltration levels of 15 types of immune cells and positively correlated with several immune markers. PCR, WB experiments, and UALCAN database verified the high level of TPD52L2 mRNA and protein expression. CONCLUSION TPD52L2 is upregulated in HNSCC, which is an independent factor for adverse prognosis prediction. It probably plays a role in the negative regulation of immune cell infiltration. TPD52L2 might be a promising prognostic biomarker and therapeutic target in HNSCC.
Collapse
Affiliation(s)
- Min Lu
- The Department of Head and Neck Surgery, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Haoyu Xia
- The Department of Gynecologic Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Jing Xu
- The Department of Head and Neck Surgery, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Zijun Liao
- The Department of Head and Neck Surgery, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Yuwen Li
- The Department of Head and Neck Surgery, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Hanwei Peng
- The Department of Head and Neck Surgery, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China.
| |
Collapse
|
4
|
Tumor protein D54 binds intracellular nanovesicles via an extended amphipathic region. J Biol Chem 2022; 298:102136. [PMID: 35714773 PMCID: PMC9270247 DOI: 10.1016/j.jbc.2022.102136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/22/2022] Open
Abstract
Tumor Protein D54 (TPD54) is an abundant cytosolic protein that belongs to the TPD52 family, a family of four proteins (TPD52, 53, 54 and 55) that are overexpressed in several cancer cells. Even though the functions of these proteins remain elusive, recent investigations indicate that TPD54 binds to very small cytosolic vesicles with a diameter of ca. 30 nm, half the size of classical (e.g. COPI and COPII) transport vesicles. Here, we investigated the mechanism of intracellular nanovesicle capture by TPD54. Bioinformatical analysis suggests that TPD54 contains a small coiled-coil followed by four amphipathic helices (AH1-4), which could fold upon binding to lipid membranes. Limited proteolysis, circular dichroism (CD) spectroscopy, tryptophan fluorescence, and cysteine mutagenesis coupled to covalent binding of a membrane sensitive probe showed that binding of TPD54 to small liposomes is accompanied by large structural changes in the amphipathic helix region. Furthermore, site-directed mutagenesis indicated that AH2 and AH3 have a predominant role in TPD54 binding to membranes both in cells and using model liposomes. We found that AH3 has the physicochemical features of an Amphipathic Lipid Packing Sensor (ALPS) motif, which, in other proteins, enables membrane binding in a curvature-dependent manner. Accordingly, we observed that binding of TPD54 to liposomes is very sensitive to membrane curvature and lipid unsaturation. We conclude that TPD54 recognizes nanovesicles through a combination of ALPS-dependent and -independent mechanisms.
Collapse
|
5
|
Zhong A, Chen T, Zhou T, Zhang Z, Shi M. TPD52L2 Is a Prognostic Biomarker and Correlated With Immune Infiltration in Lung Adenocarcinoma. Front Pharmacol 2021; 12:728420. [PMID: 34744715 PMCID: PMC8567320 DOI: 10.3389/fphar.2021.728420] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/20/2021] [Indexed: 01/12/2023] Open
Abstract
Tumor protein D52-like 2 (TPD52L2) belongs to the members of the TPD52 family. TPD52L2 was reported to regulate proliferation and apoptosis in cancer cells. However, its role in lung adenocarcinoma (LUAD) was uncertain. We evaluated the expression, methylation, copy number alteration, and prognostic significance of TPD52L2 using RNA-seq data from The Cancer Genome Atlas (TCGA). Enrichment analysis of TPD52L2 was conducted using the R package “clusterProfiler.” We further assessed the association between TPD52L2 and immune cell infiltration level, immunosuppressive genes, and tumor mutational burden (TMB). The difference of gene mutant frequency in high- and low-TPD52L2 groups was also analyzed. The results showed that TPD52L2 was over-expressed and predicted worse survival status in LUAD. We also found that TPD52L2 expression was positively associated with the infiltration levels of immunosuppressive cells, such as regulatory T cells (Tregs) and tumor-associated macrophages (TAMs), and negatively correlated with immune killer cells, such as CD8+ T and NK cells in pan-cancer, including LUAD. In addition, TPD52L2 expression was associated with immunosuppressive genes and TMB. High expression of TPD52L2 was with more mutant frequency of TP53. In summary, our results show that TPD52L2 is an oncogene and a potential prognostic biomarker in LUAD. High TPD52L2 expression is a possible indicator of immune infiltration and associated with tumor immunosuppressive status in LUAD.
Collapse
Affiliation(s)
- Anyuan Zhong
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ting Chen
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Tong Zhou
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zengli Zhang
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Minhua Shi
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
6
|
Mast N, Petrov AM, Prendergast E, Bederman I, Pikuleva IA. Brain Acetyl-CoA Production and Phosphorylation of Cytoskeletal Proteins Are Targets of CYP46A1 Activity Modulation and Altered Sterol Flux. Neurotherapeutics 2021; 18:2040-2060. [PMID: 34235635 PMCID: PMC8609074 DOI: 10.1007/s13311-021-01079-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2021] [Indexed: 02/04/2023] Open
Abstract
Cholesterol and 24-hydroxycholesterol are the most abundant brain sterols and represent the substrate and product, respectively, of cytochrome P450 46A1 (CYP46A1), a CNS-specific enzyme. CYP46A1 controls cholesterol elimination and turnover in the brain, the two processes that determine the rate of brain sterol flux through the plasma membranes and thereby the properties of these membranes. Brain sterol flux is decreased in Cyp46a1-/- mice compared to wild-type mice and increased in 5XFAD mice (a model of Alzheimer's disease) when they are treated with a small dose of efavirenz, a CYP46A1 activator. Herein, we first assessed the brain proteome (synaptosomal fractions) and phospho-proteome (synaptosomal fractions and brain homogenates) of efavirenz-treated and control 5XFAD mice. Then, based on the pattern of protein abundance change, we conducted acetyl-CoA measurements (brain homogenates and mitochondria) and metabolic profiling (brain homogenates). The phospho-proteomics datasets were used for comparative analyses with the datasets obtained by us previously on mice with the same changes (efavirenz-treated and control 5XFAD mice from a different treatment paradigm) or with changes in the opposite direction (Cyp46a1-/- vs wild-type mice) in brain sterol flux. We found that CYP46A1 activity or the rate of brain sterol flux affects acetyl-CoA-related metabolic pathways as well as phosphorylation of cytoskeletal and other proteins. Knowledge of the key roles of acetyl-CoA and cytoskeletal phosphorylation in cell biology expands our understanding of the significance of CYP46A1-mediated cholesterol 24-hydroxylation in the brain and provides an additional explanation for why CYP46A1 activity modulations are beneficial in mouse models of different brain diseases.
Collapse
Affiliation(s)
- Natalia Mast
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Alexey M Petrov
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center, Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, 420111, Kazan, Russia
- Institute of Neuroscience, Kazan State Medial University, 49 Butlerova Street, 420012, Kazan, Russia
| | - Erin Prendergast
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Ilya Bederman
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
7
|
Ren J, Chen Y, Kong W, Li Y, Lu F. Tumor protein D52 promotes breast cancer proliferation and migration via the long non-coding RNA NEAT1/microRNA-218-5p axis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1008. [PMID: 34277808 PMCID: PMC8267315 DOI: 10.21037/atm-21-2668] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/16/2021] [Indexed: 12/24/2022]
Abstract
Background Breast cancer is an aggressive disease with high morbidity and mortality rates among women globally. Tumor protein D52 (TPD52) is an oncogene in breast cancer; however, its physiological function remains elusive. This study set out to obtain a deeper understanding of the functions of TPD52 in the pathophysiology of breast cancer by exploring its effects on breast cancer cell proliferation and migration. Methods Bioinformatics analysis was performed to predict the bonding of TPD52 and nuclear paraspeckle assembly transcript 1 (NEAT1) with miR-218-5p. The bonding of TPD52 and NEAT1 with miR-218-5p were verified by luciferase reporter assays. The mRNA expression of TPD52, miR-218-5p or NEAT1 were tested by Rt-qPCR and the protein expression of TPD52 was tested by western blot. Colony formation and EdU assays were carried out to evaluate cell proliferation. Wound healing and Transwell assays were used to evaluate migration. Results In this study, TPD52 was upregulated in breast cancer cells, and silencing of TPD52 repressed the proliferation and migration of breast cancer cells in vitro and in vivo. Further, microRNA (miR)-218-5p reduced the expression level of TPD52, while overexpression of TPD52 attenuated the effects of miR-218-5p mimics on breast cancer cell proliferation and migration. Also, NEAT1 acted as a competitive endogenous sponge of miR-218-5p to downregulate free miR-218-5p levels. It was further observed that TPD52 overexpression recovered the inhibition of breast cancer cell growth and migration caused by NEAT1 downregulation. These results confirmed the functions of NEAT1 in breast cancer and supported the mechanism of the NEAT1/miR-218-5p/TPD52 axis. Conclusions Our findings highlight the important role of the NEAT1/miR-218-5p/TPD52 axis in breast cancer cell proliferation and migration. This axis may be a potential therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Jing Ren
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yunzi Chen
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weishu Kong
- 32023 Troops, People's Liberation Army, Dalian, China
| | - Ye Li
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Miserazzi A, Perrigault M, Sow M, Gelber C, Ciret P, Lomenech AM, Dalens JM, Weber C, Le Floch S, Lacroix C, Blanc P, Massabuau JC. Proteome changes in muscles, ganglia, and gills in Corbicula fluminea clams exposed to crude oil: Relationship with behavioural disturbances. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 223:105482. [PMID: 32371337 DOI: 10.1016/j.aquatox.2020.105482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
The use of online remote control for 24/7 behavioural monitoring can play a key role in estimating the environmental status of aquatic ecosystems. Recording the valve activity of bivalve molluscs is a relevant approach in this context. However, a clear understanding of the underlying disturbances associated with behaviour is a key step. In this work, we studied freshwater Asian clams after exposure to crude oil (measured concentration, 167 ± 28 μg·L-1) for three days in a semi-natural environment using outdoor artificial streams. Three complementary approaches to assess and explore disturbances were used: behaviour by high frequency non-invasive (HFNI) valvometry, tissue contamination with polycyclic aromatic hydrocarbons (PAH), and proteomic analysis. Two tissues were targeted: the pool adductor muscles - retractor pedal muscle - cerebral and visceral ganglia, which is the effector of any valve movement and the gills, which are on the frontline during contamination. The behavioural response was marked by an increase in valve closure-duration, a decrease in valve opening-amplitude and an increase in valve agitation index during opening periods. There was no significant PAH accumulation in the muscle plus nervous ganglia pool, contrary to the situation in the gills, although the latter remained in the low range of data available in literature. Major proteomic changes included (i) a slowdown in metabolic and/or cellular processes in muscles plus ganglia pool associated with minor toxicological effect and (ii) an increase of metabolic and/or cellular processes in gills associated with a greater toxicological effect. The nature of the proteomic changes is discussed in terms of unequal PAH distribution and allows to propose a set of explanatory mechanisms to associate behaviour to underlying physiological changes following oil exposure. First, the first tissues facing contaminated water are the inhalant siphon, the mantle edge and the gills. The routine nervous activity in the visceral ganglia should be modified by nervous information originating from these tissues. Second, the nervous activity in the visceral ganglia could be modified by its own specific contamination. Third, a decrease in nervous activity of the cerebral ganglia close to the mouth, including some kind of narcosis, could contribute to a decrease in visceral ganglia activity via a decrease or blockage of the downward neuromodulation by the cerebro-visceral connective. This whole set of events can explain the decrease of metabolic activity in the adductor muscles, contribute to initiate the catch mechanism and then deeply modify the valve behaviour.
Collapse
Affiliation(s)
- A Miserazzi
- University of Bordeaux, EPOC, UMR 5805, Arcachon, France; CNRS, EPOC, UMR 5805, Talence, France
| | - M Perrigault
- University of Bordeaux, EPOC, UMR 5805, Arcachon, France; CNRS, EPOC, UMR 5805, Talence, France
| | - M Sow
- University of Bordeaux, EPOC, UMR 5805, Arcachon, France; CNRS, EPOC, UMR 5805, Talence, France
| | - C Gelber
- Pôles d'études et de Recherche de Lacq, TOTAL, Lacq, France
| | - P Ciret
- University of Bordeaux, EPOC, UMR 5805, Arcachon, France; CNRS, EPOC, UMR 5805, Talence, France
| | - A M Lomenech
- Center of Functional Genomics, Bordeaux University, Bordeaux, France
| | - J M Dalens
- Pôles d'études et de Recherche de Lacq, TOTAL, Lacq, France
| | - C Weber
- Pôles d'études et de Recherche de Lacq, TOTAL, Lacq, France
| | | | | | - P Blanc
- CSTJF, TOTAL SA, Pau, France
| | - J C Massabuau
- University of Bordeaux, EPOC, UMR 5805, Arcachon, France; CNRS, EPOC, UMR 5805, Talence, France.
| |
Collapse
|
9
|
Ren H, Luo M, Chen J, Zhou Y, Li X, Zhan Y, Shen D, Chen B. Identification of TPD52 and DNAJB1 as two novel bile biomarkers for cholangiocarcinoma by iTRAQ‑based quantitative proteomics analysis. Oncol Rep 2019; 42:2622-2634. [PMID: 31661142 PMCID: PMC6859461 DOI: 10.3892/or.2019.7387] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 09/26/2019] [Indexed: 12/29/2022] Open
Abstract
Cholangiocarcinoma (CCA) represents a type of epithelial cancer with a late diagnosis and poor outcome. However, the molecular mechanisms responsible for the development of CCA have not yet been fully identified. Thus, in this study, we aimed to elucidate some of these mechanisms. For this purpose, isobaric tags for relative and absolute quantification (iTRAQ) was performed to analyze the secretory proteins from the 2 CCA cell lines, TFK1 and HuCCT1, as well as from a normal biliary epithelial cell line, human intrahepatic biliary epithelial cells (HiBECs). Differentially expressed proteins (DEPs) were identified and biological process analysis was performed according to the Gene Ontology (GO) functional classification annotation and KEGG metabolic pathway map analysis. tumor protein D52 (TPD52) and DnaJ heat shock protein family (Hsp40) member B1 (DNAJB1) were validated using RT-qPCR, western blot analysis and immunohistochemistry. In total, 778 proteins were identified as DEPs. Following validation, TPD52 and DNAJB1 were used for further analysis. The expression levels of TPD52 and DNAJB1 were elevated in CCA cell lines, tissues and bile samples, suggesting that these proteins may contribute to tumor pathogenesis. In addition, the expression levels of TPD52 and DNAJB1 were found to be closely associated with the clinical parameters and prognosis of patients with CCA. On the whole, the findings of this study indicate that TPD52 and DNAJB1 may serve as novel bile biomarkers for CCA.
Collapse
Affiliation(s)
- Hongyue Ren
- Department of Pathology, The Affiliated Southeast Hospital of Xiamen University, Zhangzhou, Fujian 363000, P.R. China
| | - Mingxu Luo
- Department of Gastrointestinal Surgery, Xiamen Humanity Hospital, Xiamen Fujian 361003, P.R. China
| | - Jinzhong Chen
- Endoscopy Center, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen Fujian 361003, P.R. China
| | - Yanming Zhou
- Hepatopancreatobiliary Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen Fujian 361003, P.R. China
| | - Xiumei Li
- Endoscopy Center, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen Fujian 361003, P.R. China
| | - Yanyan Zhan
- Cancer Research Center, Xiamen University Medical College, Xiamen, Fujian 361002, P.R. China
| | - Dongyan Shen
- Biobank, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Bo Chen
- Department of Gastrointestinal Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen Fujian 361003, P.R. China
| |
Collapse
|
10
|
Dasari C, Reddy KRK, Natani S, Murthy TRL, Bhukya S, Ummanni R. Tumor protein D52 (isoform 3) interacts with and promotes peroxidase activity of Peroxiredoxin 1 in prostate cancer cells implicated in cell growth and migration. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1298-1309. [PMID: 30981892 DOI: 10.1016/j.bbamcr.2019.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 12/20/2022]
Abstract
Tumor protein D52 (TPD52) is overexpressed in multiple cancers including prostate cancer due to gene amplification and investigations to understand its role in the pathophysiology of different cancers are continuing. GST pull-down assays and Tandem affinity purification of TPD52 as bait identified novel prey Peroxiredoxin 1 (PRDX1) in prostate cancer (PCa) cells. PRDX1 interaction with TPD52 was confirmed in immunoprecipitation and affinity interaction assays. Mapping of interaction domain indicated that PRDX1 interacts with C-terminal region of TPD52 containing PEST domain between 152 and 179 amino acids, a new binding region of TPD52. Here we show that TPD52 interaction with PRDX1 increased its peroxidase activity and ectopic expression of TPD52 induced dimerization of PRDX1 in PCa cells. Moreover, H2O2 exposure evoked the interaction between TPD52 and PRDX1 while depletion of both proteins led to the accumulation of H2O2 suggesting peroxidase activity is important to maintain oxidative capacity in PCa cells. We also observed that overexpression or downregulation of TPD52 and PRDX1 individually or together affecting PCa cells growth, survival, and migration. Altogether, our results show a novel interaction partner of TPD52 providing new insights of its functions and ascertain the role of TPD52-PRDX1 interaction in PCa progression.
Collapse
Affiliation(s)
- Chandrashekhar Dasari
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India; Academy of Scientific & Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Karthik Reddy Kami Reddy
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India; Academy of Scientific & Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Sirisha Natani
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India; Academy of Scientific & Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - T R L Murthy
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Supriya Bhukya
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Ramesh Ummanni
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India; Academy of Scientific & Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India.
| |
Collapse
|
11
|
Byrne JA, Grima N, Capes-Davis A, Labbé C. The Possibility of Systematic Research Fraud Targeting Under-Studied Human Genes: Causes, Consequences, and Potential Solutions. Biomark Insights 2019; 14:1177271919829162. [PMID: 30783377 PMCID: PMC6366001 DOI: 10.1177/1177271919829162] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/08/2019] [Indexed: 12/27/2022] Open
Abstract
A major reason for biomarker failure is the selection of candidate biomarkers based on inaccurate or incorrect published results. Incorrect research results leading to the selection of unproductive biomarker candidates are largely considered to stem from unintentional research errors. The additional possibility that biomarker research may be actively misdirected by research fraud has been given comparatively little consideration. This review discusses what we believe to be a new threat to biomarker research, namely, the possible systematic production of fraudulent gene knockdown studies that target under-studied human genes. We describe how fraudulent papers may be produced in series by paper mills using what we have described as a 'theme and variations' model, which could also be considered a form of salami slicing. We describe features of these single-gene knockdown publications that may allow them to evade detection by journal editors, peer reviewers, and readers. We then propose a number of approaches to facilitate their detection, including improved awareness of the features of publications constructed in series, broader requirements to post submitted manuscripts to preprint servers, and the use of semi-automated literature screening tools. These approaches may collectively improve the detection of fraudulent studies that might otherwise impede future biomarker research.
Collapse
Affiliation(s)
- Jennifer A Byrne
- Molecular Oncology Laboratory, Children’s Cancer Research Unit, Kids Research, The Children’s Hospital at Westmead, Westmead, NSW, Australia
- Discipline of Child and Adolescent Health, The University of Sydney and The Children’s Hospital at Westmead, Westmead, NSW, Australia
| | - Natalie Grima
- Molecular Oncology Laboratory, Children’s Cancer Research Unit, Kids Research, The Children’s Hospital at Westmead, Westmead, NSW, Australia
| | - Amanda Capes-Davis
- CellBank Australia, Children’s Medical Research Institute and The University of Sydney, Westmead, NSW, Australia
| | - Cyril Labbé
- Univ Grenoble Alpes, CNRS, Grenoble INP, LIG, Grenoble, France
| |
Collapse
|
12
|
Ha M, Han M, Kim J, Jeong DC, Oh S, Kim YH. Prognostic role of
TPD52
in acute myeloid leukemia: A retrospective multicohort analysis. J Cell Biochem 2018; 120:3672-3678. [DOI: 10.1002/jcb.27645] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 08/14/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Mihyang Ha
- Department of Anatomy School of Medicine, Pusan National University Yangsan Republic of Korea
| | - Myoung‐Eun Han
- Department of Anatomy School of Medicine, Pusan National University Yangsan Republic of Korea
| | - Ji‐Young Kim
- Department of Anatomy School of Medicine, Pusan National University Yangsan Republic of Korea
| | - Dae Cheon Jeong
- Deloitte Analytics Group, Deloitte Consulting LLC Seoul Republic of Korea
| | - Sae‐Ock Oh
- Department of Anatomy School of Medicine, Pusan National University Yangsan Republic of Korea
| | - Yun Hak Kim
- Department of Anatomy School of Medicine, Pusan National University Yangsan Republic of Korea
- BEER, Busan Society of Evidence‐Based Medicine and Research Busan Republic of Korea
| |
Collapse
|
13
|
Wu Y, Huang J, Xu H, Gong Z. Over-expression of miR-15a-3p enhances the radiosensitivity of cervical cancer by targeting tumor protein D52. Biomed Pharmacother 2018; 105:1325-1334. [DOI: 10.1016/j.biopha.2018.06.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/07/2018] [Accepted: 06/07/2018] [Indexed: 11/16/2022] Open
|
14
|
Suppression of PC-1/PrLZ sensitizes prostate cancer cells to ionizing radiation by attenuating DNA damage repair and inducing autophagic cell death. Oncotarget 2018; 7:62340-62351. [PMID: 27694690 PMCID: PMC5308731 DOI: 10.18632/oncotarget.11470] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 08/09/2016] [Indexed: 01/18/2023] Open
Abstract
Radiotherapy is promising and effective for treating prostate cancer but the addition of a tumor cell radiosensitizer would improve therapeutic outcomes. PC-1/PrLZ, a TPD52 protein family member is frequently upregulated in advanced prostate cancer cells and may be a biomarker of aggressive prostate cancer. Therefore, we investigated the potential role of PC-1/PrLZ for increasing radioresistance in human prostate cancer cell lines. Growth curves and survival assays after g-ray irradiation confirmed that depletion of endogenous PC-1/PrLZ significantly increased prostate cancer cell radiosensitivity. Irradiation (IR) increased PC-1/PrLZ expression in a dose- and time-dependent manner and increased radiosensitivity in PC-1/PrLZ-suppressed cells was partially due to decreased DNA double strand break (DBS) repair which was measured with comet and gH2AX foci assays. Furthermore, depletion of PC-1/PrLZ impaired the IR-induced G2/M checkpoint, which has been reported to be correlate with radioresistance in cancer cells. PC-1/PrLZ-deficient cells exhibited higher level of autophagy when compared with control cells. Thus, specific inhibition of PC-1/PrLZ might provide a novel therapeutic strategy for radiosensitizing prostate cancer cells.
Collapse
|
15
|
Chi Y, Ding F, Zhang W, Du L. microRNA-503 suppresses the migration, proliferation and colony formation of prostate cancer cells by targeting tumor protein D52 like 2. Exp Ther Med 2017; 15:473-478. [PMID: 29375699 DOI: 10.3892/etm.2017.5401] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 06/22/2017] [Indexed: 02/07/2023] Open
Abstract
The present study investigated the expression of microRNA-503 (miR-503) and its effect and mechanism of action on prostate cancer. Tumor tissues and tumor-adjacent tissues were collected from 20 patients with prostate cancer. TargetScan was used to predict the miRNA molecule that interacts with tumor protein D52 like 2 (TPD52L2). DU145 cells were transfected with a negative control, miR-503 mimic or miR-503 inhibitor. DU145 cells that had not undergone transfection were used as a control. Levels of miR-503 and TPD52L2 mRNA were determined using reverse transcription-quantitative polymerase chain reaction and the expression of TPD52L2 protein was measured using western blot analysis. The migration ability of DU145 cells was evaluated using a Transwell assay and cell proliferation was examined using an MTT assay. A flat plate colony formation test was conducted to examine the colony formation rate of DU145 cells. The current study demonstrated that TPD52L2 expression is increased while miR-503 expression is decreased in prostate cancer tissues. Overexpression of miR-503 inhibited the transcription and translation of TPD52L2 in DU145 cells and reduced cell migration, proliferation and colony formation. By contrast, inhibition of miR-503 expression increased the expression of TPD52L2 in DU145 cells and increased cell migration, proliferation and colony formation. The present study demonstrated that miR-503 is an oncogene that regulates the migration, proliferation and colony formation of prostate cancer cells by targeting the TPD52L2 gene. Thus, miR-503 has the potential to become a target for the molecular treatment and prognosis of prostate cancer in the future.
Collapse
Affiliation(s)
- Yuhua Chi
- Department of Oncology, People's Hospital of Rizhao, Rizhao, Shandong 276800, P.R. China
| | - Feng Ding
- Department of Anesthesia Surgery, People's Hospital of Rizhao, Rizhao, Shandong 276800, P.R. China
| | - Wenjie Zhang
- Department of Oncology, People's Hospital of Rizhao, Rizhao, Shandong 276800, P.R. China
| | - Lifa Du
- Department of Oncology, People's Hospital of Rizhao, Rizhao, Shandong 276800, P.R. China
| |
Collapse
|
16
|
Ren L, Chen J, Zhang X. Increased expression of tumor protein D54 is associated with clinical progression and poor prognosis in patients with prostate cancer. Oncol Lett 2017; 14:7739-7744. [PMID: 29250174 PMCID: PMC5727629 DOI: 10.3892/ol.2017.7214] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 08/10/2017] [Indexed: 01/18/2023] Open
Abstract
Tumor protein D54 (TPD54) has been reported to be involved in the prognosis of several cancers. However, the involvement of TPD54 in prostate cancer (PCa) is yet to be elucidated. In the present study, 117 patients with PCa were enrolled. The mRNA and protein levels of TPD54 in PCa tissues and adjacent normal prostate tissues were analyzed by quantitative polymerase chain reaction and western blotting. TPD54 expression was also determined by immunohistochemistry (IHC) in paraffin-embedded PCa tissues. The association between TPD54 expression and clinicopathological features and prognosis was evaluated. The results revealed that the expression levels of TPD54 mRNA and protein were upregulated in PCa tissues compared with adjacent normal prostate tissues. In addition, moderate/strong staining of TPD54 was observed in 91.4% (107/117) of PCa tissues, but only in 32.5% (38/117) of adjacent normal prostate tissues, as assessed by IHC. TPD54 expression was significantly associated with Gleason score (P=0.0001). In addition, patients with PCa with moderate/strong TPD54 expression had shorter biochemical recurrence-free survival times compared with those with negative/weak TPD54 expression (P=0.002). Multivariate analysis indicated that TPD54 overexpression was an independent prognostic factor for patients with PCa (hazard ratio, 2.259; 95% confidence interval, 1.09-4.679; P=0.028). Taken together, these results indicated that TPD54 is a predictor of poor outcome for patients with PCa, and may be a potential prognostic marker for patients with PCa.
Collapse
Affiliation(s)
- Ligang Ren
- Department of Urology, Tongde Hospital of Zhejiang, Hangzhou, Zhejiang 310012, P.R. China
| | - Jing Chen
- Department of Urology, Tongde Hospital of Zhejiang, Hangzhou, Zhejiang 310012, P.R. China
| | - Xinnan Zhang
- Department of Urology, Tongde Hospital of Zhejiang, Hangzhou, Zhejiang 310012, P.R. China
| |
Collapse
|
17
|
Miao LH, Pan WJ, Lin Y, Ge XP, Liu B, Ren MC, Zhou QL. Bioinformatic prediction and analysis of glucolipid metabolic regulation by miR-34a in Megalobrama amblycephala. Genes Genomics 2017. [DOI: 10.1007/s13258-017-0593-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
18
|
Tumor Proteins D52 and D54 Have Opposite Effects on the Terminal Differentiation of Chondrocytes. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6014278. [PMID: 28798933 PMCID: PMC5535702 DOI: 10.1155/2017/6014278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 06/05/2017] [Accepted: 06/18/2017] [Indexed: 11/18/2022]
Abstract
The tumor protein D (TPD) family consists of four members, TPD52, TPD53, TPD54, and TPD55. The physiological roles of these genes in normal tissues, including epidermal and mesenchymal tissues, have rarely been reported. Herein, we examined the expression of TPD52 and TPD54 genes in cartilage in vivo and in vitro and investigated their involvement in the proliferation and differentiation of chondrocytes in vitro. TPD52 and TPD54 were uniformly expressed in articular cartilage and trabecular bone and were scarcely expressed in the epiphyseal growth plate. In MC3T3E-1 cells, the expressions of TPD52 and TPD54 were increased in a differentiation-dependent manner. In contrast, their expressions were decreased in ATDC5 cells. In ATDC5 cells, overexpression of TPD52 decreased alkaline phosphatase (ALPase) activity, while knock-down of TPD52 showed little effect. In contrast, overexpression of TPD54 enhanced ALPase activity, Ca2+ deposition, and the expressions of type X collagen and ALPase genes, while knock-down of TPD54 reduced them. The results revealed that TPD52 inhibits and that TPD54 promotes the terminal differentiation of a chondrocyte cell line. As such, we report for the first time the important roles of TPD52 and TPD54, which work oppositely, in the terminal differentiation of chondrocytes during endochondral ossification.
Collapse
|
19
|
Li J, Li Y, Liu H, Liu Y, Cui B. The four-transmembrane protein MAL2 and tumor protein D52 (TPD52) are highly expressed in colorectal cancer and correlated with poor prognosis. PLoS One 2017; 12:e0178515. [PMID: 28562687 PMCID: PMC5451064 DOI: 10.1371/journal.pone.0178515] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 05/15/2017] [Indexed: 01/01/2023] Open
Abstract
The four-transmembrane protein MAL2 and tumor protein D52 (TPD52) have been shown to be involved in tumorigenesis of various cancers. However, their roles in colorectal cancer (CRC) remain unclear. In this study, we explored the expressions of MAL2 and TPD52 in tumor specimens resected from 123 CRC patients and the prognostic values of the two proteins in CRC. Immunohistochemical analyses showed that MAL2 (P<0.001) and TPD52 (P<0.001) were significantly highly expressed in primary carcinoma tissues compared with adjacent non-cancerous mucosa tissues. And TPD52 exhibited frequent overexpression in liver metastasis tissues relative to primary carcinoma tissues (P = 0.042), while MAL2 in lymphnode and liver metastasis tissues showed no significant elevation. Real-time quantitative PCR (RT-qPCR) showed the identical results. Correlation analyses by Pearson's chi-square test demonstrated that MAL2 in tumors was positively correlated with tumor status (pathological assessment of regional lymph nodes (pN, P = 0.024)), and clinic stage (P = 0.017). Additionally, the expression of TPD52 was detected under the same condition and was shown to be positively correlated withtumor status (pathological assessment of the primary tumor (pT, P = 0.035), distant metastasis (pM, P = 0.001)) and CRC clinicopathology(P = 0.024). Kaplan-Meier survival curves indicated that positive MAL2 (P<0.001) and TPD52 (P<0.001) expressions were associated with poor overall survival (OS) in CRC patients. Multivariate analysis showed that MAL2 and TPD52 expression was an independent prognostic factor for reduced OS of CRC patients. Moreover, overexpression of TPD52 in CRC SW480 cells showed an increased cell migration (P = 0.023) and invasion (P = 0.012) through inducing occurrence of epithelial-mesenchymal transition (EMT) and activating focal adhesion kinase (FAK)-mediated integrin signalling and PI3K⁄Akt signalling.Whereas TPD52-depleted cells showed the reverse effect. These data suggested that MAL2 and TPD52 might be potential biomarkers for clinical prognosis and might be a promising therapeutic target for CRC.
Collapse
Affiliation(s)
- Jingwen Li
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yongmin Li
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - He Liu
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yanlong Liu
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
- * E-mail: (YLL); (BBC)
| | - Binbin Cui
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
- * E-mail: (YLL); (BBC)
| |
Collapse
|
20
|
Tumor protein D52 expression is post-transcriptionally regulated by T-cell intercellular antigen (TIA) 1 and TIA-related protein via mRNA stability. Biochem J 2017; 474:1669-1687. [PMID: 28298474 DOI: 10.1042/bcj20160942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 03/09/2017] [Accepted: 03/15/2017] [Indexed: 12/13/2022]
Abstract
Although tumor protein D52 (TPD52) family proteins were first identified nearly 20 years ago, their molecular regulatory mechanisms remain unclear. Therefore, we investigated the post-transcriptional regulation of TPD52 family genes. An RNA immunoprecipitation (RIP) assay showed the potential binding ability of TPD52 family mRNAs to several RNA-binding proteins, and an RNA degradation assay revealed that TPD52 is subject to more prominent post-transcriptional regulation than are TPD53 and TPD54. We subsequently focused on the 3'-untranslated region (3'-UTR) of TPD52 as a cis-acting element in post-transcriptional gene regulation. Several deletion mutants of the 3'-UTR of TPD52 mRNA were constructed and ligated to the 3'-end of a reporter green fluorescence protein gene. An RNA degradation assay revealed that a minimal cis-acting region, located in the 78-280 region of the 5'-proximal region of the 3'-UTR, stabilized the reporter mRNA. Biotin pull-down and RIP assays revealed specific binding of the region to T-cell intracellular antigen 1 (TIA-1) and TIA-1-related protein (TIAR). Knockdown of TIA-1/TIAR decreased not only the expression, but also the stability of TPD52 mRNA; it also decreased the expression and stability of the reporter gene ligated to the 3'-end of the 78-280 fragment. Stimulation of transforming growth factor-β and epidermal growth factor decreased the binding ability of these factors, resulting in decreased mRNA stability. These results indicate that the 78-280 fragment and TIA-1/TIAR concordantly contribute to mRNA stability as a cis-acting element and trans-acting factor(s), respectively. Thus, we here report the specific interactions between these elements in the post-transcriptional regulation of the TPD52 gene.
Collapse
|
21
|
Kato K, Mukudai Y, Motohashi H, Ito C, Kamoshida S, Shimane T, Kondo S, Shirota T. Opposite effects of tumor protein D (TPD) 52 and TPD54 on oral squamous cell carcinoma cells. Int J Oncol 2017; 50:1634-1646. [PMID: 28339026 DOI: 10.3892/ijo.2017.3929] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/13/2017] [Indexed: 11/06/2022] Open
Abstract
The tumor protein D52 (TPD52) protein family includes TPD52, -53, -54 and -55. Several reports have shown important roles for TPD52 and TPD53, and have also suggested the potential involvement of TPD54, in D52-family physiological effects. Therefore, we performed detailed expression analysis of TPD52 family proteins in oral squamous cell carcinoma (OSCC). Towards this end, TPD54-overexpressing or knocked-down cells were constructed using OSCC-derived SAS, HSC2 and HSC3 cells. tpd52 or tpd53 was expressed or co-expressed in these cells by transfection. The cells were then analyzed using cell viability (MTT), colony formation, migration, and invasion assays. In OSCC-xenograft experiments, the cells were transplanted into nude mice together with injection of anti-tpd siRNAs. MTT assay of cell monolayers showed little differences in growth of the transfected cells. tpd54 overexpression in SAS cells significantly decreased colony formation in an anchorage-independent manner. Additionally, knock-down of tpd54 enhanced the number of colonies formed and overexpression of tpd52 in tpd54 knock-down cells increased the size of the colonies formed. The chemotaxis assay showed that tpd54 overexpression decreased cell migration. In the OSCC-xenograft in vivo study, tpd54 overexpression slightly attenuated tumor volume in vivo, despite the fact that tumor metastasis or cell survival was not involved. Our results showed that TPD54 not only downregulated anchorage-independent growth and cell migration in vitro, but also attenuated tumor growth in vivo. Based on these results, it is considered that TPD54 might act as a negative regulator of tumor progression in OSCC cells.
Collapse
Affiliation(s)
- Kosuke Kato
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, Ota-ku, Tokyo 145-8515, Japan
| | - Yoshiki Mukudai
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, Ota-ku, Tokyo 145-8515, Japan
| | - Hiromi Motohashi
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, Ota-ku, Tokyo 145-8515, Japan
| | - Chihiro Ito
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, Ota-ku, Tokyo 145-8515, Japan
| | - Shinnosuke Kamoshida
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, Ota-ku, Tokyo 145-8515, Japan
| | - Toshikazu Shimane
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, Ota-ku, Tokyo 145-8515, Japan
| | - Seiji Kondo
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, Ota-ku, Tokyo 145-8515, Japan
| | - Tatsuo Shirota
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, Ota-ku, Tokyo 145-8515, Japan
| |
Collapse
|
22
|
Chen Y, Frost S, Byrne JA. Dropping in on the lipid droplet- tumor protein D52 (TPD52) as a new regulator and resident protein. Adipocyte 2016; 5:326-32. [PMID: 27617178 DOI: 10.1080/21623945.2016.1148835] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/15/2016] [Accepted: 01/20/2016] [Indexed: 02/06/2023] Open
Abstract
Lipid droplets are essential for both the storage and retrieval of excess cellular nutrients, and their biology is regulated by a diverse range of cellular proteins, some of which function at the lipid droplet. Numerous studies have characterized lipid droplet proteomes in different organisms and cell types, and RNAi whole genome screening studies have examined the genetic regulation of lipid storage in C. elegans and D. melanogaster. While tumor protein D52 (TPD52) did not emerge from earlier studies as a strong candidate, exogenous expression of human TPD52 in cultured cells resulted in significantly increased numbers of lipid droplets, and oleic acid supplementation increased TPD52 detection at both lipid droplets and the Golgi apparatus. These results suggest that direct testing of proteins that are infrequently but recurrently identified in proteomic and RNAi screening studies may identify novel lipid droplet regulators. While the analysis of these possibly lower-abundance or itinerant lipid droplet proteins may be more technically challenging, such proteins could facilitate a more detailed interrogation of emerging aspects of lipid droplet biology.
Collapse
|
23
|
Wang Y, Chen CL, Pan QZ, Wu YY, Zhao JJ, Jiang SS, Chao J, Zhang XF, Zhang HX, Zhou ZQ, Tang Y, Huang XQ, Zhang JH, Xia JC. Decreased TPD52 expression is associated with poor prognosis in primary hepatocellular carcinoma. Oncotarget 2016; 7:6323-34. [PMID: 26575170 PMCID: PMC4868759 DOI: 10.18632/oncotarget.6319] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 10/22/2015] [Indexed: 02/07/2023] Open
Abstract
Tumor protein D52 (TPD52) has been indicated to be involved in tumorigenesis of various malignancies. But its role in hepatocellular carcinoma (HCC) is unknown. This study aimed to explore the expression of TPD52 in HCC samples and cell lines using real-time quantitative PCR, western blotting, and immunohistochemistry. The prognostic value of TPD52 in HCC was also analysed. Meanwhile, the mechanism of TPD52 in hepatocarcinogenesis was further investigated by western blotting, immunohistochemistry, over-express and knockdown studies. We found that TPD52 expression was significantly decreased in the HCC tissues and HCC cell lines. TPD52 expression was significantly correlated with tumor-nodes-metastasis (TNM) stage. Kaplan-Meier survival curves showed that high TPD52 expression was associated with improved overall survival (OS) and disease-free survival (DFS) in HCC patients. Multivariate analysis indicated that TPD52 expression was an independent prognostic marker for the OS and DFS of patients. In addition, TPD52 expression was positively correlated with p21 and p53 expression, and was negatively correlated with MDM2, BCL2 and P-GSK-3β expression in HCC. In conclusions, our findings suggested that TPD52 is a potential tumor suppressor in HCC. It may be a novel prognostic biomarker and molecular therapy target for HCC.
Collapse
Affiliation(s)
- Ying Wang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Epidemiology and Health Statistics, Guangdong Key Laboratory of Molecular Epidemiology, Guangdong Pharmaceutical University, Guangzhou, China
| | - Chang-Long Chen
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Qiu-Zhong Pan
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ying-Yuan Wu
- Department of Gynaecology and Obstetrics, Panyu Branch of Armed Police Corps Hospital of Guangdong, Guangzhou, China
| | - Jing-Jing Zhao
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Shan-Shan Jiang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jie Chao
- Department of Epidemiology and Health Statistics, Guangdong Key Laboratory of Molecular Epidemiology, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiao-Fei Zhang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Hong-Xia Zhang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zi-Qi Zhou
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yan Tang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xu-Qiong Huang
- Department of Epidemiology and Health Statistics, Guangdong Key Laboratory of Molecular Epidemiology, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jian-Hua Zhang
- Department of Health Service Management, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jian-Chuan Xia
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
24
|
Fujita A, Kondo S. Identification of TPD54 as a candidate marker of oral epithelial carcinogenesis. JOURNAL OF ORAL AND MAXILLOFACIAL SURGERY MEDICINE AND PATHOLOGY 2015. [DOI: 10.1016/j.ajoms.2015.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
25
|
Xu J, Wang W, Zhu Z, Wei Z, Yang D, Cai Q. Tumor protein D52-like 2 accelerates gastric cancer cell proliferation in vitro. Cancer Biother Radiopharm 2015; 30:111-6. [PMID: 25746840 DOI: 10.1089/cbr.2014.1766] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Tumor protein D52-like 2 (TPD52L2) has been commonly described as a protein involved in tumorigenesis, according to its name. However, its pathological function remains under investigation. In the present study, TPD52L2 was found to be widely expressed in several gastric cancer cell lines. An efficient knockdown of TPD52L2 by a specific short hairpin RNA (shRNA) loaded in lentivirus resulted in a remarkable reduction in cell proliferation in both MGC80-3 and SGC-7901 cell lines with high TPD52L2 expression, but a slight or little reduction in the proliferation of MKN-28 and AGS cells with low TPD52L2 expression. Further analysis by flow cytometry revealed that the cell cycle was primarily blocked in the G0/G1 phase, especially in the sub-G1 phase by TPD52L2 silencing, implying its possible roles in cell cycle control and apoptosis. Knockdown of TPD52L2 caused a cleavage of PARP in MGC80-3 cells. Their study suggests that TPD52L2 might promote gastric carcinogenesis, and could be a promising target with respect to developing new therapeutic strategies to treat gastric cancer.
Collapse
Affiliation(s)
- Jiapeng Xu
- Department of Gastrointestinal Surgery, Changzheng Hospital, The Second Military Medical University , Shanghai, China
| | | | | | | | | | | |
Collapse
|
26
|
Alkatout I, Friemel J, Sitek B, Anlauf M, Eisenach PA, Stühler K, Scarpa A, Perren A, Meyer HE, Knoefel WT, Klöppel G, Sipos B. Novel prognostic markers revealed by a proteomic approach separating benign from malignant insulinomas. Mod Pathol 2015; 28:69-79. [PMID: 24947143 DOI: 10.1038/modpathol.2014.82] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 04/03/2014] [Indexed: 12/12/2022]
Abstract
The prognosis of pancreatic neuroendocrine tumors is related to size, histology and proliferation rate. However, this stratification needs to be refined further. We conducted a proteome study on insulinomas, a well-defined pancreatic neuroendocrine tumor entity, in order to identify proteins that can be used as biomarkers for malignancy. Based on a long follow-up, insulinomas were divided into those with metastases (malignant) and those without (benign). Microdissected cells from six benign and six malignant insulinomas were subjected to a procedure combining fluorescence dye saturation labeling with high-resolution two-dimensional gel electrophoresis. Differentially expressed proteins were identified using nano liquid chromatography-electrospray ionization/multi-stage mass spectrometry and validated by immunohistochemistry on tissue microarrays containing 62 insulinomas. Sixteen differentially regulated proteins were identified among 3000 protein spots. Immunohistochemical validation revealed that aldehyde dehydrogenase 1A1 and voltage-dependent anion-selective channel protein 1 showed significantly stronger expression in malignant insulinomas than in benign insulinomas, whereas tumor protein D52 (TPD52) binding protein was expressed less strongly in malignant insulinomas than in benign insulinomas. Using multivariate analysis, low TPD52 expression was identified as a strong independent prognostic factor for both recurrence-free and overall disease-related survival.
Collapse
Affiliation(s)
- Ibrahim Alkatout
- Clinic of Gynecology and Obstetrics, University Hospitals Schleswig-Holstein, Kiel, Germany
| | - Juliane Friemel
- Institute of Pathology, University of Zurich, Zurich, Switzerland
| | - Barbara Sitek
- Medizinisches Proteom-Center, Ruhr-University Bochum, Bochum,Germany
| | - Martin Anlauf
- Section Neuroendocrine Neoplasms, Institute of Pathology, University of Düsseldorf, Düsseldorf, Germany
| | - Patricia A Eisenach
- Department of Molecular Medicine, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, Biologisch-Medizinisches Forschungszentrum, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Aldo Scarpa
- ARC-NET Research Center and Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona, Italy
| | - Aurel Perren
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Helmut E Meyer
- 1] Medizinisches Proteom-Center, Ruhr-University Bochum, Bochum,Germany [2] Institute of Pathology, University of Tübingen, Tübingen, Germany
| | - Wolfram T Knoefel
- Department of General, Visceral and Pediatric Surgery, University Hospital, Düsseldorf, Germany
| | - Günter Klöppel
- Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Bence Sipos
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| |
Collapse
|
27
|
Keratin 19 expression correlates with poor prognosis in breast cancer. Mol Biol Rep 2014; 41:7729-35. [DOI: 10.1007/s11033-014-3684-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 08/19/2014] [Indexed: 10/24/2022]
|
28
|
Tumor protein D52 (TPD52) and cancer-oncogene understudy or understudied oncogene? Tumour Biol 2014; 35:7369-82. [PMID: 24798974 DOI: 10.1007/s13277-014-2006-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/22/2014] [Indexed: 12/16/2022] Open
Abstract
The Tumor protein D52 (TPD52) gene was identified nearly 20 years ago through its overexpression in human cancer, and a substantial body of data now strongly supports TPD52 representing a gene amplification target at chromosome 8q21.13. This review updates progress toward understanding the significance of TPD52 overexpression and targeting, both in tumors known to be characterized by TPD52 overexpression/amplification, and those where TPD52 overexpression/amplification has been recently or variably reported. We highlight recent findings supporting microRNA regulation of TPD52 expression in experimental systems and describe progress toward deciphering TPD52's cellular functions, particularly in cancer cells. Finally, we provide an overview of TPD52's potential as a cancer biomarker and immunotherapeutic target. These combined studies highlight the potential value of genes such as TPD52, which are overexpressed in many cancer types, but have been relatively understudied.
Collapse
|
29
|
Zaravinos A, Kanellou P, Lambrou GI, Spandidos DA. Gene set enrichment analysis of the NF-κB/Snail/YY1/RKIP circuitry in multiple myeloma. Tumour Biol 2014; 35:4987-5005. [PMID: 24481661 DOI: 10.1007/s13277-014-1659-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 01/14/2014] [Indexed: 12/27/2022] Open
Abstract
The presence of a dysregulated NF-κB/Snail/YY1/RKIP loop was recently established in metastatic prostate cancer cells and non-Hodgkin's lymphoma; however, its involvement in multiple myeloma (MM) has yet to be investigated. Aim of the study was to investigate the role of the NF-κB/Snail/YY1/RKIP circuitry in MM and how each gene is correlated with the remaining genes of the loop. Using gene set enrichment analysis and gene neighbours analysis in data received from four datasets included in the Multiple Myeloma Genomics Portal of the Multiple Myeloma Research Consortium, we identified various enriched gene sets associated with each member of the NF-κB/Snail/YY1/RKIP circuitry. In each dataset, the 20 most co-expressed genes with the circuitry genes were isolated subjected to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment. Among many, we highlighted on FNDC3B, TPD52, BBX, MBNL1 and MFAP2. Many co-expressed genes participated in the regulation of metabolic processes and nucleic acid binding, or were transcription factor binding genes and genes with metallopeptidase activity. The transcription factors FOXO4, GATA binding factor, Sp1 and AP4 most likely affect the expression of the NF-κB/Snail/YY1/RKIP circuitry genes. Computational analysis of various GEO datasets revealed elevated YY1 and RKIP levels in MM vs. the normal plasma cells, as well as elevated RKIP levels in MM vs. normal B lymphocytes. The present study highlights the relationships of the NF-κB/Snail/YY1/RKIP circuitry genes with specific cancer-related gene sets in multiple myeloma.
Collapse
Affiliation(s)
- Apostolos Zaravinos
- Laboratory of Virology, Medical School, University of Crete, 71110, Heraklion, Greece,
| | | | | | | |
Collapse
|
30
|
Shahheydari H, Frost S, Smith BJ, Groblewski GE, Chen Y, Byrne JA. Identification of PLP2 and RAB5C as novel TPD52 binding partners through yeast two-hybrid screening. Mol Biol Rep 2014; 41:4565-72. [PMID: 24604726 DOI: 10.1007/s11033-014-3327-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 02/26/2014] [Indexed: 01/01/2023]
Abstract
Tumor protein D52 (TPD52) is overexpressed in different cancers, but its molecular functions are poorly defined. A large, low-stringency yeast two-hybrid screen using full-length TPD52 bait identified known partners (TPD52, TPD52L1, TPD52L2, MAL2) and four other preys that reproducibly bound TPD52 and TPD52L1 baits (PLP2, RAB5C, GOLGA5, YIF1A). PLP2 and RAB5 interactions with TPD52 were confirmed in pull down assays, with interaction domain mapping experiments indicating that both proteins interact with a novel binding region of TPD52. This study provides insights into TPD52 functions, and ways to maximise the efficiency of low-stringency yeast two-hybrid screens.
Collapse
Affiliation(s)
- Hamideh Shahheydari
- Children's Cancer Research Unit, Kids Research Institute, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, NSW, 2145, Australia
| | | | | | | | | | | |
Collapse
|
31
|
Biesemann C, Grønborg M, Luquet E, Wichert SP, Bernard V, Bungers SR, Cooper B, Varoqueaux F, Li L, Byrne JA, Urlaub H, Jahn O, Brose N, Herzog E. Proteomic screening of glutamatergic mouse brain synaptosomes isolated by fluorescence activated sorting. EMBO J 2014; 33:157-70. [PMID: 24413018 DOI: 10.1002/embj.201386120] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
For decades, neuroscientists have used enriched preparations of synaptic particles called synaptosomes to study synapse function. However, the interpretation of corresponding data is problematic as synaptosome preparations contain multiple types of synapses and non-synaptic neuronal and glial contaminants. We established a novel Fluorescence Activated Synaptosome Sorting (FASS) method that substantially improves conventional synaptosome enrichment protocols and enables high-resolution biochemical analyses of specific synapse subpopulations. Employing knock-in mice with fluorescent glutamatergic synapses, we show that FASS isolates intact ultrapure synaptosomes composed of a resealed presynaptic terminal and a postsynaptic density as assessed by light and electron microscopy. FASS synaptosomes contain bona fide glutamatergic synapse proteins but are almost devoid of other synapse types and extrasynaptic or glial contaminants. We identified 163 enriched proteins in FASS samples, of which FXYD6 and Tpd52 were validated as new synaptic proteins. FASS purification thus enables high-resolution biochemical analyses of specific synapse subpopulations in health and disease.
Collapse
Affiliation(s)
- Christoph Biesemann
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Tennstedt P, Bölch C, Strobel G, Minner S, Burkhardt L, Grob T, Masser S, Sauter G, Schlomm T, Simon R. Patterns of TPD52 overexpression in multiple human solid tumor types analyzed by quantitative PCR. Int J Oncol 2013; 44:609-15. [PMID: 24317684 DOI: 10.3892/ijo.2013.2200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 10/29/2013] [Indexed: 11/06/2022] Open
Abstract
Tumor protein D52 (TPD52) is located at chromosome 8q21, a region that is frequently gained or amplified in multiple human cancer types. TPD52 has been suggested as a potential target for new anticancer therapies. In order to analyze TPD52 expression in the most prevalent human cancer types, we employed quantitative PCR to measure TPD52 mRNA levels in formalin-fixed tissue samples from more than 900 cancer tissues obtained from 29 different human cancer types. TPD52 was expressed at varying levels in all tested normal tissues, including skin, lymph node, lung, oral mucosa, breast, endometrium, ovary, vulva, myometrium, liver, pancreas, stomach, kidney, prostate, testis, urinary bladder, thyroid gland, brain, muscle and fat tissue. TPD52 was upregulated in 18/29 (62%) tested cancer types. Strongest expression was found in non-seminoma (56-fold overexpression compared to corresponding normal tissue), seminoma (42-fold), ductal (28-fold) and lobular breast cancer (14-fold). In these tumor types, TPD52 upregulation was found in the vast majority (>80%) of tested samples. Downregulation was found in 11 (38%) tumor types, most strongly in papillary renal cell cancer (-8-fold), leiomyosarcoma (-6-fold), clear cell renal cell cancer (-5-fold), liposarcoma (-5-fold) and lung cancer (-4-fold). These results demonstrate that TPD52 is frequently and strongly upregulated in many human cancer types, which may represent candidate tumor types for potential anti-TPD52 therapies.
Collapse
Affiliation(s)
- Pierre Tennstedt
- Martini-Clinic, Section for Translational Prostate Cancer Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Charlotte Bölch
- Institute of Pathology, Section for Translational Prostate Cancer Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gundula Strobel
- Institute of Pathology, Section for Translational Prostate Cancer Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, Section for Translational Prostate Cancer Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lia Burkhardt
- Institute of Pathology, Section for Translational Prostate Cancer Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Grob
- Institute of Pathology, Section for Translational Prostate Cancer Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sawinee Masser
- Institute of Pathology, Section for Translational Prostate Cancer Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, Section for Translational Prostate Cancer Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schlomm
- Martini-Clinic, Section for Translational Prostate Cancer Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, Section for Translational Prostate Cancer Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
33
|
Messenger SW, Thomas DDH, Falkowski MA, Byrne JA, Gorelick FS, Groblewski GE. Tumor protein D52 controls trafficking of an apical endolysosomal secretory pathway in pancreatic acinar cells. Am J Physiol Gastrointest Liver Physiol 2013; 305:G439-52. [PMID: 23868405 PMCID: PMC3761242 DOI: 10.1152/ajpgi.00143.2013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 07/12/2013] [Indexed: 01/31/2023]
Abstract
Zymogen granule (ZG) formation in acinar cells involves zymogen cargo sorting from trans-Golgi into immature secretory granules (ISGs). ISG maturation progresses by removal of lysosomal membrane and select content proteins, which enter endosomal intermediates prior to their apical exocytosis. Constitutive and stimulated secretion through this mechanism is termed the constitutive-like and minor-regulated pathways, respectively. However, the molecular components that control membrane trafficking within these endosomal compartments are largely unknown. We show that tumor protein D52 is highly expressed in endosomal compartments following pancreatic acinar cell stimulation and regulates apical exocytosis of an apically directed endolysosomal compartment. Secretion from the endolysosomal compartment was detected by cell-surface antigen labeling of lysosome-associated membrane protein LAMP1, which is absent from ZGs, and had incomplete overlap with surface labeling of synaptotagmin 1, a marker of ZG exocytosis. Although culturing (16-18 h) of isolated acinar cells is accompanied by a loss of secretory responsiveness, the levels of SNARE proteins necessary for ZG exocytosis were preserved. However, levels of endolysosomal proteins D52, EEA1, Rab5, and LAMP1 markedly decreased with culture. When D52 levels were restored by adenoviral delivery, the levels of these regulatory proteins and secretion of both LAMP1 (endolysosomal) and amylase was strongly enhanced. These secretory effects were absent in alanine and aspartate substitutions of serine 136, the major D52 phosphorylation site, and were inhibited by brefeldin A, which does not directly affect the ZG compartment. Our results indicate that D52 directly regulates apical endolysosomal secretion and are consistent with previous studies, suggesting that this pathway indirectly regulates ZG secretion of digestive enzymes.
Collapse
Affiliation(s)
- Scott W Messenger
- Univ. of Wisconsin, Dept. of Nutritional Sciences, 1415 Linden Dr., Madison, WI 53706.
| | | | | | | | | | | |
Collapse
|
34
|
Chen Y, Kamili A, Hardy JR, Groblewski GE, Khanna KK, Byrne JA. Tumor protein D52 represents a negative regulator of ATM protein levels. Cell Cycle 2013; 12:3083-97. [PMID: 23974097 DOI: 10.4161/cc.26146] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Tumor protein D52 (TPD52) is a coiled-coil motif bearing hydrophilic polypeptide known to be overexpressed in cancers of diverse cellular origins. Increased TPD52 expression is associated with increased proliferation and invasive capacity in different cell types. Recent studies have reported a correlation between TPD52 transcript levels and G 2 chromosomal radiosensitivity in lymphocytes of women at risk of hereditary breast cancer, and that TPD52 knockdown significantly reduced the radiation sensitivity of multiple cancer cell lines. In this study, we investigated possible roles for TPD52 in DNA damage response, and found that increased TPD52 expression in breast cancer and TPD52-expressing BALB/c 3T3 cells compromised ATM-mediated cellular responses to DNA double-strand breaks induced by γ-ray irradiation, which was associated with downregulation of steady-state ATM protein, but not transcript levels, regardless of irradiation status. TPD52-expressing 3T3 cells also showed significantly increased radiation sensitivity compared with vector cells evaluated by clonogenic assays. Furthermore, direct interactions between exogenous and endogenous ATM and TPD52 were detected by GST pull-down and co-immunoprecipitation assays. We also identified the interaction domains involved in this binding as TPD52 residues 111-131, and ATM residues 1-245 and 772-1102. Taken together, our results suggest that TPD52 may represent a novel negative regulator of ATM protein levels.
Collapse
Affiliation(s)
- Yuyan Chen
- Molecular Oncology Laboratory; Children's Cancer Research Unit; Kids Research Institute; The Children's Hospital at Westmead; Sydney, NSW Australia; The University of Sydney Discipline of Paediatrics and Child Health; The Children's Hospital at Westmead; Sydney, NSW Australia
| | | | | | | | | | | |
Collapse
|
35
|
Mukudai Y, Kondo S, Fujita A, Yoshihama Y, Shirota T, Shintani S. Tumor protein D54 is a negative regulator of extracellular matrix-dependent migration and attachment in oral squamous cell carcinoma-derived cell lines. Cell Oncol (Dordr) 2013; 36:233-45. [DOI: 10.1007/s13402-013-0131-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2013] [Indexed: 11/30/2022] Open
|
36
|
Li L, Xie H, Liang L, Gao Y, Zhang D, Fang L, Lee SO, Luo J, Chen X, Wang X, Chang LS, Yeh S, Wang Y, He D, Chang C. Increased PrLZ-mediated androgen receptor transactivation promotes prostate cancer growth at castration-resistant stage. Carcinogenesis 2013; 34:257-67. [PMID: 23104178 PMCID: PMC3564439 DOI: 10.1093/carcin/bgs337] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Revised: 09/28/2012] [Accepted: 10/21/2012] [Indexed: 12/14/2022] Open
Abstract
Most advanced prostate cancers (PCa) will develop into the castration-resistant stage following androgen deprivation therapy, yet the molecular mechanisms remain unclear. In this study, we found PrLZ, a newly identified Prostate Leucine Zipper gene that is highly expressed in PCa could interact with the androgen receptor (AR) directly leading to enhance AR transactivation in the castration-resistant condition. PrLZ might enhance AR transactivation via a change of AR conformation that leads to promotion of AR nuclear translocation and suppression of AR degradation via modulating the proteasome pathway, which resulted in increased prostate-specific antigen expression and promoted PCa growth at the castration-resistant stage. Clinical PCa sample survey from same-patient paired specimens found increased PrLZ expression in castration-resistant PCa following the classical androgen deprivation therapy. Targeting the AR-PrLZ complex via ASC-J9® or PrLZ-siRNA resulted in suppression of PCa growth in various human PCa cells and in vivo mouse PCa models. Together, these data not only strengthen PrLZ roles in the transition from androgen dependence to androgen independence during the castration-resistant stage, but they may also provide a new potential therapy to battle PCa at the castration-resistant stage.
Collapse
Affiliation(s)
- Lei Li
- Sex Hormone Research Center, Department of Urology, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China
| | - Hongjun Xie
- Sex Hormone Research Center, Department of Urology, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China
| | - Liang Liang
- Sex Hormone Research Center, Department of Urology, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China
| | - Ye Gao
- Sex Hormone Research Center, Department of Urology, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China
| | - Dong Zhang
- Sex Hormone Research Center, Department of Urology, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China
| | - Leiya Fang
- George H. Whipple Lab for Cancer Research, Departments of Pathology and Urology, Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY 14642
| | - Soo Ok Lee
- George H. Whipple Lab for Cancer Research, Departments of Pathology and Urology, Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY 14642
| | - Jie Luo
- George H. Whipple Lab for Cancer Research, Departments of Pathology and Urology, Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY 14642
| | - Xingfa Chen
- Sex Hormone Research Center, Department of Urology, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China
| | - Xinyang Wang
- Sex Hormone Research Center, Department of Urology, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China
| | - Luke S. Chang
- Sex Hormone Research Center, Department of Urology, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China
| | - Shuyuan Yeh
- George H. Whipple Lab for Cancer Research, Departments of Pathology and Urology, Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY 14642
- Sex Hormone Research Center, China Medical University/Hospital, Taichung 404, Taiwan and
| | - Yuzhuo Wang
- Department of Cancer Endocrinology, BC Cancer Agency, Research Centre, Vancouver, British Columbia, Canada
| | - Dalin He
- Sex Hormone Research Center, Department of Urology, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China
| | - Chawnshang Chang
- George H. Whipple Lab for Cancer Research, Departments of Pathology and Urology, Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY 14642
- Sex Hormone Research Center, China Medical University/Hospital, Taichung 404, Taiwan and
| |
Collapse
|
37
|
McNeel DG, Becker JT, Johnson LE, Olson BM. DNA Vaccines for Prostate Cancer. CURRENT CANCER THERAPY REVIEWS 2012; 8:254-263. [PMID: 24587772 DOI: 10.2174/157339412804143113] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Delivery of plasmid DNA encoding an antigen of interest has been demonstrated to be an effective means of immunization, capable of eliciting antigen-specific T cells. Plasmid DNA vaccines offer advantages over other anti-tumor vaccine approaches in terms of simplicity, manufacturing, and possibly safety. The primary disadvantage is their poor transfection efficiency and subsequent lower immunogenicity relative to other genetic vaccine approaches. However, multiple preclinical models demonstrate anti-tumor efficacy, and many efforts are underway to improve the immunogenicity and anti-tumor effect of these vaccines. Clinical trials using DNA vaccines as treatments for prostate cancer have begun, and to date have demonstrated safety and immunological effect. This review will focus on DNA vaccines as a specific means of antigen delivery, advantages and disadvantages of this type of immunization, previous experience in preclinical models and human trials specifically conducted for the treatment of prostate cancer, and future directions for the application of DNA vaccines to prostate cancer immunotherapy.
Collapse
Affiliation(s)
- Douglas G McNeel
- Department of Medicine, University of Wisconsin Carbone Cancer Center, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Jordan T Becker
- Department of Medicine, University of Wisconsin Carbone Cancer Center, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Laura E Johnson
- Department of Medicine, University of Wisconsin Carbone Cancer Center, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Brian M Olson
- Department of Medicine, University of Wisconsin Carbone Cancer Center, 1111 Highland Avenue, Madison, WI 53705, USA
| |
Collapse
|
38
|
Metodiev M, Alldridge L. Phosphoproteomics: A possible route to novel biomarkers of breast cancer. Proteomics Clin Appl 2012; 2:181-94. [PMID: 21136824 DOI: 10.1002/prca.200780011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Proteomics is rapidly transforming the way that cancer and other pathologies are investigated. The ability to identify hundreds of proteins and to compare their abundance in different clinical samples presents a unique opportunity for direct identification of novel disease markers. Furthermore, recent advances allow us to analyse and compare PTMs. This gives an additional dimension for defining a new class of protein biomarker based not only on abundance and expression but also on the occurrence of covalent modifications specific to a disease state or therapy response. Such modifications are often a consequence of the activation/inactivation of a particular disease related pathway. In this review we evaluate the available information on breast cancer related protein-phosphorylation events, illustrating the rationale for investigating this PTM as a target for breast cancer research with eventual clinical relevance. We present a critical survey of the published experimental strategies to study protein phosphorylation on a system wide scale and highlight recent specific advances in breast cancer phosphoproteomics. Finally we discuss the feasibility of establishing novel biomarkers for breast cancer based on the detection of patterns of specific protein phosphorylation events.
Collapse
Affiliation(s)
- Metodi Metodiev
- Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, UK
| | | |
Collapse
|
39
|
Schilling B, Rardin MJ, MacLean BX, Zawadzka AM, Frewen BE, Cusack MP, Sorensen DJ, Bereman MS, Jing E, Wu CC, Verdin E, Kahn CR, Maccoss MJ, Gibson BW. Platform-independent and label-free quantitation of proteomic data using MS1 extracted ion chromatograms in skyline: application to protein acetylation and phosphorylation. Mol Cell Proteomics 2012; 11:202-14. [PMID: 22454539 PMCID: PMC3418851 DOI: 10.1074/mcp.m112.017707] [Citation(s) in RCA: 365] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Despite advances in metabolic and postmetabolic labeling methods for quantitative proteomics, there remains a need for improved label-free approaches. This need is particularly pressing for workflows that incorporate affinity enrichment at the peptide level, where isobaric chemical labels such as isobaric tags for relative and absolute quantitation and tandem mass tags may prove problematic or where stable isotope labeling with amino acids in cell culture labeling cannot be readily applied. Skyline is a freely available, open source software tool for quantitative data processing and proteomic analysis. We expanded the capabilities of Skyline to process ion intensity chromatograms of peptide analytes from full scan mass spectral data (MS1) acquired during HPLC MS/MS proteomic experiments. Moreover, unlike existing programs, Skyline MS1 filtering can be used with mass spectrometers from four major vendors, which allows results to be compared directly across laboratories. The new quantitative and graphical tools now available in Skyline specifically support interrogation of multiple acquisitions for MS1 filtering, including visual inspection of peak picking and both automated and manual integration, key features often lacking in existing software. In addition, Skyline MS1 filtering displays retention time indicators from underlying MS/MS data contained within the spectral library to ensure proper peak selection. The modular structure of Skyline also provides well defined, customizable data reports and thus allows users to directly connect to existing statistical programs for post hoc data analysis. To demonstrate the utility of the MS1 filtering approach, we have carried out experiments on several MS platforms and have specifically examined the performance of this method to quantify two important post-translational modifications: acetylation and phosphorylation, in peptide-centric affinity workflows of increasing complexity using mouse and human models.
Collapse
Affiliation(s)
- Birgit Schilling
- Buck Institute for Research on Aging, Novato, California 94945, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Yap WH, Khoo KS, Lim SH, Yeo CC, Lim YM. Proteomic analysis of the molecular response of Raji cells to maslinic acid treatment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2012; 19:183-191. [PMID: 21893403 DOI: 10.1016/j.phymed.2011.08.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Revised: 06/25/2011] [Accepted: 08/08/2011] [Indexed: 05/31/2023]
Abstract
Maslinic acid, a natural pentacyclic triterpene has been shown to inhibit growth and induce apoptosis in some tumour cell lines. We studied the molecular response of Raji cells towards maslinic acid treatment. A proteomics approach was employed to identify the target proteins. Seventeen differentially expressed proteins including those involved in DNA replication, microtubule filament assembly, nucleo-cytoplasmic trafficking, cell signaling, energy metabolism and cytoskeletal organization were identified by MALDI TOF-TOF MS. The down-regulation of stathmin, Ran GTPase activating protein-1 (RanBP1), and microtubule associated protein RP/EB family member 1 (EB1) were confirmed by Western blotting. The study of the effect of maslinic acid on Raji cell cycle regulation showed that it induced a G1 cell cycle arrest. The differential proteomic changes in maslinic acid-treated Raji cells demonstrated that it also inhibited expression of dUTPase and stathmin which are known to induce early S and G2 cell cycle arrests. The mechanism of maslinic acid-induced cell cycle arrest may be mediated by inhibiting cyclin D1 expression and enhancing the levels of cell cycle-dependent kinase (CDK) inhibitor p21 protein. Maslinic acid suppressed nuclear factor-kappa B (NF-κB) activity which is known to stimulate expression of anti-apoptotic and cell cycle regulatory gene products. These results suggest that maslinic acid affects multiple signaling molecules and inhibits fundamental pathways regulating cell growth and survival in Raji cells.
Collapse
Affiliation(s)
- W H Yap
- Faculty of Science, Universiti Tunku Abdul Rahman, Bandar Barat, Kampar, Perak, Malaysia
| | | | | | | | | |
Collapse
|
41
|
Puri P, Acker-Palmer A, Stahler R, Chen Y, Kline D, Vijayaraghavan S. Identification of testis 14-3-3 binding proteins by tandem affinity purification. SPERMATOGENESIS 2011; 1:354-365. [PMID: 22332119 DOI: 10.4161/spmg.1.4.18902] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 11/28/2011] [Accepted: 11/28/2011] [Indexed: 01/23/2023]
Abstract
The 14-3-3 family of proteins interacts with various cellular phosphoproteins and regulates multiple cell signaling cascades. Identification of 14-3-3 interactors is important to define 14-3-3 functions in various biological pathways. The binding partners of protein 14-3-3 in testis are not known. The main goal of this study was to identify the 14-3-3 interactome in testis to determine the 14-3-3 regulated cellular processes in testis. We used transgenic mice expressing tandem affinity tagged 14-3-3ζ (TAP-14-3-3ζ) driven by the ubiquitin promoter to isolate 14-3-3 binding proteins. The 14-3-3 complexes in testis were isolated using a two-step tandem affinity purification (TAP) followed by identification with liquid chromatography/tandem mass spectrometry (LC-MS/MS). A total of 135 proteins were found to be associated with 14-3-3 in vivo in testis. Comparison of the testis 14-3-3 proteome with known 14-3-3 binding proteins showed that 71 of the proteins identified in this study are novel 14-3-3 interactors. Eight of these novel 14-3-3 interacting proteins are predominantly expressed in testis. The 14-3-3 interactors predominant in testis are: protein phosphatase1γ2 (PP1γ2), spermatogenesis associated 18 (SPATA18), phosphoglycerate kinase-2 (PGK2), testis specific gene A-2 (TSGA-2), dead box polypeptide 4 (DDX4), piwi homolog 1, protein kinase NYD-SP25 and EAN57. The fact that some of these proteins are indispensable for spermatogenesis suggests that their binding to 14-3-3 may be important for their function in germ cell division and maturation. These findings are discussed in context of the putative functions of 14-3-3 in spermatogenesis.
Collapse
Affiliation(s)
- Pawan Puri
- Department of Biological Sciences; Kent State University; Kent, OH
| | | | | | | | | | | |
Collapse
|
42
|
Zhang D, He D, Xue Y, Wang R, Wu K, Xie H, Zeng J, Wang X, Zhau HE, Chung LWK, Chang LS, Li L. PrLZ protects prostate cancer cells from apoptosis induced by androgen deprivation via the activation of Stat3/Bcl-2 pathway. Cancer Res 2011; 71:2193-202. [PMID: 21385902 DOI: 10.1158/0008-5472.can-10-1791] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PrLZ/PC-1 is a newly identified, prostate-specific and androgen-inducible gene. Our previous study showed that PrLZ can enhance the proliferation and invasive capability of LNCaP cells, contributing to the development of prostate cancer. However, its potential role in androgen-independent processes remains elusive. In this study, we showed that PrLZ enhanced in vitro growth and colony formation of prostate cancer cells on androgen deprivation as well as tumorigenicity in castrated nude mice. In addition, PrLZ stabilized mitochondrial transmembrane potential, prevented release of cytochrome c from mitochondria to cytoplasm, and inhibited intrinsic apoptosis induced by androgen depletion. Mechanistically, PrLZ elevated the phosphorylation of Akt and Stat3 and upregulated Bcl-2 expression. Our data indicate that PrLZ protects prostate cancer cells from apoptosis and promotes tumor progression following androgen deprivation. In summary, we propose that PrLZ is a novel antiapoptotic gene that is specifically activated in prostate cancer cells escaping androgen deprivation may offer an appealing therapeutic target to prevent or treat advanced prostate malignancy.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Urology, The First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Formin INF2 regulates MAL-mediated transport of Lck to the plasma membrane of human T lymphocytes. Blood 2010; 116:5919-29. [DOI: 10.1182/blood-2010-08-300665] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Expression of the src-family kinase lymphocyte-specific protein tyrosine kinase (Lck) at the plasma membrane is essential for it to fulfill its pivotal role in signal transduction in T lymphocytes. MAL, an integral membrane protein expressed in specific types of lymphoma, has been shown to play an important role in targeting Lck to the plasma membrane. Here we report that MAL interacts with Inverted Formin2 (INF2), a formin with the atypical property of promoting not only actin polymerization but also its depolymerization. In Jurkat T cells, INF2 colocalizes with MAL at the cell periphery and pericentriolar endosomes and along microtubules. Videomicroscopic analysis revealed that the MAL+ vesicles transporting Lck to the plasma membrane move along microtubule tracks. Knockdown of INF2 greatly reduced the formation of MAL+ transport vesicles and the levels of Lck at the plasma membrane and impaired formation of a normal immunologic synapse. The actin polymerization and depolymerization activities of INF2 were both required for efficient Lck targeting. Cdc42 and Rac1, which bind to INF2, regulate Lck transport in both Jurkat and primary human T cells. Thus, INF2 collaborates with MAL in the formation of specific carriers for targeting Lck to the plasma membrane in a process regulated by Cdc42 and Rac1.
Collapse
|
44
|
Lin S, Wang W, Palm C, Davis RW, Juneau K. A molecular inversion probe assay for detecting alternative splicing. BMC Genomics 2010; 11:712. [PMID: 21167051 PMCID: PMC3022918 DOI: 10.1186/1471-2164-11-712] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 12/17/2010] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND A sensitive, high-throughput method for monitoring pre-mRNA splicing on a genomic scale is needed to understand the spectrum of alternatively spliced mRNA in human cells. RESULTS We adapted Molecular Inversion Probes (MIPs), a padlock-probe based technology, for the multiplexed capture and quantitation of individual splice events in human tissues. Individual MIP capture probes can be quantified using either DNA microarrays or high-throughput sequencing, which permits independent assessment of each spliced junction. Using our methodology we successfully identified 100% of our positive controls and showed that there is a strong correlation between the data from our alternative splicing MIP (asMIP) assay and quantitative PCR. CONCLUSION The asMIP assay provides a sensitive, accurate and multiplexed means for measuring pre-mRNA splicing. Fully optimized, we estimate that the assay could accommodate a throughput of greater than 20,000 splice junctions in a single reaction. This would represent a significant improvement over existing technologies.
Collapse
Affiliation(s)
- Shengrong Lin
- Stanford Genome Technology Center, Department of Biochemistry, Stanford University School of Medicine, Palo Alto, CA USA,Illumina Inc. 9885 Towne Centre Dr. San Diego, CA 92121, USA
| | - Wenyi Wang
- Stanford Genome Technology Center, Department of Biochemistry, Stanford University School of Medicine, Palo Alto, CA USA,Department of Bioinformatics and Computational Biology, Division of Quantitative Sciences, The University of Texas MD Anderson Cancer Center, 1400 Pressler St. Unit 1410, Houston, TX 77030, USA
| | - Curtis Palm
- Stanford Genome Technology Center, Department of Biochemistry, Stanford University School of Medicine, Palo Alto, CA USA
| | - Ronald W Davis
- Stanford Genome Technology Center, Department of Biochemistry, Stanford University School of Medicine, Palo Alto, CA USA
| | - Kara Juneau
- Stanford Genome Technology Center, Department of Biochemistry, Stanford University School of Medicine, Palo Alto, CA USA
| |
Collapse
|
45
|
Thomas DDH, Frey CL, Messenger SW, August BK, Groblewski GE. A role for tumor protein TPD52 phosphorylation in endo-membrane trafficking during cytokinesis. Biochem Biophys Res Commun 2010; 402:583-7. [PMID: 20946871 DOI: 10.1016/j.bbrc.2010.10.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 10/08/2010] [Indexed: 01/12/2023]
Abstract
Tumor protein D52 is expressed at high levels in exocrine cells containing large secretory granules where it regulates Ca(2+)-dependent protein secretion; however, D52 expression is also highly induced in multiple cancers. The present study investigated a role for the Ca(2+)-dependent phosphorylation of D52 at the single major phospho-acceptor site serine 136 on cell division. Ectopic expression of wild type D52 (D52wt) and the phosphomutants serine 136/alanine (S136A) or serine 136/glutamate (S136/E) resulted in significant multinucleation of cells. D52wt and S136/E each resulted in a greater than 2-fold increase in multinucleated cells compared to plasmid-transfected controls whereas the S136/A phospho-null mutant caused a 9-fold increase in multinucleation at 48h post-transfection. Electron microscopy revealed D52 expression induced a marked accumulation of vesicles along the mid-line between nuclei where the final stages of cell abscission normally occurs. Supporting this, D52wt strongly colocalized on vesicular structures containing the endosomal regulatory protein vesicle associated membrane protein 8 (VAMP 8) and this colocalization significantly increased with elevations in cellular Ca(2+). As VAMP 8 is known to be necessary for the endo-membrane fusion reactions that mediate the final stages of cytokinesis, these data indicate that D52 expression and phosphorylation at serine 136 play an important role in supporting the Ca(2+)-dependent membrane trafficking events necessary for cytokinesis in rapidly proliferating cancer cells.
Collapse
Affiliation(s)
- Diana D H Thomas
- University of Wisconsin, Department of Nutritional Sciences, Madison, WI 53706, USA.
| | | | | | | | | |
Collapse
|
46
|
Byrne JA, Maleki S, Hardy JR, Gloss BS, Murali R, Scurry JP, Fanayan S, Emmanuel C, Hacker NF, Sutherland RL, Defazio A, O'Brien PM. MAL2 and tumor protein D52 (TPD52) are frequently overexpressed in ovarian carcinoma, but differentially associated with histological subtype and patient outcome. BMC Cancer 2010; 10:497. [PMID: 20846453 PMCID: PMC2949808 DOI: 10.1186/1471-2407-10-497] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 09/17/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The four-transmembrane MAL2 protein is frequently overexpressed in breast carcinoma, and MAL2 overexpression is associated with gain of the corresponding locus at chromosome 8q24.12. Independent expression microarray studies predict MAL2 overexpression in ovarian carcinoma, but these had remained unconfirmed. MAL2 binds tumor protein D52 (TPD52), which is frequently overexpressed in ovarian carcinoma, but the clinical significance of MAL2 and TPD52 overexpression was unknown. METHODS Immunohistochemical analyses of MAL2 and TPD52 expression were performed using tissue microarray sections including benign, borderline and malignant epithelial ovarian tumours. Inmmunohistochemical staining intensity and distribution was assessed both visually and digitally. RESULTS MAL2 and TPD52 were significantly overexpressed in high-grade serous carcinomas compared with serous borderline tumours. MAL2 expression was highest in serous carcinomas relative to other histological subtypes, whereas TPD52 expression was highest in clear cell carcinomas. MAL2 expression was not related to patient survival, however high-level TPD52 staining was significantly associated with improved overall survival in patients with stage III serous ovarian carcinoma (log-rank test, p < 0.001; n = 124) and was an independent predictor of survival in the overall carcinoma cohort (hazard ratio (HR), 0.498; 95% confidence interval (CI), 0.34-0.728; p < 0.001; n = 221), and in serous carcinomas (HR, 0.440; 95% CI, 0.294-0.658; p < 0.001; n = 182). CONCLUSIONS MAL2 is frequently overexpressed in ovarian carcinoma, and TPD52 overexpression is a favourable independent prognostic marker of potential value in the management of ovarian carcinoma patients.
Collapse
Affiliation(s)
- Jennifer A Byrne
- Molecular Oncology Laboratory, Children's Cancer Research Unit, The Children's Hospital at Westmead, Westmead, New South Wales, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Madrid R, Aranda JF, Rodríguez-Fraticelli AE, Ventimiglia L, Andrés-Delgado L, Shehata M, Fanayan S, Shahheydari H, Gómez S, Jiménez A, Martín-Belmonte F, Byrne JA, Alonso MA. The formin INF2 regulates basolateral-to-apical transcytosis and lumen formation in association with Cdc42 and MAL2. Dev Cell 2010; 18:814-27. [PMID: 20493814 DOI: 10.1016/j.devcel.2010.04.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 12/23/2009] [Accepted: 03/12/2010] [Indexed: 10/19/2022]
Abstract
Transcytosis is a widespread pathway for apical targeting in epithelial cells. MAL2, an essential protein of the machinery for apical transcytosis, functions by shuttling in vesicular carriers between the apical zone and the cell periphery. We have identified INF2, an atypical formin with actin polymerization and depolymerization activities, which is a binding partner of MAL2. MAL2-positive vesicular carriers associate with short actin filaments during transcytosis in a process requiring INF2. INF2 binds Cdc42 in a GTP-loaded-dependent manner. Cdc42 and INF2 regulate MAL2 dynamics and are necessary for apical transcytosis and the formation of lateral lumens in hepatoma HepG2 cells. INF2 and MAL2 are also essential for the formation of the central lumen in organotypic cultures of epithelial MDCK cells. Our results reveal a functional mechanism whereby Cdc42, INF2, and MAL2 are sequentially ordered in a pathway dedicated to the regulation of transcytosis and lumen formation.
Collapse
Affiliation(s)
- Ricardo Madrid
- Centro de Biología Molecular Severo Ochoa, CSIC/UAM, Cantoblanco, 28049 Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Linger RJ, Kruk PA. BRCA1 16 years later: risk-associated BRCA1 mutations and their functional implications. FEBS J 2010; 277:3086-96. [PMID: 20608970 DOI: 10.1111/j.1742-4658.2010.07735.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mutations in the tumor suppressor breast cancer susceptibility gene 1 (BRCA1), an important player in the DNA damage response, apoptosis, cell cycle regulation and transcription, confer a significantly elevated lifetime risk for breast and ovarian cancer. Although the loss of wild-type BRCA1 function is an important mechanism by which mutations confer increased cancer risk, multiple studies suggest mutant BRCA1 proteins may confer functions independent of the loss of wild-type BRCA1 through dominant negative inhibition of remaining wild-type BRCA1, or through novel interactions and pathways. These functions impact various cellular processes and have the potential to significantly influence cancer initiation and progression. In this review, we discuss the functional classifications of risk-associated BRCA1 mutations and their molecular, cellular and clinical impact for mutation carriers.
Collapse
Affiliation(s)
- Rebecca J Linger
- Department of Pathology and Cell Biology, University of South Florida, Tampa, FL 33612, USA
| | | |
Collapse
|
49
|
In JG, Tuma PL. MAL2 selectively regulates polymeric IgA receptor delivery from the Golgi to the plasma membrane in WIF-B cells. Traffic 2010; 11:1056-66. [PMID: 20444237 DOI: 10.1111/j.1600-0854.2010.01074.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Myelin and lymphocyte protein 2 (MAL2) has been identified as a hepatic transcytotic regulator that mediates delivery from basolateral endosomes to the subapical compartment (SAC). However, overexpression of polymeric immunoglobulin A-receptor (pIgA-R) in polarized, hepatic WIF-B cells led to the dramatic redistribution of MAL2 into the Golgi and all the transcytotic intermediates occupied by the receptor. Although overexpressed hemagglutinin and dipeptidylpeptidase IV (DPPIV) distributed to the same compartments, MAL2 distributions did not change indicating the effect is selective. Cycloheximide treatment led to decreased pIgA-R and MAL2 intracellular staining, first in the Golgi then the SAC, suggesting they were apically delivered and that MAL2 was mediating the process. This was tested in Clone 9 cells (that lack endogenous MAL2). When expressed alone, pIgA-R was restricted to the Golgi whereas when coexpressed with MAL2, it distributed to the surface, was internalized and delivered to MAL2-positive puncta. In contrast, DPPIV distributions were independent of MAL2. Surface delivery of newly synthesized pIgA-R, but not DPPIV, was enhanced greater than ninefold by MAL2 coexpression. In WIF-B cells where MAL2 expression was knocked down, pIgA-R, but not DPPIV, was retained in the Golgi and its basolateral delivery was impaired. Thus, in addition to its role in transcytosis, MAL2 also regulates pIgA-R delivery from the Golgi to the plasma membrane.
Collapse
Affiliation(s)
- Julie G In
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | | |
Collapse
|
50
|
Tian ZH, Li ZF, Zhou SB, Liang YY, He DC, Wang DS. Differentially expressed proteins of MCF-7 human breast cancer cells affected by Zilongjin, a complementary Chinese herbal medicine. Proteomics Clin Appl 2010; 4:550-9. [PMID: 21137072 DOI: 10.1002/prca.200900092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 12/09/2009] [Accepted: 12/21/2009] [Indexed: 01/04/2023]
Abstract
PURPOSE Zilongjin, a complementary Chinese herbal medicine, has been used to alleviate the adverse effects of chemotherapeutic drugs in cancer therapy. However, the mechanisms of anti-cancer activity of Zilongjin are still largely unkonwn. EXPERIMENTAL DESIGN First, the proteomic approach of combined 2-DE and ESI-MS/MS was used to investigate the effect of Zilongjin on the protein expression in MCF-7 cells. Then, the differential expression of some proteins was confirmed by Western blot, cytoimmunofluoresecnce, and quantitative real-time RT-PCR analysis. RESULTS The identified proteins with differential expression, involved in such events as protein translation, cellular signal transduction, cytoskeleton formation and transportation, include seven downregulating proteins, such as Eukaryotic translation initiation factor 3 subunit I, Eukaryotic translation initiation factor 1A Y-chromosomal, Ran-specific GTPase-activating protein, Ubiquitin-conjugating enzyme E2 N, Tropomodulin-3, Macrophage-capping protein, and Tumor protein D52, as well as two upregulating proteins, HSP β-1 and keratin18. Moreover, the differential expression of three proteins was confirmed. CONCLUSIONS AND CLINICAL RELEVANCE (i) These results provide a new insight into the molecular mechanisms of Zilongjin on therapy for breast cancer. (ii) The application of the proteomic approaches will result in the more extended appreciation of Chinese medicine than those known at present.
Collapse
Affiliation(s)
- Zhi-Hua Tian
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University School of Oncology, Beijing Cancer Hospital & Institute, Beijing, PR China
| | | | | | | | | | | |
Collapse
|