1
|
Kumar Nelson V, Jha NK, Nuli MV, Gupta S, Kanna S, Gahtani RM, Hani U, Singh AK, Abomughaid MM, Abomughayedh AM, Almutary AG, Iqbal D, Al Othaim A, Begum SS, Ahmad F, Mishra PC, Jha SK, Ojha S. Unveiling the impact of aging on BBB and Alzheimer's disease: Factors and therapeutic implications. Ageing Res Rev 2024; 98:102224. [PMID: 38346505 DOI: 10.1016/j.arr.2024.102224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 05/12/2024]
Abstract
Alzheimer's disease (AD) is a highly prevalent neurodegenerative condition that has devastating effects on individuals, often resulting in dementia. AD is primarily defined by the presence of extracellular plaques containing insoluble β-amyloid peptide (Aβ) and neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau protein (P-tau). In addition, individuals afflicted by these age-related illnesses experience a diminished state of health, which places significant financial strain on their loved ones. Several risk factors play a significant role in the development of AD. These factors include genetics, diet, smoking, certain diseases (such as cerebrovascular diseases, obesity, hypertension, and dyslipidemia), age, and alcohol consumption. Age-related factors are key contributors to the development of vascular-based neurodegenerative diseases such as AD. In general, the process of aging can lead to changes in the immune system's responses and can also initiate inflammation in the brain. The chronic inflammation and the inflammatory mediators found in the brain play a crucial role in the dysfunction of the blood-brain barrier (BBB). Furthermore, maintaining BBB integrity is of utmost importance in preventing a wide range of neurological disorders. Therefore, in this review, we discussed the role of age and its related factors in the breakdown of the blood-brain barrier and the development of AD. We also discussed the importance of different compounds, such as those with anti-aging properties, and other compounds that can help maintain the integrity of the blood-brain barrier in the prevention of AD. This review builds a strong correlation between age-related factors, degradation of the BBB, and its impact on AD.
Collapse
Affiliation(s)
- Vinod Kumar Nelson
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India.
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Centre of Research Impact and Outcome, Chitkara University, Rajpura 140401, Punjab, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India.
| | - Mohana Vamsi Nuli
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Sandeep Kanna
- Department of pharmaceutics, Chalapathi Institute of Pharmaceutical Sciences, Chalapathi Nagar, Guntur 522034, India
| | - Reem M Gahtani
- Departement of Clinical Laboratory Sciences, King Khalid University, Abha, Saudi Arabia
| | - Umme Hani
- Department of pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Arun Kumar Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology BHU, Varanasi, Uttar Pradesh, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Ali M Abomughayedh
- Pharmacy Department, Aseer Central Hospital, Ministry of Health, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, P.O. Box 59911, United Arab Emirates
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Ayoub Al Othaim
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | - S Sabarunisha Begum
- Department of Biotechnology, P.S.R. Engineering College, Sivakasi 626140, India
| | - Fuzail Ahmad
- Respiratory Care Department, College of Applied Sciences, Almaarefa University, Diriya, Riyadh, 13713, Saudi Arabia
| | - Prabhu Chandra Mishra
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, 110008, India.
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, P.O. Box 15551, United Arab Emirates
| |
Collapse
|
2
|
Lee TK, Ashok Kumar K, Huang CY, Liao PH, Ho TJ, Kuo WW, Liao SC, Hsieh DJY, Chiu PL, Chang YM, Ju DT. Garcinol protects SH-SY5Y cells against MPP+-induced cell death by activating DJ-1/SIRT1 and PGC-1α mediated antioxidant pathway in sequential stimulation of p-AMPK mediated autophagy. ENVIRONMENTAL TOXICOLOGY 2023; 38:857-866. [PMID: 36629037 DOI: 10.1002/tox.23737] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/14/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
Parkinson's disease (PD), a chronic and progressive neurodegenerative disease, can reduce the population of dopaminergic neurons in the substantia nigra. The cause of this neuronal death remains unclear. 1-Methyl-4-phenylpyridinium ion (MPP+) is a potent neurotoxin that can destroy dopaminergic (DA) neurons and promote PD. Garcinol, a polyisoprenylated benzophenone derivative, was extracted from Garcinia indica and is an important active compound it has been used as an anticancer, antioxidant, and anti-inflammatory, agent and it can suppress reactive oxygen species (ROS) mediated cell death in a PD model. Human neuroblastoma (SH-SY5Y) cells (1 × 105 cells) were treated with MPP+ (1 mM) for 24 h to induce cellular ROS production. The formation of ROS was suppressed by pretreatment with different concentrations of garcinol (0.5 and 1.0 μM) for 3 h in SH-SY5Y cells. The present study found that MPP+ treatment increased the formation of reactive oxygen species (ROS), and the increased ROS began to promote cell death in SH-SY5Y cells. However, our natural compound garcinol effectively blocked MPP+-mediated ROS formation by activating the DJ-1/SIRT1 and PGC-1α mediated antioxidant pathway. Further findings indicate that the activated SIRT1 can also regulate p-AMPK-mediated autophagy to protect the neurons from the damage it concludes that garcinol sub-sequential regulates intracellular autophagy in this model, and the productive efficacy of garcinol was confirmed by western blot analysis and MitoSOX DCFDA and MTT assays. The results showed garcinol increased protection due to the prevention of MPP+-induced ROS and the promotion of cell survival.
Collapse
Affiliation(s)
- Tian-Kuo Lee
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - K Ashok Kumar
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
- Holistic Education Center, Tzu Chi University of Science and Technology, Hualien, Taiwan
- Cardiovascular and Mitochondria Related Diseases Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Po-Hsiang Liao
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Shih-Chieh Liao
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
| | - Dennis Jine-Yuan Hsieh
- Department of Medical Laboratory and Biotechnology|, Chung Shan Medical University, Taichung, Taiwan
| | | | - Yung-Ming Chang
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
- Chinese Medicine Department, E-DA Hospital, Kaohsiung, Taiwan
- 1PT Biotechnology Co., Ltd., Taichung, Taiwan
| | - Da-Tong Ju
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
3
|
Anilkumar AT, Manoharan S, Balasubramanian S, Perumal E. Garcinia gummi-gutta: Phytochemicals and pharmacological applications. Biofactors 2023. [PMID: 36785888 DOI: 10.1002/biof.1943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/23/2023] [Indexed: 02/15/2023]
Abstract
Garcinia gummi-gutta, also known as Garcinia cambogia, is a member of the Guttiferae family. Garcinia is a polygamous genus consisting 200 species of trees and shrubs. It is found in different zones of the planet including Asia's tropical regions. In India alone, around 30 species have been discovered. They are widely used as a flavoring agent to garnish fish curry in southern India, particularly in Kerala and Karnataka. The fruit rind of G. gummi-gutta has traditionally been used to treat gastrointestinal problems, diarrhea, and ulcers. South Indian people have been utilizing it traditionally as evidenced by its ethnobotanical properties. In vivo and in vitro effects of the crude fruit extract showed anti-inflammatory, anti-cancer, anthelmintic, anti-microbial, and antioxidant activities. G. gummi-gutta fruit rind is medicinally significant and is frequently used in ayurvedic and traditional medicine for many diseases. Various secondary metabolites such as organic acids-hydroxycitric acid (HCA), flavonoids, terpenes, polysaccharides and polyisoprenylated benzophenones-garcinol, xanthochymol, guttiferone, benzophenone, xanthone, biflavonoids, alkaloids, tannins, phenols, and saponins isolated from the G. gummi-gutta have diverse pharmacological activities. This review provides a summary of G. gummi-gutta, including its biological activities, phytochemistry, and ethnobotanical applications.
Collapse
Affiliation(s)
| | - Suryaa Manoharan
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | | | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| |
Collapse
|
4
|
Yao W, Guo B, Jin T, Bao Z, Wang T, Wen S, Huang F. Garcinol Promotes the Formation of Slow-Twitch Muscle Fibers by Inhibiting p300-Dependent Acetylation of PGC-1α. Int J Mol Sci 2023; 24:ijms24032702. [PMID: 36769025 PMCID: PMC9916769 DOI: 10.3390/ijms24032702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/31/2022] [Accepted: 01/05/2023] [Indexed: 02/04/2023] Open
Abstract
The conversion of skeletal muscle fiber from fast-twitch to slow-twitch is crucial for sustained contractile and stretchable events, energy homeostasis, and anti-fatigue ability. The purpose of our study was to explore the mechanism and effects of garcinol on the regulation of skeletal muscle fiber type transformation. Forty 21-day-old male C57/BL6J mice (n = 10/diet) were fed a control diet or a control diet plus garcinol at 100 mg/kg (Low Gar), 300 mg/kg (Mid Gar), or 500 mg/kg (High Gar) for 12 weeks. The tibialis anterior (TA) and soleus muscles were collected for protein and immunoprecipitation analyses. Dietary garcinol significantly downregulated (p < 0.05) fast myosin heavy chain (MyHC) expression and upregulated (p < 0.05) slow MyHC expression in the TA and soleus muscles. Garcinol significantly increased (p < 0.05) the activity of peroxisome proliferator-activated receptor gamma co-activator 1α (PGC-1α) and markedly decreased (p < 0.05) the acetylation of PGC-1α. In vitro and in vivo experiments showed that garcinol decreased (p < 0.05) lactate dehydrogenase activity and increased (p < 0.05) the activities of malate dehydrogenase and succinic dehydrogenase. In addition, the results of C2C12 myotubes showed that garcinol treatment increased (p < 0.05) the transformation of glycolytic muscle fiber to oxidative muscle fiber by 45.9%. Garcinol treatment and p300 interference reduced (p < 0.05) the expression of fast MyHC but increased (p < 0.05) the expression of slow MyHC in vitro. Moreover, the acetylation of PGC-1α was significantly decreased (p < 0.05). Garcinol promotes the transformation of skeletal muscle fibers from the fast-glycolytic type to the slow-oxidative type through the p300/PGC-1α signaling pathway in C2C12 myotubes.
Collapse
Affiliation(s)
- Weilei Yao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Baoyin Guo
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Taimin Jin
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Zhengxi Bao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Tongxin Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shu Wen
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Feiruo Huang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Correspondence: ; Tel.: +86-10-87286912; Fax: +86-10-87280408
| |
Collapse
|
5
|
Remali J, Sahidin I, Aizat WM. Xanthone Biosynthetic Pathway in Plants: A Review. FRONTIERS IN PLANT SCIENCE 2022; 13:809497. [PMID: 35463410 PMCID: PMC9024401 DOI: 10.3389/fpls.2022.809497] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/11/2022] [Indexed: 05/27/2023]
Abstract
Xanthones are secondary metabolites rich in structural diversity and possess a broad array of pharmacological properties, such as antitumor, antidiabetic, and anti-microbes. These aromatic compounds are found in higher plants, such as Clusiaceae, Hypericaceae, and Gentianaceae, yet their biosynthetic pathways have not been comprehensively updated especially within the last decade (up to 2021). In this review, plant xanthone biosynthesis is detailed to illuminate their intricacies and differences between species. The pathway initially involves the shikimate pathway, either through L-phenylalanine-dependent or -independent pathway, that later forms an intermediate benzophenone, 2,3',4,6-tetrahydoxybenzophenone. This is followed by a regioselective intramolecular mediated oxidative coupling to form xanthone ring compounds, 1,3,5-trihydroxyxanthone (1,3,5-THX) or 1,3,7-THX, the core precursors for xanthones in most plants. Recent evidence has shed some lights onto the enzymes and reactions involved in this xanthone pathway. In particular, several biosynthetic enzymes have been characterized at both biochemical and molecular levels from various organisms including Hypericum spp., Centaurium erythraea and Garcinia mangostana. Proposed pathways for a plethora of other downstream xanthone derivatives including swertianolin and gambogic acid (derived from 1,3,5-THX) as well as gentisin, hyperixanthone A, α-mangostin, and mangiferin (derived from 1,3,7-THX) have also been thoroughly covered. This review reports one of the most complete xanthone pathways in plants. In the future, the information collected here will be a valuable resource for a more directed molecular works in xanthone-producing plants as well as in synthetic biology application.
Collapse
Affiliation(s)
- Juwairiah Remali
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Idin Sahidin
- Faculty of Pharmacy, Universitas Halu Oleo, Kendari, Indonesia
| | - Wan Mohd Aizat
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Malaysia
| |
Collapse
|
6
|
Chetia Phukan B, Dutta A, Deb S, Saikia R, Mazumder MK, Paul R, Bhattacharya P, Sandhir R, Borah A. Garcinol blocks motor behavioural deficits by providing dopaminergic neuroprotection in MPTP mouse model of Parkinson's disease: involvement of anti-inflammatory response. Exp Brain Res 2021; 240:113-122. [PMID: 34633467 DOI: 10.1007/s00221-021-06237-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 09/26/2021] [Indexed: 12/21/2022]
Abstract
Although the etiology of Parkinson's disease (PD) is poorly understood, studies in animal models revealed loss of dopamine and the dopaminergic neurons harbouring the neurotransmitter to be the principal cause behind this neuro-motor disorder. Neuroinflammation with glial cell activation is suggested to play a significant role in dopaminergic neurodegeneration. Several biomolecules have been reported to confer dopaminergic neuroprotection in different animal models of PD, owing to their anti-inflammatory potentials. Garcinol is a tri-isoprenylated benzophenone isolated from Garcinia sp. and accumulating evidences suggest that this molecule could provide neuroprotection by modulating oxidative stress and inflammation. However, direct evidence of dopaminergic neuroprotection by garcinol in the pre-clinical model of PD is not yet reported. The present study aims to investigate whether administration of garcinol in the MPTP mouse model of PD may ameliorate the cardinal motor behavioural deficits and prevent the loss of dopaminergic neurons. As expected, garcinol blocked the parkinsonian motor behavioural deficits which include akinesia, catalepsy, and rearing anomalies in the mice model. Most importantly, the degeneration of dopaminergic cell bodies in the substantia nigra region was significantly prevented by garcinol. Furthermore, garcinol reduced the inflammatory marker, glial fibrillary acidic protein, in the substantia nigra region. Since glial hyperactivation-mediated inflammation is inevitably associated with the loss of dopaminergic neurons, our study suggests the anti-inflammatory role of garcinol in facilitating dopaminergic neuroprotection in PD mice. Hence, in the light of the present study, it is suggested that garcinol is an effective anti-parkinsonian agent to block motor behavioural deficits and dopaminergic neurodegeneration in PD.
Collapse
Affiliation(s)
- Banashree Chetia Phukan
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, 788011, India
| | - Ankumoni Dutta
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, 788011, India.,Department of Zoology, Pandit Deendayal Upadhyaya Adarsha Mahavidyalaya (PDUAM), Bishwanath Chariali, Assam, India
| | - Satarupa Deb
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, 788011, India
| | - Rubul Saikia
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, 788011, India
| | | | - Rajib Paul
- Department of Zoology, Pandit Deendayal Upadhyaya Adarsha Mahavidyalaya (PDUAM), Eraligool, Karimganj, Assam, India
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat, India
| | - Rajat Sandhir
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, 788011, India.
| |
Collapse
|
7
|
Nimbal SK, Gadad PC, Koti BC. Effect of ethanolic extract of Rosa centifolia against doxorubicin induced nephrotoxicity in albino rats. J Ayurveda Integr Med 2021; 12:657-662. [PMID: 34801355 PMCID: PMC8642703 DOI: 10.1016/j.jaim.2021.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Efficacy of Anthracycline derivative Doxorubicin (Dox) has been proven in several malignancies such as breast cancer, Hodgkin and non-Hodgkin lymphoma, acute leukemia, lung, thyroid and ovarian cancer. However its clinical usefulness is restricted due to its cardiotoxicity and nephrotoxicity. Rosa centifolia belongs to family Rosaceae and in Ayurveda it is claimed for use in renal disorders. The main phyto-constituents of the plant are terpenoids, glycosides, flavonoids, tannins, phenolic compounds, pro-antroocyanides, pectin and riboflavin. OBJECTIVE To investigate the ameliorative role of ethanolic extract of petals of R. centifolia in doxorubicin induced nephrotoxicity in rats. MATERIALS AND METHODS Nephrotoxicity was produced by administration of doxorubicin (2.5 mg/kg b.w., i.p. alternate day) in six equal injections for two weeks to achieve a cumulative concentration of 15 mg/kg. Low (LERC - 100 mg/kg p.o.) and high (HERC - 200 mg/kg p.o.) dosees of ethanolic extract of petals of R. centifolia was administered as a pretreatment prior to doxorubicin administration. The general parameters such as body weight, food and water intake were measured throughout the study period. Serum biomarkers such as blood urea nitrogen (BUN), serum creatinine and albumin were measured before treatment and at the end of the experiments. Anti-oxidant enzymes such as glutathione (GSH), melonldehyde (MDA), catalase (CAT) and superoxide dismutase (SOD) were monitored after the last dose. Nephrotoxicity was assessed through histopathological analysis. RESULTS The repeated administration of doxorubicin produces several morphological changes including reduction in the body weight as well as decreased food and water consumption. Serum biomarkers such as BUN, serum creatinine were increased and albumin concentration was decreased. The GSH, SOD and CAT concentrations were decreased, whereas MDA concentration was increased. Deteriorating changes in the histological architecture of kidney tissue were observed. In the LERC and HERC pretreated groups following changes were observed in dose dependent manner: increase in body weight, food and water intake (p < 0.05 and p < 0.01), decrease in the BUN (p < 0.05 and p < 0.01) and serum creatinine (p < 0.05 and p < 0.05) concentrations respectively. The significant increase in the albumin (p < 0.01) concentration was observed only in HERC. The pretreatment with LERC and HERC increased the antioxidant enzymes concentrations i.e. GSH (p < 0.01 and p < 0.01), SOD (p < 0.01 and p < 0.01), CAT (p < 0.05 and p < 0.01) and decreased the MDA concentration (p < 0.05 and p < 0.01) respectively. Histopathological studies showed that the pretreatment with low and high doses of ethanolic extract of petals of Rosa centifolia LERC and HERC groups minimized the tubular damage and reduced the inflammation as compared to doxorubicin treated group. CONCLUSION The biochemical and histopathological data from the present study clearly support the nephroprotective effect of ethanolic extract of petals of R. centifolia, which might be credited to its anti-oxidant property.
Collapse
Affiliation(s)
- S K Nimbal
- Dept. of Pharmacology, KLE College of Pharmacy, Vidyanagar, Hubballi-31, (A constituent unit of KLE Academy of Higher Education and Research, Belagavi) Karnataka, India.
| | - Pramod C Gadad
- Dept. of Pharmacology, KLE College of Pharmacy, Vidyanagar, Hubballi-31, (A constituent unit of KLE Academy of Higher Education and Research, Belagavi) Karnataka, India
| | - Basavaraj C Koti
- Dept. of Pharmacology, KLE College of Pharmacy, Vidyanagar, Hubballi-31, (A constituent unit of KLE Academy of Higher Education and Research, Belagavi) Karnataka, India
| |
Collapse
|
8
|
Kim JY, Jo J, Leem J, Park KK. Inhibition of p300 by Garcinol Protects against Cisplatin-Induced Acute Kidney Injury through Suppression of Oxidative Stress, Inflammation, and Tubular Cell Death in Mice. Antioxidants (Basel) 2020; 9:1271. [PMID: 33327548 PMCID: PMC7765028 DOI: 10.3390/antiox9121271] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/03/2020] [Accepted: 12/12/2020] [Indexed: 02/06/2023] Open
Abstract
Emerging evidence suggests that epigenetic mechanisms such as histone modification are crucially involved in the pathophysiology of acute kidney injury (AKI). The histone acetyltransferase p300 regulates several biological processes through the acetylation of histones or transcription factors. However, the role of p300 in cisplatin-induced AKI remains poorly understood. Therefore, we investigated the effects of garcinol, a potent p300 inhibitor, on cisplatin-induced AKI and explored the mechanisms. Administration of garcinol significantly reversed the upregulation of p300 and increased acetylation of histone H3, along with amelioration of renal dysfunction and histopathological injury in the kidneys of cisplatin-injected mice. Garcinol also attenuated oxidative stress and reduced expression of pro-oxidant enzymes. In addition, garcinol reduced the elevated production of cytokines and chemokines and suppressed immune cell accumulation together with downregulation of vascular adhesion molecules. These beneficial effects of garcinol were associated with a reduction in acetylation of the p65 subunit of nuclear factor kappa-B. Further, garcinol significantly inhibited apoptosis and caspase-3 activation, with a decrease in p53 acetylation in cisplatin-injected mice. Taken together, we demonstrated that the inhibition of p300 by garcinol ameliorated cisplatin-induced renal injury, presumably through epigenetic mechanisms. These results suggest that garcinol might be a potential preventive agent for cisplatin-induced AKI.
Collapse
Affiliation(s)
- Jung-Yeon Kim
- Department of Immunology, School of Medicine, Catholic University of Daegu, Daegu 42472, Korea;
| | - Jungmin Jo
- Division of Hematology-Oncology, Department of Internal Medicine, Ewha Womans University Mokdong Hospital, Seoul 07985, Korea;
| | - Jaechan Leem
- Department of Immunology, School of Medicine, Catholic University of Daegu, Daegu 42472, Korea;
| | - Kwan-Kyu Park
- Department of Pathology, School of Medicine, Catholic University of Daegu, Daegu 42472, Korea;
| |
Collapse
|
9
|
Li M, Li X, Yang L. Cardioprotective effects of garcinol following myocardial infarction in rats with isoproterenol-induced heart failure. AMB Express 2020; 10:137. [PMID: 32749545 PMCID: PMC7403263 DOI: 10.1186/s13568-020-01065-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/15/2020] [Indexed: 02/08/2023] Open
Abstract
Myocardial infarction is a clinical form of necrosis in the myocardium caused by an imbalance between the coronary blood supply and myocardial demand. Garcinol is a polyisoprenylated benzophenone found in the fruit of Garcinia indica, which is abundant in tropical regions. This fruit contains high levels of garcinol, isoxanthochymol, isogarcinol, hydroxycitric acid and xanthochymol. Garcinol and hydroxycitric acid have been shown to have antioxidant effects. In this study, rats were assigned to sham, control, low-dose, high-dose and positive control groups. Hemodynamic and apoptotic markers were evaluated, and histopathological analysis was conducted. The mRNA and protein levels of caspase-3, Bax, Bcl-2 and cleaved caspase-3 were quantified. Garcinol treatment increased the heart rate and improved the maximum rate of increase in left-ventricle (LV) pressure (+dp/dtmax), maximum rate of decrease in LV pressure (–dp/dtmax), LV ejection fraction and LV systolic pressure in rats with induced heart failure. Garcinol treatment reversed body, liver and heart weight changes, resulting in returns to near-normal levels. In the garcinol treatment group, the number of broken fibers, extent of inflammatory cell infiltration and rate of apoptosis remained within normal ranges. Garcinol reduced the cross-sectional areas of cardiomyocytes, and reduced interstitial fibrosis to a normal level. The mRNA and protein levels of cleaved caspase-3, caspase-3 and Bax were reduced, whereas those of Bcl-2 were increased, following high-dose (100 mg/kg) garcinol treatment. These findings suggest that garcinol effectively prevents apoptosis in rats with isoproterenol-induced heart failure and in cardiac H9C2 cells.
Collapse
|
10
|
Louwies T, Greenwood-Van Meerveld B. Sex differences in the epigenetic regulation of chronic visceral pain following unpredictable early life stress. Neurogastroenterol Motil 2020; 32:e13751. [PMID: 31667916 PMCID: PMC8628638 DOI: 10.1111/nmo.13751] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/11/2019] [Accepted: 09/28/2019] [Indexed: 01/28/2023]
Abstract
BACKGROUND We previously reported that early life stress (ELS) dysregulated glucocorticoid receptor (GR) and corticotrophin-releasing hormone (CRH) expression in the central nucleus of the amygdala (CeA). Epigenetic modifications serve as memories of adverse events that occurred during early life. Therefore, we hypothesized that epigenetic mechanisms alter GR and CRH expression in the CeA and underlie chronic visceral pain after ELS. METHODS Neonatal rats were exposed to unpredictable, predictable ELS, or odor only (no stress control) from postnatal days 8 to 12. In adulthood, visceral sensitivity was assessed or the CeA was isolated for Western blot or ChiP-qPCR to study histone modifications at the GR and CRH promoters. Female adult rats underwent stereotaxic implantation of indwelling cannulas for microinjections of garcinol (HAT inhibitor) into the CeA. After 7 days of microinjections, visceral sensitivity was assessed or the CeA was isolated for ChIP-qPCR assays. RESULTS Unpredictable ELS increased visceral sensitivity in adult female rats, but not in male counterparts. ELS increased histone 3 lysine 9 (H3K9) acetylation in the CeA and H3K9 acetylation levels at the GR promoter in the CeA of adult female rats. After unpredictable ELS, H3K9 acetylation was increased and GR binding was decreased at the CRH promoter. Administration of garcinol in the CeA of adult females, that underwent unpredictable ELS, normalized H3K9 acetylation and restored GR binding at the CRH promoter. CONCLUSION Dysregulated histone acetylation and GR binding at the CRH promoter in the CeA are an important mechanism for "memorizing" ELS events mediating visceral pain in adulthood.
Collapse
Affiliation(s)
- Tijs Louwies
- Oklahoma Center for Neuroscience, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Beverley Greenwood-Van Meerveld
- Oklahoma Center for Neuroscience, University of Oklahoma Health Science Center, Oklahoma City, OK, USA,Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA,VA Medical Center, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| |
Collapse
|
11
|
Jia Y, Pang C, Zhao K, Jiang J, Zhang T, Peng J, Sun P, Qian Y. Garcinol Suppresses IL-1β-Induced Chondrocyte Inflammation and Osteoarthritis via Inhibition of the NF-κB Signaling Pathway. Inflammation 2020; 42:1754-1766. [PMID: 31201586 DOI: 10.1007/s10753-019-01037-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Osteoarthritis (OA), which is characterized as a common degenerative joint disease, is presently the most prevalent chronic degenerative joint disease. Accumulating evidence has shown a biological function for Garcinol in a variety of diseases; however, whether it could be used to treat OA remains unclear. In this study, we explored the protective effects of garcinol on the progression of OA and explored the underlying mechanism. In vitro, garcinol reduced the expression of pro-inflammatory cytokines, such as IL-6 and tumor necrosis factor alpha (TNF-α). It also decreased the expression of inducible nitric oxide synthase (iNOS), as well as cyclooxygenase-2 (COX-2). Furthermore, garcinol inhibited the expression of thrombospondin motifs 5(ADAMTS5) and metalloproteinase (MMPs), both of which regulate extracellular matrix degradation. These changes could be attributed to garcinol-related suppression of the IL-1β-induced NF-κB signaling pathway. Moreover, we investigated the protective effects of garcinol on the surgical destabilization of the medial meniscus (DMM) of the mouse, an in vivo model of OA. Taken together, our data suggest garcinol as a potential future agent for the treatment of OA.
Collapse
Affiliation(s)
- Yewei Jia
- Department of Orthopaedics, Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, 312000, Zhejiang, China.,Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cong Pang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Kangxian Zhao
- Department of Orthopaedics, Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, 312000, Zhejiang, China.,The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Jiawei Jiang
- Department of Orthopaedics, Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, 312000, Zhejiang, China.,Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tan Zhang
- Department of Orthopaedics, Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, 312000, Zhejiang, China.,The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Jiaxuan Peng
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi, 530021, China
| | - Peng Sun
- Department of Orthopaedics, Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, 312000, Zhejiang, China.,The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yu Qian
- Department of Orthopaedics, Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, 312000, Zhejiang, China.
| |
Collapse
|
12
|
Moschovou K, Melagraki G, Mavromoustakos T, Zacharia LC, Afantitis A. Cheminformatics and virtual screening studies of COMT inhibitors as potential Parkinson’s disease therapeutics. Expert Opin Drug Discov 2019; 15:53-62. [DOI: 10.1080/17460441.2020.1691165] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
| | - Georgia Melagraki
- Division of Physical Sciences & Applications, Hellenic Military Academy, Vari, Greece
| | | | | | | |
Collapse
|
13
|
Zhang G, Fu J, Su Y, Zhang X. Opposite Effects of Garcinol on Tumor Energy Metabolism in Oral Squamous Cell Carcinoma Cells. Nutr Cancer 2019; 71:1403-1411. [PMID: 31074649 DOI: 10.1080/01635581.2019.1607409] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Garcinol is a natural polyisoprenylated benzophenone extracted from the dried fruit rind of Garcinia indica. The aim of this study was to investigate the roles of garcinol in oral squamous cell carcinoma (OSCC) cells and its action on cancer cell energy metabolisms. Cell cycle, apoptosis, migration and invasion assays were detected, and oxygen consumption and extracellular acidification rates were also measured with Extracellular Flux Analyzer. Our studies showed that garcinol represses OSCC cells proliferation, cell cycle, migration and invasion, and colony formation. Of note, garcinol directly targeted cancer cell energy producing pathway mitochondrial respiration by significantly inhibiting ATP production, maximal respiration, spare respiration capacity and basal respiration in a dose-dependent manner. But garcinol treatment reflexively boosted glycolysis presented by increased glycolysis and glycolytic capacity. The promotion of garcinol on glycolytic pathway is also confirmed presented by elevated lactic acid content and the activity of pyruvate kinase. Furthermore, the expression of glucose transporter1 and 4, and several important genes related to the glycolysis pathway, including HIF-1α, AKT, and PTEN, was also upregulated after garcinol treatment. Taken together, our results revealed that garcinol has opposite effects on tumor energy metabolism through inhibiting mitochondrial oxidative phosphorylation significantly, and reflexively enhancing glycolysis in OSCC cells. Abbreviations OSCC oral squamous cell carcinoma DMBA dimethylbenzanthracene OCR oxygen consumption rate OXPHOS oxidative phosphorylation ECAR extracellular acidification rate.
Collapse
Affiliation(s)
- Guilian Zhang
- Beijing Institute of Dental Research, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University , Beijing , China
| | - Jie Fu
- Beijing Institute of Dental Research, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University , Beijing , China
| | - Ying Su
- Beijing Institute of Dental Research, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University , Beijing , China
| | - Xinyan Zhang
- Beijing Institute of Dental Research, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University , Beijing , China
| |
Collapse
|
14
|
Deb S, Phukan BC, Mazumder MK, Dutta A, Paul R, Bhattacharya P, Sandhir R, Borah A. Garcinol, a multifaceted sword for the treatment of Parkinson's disease. Neurochem Int 2019; 128:50-57. [PMID: 30986504 DOI: 10.1016/j.neuint.2019.04.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/04/2019] [Accepted: 04/09/2019] [Indexed: 12/23/2022]
Abstract
Garcinol, the principal phytoconstituent of plants belonging to the genus Garcinia, is known for its anti-oxidant as well as anti-inflammatory properties, which can be extended to its possible neuroprotective role. Recent reports disseminate the capacity of garcinol to influence neuronal growth and survival, alter the neurochemical status in brain, as well as regulate memory and cognition. The concomitant neuro-rescue property of garcinol may render it as an effective compound in Parkinson's disease (PD) therapeutics since it is capable of ameliorating the related pathophysiological changes. Emerging pieces of evidence linking histone acetylation defects to the progression of neurodegenerative diseases provide an effective basis for targeting PD. Hyperacetylation of histones has been reported in Parkinsonian brain, which demands the use of pharmacological inhibitors of histone acetyltransferases (HAT). Garcinol serves as a potent natural HAT inhibitor and has unveiled promising results in molecular interaction studies against Monoamine oxidase B (MAO-B) and Catechol-O-Methyltransferase (COMT), as well as in L-DOPA induced dyskinesia. This review highlights the prospective implications of garcinol as a novel anti-Parkinsonian agent, and establishes a bridge between histone acetylation defects and the pathological aspects of PD.
Collapse
Affiliation(s)
- Satarupa Deb
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, Assam, India
| | - Banashree Chetia Phukan
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, Assam, India
| | - Muhammed Khairujjaman Mazumder
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, Assam, India
| | - Ankumoni Dutta
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, Assam, India
| | - Rajib Paul
- Department of Zoology, Pandit Deendayal Upadhyaya Adarsha Mahavidyalaya (PDUAM), Eraligool, 788723, Karimganj, Assam, India
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, 382355, Gandhinagar, Gujarat, India
| | - Rajat Sandhir
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, Assam, India.
| |
Collapse
|
15
|
Sosorburam D, Wu ZG, Zhang SC, Hu P, Zhang HY, Jiang T, Ahiasi-Mensah J, He X. Therapeutic effects of traditional Chinese herbal prescriptions for primary dysmenorrhea. CHINESE HERBAL MEDICINES 2019. [DOI: 10.1016/j.chmed.2018.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
16
|
Mazumder MK, Paul R, Phukan BC, Dutta A, Chakrabarty J, Bhattacharya P, Borah A. Garcinol, an effective monoamine oxidase-B inhibitor for the treatment of Parkinson's disease. Med Hypotheses 2018; 117:54-58. [DOI: 10.1016/j.mehy.2018.06.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/07/2018] [Indexed: 02/04/2023]
|
17
|
Behera AK, Swamy MM, Natesh N, Kundu TK. Garcinol and Its Role in Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 928:435-452. [PMID: 27671827 DOI: 10.1007/978-3-319-41334-1_18] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The various bioactive compounds isolated from leaves and fruits of Garcinia sps plants, have been characterized and experimentally demonstrated to be anti-oxidant, anti-inflammatory and anti-cancer in nature. Garcinol, a polyisoprenylated benzophenone, obtained from plant Garcinia indica has been found to be an effective inhibitor of several key regulatory pathways (e.g., NF-kB, STAT3 etc.) in cancer cells, thereby being able to control malignant growth of solid tumours in vivo. Despite its high potential as an anti-neoplastic modulator of several cancer types such as head and neck cancer, breast cancer, hepatocellular carcinoma, prostate cancer, colon cancer etc., it is still in preclinical stage due to lack of systematic and conclusive evaluation of pharmacological parameters. While it is promising anti-cancer effects are being positively ascertained for therapeutic development, studies on its effectiveness in ameliorating other chronic diseases such as cardiovascular diseases, diabetes, allergy, neurodegenerative diseases etc., though seem favourable, are very recent and require in depth scientific investigation.
Collapse
Affiliation(s)
- Amit K Behera
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India
| | - Mahadeva M Swamy
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India
| | - Nagashayana Natesh
- Central Government Health Scheme Dispensary, No. 3, Basavanagudi, Bangalore, India
| | - Tapas K Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India.
| |
Collapse
|
18
|
Dhamija I, Parle M, Kumar S. Antidepressant and anxiolytic effects of Garcinia indica fruit rind via monoaminergic pathway. 3 Biotech 2017; 7:131. [PMID: 28593516 PMCID: PMC5462661 DOI: 10.1007/s13205-017-0766-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/06/2017] [Indexed: 12/22/2022] Open
Abstract
Depression and anxiety are the most crippling neuropsychiatric disorders of this modern era. These mostly occur as anxiety followed by depression or in mixed state. Therefore, there is an urgent need of a safe and effective treatment, which proves its worth in this ailment. What else than a conventional food would be a better choice for a convenient therapy. Therefore, Garcinia indica, commonly known as Kokam, fruit rind has been used in the present study to investigate its antidepressant and anti-anxiety potential using forced swim test, tail suspension test, and reserpine-induced hypothermia; and elevated plus maze, hole-board test, and light dark model, respectively. Garcinia indica fruit rind given to mice with food for consecutive 14 days at 0.5, 1, and 2% w/w significantly (p < 0.05) reduced despair behavior in forced swim test, immobility duration in tail suspension test, and also switched the hypothermia (reserpine induced) to normal temperature significantly (p < 0.05). Garcinia indica significantly (p < 0.05) raised the time elapsed and count of entries in open arms of elevated plus maze, enhanced incidence of head dipping in holes of hole board along with duration of expending time in lit compartment of light dark model, exhibiting its anti-anxiety effect. Garcinia indica significantly reduced monoamine oxidase and malondialdehyde levels providing support to neuroprotective potential of fruit rind. The mechanistic study showed the participation of G. indica at α1-adrenoceptor and D2-dopamine receptor, by attenuating prazosin and sulpiride-induced increase in immobility duration. Garcinia indica fruit rind showed a significant antidepressant and anxiolytic effect while no effect on locomotor activity, i.e., no psycho-stimulation.
Collapse
Affiliation(s)
- Isha Dhamija
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Sciences and Technology, Hisar, Haryana, India.
| | - Milind Parle
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Sciences and Technology, Hisar, Haryana, India
| | - Sandeep Kumar
- Department of Biotechnology, National Institute of Technology, Jalandhar, Punjab, 144011, India.
| |
Collapse
|
19
|
Wang YW, Zhang X, Chen CL, Liu QZ, Xu JW, Qian QQ, Li WY, Qian YN. Protective effects of Garcinol against neuropathic pain - Evidence from in vivo and in vitro studies. Neurosci Lett 2017; 647:85-90. [PMID: 28302538 DOI: 10.1016/j.neulet.2017.03.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/01/2017] [Accepted: 03/11/2017] [Indexed: 12/21/2022]
Abstract
Neuroinflammatory processes have a vital role in the pathogenesis of neuropathic pain. Garcinol, harvested from Garcinia indica, is known to exert potent anti-inflammatory properties. Recent studies have indicated that Garcinol may inhibit activation of nuclear factor-κB (NF-κB) by inhibiting NF-κB/p65 acetylation. These findings prompted us to evaluate the protective effects of Garcinol in the lumbar fifth spinal nerve ligation (SNL)-induced rat model of neuropathic pain and Lipopolysaccharide(LPS)-stimulated primary cultured microglia. In the present study, we found that intrathecal administration of Garcinol significantly attenuated SNL-induced nociceptive behaviors. Garcinol suppressed microglial activation as well as the expression of interleukin (IL)-1β, IL-6, inducible nitric oxide synthase (iNOS)/nitric oxide (NO), and cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2) in the spinal cord of SNL rats. It also reduced the nuclear translocation of NF-κB by decreasing acetyl-p65 protein expression. Similarly, in the in vitro study, Garcinol decreased the production of NO/iNOS, PGE2/COX-2, and proinflammatory cytokines in LPS-exposed microglia. Likewise, Garcinol inhibited the NF-κB signaling pathway by downregulating acetyl-p65 levels in LPS-challenged microglia. Our findings suggest that Garcinol may have protective effects against neuropathic pain that are associated with the inhibition of neuroinflammation in microglia. Therefore, Garcinol could be a promising agent in the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Yi-Wei Wang
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210002, PR China
| | - Xiang Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210002, PR China
| | - Chun-Long Chen
- Department of Anesthesiology, Nanjing General Hospital, Nanjing 210002, PR China
| | - Qing-Zhen Liu
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210002, PR China; Department of Anesthesiology, Nanjing General Hospital, Nanjing 210002, PR China
| | - Jia-Wen Xu
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210002, PR China
| | - Qing-Qing Qian
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210002, PR China
| | - Wei-Yan Li
- Department of Anesthesiology, Nanjing General Hospital, Nanjing 210002, PR China.
| | - Yan-Ning Qian
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210002, PR China.
| |
Collapse
|
20
|
Chen J, Jiang QD, Wu YM, Liu P, Yao JH, Lu Q, Zhang H, Duan JA. Potential of Essential Oils as Penetration Enhancers for Transdermal Administration of Ibuprofen to Treat Dysmenorrhoea. Molecules 2015; 20:18219-36. [PMID: 26457698 PMCID: PMC6332003 DOI: 10.3390/molecules201018219] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 09/27/2015] [Accepted: 09/28/2015] [Indexed: 02/06/2023] Open
Abstract
The present study was conducted to evaluate and compare five essential oils (EOs) as penetration enhancers (PEs) to improve the transdermal drug delivery (TDD) of ibuprofen to treat dysmenorrhoea. The EOs were prepared using the steam distillation method and their chemical compositions were identified by GC-MS. The corresponding cytotoxicities were evaluated in epidermal keartinocyte HaCaT cell lines by an MTT assay. Furthermore, the percutaneous permeation studies were carried out to compare the permeation enhancement effect of EOs. Then the therapeutic efficacy of ibuprofen with EOs was evaluated using dysmenorrheal model mice. The data supports a decreasing trend of skin cell viability in which Clove oil >Angelica oil > Chuanxiong oil > Cyperus oil > Cinnamon oil >> Azone. Chuanxiong oil and Angelica oil had been proved to possess a significant permeation enhancement for TDD of ibuprofen. More importantly, the pain inhibitory intensity of ibuprofen hydrogel was demonstrated to be greater with Chuanxiong oil when compared to ibuprofen without EOs (p < 0.05). The contents of calcium ion and nitric oxide (NO) were also significantly changed after the addition of Chuanxiong oil (p < 0.05). In summary, we suggest that Chuanxiong oil should be viewed as the best PE for TDD of ibuprofen to treat dysmenorrhea.
Collapse
Affiliation(s)
- Jun Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Pharmaceutical Research Laboratory, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Qiu-Dong Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Pharmaceutical Research Laboratory, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Ye-Ming Wu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Pharmaceutical Research Laboratory, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Pei Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jun-Hong Yao
- Pharmaceutical Research Laboratory, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Qing Lu
- Pharmaceutical Research Laboratory, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Hui Zhang
- Pharmaceutical Research Laboratory, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
21
|
Garcinol prevents hyperhomocysteinemia and enhances bioavailability of L-DOPA by inhibiting catechol-O-methyltransferase: an in silico approach. Med Chem Res 2015. [DOI: 10.1007/s00044-015-1472-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Animal study on primary dysmenorrhoea treatment at different administration times. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:367379. [PMID: 25705236 PMCID: PMC4332465 DOI: 10.1155/2015/367379] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 01/04/2015] [Accepted: 01/12/2015] [Indexed: 11/17/2022]
Abstract
The new methods of different administration times for the treatment of primary dysmenorrhea are more widely used clinically; however, no obvious mechanism has been reported. Therefore, an animal model which is closer to clinical evaluation is indispensable. A novel animal experiment with different administration times, based on the mice oestrous cycle, for primary dysmenorrhoea treatment was explored in this study. Mice were randomly divided into two parts (one-cycle and three-cycle part) and each part includes five groups (12 mice per group), namely, Jingqian Zhitong Fang (JQF) 6-day group, JQF last 3-day group, Yuanhu Zhitong tablet group, model control group, and normal control group. According to the one-way ANOVAs, results (writhing reaction, and PGF2α, PGE2, NO, and calcium ions analysis by ELISA) of the JQF cycle group were in accordance with those of JQF last 3-day group. Similarly, results of three-cycle continuous administration were consistent with those of one-cycle treatment. In conclusion, the consistency of the experimental results illustrated that the novel animal model based on mice oestrous cycle with different administration times is more reasonable and feasible and can be used to explore in-depth mechanism of drugs for the treatment of primary dysmenorrhoea in future.
Collapse
|
23
|
A review of in vitro and in vivo studies on the efficacy of herbal medicines for primary dysmenorrhea. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:296860. [PMID: 25431607 PMCID: PMC4238180 DOI: 10.1155/2014/296860] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 10/11/2014] [Accepted: 10/13/2014] [Indexed: 01/25/2023]
Abstract
Purpose. Primary dysmenorrhea (PD) is a common gynecological complaint among adolescent girls and women of reproductive age. This study aims to review the findings of published articles on the in vitro and in vivo efficacy of herbal medicines for PD. Methods. In vitro and in vivo studies of herbal compounds, individual herbal extracts, or herbal formula decoctions published from their inception to April 2014 were included in this review. Results. A total of 18 studies involving herbal medicines exhibited their inhibitory effect on PD. The majority of in vitro studies investigated the inhibition of uterine contractions. In vivo studies suggest that herbal medicines exert a peripheral analgesic effect and a possible anti-inflammatory activity via the inhibition of prostaglandin (PG) synthesis. The mechanisms of herbal medicines for PD are associated with PG level reduction, suppression of cyclooxygenase-2 expression, superoxide dismutase activation and malondialdehyde reduction, nitric oxide, inducible nitric oxide synthase, and nuclear factor-kappa B reduction, stimulation of somatostatin receptor, intracellular Ca(2+) reduction, and recovery of phospholipid metabolism. Conclusions. Herbal medicines are thought to be promising sources for the development of effective therapeutic agents for PD. Further investigations on the appropriate herbal formula and their constituents are recommended.
Collapse
|
24
|
Sethi G, Chatterjee S, Rajendran P, Li F, Shanmugam MK, Wong KF, Kumar AP, Senapati P, Behera AK, Hui KM, Basha J, Natesh N, Luk JM, Kundu TK. Inhibition of STAT3 dimerization and acetylation by garcinol suppresses the growth of human hepatocellular carcinoma in vitro and in vivo. Mol Cancer 2014; 13:66. [PMID: 24655440 PMCID: PMC3998115 DOI: 10.1186/1476-4598-13-66] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 03/12/2014] [Indexed: 02/06/2023] Open
Abstract
Background Constitutive activation of signal transducer and activator of transcription 3 (STAT3) has been linked with proliferation, survival, invasion and angiogenesis of a variety of human cancer cells, including hepatocellular carcinoma (HCC). Thus, novel agents that can suppress STAT3 activation have potential for both prevention and treatment of HCC. Here we report, garcinol, a polyisoprenylated benzophenone, could suppress STAT3 activation in HCC cell lines and in xenografted tumor of HCC in nude mice model. Experimental design Different HCC cell lines have been treated with garcinol and the inhibition of STAT3 activation, dimerization and acetylation have been checked by immunoblotting, immuno-fluorescence, and DNA binding assays. Xenografted tumor model has been generated in nude mice using HCC cell line and effect of garcinol in the inhibition of tumor growth has been investigated. Results Garcinol could inhibit both constitutive and interleukin (IL-6) inducible STAT3 activation in HCC cells. Computational modeling showed that garcinol could bind to the SH2 domain of STAT3 and suppress its dimerization in vitro. Being an acetyltransferase inhibitor, garcinol also inhibits STAT3 acetylation and thus impairs its DNA binding ability. The inhibition of STAT3 activation by garcinol led to the suppression of expression of various genes involved in proliferation, survival, and angiogenesis. It also suppressed proliferation and induced substantial apoptosis in HCC cells. Remarkably, garcinol inhibited the growth of human HCC xenograft tumors in athymic nu/nu mice, through the inhibition of STAT3 activation. Conclusion Overall, our results suggest that garcinol exerts its anti-proliferative and pro-apoptotic effects through suppression of STAT3 signaling in HCC both in vitro and in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - John M Luk
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| | | |
Collapse
|
25
|
Yu SY, Liao CH, Chien MH, Tsai TY, Lin JK, Weng MS. Induction of p21(Waf1/Cip1) by garcinol via downregulation of p38-MAPK signaling in p53-independent H1299 lung cancer. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:2085-2095. [PMID: 24533688 DOI: 10.1021/jf4037722] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Garcinol, a polyisoprenylated benzophenone, from Garcinia indica fruit rind has possessed anti-inflammatory, antioxidant, antiproliferation, and anticancer activities. However, the anticancer mechanisms of garcinol in lung cancer were still unclear. Therefore, we examine the effects of garcinol on antiproliferation in human lung cancer cells. Treatments with garcinol for 24 h exhibited morphological changes and inhibited the proliferation of H460 (p53-wild type) and H1299 (p53-null) cells in dose- and time-dependent manners. Furthermore, a significant G1 cell cycle arrest was observed in a dose-dependent treatment after H1299 cells were exposed in garcinol, whereas garcinol induced apoptosis rather than cell cycle arrest in H460 cells. Moreover, cyclin-dependent kinase 2 (CDK2), cyclin-dependent kinase 4 (CDK4), cyclin D1, and cyclin D3 were decreased, although cyclin E and cyclin-dependent kinase 6 (CDK6) were increased in garcinol-treated H1299 cells. Meanwhile, the protein levels of CDK inhibitors p21(Waf1/Cip1) and p27(KIP1) also exhibited upregulation after garcinol treatments. The enhanced protein-associated level between p21(Waf1/Cip1) and CDK4/2 rather than p27(KIP1) and CDK4/2 was demonstrated in garcinol-treated cells. Additionally, knock-down p21(Waf1/Cip1) by specific siRNA competently prevented garcinol-induced G1 arrest. Besides, garcinol also inhibited ERK and p38-MAPK activations in time-dependent mode. The pretreatment with p38-MAPK inhibitor but not ERK inhibitor raised garcinol-induced G1 population cells. Co-treatment with p38-MAPK inhibitor and garcinol synergistically elevated cyclin E, p21(Waf1/Cip1), and p27(Kip1) expressions. Meanwhile, overexpression dominant negative p38-MAPK also enhanced garcinol-induced p21(Waf1/Cip1) expression in H1299 cells. Accordingly, our data suggested that garcinol induced G1 cell cycle arrest and apoptosis in lung cancer cells under different p53 statuses. The p53-independent G1 cell cycle arrest induced by garcinol might be through upregulation of p21(Waf1/Cip1) triggered from p38-MAPK signaling inactivation.
Collapse
Affiliation(s)
- Sheng-Yung Yu
- Department of Nutritional Science, Fu Jen Catholic University , New Taipei City 24205, Taiwan
| | | | | | | | | | | |
Collapse
|
26
|
Hung WL, Tsai ML, Sun PP, Tsai CY, Yang CC, Ho CT, Cheng AC, Pan MH. Protective effects of garcinol on dimethylnitrosamine-induced liver fibrosis in rats. Food Funct 2014; 5:2883-91. [DOI: 10.1039/c4fo00342j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Garcinol markedly reduced DMN-induced liver fibrosis in rats.
Collapse
Affiliation(s)
- Wei-Lun Hung
- Institute of Food Science and Technology
- National Taiwan University
- Taipei 10617, Taiwan
| | - Mei-Ling Tsai
- Department of Seafood Science
- National Kaohsiung Marine University
- Kaohsiung 811, Taiwan
| | - Pei-Pei Sun
- Department of Seafood Science
- National Kaohsiung Marine University
- Kaohsiung 811, Taiwan
| | - Chen-Yu Tsai
- Institute of Food Science and Technology
- National Taiwan University
- Taipei 10617, Taiwan
| | - Chin-Chou Yang
- Department of Seafood Science
- National Kaohsiung Marine University
- Kaohsiung 811, Taiwan
| | - Chi-Tang Ho
- Department of Food Science
- Rutgers University
- New Brunswick, USA
| | - An-Chin Cheng
- Department of Nutrition and Health Sciences
- Chang Jung Christian University
- Tainan 71101, Taiwan
| | - Min-Hsiung Pan
- Institute of Food Science and Technology
- National Taiwan University
- Taipei 10617, Taiwan
- Department of Medical Research
- China Medical University Hospital
| |
Collapse
|
27
|
Chen Y, Cao Y, Xie Y, Zhang X, Yang Q, Li X, Sun J, Qiu P, Cao W, Wang S. Traditional Chinese medicine for the treatment of primary dysmenorrhea: how do Yuanhu painkillers effectively treat dysmenorrhea? PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2013; 20:1095-1104. [PMID: 23806889 DOI: 10.1016/j.phymed.2013.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/15/2013] [Accepted: 05/19/2013] [Indexed: 06/02/2023]
Abstract
AIM To examine the efficacy of YuanHu painkillers (YHP) as a treatment for primary dysmenorrhea and to reveal YHP's principle formula. METHODS A Wistar rat uterine contraction model was utilized in this study. Rats were given 0.698g/kg YHP, 0.07g/kg tetrahydropalmatine (THP; YHP's main component), 0.02g/kg imperatorin (IMP), or THP+IMP (0.07+0.02g/kg) as polypharmacy (PG) by gavage. H&E staining and histopathological examination of the uteri tissue samples were performed. We then detected superoxide dismutase (SOD) and malondialdehyde (MDA), nitric oxide (NO), as well as inducible nitric oxide synthase (iNOS), i-κB, nuclear factor-κB (NF-κB), and cyclooxygenase-2 (COX-2) indices. RESULTS PG significantly inhibited the uterine contraction of the primary dysmenorrhea rat model (p<0.05), and was significantly different than single-agent therapy (p<0.05). Histopathological examination showed inflammation in the uteri of the control group which YHP and its main constitutes alleviated. THP significantly inhibited the contraction of isolated uteri caused by Ach, PGF2α and oxytocin in a concentration-dependent fashion. THP and IMP both significantly affected the levels of NO, activation of NF-κB, up-regulated the expression of i-κB and down-regulated the expression of both iNOS and COX-2. IMP obviously decreased the level of MDA and increased the activation of SOD (p<0.05). PG obviously improved all the parameters mentioned above (p<0.05). CONCLUSIONS YHP exerted protective effects on primary dysmenorrhea in rats and remarkably alleviated the severity of experimental primary dysmenorrhea. The combined strategy proved to be more effective than either THP or IMP alone and may have synergistic effects in combination in primary dysmenorrhea. Mechanisms that might account for the beneficial effects include abating oxidative stress, inhibiting over-inflammatory reaction, and alleviating the contraction of isolated rat uteri by inhibiting the influx of extracellular Ca(2+). Broad potential for future clinical practice is foreseeable.
Collapse
Affiliation(s)
- Yuetao Chen
- Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Tang W, Pan MH, Sang S, Li S, Ho CT. Garcinol from Garcinia indica: Chemistry and Health Beneficial Effects. ACS SYMPOSIUM SERIES 2013. [DOI: 10.1021/bk-2013-1129.ch008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Wenping Tang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, USA
- Department of Seafood Science, National Kaohsiung Marine University, Kaohsiung, Taiwan
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, USA
| | - Min-Hsiung Pan
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, USA
- Department of Seafood Science, National Kaohsiung Marine University, Kaohsiung, Taiwan
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, USA
| | - Shengmin Sang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, USA
- Department of Seafood Science, National Kaohsiung Marine University, Kaohsiung, Taiwan
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, USA
| | - Shiming Li
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, USA
- Department of Seafood Science, National Kaohsiung Marine University, Kaohsiung, Taiwan
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, USA
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, USA
- Department of Seafood Science, National Kaohsiung Marine University, Kaohsiung, Taiwan
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, USA
| |
Collapse
|
29
|
Antala BV, Patel MS, Bhuva SV, Gupta S, Rabadiya S, Lahkar M. Protective effect of methanolic extract of Garcinia indica fruits in 6-OHDA rat model of Parkinson's disease. Indian J Pharmacol 2012; 44:683-7. [PMID: 23248394 PMCID: PMC3523492 DOI: 10.4103/0253-7613.103242] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 04/29/2012] [Accepted: 08/31/2012] [Indexed: 11/04/2022] Open
Abstract
CONTEXT Several studies have reported that antioxidants play an important role in Parkinson's disease (PD). Garcinia indica extract is a natural antioxidant, the present study was undertaken to evaluate the neuroprotective effect of methanolic extract of Garcinia indica (GIM) against 6-hydroxydopamine (6-OHDA) neurotoxicity for striatal dopaminergic neurons in the rat. MATERIALS AND METHODS Thirty adult Wistar rats were randomly divided into five groups namely control, 6-OHDA model, and GIM (100, 200, and 400 mg/kg body weight suspended in one ml of 0.1% carboxymethyl cellulose). The treatment was started three days before surgery and continued for next 14 days. The surgery was done on third day in all groups for administration of 6-OHDA into the right striatum and right substantia nigra, whereas control group injected with 6-OHDA vehicle. Various behavior and biochemical tests (Apomorphine-induced rotational behavior, Stepping test, Initiation time, Postural balance test, and Disengage time) were used to evaluate the neuroprotective effect of GIM. One-way analysis of variance (ANOVA) followed by Dunnett's test was used to compare inter-group differences. P<0.05 was considered as statistically significant. RESULTS GIM had significant (P<0.05, P<0.01) preventive effect in biochemical tests, i.e., dopamine and its metabolites measurement and in various behavior tests, i.e., apomorphine-induced rotational behavior, stepping test, initiation time, postural balance test, and disengage time as compared to 6-OHDA-treated rats. CONCLUSIONS Our results demonstrated that GIM acted as an effective neuroprotective agent for striatal dopaminergic neurons in 6-OHDA lesioned rat model of PD.
Collapse
Affiliation(s)
| | | | - Satish V. Bhuva
- Department of Biotechnology, NIPER, Ahmedabad, Gujarat, India
| | - Shiv Gupta
- Department of Natural Product, NIPER, Ahmedabad, Gujarat, India
| | - Samir Rabadiya
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Mangala Lahkar
- Department of Pharmacology and Toxicology, NIPER, Guwahati, Assam, India
| |
Collapse
|
30
|
Lakshmi C, Kumar KA, Dennis TJ, Kumar TSSPNSS. Antibacterial activity of polyphenols of garcinia indica. Indian J Pharm Sci 2012; 73:470-3. [PMID: 22707838 PMCID: PMC3374570 DOI: 10.4103/0250-474x.95655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 07/19/2011] [Accepted: 08/18/2011] [Indexed: 11/04/2022] Open
Abstract
The aim of present work is to study the antibacterial activity of polyphenols isolated from the ethyl acetate soluble of methanol extract of stem bark of Garcinia indica against Staphylococcus aureus, Salmonella typhi and Escherichia coli by paper disc method. The results showed good antibacterial activity against S. aureus at higher concentrations, moderate at lower concentrations, against S. typhi moderate at higher concentrations but no activity against E. coli even at higher concentration for flavononylflavone. With proauthocyanin S. Aureus, S. Typhi and E. coli showed good antibacterial activity at higher concentration only.
Collapse
Affiliation(s)
- C Lakshmi
- Dr. Satwalekar Research Laboratory, Vivik Vardhini College, Hyderabad-500 095, India
| | | | | | | |
Collapse
|
31
|
Hippocampal histone acetylation regulates object recognition and the estradiol-induced enhancement of object recognition. J Neurosci 2012; 32:2344-51. [PMID: 22396409 DOI: 10.1523/jneurosci.5819-11.2012] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Histone acetylation has recently been implicated in learning and memory processes, yet necessity of histone acetylation for such processes has not been demonstrated using pharmacological inhibitors of histone acetyltransferases (HATs). As such, the present study tested whether garcinol, a potent HAT inhibitor in vitro, could impair hippocampal memory consolidation and block the memory-enhancing effects of the modulatory hormone 17β-estradiol E2. We first showed that bilateral infusion of garcinol (0.1, 1, or 10 μg/side) into the dorsal hippocampus (DH) immediately after training impaired object recognition memory consolidation in ovariectomized female mice. A behaviorally effective dose of garcinol (10 μg/side) also significantly decreased DH HAT activity. We next examined whether DH infusion of a behaviorally subeffective dose of garcinol (1 ng/side) could block the effects of DH E2 infusion on object recognition and epigenetic processes. Immediately after training, ovariectomized female mice received bilateral DH infusions of vehicle, E2 (5 μg/side), garcinol (1 ng/side), or E2 plus garcinol. Forty-eight hours later, garcinol blocked the memory-enhancing effects of E2. Garcinol also reversed the E2-induced increase in DH histone H3 acetylation, HAT activity, and levels of the de novo methyltransferase DNMT3B, as well as the E2-induced decrease in levels of the memory repressor protein histone deacetylase 2. Collectively, these findings suggest that histone acetylation is critical for object recognition memory consolidation and the beneficial effects of E2 on object recognition. Importantly, this work demonstrates that the role of histone acetylation in memory processes can be studied using a HAT inhibitor.
Collapse
|
32
|
Pan MH, Lai CS, Tsai ML, Wu JC, Ho CT. Molecular mechanisms for anti-aging by natural dietary compounds. Mol Nutr Food Res 2011; 56:88-115. [PMID: 22083941 DOI: 10.1002/mnfr.201100509] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 08/20/2011] [Accepted: 09/02/2011] [Indexed: 12/11/2022]
Abstract
Aging is defined as a normal decline in survival with advancing age; however, the recent researches have showed that physiological functions of the body change during the aging process. Majority of the changes are often subject to a higher risk of developing diseases, such as cardiovascular disease, type II diabetes, Alzheimer's disease, Parkinson's disease, as well as the dysregulated immune and inflammatory disorders. Aging process is controlled by a complicated and precise signaling network that involved in energy homeostasis, cellular metabolism and stress resistance. Over the past few decades, research in natural dietary compounds by various organism and animal models provides a new strategy for anti-aging. Natural dietary compounds act through a variety mechanisms to extend lifespan and prevent age-related diseases. This review summarizes the current understanding on signaling pathways of aging and knowledge and underlying mechanism of natural dietary compounds that provide potential application on anti-aging and improve heath in human.
Collapse
Affiliation(s)
- Min-Hsiung Pan
- Department of Seafood Science, National Kaohsiung Marine University, Kaohsiung, Taiwan.
| | | | | | | | | |
Collapse
|
33
|
Baliga MS, Bhat HP, Pai RJ, Boloor R, Palatty PL. The chemistry and medicinal uses of the underutilized Indian fruit tree Garcinia indica Choisy (kokum): A review. Food Res Int 2011. [DOI: 10.1016/j.foodres.2011.01.064] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
Figueredo YN, García-Pupo L, Cuesta Rubio O, Delgado Hernández R, Naal Z, Curti C, Pardo Andreu GL. A strong protective action of guttiferone-A, a naturally occurring prenylated benzophenone, against iron-induced neuronal cell damage. J Pharmacol Sci 2011; 116:36-46. [PMID: 21512303 DOI: 10.1254/jphs.10273fp] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Guttiferone-A (GA) is a natural occurring polyisoprenylated benzophenone with several reported pharmacological actions. We have assessed the protective action of GA on iron-induced neuronal cell damage by employing the PC12 cell line and primary culture of rat cortical neurons (PCRCN). A strong protection by GA, assessed by the 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carbox-anilide (XTT) assay, was revealed, with IC(50) values <1 µM. GA also inhibited Fe(3+)-ascorbate reduction, iron-induced oxidative degradation of 2-deoxiribose, and iron-induced lipid peroxidation in rat brain homogenate, as well as stimulated oxygen consumption by Fe(2+) autoxidation. Absorption spectra and cyclic voltammograms of GA-Fe(2+)/Fe(3+) complexes suggest the formation of a transient charge transfer complex between Fe(2+) and GA, accelerating Fe(2+) oxidation. The more stable Fe(3+) complex with GA would be unable to participate in Fenton-Haber Weiss-type reactions and the propagation phase of lipid peroxidation. The results show a potential of GA against neuronal diseases associated with iron-induced oxidative stress.
Collapse
Affiliation(s)
- Yanier Núñez Figueredo
- Laboratorio de Farmacología Molecular, Centro de Investigación y Desarrollo de Medicamentos, Ciudad Habana, Cuba
| | | | | | | | | | | | | |
Collapse
|
35
|
Weng MS, Liao CH, Yu SY, Lin JK. Garcinol promotes neurogenesis in rat cortical progenitor cells through the duration of extracellular signal-regulated kinase signaling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:1031-1040. [PMID: 21214247 DOI: 10.1021/jf104263s] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Garcinol is a polyisoprenylated benzophenone derivative found in Garcinia indica fruit rind and other species. The potential antioxidative and neuroprotective effects of garcinol in rat cortical astrocyte were demonstrated in our laboratory recently. Here, the effects of garcinol on the neuritogenesis process in cultured cortical progenitor cells were investigated to understand the roles of garcinol in neuronal survival and differentiation. These cells, derived from embryonic day 17 rats, differentiated into EGF-responsive neural precursor cells, would further form neurospheres. Our data exhibited garcinol induced neurite outgrowth in early developing EGF-treated neurospheres and significantly enhanced the expression of neuronal proteins, microtubule-associated protein 2 (MAP-2), and glial fibrillary acidic protein (GFAP). Furthermore, the neuronal marker, high-molecular-weight subunit of neurofilaments (NFH), was highly expressed after 5 μM garcinol treatment in neural precursor cells for 20 days. To identify the extracellular mechanism, rat cortical progenitor cells were treated garcinol and accordingly mediated the sustained activation of extracellular signal-regulated kinase (ERK) for different periods up to 20 h. In this regard, NMDA receptor-mediated calcium influx led to excitotoxic death and activated tyrosine phosphatase which limited the duration of ERK in cultured neurons. MK801, the NMDA receptor antagonist, treatment also induced the sustained phosphorylation of ERK and therefore enhanced neuronal survival. In our observation, garcinol treatment reduced growth factor deprivation-mediated cell death and nuclear import of C/EBPβ levels. Noteworthy, garcinol could promote neurite outgrowth in EGF-responsive neural precursor cells and modulate the ERK pathway in the enhancement of neuronal survival.
Collapse
Affiliation(s)
- Meng-Shih Weng
- Department of Nutritional Science, Fu Jen Catholic University, Taipei, Taiwan.
| | | | | | | |
Collapse
|
36
|
Cheng AC, Tsai ML, Liu CM, Lee MF, Nagabhushanam K, Ho CT, Pan MH. Garcinol inhibits cell growth in hepatocellular carcinoma Hep3B cells through induction of ROS-dependent apoptosis. Food Funct 2010; 1:301-7. [DOI: 10.1039/c0fo00134a] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Kolodziejczyk J, Masullo M, Olas B, Piacente S, Wachowicz B. Effects of garcinol and guttiferone K isolated fromGarcinia cambogiaon oxidative/nitrative modifications in blood platelets and plasma. Platelets 2009; 20:487-92. [DOI: 10.3109/09537100903165182] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
38
|
Padhye S, Ahmad A, Oswal N, Sarkar FH. Emerging role of Garcinol, the antioxidant chalcone from Garcinia indica Choisy and its synthetic analogs. J Hematol Oncol 2009; 2:38. [PMID: 19725977 PMCID: PMC2743703 DOI: 10.1186/1756-8722-2-38] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2009] [Accepted: 09/02/2009] [Indexed: 11/13/2022] Open
Abstract
Garcinol, harvested from Garcinia indica, has traditionally been used in tropical regions and appreciated for centuries; however its biological properties are only beginning to be elucidated. There is ample data to suggest potent antioxidant properties of this compound which have been used to explain most of its observed biological activities. However, emerging evidence suggests that garcinol could be useful as an anti-cancer agent, and it is increasingly being realized that garcinol is a pleiotropic agent capable of modulating key regulatory cell signaling pathways. Here we have summarized the progress of our current research knowledge on garcinol and its observed biological activities. We have also provided an explanation of observed properties based on its chemical structure and provided an insight into the structure and properties of chalcones, the precursors of garcinol. The available data is promising but more detailed investigations into the various properties of this compound, particularly its anti-cancer activity are urgently needed, and it is our hope that this review will stimulate further research for elucidating and appreciating the value of this nature's wonder agent.
Collapse
Affiliation(s)
- Subhash Padhye
- Department of Pathology, Barbara Ann Karmanos Cancer Center and Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
39
|
Lu H, Shi JX, Zhang DM, Wang HD, Hang CH, Chen HL, Yin HX. Inhibition of hemolysate-induced iNOS and COX-2 expression by genistein through suppression of NF-кB activation in primary astrocytes. J Neurol Sci 2009; 278:91-5. [DOI: 10.1016/j.jns.2008.12.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 11/30/2008] [Accepted: 12/09/2008] [Indexed: 11/26/2022]
|
40
|
González A, Salido GM. Ethanol alters the physiology of neuron-glia communication. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 88:167-98. [PMID: 19897078 DOI: 10.1016/s0074-7742(09)88007-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In the central nervous system (CNS), both neurones and astrocytes play crucial roles. On a cellular level, brain activity involves continuous interactions within complex cellular circuits established between neural cells and glia. Although it was initially considered that neurones were the major cell type in cerebral function, nowadays astrocytes are considered to contribute to cerebral function too. Astrocytes support normal neuronal activity, including synaptic function, by regulating the extracellular environment with respect to ions and neurotransmitters. There is a plethora of noxious agents which can lead to the development of alterations in organs and functional systems, and that will end in a chronic prognosis. Among the potentially harmful external agents we can find ethanol consumption, whose consequences have been recognized as a major public health concern. Deregulation of cell cycle has devastating effects on the integrity of cells, and has been closely associated with the development of pathologies which can lead to dysfunction and cell death. An alteration of normal neuronal-glial physiology could represent the basis of neurodegenerative processes. In this review we will pay attention on to the recent findings in astrocyte function and their role toward neurons under ethanol consumption.
Collapse
Affiliation(s)
- Antonio González
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10071, Cáceres, Spain
| | | |
Collapse
|
41
|
Zhao F, Tang YZ, Liu ZQ. Protective effect of icariin on DNA against radical-induced oxidative damage. J Pharm Pharmacol 2008; 59:1729-32. [PMID: 18053336 DOI: 10.1211/jpp.59.12.0016] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Icariin (2-(4'-methoxylphenyl)-3-rhamnosido-5-hydroxyl-7-glucosido-8-(3'-methyl-2-butylenyl)-4-chromanone) is a flavonoid with a rhamnose as ligand. It is the major component in Herba epimedii, widely used for the treatment of atherosclerosis and neuropathy in Chinese traditional medicine, and its antioxidative property has attracted much scientific interest. The major objective of this work is to determine the antioxidative effect of icariin against oxidative DNA damage induced by 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH). The oxidative damage of DNA was followed by measuring the formation of carbonyl compounds that can react with thiobarbituric acid (TBA) to form thiobarbituric acid reactive substance (TBARS). We found that icariin protects DNA against AAPH-induced oxidative damage in a concentration-dependent manner, although it does not affect the rate of AAPH-induced DNA damage. This result indicates that icariin is a concentration-dependent chemopreventor in protecting DNA against radical-induced damage.
Collapse
Affiliation(s)
- Feng Zhao
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun 130021, China
| | | | | |
Collapse
|
42
|
. SH, . LK, . SK, . LJH. A New Pyrano Xanthone from the Stem Barks of Garcinia tetrandra Pierre. ACTA ACUST UNITED AC 2007. [DOI: 10.3923/jbs.2008.137.142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
43
|
Hong J, Kwon SJ, Sang S, Ju J, Zhou JN, Ho CT, Huang MT, Yang CS. Effects of garcinol and its derivatives on intestinal cell growth: Inhibitory effects and autoxidation-dependent growth-stimulatory effects. Free Radic Biol Med 2007; 42:1211-21. [PMID: 17382202 DOI: 10.1016/j.freeradbiomed.2007.01.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 12/15/2006] [Accepted: 01/09/2007] [Indexed: 10/23/2022]
Abstract
Garcinol, a polyisoprenylated benzophenone, from the Garcinia indica fruit rind, has been suggested to be an anti-inflammatory and anti-cancer agent. To explore the possible use of this redox-sensitive compound as a colon cancer preventive agent, we investigated the effects of garcinol and its oxidative derivatives, cambogin, garcim-1, and garcim-2, on the growth of HT-29 and HCT-116 colon cancer cells, as well as IEC-6 and INT-407 normal immortalized intestinal cells. Garcinol and its derivatives showed potent growth-inhibitory effects on all intestinal cells, showing IC50 of 3.2-21.4 microM after a 3-day treatment. Garcim-1 exhibited the strongest effect with IC50 of 3.2-5.9 microM. Garcinol was more effective in inhibiting growth of cancer cells than that of normal immortalized cells. Flow-cytometric analysis showed increased sub-G1 cells by treatment with garcinol and cambogin. Induction of apoptosis by garcinol and cambogin (2-10 microM) was also observed based on caspase-3 activation and enhanced annexin V staining. The inhibitory effect of garcinol on cell growth was much more pronounced in the absence of fetal bovine serum (FBS), decreasing IC50 to 1.5 from 11.8 microM in 72-h incubations and to 3 from 38 microM in 24-h incubations, possibly due to the binding of garcinol to FBS, which markedly reduced cellular levels of garcinol. Under these conditions, redox reactions seem not to be involved in the inhibition. In contrast to the inhibitory effect, low concentrations (<1 microM) of garcinol and cambogin stimulated the growth of both normal and cancer cells by 10-100%, and the activity seemed to be mediated by reactive oxygen species. In the presence of superoxide dismutase/catalase or N-acetyl cysteine, low concentrations of garcinol (<1 microM) decreased cell growth. Garcinol (0.5-1 microM) also increased the phosphorylation of extracellular signal-related kinase 1/2 and AKT and the level of survivin, and the effects were abolished in the presence of superoxide dismutase/catalase. Our results indicate that garcinol and its derivatives can inhibit intestinal cell growth, but low concentrations of garcinol can stimulate cell growth. It remains to be determined whether the currently observed stimulatory and inhibitory effects of garcinol on colon cell growth occur in vivo.
Collapse
Affiliation(s)
- Jungil Hong
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, The State University of New Jersey, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Kyung KS, Gon JH, Geun KY, Sup JJ, Suk WJ, Ho KJ. 6-Shogaol, a natural product, reduces cell death and restores motor function in rat spinal cord injury. Eur J Neurosci 2006; 24:1042-52. [PMID: 16930431 DOI: 10.1111/j.1460-9568.2006.04908.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Spinal cord injury (SCI) results in progressive waves of secondary injuries, which via the activation of a barrage of noxious pathological mechanisms exacerbate the injury to the spinal cord. Secondary injuries are associated with edema, inflammation, excitotoxicity, excessive cytokine release, caspase activation and cell apoptosis. This study was aimed at investigating the possible neuroprotective effects of 6-shogaol purified from Zingiber officinale by comparing an experimental SCI rat group with SCI control rats. Shogaol attenuated apoptotic cell death, including poly(ADP-ribose) polymerase activity, and reduced astrogliosis and hypomyelination which occurs in areas of active cell death in the spinal cords of SCI rats. The foremost protective effect of shogaol in SCI would therefore be manifested in the suppression of the acute secondary apoptotic cell death. However, it does not attenuate active microglia and macrophage infiltration. This finding is supported by a lack of histopathological changes in the areas of the lesion in the shogaol-treated SCI rats. Moreover, shogaol-mediated neuroprotection has been linked with shogaol's attenuation of p38 mitogen-activated protein kinase, p-SAPK/JNK and signal transducer, and with transcription-3 activation. Our results demonstrate that shogaol administrated immediately after SCI significantly diminishes functional deficits. The shogaol-treated group recovered hindlimb reflexes more rapidly and a higher percentage of these rats regained responses compared with the untreated injured rats. The overall hindlimb functional improvement of hindlimbs, as measured by the Basso, Beattie and Bresnahan scale, was significantly enhanced in the shogaol-treated group relative to the SCI control rats. Our data show that the therapeutic outcome of shogaol probably results from its comprehensive effects of blocking apoptotic cell death, resulting in the protection of white matter, oligodendrocytes and neurons, and inhibiting astrogliosis. Our finding that the administration of shogaol prevents secondary pathological events in traumatic SCIs and promotes recovery of motor functions in an animal model raises the issue of whether shogaol could be used therapeutically in humans after SCI.
Collapse
Affiliation(s)
- Kang Soo Kyung
- Department of Physiology, School of Medicine, Pusan National University, 1-10 Ami-Dong, Seo-Gu, Busan, South Korea.
| | | | | | | | | | | |
Collapse
|
45
|
Kang SK, Cha SH, Jeon HG. Curcumin-induced histone hypoacetylation enhances caspase-3-dependent glioma cell death and neurogenesis of neural progenitor cells. Stem Cells Dev 2006; 15:165-74. [PMID: 16646663 DOI: 10.1089/scd.2006.15.165] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Acetylation of histones and nonhistone proteins is an important post-translational modification involved in the regulation of gene expression in mammalian cells. Dysfunction of histone acetyltransferase (HAT) is often associated with the manifestation of several diseases. In this report, HATs are new targets for the development of therapeutics. Our studies first proved that curcumin induces histone hypoacetylation in brain cancer cells and finally induces apoptotic cell death through a (PARP)- and caspase 3-mediated manner. In addition, curcumin induces recontrolling of neural stem cell fates. It induces effective neurogenesis, synaptogenesis, and migration of neural progenitor cells in vitro in brain-derived adult neural stem cells. We also confirmed the neurogenic effect of curcumin in our in vivo experiments. Curcumin actively suppressed differentiation in astrocytes while promoting differentiation into the neurons associated with decrease of histone H3 and H4 acetylation. We suggest that histone hypoacetylation plays an important role in determine stem cell fate through controlling the simultaneous expression of many genes. Thus, the present finding that curcumin, a nontoxic dietary compound, is a histone acetyltransferase inhibitor would supply a new window to understand further the molecular mechanism of histone acetylase inhibitors (HAI) in cancer and neural stem cells and provide a new target molecule for treating central nervous system disorders.
Collapse
Affiliation(s)
- Soo-Kyung Kang
- Department of Physiology, College of Medicine, Pusan National University, Busan, South Korea.
| | | | | |
Collapse
|
46
|
Liu ZQ. Icariin: A Special Antioxidant To Protect Linoleic Acid against Free-Radical-Induced Peroxidation in Micelles. J Phys Chem A 2006; 110:6372-8. [PMID: 16686474 DOI: 10.1021/jp053998z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The objective in this work is to determine the antioxidant capacity and effectiveness of icariin (2-(4'-methoxylphenyl)-3-rhamnosido-5-hydroxyl-7-glucosido-8-(3'-methyl-2-butylenyl)-4-chromanone), the major component in herba epimedii being used widely in traditional Chinese medicine for the treatment of artherosclerosis and neuropathy, in which 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH)-induced peroxidation of linoleic acid (LH) in sodium dodecyl sulfate (SDS) acts as the experimental system. By containing an intramolecular hydrogen bond, icariin protects LH against AAPH-induced peroxidation of LH only in SDS, an anionic micelle. The number of trapping peroxyl radicals (LOO(*)), n, by icariin is just 0.0167 whereas alpha-tocopherol (TOH) and L-ascorbyl-6-laurate (VC-12) are 2.14 and 1.25, respectively, with reference to the n of 6-hydroxyl-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox), 2.00. This is also related to how the intramolecular hydrogen bond enhances the bond dissociation enthalpy (BDE) of O-H in icariin. However, calculation of the inhibition rate constant, k(inh), a kinetic parameter to describe the reaction between the antioxidant and LOO(*), results in a k(inh) of icariin at about one magnitude larger than those of Trolox, TOH, and VC-12. This fact reveals that, by the view of kinetics, icariin is an antioxidant with much higher effectiveness. In addition, the antioxidant capacities of icariin used together with other antioxidants have been determined and the results indicate that the n of icariin decreases markedly while the n values of Trolox and TOH increase, even if the n of icariin is a negative value in the presence of VC-12. Furthermore, an analysis of k(inh) in this case reveals that the k(inh)(icariin) increases nearly one magnitude with the decrease of k(inh)(Trolox) and no remarkable change occurs for k(inh)(TOH). The negative value of k(inh)(icariin) in the presence of VC-12 can be regarded as the icariin functions as a prooxidant that can be rectified by VC-12 effectively. These findings implicate that the evaluation of antioxidant activity should not only focus on an n value, a thermodynamic possibility, but k(inh) and the charge property of the micelle should be also taken into account. To some extent, the latter factors are more important than the thermodynamic possibility.
Collapse
Affiliation(s)
- Zai-Qun Liu
- Department of Organic Chemistry, College of Chemistry, Jilin University, No. 2519 Jiefang Road, Changchun 130021, China.
| |
Collapse
|
47
|
Tilak-Jain JA, Devasagayam TPA. Cardioprotective and Other Beneficial Effects of Some Indian Medicinal Plants. J Clin Biochem Nutr 2006. [DOI: 10.3164/jcbn.38.9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|