1
|
Sutradhar R, Dalal DC. The roles of continuous and discontinuous proliferations on hepatitis B virus infection. Math Biosci 2025; 385:109448. [PMID: 40274258 DOI: 10.1016/j.mbs.2025.109448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 03/02/2025] [Accepted: 04/11/2025] [Indexed: 04/26/2025]
Abstract
The proliferation of both uninfected and infected hepatocytes, as well as the recycling effects of rcDNA-containing capsids are two key mechanisms playing significant roles in the persistence and clearance of hepatitis B virus (HBV) infection. In this study, the temporal dynamics of this viral infection is investigated through two intercellular mathematical models considering proliferation of both types of hepatocytes (uninfected and infected) and recycling effects of capsids. Both models are formulated on the basis of a key finding in the existing literature: mitosis of an infected hepatocytes yields in two uninfected progenies. In the first model (defined by P-model), we examine the continuous proliferation (which occur continuously), while the second one (defined by M-model) deals with the discontinuous proliferation (happen when the concentration of liver cells decreases to less than 70% of its initial concentration). The proposed models are calibrated with the experimental data obtained from an adult chimpanzee. Results of this study suggest that when both hepatocytes proliferate with equal rate, proliferation helps the individual in a rapid recovery from the acute infection whereas in case of chronic infection, the severity of the infection increases. On the other hand, if the infected hepatocytes proliferate at a different rate that of uninfected hepatocytes, the proliferation of uninfected hepatocytes contributes to increase the infection, but the proliferation of infected hepatocytes acts to reduce the infection from the long-term perspective. The global sensitivity analysis also shows the same results. Furthermore, it is also observed that the differences between the outcomes of continuous and discontinuous proliferations are significant and noteworthy.
Collapse
Affiliation(s)
- Rupchand Sutradhar
- Department of Mathematics, Indian Institute of Technology Guwahati, Assam, 781039, India.
| | - D C Dalal
- Department of Mathematics, Indian Institute of Technology Guwahati, Assam, 781039, India.
| |
Collapse
|
2
|
Kostas JC, Brainard CS, Cristea IM. A Primer on Proteomic Characterization of Intercellular Communication in a Virus Microenvironment. Mol Cell Proteomics 2025; 24:100913. [PMID: 39862905 PMCID: PMC11889360 DOI: 10.1016/j.mcpro.2025.100913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
Intercellular communication is fundamental to multicellular life and a core determinant of outcomes during viral infection, where the common goals of virus and host for persistence and replication are generally at odds. Hosts rely on encoded innate and adaptive immune responses to detect and clear viral pathogens, while viruses can exploit or disrupt these pathways and other intercellular communication processes to enhance their spread and promote pathogenesis. While virus-induced signaling can result in systemic changes to the host, striking alterations are observed within the cellular microenvironment directly surrounding a site of infection, termed the virus microenvironment (VME). Mechanisms employed by viruses to condition their VMEs are emerging and are critical for understanding the biology and pathologies of viral infections. Recent advances in experimental approaches, including proteomic methods, have enabled study of the VME in unprecedented detail. In this review article, we provide a primer on proteomic approaches used to study how viral infections alter intercellular communication, highlighting the ways in which these approaches have been implemented and the exciting biology they have uncovered. First, we consider the different molecules secreted by an infected cell, including proteins, either soluble or contained within extracellular vesicles, and metabolites. We further discuss the modalities of interactions facilitated by alteration at the cell surface of infected cells, including immunopeptide presentation and interactions with the extracellular matrix. Finally, we review spatial profiling approaches that have allowed distinguishing how specific subpopulations of cells within a VME respond to infection and alter their protein composition, discussing valuable insights these methods have offered.
Collapse
Affiliation(s)
- James C Kostas
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Colter S Brainard
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA.
| |
Collapse
|
3
|
Ma X, Huang T, Chen X, Li Q, Liao M, Fu L, Huang J, Yuan K, Wang Z, Zeng Y. Molecular mechanisms in liver repair and regeneration: from physiology to therapeutics. Signal Transduct Target Ther 2025; 10:63. [PMID: 39920130 PMCID: PMC11806117 DOI: 10.1038/s41392-024-02104-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 09/02/2024] [Accepted: 12/12/2024] [Indexed: 02/09/2025] Open
Abstract
Liver repair and regeneration are crucial physiological responses to hepatic injury and are orchestrated through intricate cellular and molecular networks. This review systematically delineates advancements in the field, emphasizing the essential roles played by diverse liver cell types. Their coordinated actions, supported by complex crosstalk within the liver microenvironment, are pivotal to enhancing regenerative outcomes. Recent molecular investigations have elucidated key signaling pathways involved in liver injury and regeneration. Viewed through the lens of metabolic reprogramming, these pathways highlight how shifts in glucose, lipid, and amino acid metabolism support the cellular functions essential for liver repair and regeneration. An analysis of regenerative variability across pathological states reveals how disease conditions influence these dynamics, guiding the development of novel therapeutic strategies and advanced techniques to enhance liver repair and regeneration. Bridging laboratory findings with practical applications, recent clinical trials highlight the potential of optimizing liver regeneration strategies. These trials offer valuable insights into the effectiveness of novel therapies and underscore significant progress in translational research. In conclusion, this review intricately links molecular insights to therapeutic frontiers, systematically charting the trajectory from fundamental physiological mechanisms to innovative clinical applications in liver repair and regeneration.
Collapse
Affiliation(s)
- Xiao Ma
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Tengda Huang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiangzheng Chen
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qian Li
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Mingheng Liao
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Li Fu
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jiwei Huang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Kefei Yuan
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Zhen Wang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Yong Zeng
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
4
|
Naidu S, Margeridon S. Chronic Hepatitis B Virus Persistence: Mechanisms and Insights. Cureus 2025; 17:e78944. [PMID: 40092015 PMCID: PMC11910171 DOI: 10.7759/cureus.78944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2025] [Indexed: 03/19/2025] Open
Abstract
Chronic hepatitis B (CHB) virus infection can lead to severe liver diseases, including cirrhosis and hepatocellular carcinoma. The chronicity of the hepatitis B virus (HBV) occurs because of the persistence of viral covalently closed circular DNA (cccDNA) within hepatocytes. The cccDNA serves as the template for viral replication and is central to HBV, maintaining a viral reservoir within the host. Despite therapeutic advancements, eliminating cccDNA remains elusive due to its evasion of immune surveillance. This review explores the formation and maintenance of cccDNA, highlighting host factors influencing cccDNA stability and viral replication. It also discusses current treatment strategies, including interferon-based therapies and nucleoside/nucleotide analogs, which aim to suppress viral replication. Emerging therapies such as gene editing and molecular interventions hold promise for targeting cccDNA directly. Currently, research is focused on making medications that target host factors of interest to disrupt or clear the viral reservoir. However, future research should focus on innovative approaches that directly target the cccDNA minichromosome, aiming for sustained viral suppression and potentially a cure for the HBV infection.
Collapse
Affiliation(s)
- Samrita Naidu
- Virology, Rio Americano High School, Sacramento, USA
| | - Severine Margeridon
- Molecular Diagnostics and Assay Development, Bio-Rad Laboratories, San Francisco, USA
| |
Collapse
|
5
|
Cigliano A, Liao W, Deiana GA, Rizzo D, Chen X, Calvisi DF. Preclinical Models of Hepatocellular Carcinoma: Current Utility, Limitations, and Challenges. Biomedicines 2024; 12:1624. [PMID: 39062197 PMCID: PMC11274649 DOI: 10.3390/biomedicines12071624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Hepatocellular carcinoma (HCC), the predominant primary liver tumor, remains one of the most lethal cancers worldwide, despite the advances in therapy in recent years. In addition to the traditional chemically and dietary-induced HCC models, a broad spectrum of novel preclinical tools have been generated following the advent of transgenic, transposon, organoid, and in silico technologies to overcome this gloomy scenario. These models have become rapidly robust preclinical instruments to unravel the molecular pathogenesis of liver cancer and establish new therapeutic approaches against this deadly disease. The present review article aims to summarize and discuss the commonly used preclinical models for HCC, evaluating their strengths and weaknesses.
Collapse
Affiliation(s)
- Antonio Cigliano
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (G.A.D.); (D.R.)
| | - Weiting Liao
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA 94143, USA; (W.L.); (X.C.)
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Giovanni A. Deiana
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (G.A.D.); (D.R.)
| | - Davide Rizzo
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (G.A.D.); (D.R.)
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA 94143, USA; (W.L.); (X.C.)
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Diego F. Calvisi
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (G.A.D.); (D.R.)
| |
Collapse
|
6
|
Chen KW, Chen YS, Chen PJ, Yeh SH. Androgen receptor functions in pericentral hepatocytes to decrease gluconeogenesis and avoid hyperglycemia and obesity in male mice. Metabolism 2022; 135:155269. [PMID: 35914621 DOI: 10.1016/j.metabol.2022.155269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 07/13/2022] [Accepted: 07/24/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Although the impact of hepatic androgen receptor (AR) pathway on liver pathogenesis was documented, its physiological function in normal liver is remained unclear. This study aims to investigate if hepatic AR acts on metabolism, the major liver function, using a hepatic-specific AR-transgenic (H-ARTG) mouse model. METHODS We established the albumin promoter driven H-ARTG mice and included wild type (WT) and H-ARKO mice for study. The body weight, specific metabolic parameters and results from various tolerance tests were compared in different groups of mice fed a chow diet, from 2 to 18 months of age. Glucose feeding and insulin treatment were used to study the expression and zonal distribution pattern of AR and related genes in liver at different prandial stages. RESULTS The body weight of H-ARTG mice fed a chow diet was 15 % lower than that of wild-type mice, preceded by lower blood glucose and liver triglyceride levels caused by AR reduced hepatic gluconeogenesis. The opposite phenotypes identified in H-ARKO and castrated H-ARTG mice support the critical role of activated AR in decreasing gluconeogenesis and triglyceride levels in liver. Hepatic AR acting by enhancing the expression of cytosolic glycerol-3-phosphate dehydrogenase (cGPDH), a key of glycerophosphate shuttle, was identified as one mechanism to decrease gluconeogenesis from glycerol. We further found AR normally expressed in zone 3 of hepatic lobules. Its level fluctuates dependent on the demand of glucose, decreased by fasting but increased by glucose uptake or insulin stimulation. CONCLUSION AR is a newly identified zone 3 hepatic gene with function in reducing blood glucose and body weight in mice. It suggests that stabilization of hepatic AR is a new direction to prevent hyperglycemia, obesity and nonalcoholic fatty liver disease (NAFLD) in males.
Collapse
Affiliation(s)
- Kai-Wei Chen
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Shan Chen
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pei-Jer Chen
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan; NTU Centers of Genomic and Precision Medicine, National Taiwan University College of Medicine, Taipei, Taiwan; Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shiou-Hwei Yeh
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan; NTU Centers of Genomic and Precision Medicine, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
7
|
Park ES, Dezhbord M, Lee AR, Park BB, Kim KH. Dysregulation of Liver Regeneration by Hepatitis B Virus Infection: Impact on Development of Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14153566. [PMID: 35892823 PMCID: PMC9329784 DOI: 10.3390/cancers14153566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
The liver is unique in its ability to regenerate in response to damage. The complex process of liver regeneration consists of multiple interactive pathways. About 2 billion people worldwide have been infected with hepatitis B virus (HBV), and HBV causes 686,000 deaths each year due to its complications. Long-term infection with HBV, which causes chronic inflammation, leads to serious liver-related diseases, including cirrhosis and hepatocellular carcinoma. HBV infection has been reported to interfere with the critical mechanisms required for liver regeneration. In this review, the studies on liver tissue characteristics and liver regeneration mechanisms are summarized. Moreover, the inhibitory mechanisms of HBV infection in liver regeneration are investigated. Finally, the association between interrupted liver regeneration and hepatocarcinogenesis, which are both triggered by HBV infection, is outlined. Understanding the fundamental and complex liver regeneration process is expected to provide significant therapeutic advantages for HBV-associated hepatocellular carcinoma.
Collapse
Affiliation(s)
- Eun-Sook Park
- Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Seoul 05029, Korea; (E.-S.P.); (B.B.P.)
| | - Mehrangiz Dezhbord
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Korea; (M.D.); (A.R.L.)
| | - Ah Ram Lee
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Korea; (M.D.); (A.R.L.)
| | - Bo Bae Park
- Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Seoul 05029, Korea; (E.-S.P.); (B.B.P.)
| | - Kyun-Hwan Kim
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Korea; (M.D.); (A.R.L.)
- Correspondence: ; Tel.: +82-31-299-6126
| |
Collapse
|
8
|
Lan W, Wang Y, Zhou Z, Sun X, Zhang Y, Zhang F. Metabolic Regulation of Hepatitis B Virus Infection in HBV-Transgenic Mice. Metabolites 2022; 12:287. [PMID: 35448475 PMCID: PMC9031567 DOI: 10.3390/metabo12040287] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 11/20/2022] Open
Abstract
Hepatitis B virus (HBV) infection is a worldwide health burden. Metabolomics analysis has revealed HBV-induced metabolism dysregulation in liver tissues and hepatocytes. However, as an infectious disease, the tissue-specific landscape of metabolic profiles of HBV infection remains unclear. To fill this gap, we applied untargeted nuclear magnetic resonance (NMR) metabolomic analysis of the heart, liver, spleen, lung, kidney, pancreas, and intestine (duodenum, jejunum, ileum) in HBV-transgenic mice and their wild-type littermates. Strikingly, we found systemic metabolic alterations induced by HBV in liver and extrahepatic organs. Significant changes in metabolites have been observed in most tissues of HBV-transgenic mice, except for ileum. The metabolic changes may provide novel therapeutic targets for the treatment of HBV infection. Moreover, tissue-specific metabolic profiles could speed up the study of HBV induced systemic metabolic reprogramming, which could help follow the progression of HBV infection and explain the underlying pathogenesis.
Collapse
Affiliation(s)
- Wenning Lan
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China;
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341001, China
| | - Yang Wang
- Institute of Immunotherapy, Fujian Medical University, Fuzhou 350122, China;
| | - Zixiong Zhou
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China;
| | - Xia Sun
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China;
| | - Yun Zhang
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China;
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Fangrong Zhang
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China;
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou 350122, China
| |
Collapse
|
9
|
Chen RY, Yen CJ, Lin YJ, Wang JM, Tasi TF, Huang YC, Liu YW, Tsai HW, Lee MH, Hung LY. CPAP enhances and maintains chronic inflammation in hepatocytes to promote hepatocarcinogenesis. Cell Death Dis 2021; 12:983. [PMID: 34686650 PMCID: PMC8536685 DOI: 10.1038/s41419-021-04295-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 12/05/2022]
Abstract
Chronic and persistent inflammation is a well-known carcinogenesis promoter. Hepatocellular carcinoma (HCC) is one of the most common inflammation-associated cancers; most HCCs arise in the setting of chronic inflammation and hepatic injury. Both NF-κB and STAT3 are important regulators of inflammation. Centrosomal P4.1-associated protein (CPAP), a centrosomal protein that participates primarily in centrosome functions, is overexpressed in HCC and can increase TNF-α-mediated NF-κB activation and IL-6-induced STAT3 activation. A transgenic (Tg) mouse model with hepatocyte-specific CPAP expression was established to investigate the physiological role of CPAP in hepatocarcinogenesis. Obvious inflammatory cell accumulation and fatty change were observed in the livers of CPAP Tg mice. The alanine aminotransferase (ALT) level and the expression levels of inflammatory genes, such as IL-6, IL-1β and TNF-α, were higher in CPAP Tg mice than in wild type (WT) mice. High-dose/short-term treatment with diethylnitrosamine (DEN) increased the ALT level, proinflammatory gene expression levels, and STAT3 and NF-κB activation in CPAP Tg mice; low-dose/long-term DEN treatment induced more severe liver tumor formation in CPAP Tg mice than in WT mice. CPAP can increase the expression of chemokine (C-C motif) ligand 16 (CCL-16), an important chemotactic cytokine, in human hepatocytes. CCL-16 expression is positively correlated with CPAP and TNF-α mRNA expression in the peritumoral part of HCC. In summary, these results suggest that CPAP may promote hepatocarcinogenesis through enhancing the inflammation pathway via increasing the expression of CCL-16.
Collapse
Affiliation(s)
- Ruo-Yu Chen
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | | | - Yih-Jyh Lin
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ju-Ming Wang
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Ting-Fen Tasi
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Chuan Huang
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yao-Wen Liu
- Department of Clinical Pathology, Kuo General Hospital, Tainan, Taiwan
| | - Hung-Wen Tsai
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Hao Lee
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Liang-Yi Hung
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- University Center for Bioscience and Biotechnology, National Cheng-Kung University, Tainan, Taiwan.
| |
Collapse
|
10
|
Liu GZ, Xu XW, Tao SH, Gao MJ, Hou ZH. HBx facilitates ferroptosis in acute liver failure via EZH2 mediated SLC7A11 suppression. J Biomed Sci 2021; 28:67. [PMID: 34615538 PMCID: PMC8495979 DOI: 10.1186/s12929-021-00762-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/15/2021] [Indexed: 12/15/2022] Open
Abstract
Background Acute liver failure (ALF) is a syndrome of severe hepatocyte injury with high rate of mortality. Hepatitis B virus (HBV) infection is the major cause of ALF worldwide, however, the underlying mechanism by which HBV infection leads to ALF has not been fully disclosed. Methods D-GalN-induced hepatocyte injury model and LPS/D-GalN-induced ALF mice model were used to investigate the effects of HBV X protein (HBx) in vitro and in vivo, respectively. Cell viability and the levels of Glutathione (GSH), malondialdehyde (MDA) and iron were measured using commercial kits. The expression of ferroptosis-related molecules were detected by qRT-PCR and western blotting. Epigenetic modification and protein interaction were detected by chromatin immunoprecipitation (ChIP) assay and co-immunoprecipitation (co-IP), respectively. Mouse liver function was assessed by measuring aspartate aminotransferase (AST) and alanine aminotransferase (ALT). The histological changes in liver tissues were monitored by hematoxylin and eosin (H&E) staining, and SLC7A11 immunoreactivity was assessed by immunohistochemistry (IHC) analysis. Results D-GalN triggered ferroptosis in primary hepatocytes. HBx potentiated D-GalN-induced hepatotoxicity and ferroptosis in vitro, and it suppressed SLC7A11 expression through H3K27me3 modification by EZH2. In addition, EZH2 inhibition or SLC7A11 overexpression attenuated the effects of HBx on D-GalN-induced ferroptosis in primary hepatocytes. The ferroptosis inhibitor ferrostatin-1 (Fer-1) protected against ALF and ferroptosis in vivo. By contrast, HBx exacerbates LPS/D-GalN-induced ALF and ferroptosis in HBx transgenic (HBx-Tg) mice. Conclusion HBx facilitates ferroptosis in ALF via EZH2/H3K27me3-mediated SLC7A11 suppression.
Collapse
Affiliation(s)
- Guo-Zhen Liu
- Department of Infectious Diseases, Xiangya Hospital, Central South University, No.87, Xiangya Road, Kaifu District, Changsha, 410008, Hunan, China
| | - Xu-Wen Xu
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Shu-Hui Tao
- Department of Liver Diseases, Shenzhen Hospital, Southern Medical University, Shenzhen, 518100, Guangdong, China
| | - Ming-Jian Gao
- Department of Infectious Diseases, Xiangya Hospital, Central South University, No.87, Xiangya Road, Kaifu District, Changsha, 410008, Hunan, China
| | - Zhou-Hua Hou
- Department of Infectious Diseases, Xiangya Hospital, Central South University, No.87, Xiangya Road, Kaifu District, Changsha, 410008, Hunan, China.
| |
Collapse
|
11
|
Oh JH, Goh MJ, Park Y, Kim J, Kang W, Sinn DH, Gwak GY, Choi MS, Lee JH, Koh KC, Paik SW, Paik YH. Different Performance of Liver Stiffness Measurement According to Etiology and Outcome for the Prediction of Liver-Related Events. Dig Dis Sci 2021; 66:2816-2825. [PMID: 32897445 DOI: 10.1007/s10620-020-06591-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND/AIMS Liver stiffness measurement (LSM) by transient elastography (TE) has shown promising results for prediction of hepatocellular carcinoma (HCC) and hepatic decompensation in patients with chronic liver disease (CLD). However, whether prognostic performance of TE differs according to etiology or type of outcome remains further clarification. METHODS Performance of LSM for the prediction of HCC and hepatic decompensation was analyzed in a cohort of 4026 patients with asymptomatic CLD. RESULTS During median 4.5 years of follow-up (range 3.0-6.2 years), liver-related events (LRE) were observed in 196 patients (166 with HCC, 45 with hepatic decompensation, and 15 with both). In the multivariate analysis, LSM was independent factor associated with LRE and showed high AUROC (0.78). When stratified by type of outcome and etiology of liver disease, LSM showed high AUROC for the prediction of HCC for patients with non-viral hepatitis (0.89), while it showed relatively low AUROC for the prediction of HCC for patients with viral hepatitis (0.75). For the prediction of hepatic decompensation, LSM showed high AUROC for patients with both viral- and non-viral hepatitis (0.90, 0.90, respectively). CONCLUSIONS LSM showed powerful prognostic role for the prediction of LRE in patients with CLD. Notably, HCC risk was not negligible in patients with viral hepatitis who showed LSM value < 10 kPa, indicating watchful attention for HCC is still needed for viral hepatitis patients with low LSM.
Collapse
Affiliation(s)
- Joo Hyun Oh
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea
| | - Myung Ji Goh
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea
| | - Yewan Park
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea
| | - Jihye Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea
| | - Wonseok Kang
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea
| | - Dong Hyun Sinn
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea.
| | - Geum-Youn Gwak
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea
| | - Moon Seok Choi
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea
| | - Joon Hyeok Lee
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea
| | - Kwang Cheol Koh
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea
| | - Seung Woon Paik
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea
| | - Yong-Han Paik
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea
| |
Collapse
|
12
|
Unique Features of Hepatitis B Virus-Related Hepatocellular Carcinoma in Pathogenesis and Clinical Significance. Cancers (Basel) 2021; 13:cancers13102454. [PMID: 34070067 PMCID: PMC8158142 DOI: 10.3390/cancers13102454] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Hepatitis B virus (HBV) infection is the major risk factor for hepatocellular carcinoma (HCC). Understanding the unique features for HBV-induced HCC can shed new light on the unmet needs in its early diagnosis and effective therapy. During decades of chronic hepatitis B, hepatocytes undergoing repeated damage and regeneration accumulate genetic changes predisposing to HCC development. In addition to traditional mutations in viral and cellular oncogenes, HBV integration into the cell chromosomes is an alternative genetic change contributing to hepatocarcinogenesis. A striking male dominance in HBV-related HCC further highlights an interaction between androgen sex hormone and viral factors, which contributes to the gender difference via stimulating viral replication and activation of oncogenes preferentially in male patients. Meanwhile, a novel circulating tumor biomarker generated by HBV integration shows great potential for the early diagnosis of HCC. These unique HBV-induced hepatocarcinogenic mechanisms provide new insights for the future development of superior diagnosis and treatment strategies. Abstract Hepatitis B virus (HBV) infection is one of the important risk factors for hepatocellular carcinoma (HCC) worldwide, accounting for around 50% of cases. Chronic hepatitis B infection generates an inflammatory microenvironment, in which hepatocytes undergoing repeated cycles of damage and regeneration accumulate genetic mutations predisposing them to cancer. A striking male dominance in HBV-related HCC highlights the influence of sex hormones which interact with viral factors to influence carcinogenesis. HBV is also considered an oncogenic virus since its X and surface mutant proteins showed tumorigenic activity in mouse models. The other unique mechanism is the insertional mutagenesis by integration of HBV genome into hepatocyte chromosomes to activate oncogenes. HCC survival largely depends on tumor stages at diagnosis and effective treatment. However, early diagnosis by the conventional protein biomarkers achieves limited success. A new biomarker, the circulating virus–host chimera DNA from HBV integration sites in HCC, provides a liquid biopsy approach for monitoring the tumor load in the majority of HBV–HCC patients. To maximize the efficacy of new immunotherapies or molecular target therapies, it requires better classification of HCC based on the tumor microenvironment and specific carcinogenic pathways. An in-depth study may benefit both the diagnosis and treatment of HBV-related HCC.
Collapse
|
13
|
Liu Y, Maya S, Ploss A. Animal Models of Hepatitis B Virus Infection-Success, Challenges, and Future Directions. Viruses 2021; 13:v13050777. [PMID: 33924793 PMCID: PMC8146732 DOI: 10.3390/v13050777] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 12/15/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection affects more than 250 million people worldwide, which greatly increases the risk for terminal liver diseases, such as liver cirrhosis and hepatocellular carcinoma (HCC). Even though current approved antiviral therapies, including pegylated type I interferon (IFN) and nucleos(t)ide analogs, can effectively suppress viremia, HBV infection is rarely cured. Since HBV exhibits a narrow species tropism and robustly infects only humans and higher primates, progress in HBV research and preclinical testing of antiviral drugs has been hampered by the scarcity of suitable animal models. Fortunately, a series of surrogate animal models have been developed for the study of HBV. An increased understanding of the barriers towards interspecies transmission has aided in the development of human chimeric mice and has greatly paved the way for HBV research in vivo, and for evaluating potential therapies of chronic hepatitis B. In this review, we summarize the currently available animal models for research of HBV and HBV-related hepadnaviruses, and we discuss challenges and future directions for improvement.
Collapse
|
14
|
Chao T, Shih HT, Hsu SC, Chen PJ, Fan YS, Jeng YM, Shen ZQ, Tsai TF, Chang ZF. Autophagy restricts mitochondrial DNA damage-induced release of ENDOG (endonuclease G) to regulate genome stability. Autophagy 2021; 17:3444-3460. [PMID: 33465003 DOI: 10.1080/15548627.2021.1874209] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Genotoxic insult causes nuclear and mitochondrial DNA damages with macroautophagy/autophagy induction. The role of mitochondrial DNA (mtDNA) damage in the requirement of autophagy for nuclear DNA (nDNA) stability is unclear. Using site-specific DNA damage approaches, we show that specific nDNA damage alone does not require autophagy for repair unless in the presence of mtDNA damage. We provide evidence that after IR exposure-induced mtDNA and nDNA damages, autophagy suppression causes non-apoptotic mitochondrial permeability, by which mitochondrial ENDOG (endonuclease G) is released and translocated to nuclei to sustain nDNA damage in a TET (tet methylcytosine dioxygenase)-dependent manner. Furthermore, blocking lysosome function is sufficient to increase the amount of mtDNA leakage to the cytosol, accompanied by ENDOG-free mitochondrial puncta formation with concurrent ENDOG nuclear accumulation. We proposed that autophagy eliminates the mitochondria specified by mtDNA damage-driven mitochondrial permeability to prevent ENDOG-mediated genome instability. Finally, we showed that HBx, a hepatitis B viral protein capable of suppressing autophagy, also causes mitochondrial permeability-dependent ENDOG mis-localization in nuclei and is linked to hepatitis B virus (HBV)-mediated hepatocellular carcinoma development.Abbreviations: 3-MA: 3-methyladenine; 5-hmC: 5-hydroxymethylcytosine; ACTB: actin beta; ATG5: autophagy related 5; ATM: ATM serine/threonine kinase; DFFB/CAD: DNA fragmentation factor subunit beta; cmtDNA: cytosolic mitochondrial DNA; ConA: concanamycin A; CQ: chloroquine; CsA: cyclosporin A; Dox: doxycycline; DSB: double-strand break; ENDOG: endonuclease G; GFP: green fluorescent protein; Gy: gray; H2AX: H2A.X variant histone; HBV: hepatitis B virus; HBx: hepatitis B virus X protein; HCC: hepatocellular carcinoma; I-PpoI: intron-encoded endonuclease; IR: ionizing radiation; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MOMP: mitochondrial outer membrane permeability; mPTP: mitochondrial permeability transition pore; mtDNA: mitochondrial DNA; nDNA: nuclear DNA; 4-OHT: 4-hydroxytamoxifen; rDNA: ribosomal DNA; ROS: reactive oxygen species; SQSTM1/p62: sequestosome 1; TET: tet methylcytosine dioxygenase; TFAM: transcription factor A, mitochondrial; TOMM20: translocase of outer mitochondrial membrane 20; VDAC: voltage dependent anion channel.
Collapse
Affiliation(s)
- Tung Chao
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsueh-Tzu Shih
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shih-Chin Hsu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Jer Chen
- Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Shan Fan
- Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yung-Ming Jeng
- Department of Pathology, National Taiwan University, Hospital, Taipei, Taiwan
| | - Zhao-Qing Shen
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Ting-Fen Tsai
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Zee-Fen Chang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
15
|
Qi J, Zhou J, Tang XQ, Wang Y. Gene Biomarkers Derived from Clinical Data of Hepatocellular Carcinoma. Interdiscip Sci 2020; 12:226-236. [PMID: 32297074 DOI: 10.1007/s12539-020-00366-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 03/05/2020] [Accepted: 04/02/2020] [Indexed: 12/25/2022]
Abstract
Hepatocellular carcinoma (HCC) is a common cancer of high mortality, mainly due to the difficulty in diagnosis during its clinical stage. Here we aim to find the gene biomarkers, which are of important significance for diagnosis and treatment. In this work, 3682 differentially expressed genes on HCC were firstly differentiated based on the Cancer Genome Atlas database (TCGA). Co-expression modules of these differentially expressed genes were then constructed based on the weighted correlation network algorithm. The correlation coefficient between the co-expression module and clinical data from the Broad GDAC Firehose was thereafter derived. Finally, the interactive network of genes was then constructed. Then, the hub genes were used to implement enrichment analysis and pathway analysis in the Database for Annotation, Visualization and Integrated Discovery (DAVID) database. Results revealed that the abnormally expressed genes in the module played an important role in the biological process including cell division, sister chromatid cohesion, DNA repair, and G1/S transition of mitotic cell cycle. Meanwhile, these genes also enriched in a few crucial pathways related to Cell cycle, Oocyte meiosis, and p53 signaling. Via investigating the closeness centrality of the interactive network, eight gene biomarkers including the CKAP2, TPX2, CDCA8, KIFC1, MELK, SGO1, RACGAP1, and KIAA1524 gene were discovered, whose functions had been indeed revealed to be correlated with HCC. This study, therefore, suggests that the abnormal expression of those eight genes may be taken as gene biomarkers of HCC.
Collapse
Affiliation(s)
- Jiaming Qi
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Jiaxing Zhou
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Xu-Qing Tang
- School of Science, Jiangnan University, Wuxi, 214122, China. .,Wuxi Engineering Research Center for Biocomputing, Jiangnan University, Wuxi, 214122, China.
| | - Yaolai Wang
- Wuxi Engineering Research Center for Biocomputing, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
16
|
Complement C1q mediates the expansion of periportal hepatic progenitor cells in senescence-associated inflammatory liver. Proc Natl Acad Sci U S A 2020; 117:6717-6725. [PMID: 32139604 DOI: 10.1073/pnas.1918028117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Most hepatocellular carcinomas (HCCs) develop in patients with chronic hepatitis, which creates a microenvironment for the growth of hepatic progenitor cells (HPCs) at the periportal area and subsequent development of HCCs. We investigated the signal from the inflammatory liver for this pathogenic process in the hepatic conditional β-catenin knockout mouse model. Senescent β-catenin-depleted hepatocytes in aged mice create an inflammatory microenvironment that stimulates periportal HPC expansion but arrests differentiation, which predisposes mice to the development of liver tumors. The release of complement C1q from macrophages in the inflammatory niche was identified as the unorthodox signal that activated the β-catenin pathway in periportal HPCs and was responsible for their expansion and de-differentiation. C1q inhibitors blocked the β-catenin pathway in both the expanding HPCs and the liver tumors but spared its orthodox pathway in pericentral normal hepatocytes. This mechanism has been validated in human liver specimens from patients with chronic hepatitis. Taken together, these results demonstrate that C1q- mediated activation of β-catenin pathway in periportal HPCs is a previously unrecognized mechanism for replenishing hepatocytes in the inflammatory liver and, if unchecked, for promoting hepatocarcinogenesis. C1q may become a new target for blocking carcinogenesis in patients with chronic hepatitis.
Collapse
|
17
|
Yu DY. Relevance of reactive oxygen species in liver disease observed in transgenic mice expressing the hepatitis B virus X protein. Lab Anim Res 2020; 36:6. [PMID: 32206612 PMCID: PMC7081669 DOI: 10.1186/s42826-020-00037-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 02/12/2020] [Indexed: 12/16/2022] Open
Abstract
The hepatitis B virus (HBV) infects approximately 240 million people worldwide, causing chronic liver disease (CLD) and liver cancer. Although numerous studies have been performed to date, unfortunately there is no conclusive drug or treatment for HBV induced liver disease. The hepatitis B virus X (HBx) is considered a key player in inducing CLD and hepatocellular carcinoma (HCC). We generated transgenic (Tg) mice expressing HBx protein, inducing HCC at the age of 11–18 months. The incidence of histological phenotype, including liver tumor, differed depending on the genetic background of HBx Tg mice. Fatty change and tumor generation were observed much earlier in livers of HBx Tg hybrid (C57BL/6 and CBA) (HBx-Tg hybrid) mice than in HBx Tg C57BL/6 (HBx-Tg B6) mice. Inflammation was also enhanced in the HBx-Tg B6 mice as compared to HBx-Tg hybrid mice. HBx may be involved in inducing and promoting hepatic steatosis, glycemia, hepatic fibrosis, and liver cancer. Reactive oxygen species (ROS) generation was remarkably increased in livers of HBx Tg young mice compared to young wild type control mice. Previous studies on HBx Tg mice indicate that the HBx-induced ROS plays a role in inducing and promoting CLD and HCC.
Collapse
Affiliation(s)
- Dae-Yeul Yu
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 305-806 South Korea
| |
Collapse
|
18
|
Utilizing Experimental Mouse Model to Identify Effectors of Hepatocellular Carcinoma Induced by HBx Antigen. Cancers (Basel) 2020; 12:cancers12020409. [PMID: 32050622 PMCID: PMC7072678 DOI: 10.3390/cancers12020409] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 12/31/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is among the ten most commonly diagnosed cancers and the fourth leading cause of cancer-related death. Patients with hepatitis B virus (HBV) infection are prone to developing chronic liver diseases (i.e., fibrosis and cirrhosis), and the HBV X antigen plays an important role in the development of HCC. The difficulty in detecting HCC at the early stages is one of the main reasons that the death rate approximates the incidence rate. The regulators controlling the downstream liver protein expression from HBV infection are unclear. Mass spectrometric techniques and customized programs were used to identify differentially expressed proteins which may be involved in the development of liver fibrosis and HCC progression in hepatitis B virus X protein transgenic mice (HBx mice). FSTL1, CTSB, and TGF-β enhanced the signaling pathway proteins during the pathogenesis of HBx. Missing proteins can be essential in cell growth, differentiation, apoptosis, migration, metastasis or angiogenesis. We found that LHX2, BMP-5 and GDF11 had complex interactions with other missing proteins and BMP-5 had both tumor suppressing and tumorigenic roles. BMP-5 may be involved in fibrosis and tumorigenic processes in the liver. These results provide us an understanding of the mechanism of HBx-induced disorders, and may serve as molecular targets for liver treatment.
Collapse
|
19
|
Liu YC, Lu LF, Li CJ, Sun NK, Guo JY, Huang YH, Yeh CT, Chao CCK. Hepatitis B Virus X Protein Induces RHAMM-Dependent Motility in Hepatocellular Carcinoma Cells via PI3K-Akt-Oct-1 Signaling. Mol Cancer Res 2019; 18:375-389. [PMID: 31792079 DOI: 10.1158/1541-7786.mcr-19-0463] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 10/07/2019] [Accepted: 11/26/2019] [Indexed: 11/16/2022]
Abstract
Chronic hepatitis B virus (HBV) infection is a major risk factor for the development of hepatocellular carcinoma (HCC), which represents one of the most common cancers worldwide. Recent studies suggest that HBV's protein X (HBx) plays a crucial role in HCC development and progression. Earlier, genome-wide analysis identified that the receptor for hyaluronan-mediated motility (RHAMM) represents a putative oncogene and is overexpressed in many human cancers, including HCC. However, the mechanism underlying RHAMM upregulation and its role in tumorigenesis remain unclear. Here, we show that ectopic expression of HBx activates the PI3K/Akt/Oct-1 pathway and upregulates RHAMM expression in HCC cells. HBx overexpression leads to dissociation of C/EBPβ from the RHAMM gene promoter, thereby inducing RHAMM upregulation. RHAMM knockdown attenuates HBx-induced cell migration and invasion in vitro. In mice, HBx promotes cancer cell colonization via RHAMM upregulation, resulting in enhanced metastasis. Analysis of gene expression datasets reveals that RHAMM mRNA level is upregulated in patients with HCC with poor prognosis. IMPLICATIONS: These results indicate that RHAMM expression is upregulated by HBx, a process that depends on the inhibition of C/EBPβ activity and activation of the PI3K/Akt/Oct-1 pathway. These results have several implications for the treatment of HBV-positive HCC involving upregulation of RHAMM and cancer metastasis. VISUAL OVERVIEW: http://mcr.aacrjournals.org/content/molcanres/18/3/375/F1.large.jpg.
Collapse
Affiliation(s)
- Yu-Chin Liu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Li-Feng Lu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Chia-Jung Li
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Nian-Kang Sun
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China.,Division of Biomedical Sciences, Chang Gung University of Science and Technology, Taoyuan, Taiwan, Republic of China
| | - Jing-You Guo
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ya-Hui Huang
- Liver Research Center, Chang Gung Memorial Hospital Linkou Branch, Taoyuan, Taiwan, Republic of China
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital Linkou Branch, Taoyuan, Taiwan, Republic of China
| | - Chuck C-K Chao
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China. .,Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China.,Liver Research Center, Chang Gung Memorial Hospital Linkou Branch, Taoyuan, Taiwan, Republic of China
| |
Collapse
|
20
|
Manda EC, Chirove F. Acute hepatitis B virus infection model within the host incorporating immune cells and cytokine responses. Theory Biosci 2019; 139:153-169. [PMID: 31650408 DOI: 10.1007/s12064-019-00305-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/01/2019] [Indexed: 02/06/2023]
Abstract
We formulate and analyze a within-host hepatitis B viral mathematical model for hepatitis B in the acute phase of infection. The model incorporates hepatocytes, hepatitis B virus, immune system cells and cytokine dynamics using a system of ordinary differential equations. We use the model to demonstrate the trends of the hepatitis B infection qualitatively without the effects of immune cells and cytokines. Using these trends, we tested the effects of incorporating the immune cells only and immune cells with cytokine responses at low and high inhibitions on the hepatitis B virus infection. Our results showed that it is impossible to have the immune cells work independently from cytokines when there is an acute hepatitis B virus infection. Therefore, our results suggest that incorporating immune cells and cytokine dynamics in the acute hepatitis B virus infection stage delays infection in the hepatocytes and excluding such dynamics speeds up infection during this phase. Results from this study are useful in developing strategies for control of hepatocellular carcinoma which is caused by hepatitis B virus infection.
Collapse
Affiliation(s)
| | - Faraimunashe Chirove
- University of KwaZulu-Natal, Pietermaritzburg, South Africa.,University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
21
|
Chemopreventive Effect of Phytosomal Curcumin on Hepatitis B Virus-Related Hepatocellular Carcinoma in A Transgenic Mouse Model. Sci Rep 2019; 9:10338. [PMID: 31316146 PMCID: PMC6637187 DOI: 10.1038/s41598-019-46891-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 07/01/2019] [Indexed: 12/11/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection is a major risk factor for the development of hepatocellular carcinoma (HCC), a leading cause of cancer mortality worldwide. Hepatitis B X protein (HBx) and pre-S2 mutant have been proposed as the two most important HBV oncoproteins that play key roles in HCC pathogenesis. Curcumin is a botanical constituent displaying potent anti-inflammatory and anti-cancer properties without toxic side effects. Phytosomal formulation of curcumin has been shown to exhibit enhanced bioavailability, improved pharmacokinetics, and excellent efficacy against many human diseases. However, effectiveness of phytosomal curcumin for HCC treatment remains to be clarified. In this study, we evaluated chemopreventive effect of phytosomal curcumin on HBV-related HCC by using a transgenic mouse model specifically expressing both HBx and pre-S2 mutant in liver. Compared with unformulated curcumin, phytosomal curcumin exhibited significantly greater effects on suppression of HCC formation, improvement of liver histopathology, decrease of lipid accumulation and leukocyte infiltration, and reduction of total tumor volume in transgenic mice. Moreover, phytosomal curcumin exerted considerably stronger effects on activation of anti-inflammatory PPARγ as well as inhibition of pro-inflammatory NF-κB than unformulated curcumin. Furthermore, phytosomal curcumin showed a comparable effect on suppression of oncogenic mTOR activation to unformulated curcumin. Our data demonstrated that phytosomal curcumin has promise for HCC chemoprevention in patients with chronic HBV infection.
Collapse
|
22
|
Yen CJ, Yang ST, Chen RY, Huang W, Chayama K, Lee MH, Yang SJ, Lai HS, Yen HY, Hsiao YW, Wang JM, Lin YJ, Hung LY. Hepatitis B virus X protein (HBx) enhances centrosomal P4.1-associated protein (CPAP) expression to promote hepatocarcinogenesis. J Biomed Sci 2019; 26:44. [PMID: 31170980 PMCID: PMC6551916 DOI: 10.1186/s12929-019-0534-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 05/14/2019] [Indexed: 02/06/2023] Open
Abstract
Background Our previous report suggested that centrosomal P4.1-associated protein (CPAP) is required for Hepatitis B virus (HBV) encoded non-structure protein X (HBx)-mediated nuclear factor kappa light chain enhancer of activated B cells (NF-κB) activation. CPAP is overexpressed in HBV-associated hepatocellular carcinoma (HCC); however, the interaction between CPAP and HBx in HBV-HCC remains unclear. Methods The mRNA expression of CPAP and HBx was analyzed by quantitative-PCR (Q-PCR). NF-κB transcriptional activity and CPAP promoter activity were determined using a reporter assay in Huh7 and Hep3B cells. Immunoprecipitation (IP) and in situ proximal ligation assay (PLA) were performed to detect the interaction between CPAP and HBx. Chromatin-IP was used to detect the association of cAMP response element binding protein (CREB) and HBx with the CPAP promoter. Cell proliferation was measured using cell counting kit CCK-8, Bromodeoxyuridine (5-bromo-2′-deoxyuridine, BrdU) incorporation, and clonogenic assays. The tumorigenic effects of CPAP were determined using xenograft animal models. Results HBx can transcriptionally up-regulate CPAP via interacting with CREB. Overexpressed CPAP directly interacted with HBx to promote HBx-mediated cell proliferation and migration; SUMO modification of CPAP was involved in interacting with HBx. Knocked-down expression of CPAP decreased the HBx-mediated tumorigenic effects, including cytokines secretion. Interestingly, overexpressed CPAP maintained the HBx protein stability in an NF-κB-dependent manner; and the expression levels of CPAP and HBx were positively correlated with the activation status of NF-κB in HCC. Increased expression of CPAP and CREB mRNAs existed in the high-risk group with a lower survival rate in HBV-HCC. Conclusion The interaction between CPAP and HBx can provide a microenvironment to facilitate HCC development via enhancing NF-κB activation, inflammatory cytokine production, and cancer malignancies. This study not only sheds light on the role of CPAP in HBV-associated HCC, but also provides CPAP as a potential target for blocking the hyper-activated NF-κB in HCC. Electronic supplementary material The online version of this article (10.1186/s12929-019-0534-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chia-Jui Yen
- Division of Hematology and Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Shu-Ting Yang
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Ruo-Yu Chen
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Wenya Huang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, 734-8551, Japan
| | - Ming-Hao Lee
- Department of Pharmacology, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Shiang-Jie Yang
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Hong-Sheng Lai
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Hsin-Yi Yen
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Yu-Wei Hsiao
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Ju-Ming Wang
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Yih-Jyh Lin
- Division of General and Transplantation Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
| | - Liang-Yi Hung
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan. .,Department of Pharmacology, National Cheng Kung University, Tainan, 70101, Taiwan. .,Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan. .,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
23
|
Hepatitis B virus X protein promotes DNA damage propagation through disruption of liver polyploidization and enhances hepatocellular carcinoma initiation. Oncogene 2018; 38:2645-2657. [PMID: 30538294 DOI: 10.1038/s41388-018-0607-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/15/2018] [Accepted: 10/17/2018] [Indexed: 12/19/2022]
Abstract
Hepatitis B virus X protein (HBx) contributes to Hepatitis B virus (HBV)-related liver cancer. However, its impact on hepatocyte proliferation and genomic stability remains elusive. We studied the role of HBx expression on the progression of cell cycle and liver polyploidization during proliferation and liver carcinogenesis. Full-length HBx transgenic mice (FL-HBx) were developed to investigate liver ploidy as well as hepatocyte proliferation, along normal liver maturation and during cancer initiation (chemical carcinogen treatment). Investigation of postnatal liver development in FL-HBx showed an aberrant G1/S and G2/M transitions, triggered (1) a delay of the formation of hepatocytes binucleation, (2) the early synthesis of polyploidy nuclei (≥4n) and (3) DNA damage appearance. Moreover, HBV infection during hepatocytes proliferation in a humanized liver mouse model led, to modifications in polyploidy of hepatocytes. In initiation of hepatocellular carcinoma, FL-HBx protein decreased ChK1 phosphorylation, Mre11 and Rad51 expression, upregulated IL-6 expression and impaired apoptosis. This was related to DNA damage accumulation in FL-HBx mice. At day 75 after initiation of hepatocellular carcinoma, FL-HBx mice revealed significant cell cycle changes related to the increased amount of 4n nuclei and of markers of cancer progenitor cells. Finally, PLK1 upregulation and p38/ERK activation in FL-HBx mice were implicated in aberrant polyploidization favoring DNA damage propagation and hepatocyte transformation. In conclusion, our data indicate that FL-HBx protein increases DNA damage through the hijack of hepatocyte polyploidization. That leads to enhancement of hepatocellular carcinoma initiation in an inflammatory context.
Collapse
|
24
|
Caballero A, Tabernero D, Buti M, Rodriguez-Frias F. Hepatitis B virus: The challenge of an ancient virus with multiple faces and a remarkable replication strategy. Antiviral Res 2018; 158:34-44. [PMID: 30059722 DOI: 10.1016/j.antiviral.2018.07.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 02/07/2023]
Abstract
The hepatitis B virus (HBV) is the prototype member of the Hepadnaviridae, an ancient family of hepatotropic DNA viruses, which may have originated from 360 to 430 million years ago and with evidence of endogenization in reptilian genomes >200 million years ago. The virus is currently estimated to infect more than 250 million humans. The extremely successful spread of this pathogen among the human population is explained by its multiple particulate forms, effective transmission strategies (particularly perinatal transmission), long induction period and low associated mortality. These characteristics confer selective advantages, enabling the virus to persist in small, disperse populations and spread worldwide, with high prevalence rates in many countries. The HBV replication strategy is remarkably complex and includes a multiplicity of particulate structures. In addition to the common virions containing DNA in a relaxed circular (rcDNA) or double-stranded linear (dslDNA) forms, the viral population includes virion-like particles containing RNA or "empty" (viral envelopes and capsids without genomes), subviral particles (only an envelope) and even naked capsids. Consequently, several forms of the genome coexist in a single infection: (i) the "traveler" forms found in serum, including rcDNA and dslDNA, which originate from retrotranscription of a messenger RNA (the pregenomic RNA, another form of the viral genome itself) and (ii) forms confined to the host cell nucleus, including covalently closed circular DNA (cccDNA), which leads to a minichromosome form associated with histones and viral proteins, and double-stranded DNA integrated into the host genome. This complex composition lends HBV a kind of "multiple personality". Are these additional particles and genomic forms simple intermediaries/artifacts or do they play a role in the viral life cycle?
Collapse
Affiliation(s)
- Andrea Caballero
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d'Hebron and Universitat Autònoma de Barcelona (UAB), 119-129 Passeig Vall d'Hebron, Clinical Laboratories, 08035 Barcelona, Spain.
| | - David Tabernero
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d'Hebron and Universitat Autònoma de Barcelona (UAB), 119-129 Passeig Vall d'Hebron, Clinical Laboratories, 08035 Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 3-5 Avenida Monforte de Lemos, pavilion 11, 28029 Madrid, Spain.
| | - Maria Buti
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 3-5 Avenida Monforte de Lemos, pavilion 11, 28029 Madrid, Spain; Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d'Hebron and Universitat Autònoma de Barcelona (UAB), 119-129 Passeig Vall d'Hebron, General Hospital, Internal Medicine 2, 08035 Barcelona, Spain.
| | - Francisco Rodriguez-Frias
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d'Hebron and Universitat Autònoma de Barcelona (UAB), 119-129 Passeig Vall d'Hebron, Clinical Laboratories, 08035 Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 3-5 Avenida Monforte de Lemos, pavilion 11, 28029 Madrid, Spain.
| |
Collapse
|
25
|
ER stress regulating protein phosphatase 2A-B56γ, targeted by hepatitis B virus X protein, induces cell cycle arrest and apoptosis of hepatocytes. Cell Death Dis 2018; 9:762. [PMID: 29988038 PMCID: PMC6037732 DOI: 10.1038/s41419-018-0787-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 06/08/2018] [Accepted: 06/13/2018] [Indexed: 12/13/2022]
Abstract
Hepatitis B virus X (HBx) protein contributes to the progression of hepatitis B virus (HBV)-related hepatic injury and diseases, but the exact mechanism remains unclear. Protein phosphatase 2 A (PP2A) is a major serine/threonine phosphatase involved in regulating many cellular phosphorylation signals that are important for regulation of cell cycle and apoptosis. Does HBx target to PP2A-B56γ and therefore affect HBx-induced hepatotoxicity? In the present study, the expression of B56γ positively correlated with the level of HBx in HBV-infected primary human hepatocytes in human-liver-chimeric mice, HBx-transgenic mice, HBV-infected cells, and HBx-expressing hepatic cells. B56γ promoted p53/p21-dependent cell cycle arrest and apoptosis. Mechanistically, B56γ was transactivated by AP-1, which was under the regulation of endoplasmic reticulum (ER) stress induced CREBH signaling in HBx-expressing hepatic cells. B56γ dephosphorylated p-Thr55-p53 to trigger p53/p21 pathway-dependent cell cycle G1 phase arrest, resulting in apoptosis of hepatic cells. In conclusion, this study provides a novel insight into a mechanism of B56γ mediating cell cycle arrest and apoptosis of HBx-expressing hepatic cells and a basis for B56γ being a potential therapeutic target for HBV-infected hepatic cells.
Collapse
|
26
|
Teng C, Chang H, Tsai H, Hsieh W, Kuo Y, Su I, Lin Y. Liver regeneration accelerates hepatitis B virus-related tumorigenesis of hepatocellular carcinoma. Mol Oncol 2018; 12:1175-1187. [PMID: 29729074 PMCID: PMC6026873 DOI: 10.1002/1878-0261.12318] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/16/2018] [Accepted: 04/23/2018] [Indexed: 12/15/2022] Open
Abstract
Although partial hepatectomy (PH) to remove tumors provides a potential cure of hepatocellular carcinoma (HCC), long-term survival of hepatitis B virus (HBV)-related HCC patients after PH remains a big challenge. Early recurrence within 2 years post-PH is associated with the dissemination of primary HCC. However, late recurrence after 2 years post-PH is supposed due to the de novo or a secondary tumor. Since PH initiates liver regeneration (LR), we hypothesize that LR may accelerate tumorigenesis through activation of pre-existing precancerous lesions in the remaining liver. In this study, we explored the potential role of several LR-related factors in the de novo recurrence in a HBV X protein (HBx) transgenic mouse model receiving PH to mimic human HCC development. Following PH, we observed that tumor development was significantly accelerated from 16.9 to 10.4 months in HBx transgenic mice. The expression of suppressor of cytokine signaling (SOCS) family proteins was remarkably suppressed in livers of HBx transgenic relative to non-transgenic mice from early to late stages after PH as compared with non-PH mice. The expression of transforming growth factor-β (TGF-β)/Smad pathway, hepatocyte growth factor (HGF), Myc, signal transducer and activator of transcription 3 (STAT3), and β-Catenin also showed a significant difference between livers of HBx transgenic and non-transgenic mice at variable time points after PH in comparison with non-PH mice. Taken together, our results provide an explanation for the high de novo recurrence of HBV-related HCC after PH, probably through induction of the sequential changes of LR-related SOCS family proteins, growth factors, and transcription factors, which may promote growth on the precancerous remnant liver.
Collapse
Affiliation(s)
- Chiao‐Fang Teng
- Graduate Institute of Biomedical SciencesChina Medical UniversityTaichungTaiwan
- Organ Transplantation CenterChina Medical University HospitalTaichungTaiwan
| | - Hong‐Yi Chang
- Department of BiotechnologySouthern Taiwan University of Science and TechnologyTainanTaiwan
| | - Hung‐Wen Tsai
- Department of PathologyNational Cheng Kung University HospitalTainanTaiwan
- Institute of Clinical MedicineCollege of MedicineNational Cheng Kung UniversityTainanTaiwan
| | - Wen‐Chuan Hsieh
- National Institute of Infectious Diseases and VaccinologyNational Health Research InstitutesTainanTaiwan
| | - Yu‐Hao Kuo
- Organ Transplantation CenterChina Medical University HospitalTaichungTaiwan
| | - Ih‐Jen Su
- Department of BiotechnologySouthern Taiwan University of Science and TechnologyTainanTaiwan
- Department of PathologyNational Cheng Kung University HospitalTainanTaiwan
- National Institute of Infectious Diseases and VaccinologyNational Health Research InstitutesTainanTaiwan
| | - Yih‐Jyh Lin
- Division of General and Transplant SurgeryDepartment of SurgeryNational Cheng Kung University HospitalTainanTaiwan
- Department of SurgeryCollege of MedicineNational Cheng Kung UniversityTainanTaiwan
- Liver Cancer Collaborative Oncology GroupNational Cheng Kung University HospitalTainanTaiwan
| |
Collapse
|
27
|
Allweiss L, Volz T, Giersch K, Kah J, Raffa G, Petersen J, Lohse AW, Beninati C, Pollicino T, Urban S, Lütgehetmann M, Dandri M. Proliferation of primary human hepatocytes and prevention of hepatitis B virus reinfection efficiently deplete nuclear cccDNA in vivo. Gut 2018; 67:542-552. [PMID: 28428345 DOI: 10.1136/gutjnl-2016-312162] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 03/30/2017] [Accepted: 03/31/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The stability of the covalently closed circular DNA (cccDNA) in nuclei of non-dividing hepatocytes represents a key determinant of HBV persistence. Contrarily, studies with animal hepadnaviruses indicated that hepatocyte turnover can reduce cccDNA loads but knowledge on the proliferative capacity of HBV-infected primary human hepatocytes (PHHs) in vivo and the fate of cccDNA in dividing PHHs is still lacking. This study aimed to determine the impact of human hepatocyte division on cccDNA stability in vivo. METHODS PHH proliferation was triggered by serially transplanting hepatocytes from HBV-infected humanised mice into naïve recipients. Cell proliferation and virological changes were assessed by quantitative PCR, immunofluorescence and RNA in situ hybridisation. Viral integrations were analysed by gel separation and deep sequencing. RESULTS PHH proliferation strongly reduced all infection markers, including cccDNA (median 2.4 log/PHH). Remarkably, cell division appeared to cause cccDNA dilution among daughter cells and intrahepatic cccDNA loss. Nevertheless, HBV survived in sporadic non-proliferating human hepatocytes, so that virological markers rebounded as hepatocyte expansion relented. This was due to reinfection of quiescent PHHs since treatment with the entry inhibitor myrcludex-B or nucleoside analogues blocked viral spread and intrahepatic cccDNA accumulation. Viral integrations were detected both in donors and recipient mice but did not appear to contribute to antigen production. CONCLUSIONS We demonstrate that human hepatocyte division even without involvement of cytolytic mechanisms triggers substantial cccDNA loss. This process may be fundamental to resolve self-limiting acute infection and should be considered in future therapeutic interventions along with entry inhibition strategies.
Collapse
Affiliation(s)
- Lena Allweiss
- Department of Medicine, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tassilo Volz
- Department of Medicine, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katja Giersch
- Department of Medicine, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Janine Kah
- Department of Medicine, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Giuseppina Raffa
- Department of Clinical and Experimental Medicine, University Hospital of Messina, Messina, Italy
| | - Joerg Petersen
- IFI Institute for Interdisciplinary Medicine at Asklepios Clinic St. Georg, Hamburg, Germany
| | - Ansgar W Lohse
- Department of Medicine, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel and Heidelberg Partner Sites, Hamburg, Germany
| | - Concetta Beninati
- Department of Human Pathology, University Hospital of Messina, Messina, Italy
| | - Teresa Pollicino
- Department of Clinical and Experimental Medicine, University Hospital of Messina, Messina, Italy
| | - Stephan Urban
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel and Heidelberg Partner Sites, Hamburg, Germany.,Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Marc Lütgehetmann
- Department of Medicine, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maura Dandri
- Department of Medicine, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel and Heidelberg Partner Sites, Hamburg, Germany
| |
Collapse
|
28
|
Lin HJ, Ku KL, Lin IH, Yeh CC. Naringenin attenuates hepatitis B virus X protein-induced hepatic steatosis. Altern Ther Health Med 2017; 17:505. [PMID: 29183361 PMCID: PMC5706293 DOI: 10.1186/s12906-017-2019-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/20/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Naringenin (Nar), a common dietary flavonoid abundantly present in fruits, vegetables, and Chinese herbs, is believed to possess strong anti-inflammatory properties and to modulate hepatic apolipoprotein and lipid synthesis. However, there are no reports describing Nar's effects on the hepatitis B virus protein X (HBx) -induced hepatic steatosis, and the detailed molecular mechanisms of the compound's effects are still unclear. METHODS Nar was administered by oral gavage to HBx-transgenic mice from 4 to 6 weeks of age. Mice were sacrificed after 14 days of once-daily naringenin administration. Liver tissues and sera were collected for histopathology and biochemical analysis. RESULTS Nar counteracted hepatic lipid accumulation and liver dysfunction in HBx-transgenic mice. In addition, Nar significantly decreased expression of adipogenic and lipogenic genes in mice, suggesting that the compound may have therapeutic effects in the early stages of HBx-mediated hepatic steatosis. These results indicated that naringenin inhibits HBx-induced expression of hepatic adipogenic and lipogenic genes through suppression of HBx-induced gene expression, including decreases in the transcriptional activity of SREBP1c, LXRα, and PPARγ in HBx-trangenic mice and HBx-transfected HepG2 cells. CONCLUSIONS Results from this study suggested that Nar may serve as a therapeutic agent for preventing HBx-infected hepatic steatosis in humans.
Collapse
|
29
|
Abstract
Chronic hepatitis B virus (HBV) infection continues to be a major health burden worldwide; it can cause various degrees of liver damage and is strongly associated with the development of liver cirrhosis and hepatocellular carcinoma. The molecular mechanisms determining HBV persistence are not fully understood, but these appear to be multifactorial and the unique replication strategy employed by HBV enables its maintenance in infected hepatocytes. Both the stability of the HBV genome, which forms a stable minichromosome, the covalently closed circular DNA (cccDNA) in the hepatocyte nucleus, and the inability of the immune system to resolve chronic HBV infection are believed to be key mechanisms of HBV chronicity. Since a true cure of HBV requires clearance of intranuclear cccDNA from infected hepatocytes, understanding the mechanisms involved in cccDNA biogenesis, regulation and stability is mandatory to achieve HBV eradication. This review will summarize the state of knowledge on these mechanisms including the impact of current treatments on the cccDNA stability and activity. We will focus on events challenging cccDNA persistence in dividing hepatocytes.
Collapse
|
30
|
Thyroid hormone protects hepatocytes from HBx-induced carcinogenesis by enhancing mitochondrial turnover. Oncogene 2017; 36:5274-5284. [DOI: 10.1038/onc.2017.136] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 03/29/2017] [Accepted: 04/04/2017] [Indexed: 01/01/2023]
|
31
|
Chen YY, Lee LW, Hong WN, Lo SJ. Expression of hepatitis B virus surface antigens induces defective gonad phenotypes in Caenorhabditis elegans. World J Virol 2017; 6:17-25. [PMID: 28239568 PMCID: PMC5303856 DOI: 10.5501/wjv.v6.i1.17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/15/2016] [Accepted: 11/29/2016] [Indexed: 02/05/2023] Open
Abstract
AIM To test whether a simple animal, Caenorhabditis elegans (C. elegans), can be used as an alternative model to study the interaction between hepatitis B virus antigens (HBsAg) and host factors.
METHODS Three plasmids that were able to express the large, middle and small forms of HBsAgs (LHBsAg, MHBsAg, and SHBsAg, respectively) driven by a ubiquitous promoter (fib-1) and three that were able to express SHBsAg driven by different tissue-specific promoters were constructed and microinjected into worms. The brood size, egg-laying rate, and gonad development of transgenic worms were analyzed using microscopy. Levels of mRNA related to endoplasmic reticulum stress, enpl-1, hsp-4, pdi-3 and xbp-1, were determined using reverse transcription polymerase reaction (RT-PCRs) in three lines of transgenic worms and dithiothreitol (DTT)-treated wild-type worms.
RESULTS Severe defects in egg-laying, decreases in brood size, and gonad retardation were observed in transgenic worms expressing SHBsAg whereas moderate defects were observed in transgenic worms expressing LHBsAg and MHBsAg. RT-PCR analysis revealed that enpl-1, hsp-4 and pdi-3 transcripts were significantly elevated in worms expressing LHBsAg and MHBsAg and in wild-type worms pretreated with DTT. By contrast, only pdi-3 was increased in worms expressing SHBsAg. To further determine which tissue expressing SHBsAg could induce gonad retardation, we substituted the fib-1 promoter with three tissue-specific promoters (myo-2 for the pharynx, est-1 for the intestines and mec-7 for the neurons) and generated corresponding transgenic animals. Moderate defective phenotypes were observed in worms expressing SHBsAg in the pharynx and intestines but not in worms expressing SHBsAg in the neurons, suggesting that the secreted SHBsAg may trigger a cross-talk signal between the digestive track and the gonad resulting in defective phenotypes.
CONCLUSION Ectopic expression of three forms of HBsAg that causes recognizable phenotypes in transgenic worms suggests that C. elegans can be used as an alternative model for studying virus-host interactions because the resulting phenotype is easily detected through microscopy.
Collapse
|
32
|
Teng YC, Neo JC, Wu JC, Chen YF, Kao CH, Tsai TF. Expression of a hepatitis B virus pre-S2 deletion mutant in the liver results in hepatomegaly and hepatocellular carcinoma in mice. J Pathol 2017; 241:463-474. [PMID: 27868197 DOI: 10.1002/path.4850] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 10/07/2016] [Accepted: 11/09/2016] [Indexed: 12/18/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common form of liver cancer and has a poor prognosis and a low survival rate; its incidence is on the rise. Hepatitis B virus (HBV) infection is one of the main causes of HCC. A high prevalence of pre-S deletions of HBV surface antigen, which encompass T-cell and/or B-cell epitopes, is found in HBV carriers; antiviral therapy and viral immune escape may cause and select for these HBV mutants. In particular, the presence of pre-S2 deletion mutants is an important risk factor associated with cirrhosis and HCC. We generated Alb-preΔS2 transgenic mice that express a naturally occurring pre-S2 mutant protein containing a 33-nucleotide deletion (preΔS2); the aim was to investigate its effect on hepatocarcinogenesis. After 30 months of follow-up, the liver pathology of the mice fell into four groups: G1, chronic inflammation solely; G2, chronic inflammation and fibrosis; G3, inflammation, fibrosis, and hepatomegaly accompanied by rectal prolapse (4-12%); and G4, hepatomegaly and spontaneous HCC (12-15%). Striking degeneration of the endoplasmic reticulum (ER) was present in the mouse livers at an early stage (4 months old). At 8 months, overt ER stress and the Atf6 pathway of the unfolded protein response (UPR) were induced; at the same time, metabolic pathways associated with mevalonate and cholesterol biogenesis, involving the peroxisomes and the ER, were disturbed. At 20 months and older, the protein kinase RNA-like endoplasmic reticulum kinase (PERK) pathway of the UPR was induced and the Hippo transducer Yap was activated. Together, these ultrastructural aberrations and metabolic disturbance all seem to contribute to the molecular pathogenesis and hepatocarcinogenesis present in the Alb-preΔS2 mice. These findings may contribute to the development of therapies for the liver disorders and HCC associated with pre-S2 deletion mutations among HBV carriers. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yuan-Chi Teng
- Program in Molecular Medicine, School of Life Sciences, National Yang-Ming University and Academia Sinica, Taipei, Taiwan.,Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Jenq Chyuan Neo
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Jaw-Ching Wu
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Translational Research Division, Medical Research Department, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Fan Chen
- The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Heng Kao
- Center of General Education, Chang Gung University, Taoyuan, Taiwan
| | - Ting-Fen Tsai
- Program in Molecular Medicine, School of Life Sciences, National Yang-Ming University and Academia Sinica, Taipei, Taiwan.,Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan.,Genome Research Center, National Yang-Ming University, Taipei, Taiwan.,Aging and Health Research Center, National Yang-Ming University, Taipei, Taiwan.,Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan
| |
Collapse
|
33
|
Sun HY, Lin CC, Tsai PJ, Tsai WJ, Lee JC, Tsao CW, Cheng PN, Wu IC, Chiu YC, Chang TT, Young KC. Lipoprotein lipase liberates free fatty acids to inhibit HCV infection and prevent hepatic lipid accumulation. Cell Microbiol 2016; 19. [PMID: 27665576 DOI: 10.1111/cmi.12673] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 09/15/2016] [Accepted: 09/20/2016] [Indexed: 02/06/2023]
Abstract
Lipoprotein lipase (LPL) has been identified as an anti-hepatitis C virus (HCV) host factor, but the cellular mechanism remains elusive. Here, we investigated the cellular mechanism of LPL involving in anti-HCV. The functional activation of peroxisome proliferator-activated receptor (PPAR) α signal by LPL transducing into hepatocytes was investigated in HCV-infected cells, primary human hepatocytes, and in HCV-core transgenic mice. The result showed that the levels of transcriptional transactivity and nuclear translocation of PPARα in Huh7 cells and primary human hepatocytes were elevated by physiologically ranged LPL treatment of either very-low density lipoprotein or HCV particles. The LPL-induced hepatic PPARα activation was weakened by blocking the LPL enzymatic activity, and by preventing the cellular uptake of free unsaturated fatty acids with either albumin chelator or silencing of CD36 translocase. The knockdowns of PPARα and CD36 reversed the LPL-mediated suppression of HCV infection. Furthermore, treatment with LPL, like the direct activation of PPARα, not only reduced the levels of apolipoproteins B, E, and J, which are involved in assembly and release of HCV virions, but also alleviated hepatic lipid accumulation induced by core protein. HCV-core transgenic mice exhibited more hepatic miR-27b, which negatively regulates PPARα expression, than did the wild-type controls. The induction of LPL activity by fasting in the core transgenic mice activated PPARα downstream target genes that are involved in fatty acid β-oxidation. Taken together, our study reveals dual beneficial outcomes of LPL in anti-HCV and anti-steatosis and shed light on the control of chronic hepatitis C in relation to LPL modulators.
Collapse
Affiliation(s)
- Hung-Yu Sun
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chun-Chieh Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Ju Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Jen Tsai
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jin-Ching Lee
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chiung-Wen Tsao
- Department of Nursing, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Pin-Nan Cheng
- Department of Internal Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - I-Chin Wu
- Department of Internal Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen-Cheng Chiu
- Department of Internal Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ting-Tsung Chang
- Department of Internal Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kung-Chia Young
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
34
|
Barthel SR, Medvedev R, Heinrich T, Büchner SM, Kettern N, Hildt E. Hepatitis B virus inhibits insulin receptor signaling and impairs liver regeneration via intracellular retention of the insulin receptor. Cell Mol Life Sci 2016; 73:4121-40. [PMID: 27155659 PMCID: PMC11108314 DOI: 10.1007/s00018-016-2259-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/05/2016] [Accepted: 04/28/2016] [Indexed: 12/22/2022]
Abstract
Hepatitis B virus (HBV) causes severe liver disease but the underlying mechanisms are incompletely understood. During chronic HBV infection, the liver is recurrently injured by immune cells in the quest for viral elimination. To compensate tissue injury, liver regeneration represents a vital process which requires proliferative insulin receptor signaling. This study aims to investigate the impact of HBV on liver regeneration and hepatic insulin receptor signaling. After carbon tetrachloride-induced liver injury, liver regeneration is delayed in HBV transgenic mice. These mice show diminished hepatocyte proliferation and increased expression of fibrosis markers. This is in accordance with a reduced activation of the insulin receptor although HBV induces expression of the insulin receptor via activation of NF-E2-related factor 2. This leads to increased intracellular amounts of insulin receptor in HBV expressing hepatocytes. However, intracellular retention of the receptor simultaneously reduces the amount of functional insulin receptors on the cell surface and thereby attenuates insulin binding in vitro and in vivo. Intracellular retention of the insulin receptor is caused by elevated amounts of α-taxilin, a free syntaxin binding protein, in HBV expressing hepatocytes preventing proper targeting of the insulin receptor to the cell surface. Consequently, functional analyses of insulin responsiveness revealed that HBV expressing hepatocytes are less sensitive to insulin stimulation leading to delayed liver regeneration. This study describes a novel pathomechanism that uncouples HBV expressing hepatocytes from proliferative signals and thereby impedes compensatory liver regeneration after liver injury.
Collapse
Affiliation(s)
| | - Regina Medvedev
- Department of Virology, Paul-Ehrlich-Institut, Langen, Germany
| | - Thekla Heinrich
- Department of Virology, Paul-Ehrlich-Institut, Langen, Germany
| | | | - Nadja Kettern
- Department of Virology, Paul-Ehrlich-Institut, Langen, Germany
| | - Eberhard Hildt
- Department of Virology, Paul-Ehrlich-Institut, Langen, Germany.
- German Center for Infection Research (DZIF), Gießen-Marburg-Langen, Gießen, Germany.
| |
Collapse
|
35
|
Xu Z, Zhai L, Yi T, Gao H, Fan F, Li Y, Wang Y, Li N, Xing X, Su N, Wu F, Chang L, Chen X, Dai E, Zhao C, Yang X, Cui C, Xu P. Hepatitis B virus X induces inflammation and cancer in mice liver through dysregulation of cytoskeletal remodeling and lipid metabolism. Oncotarget 2016; 7:70559-70574. [PMID: 27708241 PMCID: PMC5342574 DOI: 10.18632/oncotarget.12372] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 09/13/2016] [Indexed: 12/31/2022] Open
Abstract
Hepatitis B virus X protein (HBx) participates in the occurrence and development processes of hepatocellular carcinoma (HCC) as a multifunctional regulation factor. However, the underlying molecular mechanism remains obscure. Here, we describe the use of p21HBx/+ mouse and SILAM (Stable Isotope Labeling in Mammals) strategy to define the pathological mechanisms for the occurrence and development of HBx induced liver cancer. We systematically compared a series of proteome samples from regular mice, 12- and 24-month old p21HBx/+ mice representing the inflammation and HCC stages of liver disease respectively and their nontransgenic wild-type (WT) littermates. Totally we identified 22 and 97 differentially expressed proteins out of a total of 2473 quantified proteins. Bioinformatics analysis suggested that the lipid metabolism and CDC42-induced cytoskeleton remodeling pathways were strongly activated by the HBx transgene. Interestingly, the protein-protein interaction MS study revealed that HBx directly interacted with multiple proteins in these two pathways. The same effect of up-regulation of cytoskeleton and lipid metabolism related proteins, including CDC42, CFL1, PPARγ and ADFP, was also observed in the Huh-7 cells transfected with HBx. More importantly, CFL1 and ADFP were specifically accumulated in HBV-associated HCC (HBV-HCC) patient samples, and their expression levels were positively correlated with the severity of HBV-related liver disease. These results provide evidence that HBx induces the dysregulation of cytoskeleton remodeling and lipid metabolism and leads to the occurrence and development of liver cancer. The CFL1 and ADFP might be served as potential biomarkers for prognosis and diagnosis of HBV-HCC.
Collapse
Affiliation(s)
- Zhongwei Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, National Center for Protein Sciences Beijing, Institute of Radiation Medicine, Beijing, 102206, P.R. China
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin, 300309, China
| | - Linghui Zhai
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, National Center for Protein Sciences Beijing, Institute of Radiation Medicine, Beijing, 102206, P.R. China
| | - Tailong Yi
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, National Center for Protein Sciences Beijing, Institute of Radiation Medicine, Beijing, 102206, P.R. China
- Anhui Medical University, Hefei, 230032, China
| | - Huiying Gao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, National Center for Protein Sciences Beijing, Institute of Radiation Medicine, Beijing, 102206, P.R. China
| | - Fengxu Fan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, National Center for Protein Sciences Beijing, Institute of Radiation Medicine, Beijing, 102206, P.R. China
- Anhui Medical University, Hefei, 230032, China
| | - Yanchang Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, National Center for Protein Sciences Beijing, Institute of Radiation Medicine, Beijing, 102206, P.R. China
| | - Youliang Wang
- Beijing Institute of Bioengineering, Beijing, 100071, P. R. China
| | - Ning Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, National Center for Protein Sciences Beijing, Institute of Radiation Medicine, Beijing, 102206, P.R. China
| | - Xiaohua Xing
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, National Center for Protein Sciences Beijing, Institute of Radiation Medicine, Beijing, 102206, P.R. China
| | - Na Su
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, National Center for Protein Sciences Beijing, Institute of Radiation Medicine, Beijing, 102206, P.R. China
| | - Feilin Wu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, National Center for Protein Sciences Beijing, Institute of Radiation Medicine, Beijing, 102206, P.R. China
| | - Lei Chang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, National Center for Protein Sciences Beijing, Institute of Radiation Medicine, Beijing, 102206, P.R. China
| | - Xiuli Chen
- The Fifth Hospital of Shijiazhuang City, Shijiazhuang, 050021, China
| | - Erhei Dai
- The Fifth Hospital of Shijiazhuang City, Shijiazhuang, 050021, China
| | - Chao Zhao
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, and Research Center on Aging and Medicine, Fudan University, Shanghai, 200032, China
| | - Xiao Yang
- Beijing Institute of Bioengineering, Beijing, 100071, P. R. China
| | - Chunping Cui
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, National Center for Protein Sciences Beijing, Institute of Radiation Medicine, Beijing, 102206, P.R. China
| | - Ping Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, National Center for Protein Sciences Beijing, Institute of Radiation Medicine, Beijing, 102206, P.R. China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and Wuhan University School of Pharmaceutical Sciences, Wuhan, 430072, P. R. China
- Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
36
|
Hypoxia-activated cytotoxic agent tirapazamine enhances hepatic artery ligation-induced killing of liver tumor in HBx transgenic mice. Proc Natl Acad Sci U S A 2016; 113:11937-11942. [PMID: 27702890 DOI: 10.1073/pnas.1613466113] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Transarterial chemoembolization (TACE) is the main treatment for intermediate stage hepatocellular carcinoma (HCC) with Barcelona Clinic Liver Cancer classification because of its exclusive arterial blood supply. Although TACE achieves substantial necrosis of the tumor, complete tumor necrosis is uncommon, and the residual tumor generally rapidly recurs. We combined tirapazamine (TPZ), a hypoxia-activated cytotoxic agent, with hepatic artery ligation (HAL), which recapitulates transarterial embolization in mouse models, to enhance the efficacy of TACE. The effectiveness of this combination treatment was examined in HCC that spontaneously developed in hepatitis B virus X protein (HBx) transgenic mice. We proved that the tumor blood flow in this model was exclusively supplied by the hepatic artery, in contrast to conventional orthotopic HCC xenografts that receive both arterial and venous blood supplies. At levels below the threshold oxygen levels created by HAL, TPZ was activated and killed the hypoxic cells, but spared the normoxic cells. This combination treatment clearly limited the toxicity of TPZ to HCC, which caused the rapid and near-complete necrosis of HCC. In conclusion, the combination of TPZ and HAL showed a synergistic tumor killing activity that was specific for HCC in HBx transgenic mice. This preclinical study forms the basis for the ongoing clinical program for the TPZ-TACE regimen in HCC treatment.
Collapse
|
37
|
Chao CCK. Inhibition of apoptosis by oncogenic hepatitis B virus X protein: Implications for the treatment of hepatocellular carcinoma. World J Hepatol 2016; 8:1061-1066. [PMID: 27660672 PMCID: PMC5026997 DOI: 10.4254/wjh.v8.i25.1061] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/27/2016] [Accepted: 07/22/2016] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus X protein (HBx) plays an important role in the development of hepatocellular carcinoma (HCC). In addition, hepatoma upregulated protein (HURP) is a cellular oncogene that is upregulated in a majority of HCC cases. We highlight here recent findings demonstrating a link between HBx, HURP and anti-apoptosis effects observed in cisplatin-treated HCC cells. We observed that Hep3B cells overexpressing HBx display increased HURP mRNA and protein levels, and show resistance to cisplatin-induced apoptosis. Knockdown of HURP in HBx-expressing cells reverses this effect, and sensitizes cells to cisplatin. The anti-apoptotic effect of HBx requires activation of the p38/MAPK pathway as well as expression of SATB1, survivin and HURP. Furthermore, silencing of HURP using short-hairpin RNA promotes accumulation of p53 and reduces cell proliferation in SK-Hep-1 cells (p53+/–), whereas these effects are not observed in p53-mutant Mahlavu cells. Similarly, HURP silencing does not affect the proliferation of H1299 lung carcinoma cells or Hep3B HCC cells which lack p53. Silencing of HURP sensitizes SK-Hep-1 cells to cisplatin. While HURP overexpression promotes p53 ubiquitination and degradation by the proteasome, HURP silencing reverses these effects. Inoculation of SK-Hep-1 cancer cells in which HURP has been silenced produces smaller tumors than control in nude mice. Besides, gankyrin, a positive regulator of the E3 ubiquitin ligase MDM2, is upregulated following HURP expression, and silencing of gankyrin reduces HURP-mediated downregulation of p53. In addition, we observed a positive correlation between HURP and gankyrin protein levels in HCC patients (r2 = 0.778; n = 9). These findings suggest a role for the viral protein HBx and the host protein HURP in preventing p53-mediated apoptosis during cancer progression and establishment of chemoresistance.
Collapse
|
38
|
Slagle BL, Bouchard MJ. Hepatitis B Virus X and Regulation of Viral Gene Expression. Cold Spring Harb Perspect Med 2016; 6:a021402. [PMID: 26747833 DOI: 10.1101/cshperspect.a021402] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The efficient replication of hepatitis B virus (HBV) requires the HBV regulatory hepatitis B virus X (HBx) protein. The exact contributions of HBx are not fully understood, in part because of the limitations of the assays used for its study. When HBV replication is driven from a plasmid DNA, the contribution of HBx is modest. However, there is an absolute requirement for HBx in assays that recapitulate the infectious virus life cycle. There is much evidence that HBx can contribute directly to HBV replication by acting on viral promoters embedded within protein coding sequences. In addition, HBx may also contribute indirectly by modulating cellular pathways to benefit virus replication. Understanding the mechanism(s) of HBx action during virus replication may provide insight into novel ways to disrupt chronic HBV replication.
Collapse
Affiliation(s)
- Betty L Slagle
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030
| | - Michael J Bouchard
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| |
Collapse
|
39
|
Teng YC, Shen ZQ, Kao CH, Tsai TF. Hepatocellular carcinoma mouse models: Hepatitis B virus-associated hepatocarcinogenesis and haploinsufficient tumor suppressor genes. World J Gastroenterol 2016; 22:300-325. [PMID: 26755878 PMCID: PMC4698494 DOI: 10.3748/wjg.v22.i1.300] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 10/14/2015] [Accepted: 11/24/2015] [Indexed: 02/06/2023] Open
Abstract
The multifactorial and multistage pathogenesis of hepatocellular carcinoma (HCC) has fascinated a wide spectrum of scientists for decades. While a number of major risk factors have been identified, their mechanistic roles in hepatocarcinogenesis still need to be elucidated. Many tumor suppressor genes (TSGs) have been identified as being involved in HCC. These TSGs can be classified into two groups depending on the situation with respect to allelic mutation/loss in the tumors: the recessive TSGs with two required mutated alleles and the haploinsufficient TSGs with one required mutated allele. Hepatitis B virus (HBV) is one of the most important risk factors associated with HCC. Although mice cannot be infected with HBV due to the narrow host range of HBV and the lack of a proper receptor, one advantage of mouse models for HBV/HCC research is the numerous and powerful genetic tools that help investigate the phenotypic effects of viral proteins and allow the dissection of the dose-dependent action of TSGs. Here, we mainly focus on the application of mouse models in relation to HBV-associated HCC and on TSGs that act either in a recessive or in a haploinsufficient manner. Discoveries obtained using mouse models will have a great impact on HCC translational medicine.
Collapse
|
40
|
Ho YJ, Lin YM, Huang YC, Yeh KT, Lin LI, Lu JW. Tissue microarray-based study of hepatocellular carcinoma validating SPIB as potential clinical prognostic marker. Acta Histochem 2016; 118:38-45. [PMID: 26610895 DOI: 10.1016/j.acthis.2015.11.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/07/2015] [Accepted: 11/09/2015] [Indexed: 01/11/2023]
Abstract
Currently, the prognostic significance of SPIB protein overexpression in human hepatocellular carcinoma (HCC) is unclear. The aim of the present study was to investigate the level of SPIB expression in human HCC in order to determine possible correlations between SPIB expression and clinicopathological findings. The expression of SPIB proteins was detected using immunohistochemical staining in commercial multiple-tissue microarrays as a means of examining expression profiles in patients. Using online biomarker validation tool SurvExpress, we focused on the correlation between SPIB overexpression and survival as well as relapse-free survival (RFS). Results show that SPIB protein expression levels were significantly higher in colon, liver, and stomach tumors than in non-tumor tissues (p<0.05). SPIB overexpression in patients with HCC was also significantly higher than that of the normal samples (p<0.001). Among patients with liver disease, SPIB protein expression levels differ significantly according to the stage of liver disease, specifically between stages I, II, and III of HCC (p<0.05). SPIB expression was also shown to be significantly correlated with age (p=0.046) and histological grade (p=0.027). Furthermore, the SurvExpress analysis suggested that high SPIB and KI-67 mRNA expression were significantly associated with the poor survival of patients with HCC (p<0.05). Our results indicate that cross-talk in the expression of SPIB and KI-67 may be associated with poor prognosis and may potentially serve as a clinical prognostic indicator of HCC. This is the first time that such an association has been reported.
Collapse
Affiliation(s)
- Yi-Jung Ho
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan.
| | - Yueh-Min Lin
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan; Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan.
| | - Yen-Chi Huang
- Department of Styling & Cosmetology, Hsin Sheng Junior College of Medical Care and Management, Taoyuan, Taiwan.
| | - Kun-Tu Yeh
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan.
| | - Liang-In Lin
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan; Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan.
| | - Jeng-Wei Lu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
41
|
|
42
|
Hepatitis B Virus X Protein Induces Hepatic Steatosis by Enhancing the Expression of Liver Fatty Acid Binding Protein. J Virol 2015; 90:1729-40. [PMID: 26637457 DOI: 10.1128/jvi.02604-15] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 11/23/2015] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Hepatitis B virus (HBV) has been implicated as a potential trigger of hepatic steatosis although molecular mechanisms involved in the pathogenesis of HBV-associated hepatic steatosis still remain elusive. Our prior work has revealed that the expression level of liver fatty acid binding protein 1 (FABP1), a key regulator of hepatic lipid metabolism, was elevated in HBV-producing hepatoma cells. In this study, the effects of HBV X protein (HBx) mediated FABP1 regulation on hepatic steatosis and the underlying mechanism were determined. mRNA and protein levels of FABP1 were measured by quantitative RT-PCR (qPCR) and Western blotting. HBx-mediated FABP1 regulation was evaluated by luciferase assay, coimmunoprecipitation, and chromatin immunoprecipitation. Hepatic lipid accumulation was measured by using Oil-Red-O staining and the triglyceride level. It was found that expression of FABP1 was increased in HBV-producing hepatoma cells, the sera of HBV-infected patients, and the sera and liver tissues of HBV-transgenic mice. Ectopic overexpression of HBx resulted in upregulation of FABP1 in HBx-expressing hepatoma cells, whereas HBx abolishment reduced FABP1 expression. Mechanistically, HBx activated the FABP1 promoter in an HNF3β-, C/EBPα-, and PPARα-dependent manner, in which HBx increased the gene expression of HNF3β and physically interacted with C/EBPα and PPARα. On the other hand, knockdown of FABP1 remarkably blocked lipid accumulation both in long-chain free fatty acids treated HBx-expressing HepG2 cells and in a high-fat diet-fed HBx-transgenic mice. Therefore, FABP1 is a key driver gene in HBx-induced hepatic lipid accumulation via regulation of HNF3β, C/EBPα, and PPARα. FABP1 may represent a novel target for treatment of HBV-associated hepatic steatosis. IMPORTANCE Accumulating evidence from epidemiological and experimental studies has indicated that chronic HBV infection is associated with hepatic steatosis. However, the molecular mechanism underlying HBV-induced pathogenesis of hepatic steatosis still remains to be elucidated. In this study, we found that expression of liver fatty acid binding protein (FABP1) was dramatically increased in the sera of HBV-infected patients and in both sera and liver tissues of HBV-transgenic mice. Forced expression of HBx led to FABP1 upregulation, whereas knockdown of FABP1 remarkably diminished lipid accumulation in both in vitro and in vivo models. It is possible that HBx promotes hepatic lipid accumulation through upregulating FABP1 in the development of HBV-induced nonalcoholic fatty liver disease. Therefore, inhibition of FABP1 might have therapeutic value in steatosis-associated chronic HBV infection.
Collapse
|
43
|
Niller HH, Ay E, Banati F, Demcsák A, Takacs M, Minarovits J. Wild type HBx and truncated HBx: Pleiotropic regulators driving sequential genetic and epigenetic steps of hepatocarcinogenesis and progression of HBV-associated neoplasms. Rev Med Virol 2015; 26:57-73. [PMID: 26593760 DOI: 10.1002/rmv.1864] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 09/30/2015] [Accepted: 10/15/2015] [Indexed: 12/23/2022]
Abstract
Hepatitis B virus (HBV) is one of the causative agents of hepatocellular carcinoma. The molecular mechanisms of tumorigenesis are complex. One of the host factors involved is apparently the long-lasting inflammatory reaction which accompanies chronic HBV infection. Although HBV lacks a typical viral oncogene, the HBx gene encoding a pleiotropic regulatory protein emerged as a major player in liver carcinogenesis. Here we review the tumorigenic functions of HBx with an emphasis on wild type and truncated HBx variants, and their role in the transcriptional dysregulation and epigenetic reprogramming of the host cell genome. We suggest that HBx acquired by the HBV genome during evolution acts like a cellular proto-onc gene that is activated by deletion during hepatocarcinogenesis. The resulting viral oncogene (v-onc gene) codes for a truncated HBx protein that facilitates tumor progression. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Hans Helmut Niller
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Eva Ay
- Department of Retrovirology, National Center for Epidemiology, Budapest, Hungary
| | - Ferenc Banati
- RT-Europe Nonprofit Research Center, Mosonmagyarovar, Hungary
| | - Anett Demcsák
- University of Szeged, Faculty of Dentistry, Department of Oral Biology and Experimental Dental Research, Szeged, Hungary
| | - Maria Takacs
- Division of Virology, National Center for Epidemiology, Budapest, Hungary
| | - Janos Minarovits
- University of Szeged, Faculty of Dentistry, Department of Oral Biology and Experimental Dental Research, Szeged, Hungary
| |
Collapse
|
44
|
Lu JW, Ho YJ, Yang YJ, Liao HA, Ciou SC, Lin LI, Ou DL. Zebrafish as a disease model for studying human hepatocellular carcinoma. World J Gastroenterol 2015; 21:12042-12058. [PMID: 26576090 PMCID: PMC4641123 DOI: 10.3748/wjg.v21.i42.12042] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 05/28/2015] [Accepted: 08/31/2015] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is one of the world’s most common cancers and the second leading cause of cancer deaths. Hepatocellular carcinoma (HCC), a primary hepatic cancer, accounts for 90%-95% of liver cancer cases. The pathogenesis of HCC consists of a stepwise process of liver damage that extends over decades, due to hepatitis, fatty liver, fibrosis, and cirrhosis before developing fully into HCC. Multiple risk factors are highly correlated with HCC, including infection with the hepatitis B or C viruses, alcohol abuse, aflatoxin exposure, and metabolic diseases. Over the last decade, genetic alterations, which include the regulation of multiple oncogenes or tumor suppressor genes and the activation of tumorigenesis-related pathways, have also been identified as important factors in HCC. Recently, zebrafish have become an important living vertebrate model organism, especially for translational medical research. In studies focusing on the biology of cancer, carcinogen induced tumors in zebrafish were found to have many similarities to human tumors. Several zebrafish models have therefore been developed to provide insight into the pathogenesis of liver cancer and the related drug discovery and toxicology, and to enable the evaluation of novel small-molecule inhibitors. This review will focus on illustrative examples involving the application of zebrafish models to the study of human liver disease and HCC, through transgenesis, genome editing technology, xenografts, drug discovery, and drug-induced toxic liver injury.
Collapse
|
45
|
Using digital gene expression profile to detect representational difference of Chlamys farreri genes after laboratory exposure to persistent organic pollutants. Genes Genomics 2015. [DOI: 10.1007/s13258-015-0360-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
46
|
Wang SH, Yeh SH, Shiau CW, Chen KF, Lin WH, Tsai TF, Teng YC, Chen DS, Chen PJ. Sorafenib Action in Hepatitis B Virus X-Activated Oncogenic Androgen Pathway in Liver through SHP-1. J Natl Cancer Inst 2015. [PMID: 26206949 DOI: 10.1093/jnci/djv190] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) shows a higher incidence in men, mainly because of hepatitis B X (HBx)-mediated enhancement of androgen receptor (AR) activity. We aimed to examine this pathway in hepatocarcinogenesis and to identify drug(s) specifically blocking this carcinogenic event in the liver. METHODS HBx transgenic mice that spontaneously develop HCC (n = 28-34 per group) were used, either by knockout of hepatic AR or by castration. Efficacy of several HCC-targeted drugs in suppressing HBx-induced AR activity was evaluated, and cellular factors mediating suppression were investigated in cultured cells. Tissue specificity of the candidate drug was validated using mouse tissues. Data were analyzed with Chi-square and Student's t tests. All statistical tests were two-sided. RESULTS The androgen pathway was shown to be important in early stage hepatocarcinogenesis of HBx transgenic mice. The tumor incidence was decreased from 80% to 32% by AR knockout (P < .001) and from 90% to 25% by early castration (P < .001). Sorafenib markedly inhibited the HBx-enhanced AR activity through activating the SHP-1 phosphatase, which antagonized the activation of Akt/GSK3β and c-Src by HBx. Moreover, SHP-1 protein level was much higher in the liver than in testis, which enabled sorafenib to inhibit aberrant AR activity in the HBx-expressing liver, while not affecting the physiological AR function in normal liver or testis. CONCLUSIONS The androgen pathway may be a druggable target for the chemoprevention of HBV-related HCC, and sorafenib might be used as a tissue- and disease-specific regimen for the chemoprevention of HBV-related HCC.
Collapse
Affiliation(s)
- Sheng-Han Wang
- Department of Microbiology (SHW, SHY, WHL, PJC), NTU Center for Genomic Medicine (SHY, DSC, PJC), and Graduate Institute of Clinical Medicine (DSC, PJC), National Taiwan University College of Medicine, Taipei, Taiwan; Department of Laboratory Medicine (SHY), Department of Medical Research (KFC), and National Center of Excellence for Clinical Trial and Research (KFC), National Taiwan University Hospital, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (DSC, PJC); Institute of Biopharmaceutical Sciences (CWS) and Department of Life Sciences and Institute of Genome Sciences (TFT, YCT), National Yang-Ming University, Taipei, Taiwan
| | - Shiou-Hwei Yeh
- Department of Microbiology (SHW, SHY, WHL, PJC), NTU Center for Genomic Medicine (SHY, DSC, PJC), and Graduate Institute of Clinical Medicine (DSC, PJC), National Taiwan University College of Medicine, Taipei, Taiwan; Department of Laboratory Medicine (SHY), Department of Medical Research (KFC), and National Center of Excellence for Clinical Trial and Research (KFC), National Taiwan University Hospital, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (DSC, PJC); Institute of Biopharmaceutical Sciences (CWS) and Department of Life Sciences and Institute of Genome Sciences (TFT, YCT), National Yang-Ming University, Taipei, Taiwan.
| | - Chung-Wai Shiau
- Department of Microbiology (SHW, SHY, WHL, PJC), NTU Center for Genomic Medicine (SHY, DSC, PJC), and Graduate Institute of Clinical Medicine (DSC, PJC), National Taiwan University College of Medicine, Taipei, Taiwan; Department of Laboratory Medicine (SHY), Department of Medical Research (KFC), and National Center of Excellence for Clinical Trial and Research (KFC), National Taiwan University Hospital, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (DSC, PJC); Institute of Biopharmaceutical Sciences (CWS) and Department of Life Sciences and Institute of Genome Sciences (TFT, YCT), National Yang-Ming University, Taipei, Taiwan
| | - Kuen-Feng Chen
- Department of Microbiology (SHW, SHY, WHL, PJC), NTU Center for Genomic Medicine (SHY, DSC, PJC), and Graduate Institute of Clinical Medicine (DSC, PJC), National Taiwan University College of Medicine, Taipei, Taiwan; Department of Laboratory Medicine (SHY), Department of Medical Research (KFC), and National Center of Excellence for Clinical Trial and Research (KFC), National Taiwan University Hospital, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (DSC, PJC); Institute of Biopharmaceutical Sciences (CWS) and Department of Life Sciences and Institute of Genome Sciences (TFT, YCT), National Yang-Ming University, Taipei, Taiwan
| | - Wei-Hsiang Lin
- Department of Microbiology (SHW, SHY, WHL, PJC), NTU Center for Genomic Medicine (SHY, DSC, PJC), and Graduate Institute of Clinical Medicine (DSC, PJC), National Taiwan University College of Medicine, Taipei, Taiwan; Department of Laboratory Medicine (SHY), Department of Medical Research (KFC), and National Center of Excellence for Clinical Trial and Research (KFC), National Taiwan University Hospital, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (DSC, PJC); Institute of Biopharmaceutical Sciences (CWS) and Department of Life Sciences and Institute of Genome Sciences (TFT, YCT), National Yang-Ming University, Taipei, Taiwan
| | - Ting-Fen Tsai
- Department of Microbiology (SHW, SHY, WHL, PJC), NTU Center for Genomic Medicine (SHY, DSC, PJC), and Graduate Institute of Clinical Medicine (DSC, PJC), National Taiwan University College of Medicine, Taipei, Taiwan; Department of Laboratory Medicine (SHY), Department of Medical Research (KFC), and National Center of Excellence for Clinical Trial and Research (KFC), National Taiwan University Hospital, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (DSC, PJC); Institute of Biopharmaceutical Sciences (CWS) and Department of Life Sciences and Institute of Genome Sciences (TFT, YCT), National Yang-Ming University, Taipei, Taiwan
| | - Yuan-Chi Teng
- Department of Microbiology (SHW, SHY, WHL, PJC), NTU Center for Genomic Medicine (SHY, DSC, PJC), and Graduate Institute of Clinical Medicine (DSC, PJC), National Taiwan University College of Medicine, Taipei, Taiwan; Department of Laboratory Medicine (SHY), Department of Medical Research (KFC), and National Center of Excellence for Clinical Trial and Research (KFC), National Taiwan University Hospital, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (DSC, PJC); Institute of Biopharmaceutical Sciences (CWS) and Department of Life Sciences and Institute of Genome Sciences (TFT, YCT), National Yang-Ming University, Taipei, Taiwan
| | - Ding-Shinn Chen
- Department of Microbiology (SHW, SHY, WHL, PJC), NTU Center for Genomic Medicine (SHY, DSC, PJC), and Graduate Institute of Clinical Medicine (DSC, PJC), National Taiwan University College of Medicine, Taipei, Taiwan; Department of Laboratory Medicine (SHY), Department of Medical Research (KFC), and National Center of Excellence for Clinical Trial and Research (KFC), National Taiwan University Hospital, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (DSC, PJC); Institute of Biopharmaceutical Sciences (CWS) and Department of Life Sciences and Institute of Genome Sciences (TFT, YCT), National Yang-Ming University, Taipei, Taiwan
| | - Pei-Jer Chen
- Department of Microbiology (SHW, SHY, WHL, PJC), NTU Center for Genomic Medicine (SHY, DSC, PJC), and Graduate Institute of Clinical Medicine (DSC, PJC), National Taiwan University College of Medicine, Taipei, Taiwan; Department of Laboratory Medicine (SHY), Department of Medical Research (KFC), and National Center of Excellence for Clinical Trial and Research (KFC), National Taiwan University Hospital, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (DSC, PJC); Institute of Biopharmaceutical Sciences (CWS) and Department of Life Sciences and Institute of Genome Sciences (TFT, YCT), National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
47
|
Saikia A, Bose M, Barman NN, Deka M, Thangkhiew RS, Bose S. Molecular epidemiology of HBV infection in chronic hepatitis B virus infected patients in northeast India. J Med Virol 2015; 87:1539-48. [PMID: 25919572 DOI: 10.1002/jmv.24207] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2015] [Indexed: 12/30/2022]
Abstract
The present study aimed to evaluate the molecular epidemiology of HBV in chronic HBV infected cases from northeast India (NEI), since scanty data are available from the region which has a predominant ethnically distinct tribal population. A total of 523 clinically diagnosed index chronic HBV infected cases and 172 asymptomatic patients (based on family screening) were enrolled with informed consent. Patients were stratified based on serology, imaging, pathology, and clinical data and grouped as chronic HBV and cirrhotic cohorts. Analysis for serum HBV DNA levels and HBV genotyping was performed, and was statistically co-related with disease severity. Males were more prone to chronic HBV infection. Majority of the patients who had Chronic HBV infection based on family screening were females (59.88%), majorly wives of index patients. Mean viral load in Chronic HBV patients was almost 4.5-folds higher than cirrhosis patients, and was significantly associated with e-antigen positive status(P < 0.001) in both groups. HBV genotype D was the most prevalent genotype (62.30%) in NEI. Mixed genotype infection of A + D was found from Assam, along with C + D cases (1.29%) cumulatively. There is a high prevalence of HBV genotype C (13.96%) in our studied cohort which was found to be associated with higher viral load(P = 0.018), e-antigen positivity(P = 0.043), and increased cirrhosis risk compared to Chronic HBV cases [OR = 1.670]. Family contacts in NEI are prone to infection with HBV and development of Chronic HBV. Higher presence of e-positive cases and genotype C along with the mixed genotypes in NEI is unique and of significance with reference to predisposition to disease severity and even response to antiviral therapy.
Collapse
Affiliation(s)
- Anjan Saikia
- Department of Medicine and Gastroenterology, Central Hospital, NF Railway, Guwahati, Assam, India
| | - Moumita Bose
- Department of Biotechnology, Gauhati University, Guwahati, Assam, India
| | | | - Manab Deka
- Department of Biotechnology, Gauhati University, Guwahati, Assam, India.,Department of Biological Science, Gauhati University, Guwahati, Assam, India
| | - Rangsan Singh Thangkhiew
- Department of Gastroenterology, Supercare hospital and Research centre, Shillong, Meghalaya, India
| | - Sujoy Bose
- Department of Biotechnology, Gauhati University, Guwahati, Assam, India
| |
Collapse
|
48
|
Teng CF, Hsieh WC, Wu HC, Lin YJ, Tsai HW, Huang W, Su IJ. Hepatitis B Virus Pre-S2 Mutant Induces Aerobic Glycolysis through Mammalian Target of Rapamycin Signal Cascade. PLoS One 2015; 10:e0122373. [PMID: 25909713 PMCID: PMC4409318 DOI: 10.1371/journal.pone.0122373] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/13/2015] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus (HBV) pre-S2 mutant can induce hepatocellular carcinoma (HCC) via the induction of endoplasmic reticulum stress to activate mammalian target of rapamycin (MTOR) signaling. The association of metabolic syndrome with HBV-related HCC raises the possibility that pre-S2 mutant-induced MTOR activation may drive the development of metabolic disorders to promote tumorigenesis in chronic HBV infection. To address this issue, glucose metabolism and gene expression profiles were analyzed in transgenic mice livers harboring pre-S2 mutant and in an in vitro culture system. The pre-S2 mutant transgenic HCCs showed glycogen depletion. The pre-S2 mutant initiated an MTOR-dependent glycolytic pathway, involving the eukaryotic translation initiation factor 4E binding protein 1 (EIF4EBP1), Yin Yang 1 (YY1), and myelocytomatosis oncogene (MYC) to activate the solute carrier family 2 (facilitated glucose transporter), member 1 (SLC2A1), contributing to aberrant glucose uptake and lactate production at the advanced stage of pre-S2 mutant transgenic tumorigenesis. Such a glycolysis-associated MTOR signal cascade was validated in human HBV-related HCC tissues and shown to mediate the inhibitory effect of a model of combined resveratrol and silymarin product on tumor growth. Our results provide the mechanism of pre-S2 mutant-induced MTOR activation in the metabolic switch in HBV tumorigenesis. Chemoprevention can be designed along this line to prevent HCC development in high-risk HBV carriers.
Collapse
Affiliation(s)
- Chiao-Fang Teng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
| | - Wen-Chuan Hsieh
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
| | - Han-Chieh Wu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
| | - Yih-Jyh Lin
- Department of Surgery, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Hung-Wen Tsai
- Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Wenya Huang
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Ih-Jen Su
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
- Department of Surgery, National Cheng Kung University Hospital, Tainan, Taiwan
- Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan
- * E-mail:
| |
Collapse
|
49
|
Packer A, Forde J, Hews S, Kuang Y. Mathematical models of the interrelated dynamics of hepatitis D and B. Math Biosci 2015; 247:38-46. [PMID: 24513247 DOI: 10.1016/j.mbs.2013.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 10/03/2013] [Accepted: 10/14/2013] [Indexed: 12/31/2022]
Abstract
The hepatitis delta virus (HDV) is a rarest form of viral hepatitis, but has the worst outcomes for patients.It is a subviral satellite dependent on coinfection with hepatitis B (HBV) to replicate within the host liver.To date, there has been little to no modeling effort for HDV. Deriving and analyzing such a mathematical model poses difficulty as it requires the inclusion of (HBV). Here we begin with a well-studied HBV model from the literature and expand it to incorporate HDV. We investigate two models, one with and one without infected hepatocyte replication. Additionally, we consider treatment by the drug lamivudine. Comparison of model simulations with experimental results of lamivudine treatment indicate that infected cell proliferation may play a significant role in chronic HDV infection. Our results also shed light on several questions surrounding HDV and illustrate the need for more data.
Collapse
|
50
|
Shiue SC, Huang MZ, Tsai TF, Chang AC, Choo KB, Huang CJ, Su TS. Expression profile and down-regulation of argininosuccinate synthetase in hepatocellular carcinoma in a transgenic mouse model. J Biomed Sci 2015; 22:10. [PMID: 25616743 PMCID: PMC4308890 DOI: 10.1186/s12929-015-0114-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/12/2015] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Argininosuccinate synthetase (ASS) participates in urea and nitric oxide production and is a rate-limiting enzyme in arginine biosynthesis. Regulation of ASS expression appears complex and dynamic. In addition to transcriptional regulation, a novel post-transcriptional regulation affecting nuclear precursor RNA stability has been reported. Moreover, many cancers, including hepatocellular carcinoma (HCC), have been found not to express ASS mRNA; therefore, they are auxotrophic for arginine. To study when and where ASS is expressed and whether post-transcriptional regulation is undermined in particular temporal and spatial expression and in pathological events such as HCC, we set up a transgenic mouse system with modified BAC (bacterial artificial chromosome) carrying the human ASS gene tagged with an EGFP reporter. RESULTS We established and characterized the transgenic mouse models based on the use of two BAC-based EGFP reporter cassettes: a transcription reporter and a transcription/post-transcription coupled reporter. Using such a transgenic mouse system, EGFP fluorescence pattern in E14.5 embryo was examined. Profiles of fluorescence and that of Ass RNA in in situ hybridization were found to be in good agreement in general, yet our system has the advantages of sensitivity and direct fluorescence visualization. By comparing expression patterns between mice carrying the transcription reporter and those carrying the transcription/post-transcription couple reporter, a post-transcriptional up-regulation of ASS was found around the ventricular zone/subventricular zone of E14.5 embryonic brain. In the EGFP fluorescence pattern and mRNA level in adult tissues, tissue-specific regulation was found to be mainly controlled at transcriptional initiation. Furthermore, strong EGFP expression was found in brain regions of olfactory bulb, septum, habenular nucleus and choroid plexus of the young transgenic mice. On the other hand, in crossing to hepatitis B virus X protein (HBx)-transgenic mice, the Tg (ASS-EGFP, HBx) double transgenic mice developed HCC in which ASS expression was down-regulated, as in clinical samples. CONCLUSIONS The BAC transgenic mouse model described is a valuable tool for studying ASS gene expression. Moreover, this mouse model is a close reproduction of clinical behavior of ASS in HCC and is useful in testing arginine-depleting agents and for studies of the role of ASS in tumorigenesis.
Collapse
Affiliation(s)
- Shih-Chang Shiue
- Institute of Microbiology & Immunology, National Yang-Ming University, Taipei, Taiwan.
| | - Miao-Zeng Huang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 112, Taiwan.
| | - Ting-Fen Tsai
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan.
| | - Alice Chien Chang
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan.
| | - Kong Bung Choo
- Department of Preclinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia.
- Centre for Stem Cell Research, Universiti Tunku Abdul Rahman, Selangor, Malaysia.
| | - Chiu-Jung Huang
- Department of Animal Science, Chinese Culture University, Taipei, Taiwan.
- Graduate Institute of Biotechnology, Chinese Culture University, Taipei, Taiwan.
| | - Tsung-Sheng Su
- Institute of Microbiology & Immunology, National Yang-Ming University, Taipei, Taiwan.
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 112, Taiwan.
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|