1
|
Sommi P, Callegari D, Ferraro D, Ghigna P, Castillo-Michel H, Viganò L, Vitali A, Fracchia M, Falqui A, Demichelis MP, Profumo A, Anselmi-Tamburini U. Unveiling the Role of Intracellular Dissolution Equilibria in the Antioxidant Mechanism of Ceria Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2025; 17:22474-22486. [PMID: 40177868 DOI: 10.1021/acsami.5c02505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
It is well-known that ceria nanoparticles (CNPs) exhibit significant antioxidant activity, offering potential applications in the treatment of ROS-related pathologies. This activity of CNPs as a nanozyme is typically interpreted by considering Ce(III)/Ce(IV) equilibria on the nanoparticles' surface. However, the validity of this mechanism has never been directly proven in a biological context. Furthermore, it is often overlooked that after endocytosis, CNPs are compartmentalized within endolysosomes, while ROS are primarily located in the cytoplasm, making their direct interaction difficult. This study presents chemical and biological evidence supporting an alternative mechanism of action. By utilizing synchrotron μXRF and μXANES analysis on individual cells, the study shows that the amount of Ce(III), the species responsible for the antioxidant activity, increases linearly with time within the endolysosomes, where CNPs are accumulated, and in their vicinity. Such an increase can be explained by the release of Ce3+ ions resulting from a partial reductive dissolution of CNPs in the acidic environment of the endolysosomes. The Ce3+ ions can then cross the endolysosomal membrane, reaching the cytosol, where they can exert their reducing activity on ROS. In fact, neutralizing the acidic endolysosomal pH results in a complete inhibition of the CNP activity. Consequently, CNP antioxidant activity should be regarded as the result of redox processes that extend beyond the nanoparticles surface but involve complex dissolution equilibria.
Collapse
Affiliation(s)
- Patrizia Sommi
- Department of Molecular Medicine, Human Physiology Unit, University of Pavia, 27100 Pavia, Italy
| | | | - Daniela Ferraro
- Department of Molecular Medicine, Human Physiology Unit, University of Pavia, 27100 Pavia, Italy
| | - Paolo Ghigna
- Department of Chemistry, University of Pavia, Pavia 27100, Italy
| | | | - Lorenzo Viganò
- Department of Chemistry, University of Pavia, Pavia 27100, Italy
| | - Agostina Vitali
- Department of Chemistry, University of Pavia, Pavia 27100, Italy
| | - Martina Fracchia
- Department of Chemistry, University of Pavia, Pavia 27100, Italy
| | - Andrea Falqui
- Department of Physics "Aldo Pontremoli", University of Milan (Statale), Via Celoria 16, Milan 20133, Italy
| | | | | | | |
Collapse
|
2
|
Das RC, Chaki Borrás ML, Kim JH, Carolan M, Sluyter R, Lerch M, Konstantinov K. Quantum-Dot Ceramic Composites for Oxidative Stress Mitigation under Broad-Spectrum Radiation Exposure. ACS APPLIED MATERIALS & INTERFACES 2025; 17:18096-18107. [PMID: 40091176 DOI: 10.1021/acsami.4c22795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Nanomaterials offer a promising approach to mitigating radiation-induced oxidative stress by scavenging reactive oxygen species (ROS). However, developing a nanomaterial that provides protection across a wide range of radiation conditions is challenging due to the photoelectric effects linked to the atomic number (Z) of the materials. Quantum dots (QDs) in a composite system, owing to their small size and when used at low concentrations, minimize photoelectric effects and secondary electron generation. In this study, cerium oxide (CeO2) QDs were combined with low-Z yttrium oxide (Y2O3) to create a nanocomposite (NC) (henceforth CeO2 QDs-Y2O3) that exploits the synergistic effects of both materials, providing protection across a broader spectrum of radiation. CeO2 QDs-Y2O3 demonstrated superior ROS scavenging than individual CeO2 and Y2O3 under nonradiative conditions, particularly for hydroxyl radicals (•OH) and hydrogen peroxide (H2O2), two primary ROS generated under radiation. This improved performance, due to increased oxygen vacancies and a higher Ce3+/Ce4+ ratio, indicates that these properties could help protect cells from oxidative stress during radiation exposure. Radioprotection analysis using the linear-quadratic (LQ) model revealed that the NC provided effective protection at both 150 kVp and 10 MV radiation energies. At 150 kVp, the obtained protection enhancement ratio (PER) values at 10% cell survival for CeO2 QDs-Y2O3, Y2O3, and CeO2 were 1.07, 1.16, and 0.89, respectively, suggesting that the radioprotection afforded by Y2O3 in the NC outweighed the radiosensitization of the encrusted CeO2 QDs. Additionally, despite the higher PER of Y2O3, the NC displayed increased biocompatibility toward the human keratinocyte HaCaT cell line in the absence of radiation compared to Y2O3. At 10 MV, where photoelectric effects are minimal, the NC outperformed both individual components, yielding a PER of 1.28, or a 28% dose enhancement compared to 12% for Y2O3 alone and 19% for CeO2. This study highlights the potential of CeO2 QDs-Y2O3 as a broad-spectrum radioprotective agent, offering enhanced biocompatibility and effective protection against radiation-induced oxidative stress across broad-ranging radiation conditions.
Collapse
Affiliation(s)
- Rajib Chandra Das
- Institute for Superconducting & Electronic Materials (ISEM), School of Physics, Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Marcela L Chaki Borrás
- Institute for Superconducting & Electronic Materials (ISEM), School of Physics, Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Jung Ho Kim
- Institute for Superconducting & Electronic Materials (ISEM), School of Physics, Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Martin Carolan
- Illawarra Cancer Care Centre, Wollongong Hospital, Wollongong, New South Wales 2500, Australia
| | - Ronald Sluyter
- School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales 2522, Australia
- Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Michael Lerch
- Centre for Medical Radiation Physics (CMRP), Faculty of Engineering and Information Science, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Konstantin Konstantinov
- Institute for Superconducting & Electronic Materials (ISEM), School of Physics, Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia
| |
Collapse
|
3
|
Titova SA, Kruglova MP, Stupin VA, Manturova NE, Achar RR, Deshpande G, Parfenov VA, Silina EV. Excipients for Cerium Dioxide Nanoparticle Stabilization in the Perspective of Biomedical Applications. Molecules 2025; 30:1210. [PMID: 40141988 PMCID: PMC11944302 DOI: 10.3390/molecules30061210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/25/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Rare earth metal nanoparticles, some of which are already widely used in medicine, are of growing interest in the modern scientific community. One of the promising rare earth metals for biomedical applications is cerium, specifically its oxide form, which is characterized by a higher level of stability and safety. According to a number of studies, cerium dioxide has a wide range of biological effects (regenerative, antimicrobial, antioxidant, antitumor), which justifies the interest of its potential application in medicine. However, these effects and their intensity vary significantly across a number of studies. Since cerium dioxide was used in these studies, it can be assumed that not only is the chemical formula important, but also the physicochemical parameters of the nanoparticles obtained, and consequently the methods of their synthesis and modification with the use of excipients. In this review, we considered the possibilities of using a number of excipients (polyacrylate, polyvinylpyrrolidone, dextran, hyaluronic acid, chitosan, polycarboxylic acids, lecithin, phosphatidylcholine) in the context of preserving the biological effects of cerium dioxide and its physicochemical properties, as well as the degree of study of these combinations from the point of view of the prospect of creating drugs based on it for biomedical applications.
Collapse
Affiliation(s)
- Svetlana A. Titova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; (S.A.T.); (M.P.K.); (V.A.P.)
| | - Maria P. Kruglova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; (S.A.T.); (M.P.K.); (V.A.P.)
| | - Victor A. Stupin
- Pirogov Russian National Research Medical University, Moscow 117997, Russia; (V.A.S.); (N.E.M.)
| | - Natalia E. Manturova
- Pirogov Russian National Research Medical University, Moscow 117997, Russia; (V.A.S.); (N.E.M.)
| | - Raghu Ram Achar
- JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India;
| | - Gouri Deshpande
- Regional Institute of Education (RIE NCERT), Mysuru 570006, Karnataka, India;
| | - Vladimir A. Parfenov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; (S.A.T.); (M.P.K.); (V.A.P.)
| | - Ekaterina V. Silina
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; (S.A.T.); (M.P.K.); (V.A.P.)
| |
Collapse
|
4
|
Chen Y, Xu H, Ren J, Zhang G, Jia Y. Enhanced N-Butanol Sensing Performance of Cr-Doped CeO 2 Nanomaterials. SENSORS (BASEL, SWITZERLAND) 2025; 25:1208. [PMID: 40006437 PMCID: PMC11861146 DOI: 10.3390/s25041208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/03/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025]
Abstract
The Cr-doped CeO2 nanomaterials were prepared by a simple hydrothermal method. Morphological analysis revealed that Cr doping altered the morphology and size of the CeO2 particles. Gas sensing tests results showed that Cr/Ce-2 has the highest response (Ra/Rg = 15.6 @ 10 ppm), which was 12.58 times higher than that of the pure CeO2 sensor. Furthermore, the optimal operating temperature was reduced from 210 °C to 170 °C. The Cr/Ce-2 sensor also displayed outstanding repeatability and gas selectivity. The improved gas sensing performance of the Cr-doped CeO2 sensor can be attributed to its smaller grain size and higher porosity compared to pure CeO2. In addition, oxygen vacancies played a pivotal role in improving the gas-sensing performance. The present work provides a new CeO2-based gas-sensitive material for the detection of n-butanol.
Collapse
Affiliation(s)
| | | | - Jing Ren
- School of Science, Shandong Jianzhu University, Jinan 250100, China; (Y.C.); (H.X.); (G.Z.); (Y.J.)
| | | | | |
Collapse
|
5
|
Liu B, Liu W, Xu M, Zhao T, Zhou B, Zhou R, Zhu Z, Chen X, Bao Z, Wang K, Li H. Drug delivery systems based on mesoporous silica nanoparticles for the management of hepatic diseases. Acta Pharm Sin B 2025; 15:809-833. [PMID: 40177563 PMCID: PMC11959912 DOI: 10.1016/j.apsb.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 04/05/2025] Open
Abstract
The liver performs multiple life-sustaining functions. Hepatic diseases, including hepatitis, cirrhosis, and hepatoma, pose significant health and economic burdens globally. Along with the advances in nanotechnology, mesoporous silica nanoparticles (MSNs) exhibiting diversiform size and shape, distinct morphological properties, and favorable physico-chemical features have become an ideal choice for drug delivery systems and inspire alternative thinking for the management of hepatic diseases. Initially, we introduce the physiological structure of the liver and highlight its intrinsic cell types and correlative functions. Next, we detail the synthesis methods and physicochemical properties of MSNs and their capacity for controlled drug loading and release. Particularly, we discuss the interactions between liver and MSNs with respect to the passive targeting mechanisms of MSNs within the liver by adjusting their particle size, pore diameter, surface charge, hydrophobicity/hydrophilicity, and surface functionalization. Subsequently, we emphasize the role of MSNs in regulating liver pathophysiology, exploring their value in addressing liver pathological states, such as tumors and inflammation, combined with multi-functional designs and intelligent modes to enhance drug targeting and minimize side effects. Lastly, we put forward the problems, challenges, opportunities, as well as clinical translational issues faced by MSNs in the management of liver diseases.
Collapse
Affiliation(s)
- Boyan Liu
- School of Pharmacy, China Medical University, Shenyang 110122, China
- China Medical University and Queen University of Belfast Joint College, China Medical University, Shenyang 110122, China
| | - Wenshi Liu
- Department of Organ Transplantation and Hepatobiliary, the First Hospital of China Medical University, Shenyang 110001, China
| | - Miao Xu
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Tongyi Zhao
- School of Pharmacy, China Medical University, Shenyang 110122, China
- China Medical University and Queen University of Belfast Joint College, China Medical University, Shenyang 110122, China
| | - Bingxin Zhou
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Ruilin Zhou
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Ze Zhu
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Xuchun Chen
- Department of Organ Transplantation and Hepatobiliary, the First Hospital of China Medical University, Shenyang 110001, China
| | - Zhiye Bao
- Department of Organ Transplantation and Hepatobiliary, the First Hospital of China Medical University, Shenyang 110001, China
| | - Keke Wang
- Department of Pharmacy, the First Hospital of China Medical University, Shenyang 110001, China
| | - Heran Li
- School of Pharmacy, China Medical University, Shenyang 110122, China
- China Medical University and Queen University of Belfast Joint College, China Medical University, Shenyang 110122, China
| |
Collapse
|
6
|
Titova SA, Kruglova MP, Stupin VA, Manturova NE, Silina EV. Potential Applications of Rare Earth Metal Nanoparticles in Biomedicine. Pharmaceuticals (Basel) 2025; 18:154. [PMID: 40005968 PMCID: PMC11858778 DOI: 10.3390/ph18020154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
In recent years, the world scientific community has shown increasing interest in rare earth metals in general and their nanoparticles in particular. Medicine and pharmaceuticals are no exception in this matter. In this review, we have considered the main opportunities and potential applications of rare earth metal (gadolinium, europium, ytterbium, holmium, lutetium, dysprosium, erbium, terbium, thulium, scandium, yttrium, lanthanum, europium, neodymium, promethium, samarium, praseodymium, cerium) nanoparticles in biomedicine, with data ranging from single reports of effects found in vitro to numerous independent in vivo studies, as well as a number of challenges to their potential for wider application. The main areas of application of rare earth metals, including in the future, are diagnosis and treatment of malignant neoplasms, therapy of infections, as well as the use of antioxidant and regenerative properties of a number of nanoparticles. These applications are determined both by the properties of rare earth metal nanoparticles themselves and the need to search for new approaches to solve a number of urgent biomedical and public health problems. Oxide forms of lanthanides are most often used in biomedicine due to their greatest biocompatibility and nanoscale size, providing penetration through biological membranes. However, the existing contradictory or insufficient data on acute and chronic toxicity of lanthanides still make their widespread use difficult. There are various modification methods (addition of excipients, creation of nanocomposites, and changing the morphology of particles) that can reduce these effects. At the same time, despite the use of some representatives of lanthanides in clinical practice, further studies to establish the full range of pharmacological and toxic effects, as well as the search for approaches to modify nanoparticles remain relevant.
Collapse
Affiliation(s)
- Svetlana A. Titova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (S.A.T.); (E.V.S.)
| | - Maria P. Kruglova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (S.A.T.); (E.V.S.)
| | - Victor A. Stupin
- Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (V.A.S.); (N.E.M.)
| | - Natalia E. Manturova
- Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (V.A.S.); (N.E.M.)
| | - Ekaterina V. Silina
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (S.A.T.); (E.V.S.)
| |
Collapse
|
7
|
Mustafa S, Alharbi LM, Abdelraheem MZ, Mobashar M, Qamar W, A Al-Doaiss A, Abbas RZ. Role of Silver Nanoparticles for the Control of Anthelmintic Resistance in Small and Large Ruminants. Biol Trace Elem Res 2024; 202:5502-5521. [PMID: 38436800 DOI: 10.1007/s12011-024-04132-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Helminths are considered a significant threat to the livestock industry, as they cause substantial economic losses in small and large ruminant farming. Their morbidity and mortality rates are also increasing day by day as they have zoonotic importance. Anthelmintic drugs have been used for controlling these parasites; unfortunately, due to the development of resistance of these drugs in helminths (parasites), especially in three major classes like benzimidazoles, nicotinic agonists, and macrocyclic lactones, their use is becoming very low. Although new anthelmintics are being developed, the process is time-consuming and costly. As a result, nanoparticles are being explored as an alternative to anthelmintics. Nanoparticles enhance drug effectiveness, drug delivery, and target specificity and have no resistance against parasites. Different types of nanoparticles are used, such as organic (chitosan) and inorganic (gold, silver, zinc oxide, iron oxide, and nickel oxide). One of them, silver nanoparticles (AgNPs), has unique properties in various fields, especially parasitology. AgNPs are synthesized from three primary methods: physical, chemical, and biological. Their primary mechanism of action is causing stress through the production of ROS that destroys cells, organs, proteins, and DNA parasites. The present review is about AgNPs, their mode of action, and their role in controlling anthelmintic resistance against small and large ruminants.
Collapse
Affiliation(s)
- Sahar Mustafa
- Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad, Pakistan
| | - Lafi M Alharbi
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, 51452, Buraidah, Saudi Arabia
| | - Mona Z Abdelraheem
- The National Institute of Oceanography and Fisheries (NIOF), Aswan, Egypt
| | - Muhammad Mobashar
- Department of Animal Nutrition, The University of Agriculture, Peshawar, Pakistan
| | - Warda Qamar
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan.
| | - Amin A Al-Doaiss
- Biology Department, College of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Rao Zahid Abbas
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
8
|
Panghal A, Flora SJS. Nano-based approaches for the treatment of neuro-immunological disorders: a special emphasis on multiple sclerosis. DISCOVER NANO 2024; 19:171. [PMID: 39466516 PMCID: PMC11519283 DOI: 10.1186/s11671-024-04135-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024]
Abstract
Multiple sclerosis (MS) is a neuroimmunological disorder which causes axonal damage, demyelination and paralysis. Although numerous therapeutics have been developed for the effective treatment of MS and a few have been approved in recent decades, complete remission and treatment of MS remain a matter of concern. Nanotechnology is a potential approach for manipulating the properties of materials at the molecular level to attain desired properties. This approach is effective in the treatment of several CNS disorders by enhancing drug delivery, bioavailability and efficacy. We have briefly discussed the neuroimmunological disorders with a particular emphasis on MS. We also explored nanoengineered drug delivery systems, describing several nano-formulations for the treatment of MS, challenges and future of nanotechnology.
Collapse
Affiliation(s)
- Archna Panghal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-SAS Nagar, Mohali, 160102, India
| | - S J S Flora
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-SAS Nagar, Mohali, 160102, India.
- Era College of Pharmaceutical Sciences, Era Lucknow Medical University, Sarfarajgang, Lucknow, 226002, India.
| |
Collapse
|
9
|
Manoharan D, Wang LC, Chen YC, Li WP, Yeh CS. Catalytic Nanoparticles in Biomedical Applications: Exploiting Advanced Nanozymes for Therapeutics and Diagnostics. Adv Healthc Mater 2024; 13:e2400746. [PMID: 38683107 DOI: 10.1002/adhm.202400746] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/17/2024] [Indexed: 05/01/2024]
Abstract
Catalytic nanoparticles (CNPs) as heterogeneous catalyst reveals superior activity due to their physio-chemical features, such as high surface-to-volume ratio and unique optical, electric, and magnetic properties. The CNPs, based on their physio-chemical nature, can either increase the reactive oxygen species (ROS) level for tumor and antibacterial therapy or eliminate the ROS for cytoprotection, anti-inflammation, and anti-aging. In addition, the catalytic activity of nanozymes can specifically trigger a specific reaction accompanied by the optical feature change, presenting the feasibility of biosensor and bioimaging applications. Undoubtedly, CNPs play a pivotal role in pushing the evolution of technologies in medical and clinical fields, and advanced strategies and nanomaterials rely on the input of chemical experts to develop. Herein, a systematic and comprehensive review of the challenges and recent development of CNPs for biomedical applications is presented from the viewpoint of advanced nanomaterial with unique catalytic activity and additional functions. Furthermore, the biosafety issue of applying biodegradable and non-biodegradable nanozymes and future perspectives are critically discussed to guide a promising direction in developing span-new nanozymes and more intelligent strategies for overcoming the current clinical limitations.
Collapse
Affiliation(s)
- Divinah Manoharan
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
- Interdisciplinary Research Center on Material and Medicinal Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Liu-Chun Wang
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ying-Chi Chen
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Wei-Peng Li
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, 701, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chen-Sheng Yeh
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
- Interdisciplinary Research Center on Material and Medicinal Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, 701, Taiwan
| |
Collapse
|
10
|
Baghaee P, Yoonesi M, Esfahani DE, Beirami E, Dargahi L, Rashidi FS, Valian N. Yttrium oxide nanoparticles alleviate cognitive deficits, neuroinflammation, and mitochondrial biogenesis impairment induced by streptozotocin. Neurosci Lett 2024; 837:137895. [PMID: 39025434 DOI: 10.1016/j.neulet.2024.137895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 06/17/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disorder characterized by progressive cognitive decline. Yttrium oxide nanoparticles (Y2O3NPs) have recently attracted much attention for their potential anti-inflammatory and antioxidant properties. However, the effects of Y2O3NPs in animal models of AD are less studied. This study aimed to investigate the potential therapeutic effects of Y2O3NPs in streptozotocin (STZ)-treated rats, a reliable animal model of AD, with special emphasis on cognitive function, neuroinflammation, and mitochondrial biogenesis in the hippocampus. Male Wistar rats were stereotaxically injected with STZ (3 mg/kg, 3 µl/ventricle). Three weeks after STZ injection, cognitive function was assessed using the Morris water maze, elevated plus maze, and passive avoidance tasks. Intraperitoneal treatment with Y2O3NPs (0.1, 0.3, or 0.5 mg/kg) was started 24 h after the STZ injection and continued for 21 days. The mRNA and protein levels of pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β) and components involved in mitochondrial biogenesis (PGC-1α, NRF-1, and TFAM) were measured in the hippocampus. The results indicated that STZ induced cognitive impairment and led to neuroinflammation and mitochondrial biogenesis impairment in the hippocampus of rats. Interestingly, treatment with Y2O3NPs effectively reduced STZ-induced cognitive deficits in a dose-dependent manner, possibly by attenuating neuroinflammation and mitochondrial biogenesis impairment. These findings suggest that Y2O3NPs can be considered as a promising therapeutic agent for treating or ameliorating the neuropathological effects associated with AD.
Collapse
Affiliation(s)
- Pooya Baghaee
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mohammad Yoonesi
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Delaram Eslimi Esfahani
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Elmira Beirami
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Leila Dargahi
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Sadat Rashidi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Valian
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Othman A, Gowda A, Andreescu D, Hassan MH, Babu SV, Seo J, Andreescu S. Two decades of ceria nanoparticle research: structure, properties and emerging applications. MATERIALS HORIZONS 2024; 11:3213-3266. [PMID: 38717455 DOI: 10.1039/d4mh00055b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Cerium oxide nanoparticles (CeNPs) are versatile materials with unique and unusual properties that vary depending on their surface chemistry, size, shape, coating, oxidation states, crystallinity, dopant, and structural and surface defects. This review encompasses advances made over the past twenty years in the development of CeNPs and ceria-based nanostructures, the structural determinants affecting their activity, and translation of these distinct features into applications. The two oxidation states of nanosized CeNPs (Ce3+/Ce4+) coexisting at the nanoscale level facilitate the formation of oxygen vacancies and defect states, which confer extremely high reactivity and oxygen buffering capacity and the ability to act as catalysts for oxidation and reduction reactions. However, the method of synthesis, surface functionalization, surface coating and defects are important factors in determining their properties. This review highlights key properties of CeNPs, their synthesis, interactions, and reaction pathways and provides examples of emerging applications. Due to their unique properties, CeNPs have become quintessential candidates for catalysis, chemical mechanical planarization (CMP), sensing, biomedical applications, and environmental remediation, with tremendous potential to create novel products and translational innovations in a wide range of industries. This review highlights the timely relevance and the transformative potential of these materials in addressing societal challenges and driving technological advancements across these fields.
Collapse
Affiliation(s)
- Ali Othman
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, USA.
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, New York 13699, USA.
| | - Akshay Gowda
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, New York 13699, USA.
| | - Daniel Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, USA.
| | - Mohamed H Hassan
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, USA.
| | - S V Babu
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, New York 13699, USA.
| | - Jihoon Seo
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, New York 13699, USA.
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, USA.
| |
Collapse
|
12
|
Mohamed HRH, Farouk AH, Elbasiouni SH, Nasif KA, Safwat G. Yttrium oxide nanoparticles ameliorates calcium hydroxide and calcium titanate nanoparticles induced genomic DNA and mitochondrial damage, ROS generation and inflammation. Sci Rep 2024; 14:13015. [PMID: 38844752 PMCID: PMC11156978 DOI: 10.1038/s41598-024-62877-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
Calcium hydroxide (Ca(OH)2NPs), calcium titanate (CaTiO3NPs) and yttrium oxide (Y2O3NPs) nanoparticles are prevalent in many industries, including food and medicine, but their small size raises concerns about potential cellular damage and genotoxic effects. However, there are very limited studies available on their genotoxic effects. Hence, this was done to investigate the effects of multiple administration of Ca(OH)2NPs, CaTiO3NPs or/and Y2O3NPs on genomic DNA stability, mitochondrial membrane potential integrity and inflammation induction in mouse brain tissues. Mice were orally administered Ca(OH)2NPs, CaTiO3NPs or/and Y2O3NPs at a dose level of 50 mg/kg b.w three times a week for 2 weeks. Genomic DNA integrity was studied using Comet assay and the level of reactive oxygen species (ROS) within brain cells was analyzed using 2,7 dichlorofluorescein diacetate dye. The expression level of Presenilin-1, tumor necrosis factor-alpha (TNF-α) and Interleukin-6 (IL-6) genes and the integrity of the mitochondrial membrane potential were also detected. Oral administration of Ca(OH)2NPs caused the highest damage to genomic DNA and mitochondrial membrane potential, less genomic DNA and mitochondrial damage was induced by CaTiO3NPs administration while administration of Y2O3NPs did not cause any remarkable change in the integrity of genomic DNA and mitochondrial membrane potential. Highest ROS generation and upregulation of presenilin-1, TNF-α and IL-6 genes were also observed within the brain cells of mice administrated Ca(OH)2NPs but Y2O3NPs administration almost caused no changes in ROS generation and genes expression compared to the negative control. Administration of CaTiO3NPs alone slightly increased ROS generation and the expression level of TNF-α and IL-6 genes. Moreover, no remarkable changes in the integrity of genomic DNA and mitochondrial DNA potential, ROS level and the expression level of presenilin-1, TNF-α and IL-6 genes were noticed after simultaneous coadministration of Y2O3NPs with Ca(OH)2NPs and CaTiO3NPs. Coadministration of Y2O3NPs with Ca(OH)2NPs and CaTiO3NPs mitigated Ca(OH)2NPs and CaTiO3NPs induced ROS generation, genomic DNA damage and inflammation along with restoring the integrity of mitochondrial membrane potential through Y2O3NPs scavenging free radicals ability. Therefore, further studies are recommended to study the possibility of using Y2O3NPs to alleviate Ca(OH)2NPs and CaTiO3NPs induced genotoxic effects.
Collapse
Affiliation(s)
- Hanan R H Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Ahmed H Farouk
- Faculty of Biotechnology, October University for Modern Sciences and Arts, 6 Ocober, Egypt
| | - Salma H Elbasiouni
- Faculty of Biotechnology, October University for Modern Sciences and Arts, 6 Ocober, Egypt
| | - Kirolls A Nasif
- Faculty of Biotechnology, October University for Modern Sciences and Arts, 6 Ocober, Egypt
| | - Gehan Safwat
- Faculty of Biotechnology, October University for Modern Sciences and Arts, 6 Ocober, Egypt
| |
Collapse
|
13
|
Bakhti A, Shokouhi Z, Mohammadipanah F. Modulation of proteins by rare earth elements as a biotechnological tool. Int J Biol Macromol 2024; 258:129072. [PMID: 38163500 DOI: 10.1016/j.ijbiomac.2023.129072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 12/24/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Although rare earth element (REE) complexes are often utilized in bioimaging due to their photo- and redox stability, magnetic and optical characteristics, they are also applied for pharmaceutical applications due to their interaction with macromolecules namely proteins. The possible implications induced by REEs through modification in the function or regulatory activity of the proteins trigger a variety of applications for these elements in biomedicine and biotechnology. Lanthanide complexes have particularly been applied as anti-biofilm agents, cancer inhibitors, potential inflammation inhibitors, metabolic elicitors, and helper agents in the cultivation of unculturable strains, drug delivery, tissue engineering, photodynamic, and radiation therapy. This paper overviews emerging applications of REEs in biotechnology, especially in biomedical imaging, tumor diagnosis, and treatment along with their potential toxic effects. Although significant advances in applying REEs have been made, there is a lack of comprehensive studies to identify the potential of all REEs in biotechnology since only four elements, Eu, Ce, Gd, and La, among 17 REEs have been mostly investigated. However, in depth research on ecotoxicology, environmental behavior, and biological functions of REEs in the health and disease status of living organisms is required to fill the vital gaps in our understanding of REEs applications.
Collapse
Affiliation(s)
- Azam Bakhti
- Department of Microbial Biotechnology, Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, 14155-6455 Tehran, Iran
| | - Zahra Shokouhi
- Department of Microbial Biotechnology, Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, 14155-6455 Tehran, Iran
| | - Fatemeh Mohammadipanah
- Pharmaceutical Biotechnology Lab, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, 14155-6455 Tehran, Iran.
| |
Collapse
|
14
|
Abdel-Rahman M, Elmasry HM, Ahmed-Farid OA, Hegazy SM, Rezk MM. Neurological study on the effect of CeNPs and/or La Cl 3 on adult male albino rats. J Trace Elem Med Biol 2024; 81:127323. [PMID: 37890446 DOI: 10.1016/j.jtemb.2023.127323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/27/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023]
Abstract
Lanthanides are a group of 15 elements (8 heavy and 7 light) grouped for their proximity in the chemical and physical properties. Recently, this group of elements has received great attention because of their importance, and their entrance into many industrial technologies making the probability of the living organisms' exposure to it increase. The present study aims to study ability of cerium nanoparticles (CeNPs) or lanthanum (LaCl3) to cross the blood brain barrier also, investigate their neuro effect separately or together on some parameters in six brain areas (cortex, cerebellum, hippocampus, striatum, midbrain, and hypothalamus) of the adult male albino rats. The results showed the ability of both elements to distribute and accumulate in the different brain areas. Also, the results of CeNPs or LaCl3 treatment were in the same line where each element caused a significant decrease in norepinephrine (NE), dopamine (DA), serotonin (5-HT) and GABA accompanied with a significant increase in 5- hydroxyl indoleacetic acid (5-HIAA) glucose level. On the other hand, GSH and MDA showed a significant decrease after CeNPs treatment while, with LaCl3 treatment, MDA showed a significant increase in the different brain areas after 3 weeks of treatment. The coadministration of CeNPs and La Cl3 caused an ameliorating effect in all the tested parameters. In conclusion, from the previous studies the effects of lanthanides in the present study may be in part due to its effect on the release or turnover of neurotransmitters and insulin secretion. Finally, the ameliorative effect of CeNPs may be regarded as its high activity to scavenge the free radicals.
Collapse
Affiliation(s)
- Mona Abdel-Rahman
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt.
| | - Heba M Elmasry
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt.
| | - Omar A Ahmed-Farid
- Department of Physiology, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Sherein M Hegazy
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Mohamed M Rezk
- Isotopes Department, Nuclear Materials Authority, Cairo, Egypt.
| |
Collapse
|
15
|
El-Seidy AMA, Elbaset MA, Ibrahim FAA, Abdelmottaleb Moussa SA, Bashandy SA. Nano cerium oxide and cerium/zinc nanocomposites characterization and therapeutic role in combating obesity via controlling oxidative stress and insulin resistance in rat model. J Trace Elem Med Biol 2023; 80:127312. [PMID: 37804595 DOI: 10.1016/j.jtemb.2023.127312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/18/2023] [Accepted: 09/21/2023] [Indexed: 10/09/2023]
Abstract
BACKGROUND CeO2NPs and ZnONPs can curb the increase of cholesterol and triglycerides observed in rats with non-alcoholic fatty liver disease. It was suggested that CeO2 NPs could potentially have an insulin-sensitizing effect, specifically on adipose tissue and skeletal muscle. It was reported that ZnONPs combat the increase of insulin resistance observed in obese rats and could be beneficial value in NAFLD. In our previous work, ZnO-NPs manifested valuable anti-obesity effects via lowering body weight gain, oxidative stress, BMI, lipids, and insulin resistance. METHODS In the present study, cerium oxide nanoparticles (A-1) and cerium/zinc nanocomposites (A-2 and A-3) were synthesized by solgel to investigate their role on oxidative stress, adipocyte hormones, and insulin resistance in an obese rat model. X-ray diffraction, HRTEM, SEM, and XPS were carried out to confirm the crystal structure, the particle size, the morphology of the nanoparticles and the oxidation states. RESULTS The Rietveld refinement has also been executed on A-1 (chi2 = 1.00; average Bragg = 2.92%; R-factor = 2.45%) and on A-2 (Rw = 9.87%, Rex= 9.68%, χ2 = 1.04, GoF = 1.02). The XPS spectra indicated the presence of Ce in + 4 and + 3 oxidation states and Zn as ZnO and ZnO.OH. Cerium oxide and ZnO crystal sizes lie in the range 40.53-45.01 and 40.53-45.01 nm, respectively. The results indicated that treating obese rats with any of the tested nano compounds (5 mg or 10 mg/Kg) lowered plasma cholesterol, triglycerides, LDL, insulin resistance, glucose, and BMI significantly relative to obese group values. On the other hand, HDL increased significantly in obese rats after treatment with either A-2 or A-3 compared to obese rats. The current investigation showed antioxidant activities for A-1, A-2, and A3 as evidenced by the significant increase in GSH level and a significant decrease in MDA. CONCLUSION It was found that A-1, A-2, and A-3 have an efficient therapeutic role in treating of obesity-related hyperlipidemia, oxidative stress and insulin resistance. The results of A-2 and A-3 were more pronounced than those of A-1. The use of Zn/Ce nanocomposite (that have positive characteristics) in combating obesity and its complications could be become a new trend in therapeutic application for a management of obesity.
Collapse
Affiliation(s)
- Ahmed M A El-Seidy
- Inorganic Chemistry Department, National Research Centre, 33 El-Bohouth St., Dokki, P.O. 12622, Cairo, Egypt.
| | - Marwan A Elbaset
- Pharmacology Department, National Research Centre, 33 El-Bohouth St., Dokki, P.O. 12622, Cairo, Egypt
| | - Fatma A A Ibrahim
- Biophysics Laboratory, Biochemistry Department, National Research Centre, 33 El-Bohouth St., Dokki, P.O. 12622, Cairo, Egypt
| | - Sherif A Abdelmottaleb Moussa
- Biophysics Laboratory, Biochemistry Department, National Research Centre, 33 El-Bohouth St., Dokki, P.O. 12622, Cairo, Egypt
| | - Samir Ae Bashandy
- Pharmacology Department, National Research Centre, 33 El-Bohouth St., Dokki, P.O. 12622, Cairo, Egypt
| |
Collapse
|
16
|
Wang K, Mao W, Song X, Chen M, Feng W, Peng B, Chen Y. Reactive X (where X = O, N, S, C, Cl, Br, and I) species nanomedicine. Chem Soc Rev 2023; 52:6957-7035. [PMID: 37743750 DOI: 10.1039/d2cs00435f] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Reactive oxygen, nitrogen, sulfur, carbonyl, chlorine, bromine, and iodine species (RXS, where X = O, N, S, C, Cl, Br, and I) have important roles in various normal physiological processes and act as essential regulators of cell metabolism; their inherent biological activities govern cell signaling, immune balance, and tissue homeostasis. However, an imbalance between RXS production and consumption will induce the occurrence and development of various diseases. Due to the considerable progress of nanomedicine, a variety of nanosystems that can regulate RXS has been rationally designed and engineered for restoring RXS balance to halt the pathological processes of different diseases. The invention of radical-regulating nanomaterials creates the possibility of intriguing projects for disease treatment and promotes advances in nanomedicine. In this comprehensive review, we summarize, discuss, and highlight very-recent advances in RXS-based nanomedicine for versatile disease treatments. This review particularly focuses on the types and pathological effects of these reactive species and explores the biological effects of RXS-based nanomaterials, accompanied by a discussion and the outlook of the challenges faced and future clinical translations of RXS nanomedicines.
Collapse
Affiliation(s)
- Keyi Wang
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China.
| | - Weipu Mao
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, P. R. China
| | - Xinran Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, P. R. China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Bo Peng
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| |
Collapse
|
17
|
Dürig J, Calcagni M, Buschmann J. Transition metals in angiogenesis - A narrative review. Mater Today Bio 2023; 22:100757. [PMID: 37593220 PMCID: PMC10430620 DOI: 10.1016/j.mtbio.2023.100757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/14/2023] [Accepted: 07/31/2023] [Indexed: 08/19/2023] Open
Abstract
The aim of this paper is to offer a narrative review of the literature regarding the influence of transition metals on angiogenesis, excluding lanthanides and actinides. To our knowledge there are not any reviews up to date offering such a summary, which inclined us to write this paper. Angiogenesis describes the process of blood vessel formation, which is an essential requirement for human growth and development. When the complex interplay between pro- and antiangiogenic mediators falls out of balance, angiogenesis can quickly become harmful. As it is so fundamental, both its inhibition and enhancement take part in various diseases, making it a target for therapeutic treatments. Current methods come with limitations, therefore, novel agents are constantly being researched, with metal agents offering promising results. Various transition metals have already been investigated in-depth, with studies indicating both pro- and antiangiogenic properties, respectively. The transition metals are being applied in various formulations, such as nanoparticles, complexes, or scaffold materials. Albeit the increasing attention this field is receiving, there remain many unanswered questions, mostly regarding the molecular mechanisms behind the observed effects. Notably, approximately half of all the transition metals have not yet been investigated regarding potential angiogenic effects. Considering the promising results which have already been established, it should be of great interest to begin investigating the remaining elements whilst also further analyzing the established effects.
Collapse
Affiliation(s)
- Johannes Dürig
- University of Zürich, Faculty of Medicine, Pestalozzistrasse 3, 8032, Zurich, Switzerland
- University Hospital of Zürich, Department of Plastic Surgery and Hand Surgery, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Maurizio Calcagni
- University Hospital of Zürich, Department of Plastic Surgery and Hand Surgery, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Johanna Buschmann
- University Hospital of Zürich, Department of Plastic Surgery and Hand Surgery, Rämistrasse 100, 8091, Zürich, Switzerland
| |
Collapse
|
18
|
Mohammad, Khan UA, Warsi MH, Alkreathy HM, Karim S, Jain GK, Ali A. Intranasal cerium oxide nanoparticles improves locomotor activity and reduces oxidative stress and neuroinflammation in haloperidol-induced parkinsonism in rats. Front Pharmacol 2023; 14:1188470. [PMID: 37324485 PMCID: PMC10267740 DOI: 10.3389/fphar.2023.1188470] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/09/2023] [Indexed: 08/26/2023] Open
Abstract
Introduction: Cerium oxide nanoparticles (CONPs) have been investigated for their therapeutic potential in Parkinson's disease (PD) due to their potent and regenerative antioxidant activity. In the present study, CONPs were used to ameliorate the oxidative stress caused by free radicals in haloperidol-induced PD in rats following intranasal administration. Method: The antioxidant potential of the CONPs was evaluated in vitro using ferric reducing antioxidant power (FRAP) assay. The penetration and local toxicity of the CONPs was evaluated ex-vivo using goat nasal mucosa. The acute local toxicity of intranasal CONPs was also studied in rat. Gamma scintigraphy was used to assess the targeted brain delivery of CONPs. Acute toxicity studies were performed in rats to demonstrate safety of intranasal CONPs. Further, open field test, pole test, biochemical estimations and brain histopathology was performed to evaluate efficacy of intranasal CONPs in haloperidol-induced PD rat model. Results: The FRAP assay revealed highest antioxidant activity of prepared CONPs at a concentration of 25 μg/mL. Confocal microscopy showed deep and homogenous distribution of CONPs in the goat nasal mucus layers. No signs of irritation or injury were seen in goat nasal membrane when treated with optimized CONPs. Scintigraphy studies in rats showed targeted brain delivery of intranasal CONPs and acute toxicity study demonstrated safety. The results of open field and pole test showed highly significant (p < 0.001) improvement in locomotor activity of rats treated with intranasal CONPs compared to untreated rats. Further, brain histopathology of treatment group rats showed reduced neurodegeneration with presence of more live cells. The amount of thiobarbituric acid reactive substances (TBARS) was reduced significantly, whereas the levels of catalase (CAT), superoxide dismutase (SOD), and GSH were increased significantly, while amounts of interleukin-6 (IL-6) and tumour necrosis factor-alpha (TNF-α) showed significant reduction after intranasal administration of CONPs. Also, the intranasal CONPs, significantly high (p < 0.001) dopamine concentration (13.93 ± 0.85 ng/mg protein) as compared to haloperidol-induced control rats (5.76 ± 0.70 ng/mg protein). Conclusion: The overall results concluded that the intranasal CONPs could be safe and effective therapeutics for the management of PD.
Collapse
Affiliation(s)
- Mohammad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| | - Urooj Ahmed Khan
- Department of Pharmaceutics, Dr. Ram Manohar Lohia College of Pharmacy, Ghaziabad, Uttar Pradesh, India
| | - Musarrat Husain Warsi
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Huda Mohammed Alkreathy
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shahid Karim
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Gaurav Kumar Jain
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
- Center for Advanced Formulation Technology, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Asgar Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| |
Collapse
|
19
|
Lu X, Chang X, Zhang H, Wang J, Qiu K, Wu S. Effects of Dietary Rare Earth Chitosan Chelate on Performance, Egg Quality, Immune and Antioxidant Capacity, and Intestinal Digestive Enzyme Activity of Laying Hens. Polymers (Basel) 2023; 15:polym15071600. [PMID: 37050214 PMCID: PMC10097366 DOI: 10.3390/polym15071600] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Rare earth chitosan chelate salt (RECC) is a potential feed additive and is a product of the chelation effect between rare earth ions and chitosan. This research study aims to explore the effects of dietary RECC on performance, egg quality, intestinal digestive function, and the immune and antioxidant capacity of laying hens in the late phase of production. A total of 360 56-week-old Dawu Jinfeng laying hens were randomly allotted into four treatment groups with six replicates per treatment and 15 birds per replicate. The laying hens were fed the basal diet supplemented with, respectively, 0 (control: CON), 100 (R1), 200 (R2), and 400 (R3) mg/kg for 8 weeks. Dietary RECC significantly improved average daily feed intake (ADFI) and average daily egg yield in both linear and quadratic manner (p < 0.05). In addition, albumen height and HU were improved significantly (p < 0.05) in a dose-dependent manner of RECC. In addition, a significant decrease (p < 0.05) in serum TP, IgA, and MDA for the R1 group and IgG in the R2 group were notable, while the increase in serum TP and decrease in T-AOC were found for R3 dietary group compared to CON (p < 0.05). The level of intestinal IL-2 and TNF-α was decreased by dietary RECC (p < 0.01). The activities of the digestive enzyme (α-Amylase, lipase, and Trypsin) showed a quadratic change with an increase and then decrease in response to increasing dose of RECC, 200 mg/kg RECC significantly increased the activity of lipase and Trypsin (p < 0.01). Supplementation of dietary RECC at low doses compared to higher doses impacted positive effects on the antioxidant capacity and immune function (p < 0.05). The utilization of RECC as a feed additive in the diet of aged laying hens exerted beneficial effects on egg production, albumen quality, humoral immunity, inflammatory response, and activity of digestive enzymes. Thus, the regulation of antioxidant capacity and duodenal function via increased enzyme activity and immune and inflammatory response were critical to the improvement of laying performance and egg quality in aged hens. The optimal supplemental dose is 100-200 mg/kg.
Collapse
Affiliation(s)
- Xinxin Lu
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xinyu Chang
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haijun Zhang
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Wang
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kai Qiu
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shugeng Wu
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
20
|
Sarkar K, Dutta K, Chatterjee A, Sarkar J, Das D, Prasad A, Chattopadhyay D, Acharya K, Das M, Verma SK, De S. Nanotherapeutic potential of antibacterial folic acid-functionalized nanoceria for wound-healing applications. Nanomedicine (Lond) 2023; 18:109-123. [PMID: 36853798 DOI: 10.2217/nnm-2022-0233] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Aim: The functionalization and characterization of antibacterial nanoceria with folic acid (FA) and elucidation of their in vivo wound healing application. Materials & methods: Functionalization of nanoceria were done with FA using a chemical method and their antibacterial activity, cellular biocompatibility and in vivo wound healing application were evaluated. Results: The functionalization of nanoceria with FA was done with 10 to 20 nm size and -20.1 mV zeta potential. The nanoformulation showed a bacteriostatic effect along with biocompatibility to different cell lines; 0.1% w/v spray of FA-nanoceria demonstrated excellent wound healing capacity within 14 days in a Wister rat model. Conclusion: The antioxidant and reactive oxygen species scavenging activity of the FA-nanoceria make it a promising therapeutic agent as a unique spray formulation in wound healing applications.
Collapse
Affiliation(s)
- Kunal Sarkar
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Kaushik Dutta
- Department of Polymer Science & Technology, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, India
| | - Arindam Chatterjee
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Jit Sarkar
- Department of Botany, Molecular & Applied Mycology & Plant Pathology Laboratory, University of Calcutta, Kolkata, West Bengal, 700019, India
| | - Dipankar Das
- Department of Allied Health Sciences, Brainware University, 398, Ramkrishnapur Road, Kolkata, West Bengal, 700125, India
| | - Arbind Prasad
- Department of Mechanical Engineering, Katihar Engineering College (Under Department of Science & Technology, Government of Bihar), Katihar, Bihar, 854109, India
| | - Dipankar Chattopadhyay
- Department of Polymer Science & Technology, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, India
| | - Krishnendu Acharya
- Department of Botany, Molecular & Applied Mycology & Plant Pathology Laboratory, University of Calcutta, Kolkata, West Bengal, 700019, India
| | - Madhusudan Das
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Suresh K Verma
- School of Biotechnology, KIIT-DU, Bhubaneswar, Odisha, 751024, India
| | - Sriparna De
- Department of Allied Health Sciences, Brainware University, 398, Ramkrishnapur Road, Kolkata, West Bengal, 700125, India
| |
Collapse
|
21
|
Akanchise T, Angelova A. Potential of Nano-Antioxidants and Nanomedicine for Recovery from Neurological Disorders Linked to Long COVID Syndrome. Antioxidants (Basel) 2023; 12:393. [PMID: 36829952 PMCID: PMC9952277 DOI: 10.3390/antiox12020393] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Long-term neurological complications, persisting in patients who cannot fully recover several months after severe SARS-CoV-2 coronavirus infection, are referred to as neurological sequelae of the long COVID syndrome. Among the numerous clinical post-acute COVID-19 symptoms, neurological and psychiatric manifestations comprise prolonged fatigue, "brain fog", memory deficits, headache, ageusia, anosmia, myalgias, cognitive impairments, anxiety, and depression lasting several months. Considering that neurons are highly vulnerable to inflammatory and oxidative stress damages following the overproduction of reactive oxygen species (ROS), neuroinflammation and oxidative stress have been suggested to dominate the pathophysiological mechanisms of the long COVID syndrome. It is emphasized that mitochondrial dysfunction and oxidative stress damages are crucial for the pathogenesis of neurodegenerative disorders. Importantly, antioxidant therapies have the potential to slow down and prevent disease progression. However, many antioxidant compounds display low bioavailability, instability, and transport to targeted tissues, limiting their clinical applications. Various nanocarrier types, e.g., liposomes, cubosomes, solid lipid nanoparticles, micelles, dendrimers, carbon-based nanostructures, nanoceria, and other inorganic nanoparticles, can be employed to enhance antioxidant bioavailability. Here, we highlight the potential of phytochemical antioxidants and other neuroprotective agents (curcumin, quercetin, vitamins C, E and D, melatonin, rosmarinic acid, N-acetylcysteine, and Ginkgo Biloba derivatives) in therapeutic strategies for neuroregeneration. A particular focus is given to the beneficial role of nanoparticle-mediated drug-delivery systems in addressing the challenges of antioxidants for managing and preventing neurological disorders as factors of long COVID sequelae.
Collapse
Affiliation(s)
| | - Angelina Angelova
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| |
Collapse
|
22
|
Sharma A, Sharma N, Singh S, Dua K. Review on theranostic and neuroprotective applications of nanotechnology in multiple sclerosis. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
23
|
Insights from a Bibliometrics-Based Analysis of Publishing and Research Trends on Cerium Oxide from 1990 to 2020. Int J Mol Sci 2023; 24:ijms24032048. [PMID: 36768372 PMCID: PMC9916443 DOI: 10.3390/ijms24032048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 01/21/2023] Open
Abstract
The purpose of this study is to evaluate the literature for research trends on cerium oxide from 1990 to 2020 and identify gaps in knowledge in the emerging application(s) of CeONP. Bibliometric methods were used to identify themes in database searches from PubMed, Scopus and Web of Science Core Collection using SWIFT-Review, VOSviewer and SciMAT software programs. A systematic review was completed on published cerium oxide literature extracted from the Scopus database (n = 17,115), identifying themes relevant to its industrial, environmental and biomedical applications. A total of 172 publications were included in the systematic analysis and categorized into four time periods with research themes identified; "doping additives" (n = 5, 1990-1997), "catalysts" (n = 32, 1998-2005), "reactive oxygen species" (n = 66, 2006-2013) and "pathology" (n = 69, 2014-2020). China and the USA showed the highest number of citations and publications for cerium oxide research from 1990 to 2020. Longitudinal analysis showed CeONP has been extensively used for various applications due to its catalytic properties. In conclusion, this study showed the trend in research in CeONP over the past three decades with advancements in nanoparticle engineering like doping, and more recently surface modification or functionalization to further enhanced its antioxidant abilities. As a result of recent nanoparticle engineering developments, research into CeONP biological effects have highlighted its therapeutic potential for a range of human pathologies such as Alzheimer's disease. Whilst research over the past three decades show the versatility of cerium oxide in industrial and environmental applications, there are still research opportunities to investigate the potential beneficial effects of CeONP in its application(s) on human health.
Collapse
|
24
|
Zubairi W, Tehseen S, Nasir M, Anwar Chaudhry A, Ur Rehman I, Yar M. A study of the comparative effect of cerium oxide and cerium peroxide on stimulation of angiogenesis: Design and synthesis of pro-angiogenic chitosan/collagen hydrogels. J Biomed Mater Res B Appl Biomater 2022; 110:2751-2762. [PMID: 35796648 DOI: 10.1002/jbm.b.35126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 06/16/2022] [Accepted: 06/25/2022] [Indexed: 12/15/2022]
Abstract
Poor angiogenesis at injury site is a major problem in chronic wounds, which could lead to limbs amputation in adverse cases. To overcome this issue, several efforts have made in literature and by our group as well to develop pro-angiogenic agents. For this purpose, metal oxides due to their oxidative potential have been studied and found very attractive agents. Cerium oxides are proven to be non-toxic and their biological studies have already proved their importance in preventing chronic inflammation, and neurological diseases among several others by modulating the intracellular reactive oxygen species. In current study, we report the synthesis and neovascularization activity of cerium oxide and cerium peroxide nanoparticles when loaded into chitosan and collagen hydrogel. The hydrogels were characterized by FTIR, SEM and XRD. The pro-angiogenic behavior of these hydrogels was studied by in-vivo CAM assay. It was found that cerium peroxide loaded material showed significantly increase in angiogenesis as compared to cerium oxide loaded materials. It was demonstrated that cerium peroxide hydrogels enhanced the angiogenic capability in CAM assay as compared to cerium oxide and hence holds good potential for chronic ulcer and burn wounds healing.
Collapse
Affiliation(s)
- Waliya Zubairi
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan.,Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | | | - Muhammad Nasir
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Aqif Anwar Chaudhry
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Ihtesham Ur Rehman
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan.,Engineering Department, Faculty of Science and Technology, Lancaster University, Lancaster, UK
| | - Muhammad Yar
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| |
Collapse
|
25
|
Liang S, Tian X, Wang C. Nanozymes in the Treatment of Diseases Caused by Excessive Reactive Oxygen Specie. J Inflamm Res 2022; 15:6307-6328. [PMID: 36411826 PMCID: PMC9675353 DOI: 10.2147/jir.s383239] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/11/2022] [Indexed: 10/29/2023] Open
Abstract
Excessive reactive oxygen species (ROS) may generate deleterious effects on biomolecules, such as DNA damage, protein oxidation and lipid peroxidation, causing cell and tissue damage and eventually leading to the pathogenesis of diseases, such as neurodegenerative diseases, ischemia/reperfusion ((I/R)) injury, and inflammatory diseases. Therefore, the modulation of ROS can be an efficient means to relieve the aforementioned diseases. Several studies have verified that antioxidants such as Mitoquinone (a mitochondrial-targeted coenzyme Q10 derivative) can scavenge ROS and attenuate related diseases. Nanozymes, defined as nanomaterials with intrinsic enzyme-like properties that also possess antioxidant properties, are hence expected to be promising alternatives for the treatment of ROS-related diseases. This review introduces the types of nanozymes with inherent antioxidant activities, elaborates on various strategies (eg, controlling the size or shape of nanozymes, regulating the composition of nanozymes and environmental factors) for modulating their catalytic activities, and summarizes their performances in treating ROS-induced diseases.
Collapse
Affiliation(s)
- Shufeng Liang
- Department of Molecular Biology, Shanxi Province Cancer Hospital/Shanxi Hospital, Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, People’s Republic of China
- Institute of Environmental Sciences, Shanxi University, Taiyuan, People’s Republic of China
| | - Xin Tian
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, People’s Republic of China
| | - Chunyan Wang
- Department of Transfusion, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, People’s Republic of China
| |
Collapse
|
26
|
Khurana A, Saifi MA, Godugu C. Yttrium Oxide Nanoparticles Attenuate L-Arginine Induced Chronic Pancreatitis. Biol Trace Elem Res 2022; 201:3404-3417. [PMID: 36319828 DOI: 10.1007/s12011-022-03446-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/04/2022] [Indexed: 04/17/2023]
Abstract
In this work, we tested the efficacy of yttrium oxide nanoparticles (NY), a promising antioxidant and anti-inflammatory agent, in L-arginine (L-Arg) induced chronic pancreatitis (CP) model. The nanoparticles were characterized using multiple techniques including transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction (pXRD), and Energy dispersive X-ray analysis (EDX). The rats were divided into three groups: normal control, L-Arg control, L-Arg + NY (1 mg/kg). We probed the mechanistic effects of the NY by ELISA, multiplex analysis of TGF-β pathway and inflammatory cytokines and immunoblotting. NY treatment significantly reduced pancreatic oxidative-nitrosative stress. In addition, NY intervention also reduced inflammatory cytokines and chemokines resulting in the inhibition of fibrosis signaling. Further, NY treatment suppressed the TGF-β signaling and epithelial-mesenchymal transition (EMT). We conclude that NY shows potential antioxidant, anti-inflammatory, and anti-fibrotic effects against CP and associated fibrosis.
Collapse
Affiliation(s)
- Amit Khurana
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Mohd Aslam Saifi
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Chandraiah Godugu
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India.
| |
Collapse
|
27
|
Klingelhöfer D, Braun M, Dröge J, Fischer A, Brüggmann D, Groneberg DA. Environmental and health-related research on application and production of rare earth elements under scrutiny. Global Health 2022; 18:86. [PMID: 36253760 PMCID: PMC9575253 DOI: 10.1186/s12992-022-00879-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Unlike most other commodities, rare earth elements (REEs) are part of a wide range of applications needed for daily life all over the world. These applications range from cell phones to electric vehicles to wind turbines. They are often declared as part of "green technology" and, therefore, often called "green elements". However, their production and use are not only useful but also risky to the environment and human health, as many studies have shown. Consequently, the range of global research efforts is broad and highly variable, and therefore difficult to capture and assess. Hence, this study aims to assess the global parameters of global research on REE in the context of environment and health (REEeh). In addition to established bibliometric parameters, advanced analyses using market driver and scientific infrastructure values were carried out to provide deep insight into incentives, necessities, and barriers to international research. RESULTS The focus of REE research is in line with national aspirations, especially from the major global players, China and the USA. Whereas globally, regional research interests are related to market interests, as evidenced by the inclusion of drivers such as electric vehicles, wind turbines, and permanent magnets. The topics receiving the most attention are related to gadolinium used for magnetic resonance imaging and the use of ceria nanoparticles. Since both are used for medical purposes, the medical research areas are equally profiled and mainly addressed in high-income countries. Nevertheless, environmental issues are increasingly in focus. CONCLUSIONS There is still a need for research that is independent and open-ended. For this, market-independent technologies, substitutes and recycling of REEs need to be addressed scientifically. The results of this study are relevant for all stakeholders, from individual scientists to planners to funders, to improve future research strategies in line with these research mandates.
Collapse
Affiliation(s)
- Doris Klingelhöfer
- Institute of Occupational, Social and Environmental Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
| | - Markus Braun
- Institute of Occupational, Social and Environmental Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Janis Dröge
- Institute of Occupational, Social and Environmental Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Axel Fischer
- Clinical Research Unit of Allergy, Institute of Occupational Medicine, Charité University Berlin, Berlin, Germany
| | - Dörthe Brüggmann
- Institute of Occupational, Social and Environmental Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - David A Groneberg
- Institute of Occupational, Social and Environmental Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| |
Collapse
|
28
|
Pellavio G, Sommi P, Anselmi-Tamburini U, DeMichelis MP, Coniglio S, Laforenza U. Cerium Oxide Nanoparticles Regulate Oxidative Stress in HeLa Cells by Increasing the Aquaporin-Mediated Hydrogen Peroxide Permeability. Int J Mol Sci 2022; 23:ijms231810837. [PMID: 36142747 PMCID: PMC9506032 DOI: 10.3390/ijms231810837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Some aquaporins (AQPs) allow the diffusion of hydrogen peroxide (H2O2), the most abundant ROS, through the cell membranes. Therefore, the possibility of regulating the AQP-mediated permeability to H2O2, and thus ROS scavenging, appears particularly important for controlling the redox state of cells in physiological and pathophysiological conditions. Several compounds have been screened and characterized for this purpose. This study aimed to analyze the effect of cerium oxide nanoparticles (CNPs) presenting antioxidant activity on AQP functioning. HeLa cells express AQP3, 6, 8, and 11, able to facilitate H2O2. AQP3, 6, and 8 are expressed in the plasma membrane and intracellularly, while AQP11 resides only in intracellular structures. CNPs but not cerium ions treatment significantly increased the water and H2O2 permeability by interacting with AQP3, 6, and especially with AQP8. CNPs increased considerably the AQP-mediated water diffusion in cells with oxidative stress. Functional experiments with silenced HeLa cells revealed that CNPs increased the H2O2 diffusion mainly by modulating the AQP8 permeability but also the AQP3 and AQP6, even if to a lesser extent. Current findings suggest that CNPs represent a promising pharmaceutical agent that might potentially be used in numerous pathologies involving oxidative stress as tumors and neurodegenerative diseases.
Collapse
Affiliation(s)
- Giorgia Pellavio
- Department of Molecular Medicine, Human Physiology Unit, University of Pavia, 27100 Pavia, Italy
| | - Patrizia Sommi
- Department of Molecular Medicine, Human Physiology Unit, University of Pavia, 27100 Pavia, Italy
| | | | | | - Stefania Coniglio
- Department of Molecular Medicine, Human Physiology Unit, University of Pavia, 27100 Pavia, Italy
| | - Umberto Laforenza
- Department of Molecular Medicine, Human Physiology Unit, University of Pavia, 27100 Pavia, Italy
- Correspondence: ; Tel.: +39-0382-98-7568
| |
Collapse
|
29
|
Liao J, Li Y, Luo Y, Meng S, Zhang C, Xiong L, Wang T, Lu Y. Recent Advances in Targeted Nanotherapies for Ischemic Stroke. Mol Pharm 2022; 19:3026-3041. [PMID: 35905397 DOI: 10.1021/acs.molpharmaceut.2c00383] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ischemic stroke (IS) is a severe neurological disease caused by the narrowing or occlusion of cerebral blood vessels and is known for high morbidity, disability, and mortality rates. Clinically available treatments of stroke include the surgical removal of the thrombus and thrombolysis with tissue fibrinogen activator. Pharmaceuticals targeting IS are uncommon, and the development of new therapies is hindered by the low bioavailability and stability of many drugs. Nanomedicine provides new opportunities for the development of novel neuroprotective and thrombolytic strategies for the diagnosis and treatment of IS. Numerous nanotherapeutics with different physicochemical properties are currently being developed to facilitate drug delivery by accumulation and controlled release and to improve their restorative properties. In this review, we discuss recent developments in IS therapy, including assisted drug delivery and targeting, neuroprotection through regulation of the neuron environment, and sources of endogenous biomimetic specific targeting. In addition, we discuss the role and neurotoxic effects of inorganic metal nanoparticles in IS therapy. This study provides a theoretical basis for the utilization of nano-IS therapies that may contribute to the development of new strategies for a range of embolic diseases.
Collapse
Affiliation(s)
- Jun Liao
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Yi Li
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Yunchun Luo
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Sha Meng
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Chuan Zhang
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Liyan Xiong
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Tingfang Wang
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Ying Lu
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
30
|
Behroozi Z, Rahimi B, Hamblin MR, Nasirinezhad F, Janzadeh A, Ramezani F. Injection of Cerium Oxide Nanoparticles to Treat Spinal Cord Injury in Rats. J Neuropathol Exp Neurol 2022; 81:635-642. [PMID: 35472142 PMCID: PMC9297098 DOI: 10.1093/jnen/nlac026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
This study investigated the effects of local injection of cerium oxide nanoparticles (CeONPs) in a rat spinal cord injury (SCI) model. Thirty-six adult male Wistar rats were divided into 4 groups: controls (healthy animals), sham (laminectomy), SCI (laminectomy+SCI induction), and treatment (laminectomy+SCI induction+intrathecal injection of CeONPs immediately after injury). SCI was induced using an aneurysm clip at the T12-T13 vertebral region. Motor performance and pain threshold tests were performed weekly; H&E staining and measurement of cavity sizes were performed 6 weeks after injury. The expression of granulocyte colony-stimulating factor (GCSF), P44/42 MAPK, P-P44/42 MAPK, Tau, myelin-associated glycoprotein(MAG) was evaluated after 6 weeks by Western blot. The Basso, Beattie, and Bresnahan locomotor scoring scales improved in animals receiving CeONPs compared with SCI animals. The cavity sizes were less in the treatment group. GCSF expression was similar in the animals receiving CeONPs compared with the SCI group but the expression of ERK1/ERK2 and phospho-ERK was lower than in the SCI group. Expression levels of Tau and MAG were significantly increased in treated animals compared to the SCI group. These data indicate that the use of CeONPs may improve motor functional recovery in SCI.
Collapse
Affiliation(s)
- Zahra Behroozi
- From the Physiology Research Center, Institute of Neuropharmaclogy, Kerman University of Medical Sciences. Kerman, Iran
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Behnaz Rahimi
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Farinaz Nasirinezhad
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Atousa Janzadeh
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ramezani
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Placek LM, Keenan TJ, Coughlan A, Wren AW. Synthesis, Processing and the Effect of Thermal Treatment on the Solubility, Antioxidant Potential and Cytocompatibility of Y2O3 and CeO2 doped SiO2-SrO-Na2O Glass-Ceramics. J Biomater Appl 2022; 37:102-117. [PMID: 35442110 DOI: 10.1177/08853282221078448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Thermal treatment of a 0.52SiO2-0.24SrO-0.24-xNa2O-xMO glass-ceramic series (where x = 0.08 and MO = Y2O3 or CeO2) was conducted in order to synthesize yttrium (Y3+) and cerium (Ce3+) crystalline species that may act as radical oxygen specie (ROS) scavengers. The prominent phase for the Control is a sodium-strontium-silicate while the experimental glass-ceramics (HY, YCe, and HCe) present sodium-Y/Ce-silicate and oxide phases. Disk shrinkage during thermal processing ranges from 1-7% for Control, HY, YCe, and HCe in both diameter and thickness. Solubility studies determined that the release of Si4+ and Na+ are greatest from the Control disks which peaks at 1550 µg/mL. Release from the Y3+ and Ce3+ glass-ceramics reached 320 µg/mL for Si4+ and 630 µg/mL for Na+. The range of antioxidant capacity (ABTS assay) for all samples was 0.31-3.9 mMTE. No significant reduction in MC 3T3 Osteoblast cell viability was observed for any composition tested.
Collapse
Affiliation(s)
- Lana M Placek
- Inamori School of Engineering, 1132Alfred University, Alfred, NY, USA
| | - Timothy J Keenan
- Inamori School of Engineering, 1132Alfred University, Alfred, NY, USA
| | - Aisling Coughlan
- Department of Bioengineering, University of Toledo, Toledo, OH, USA
| | - Anthony W Wren
- Inamori School of Engineering, 1132Alfred University, Alfred, NY, USA
| |
Collapse
|
32
|
Jan Z, Mollazadeh S, Abnous K, Taghdisi SM, Danesh A, Ramezani M, Alibolandi M. Targeted Delivery Platforms for the Treatment of Multiple Sclerosis. Mol Pharm 2022; 19:1952-1976. [PMID: 35501974 DOI: 10.1021/acs.molpharmaceut.1c00892] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Multiple sclerosis (MS) is a neurodegenerative condition of the central nervous system (CNS) that presents with varying levels of disability in patients, displaying the significance of timely and effective management of this complication. Though several treatments have been developed to protect nerves, comprehensive improvement of MS is still considered an essential bottleneck. Therefore, the development of innovative treatment methods for MS is one of the core research areas. In this regard, nanoscale platforms can offer practical and ideal approaches to the diagnosis and treatment of various diseases, especially immunological disorders such as MS, to improve the effectiveness of conventional therapies. It should be noted that there is significant progress in the development of neuroprotective strategies through the implementation of various nanoparticles, monoclonal antibodies, peptides, and aptamers. In this study, we summarize different particle systems as well as targeted therapies, such as antibodies, peptides, nucleic acids, and engineered cells for the treatment of MS, and discuss their potential in the treatment of MS in the preclinical and clinical stages. Future advances in targeted delivery of medical supplies may offer new strategies for complete recovery as well as practical treatment of progressive forms of MS.
Collapse
Affiliation(s)
- Zeinab Jan
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Science, 7GJP+VPQ Mashhad, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, F82C+G8V Bojnurd, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, 7GJP+VPQ Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, 7GJP+VPQ Mashhad, Iran
| | - Abolghasem Danesh
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Science, 7GJP+VPQ Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, 7GJP+VPQ Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, 7GJP+VPQ Mashhad, Iran
| |
Collapse
|
33
|
In vivo study of dose-dependent antioxidant efficacy of functionalized core-shell yttrium oxide nanoparticles. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:593-606. [PMID: 35201389 PMCID: PMC8989852 DOI: 10.1007/s00210-022-02219-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/09/2022] [Indexed: 11/30/2022]
Abstract
Abstract Herein, we assess the dose-dependent antioxidant efficacy of ultrafine spherical functionalized core–shell yttrium oxide nanoparticles (YNPs) with a mean size of 7–8 nm and modified with poly EGMP (ethylene glycol methacrylate phosphate) and N-Fluorescein Acrylamide. The antioxidant properties of these nanoparticles were investigated in three groups of Sprague–Dawley rats (10 per group) exposed to environmental stress daily for 1 week and one control group. Groups 2 and 3 were intravenously injected twice a week with YNPs at 0.3 and 0.5 mg at 2nd and 5th day of environmental stress exposure respectively. Different samples of blood and serum were collected from all experimental groups at end of the experiment to measure oxidative biomarkers such as total antioxidant capacity (TAC), hydroxyl radical antioxidant capacity (HORAC), oxygen radical antioxidant capacity (ORAC), malondialdehyde (MDA), and oxidants concentration as hydrogen peroxide (H2O2). The liver, brain, and spleen tissues were collected for fluorescence imaging and histopathological examination in addition to brain tissue examination by transmission electron microscope (TEM). Inductively coupled plasma-mass spectrometry (ICP-MS) was used to estimate YNPs translocation and concentration in tissues which is consecutively dependent on the dose of administration. Depending on all results, poly EGMP YNPs (poly EGMP yttrium oxide nanoparticles) can act as a potent direct antioxidant in a dose-dependent manner with good permeability through blood–brain barrier (BBB). Also, the neuroprotective effect of YNPs opening the door to a new therapeutic approach for modulating oxidative stress–related neural disorders. Highlights • The dose-dependent antioxidant efficacy of ultrafine spherical functionalized core–shell yttrium oxide nanoparticles (YNPs) with a mean size of 7–8 nm and modified with poly EGMP (ethylene glycol methacrylate phosphate) and N-Fluorescein Acrylamide was assessed. • The dose of administration directly affecting the brain, liver, and spleen tissues distribution, retention, and uptake of YNPs and direct correlation between the absorbed amount and higher dose administered. • YNPs can act as a potent direct antioxidant in a dose-dependent manner with good permeability through blood–brain barrier (BBB). Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s00210-022-02219-1.
Collapse
|
34
|
Abu-Taweel GM, Al-Mutary MG, Albetran HM. Yttrium Oxide Nanoparticles Moderate the Abnormal Cognitive Behaviors in Male Mice Induced by Silver Nanoparticles. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9059371. [PMID: 35528526 PMCID: PMC9072030 DOI: 10.1155/2022/9059371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 03/15/2022] [Accepted: 04/01/2022] [Indexed: 11/17/2022]
Abstract
Silver nanoparticles (Ag-NPs) have been used in medical, agricultural, and industrial purposes. Furthermore, NPs can cross the blood-brain barrier and encourage some effects on spatial learning and memory in organism. Here, we investigate the possible neurotoxicity of Ag-NPs with special emphasis on the neuroprotective impacts of yttrium-oxide nanoparticles (YO-NPs) in male mice. Male mice (n = 24) were weekly intraperitoneally injected for 35 days as the following; groups I, II, III, and IV received tap water (control), Ag-NPs (40 mg/kg), YO-NPs (40 mg/kg), and Ag-NPs/YO-NPs (40 mg/kg each), respectively. After that, animals were tested in shuttle box, Morris water-maze, and T-maze devices to evaluate the spatial learning and memory competence. Neurotransmitters and oxidative indices in the forebrain were estimated. According to behavioral studies, the male animals from the Ag-NP group presented worse memory than those in the control group. The biochemical changes after Ag-NP exposure were observed through increasing TBARS levels and decline in oxidative biomarkers (SOD, CAT, GST, and GSH) and neurotransmitters (DOP, SER, and AChE) in the forebrain of male mice compared to untreated animals. Interestingly, the animals treated with mixed doses of Ag-NPs and YO-NPs displayed improvements in behavioral tests, oxidative parameters, and neurotransmitters compared to males treated with Ag-NPs alone. In conclusion, the abnormal behavior related to learning and memory in male mice induced by Ag-NPs was significantly alleviated by YO-NPs. Specifically, the coinjection of YO-NPs with Ag-NPs moderates the disruption in neurotransmitters, oxidative indices of mice brains, which reflects on their cognitive behaviors.
Collapse
Affiliation(s)
- Gasem Mohammad Abu-Taweel
- Department of Biology, College of Sciences, Jazan University, P.O. Box 2079, Jazan 45142, Saudi Arabia
| | - Mohsen Ghaleb Al-Mutary
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P. O. Box 383, Dammam 31113, Saudi Arabia
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Hani Manssor Albetran
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
- Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
35
|
Chen Z, Geng Y, Gao R, Zhong H, Chen J, Mu X, Chen X, Zhang Y, Li F, He J. Maternal exposure to CeO 2NPs derails placental development through trophoblast dysfunction mediated by excessive autophagy activation. J Nanobiotechnology 2022; 20:131. [PMID: 35292031 PMCID: PMC8922923 DOI: 10.1186/s12951-022-01334-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The increasing use of cerium dioxide nanoparticles (CeO2NPs) in biomedical field has attracted substantial attention about their potential risks to human health. Recent studies have shown that nanoparticles can induce placental dysfunction and even fetal abortion, but a more detailed mechanism of nanoparticles affecting placental development remains elusive. RESULTS Here, we constructed a mouse exposure model with different doses of CeO2NPs (2.5, 4, 5, 7.5, and 10 mg kg-1 day-1, average particle size 3-5 nm), finding that intravenous exposure to pregnant mice with CeO2NPs could cause abnormal placental development. Deposited nanoparticles were able to be observed in the placental trophoblast at doses of 5 and 7.5 mg kg-1 day-1. Diving into molecular mechanisms indicated that CeO2NPs exposure could lead to autophagy activation in placental trophoblast. At the cellular level, exposure to CeO2NPs inhibited the migration and invasion of HTR-8/SVneo and activated the autophagy through mammalian target of rapamycin complex1 (mTORC1) signaling pathway. Furthermore, inhibition of autophagy initiation by 3-Methyladenine (3-MA) partially restored the function of HTR-8/SVneo, while blocking autophagic flow by Chloroquine (CQ) aggravated the functional damage. CONCLUSIONS Maternal exposure to CeO2NPs impairs placental development through trophoblast dysfunction mediated by excessive autophagy activation. These results suggested that autophagy dysfunction may be a potential mechanism for the impairment of trophoblast by CeO2NPs exposure. As above, our findings provide insights into the toxicity mechanism to the reproductive system induced by rare-earth nanoparticles exposure.
Collapse
Affiliation(s)
- Zhuxiu Chen
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, China
| | - Yanqing Geng
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, China
| | - Rufei Gao
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, China
| | - Hangtian Zhong
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, China
| | - Jun Chen
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Xinyi Mu
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, China
| | - Xuemei Chen
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, China
| | - Yan Zhang
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, China
| | - Fangfang Li
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, China
| | - Junlin He
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China. .,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
36
|
Luo M, Shaitan K, Qu X, Bonartsev AP, Lei B. Bioactive rare earth-based inorganic-organic hybrid biomaterials for wound healing and repair. APPLIED MATERIALS TODAY 2022; 26:101304. [DOI: 10.1016/j.apmt.2021.101304] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
37
|
Rahiman N, Mohammadi M, Alavizadeh SH, Arabi L, Badiee A, Jaafari MR. Recent advancements in nanoparticle-mediated approaches for restoration of multiple sclerosis. J Control Release 2022; 343:620-644. [PMID: 35176392 DOI: 10.1016/j.jconrel.2022.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/07/2022] [Indexed: 12/18/2022]
Abstract
Multiple Sclerosis (MS) is an autoimmune disease with complicated immunopathology which necessitates considering multifactorial aspects for its management. Nano-sized pharmaceutical carriers named nanoparticles (NPs) can support impressive management of disease not only in early detection and prognosis level but also in a therapeutic manner. The most prominent initiator of MS is the domination of cellular immunity to humoral immunity and increment of inflammatory cytokines. The administration of several platforms of NPs for MS management holds great promise so far. The efforts for MS management through in vitro and in vivo (experimental animal models) evaluations, pave a new way to a highly efficient therapeutic means and aiding its translation to the clinic in the near future.
Collapse
Affiliation(s)
- Niloufar Rahiman
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Mohammadi
- Department of pharmaceutics, School of pharmacy, Mashhad University of Medical sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Badiee
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
38
|
Zholudenko Y, D.K. Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, Zholobak N, D.K. Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine. ANTIHERPETIC ACTION OF CERIUM SALTS IN VITRO. BULLETIN OF TARAS SHEVCHENKO NATIONAL UNIVERSITY OF KYIV. SERIES: BIOLOGY 2022. [DOI: 10.17721/1728.2748.2022.89.28-31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Compounds based on cerium are highly promising objects in biotechnology regarding their high biological activities such as antiviral, antibacterial, antifungal, neuro- and radioprotective action, and antioxidant activity. On their basis is possible to develop compositions capable of activating the systems of cellular and humoral immune defence and use them for the prevention and therapy of viral diseases, which makes it achievable to use them for the development of potential antiherpetic agents. Despite the success of their application in biotechnological fields, the mechanism of their action on biological objects requires detailed research. The work aimed to verify in vitro anti-HSV-1/2 activity of trivalent and tetravalent cerium salts (1 mM – 0.01 nM) according to the preventive and therapeutic regimen. Methods: virological, cytological, statistical. Results. The therapeutic regime was noneffective. In the preventive regime, salt (NH4)2Ce(NO3)6 in vitro forms antiviral resistance in the range of investigated concentrations, while the salt CeCl3·7Н2О forms a non-linear, sinusoidal-like concentration-dependent anti-HSV-1/2 response of cells. Conclusions. Cerium salts (III and IV) can cause the formation of a state of antiviral resistance in the model system MA-104 - HSV-1/2 during their previous 24 h of contact with test cells. Cerium salt (IV) provides 50% inhibition of the cytopathic action of HSV-1/2 at a concentration of 1 μM. It is assumed that the shown antiviral activity of cerium salts may be due to their effect on the interferon system and the formation of antiviral resistance in cells.
Collapse
|
39
|
Yun B, King M, Draz MS, Kline T, Rodriguez-Palacios A. Oxidative reactivity across kingdoms in the gut: Host immunity, stressed microbiota and oxidized foods. Free Radic Biol Med 2022; 178:97-110. [PMID: 34843918 DOI: 10.1016/j.freeradbiomed.2021.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species play a major role in the induction of programmed cell death and numerous diseases. Production of reactive oxygen species is ubiquitous in biological systems such as humans, bacteria, fungi/yeasts, and plants. Although reactive oxygen species are known to cause diseases, little is known about the importance of the combined oxidative stress burden in the gut. Understanding the dynamics and the level of oxidative stress 'reactivity' across kingdoms could help ascertain the combined consequences of free radical accumulation in the gut lumen. Here, we present fundamental similarities of oxidative stress derived from the host immune cells, bacteria, yeasts, plants, and the therein-derived diets, which often accentuate the burden of free radicals by accumulation during storage and cooking conditions. Given the described similarities, oxidative stress could be better understood and minimized by monitoring the levels of oxidative stress in the feces to identify pro-inflammatory factors. However, we illustrate that dietary studies rarely monitor oxidative stress markers in the feces, and therefore our knowledge on fecal oxidative stress monitoring is limited. A more holistic approach to understanding oxidative stress 'reactivity' in the gut could help improve strategies to use diet and microbiota to prevent intestinal diseases.
Collapse
Affiliation(s)
- Bahda Yun
- Division of Gastroenterology & Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Maria King
- Division of Gastroenterology & Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Mohamed S Draz
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Terence Kline
- Veterinary Technology Program, Cuyahoga Community College, Cleveland, OH, USA
| | - Alex Rodriguez-Palacios
- Division of Gastroenterology & Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Germ-free and Gut Microbiome Core, Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA; University Hospitals Research and Education Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
| |
Collapse
|
40
|
Liu J, Zhou X, Zhang Y, Wang A, Zhu W, Xu M, Zhuang S. Rapid hemostasis and high bioactivity cerium-containing mesoporous bioglass for hemostatic materials. J Biomed Mater Res B Appl Biomater 2021; 110:1255-1264. [PMID: 34910359 DOI: 10.1002/jbm.b.34996] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/25/2021] [Accepted: 12/05/2021] [Indexed: 11/05/2022]
Abstract
A two-step-acid-catalyzed-self-assembly method was used to prepare cerium-containing mesoporous bioactive glass with P123 as a template. The results showed that MBG without cerium and MBG with cerium slightly affected its surface area, and its water absorption rate was significantly higher. In vitro coagulation experiments showed that Ce-MBG significantly reduces prothrombin time (PT) and activated partial thromboplastin time (APTT), indicating that MBG containing Ce could promote coagulation and platelet adhesion compared with MBG. These suggested that Ce-MBG may be a good dressing with hemostatic properties, which could shorten the bleeding time of the wound and control the bleeding.
Collapse
Affiliation(s)
- Jiaxi Liu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, China
| | - Xiang Zhou
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, China
| | - Yin Zhang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, China.,Nanjing Haoqi Advanced Materials Co., Ltd., Nanjing, China
| | - Anping Wang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, China
| | - Wei Zhu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, China
| | - Meijia Xu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, China
| | - Shuxian Zhuang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, China
| |
Collapse
|
41
|
Lord MS, Berret JF, Singh S, Vinu A, Karakoti AS. Redox Active Cerium Oxide Nanoparticles: Current Status and Burning Issues. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102342. [PMID: 34363314 DOI: 10.1002/smll.202102342] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Research on cerium oxide nanoparticles (nanoceria) has captivated the scientific community due to their unique physical and chemical properties, such as redox activity and oxygen buffering capacity, which made them available for many technical applications, including biomedical applications. The redox mimetic antioxidant properties of nanoceria have been effective in the treatment of many diseases caused by reactive oxygen species (ROS) and reactive nitrogen species. The mechanism of ROS scavenging activity of nanoceria is still elusive, and its redox activity is controversial due to mixed reports in the literature showing pro-oxidant and antioxidant activity. In light of its current research interest, it is critical to understand the behavior of nanoceria in the biological environment and provide answers to some of the critical and open issues. This review critically analyzes the status of research on the application of nanoceria to treat diseases caused by ROS. It reviews the proposed mechanism of action and shows the effect of surface coatings on its redox activity. It also discusses some of the crucial issues in deciphering the mechanism and redox activity of nanoceria and suggests areas of future research.
Collapse
Affiliation(s)
- Megan S Lord
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, New South Wales, 2052, Australia
| | | | - Sanjay Singh
- National Institute of Animal Biotechnology, Hyderabad, Telangana, 500032, India
| | - Ajayan Vinu
- Global Innovative Center for Advanced Nanomaterials, College of Engineering Science and Environment, The University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Ajay S Karakoti
- Global Innovative Center for Advanced Nanomaterials, College of Engineering Science and Environment, The University of Newcastle, Callaghan, New South Wales, 2308, Australia
| |
Collapse
|
42
|
Ahmed HH, Aglan HA, Mahmoud NS, Aly RM. Preconditioned human dental pulp stem cells with cerium and yttrium oxide nanoparticles effectively ameliorate diabetic hyperglycemia while combatting hypoxia. Tissue Cell 2021; 73:101661. [PMID: 34656024 DOI: 10.1016/j.tice.2021.101661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/23/2021] [Accepted: 10/01/2021] [Indexed: 10/20/2022]
Abstract
UNLABELLED The development of efficient insulin producing cells (IPC) induction system is fundamental for the regenerative clinical applications targeting Diabetes Mellitus. This study was set to generate IPC from human dental pulp stem cells (hDPSCs) capable of surviving under hypoxic conditions in vitro and in vivo. METHODS hDPSCs were cultured in IPCs induction media augmented with Cerium or Yttrium oxide nanoparticles along with selected growth factors & cytokines. The generated IPC were subjected to hypoxic stress in vitro to evaluate the ability of the nanoparticles to combat hypoxia. Next, they were labelled and implanted into diabetic rats. Twenty eight days later, blood glucose and serum insulin levels, hepatic hexokinase and glucose-6-phosphate dehydrogenase activities were measured. Pancreatic vascular endothelial growth factor (VEGF), pancreatic duodenal homeobox1 (Pdx-1), hypoxia inducible factor 1 alpha (HIF-1α) and Caspase-3 genes expression level were evaluated. RESULTS hDPSCs were successfully differentiated into IPCs after incubation with the inductive media enriched with nanoparticles. The generated IPCs released significant amounts of insulin in response to increasing glucose concentration both in vitro & in vivo. The generated IPCs showed up-regulation in the expression levels of anti-apoptotic genes in concomitant with down-regulation in the expression levels of hypoxic, and apoptotic genes. The in vivo study confirmed the homing of PKH-26-labeled cells in pancreas of treated groups. A significant up-regulation in the expression of pancreatic VEGF and PDX-1 genes associated with significant down-regulation in the expression of pancreatic HIF-1α and caspase-3 was evident. CONCLUSION The achieved results highlight the promising role of the Cerium & Yttrium oxide nanoparticles in promoting the generation of IPCs that have the ability to combat hypoxia and govern diabetes mellitus.
Collapse
Affiliation(s)
- Hanaa H Ahmed
- Hormones Department, National Research Centre, Giza, Egypt; Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | - Hadeer A Aglan
- Hormones Department, National Research Centre, Giza, Egypt; Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | - Nadia S Mahmoud
- Hormones Department, National Research Centre, Giza, Egypt; Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | - Riham M Aly
- Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt; Basic Dental Science Department, National Research Centre, Giza, Egypt.
| |
Collapse
|
43
|
The Interactions between Nanoparticles and the Innate Immune System from a Nanotechnologist Perspective. NANOMATERIALS 2021; 11:nano11112991. [PMID: 34835755 PMCID: PMC8621168 DOI: 10.3390/nano11112991] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 12/24/2022]
Abstract
The immune system contributes to maintaining the body’s functional integrity through its two main functions: recognizing and destroying foreign external agents (invading microorganisms) and identifying and eliminating senescent cells and damaged or abnormal endogenous entities (such as cellular debris or misfolded/degraded proteins). Accordingly, the immune system can detect molecular and cellular structures with a spatial resolution of a few nm, which allows for detecting molecular patterns expressed in a great variety of pathogens, including viral and bacterial proteins and bacterial nucleic acid sequences. Such patterns are also expressed in abnormal cells. In this context, it is expected that nanostructured materials in the size range of proteins, protein aggregates, and viruses with different molecular coatings can engage in a sophisticated interaction with the immune system. Nanoparticles can be recognized or passed undetected by the immune system. Once detected, they can be tolerated or induce defensive (inflammatory) or anti-inflammatory responses. This paper describes the different modes of interaction between nanoparticles, especially inorganic nanoparticles, and the immune system, especially the innate immune system. This perspective should help to propose a set of selection rules for nanosafety-by-design and medical nanoparticle design.
Collapse
|
44
|
Hussein MAM, Su S, Ulag S, Woźniak A, Grinholc M, Erdemir G, Erdem Kuruca S, Gunduz O, Muhammed M, El-Sherbiny IM, Megahed M. Development and In Vitro Evaluation of Biocompatible PLA-Based Trilayer Nanofibrous Membranes for the Delivery of Nanoceria: A Novel Approach for Diabetic Wound Healing. Polymers (Basel) 2021; 13:3630. [PMID: 34771187 PMCID: PMC8587307 DOI: 10.3390/polym13213630] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 01/22/2023] Open
Abstract
The attempts to explore and optimize the efficiency of diabetic wound healing's promotors are still in progress. Incorporation of cerium oxide nanoparticles (nCeO2) in appropriate nanofibers (NFs) can prolong and maximize their promoting effect for the healing of diabetic wounds, through their sustained releases, as well as the nanofibers role in mimicking of the extra cellular matrix (ECM). The as-prepared nCeO2 were analyzed by using UV-Vis spectroscopy, XRD, SEM-EDX, TEM and FTIR, where TEM and SEM images of both aqueous suspension and powder showed spherical/ovoid-shaped particles. Biodegradable trilayer NFs with cytobiocompatibility were developed to sandwich nCeO2 in PVA NFs as a middle layer where PLA NFs were electrospun as outer bilayer. The nCeO2-loaded trilayer NFs were characterized by SEM, XRD, FTIR and DSC. A two-stage release behavior was observed when the nanoceria was released from the trilayer-based nanofibers; an initial burst release took place, and then it was followed by a sustained release pattern. The mouse embryo fibroblasts, i.e., 3T3 cells, were seeded over the nCeO2-loaded NFs mats to investigate their cyto-biocompatibility. The presence and sustained release of nCeO2 efficiently enhance the adhesion, growth and proliferation of the fibroblasts' populations. Moreover, the incorporation of nCeO2 with a higher amount into the designed trilayer NFs demonstrated a significant improvement in morphological, mechanical, thermal and cyto-biocompatibility properties than lower doses. Overall, the obtained results suggest that designated trilayer nanofibrous membranes would offer a specific approach for the treatment of diabetic wounds through an effective controlled release of nCeO2.
Collapse
Affiliation(s)
- Mohamed Ahmed Mohamady Hussein
- Clinic of Dermatology, University Hospital of RWTH Aachen, 52074 Aachen, Germany;
- Department of Pharmacology, Medical Research Division, National Research Center, Dokki, Cairo 12622, Egypt
| | - Sena Su
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul 34722, Turkey; (S.S.); (S.U.); (O.G.)
| | - Songul Ulag
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul 34722, Turkey; (S.S.); (S.U.); (O.G.)
| | - Agata Woźniak
- Laboratory of Molecular Diagnostics, Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk, 80-307 Gdansk, Poland; (A.W.); (M.G.)
| | - Mariusz Grinholc
- Laboratory of Molecular Diagnostics, Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk, 80-307 Gdansk, Poland; (A.W.); (M.G.)
| | - Gökce Erdemir
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul 34390, Turkey;
- Molecular Cancer Research Center (ISUMKAM), Istinye University, Istanbul 34010, Turkey
| | - Serap Erdem Kuruca
- Department of Physiology, Faculty of Medicine, Istanbul University, Istanbul 34390, Turkey;
| | - Oguzhan Gunduz
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul 34722, Turkey; (S.S.); (S.U.); (O.G.)
- Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Istanbul 34722, Turkey
| | - Mamoun Muhammed
- KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden;
| | - Ibrahim M. El-Sherbiny
- Nanomedicine Laboratory, Center for Materials Science (CMS), Zewail City of Science and Technology, Giza 12578, Egypt
| | - Mosaad Megahed
- Clinic of Dermatology, University Hospital of RWTH Aachen, 52074 Aachen, Germany;
| |
Collapse
|
45
|
Liu Y, Wang X, Li X, Qiao S, Huang G, Hermann DM, Doeppner TR, Zeng M, Liu W, Xu G, Ren L, Zhang Y, Liu W, Casals E, Li W, Wang YC. A Co-Doped Fe 3O 4 Nanozyme Shows Enhanced Reactive Oxygen and Nitrogen Species Scavenging Activity and Ameliorates the Deleterious Effects of Ischemic Stroke. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46213-46224. [PMID: 34546708 DOI: 10.1021/acsami.1c06449] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Acute ischemic stroke has become the major cause of mortality and disability worldwide. Following ischemic stroke, the reperfusion injury is mainly mediated by the burst of reactive oxygen and nitrogen species (RONS). Therefore, blocking the excessive production or removing RONS holds great promise as a potential therapeutic strategy. Herein, we developed a Co-doped Fe3O4 nanozyme that is capable of scavenging H2O2, O2•-, •NO, and ONOO- in vitro and in vivo and provides neuroprotection against ischemic stroke. In vitro experiments showed that pre-incubation with the Co-Fe3O4 nanozyme could prevent neurotoxicity and neuroinflammation induced by H2O2 or lipopolysaccharide, respectively, in HT22 cells. After intravenous administration, the Co-Fe3O4 nanozyme showed no signs of toxicity in peripheral organs of C57BL/6J mice, even after prolonged delivery for 4 weeks. In permanent photothrombotic stroke model and transient middle cerebral artery occlusion stroke model, the Co-Fe3O4 nanozyme specifically accumulated in the infarct rim at 72 h post-stroke and was endocytosed by neurons, astrocytes, microglia, and endothelial cells. Importantly, the Co-Fe3O4 nanozyme delivery reduced the infarct volume in both stroke models. The observation that the Co-Fe3O4 nanozyme was efficacious in two well-characterized ischemic stroke models provides strong evidence that it represents a powerful tool for targeting oxidative and nitrosative stress in the ischemic brain.
Collapse
Affiliation(s)
- Yunsheng Liu
- Department of Neurosurgery, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518035, China
| | - Xiaojun Wang
- Department of Neurosurgery, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518035, China
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Xiangzhu Li
- Department of Neurosurgery, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518035, China
| | - Shanshan Qiao
- The Central Laboratory of Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518035, China
| | - Guodong Huang
- Department of Neurosurgery, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518035, China
| | | | | | - Muling Zeng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Wei Liu
- School of Electronic and Information Engineering, Harbin Institute of Technology, Shenzhen, Guangdong 518055, China
| | - Gelin Xu
- Department of Neurology, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518035, China
| | - Lijie Ren
- Department of Neurology, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518035, China
| | - Yuan Zhang
- The Central Laboratory of Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518035, China
| | - Wenlan Liu
- The Central Laboratory of Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518035, China
| | - Eudald Casals
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Weiping Li
- Department of Neurosurgery, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518035, China
| | - Ya-Chao Wang
- The Institute Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
| |
Collapse
|
46
|
Bakkiyaraj R, Subramanian R, Balakrishnan M, Ravichandran K. Biofabrication of CeO 2 nanoparticles, characterization, photocatalytic, and biological activities. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1983841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- R. Bakkiyaraj
- Department of Physics, Government College of Engineering, Bargur, Tamil Nadu, India
| | - Ramasamy Subramanian
- PG & Research Department of Chemistry, Sun Arts and Science College, Tiruvannamalai, Tamil Nadu, India
| | - M. Balakrishnan
- PG & Research Department of Physics, Government Arts College, Thiruvannamalai, Tamil Nadu, India
| | - K. Ravichandran
- Materials Science Centre, Department of Nuclear Physics, University of Madras, Chennai, Tamil Nadu, India
| |
Collapse
|
47
|
Alidoust S, Zamani M, Jabbari M. Adsorption of free radical TEMPO onto Al 2O 3 nanoparticles and evaluation of radical scavenging activity. Free Radic Res 2021; 55:937-949. [PMID: 34525892 DOI: 10.1080/10715762.2021.1981543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This study describes the adsorption of free radical TEMPO onto Al2O3 nanoparticles in the solvents with different polarities including DMF, methanol, acetone, THF, petroleum ether and n-hexane at ambient temperature to evaluate the radical scavenging activity. The adsorption percentage of radical is calculated by measuring the maximum adsorption intensity of the ultraviolet (UV) absorption spectrum of TEMPO in the presence and the absence of Al2O3 nanoparticles. The morphology of Al2O3 nanoparticles before and after adsorption of TEMPO is studied using transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier-transform infrared (FT-IR) spectroscopy. The adsorption energy and other thermochemical data for the adsorption of TEMPO over different active sites of Al2O3 are estimated via dispersion corrected density functional theory (DFT + Disp). The donor-acceptor interactions between Al2O3 and TEMPO are calculated using natural bond orbital (NBO) theory. It is found that Al2O3 nanoparticles have efficient radical scavenging activity (RSA) in the range of 50-72%. Approximately, a linear relationship between dielectric constant of solvent and the absorption percentage of TEMPO over Al2O3 nanoparticles is achieved. So that with decreasing the polarity of solvent, the adsorption of TEMPO onto Al2O3 nanoparticles is increased. The adsorption of TEMPO over Lewis acidic sites of Al2O3 is more favored than Brønsted acidic and basic sites. The comparison between experimental and calculated IR spectra of TEMPO/Al2O3 complexes provides the good evidence for adsorption of TEMPO onto the surface of Al2O3 nanoparticles.
Collapse
Affiliation(s)
- Soheyl Alidoust
- School of Chemistry, Damghan University, Damghan 36716-41167, Iran
| | - Mehdi Zamani
- School of Chemistry, Damghan University, Damghan 36716-41167, Iran
| | - Morteza Jabbari
- School of Chemistry, Damghan University, Damghan 36716-41167, Iran
| |
Collapse
|
48
|
Saremi J, Khanmohammadi M, Azami M, Ai J, Yousefi-Ahmadipour A, Ebrahimi-Barough S. Tissue-engineered nerve graft using silk-fibroin/polycaprolactone fibrous mats decorated with bioactive cerium oxide nanoparticles. J Biomed Mater Res A 2021; 109:1588-1599. [PMID: 33634587 DOI: 10.1002/jbm.a.37153] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 02/03/2021] [Accepted: 02/14/2021] [Indexed: 12/21/2022]
Abstract
The main aim of this study was to evaluate the efficacy of cerium oxide nanoparticles (CNPs) encapsulated in fabricated hybrid silk-fibroin (SF)/polycaprolactone (PCL) nanofibers as an artificial neural guidance conduit (NGC) applicable for peripheral nerve regeneration. The NGC was prepared by PCL and SF filled with CNPs. The mechanical properties, contact angle, and cell biocompatibility experiments showed that the optimized concentration of CNPs inside SF and SF/PCL wall of conduits was 1% (wt/wt). The SEM image analysis showed the nanoscale texture of the scaffold in different topologies depend on composition with fiber diameters at about 351 ± 54 nm and 420 ± 73 nm respectively for CNPs + SF and CNPs + SF/PCL fibrous mats. Furthermore, contact angle measurement confirmed the hydrophilic behavior of the membranes, ascribable to the SF content and surface modification through modified methanol treatment. The balance of morphological and biochemical properties of hybrid CNPs 1% (wt/wt) + SF/PCL construct improves cell adhesion and proliferation in comparison with lower concentrations of CNPs in nanofibrous scaffolds. The release of CNPs 1% (wt/wt) from both CNPs + SF and CNPs+ SF/PCL fibrous mats was highly controlled and very slow during the extended time of incubation until 60 days. Fabricated double-layered NGC using CNPs + SF and CNPs + SF/PCL fibers was consistent for application in nervous tissue engineering and regenerative medicine from a structural and biocompatible perspective.
Collapse
Affiliation(s)
- Jamileh Saremi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Noncommunicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Mehdi Khanmohammadi
- Skull Base Research Center, The Five Senses Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mahmoud Azami
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aliakbar Yousefi-Ahmadipour
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
49
|
Abuid NJ, Urdaneta ME, Gattas-Asfura KM, Zientek C, Silgo CI, Torres JA, Otto KJ, Stabler CL. Engineering the Multi-Enzymatic Activity of Cerium Oxide Nanoparticle Coatings for the Antioxidant Protection of Implants. ADVANCED NANOBIOMED RESEARCH 2021; 1:2100016. [PMID: 34485991 PMCID: PMC8412420 DOI: 10.1002/anbr.202100016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Imbalance of oxidants is a universal contributor to the failure of implanted devices and tissues. A sustained oxidative environment leads to cytotoxicity, prolonged inflammation, and ultimately host rejection of implanted devices/grafts. The incorporation of antioxidant materials can inhibit this redox/inflammatory cycle and enhance implant efficacy. Cerium oxide nanoparticles (CONP) is a highly promising agent that exhibits potent, ubiquitous, and self-renewable antioxidant properties. Integrating CONP as surface coatings provides ease in translating antioxidant properties to various implants/grafts. Herein, we describe the formation of CONP coatings, generated via the sequential deposition of CONP and alginate, and the impact of coating properties, pH, and polymer molecular weight, on their resulting redox profile. Investigation of CONP deposition, layer formation, and coating uniformity/thickness on their resulting oxidant scavenging activity identified key parameters for customizing global antioxidant properties. Results found lower molecular weight alginates and physiological pH shift CONP activity to a higher H2O2 to O2 --scavenging capability. The antioxidant properties measured for these various coatings translated to distinct antioxidant protection to the underlying encapsulated cells. Information gained from this work can be leveraged to tailor coatings towards specific oxidant-scavenging applications and prolong the function of medical devices and cellular implants.
Collapse
Affiliation(s)
- Nicholas J Abuid
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611-7011 USA
| | - Morgan E Urdaneta
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611-7011 USA
| | - Kerim M Gattas-Asfura
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611-7011 USA
| | - Caterina Zientek
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611-7011 USA
| | - Cristina Isusi Silgo
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611-7011 USA
| | - Jose A Torres
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611-7011 USA
| | - Kevin J Otto
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611-7011 USA
| | - Cherie L Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611-7011 USA
| |
Collapse
|
50
|
Flieger J, Flieger W, Baj J, Maciejewski R. Antioxidants: Classification, Natural Sources, Activity/Capacity Measurements, and Usefulness for the Synthesis of Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4135. [PMID: 34361329 PMCID: PMC8347950 DOI: 10.3390/ma14154135] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/15/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023]
Abstract
Natural extracts are the source of many antioxidant substances. They have proven useful not only as supplements preventing diseases caused by oxidative stress and food additives preventing oxidation but also as system components for the production of metallic nanoparticles by the so-called green synthesis. This is important given the drastically increased demand for nanomaterials in biomedical fields. The source of ecological technology for producing nanoparticles can be plants or microorganisms (yeast, algae, cyanobacteria, fungi, and bacteria). This review presents recently published research on the green synthesis of nanoparticles. The conditions of biosynthesis and possible mechanisms of nanoparticle formation with the participation of bacteria are presented. The potential of natural extracts for biogenic synthesis depends on the content of reducing substances. The assessment of the antioxidant activity of extracts as multicomponent mixtures is still a challenge for analytical chemistry. There is still no universal test for measuring total antioxidant capacity (TAC). There are many in vitro chemical tests that quantify the antioxidant scavenging activity of free radicals and their ability to chelate metals and that reduce free radical damage. This paper presents the classification of antioxidants and non-enzymatic methods of testing antioxidant capacity in vitro, with particular emphasis on methods based on nanoparticles. Examples of recent studies on the antioxidant activity of natural extracts obtained from different species such as plants, fungi, bacteria, algae, lichens, actinomycetes were collected, giving evaluation methods, reference antioxidants, and details on the preparation of extracts.
Collapse
Affiliation(s)
- Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
| | - Wojciech Flieger
- Chair and Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (W.F.); (J.B.); (R.M.)
| | - Jacek Baj
- Chair and Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (W.F.); (J.B.); (R.M.)
| | - Ryszard Maciejewski
- Chair and Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (W.F.); (J.B.); (R.M.)
| |
Collapse
|