1
|
Yang SH, Zhang SN, Li XZ. Advances in Therapeutic Targets and Traditional Chinese Medicine for Cardiomyopathy. Phytother Res 2025. [PMID: 40219655 DOI: 10.1002/ptr.8494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/21/2025] [Accepted: 03/15/2025] [Indexed: 04/14/2025]
Abstract
Cardiomyopathy is a kind of heart disease caused by multiple factors of myocardial structure and function disorders. In this paper, we summarized and found the targets and mechanisms with therapeutic potential by querying the relevant literature on cardiomyopathy in the past 10 years from databases. Numerous pieces of literature have proven the significant efficacy of traditional Chinese medicine (TCM) in the treatment of cardiomyopathy. Through effective screening methods, we quickly identified a variety of commonly used Chinese herbs such as Astragalus, Danggui, Danshen, Pueraria Root, and ginseng, and further analyzed the active ingredients that play key roles in the treatment of cardiomyopathy. Specifically, our study revealed significant interaction activity at the molecular level of active ingredients such as calycosin, formononetin, and beta-sitosterol, which were strongly validated by sophisticated molecular docking experiments. These active ingredients can be precisely combined with 14 core targets (such as AKT1, TP53, IL6, and other key proteins), which not only reveals their potential therapeutic mechanisms but also provides direct and solid scientific support for the application of TCM in the treatment of cardiomyopathy. It is helpful to develop new TCM preparations further and provide more treatment options for patients with cardiomyopathy.
Collapse
Affiliation(s)
- Si-Hui Yang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guian New Area, People's Republic of China
| | - Shuai-Nan Zhang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guian New Area, People's Republic of China
| | - Xu-Zhao Li
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guian New Area, People's Republic of China
| |
Collapse
|
2
|
Ridwan M, Dimiati H, Syukri M, Lesmana R. Potential molecular mechanism underlying cardiac fibrosis in diabetes mellitus: a narrative review. Egypt Heart J 2023; 75:46. [PMID: 37306727 PMCID: PMC10260731 DOI: 10.1186/s43044-023-00376-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 06/08/2023] [Indexed: 06/13/2023] Open
Abstract
BACKGROUND Diabetes mellitus (DM) is among the most common risk factors for cardiovascular disease in the world with prevalence of more than 500 million population in 2021. Cardiac fibrosis with its complex process has been hypothesized as one of the mechanisms explaining development of heart failure in diabetic patients. Recently, the biomolecular mechanism of cardiac fibrosis in the hyperglycemia setting has been focusing around transforming growth factor β-1 (TGFβ-1) as a major factor. However, there is interplay role of several factors including microRNAs (miRNAs) which acts as a potential regulator of cardiac fibrosis connected with TGFβ-1. In this review, we explored interplay role of several factors including microRNAs which acts as a potential regulator of cardiac fibrosis connected with TGFβ-1 in diabetes mellitus. This narrative review included articles from the PubMed and Science Direct databases published in the last 10 years (2012-2022). MAIN TEXT In diabetic patients, excessive activation of myofibroblasts occurs and triggers pro-collagen to convert into mature collagen to fill the cardiac interstitial space resulting in a pathological process of extracellular matrix remodeling. The balance between matrix metalloproteinase (MMP) and its inhibitor (tissue inhibitor of metalloproteinase, TIMP) is crucial in degradation of the extracellular matrix. Diabetes-related cardiac fibrosis is modulated by increasing level of TGF-β1 mediated by cellular components, including cardiomyocyte and non-cardiomyocyte cells involving fibroblasts, vascular pericytes smooth muscle cells, endothelial cells, mast cells, macrophages, and dendritic cells. Several miRNAs such as miR-21, miR-9, miR-29, miR-30d, miR-144, miR-34a, miR-150, miR-320, and miR-378 are upregulated in diabetic cardiomyopathy. TGF-β1, together with inflammatory cytokines, oxidative stress, combined sma and the mothers against decapentaplegic (smad) protein, mitogen-activated protein kinase (MAPK), and microRNAs, is interconnectedly involved in extracellular matrix production and fibrotic response. In this review, we explored interplay role of several factors including microRNAs which acts as a potential regulator of cardiac fibrosis connected with TGFβ-1 in diabetes mellitus. CONCLUSIONS Long-term hyperglycemia activates cardiac fibroblast via complex processes involving TGF-β1, miRNA, inflammatory chemokines, oxidative stress, smad, or MAPK pathways. There is increasing evidence of miRNA's roles lately in modulating cardiac fibrosis.
Collapse
Affiliation(s)
- Muhammad Ridwan
- Doctorate School of Medical Science, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, 23116, Indonesia
| | - Herlina Dimiati
- Department of Pediatrics, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia.
| | - Maimun Syukri
- Department of Internal Medicine, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Ronny Lesmana
- Physiology Division, Department of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java, 45363, Indonesia
| |
Collapse
|
3
|
Liu PW, Martin GL, Lin W, Huang W, Pande S, Aronovitz MJ, Davis RJ, Blanton RM. Mixed lineage kinase 3 requires a functional CRIB domain for regulation of blood pressure, cardiac hypertrophy, and left ventricular function. Am J Physiol Heart Circ Physiol 2022; 323:H513-H522. [PMID: 35867711 PMCID: PMC9448288 DOI: 10.1152/ajpheart.00660.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 11/22/2022]
Abstract
Mixed lineage kinase 3 (MLK3) modulates blood pressure and left ventricular function, but the mechanisms governing these effects remain unclear. In the current study, we therefore investigated the role of the MLK3 Cdc42/Rac interactive binding (CRIB) domain in cardiovascular physiology. We examined baseline and left ventricular pressure overload responses in a MLK3 CRIB mutant (MLK3C/C) mouse, which harbors point mutations in the CRIB domain to disrupt MLK3 activation by Cdc42. Male and female MLK3C/C mice displayed increased invasively measured blood pressure compared with wild-type (MLK3+/+) littermate controls. MLK3C/C mice of both sexes also developed left and right ventricular hypertrophy but normal baseline LV function by echocardiography and invasive hemodynamics. In LV tissue from MLK3C/C mice, map3k11 mRNA, which encodes MLK3, and MLK3 protein were reduced by 74 ± 6% and 73 ± 7%, respectively. After 1-wk LV pressure overload with 25-gauge transaortic constriction (TAC), male MLK3C/C mice developed no differences in LV hypertrophy but displayed reduction in the LV systolic indices ejection fraction and dP/dt normalized to instantaneous pressure. JNK activation was also reduced in LV tissue of MLK3C/C TAC mice. TAC induced MLK3 translocation from cytosolic fraction to membrane fraction in LV tissue from MLK3+/+ but not MLK3C/C mice. These findings identify a role of the MLK3 CRIB domain in MLK3 regulation of basal blood pressure and cardiac morphology, and in promoting the compensatory LV response to pressure overload.NEW & NOTEWORTHY Here, we identified that the presence of two discrete point mutations within the Cdc42/Rac interaction and binding domain of the protein MLK3 recapitulates the effects of whole body MLK3 deletion on blood pressure, cardiac hypertrophy, and left ventricular compensation after pressure overload. These findings implicate the CRIB domain, and thus MLK3 activation by this domain, as critical for maintenance of cardiovascular homeostasis.
Collapse
Affiliation(s)
- Pei-Wen Liu
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts
- Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts
| | - Gregory L Martin
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts
| | - Weiyu Lin
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts
- Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts
| | - Wanting Huang
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts
- Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts
| | - Suchita Pande
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts
| | - Mark J Aronovitz
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts
| | - Roger J Davis
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts
| | - Robert M Blanton
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts
- Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts
| |
Collapse
|
4
|
Jubaidi FF, Zainalabidin S, Taib IS, Abdul Hamid Z, Mohamad Anuar NN, Jalil J, Mohd Nor NA, Budin SB. The Role of PKC-MAPK Signalling Pathways in the Development of Hyperglycemia-Induced Cardiovascular Complications. Int J Mol Sci 2022; 23:ijms23158582. [PMID: 35955714 PMCID: PMC9369123 DOI: 10.3390/ijms23158582] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/24/2022] [Accepted: 07/30/2022] [Indexed: 02/05/2023] Open
Abstract
Cardiovascular disease is the most common cause of death among diabetic patients worldwide. Hence, cardiovascular wellbeing in diabetic patients requires utmost importance in disease management. Recent studies have demonstrated that protein kinase C activation plays a vital role in the development of cardiovascular complications via its activation of mitogen-activated protein kinase (MAPK) cascades, also known as PKC-MAPK pathways. In fact, persistent hyperglycaemia in diabetic conditions contribute to preserved PKC activation mediated by excessive production of diacylglycerol (DAG) and oxidative stress. PKC-MAPK pathways are involved in several cellular responses, including enhancing oxidative stress and activating signalling pathways that lead to uncontrolled cardiac and vascular remodelling and their subsequent dysfunction. In this review, we discuss the recent discovery on the role of PKC-MAPK pathways, the mechanisms involved in the development and progression of diabetic cardiovascular complications, and their potential as therapeutic targets for cardiovascular management in diabetic patients.
Collapse
Affiliation(s)
- Fatin Farhana Jubaidi
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (I.S.T.); (Z.A.H.); (N.A.M.N.)
- Correspondence: (F.F.J.); (S.B.B.); Tel.: +603-9289-7645 (S.S.B.)
| | - Satirah Zainalabidin
- Center for Toxicology and Health Risk Research, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (S.Z.); (N.N.M.A.)
| | - Izatus Shima Taib
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (I.S.T.); (Z.A.H.); (N.A.M.N.)
| | - Zariyantey Abdul Hamid
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (I.S.T.); (Z.A.H.); (N.A.M.N.)
| | - Nur Najmi Mohamad Anuar
- Center for Toxicology and Health Risk Research, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (S.Z.); (N.N.M.A.)
| | - Juriyati Jalil
- Center for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia;
| | - Nor Anizah Mohd Nor
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (I.S.T.); (Z.A.H.); (N.A.M.N.)
- Faculty of Health Sciences, University College MAIWP International, Kuala Lumpur 68100, Malaysia
| | - Siti Balkis Budin
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (I.S.T.); (Z.A.H.); (N.A.M.N.)
- Correspondence: (F.F.J.); (S.B.B.); Tel.: +603-9289-7645 (S.S.B.)
| |
Collapse
|
5
|
Sharma S, Rana AK, Sharma A, Singh D. Inhibition of Mammalian Target of Rapamycin Attenuates Recurrent Seizures Associated Cardiac Damage in a Zebrafish Kindling Model of Chronic Epilepsy. J Neuroimmune Pharmacol 2022; 17:334-349. [PMID: 34537895 DOI: 10.1007/s11481-021-10021-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/02/2021] [Indexed: 12/29/2022]
Abstract
Sudden Unexpected Death in Epilepsy (SUDEP) is primarily linked with the cardiac irregularities that occur due to recurrent seizures. Our previous studies found a role of mTOR pathway activation in seizures-linked cardiac damage in a rat model. In continuation to the earlier work, the present study was devised to explore the role of rapamycin (mTOR inhibitor and clinically used immunosuppressive agent) in a zebrafish kindling model and associated cardiac damage. Adult zebrafish were incubated with increasing concentrations of rapamycin (1, 2 and, 4 μM), followed by pentylenetetrazole (PTZ) exposure to record seizure latency and severity. In another experiment, zebrafish were subjected to a standardized PTZ kindling protocol. The kindled fish were treated daily with rapamycin for up to 25 days, along with PTZ to record seizure severity. At the end, zebrafish heart was excised for carbonylation assay, gene expression, and protein quantification studies. In the acute PTZ convulsion test, treatment with rapamycin showed a significant increase in seizure latency and decreased seizure severity without any change in seizure incidence. Treatment with rapamycin also reduced the severity of seizures in kindled fish. The cardiac expressions of gpx, nppb, kcnh2, scn5a, mapk8, stat3, rps6 and ddit were decreased, whereas the levels of trxr2 and beclin 1 were increased following rapamycin treatment in kindled fish. Furthermore, rapamycin treatment also decreased p-mTOR expression and protein carbonyls level in the fish cardiac tissue. The present study concluded that rapamycin reduces seizures and associated cardiac damage by inhibiting mTOR activation in the zebrafish kindling model.
Collapse
Affiliation(s)
- Supriya Sharma
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, Himachal Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Anil Kumar Rana
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, Himachal Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Aditi Sharma
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, Himachal Pradesh, India
| | - Damanpreet Singh
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, Himachal Pradesh, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| |
Collapse
|
6
|
Signaling cascades in the failing heart and emerging therapeutic strategies. Signal Transduct Target Ther 2022; 7:134. [PMID: 35461308 PMCID: PMC9035186 DOI: 10.1038/s41392-022-00972-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/13/2022] [Accepted: 03/20/2022] [Indexed: 12/11/2022] Open
Abstract
Chronic heart failure is the end stage of cardiac diseases. With a high prevalence and a high mortality rate worldwide, chronic heart failure is one of the heaviest health-related burdens. In addition to the standard neurohormonal blockade therapy, several medications have been developed for chronic heart failure treatment, but the population-wide improvement in chronic heart failure prognosis over time has been modest, and novel therapies are still needed. Mechanistic discovery and technical innovation are powerful driving forces for therapeutic development. On the one hand, the past decades have witnessed great progress in understanding the mechanism of chronic heart failure. It is now known that chronic heart failure is not only a matter involving cardiomyocytes. Instead, chronic heart failure involves numerous signaling pathways in noncardiomyocytes, including fibroblasts, immune cells, vascular cells, and lymphatic endothelial cells, and crosstalk among these cells. The complex regulatory network includes protein-protein, protein-RNA, and RNA-RNA interactions. These achievements in mechanistic studies provide novel insights for future therapeutic targets. On the other hand, with the development of modern biological techniques, targeting a protein pharmacologically is no longer the sole option for treating chronic heart failure. Gene therapy can directly manipulate the expression level of genes; gene editing techniques provide hope for curing hereditary cardiomyopathy; cell therapy aims to replace dysfunctional cardiomyocytes; and xenotransplantation may solve the problem of donor heart shortages. In this paper, we reviewed these two aspects in the field of failing heart signaling cascades and emerging therapeutic strategies based on modern biological techniques.
Collapse
|
7
|
Robinson EL, Drawnel FM, Mehdi S, Archer CR, Liu W, Okkenhaug H, Alkass K, Aronsen JM, Nagaraju CK, Sjaastad I, Sipido KR, Bergmann O, Arthur JSC, Wang X, Roderick HL. MSK-Mediated Phosphorylation of Histone H3 Ser28 Couples MAPK Signalling with Early Gene Induction and Cardiac Hypertrophy. Cells 2022; 11:cells11040604. [PMID: 35203255 PMCID: PMC8870627 DOI: 10.3390/cells11040604] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/26/2022] [Accepted: 02/04/2022] [Indexed: 12/17/2022] Open
Abstract
Heart failure is a leading cause of death that develops subsequent to deleterious hypertrophic cardiac remodelling. MAPK pathways play a key role in coordinating the induction of gene expression during hypertrophy. Induction of the immediate early gene (IEG) response including activator protein 1 (AP-1) complex factors is a necessary and early event in this process. How MAPK and IEG expression are coupled during cardiac hypertrophy is not resolved. Here, in vitro, in rodent models and in human samples, we demonstrate that MAPK-stimulated IEG induction depends on the mitogen and stress-activated protein kinase (MSK) and its phosphorylation of histone H3 at serine 28 (pH3S28). pH3S28 in IEG promoters in turn recruits Brg1, a BAF60 ATP-dependent chromatin remodelling complex component, initiating gene expression. Without MSK activity and IEG induction, the hypertrophic response is suppressed. These studies provide new mechanistic insights into the role of MAPK pathways in signalling to the epigenome and regulation of gene expression during cardiac hypertrophy.
Collapse
Affiliation(s)
- Emma L. Robinson
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, B-3000 Leuven, Belgium; (S.M.); (C.K.N.); (K.R.S.)
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, 6229 ER Maastricht, The Netherlands
- Correspondence: (E.L.R.); (H.L.R.)
| | - Faye M. Drawnel
- Epigenetics and Signalling Programmes, Babraham Institute, Cambridge CB22 3AT, UK; (F.M.D.); (C.R.A.); (H.O.)
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Saher Mehdi
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, B-3000 Leuven, Belgium; (S.M.); (C.K.N.); (K.R.S.)
| | - Caroline R. Archer
- Epigenetics and Signalling Programmes, Babraham Institute, Cambridge CB22 3AT, UK; (F.M.D.); (C.R.A.); (H.O.)
| | - Wei Liu
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; (W.L.); (X.W.)
| | - Hanneke Okkenhaug
- Epigenetics and Signalling Programmes, Babraham Institute, Cambridge CB22 3AT, UK; (F.M.D.); (C.R.A.); (H.O.)
| | - Kanar Alkass
- Department of Oncology and Pathology, Karolinska Institute, SE-17177 Stockholm, Sweden;
| | - Jan Magnus Aronsen
- Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, 0450 Oslo, Norway; (J.M.A.); (I.S.)
- Bjørknes College, Oslo University, 0456 Oslo, Norway
| | - Chandan K. Nagaraju
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, B-3000 Leuven, Belgium; (S.M.); (C.K.N.); (K.R.S.)
| | - Ivar Sjaastad
- Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, 0450 Oslo, Norway; (J.M.A.); (I.S.)
- KG Jebsen Center for Cardiac Research, University of Oslo, 0450 Oslo, Norway
| | - Karin R. Sipido
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, B-3000 Leuven, Belgium; (S.M.); (C.K.N.); (K.R.S.)
| | - Olaf Bergmann
- Cell and Molecular Biology, Biomedicum, Karolinska Institutet, SE-17177 Stockholm, Sweden;
| | - J. Simon C. Arthur
- Division of Immunology and Cell Signalling, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK;
| | - Xin Wang
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; (W.L.); (X.W.)
| | - H. Llewelyn Roderick
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, B-3000 Leuven, Belgium; (S.M.); (C.K.N.); (K.R.S.)
- KG Jebsen Center for Cardiac Research, University of Oslo, 0450 Oslo, Norway
- Correspondence: (E.L.R.); (H.L.R.)
| |
Collapse
|
8
|
Zhong C, Min K, Zhao Z, Zhang C, Gao E, Huang Y, Zhang X, Baldini M, Roy R, Yang X, Koch WJ, Bennett AM, Yu J. MAP Kinase Phosphatase-5 Deficiency Protects Against Pressure Overload-Induced Cardiac Fibrosis. Front Immunol 2021; 12:790511. [PMID: 34992607 PMCID: PMC8724134 DOI: 10.3389/fimmu.2021.790511] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Cardiac fibrosis, a pathological condition due to excessive extracellular matrix (ECM) deposition in the myocardium, is associated with nearly all forms of heart disease. The processes and mechanisms that regulate cardiac fibrosis are not fully understood. In response to cardiac injury, macrophages undergo marked phenotypic and functional changes and act as crucial regulators of myocardial fibrotic remodeling. Here we show that the mitogen-activated protein kinase (MAPK) phosphatase-5 (MKP-5) in macrophages is involved in pressure overload-induced cardiac fibrosis. Cardiac pressure overload resulting from transverse aortic constriction (TAC) leads to the upregulation of Mkp-5 gene expression in the heart. In mice lacking MKP-5, p38 MAPK and JNK were hyperactivated in the heart, and TAC-induced cardiac hypertrophy and myocardial fibrosis were attenuated. MKP-5 deficiency upregulated the expression of the ECM-degrading matrix metalloproteinase-9 (Mmp-9) in the Ly6Clow (M2-type) cardiac macrophage subset. Consistent with in vivo findings, MKP-5 deficiency promoted MMP-9 expression and activity of pro-fibrotic macrophages in response to IL-4 stimulation. Furthermore, using pharmacological inhibitors against p38 MAPK, JNK, and ERK, we demonstrated that MKP-5 suppresses MMP-9 expression through a combined effect of p38 MAPK/JNK/ERK, which subsequently contributes to the inhibition of ECM-degrading activity. Taken together, our study indicates that pressure overload induces MKP-5 expression and facilitates cardiac hypertrophy and fibrosis. MKP-5 deficiency attenuates cardiac fibrosis through MAPK-mediated regulation of MMP-9 expression in Ly6Clow cardiac macrophages.
Collapse
Affiliation(s)
- Chao Zhong
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Center for Translational Medicine, School of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Kisuk Min
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
- Department of Kinesiology, University of Texas at El Paso, El Paso, TX, United States
| | - Zhiqiang Zhao
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Cheng Zhang
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Erhe Gao
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Yan Huang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Xinbo Zhang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Margaret Baldini
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Rajika Roy
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Walter J. Koch
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Anton M. Bennett
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
- Yale Center for Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, United States
| | - Jun Yu
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
9
|
Calamaras TD, Pande S, Baumgartner RA, Kim SK, McCarthy JC, Martin GL, Tam K, McLaughlin AL, Wang GR, Aronovitz MJ, Lin W, Aguirre JI, Baca P, Liu P, Richards DA, Davis RJ, Karas RH, Jaffe IZ, Blanton RM. MLK3 mediates impact of PKG1α on cardiac function and controls blood pressure through separate mechanisms. JCI Insight 2021; 6:e149075. [PMID: 34324442 PMCID: PMC8492323 DOI: 10.1172/jci.insight.149075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/28/2021] [Indexed: 11/17/2022] Open
Abstract
cGMP-dependent protein kinase 1α (PKG1α) promotes left ventricle (LV) compensation after pressure overload. PKG1-activating drugs improve heart failure (HF) outcomes but are limited by vasodilation-induced hypotension. Signaling molecules that mediate PKG1α cardiac therapeutic effects but do not promote PKG1α-induced hypotension could therefore represent improved therapeutic targets. We investigated roles of mixed lineage kinase 3 (MLK3) in mediating PKG1α effects on LV function after pressure overload and in regulating BP. In a transaortic constriction HF model, PKG activation with sildenafil preserved LV function in MLK3+/+ but not MLK3-/- littermates. MLK3 coimmunoprecipitated with PKG1α. MLK3-PKG1α cointeraction decreased in failing LVs. PKG1α phosphorylated MLK3 on Thr277/Ser281 sites required for kinase activation. MLK3-/- mice displayed hypertension and increased arterial stiffness, though PKG stimulation with sildenafil or the soluble guanylate cyclase (sGC) stimulator BAY41-2272 still reduced BP in MLK3-/- mice. MLK3 kinase inhibition with URMC-099 did not affect BP but induced LV dysfunction in mice. These data reveal MLK3 as a PKG1α substrate mediating PKG1α preservation of LV function but not acute PKG1α BP effects. Mechanistically, MLK3 kinase-dependent effects preserved LV function, whereas MLK3 kinase-independent signaling regulated BP. These findings suggest augmenting MLK3 kinase activity could preserve LV function in HF but avoid hypotension from PKG1α activation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kelly Tam
- Molecular Cardiology Research Institute and
| | | | | | | | - Weiyu Lin
- Molecular Cardiology Research Institute and
- Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
| | | | - Paulina Baca
- Molecular Cardiology Research Institute and
- Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
| | - Peiwen Liu
- Molecular Cardiology Research Institute and
- Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
| | | | - Roger J. Davis
- University of Massachusetts School of Medicine, Worchester, Massachusetts, USA
| | | | - Iris Z. Jaffe
- Molecular Cardiology Research Institute and
- Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
| | - Robert M. Blanton
- Molecular Cardiology Research Institute and
- Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Garg R, Kumariya S, Katekar R, Verma S, Goand UK, Gayen JR. JNK signaling pathway in metabolic disorders: An emerging therapeutic target. Eur J Pharmacol 2021; 901:174079. [PMID: 33812885 DOI: 10.1016/j.ejphar.2021.174079] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/18/2021] [Accepted: 03/25/2021] [Indexed: 02/08/2023]
Abstract
Metabolic Syndrome is a multifactorial disease associated with increased risk of cardiovascular disorders, type 2 diabetes mellitus, fatty liver disease, etc. Various stress stimuli such as reactive oxygen species, endoplasmic reticulum stress, mitochondrial dysfunction, increased cytokines, or free fatty acids are known to aggravate progressive development of hyperglycemia and hyperlipidemia. Although the exact mechanism contributing to altered metabolism is unclear. Evidence suggests stress kinase role to be a crucial one in metabolic syndrome. Stress kinase, c-jun N-terminal kinase activation (JNK) is involved in various metabolic manifestations including obesity, insulin resistance, fatty liver disease as well as cardiometabolic disorders. It emerged as a foremost mediator in regulating metabolism in the liver, skeletal muscle, adipose tissue as well as pancreatic β cells. It has three isoforms each having a unique and tissue-specific role in altered metabolism. Current findings based on genetic manipulation or chemical inhibition studies identified JNK isoforms to play a central role in the regulation of whole-body metabolism, suggesting it to be a novel therapeutic target. Hence, it is imperative to elucidate its role in metabolic syndrome onset and progression. The purpose of this review is to elucidate in vitro and in vivo implications of JNK signaling along with the therapeutic strategy to inhibit specific isoform. Since metabolic syndrome is an array of diseases and complex pathway, carefully examining each tissue will be important for specific treatment strategies.
Collapse
Affiliation(s)
- Richa Garg
- Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sanjana Kumariya
- Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, 226031, India
| | - Roshan Katekar
- Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Saurabh Verma
- Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Umesh K Goand
- Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jiaur R Gayen
- Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, 226031, India; Pharmacology Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
11
|
Tsai CF, Yang SF, Lo CH, Chu HJ, Ueng KC. Role of the ROS-JNK Signaling Pathway in Hypoxia-Induced Atrial Fibrotic Responses in HL-1 Cardiomyocytes. Int J Mol Sci 2021; 22:ijms22063249. [PMID: 33806765 PMCID: PMC8004875 DOI: 10.3390/ijms22063249] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/11/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
By promoting atrial structural remodeling, atrial hypoxia contributes to the development of the atrial fibrillation substrate. Our study aimed to investigate the modulatory effect of hypoxia on profibrotic activity in cultured HL-1 cardiomyocytes and explore the possible signaling transduction mechanisms of profibrotic activity in vitro. Hypoxia (1% O2) significantly and time-dependently increased the expression of hypoxia-inducible factor (HIF)-1α and fibrotic marker proteins collagen I and III (COL1A and COL3A), transforming growth factor (TGF)-β1 and α-smooth muscle actin (SMA). Western blot or immunohistochemistry analysis showed that hypoxia-induced increase in COL1A and COL3A was significantly attenuated by the addition of SP600125 (a specific c-Jun N-terminal kinase [JNK] inhibitor) or expression of dominant-negative JNK before hypoxia treatment. The inhibition of hypoxia-activated phosphorylation of JNK signal components (JNK, MKK4, nuclear c-Jun and ATF-2) by pre-treatment with SP600125 could suppress hypoxia-stimulated HIF-1α upregulation and fibrotic marker proteins expression. Hypoxia significantly increased reactive oxygen species (ROS) production in cultured HL-1 atrial cells. Pre-treatment with N-acetylcysteine significantly abrogated the expression of nuclear HIF-1α, JNK transduction components and fibrotic marker proteins. Taken together, these findings indicated that the hypoxia-induced atrial profibrotic response occurs mainly via the ROS/JNK pathway, its downstream upregulation of HIF-1α and c-Jun/ATF2 phosphorylation and nuclear translocation to up-regulate the expression of fibrosis-related proteins (COL1A, COL3A, TGF-β1 and α-SMA). Our result suggests that suppression of ROS/JNK signaling pathway is a critical mechanism for developing a novel therapeutic strategy against atrial fibrillation.
Collapse
Affiliation(s)
- Chin-Feng Tsai
- Division of Cardiology, Department of Internal Medicine, Chung Shan Medical University Hospital, School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (C.-F.T.); (C.-H.L.)
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan;
| | - Chien-Hsien Lo
- Division of Cardiology, Department of Internal Medicine, Chung Shan Medical University Hospital, School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (C.-F.T.); (C.-H.L.)
| | - Hsiao-Ju Chu
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan;
| | - Kwo-Chang Ueng
- Division of Cardiology, Department of Internal Medicine, Chung Shan Medical University Hospital, School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (C.-F.T.); (C.-H.L.)
- Correspondence: ; Tel.: +886-4-24739595 (ext. 32527); Fax: +886-4-24739220
| |
Collapse
|
12
|
Kelly SC, Rau CD, Ouyang A, Thorne PK, Olver TD, Edwards JC, Domeier TL, Padilla J, Grisanti LA, Fleenor BS, Wang Y, Rector RS, Emter CA. The right ventricular transcriptome signature in Ossabaw swine with cardiometabolic heart failure: implications for the coronary vasculature. Physiol Genomics 2021; 53:99-115. [PMID: 33491589 PMCID: PMC7988741 DOI: 10.1152/physiolgenomics.00093.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 11/22/2022] Open
Abstract
Heart failure (HF) patients with deteriorating right ventricular (RV) structure and function have a nearly twofold increased risk of death compared with those without. Despite the well-established clinical risk, few studies have examined the molecular signature associated with this HF condition. The purpose of this study was to integrate morphological, molecular, and functional data with the transcriptome data set in the RV of a preclinical model of cardiometabolic HF. Ossabaw swine were fed either normal diet without surgery (lean control, n = 5) or Western diet and aortic-banding (WD-AB; n = 4). Postmortem RV weight was increased and positively correlated with lung weight in the WD-AB group compared with CON. Total RNA-seq was performed and gene expression profiles were compared and analyzed using principal component analysis, weighted gene co-expression network analysis, module enrichment analysis, and ingenuity pathway analysis. Gene networks specifically associated with RV hypertrophic remodeling identified a hub gene in MAPK8 (or JNK1) that was associated with the selective induction of the extracellular matrix (ECM) component fibronectin. JNK1 and fibronectin protein were increased in the right coronary artery (RCA) of WD-AB animals and associated with a decrease in matrix metalloproteinase 14 protein, which specifically degrades fibronectin. RCA fibronectin content was correlated with increased vascular stiffness evident as a decreased elastin elastic modulus in WD-AB animals. In conclusion, this study establishes a molecular and transcriptome signature in the RV using Ossabaw swine with cardiometabolic HF. This signature was associated with altered ECM regulation and increased vascular stiffness in the RCA, with selective dysregulation of fibronectin.
Collapse
Affiliation(s)
- Shannon C Kelly
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Christoph D Rau
- Department of Computational Medicine and Genetics, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - An Ouyang
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Pamela K Thorne
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - T Dylan Olver
- Department of Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jenna C Edwards
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Timothy L Domeier
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Laurel A Grisanti
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Bradley S Fleenor
- Human Performance Laboratory, School of Kinesiology, Ball State University, Muncie, Indiana
| | - Yibin Wang
- David Geffen School of Medicine, University of California, Los Angeles, California
| | - R Scott Rector
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
- Department of Medicine-Gastroenterology and Hepatology, University of Missouri, Columbia, Missouri
- Research Service, Harry S. Truman Memorial VA Hospital, University of Missouri, Columbia, Missouri
| | - Craig A Emter
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| |
Collapse
|
13
|
Xu F, Gao J, Munkhsaikhan U, Li N, Gu Q, Pierre JF, Starlard-Davenport A, Towbin JA, Cui Y, Purevjav E, Lu L. The Genetic Dissection of Ace2 Expression Variation in the Heart of Murine Genetic Reference Population. Front Cardiovasc Med 2020; 7:582949. [PMID: 33330645 PMCID: PMC7714829 DOI: 10.3389/fcvm.2020.582949] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022] Open
Abstract
Background: A high inflammatory and cytokine burden that induces vascular inflammation, myocarditis, cardiac arrhythmias, and myocardial injury is associated with a lethal outcome in COVID-19. The SARS-CoV-2 virus utilizes the ACE2 receptor for cell entry in a similar way to SARS-CoV. This study investigates the regulation, gene network, and associated pathways of ACE2 that may be involved in inflammatory and cardiovascular complications of COVID-19. Methods: Cardiovascular traits were determined in the one of the largest mouse genetic reference populations: BXD recombinant inbred strains using blood pressure, electrocardiography, and echocardiography measurements. Expression quantitative trait locus (eQTL) mapping, genetic correlation, and functional enrichment analysis were used to identify Ace2 regulation, gene pathway, and co-expression networks. Results: A wide range of variation was found in expression of Ace2 among the BXD strains. Levels of Ace2 expression are negatively correlated with cardiovascular traits, including systolic and diastolic blood pressure and P wave duration and amplitude. Ace2 co-expressed genes are significantly involved in cardiac- and inflammatory-related pathways. The eQTL mapping revealed that Cyld is a candidate upstream regulator for Ace2. Moreover, the protein-protein interaction (PPI) network analysis inferred several potential key regulators (Cul3, Atf2, Vcp, Jun, Ppp1cc, Npm1, Mapk8, Set, Dlg1, Mapk14, and Hspa1b) for Ace2 co-expressed genes in the heart. Conclusions: Ace2 is associated with blood pressure, atrial morphology, and sinoatrial conduction in BXD mice. Ace2 co-varies with Atf2, Cyld, Jun, Mapk8, and Mapk14 and is enriched in the RAS, TGFβ, TNFα, and p38α signaling pathways, involved in inflammation and cardiac damage. We suggest that all these novel Ace2-associated genes and pathways may be targeted for preventive, diagnostic, and therapeutic purposes in cardiovascular damage in patients with systemic inflammation, including COVID-19 patients.
Collapse
Affiliation(s)
- Fuyi Xu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Jun Gao
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Undral Munkhsaikhan
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, United States
| | - Ning Li
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, United States
- Department of Cardiology, Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Qingqing Gu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Cardiology, The Affiliated Hospital of Nantong University, Nantong, China
| | - Joseph F. Pierre
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, United States
| | - Athena Starlard-Davenport
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Jeffrey A. Towbin
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, United States
- Pediatric Cardiology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Yan Cui
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Enkhsaikhan Purevjav
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, United States
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
14
|
Abstract
Cyclic GMP (cGMP) represents a classic intracellular second messenger molecule. Over the past 2 decades, important discoveries have identified that cGMP signaling becomes deranged in heart failure (HF) and that cGMP and its main kinase effector, protein kinase G, generally oppose the biological abnormalities contributing to HF, in experimental studies. These findings have influenced the design of clinical trials of cGMP-augmenting drugs in HF patients. At present, the trial results of cGMP-augmenting therapies in HF remain mixed. As detailed in this review, strong evidence now exists that protein kinase G opposes pathologic cardiac remodeling through regulation of diverse biological processes and myocardial substrates. Potential reasons for the failures of cGMP-augmenting drugs in HF may be related to biological mechanisms opposing cGMP or because of certain features of clinical trials, all of which are discussed.
Collapse
|
15
|
Viswanadha VP, Dhivya V, Beeraka NM, Huang CY, Gavryushova LV, Minyaeva NN, Chubarev VN, Mikhaleva LM, Tarasov VV, Aliev G. The protective effect of piperine against isoproterenol-induced inflammation in experimental models of myocardial toxicity. Eur J Pharmacol 2020; 885:173524. [PMID: 32882215 DOI: 10.1016/j.ejphar.2020.173524] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 12/19/2022]
Abstract
Myocardial infarction (MI) eventually exacerbates inflammatory response due to the release of inflammatory and pro-inflammatory factors. The aim of this study is to explore the protective efficacy of piperine supplementation against the inflammatory response in isoproterenol (ISO)-induced MI. Masson Trichome staining was executed to determine myocardial tissue architecture. Immunohistochemistry was performed for IL-6, TNF-α. RT-PCR studies were performed to ascertain the gene expression of IL-6, TNF-α, iNOS, eNOS, MMP-2, MMP-9, and collagen-III. Western blotting was performed to determine expression of HIF-1α, VEGF, Nrf-2, NF-ƙB, Cox-2, p-38, phospho-p38, ERK-1/2, phospho-ERK-1/2, and collagen-I. HIF-1α, VEGF, and iNOS expression were significantly upregulated with concomitant decline in eNOS expression in the heart myocardial tissue of rats received ISO alone whereas piperine pretreatment prevented these changes in ISO administered rats. Current results revealed ROS-mediated activation of MAPKs, namely, p-p38, p-ERK1/2 in the heart tissue of ISO administered group. Piperine pretreatment significantly prevented these changes in ISO treated group. NF-κB is involved in the modulation of gene expressions responsible for tissue repair. ISO-induced NF-κB-p65 expression was significantly reduced in the group pretreated with piperine and mitigated extent of myocardial inflammation. A significant increase in cardiac fibrosis upon ISO treatment was reported due to the increased hydroxyproline content, MMP-2 & 9 and upregulation of collagen-I protein compared to control group. All these cardiac hypertrophy markers were decreased in 'piperine pretreated ISO administered group' compared to group received ISO injection. Current findings concluded that piperine as a nutritional intervention could prevent inflammation of myocardium in ISO-induced MI.
Collapse
Affiliation(s)
- Vijaya Padma Viswanadha
- Translational Research Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India; China Medical University, Lifu Teaching Building 12F, 91 Hsueh-Shih Road, Taichung, 40402, Taiwan.
| | - Velumani Dhivya
- Translational Research Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Narasimha Murthy Beeraka
- Translational Research Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Chih-Yang Huang
- China Medical University, Lifu Teaching Building 12F, 91 Hsueh-Shih Road, Taichung, 40402, Taiwan
| | - Liliya V Gavryushova
- Department of Therapeutic Dentistry, Saratov State Medical University named after V.I. Razumovsky, 410012, Saratov, Russia
| | - Nina N Minyaeva
- National Research University Higher School of Economics, 20 Myasnitskaya Street, Moscow, 101000, Russia
| | - Vladimir N Chubarev
- Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991, Russia
| | - Liudmila M Mikhaleva
- Research Institute of Human Morphology, Russian Academy of Medical Science, Street Tsyurupa 3, Moscow, 117418, Russia
| | - Vadim V Tarasov
- Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991, Russia
| | - Gjumrakch Aliev
- Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991, Russia; Research Institute of Human Morphology, Russian Academy of Medical Science, Street Tsyurupa 3, Moscow, 117418, Russia; Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, Moscow Region, 142432, Russia; GALLY International Research Institute, 7733 Louis Pasteur Drive, #330, San Antonio, TX, 78229, USA.
| |
Collapse
|
16
|
Santos-Ledo A, Washer S, Dhanaseelan T, Eley L, Alqatani A, Chrystal PW, Papoutsi T, Henderson DJ, Chaudhry B. Alternative splicing of jnk1a in zebrafish determines first heart field ventricular cardiomyocyte numbers through modulation of hand2 expression. PLoS Genet 2020; 16:e1008782. [PMID: 32421721 PMCID: PMC7259801 DOI: 10.1371/journal.pgen.1008782] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/29/2020] [Accepted: 04/18/2020] [Indexed: 02/07/2023] Open
Abstract
The planar cell polarity pathway is required for heart development and whilst the functions of most pathway members are known, the roles of the jnk genes in cardiac morphogenesis remain unknown as mouse mutants exhibit functional redundancy, with early embryonic lethality of compound mutants. In this study zebrafish were used to overcome early embryonic lethality in mouse models and establish the requirement for Jnk in heart development. Whole mount in-situ hybridisation and RT-PCR demonstrated that evolutionarily conserved alternative spliced jnk1a and jnk1b transcripts were expressed in the early developing heart. Maternal zygotic null mutant zebrafish lines for jnk1a and jnk1b, generated using CRISPR-Cas9, revealed a requirement for jnk1a in formation of the proximal, first heart field (FHF)-derived portion of the cardiac ventricular chamber. Rescue of the jnk1a mutant cardiac phenotype was only possible by injection of the jnk1a EX7 Lg alternatively spliced transcript. Analysis of mutants indicated that there was a reduction in the size of the hand2 expression field in jnk1a mutants which led to a specific reduction in FHF ventricular cardiomyocytes within the anterior lateral plate mesoderm. Moreover, the jnk1a mutant ventricular defect could be rescued by injection of hand2 mRNA. This study reveals a novel and critical requirement for Jnk1 in heart development and highlights the importance of alternative splicing in vertebrate cardiac morphogenesis. Genetic pathways functioning through jnk1 may be important in human heart malformations with left ventricular hypoplasia.
Collapse
Affiliation(s)
- Adrian Santos-Ledo
- Biosciences Institute, Faculty of Medicine, International Centre for Life, Newcastle University, United Kingdom
| | - Sam Washer
- Biosciences Institute, Faculty of Medicine, International Centre for Life, Newcastle University, United Kingdom
| | - Tamil Dhanaseelan
- Biosciences Institute, Faculty of Medicine, International Centre for Life, Newcastle University, United Kingdom
| | - Lorraine Eley
- Biosciences Institute, Faculty of Medicine, International Centre for Life, Newcastle University, United Kingdom
| | - Ahlam Alqatani
- Biosciences Institute, Faculty of Medicine, International Centre for Life, Newcastle University, United Kingdom
| | - Paul W. Chrystal
- Biosciences Institute, Faculty of Medicine, International Centre for Life, Newcastle University, United Kingdom
| | - Tania Papoutsi
- Biosciences Institute, Faculty of Medicine, International Centre for Life, Newcastle University, United Kingdom
| | - Deborah J. Henderson
- Biosciences Institute, Faculty of Medicine, International Centre for Life, Newcastle University, United Kingdom
| | - Bill Chaudhry
- Biosciences Institute, Faculty of Medicine, International Centre for Life, Newcastle University, United Kingdom
| |
Collapse
|
17
|
JNK and cardiometabolic dysfunction. Biosci Rep 2019; 39:BSR20190267. [PMID: 31270248 PMCID: PMC6639461 DOI: 10.1042/bsr20190267] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/28/2019] [Accepted: 07/02/2019] [Indexed: 02/06/2023] Open
Abstract
Cardiometabolic syndrome (CMS) describes the cluster of metabolic and cardiovascular diseases that are generally characterized by impaired glucose tolerance, intra-abdominal adiposity, dyslipidemia, and hypertension. CMS currently affects more than 25% of the world’s population and the rates of diseases are rapidly rising. These CMS conditions represent critical risk factors for cardiovascular diseases including atherosclerosis, heart failure, myocardial infarction, and peripheral artery disease (PAD). Therefore, it is imperative to elucidate the underlying signaling involved in disease onset and progression. The c-Jun N-terminal Kinases (JNKs) are a family of stress signaling kinases that have been recently indicated in CMS. The purpose of this review is to examine the in vivo implications of JNK as a potential therapeutic target for CMS. As the constellation of diseases associated with CMS are complex and involve multiple tissues and environmental triggers, carefully examining what is known about the JNK pathway will be important for specificity in treatment strategies.
Collapse
|
18
|
Calamaras TD, Baumgartner RA, Aronovitz MJ, McLaughlin AL, Tam K, Richards DA, Cooper CW, Li N, Baur WE, Qiao X, Wang GR, Davis RJ, Kapur NK, Karas RH, Blanton RM. Mixed lineage kinase-3 prevents cardiac dysfunction and structural remodeling with pressure overload. Am J Physiol Heart Circ Physiol 2019; 316:H145-H159. [PMID: 30362822 PMCID: PMC6383356 DOI: 10.1152/ajpheart.00029.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 12/20/2022]
Abstract
Myocardial hypertrophy is an independent risk factor for heart failure (HF), yet the mechanisms underlying pathological cardiomyocyte growth are incompletely understood. The c-Jun NH2-terminal kinase (JNK) signaling cascade modulates cardiac hypertrophic remodeling, but the upstream factors regulating myocardial JNK activity remain unclear. In this study, we sought to identify JNK-activating molecules as novel regulators of cardiac remodeling in HF. We investigated mixed lineage kinase-3 (MLK3), a master regulator of upstream JNK-activating kinases, whose role in the remodeling process had not previously been studied. We observed increased MLK3 protein expression in myocardium from patients with nonischemic and hypertrophic cardiomyopathy and in hearts of mice subjected to transverse aortic constriction (TAC). Mice with genetic deletion of MLK3 (MLK3-/-) exhibited baseline cardiac hypertrophy with preserved cardiac function. MLK3-/- mice subjected to chronic left ventricular (LV) pressure overload (TAC, 4 wk) developed worsened cardiac dysfunction and increased LV chamber size compared with MLK3+/+ littermates ( n = 8). LV mass, pathological markers of hypertrophy ( Nppa, Nppb), and cardiomyocyte size were elevated in MLK3-/- TAC hearts. Phosphorylation of JNK, but not other MAPK pathways, was selectively impaired in MLK3-/- TAC hearts. In adult rat cardiomyocytes, pharmacological MLK3 kinase inhibition using URMC-099 blocked JNK phosphorylation induced by neurohormonal agents and oxidants. Sustained URMC-099 exposure induced cardiomyocyte hypertrophy. These data demonstrate that MLK3 prevents adverse cardiac remodeling in the setting of pressure overload. Mechanistically, MLK3 activates JNK, which in turn opposes cardiomyocyte hypertrophy. These results support modulation of MLK3 as a potential therapeutic approach in HF. NEW & NOTEWORTHY Here, we identified a role for mixed lineage kinase-3 (MLK3) as a novel antihypertrophic and antiremodeling molecule in response to cardiac pressure overload. MLK3 regulates phosphorylation of the stress-responsive JNK kinase in response to pressure overload and in cultured cardiomyocytes stimulated with hypertrophic agonists and oxidants. This study reveals MLK3-JNK signaling as a novel cardioprotective signaling axis in the setting of pressure overload.
Collapse
Affiliation(s)
- Timothy D Calamaras
- Molecular Cardiology Research Institute, Tufts Medical Center , Boston, Massachusetts
| | - Robert A Baumgartner
- Molecular Cardiology Research Institute, Tufts Medical Center , Boston, Massachusetts
| | - Mark J Aronovitz
- Molecular Cardiology Research Institute, Tufts Medical Center , Boston, Massachusetts
| | - Angela L McLaughlin
- Molecular Cardiology Research Institute, Tufts Medical Center , Boston, Massachusetts
| | - Kelly Tam
- Molecular Cardiology Research Institute, Tufts Medical Center , Boston, Massachusetts
| | - Daniel A Richards
- Molecular Cardiology Research Institute, Tufts Medical Center , Boston, Massachusetts
| | - Craig W Cooper
- Tufts University School of Medicine , Boston, Massachusetts
| | - Nathan Li
- Tufts Animal Histology Core, Boston, Massachusetts
| | - Wendy E Baur
- Molecular Cardiology Research Institute, Tufts Medical Center , Boston, Massachusetts
| | - Xiaoying Qiao
- Molecular Cardiology Research Institute, Tufts Medical Center , Boston, Massachusetts
| | - Guang-Rong Wang
- Molecular Cardiology Research Institute, Tufts Medical Center , Boston, Massachusetts
| | - Roger J Davis
- University of Massachusetts Medical School , Worcester, Massachusetts
| | - Navin K Kapur
- Molecular Cardiology Research Institute, Tufts Medical Center , Boston, Massachusetts
- Division of Cardiology, Tufts Medical Center, Boston, Massachusetts
| | - Richard H Karas
- Molecular Cardiology Research Institute, Tufts Medical Center , Boston, Massachusetts
- Division of Cardiology, Tufts Medical Center, Boston, Massachusetts
| | - Robert M Blanton
- Molecular Cardiology Research Institute, Tufts Medical Center , Boston, Massachusetts
- Division of Cardiology, Tufts Medical Center, Boston, Massachusetts
- Department of Developmental, Molecular, and Chemical Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine , Boston, Massachusetts
| |
Collapse
|
19
|
Yu SMW, Jean-Charles PY, Abraham DM, Kaur S, Gareri C, Mao L, Rockman HA, Shenoy SK. The deubiquitinase ubiquitin-specific protease 20 is a positive modulator of myocardial β 1-adrenergic receptor expression and signaling. J Biol Chem 2018; 294:2500-2518. [PMID: 30538132 DOI: 10.1074/jbc.ra118.004926] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/23/2018] [Indexed: 12/27/2022] Open
Abstract
Reversible ubiquitination of G protein-coupled receptors regulates their trafficking and signaling; whether deubiquitinases regulate myocardial β1-adrenergic receptors (β1ARs) is unknown. We report that ubiquitin-specific protease 20 (USP20) deubiquitinates and attenuates lysosomal trafficking of the β1AR. β1AR-induced phosphorylation of USP20 Ser-333 by protein kinase A-α (PKAα) was required for optimal USP20-mediated regulation of β1AR lysosomal trafficking. Both phosphomimetic (S333D) and phosphorylation-impaired (S333A) USP20 possess intrinsic deubiquitinase activity equivalent to WT activity. However, unlike USP20 WT and S333D, the S333A mutant associated poorly with the β1AR and failed to deubiquitinate the β1AR. USP20-KO mice showed normal baseline systolic function but impaired β1AR-induced contractility and relaxation. Dobutamine stimulation did not increase cAMP in USP20-KO left ventricles (LVs), whereas NKH477-induced adenylyl cyclase activity was equivalent to WT. The USP20 homolog USP33, which shares redundant roles with USP20, had no effect on β1AR ubiquitination, but USP33 was up-regulated in USP20-KO hearts suggesting compensatory regulation. Myocardial β1AR expression in USP20-KO was drastically reduced, whereas β2AR expression was maintained as determined by radioligand binding in LV sarcolemmal membranes. Phospho-USP20 was significantly increased in LVs of wildtype (WT) mice after a 1-week catecholamine infusion and a 2-week chronic pressure overload induced by transverse aortic constriction (TAC). Phospho-USP20 was undetectable in β1AR KO mice subjected to TAC, suggesting a role for USP20 phosphorylation in cardiac response to pressure overload. We conclude that USP20 regulates β1AR signaling in vitro and in vivo Additionally, β1AR-induced USP20 phosphorylation may serve as a feed-forward mechanism to stabilize β1AR expression and signaling during pathological insults to the myocardium.
Collapse
Affiliation(s)
- Samuel Mon-Wei Yu
- From the Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Pierre-Yves Jean-Charles
- From the Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Dennis M Abraham
- From the Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Suneet Kaur
- From the Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Clarice Gareri
- From the Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Lan Mao
- From the Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Howard A Rockman
- From the Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Sudha K Shenoy
- From the Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
20
|
Novel Mechanistic Roles for Ankyrin-G in Cardiac Remodeling and Heart Failure. JACC Basic Transl Sci 2018; 3:675-689. [PMID: 30456339 PMCID: PMC6234521 DOI: 10.1016/j.jacbts.2018.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/05/2018] [Accepted: 07/31/2018] [Indexed: 12/25/2022]
Abstract
The pathogenesis of human heart failure is complex, and the creation of new therapeutic strategies for human heart failure is critical. Identifying the molecular pathways underlying heart failure is important to define potential new therapeutic targets. Ankyrin polypeptides serve to target and stabilize membrane proteins in cardiomyocytes. Ankyrin-G levels are altered in humans and mice with heart failure, and mice lacking ankyrin-G in cardiomyocytes develop cardiomyopathy and systolic dysfunction. Mechanistically, ankyrin-G is necessary for the expression and localization of critical myocyte proteins essential for regulating cardiac structural and electrical activity.
Ankyrin polypeptides are intracellular proteins responsible for targeting cardiac membrane proteins. Here, the authors demonstrate that ankyrin-G plays an unexpected role in normal compensatory physiological remodeling in response to myocardial stress and aging; the authors implicate disruption of ankyrin-G in human heart failure. Mechanistically, the authors illustrate that ankyrin-G serves as a key nodal protein required for cardiac myofilament integration with the intercalated disc. Their data define novel in vivo mechanistic roles for ankyrin-G, implicate ankyrin-G as necessary for compensatory cardiac physiological remodeling under stress, and implicate disruption of ankyrin-G in the development and progression of human heart failure.
Collapse
Key Words
- AnkG, ankyrin-G
- DSP, desmoplakin
- ECG, electrocardiogram
- HF, heart failure
- LV, left ventricular
- Nav1.5
- PBS, phosphate-buffered saline
- PKP2, plakophilin-2
- TAC, transverse aortic constriction
- TUNEL, terminal deoxynucleotidyl transferase dUTP nick-end labeling
- WT, wild-type
- ankyrin
- arrhythmia
- cKO, cardiomyocyte-specific knockout
- cytoskeleton
- heart failure
- ion channel
Collapse
|
21
|
Abraham DM, Lee TE, Watson LJ, Mao L, Chandok G, Wang HG, Frangakis S, Pitt GS, Shah SH, Wolf MJ, Rockman HA. The two-pore domain potassium channel TREK-1 mediates cardiac fibrosis and diastolic dysfunction. J Clin Invest 2018; 128:4843-4855. [PMID: 30153110 PMCID: PMC6205385 DOI: 10.1172/jci95945] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/23/2018] [Indexed: 01/08/2023] Open
Abstract
Cardiac two-pore domain potassium channels (K2P) exist in organisms from Drosophila to humans; however, their role in cardiac function is not known. We identified a K2P gene, CG8713 (sandman), in a Drosophila genetic screen and show that sandman is critical to cardiac function. Mice lacking an ortholog of sandman, TWIK-related potassium channel (TREK-1, also known Kcnk2), exhibit exaggerated pressure overload-induced concentric hypertrophy and alterations in fetal gene expression, yet retain preserved systolic and diastolic cardiac function. While cardiomyocyte-specific deletion of TREK-1 in response to in vivo pressure overload resulted in cardiac dysfunction, TREK-1 deletion in fibroblasts prevented deterioration in cardiac function. The absence of pressure overload-induced dysfunction in TREK-1-KO mice was associated with diminished cardiac fibrosis and reduced activation of JNK in cardiomyocytes and fibroblasts. These findings indicate a central role for cardiac fibroblast TREK-1 in the pathogenesis of pressure overload-induced cardiac dysfunction and serve as a conceptual basis for its inhibition as a potential therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Howard A Rockman
- Department of Medicine
- Department of Cell Biology, and
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
22
|
Mechanisms contributing to cardiac remodelling. Clin Sci (Lond) 2017; 131:2319-2345. [PMID: 28842527 DOI: 10.1042/cs20171167] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 07/26/2017] [Accepted: 07/31/2017] [Indexed: 12/14/2022]
Abstract
Cardiac remodelling is classified as physiological (in response to growth, exercise and pregnancy) or pathological (in response to inflammation, ischaemia, ischaemia/reperfusion (I/R) injury, biomechanical stress, excess neurohormonal activation and excess afterload). Physiological remodelling of the heart is characterized by a fine-tuned and orchestrated process of beneficial adaptations. Pathological cardiac remodelling is the process of structural and functional changes in the left ventricle (LV) in response to internal or external cardiovascular damage or influence by pathogenic risk factors, and is a precursor of clinical heart failure (HF). Pathological remodelling is associated with fibrosis, inflammation and cellular dysfunction (e.g. abnormal cardiomyocyte/non-cardiomyocyte interactions, oxidative stress, endoplasmic reticulum (ER) stress, autophagy alterations, impairment of metabolism and signalling pathways), leading to HF. This review describes the key molecular and cellular responses involved in pathological cardiac remodelling.
Collapse
|
23
|
Wang Y, Wang S, Lei M, Boyett M, Tsui H, Liu W, Wang X. The p21-activated kinase 1 (Pak1) signalling pathway in cardiac disease: from mechanistic study to therapeutic exploration. Br J Pharmacol 2017; 175:1362-1374. [PMID: 28574147 DOI: 10.1111/bph.13872] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/12/2017] [Accepted: 05/17/2017] [Indexed: 01/01/2023] Open
Abstract
p21-activated kinase 1 (Pak1) is a member of the highly conserved family of serine/threonine protein kinases regulated by Ras-related small G-proteins, Cdc42/Rac1. It has been previously demonstrated to be involved in cardiac protection. Based on recent studies, this review provides an overview of the role of Pak1 in cardiac diseases including disrupted Ca2+ homoeostasis-related cardiac arrhythmias, adrenergic stress- and pressure overload-induced hypertrophy, and ischaemia/reperfusion injury. These findings demonstrate the important role of Pak1 mediated through the phosphorylation and transcriptional modification of hypertrophy and/or arrhythmia-related genes. This review also discusses the anti-arrhythmic and anti-hypertrophic, protective function of Pak1 and the beneficial effects of fingolimod (an FDA-approved sphingolipid drug), a Pak1 activator, and its ability to prevent arrhythmias and cardiac hypertrophy. These findings also highlight the therapeutic potential of Pak1 signalling in the treatment and prevention of cardiac diseases. LINKED ARTICLES This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc.
Collapse
Affiliation(s)
- Yanwen Wang
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Shunyao Wang
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Ming Lei
- Department of Pharmacology, The University of Oxford, Oxford, UK
| | - Mark Boyett
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Hoyee Tsui
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Wei Liu
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Xin Wang
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
24
|
Oh JG, Hajjar RJ, Park WJ. Cardiac fibrosis and miR-433. ANNALS OF TRANSLATIONAL MEDICINE 2017; 4:511. [PMID: 28149873 DOI: 10.21037/atm.2016.11.28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jae Gyun Oh
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Roger J Hajjar
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Woo Jin Park
- College of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| |
Collapse
|
25
|
Gallic acid prevents isoproterenol-induced cardiac hypertrophy and fibrosis through regulation of JNK2 signaling and Smad3 binding activity. Sci Rep 2016; 6:34790. [PMID: 27703224 PMCID: PMC5050511 DOI: 10.1038/srep34790] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/20/2016] [Indexed: 12/19/2022] Open
Abstract
Gallic acid, a type of phenolic acid, has been shown to have beneficial effects in inflammation, vascular calcification, and metabolic diseases. The present study was aimed at determining the effect and regulatory mechanism of gallic acid in cardiac hypertrophy and fibrosis. Cardiac hypertrophy was induced by isoproterenol (ISP) in mice and primary neonatal cardiomyocytes. Gallic acid pretreatment attenuated concentric cardiac hypertrophy. It downregulated the expression of atrial natriuretic peptide, brain natriuretic peptide, and beta-myosin heavy chain in vivo and in vitro. Moreover, it prevented interstitial collagen deposition and expression of fibrosis-associated genes. Upregulation of collagen type I by Smad3 overexpression was observed in cardiac myoblast H9c2 cells but not in cardiac fibroblasts. Gallic acid reduced the DNA binding activity of phosphorylated Smad3 in Smad binding sites of collagen type I promoter in rat cardiac fibroblasts. Furthermore, it decreased the ISP-induced phosphorylation of c-Jun N-terminal kinase (JNK) and extracellular signal regulated kinase (ERK) protein in mice. JNK2 overexpression reduced collagen type I and Smad3 expression as well as GATA4 expression in H9c2 cells and cardiac fibroblasts. Gallic acid might be a novel therapeutic agent for the prevention of cardiac hypertrophy and fibrosis by regulating the JNK2 and Smad3 signaling pathway.
Collapse
|
26
|
Javadov S, Jang S, Agostini B. Crosstalk between mitogen-activated protein kinases and mitochondria in cardiac diseases: therapeutic perspectives. Pharmacol Ther 2014; 144:202-25. [PMID: 24924700 DOI: 10.1016/j.pharmthera.2014.05.013] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/30/2014] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases cause more mortality and morbidity worldwide than any other diseases. Although many intracellular signaling pathways influence cardiac physiology and pathology, the mitogen-activated protein kinase (MAPK) family has garnered significant attention because of its vast implications in signaling and crosstalk with other signaling networks. The extensively studied MAPKs ERK1/2, p38, JNK, and ERK5, demonstrate unique intracellular signaling mechanisms, responding to a myriad of mitogens and stressors and influencing the signaling of cardiac development, metabolism, performance, and pathogenesis. Definitive relationships between MAPK signaling and cardiac dysfunction remain elusive, despite 30 years of extensive clinical studies and basic research of various animal/cell models, severities of stress, and types of stimuli. Still, several studies have proven the importance of MAPK crosstalk with mitochondria, powerhouses of the cell that provide over 80% of ATP for normal cardiomyocyte function and play a crucial role in cell death. Although many questions remain unanswered, there exists enough evidence to consider the possibility of targeting MAPK-mitochondria interactions in the prevention and treatment of heart disease. The goal of this review is to integrate previous studies into a discussion of MAPKs and MAPK-mitochondria signaling in cardiac diseases, such as myocardial infarction (ischemia), hypertrophy and heart failure. A comprehensive understanding of relevant molecular mechanisms, as well as challenges for studies in this area, will facilitate the development of new pharmacological agents and genetic manipulations for therapy of cardiovascular diseases.
Collapse
Affiliation(s)
- Sabzali Javadov
- Department of Physiology, School of Medicine, University of Puerto Rico, PR, USA.
| | - Sehwan Jang
- Department of Physiology, School of Medicine, University of Puerto Rico, PR, USA
| | - Bryan Agostini
- Department of Physiology, School of Medicine, University of Puerto Rico, PR, USA
| |
Collapse
|
27
|
Windak R, Müller J, Felley A, Akhmedov A, Wagner EF, Pedrazzini T, Sumara G, Ricci R. The AP-1 transcription factor c-Jun prevents stress-imposed maladaptive remodeling of the heart. PLoS One 2013; 8:e73294. [PMID: 24039904 PMCID: PMC3769267 DOI: 10.1371/journal.pone.0073294] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 07/18/2013] [Indexed: 11/27/2022] Open
Abstract
Systemic hypertension increases cardiac workload and subsequently induces signaling networks in heart that underlie myocyte growth (hypertrophic response) through expansion of sarcomeres with the aim to increase contractility. However, conditions of increased workload can induce both adaptive and maladaptive growth of heart muscle. Previous studies implicate two members of the AP-1 transcription factor family, junD and fra-1, in regulation of heart growth during hypertrophic response. In this study, we investigate the function of the AP-1 transcription factors, c-jun and c-fos, in heart growth. Using pressure overload-induced cardiac hypertrophy in mice and targeted deletion of Jun or Fos in cardiomyocytes, we show that c-jun is required for adaptive cardiac hypertrophy, while c-fos is dispensable in this context. c-jun promotes expression of sarcomere proteins and suppresses expression of extracellular matrix proteins. Capacity of cardiac muscle to contract depends on organization of principal thick and thin filaments, myosin and actin, within the sarcomere. In line with decreased expression of sarcomere-associated proteins, Jun-deficient cardiomyocytes present disarrangement of filaments in sarcomeres and actin cytoskeleton disorganization. Moreover, Jun-deficient hearts subjected to pressure overload display pronounced fibrosis and increased myocyte apoptosis finally resulting in dilated cardiomyopathy. In conclusion, c-jun but not c-fos is required to induce a transcriptional program aimed at adapting heart growth upon increased workload.
Collapse
Affiliation(s)
- Renata Windak
- Institute of Cell Biology, Eidgenössische Technische Hochschule Zurich (ETHZ), Zurich, Switzerland
| | - Julius Müller
- Institute of Cell Biology, Eidgenössische Technische Hochschule Zurich (ETHZ), Zurich, Switzerland
| | - Allison Felley
- Experimental Cardiology Unit, Department of Medicine, University of Lausanne Medical School, Lausanne, Switzerland
| | - Alexander Akhmedov
- Cardiovascular Research, Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Erwin F. Wagner
- Genes, Development and Disease Group, F-BBVA Cancer Cell Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Thierry Pedrazzini
- Experimental Cardiology Unit, Department of Medicine, University of Lausanne Medical School, Lausanne, Switzerland
| | - Grzegorz Sumara
- Institute of Cell Biology, Eidgenössische Technische Hochschule Zurich (ETHZ), Zurich, Switzerland
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Université de Strasbourg, Illkirch, France
- * E-mail: (RR); (GS)
| | - Romeo Ricci
- Institute of Cell Biology, Eidgenössische Technische Hochschule Zurich (ETHZ), Zurich, Switzerland
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Université de Strasbourg, Illkirch, France
- Laboratoire de Biochimie et de Biologie Moléculaire, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, Strasbourg, France
- * E-mail: (RR); (GS)
| |
Collapse
|
28
|
Drawnel FM, Archer CR, Roderick HL. The role of the paracrine/autocrine mediator endothelin-1 in regulation of cardiac contractility and growth. Br J Pharmacol 2013; 168:296-317. [PMID: 22946456 DOI: 10.1111/j.1476-5381.2012.02195.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Revised: 08/23/2012] [Accepted: 08/28/2012] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Endothelin-1 (ET-1) is a critical autocrine and paracrine regulator of cardiac physiology and pathology. Produced locally within the myocardium in response to diverse mechanical and neurohormonal stimuli, ET-1 acutely modulates cardiac contractility. During pathological cardiovascular conditions such as ischaemia, left ventricular hypertrophy and heart failure, myocyte expression and activity of the entire ET-1 system is enhanced, allowing the peptide to both initiate and maintain maladaptive cellular responses. Both the acute and chronic effects of ET-1 are dependent on the activation of intracellular signalling pathways, regulated by the inositol-trisphosphate and diacylglycerol produced upon activation of the ET(A) receptor. Subsequent stimulation of protein kinases C and D, calmodulin-dependent kinase II, calcineurin and MAPKs modifies the systolic calcium transient, myofibril function and the activity of transcription factors that coordinate cellular remodelling. The precise nature of the cellular response to ET-1 is governed by the timing, localization and context of such signals, allowing the peptide to regulate both cardiomyocyte physiology and instigate disease. LINKED ARTICLES This article is part of a themed section on Endothelin. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.168.issue-1.
Collapse
Affiliation(s)
- Faye M Drawnel
- Babraham Research Campus, Babraham Institute, Cambridge, UK
| | | | | |
Collapse
|
29
|
Perrino C, Schiattarella GG, Sannino A, Pironti G, Petretta MP, Cannavo A, Gargiulo G, Ilardi F, Magliulo F, Franzone A, Carotenuto G, Serino F, Altobelli GG, Cimini V, Cuocolo A, Lombardi A, Goglia F, Indolfi C, Trimarco B, Esposito G. Genetic deletion of uncoupling protein 3 exaggerates apoptotic cell death in the ischemic heart leading to heart failure. J Am Heart Assoc 2013; 2:e000086. [PMID: 23688674 PMCID: PMC3698767 DOI: 10.1161/jaha.113.000086] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Uncoupling protein 3 (ucp3) is a member of the mitochondrial anion carrier superfamily of proteins uncoupling mitochondrial respiration. In this study, we investigated the effects of ucp3 genetic deletion on mitochondrial function and cell survival under low oxygen conditions in vitro and in vivo. METHODS AND RESULTS To test the effects of ucp3 deletion in vitro, murine embryonic fibroblasts and adult cardiomyocytes were isolated from wild-type (WT, n=67) and ucp3 knockout mice (ucp3(-/-), n=70). To test the effects of ucp3 genetic deletion in vivo, myocardial infarction (MI) was induced by permanent coronary artery ligation in WT and ucp3(-/-) mice. Compared with WT, ucp3(-/-) murine embryonic fibroblasts and cardiomyocytes exhibited mitochondrial dysfunction and increased mitochondrial reactive oxygen species generation and apoptotic cell death under hypoxic conditions in vitro (terminal deoxynucleotidyl transferase-dUTP nick end labeling-positive nuclei: WT hypoxia, 70.3 ± 1.2%; ucp3(-/-) hypoxia, 85.3 ± 0.9%; P<0.05). After MI, despite similar areas at risk in the 2 groups, ucp3(-/-) hearts demonstrated a significantly larger infarct size compared with WT (infarct area/area at risk: WT, 48.2 ± 3.7%; ucp3(-/-), 65.0 ± 2.9%; P<0.05). Eight weeks after MI, cardiac function was significantly decreased in ucp3(-/-) mice compared with WT (fractional shortening: WT MI, 42.7 ± 3.1%; ucp3(-/-) MI, 24.4 ± 2.9; P<0.05), and this was associated with heightened apoptotic cell death (terminal deoxynucleotidyl transferase-dUTP nick end labeling-positive nuclei: WT MI, 0.7 ± 0.04%; ucp3(-/-) MI, 1.1 ± 0.09%, P<0.05). CONCLUSIONS Our data indicate that ucp3 levels regulate reactive oxygen species levels and cell survival during hypoxia, modulating infarct size in the ischemic heart.
Collapse
Affiliation(s)
- Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy (C.P., G.G.S., A.S., G.P., M.P.P., A.C., G.G., F.I., F.M., A.F., G.C., F.S., G.G.A., V.C., A.C., B.T., G.E.)
| | - Gabriele G. Schiattarella
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy (C.P., G.G.S., A.S., G.P., M.P.P., A.C., G.G., F.I., F.M., A.F., G.C., F.S., G.G.A., V.C., A.C., B.T., G.E.)
| | - Anna Sannino
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy (C.P., G.G.S., A.S., G.P., M.P.P., A.C., G.G., F.I., F.M., A.F., G.C., F.S., G.G.A., V.C., A.C., B.T., G.E.)
| | - Gianluigi Pironti
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy (C.P., G.G.S., A.S., G.P., M.P.P., A.C., G.G., F.I., F.M., A.F., G.C., F.S., G.G.A., V.C., A.C., B.T., G.E.)
| | - Maria Piera Petretta
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy (C.P., G.G.S., A.S., G.P., M.P.P., A.C., G.G., F.I., F.M., A.F., G.C., F.S., G.G.A., V.C., A.C., B.T., G.E.)
| | - Alessandro Cannavo
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy (C.P., G.G.S., A.S., G.P., M.P.P., A.C., G.G., F.I., F.M., A.F., G.C., F.S., G.G.A., V.C., A.C., B.T., G.E.)
| | - Giuseppe Gargiulo
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy (C.P., G.G.S., A.S., G.P., M.P.P., A.C., G.G., F.I., F.M., A.F., G.C., F.S., G.G.A., V.C., A.C., B.T., G.E.)
| | - Federica Ilardi
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy (C.P., G.G.S., A.S., G.P., M.P.P., A.C., G.G., F.I., F.M., A.F., G.C., F.S., G.G.A., V.C., A.C., B.T., G.E.)
| | - Fabio Magliulo
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy (C.P., G.G.S., A.S., G.P., M.P.P., A.C., G.G., F.I., F.M., A.F., G.C., F.S., G.G.A., V.C., A.C., B.T., G.E.)
| | - Anna Franzone
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy (C.P., G.G.S., A.S., G.P., M.P.P., A.C., G.G., F.I., F.M., A.F., G.C., F.S., G.G.A., V.C., A.C., B.T., G.E.)
| | - Giuseppe Carotenuto
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy (C.P., G.G.S., A.S., G.P., M.P.P., A.C., G.G., F.I., F.M., A.F., G.C., F.S., G.G.A., V.C., A.C., B.T., G.E.)
| | - Federica Serino
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy (C.P., G.G.S., A.S., G.P., M.P.P., A.C., G.G., F.I., F.M., A.F., G.C., F.S., G.G.A., V.C., A.C., B.T., G.E.)
| | - Giovanna G. Altobelli
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy (C.P., G.G.S., A.S., G.P., M.P.P., A.C., G.G., F.I., F.M., A.F., G.C., F.S., G.G.A., V.C., A.C., B.T., G.E.)
| | - Vincenzo Cimini
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy (C.P., G.G.S., A.S., G.P., M.P.P., A.C., G.G., F.I., F.M., A.F., G.C., F.S., G.G.A., V.C., A.C., B.T., G.E.)
| | - Alberto Cuocolo
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy (C.P., G.G.S., A.S., G.P., M.P.P., A.C., G.G., F.I., F.M., A.F., G.C., F.S., G.G.A., V.C., A.C., B.T., G.E.)
| | - Assunta Lombardi
- Department of Biology, Federico II University, Naples, Italy (A.L.)
| | - Fernando Goglia
- Department of Biology Sciences, Geology and Environment, Sannio University, Benevento, Italy (F.G.)
| | - Ciro Indolfi
- Department of Cardiology, Magna Graecia University, Catanzaro, Italy (C.I.)
| | - Bruno Trimarco
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy (C.P., G.G.S., A.S., G.P., M.P.P., A.C., G.G., F.I., F.M., A.F., G.C., F.S., G.G.A., V.C., A.C., B.T., G.E.)
| | - Giovanni Esposito
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy (C.P., G.G.S., A.S., G.P., M.P.P., A.C., G.G., F.I., F.M., A.F., G.C., F.S., G.G.A., V.C., A.C., B.T., G.E.)
- Correspondence to: Giovanni Esposito, MD, PhD, or Cinzia Perrino, MD, PhD, Division of Cardiology, Federico II University, Via Pansini 5, 80131 Naples, Italy. E‐mail: ,
| |
Collapse
|
30
|
Blanton RM, Takimoto E, Lane AM, Aronovitz M, Piotrowski R, Karas RH, Kass DA, Mendelsohn ME. Protein kinase g iα inhibits pressure overload-induced cardiac remodeling and is required for the cardioprotective effect of sildenafil in vivo. J Am Heart Assoc 2012; 1:e003731. [PMID: 23316302 PMCID: PMC3541610 DOI: 10.1161/jaha.112.003731] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 08/20/2012] [Indexed: 02/07/2023]
Abstract
BACKGROUND Cyclic GMP (cGMP) signaling attenuates cardiac remodeling, but it is unclear which cGMP effectors mediate these effects and thus might serve as novel therapeutic targets. Therefore, we tested whether the cGMP downstream effector, cGMP-dependent protein kinase G Iα (PKGIα), attenuates pressure overload-induced remodeling in vivo. METHODS AND RESULTS The effect of transaortic constriction (TAC)-induced left ventricular (LV) pressure overload was examined in mice with selective mutations in the PKGIα leucine zipper interaction domain. Compared with wild-type littermate controls, in response to TAC, these Leucine Zipper Mutant (LZM) mice developed significant LV systolic and diastolic dysfunction by 48 hours (n=6 WT sham, 6 WT TAC, 5 LZM sham, 9 LZM TAC). In response to 7-day TAC, the LZM mice developed increased pathologic hypertrophy compared with controls (n=5 WT sham, 4 LZM sham, 8 WT TAC, 11 LZM TAC). In WT mice, but not in LZM mice, phosphodiesterase 5 (PDE5) inhibition with sildenafil (Sil) significantly inhibited TAC-induced cardiac hypertrophy and LV systolic dysfunction in WT mice, but this was abolished in the LZM mice (n=3 WT sham, 4 LZM sham, 3 WT TAC vehicle, 6 LZM TAC vehicle, 4 WT TAC Sil, 6 LZM TAC Sil). And in response to prolonged, 21-day TAC (n=8 WT sham, 7 LZM sham, 21 WT TAC, 15 LZM TAC), the LZM mice developed markedly accelerated mortality and congestive heart failure. TAC induced activation of JNK, which inhibits cardiac remodeling in vivo, in WT, but not in LZM, hearts, identifying a novel signaling pathway activated by PKGIα in the heart in response to LV pressure overload. CONCLUSIONS These findings reveal direct roles for PKGIα in attenuating pressure overload-induced remodeling in vivo and as a required effector for the cardioprotective effects of sildenafil.
Collapse
Affiliation(s)
- Robert M Blanton
- Molecular Cardiology Research Institute and Division of Cardiology, Tufts Medical Center, Boston, MA 02111, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Lal H, Verma SK, Feng H, Golden HB, Gerilechaogetu F, Nizamutdinov D, Foster DM, Glaser SS, Dostal DE. Caveolin and β1-integrin coordinate angiotensinogen expression in cardiac myocytes. Int J Cardiol 2012; 168:436-45. [PMID: 23058350 DOI: 10.1016/j.ijcard.2012.09.131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 06/23/2012] [Accepted: 09/22/2012] [Indexed: 12/20/2022]
Abstract
BACKGROUND The cardiac renin-angiotensin system (RAS) has been implicated in mediating myocyte hypertrophy and remodeling, although the biochemical mechanisms responsible for regulating the local RAS are poorly understood. Caveolin-1 (Cav-1)/Cav-3 double-knockout mice display cardiac hypertrophy, and in vitro disruption of lipid rafts/caveolae using methyl-β-cyclodextrin (MβCD) abolishes cardiac protection. METHODS In this study, neonatal rat ventricular myocytes (NRVM) were used to determine whether lipid rafts/caveolae may be involved in the regulation of angiotensinogen (Ao) gene expression, a substrate of the RAS system. RESULTS Treatment with MβCD caused a time-dependent upregulation of Ao gene expression, which was associated with differential regulation of mitogen-activated protein (MAP) kinases ERK1/2, p38 and JNK phosphorylation. JNK was highly phosphorylated shortly after MβCD treatment (2-30 min), whereas marked activation of ERK1/2 and p38 occurred much later (2-4h). β1D-Integrin was required for MβCD-induced activation of the MAP kinases. Pharmacologic inhibition of ERK1/2 and JNK enhanced MβCD-induced Ao gene expression, whereas p38 blockade inhibited this response. Adenovirus-mediated expression of wild-type p38α enhanced MβCD-induced Ao gene expression; conversely expression of dominant negative p38α blocked the stimulatory effects of MβCD. Expression of Cav-3 siRNA stimulated Ao gene expression, whereas overexpression of Cav-3 was inhibitory. Cav-1 and Cav-3 expression levels were found to be positively regulated by p38, but unaffected by ERK1/2 and JNK. CONCLUSION Collectively, these studies indicate that lipid rafts/caveolae couple to Ao gene expression through a mechanism that involves β1-integrin and the differential actions of MAP kinase family members.
Collapse
Affiliation(s)
- Hind Lal
- Center for Translational Medicine, Temple University, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Gödecke A, Schrader J, Reinartz M. Nitric oxide-mediated protein modification in cardiovascular physiology and pathology. Proteomics Clin Appl 2012; 2:811-22. [PMID: 21136881 DOI: 10.1002/prca.200780079] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nitric oxide (NO) is a key regulator of cardiovascular functions including the control of vascular tone, anti-inflammatory properties of the endothelium, cardiac contractility, and thrombocyte activation and aggregation. Numerous experimental data support the view that NO not only acts via cyclic guanosine monophosphate (cGMP)-dependent mechanisms but also modulates protein function by nitrosation, nitrosylation, glutathiolation, and nitration, respectively. To understand how NO regulates all of these diverse biological processes on the molecular level a comprehensive assessment of NO-mediated cGMP-dependent and independent targets is required. Novel proteomic approaches allow the simultaneous identification of large quantities of proteins modified in an NO-dependent manner and thereby will considerably deepen our understanding of the role NO plays in cardiovascular physiology and pathophysiology.
Collapse
Affiliation(s)
- Axel Gödecke
- Institut für Herz- und Kreislaufphysiologie, Heinrich-Heine-Universität, Düsseldorf, Germany.
| | | | | |
Collapse
|
33
|
Pirianov G, Torsney E, Howe F, Cockerill GW. Rosiglitazone negatively regulates c-Jun N-terminal kinase and toll-like receptor 4 proinflammatory signalling during initiation of experimental aortic aneurysms. Atherosclerosis 2012; 225:69-75. [PMID: 22999334 DOI: 10.1016/j.atherosclerosis.2012.07.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 06/15/2012] [Accepted: 07/25/2012] [Indexed: 10/28/2022]
Abstract
OBJECTIVE Development and rupture of aortic aneurysms (AA) is a complex process involving inflammation, cell death, tissue and matrix remodelling. The thiazolidinediones (TZDs) including Rosiglitazone (RGZ) are a family of drugs which act as agonists of the nuclear peroxisome proliferator-activated receptors and have a broad spectrum of effects on a number of biological processes in the cardiovascular system. In our previous study we have demonstrated that RGZ has a marked effect on both aneurysm rupture and development, however, the precise mechanism of this is unknown. METHODS AND RESULTS In the present study, we examined possible targets of RGZ action in the early stages of Angiotensin II-induced AA in apolipoprotein E-deficient mice. For this purpose we employed immunoblotting, ELISA and antibody array approaches. We found that RGZ significantly inhibited c-Jun N-terminal kinase (JNK) phosphorylation and down-regulated toll-like receptor 4 (TLR4) expression at the site of lesion formation in response to Angiotensin II infusion in the initiation stage (6-72 h) of experimental AA development. Importantly, this effect was also associated with a decrease of CD4 antigen and reduction in production of TLR4/JNK-dependant proinflammatory chemokines MCP-1 and MIP-1α. CONCLUSION These data suggest that RGZ can modulate inflammatory processes by blocking TLR4/JNK signalling in initiation stages of AA development.
Collapse
Affiliation(s)
- Grisha Pirianov
- Division of Clinical Sciences, St. George's University of London, London, UK
| | | | | | | |
Collapse
|
34
|
Sabapathy K. Role of the JNK pathway in human diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 106:145-69. [PMID: 22340717 DOI: 10.1016/b978-0-12-396456-4.00013-4] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The c-Jun-NH(2)-terminal kinase (JNK) signaling pathway plays a critical role in regulating cell fate, being implicated in a multitude of diseases ranging from cancer to neurological and immunological/inflammatory conditions. Not surprisingly, therefore, it has been sought after for therapeutic intervention, and its inhibition has been shown to ameliorate many pathological conditions in experimental systems, paving the way for initial clinical trials. However, the fundamental problem in fully harnessing the potential provided by the JNK pathway has been the lack of specificity, due to the multiple JNK forms that are involved in multiple cellular processes in various cell types. Moreover, lack of sufficient knowledge of all JNK-interacting proteins and substrates has also hindered progress. This review will therefore focus on the role of the JNKs in human diseases and appraise the efforts to inhibit JNK signaling to ameliorate disease conditions, assessing potential challenges and providing insights into possible future directions to efficiently target this pathway for therapeutic use.
Collapse
Affiliation(s)
- Kanaga Sabapathy
- Division of Cellular & Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore
| |
Collapse
|
35
|
Abstract
Cardiac hypertrophy (CH) is an adaptive response of the heart to pressure overload. It is a common pathological feature in the natural course of some major cardiovascular diseases, like, hypertension and myocardial infarction. Cardiac hypertrophy is strongly associated with an increased risk of heart failure and sudden cardiac death. The complex and dynamic pathophysiological mechanisms of CH has been the focus of intense scientific investigation, in an effort to design preventive and curative strategies. Oxidative stress has been identified as one of the key contributing factors in the development of cardiac hypertrophy. In this review, evidences supporting the oxidative stress as a cause of cardiac hypertrophy with emphasis on mitochondrial oxidative stress and possible options for pharmacological interventions have been discussed. Reactive oxygen species (ROS) also activate a broad variety of hypertrophy signaling kinases and transcription factors, like, MAP kinase, NF K-B, etc. In addition to profound alteration of cellular function, ROS modulate the extracellular matrix function, evidenced by increased interstitial and perivascular fibrosis. Translocator protein (TSPO) present in the outer mitochondrial membrane is known to be involved in oxidative stress and cardiovascular pathology. Recently, its role in cardiac hypertrophy has been reported by us. All these evidences strongly provide support to beneficial role of drugs which selectively interfere with the generation of free radicals or augment endogenous antioxidants in cardiac hypertrophy.
Collapse
Affiliation(s)
- Subir Kumar Maulik
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India.
| | | |
Collapse
|
36
|
Turner NA. Therapeutic regulation of cardiac fibroblast function: targeting stress-activated protein kinase pathways. Future Cardiol 2011; 7:673-91. [DOI: 10.2217/fca.11.41] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
37
|
The bottleneck of JNK signaling: Molecular and functional characteristics of MKK4 and MKK7. Eur J Cell Biol 2011; 90:536-44. [DOI: 10.1016/j.ejcb.2010.11.008] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 11/23/2010] [Accepted: 11/26/2010] [Indexed: 12/18/2022] Open
|
38
|
Rose BA, Force T, Wang Y. Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heart-breaking tale. Physiol Rev 2010; 90:1507-46. [PMID: 20959622 PMCID: PMC3808831 DOI: 10.1152/physrev.00054.2009] [Citation(s) in RCA: 574] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Among the myriad of intracellular signaling networks that govern the cardiac development and pathogenesis, mitogen-activated protein kinases (MAPKs) are prominent players that have been the focus of extensive investigations in the past decades. The four best characterized MAPK subfamilies, ERK1/2, JNK, p38, and ERK5, are the targets of pharmacological and genetic manipulations to uncover their roles in cardiac development, function, and diseases. However, information reported in the literature from these efforts has not yet resulted in a clear view about the roles of specific MAPK pathways in heart. Rather, controversies from contradictive results have led to a perception that MAPKs are ambiguous characters in heart with both protective and detrimental effects. The primary object of this review is to provide a comprehensive overview of the current progress, in an effort to highlight the areas where consensus is established verses the ones where controversy remains. MAPKs in cardiac development, cardiac hypertrophy, ischemia/reperfusion injury, and pathological remodeling are the main focuses of this review as these represent the most critical issues for evaluating MAPKs as viable targets of therapeutic development. The studies presented in this review will help to reveal the major challenges in the field and the limitations of current approaches and point to a critical need in future studies to gain better understanding of the fundamental mechanisms of MAPK function and regulation in the heart.
Collapse
Affiliation(s)
- Beth A Rose
- Departments of Anesthesiology, Physiology, and Medicine, David Geffen School of Medicine, Molecular Biology, Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
39
|
Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacol Ther 2010; 128:191-227. [PMID: 20438756 DOI: 10.1016/j.pharmthera.2010.04.005] [Citation(s) in RCA: 642] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cardiac hypertrophy can be defined as an increase in heart mass. Pathological cardiac hypertrophy (heart growth that occurs in settings of disease, e.g. hypertension) is a key risk factor for heart failure. Pathological hypertrophy is associated with increased interstitial fibrosis, cell death and cardiac dysfunction. In contrast, physiological cardiac hypertrophy (heart growth that occurs in response to chronic exercise training, i.e. the 'athlete's heart') is reversible and is characterized by normal cardiac morphology (i.e. no fibrosis or apoptosis) and normal or enhanced cardiac function. Given that there are clear functional, structural, metabolic and molecular differences between pathological and physiological hypertrophy, a key question in cardiovascular medicine is whether mechanisms responsible for enhancing function of the athlete's heart can be exploited to benefit patients with pathological hypertrophy and heart failure. This review summarizes key experimental findings that have contributed to our understanding of pathological and physiological heart growth. In particular, we focus on signaling pathways that play a causal role in the development of pathological and physiological hypertrophy. We discuss molecular mechanisms associated with features of cardiac hypertrophy, including protein synthesis, sarcomeric organization, fibrosis, cell death and energy metabolism and provide a summary of profiling studies that have examined genes, microRNAs and proteins that are differentially expressed in models of pathological and physiological hypertrophy. How gender and sex hormones affect cardiac hypertrophy is also discussed. Finally, we explore how knowledge of molecular mechanisms underlying pathological and physiological hypertrophy may influence therapeutic strategies for the treatment of cardiovascular disease and heart failure.
Collapse
|
40
|
Esposito G, Perrino C, Schiattarella GG, Belardo L, di Pietro E, Franzone A, Capretti G, Gargiulo G, Pironti G, Cannavo A, Sannino A, Izzo R, Chiariello M. Induction of Mitogen-Activated Protein Kinases Is Proportional to the Amount of Pressure Overload. Hypertension 2010; 55:137-43. [DOI: 10.1161/hypertensionaha.109.135467] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pressure overload has been shown to induce mitogen activated protein kinases (MAPKs) and reactivate the atrial natriuretic factor in the heart. To test the sensitivity of these signals to pressure overload, we assayed the activity of MAPKs extracellular signal–regulated kinase, c-Jun N-terminal kinase 1, and p38 in protein lysates from the left ventricle (LV) or white blood cells (WBC) isolated from aortic banded mice with varying levels of pressure overload. In separated mice we measured atrial natriuretic factor mRNA levels by Northern blotting. As expected, a significant induction of atrial natriuretic factor mRNA levels was observed after aortic banding, and it significantly correlated with the
trans
-stenotic systolic pressure gradient but not with the LV weight:body weight ratio. In contrast, a significant correlation with systolic pressure gradient or LV weight:body weight ratio was observed for all of the MAPK activity detected in LV samples or WBCs. Importantly, LV activation of MAPKs significantly correlated with their activation in WBCs from the same animal. To test whether MAPK activation in WBCs might reflect uncontrolled blood pressure levels in humans, we assayed extracellular signal–regulated kinase, c-Jun N-terminal kinase 1, and p38 activation in WBCs isolated from normotensive volunteers, hypertensive patients with controlled blood pressure values, or hypertensive patients with uncontrolled blood pressure values. Interestingly, in hypertensive patients with controlled blood pressure values, LV mass and extracellular signal–regulated kinase phosphorylation were significantly reduced compared with those in hypertensive patients with uncontrolled blood pressure values. These results suggest that MAPKs are sensors of pressure overload and that extracellular signal–regulated kinase activation in WBCs might be used as a novel surrogate biomarker of uncontrolled human hypertension.
Collapse
Affiliation(s)
- Giovanni Esposito
- From the Divisions of Cardiology (G.E., C.P., G.G.S., L.B., E.d.P., A.F., G.C., G.G., G.P., A.C., A.S., M.C.) and Internal Medicine (R.I.), Federico II University, Naples, Italy
| | - Cinzia Perrino
- From the Divisions of Cardiology (G.E., C.P., G.G.S., L.B., E.d.P., A.F., G.C., G.G., G.P., A.C., A.S., M.C.) and Internal Medicine (R.I.), Federico II University, Naples, Italy
| | - Gabriele Giacomo Schiattarella
- From the Divisions of Cardiology (G.E., C.P., G.G.S., L.B., E.d.P., A.F., G.C., G.G., G.P., A.C., A.S., M.C.) and Internal Medicine (R.I.), Federico II University, Naples, Italy
| | - Lorena Belardo
- From the Divisions of Cardiology (G.E., C.P., G.G.S., L.B., E.d.P., A.F., G.C., G.G., G.P., A.C., A.S., M.C.) and Internal Medicine (R.I.), Federico II University, Naples, Italy
| | - Elisa di Pietro
- From the Divisions of Cardiology (G.E., C.P., G.G.S., L.B., E.d.P., A.F., G.C., G.G., G.P., A.C., A.S., M.C.) and Internal Medicine (R.I.), Federico II University, Naples, Italy
| | - Anna Franzone
- From the Divisions of Cardiology (G.E., C.P., G.G.S., L.B., E.d.P., A.F., G.C., G.G., G.P., A.C., A.S., M.C.) and Internal Medicine (R.I.), Federico II University, Naples, Italy
| | - Giuliana Capretti
- From the Divisions of Cardiology (G.E., C.P., G.G.S., L.B., E.d.P., A.F., G.C., G.G., G.P., A.C., A.S., M.C.) and Internal Medicine (R.I.), Federico II University, Naples, Italy
| | - Giuseppe Gargiulo
- From the Divisions of Cardiology (G.E., C.P., G.G.S., L.B., E.d.P., A.F., G.C., G.G., G.P., A.C., A.S., M.C.) and Internal Medicine (R.I.), Federico II University, Naples, Italy
| | - Gianluigi Pironti
- From the Divisions of Cardiology (G.E., C.P., G.G.S., L.B., E.d.P., A.F., G.C., G.G., G.P., A.C., A.S., M.C.) and Internal Medicine (R.I.), Federico II University, Naples, Italy
| | - Alessandro Cannavo
- From the Divisions of Cardiology (G.E., C.P., G.G.S., L.B., E.d.P., A.F., G.C., G.G., G.P., A.C., A.S., M.C.) and Internal Medicine (R.I.), Federico II University, Naples, Italy
| | - Anna Sannino
- From the Divisions of Cardiology (G.E., C.P., G.G.S., L.B., E.d.P., A.F., G.C., G.G., G.P., A.C., A.S., M.C.) and Internal Medicine (R.I.), Federico II University, Naples, Italy
| | - Raffaele Izzo
- From the Divisions of Cardiology (G.E., C.P., G.G.S., L.B., E.d.P., A.F., G.C., G.G., G.P., A.C., A.S., M.C.) and Internal Medicine (R.I.), Federico II University, Naples, Italy
| | - Massimo Chiariello
- From the Divisions of Cardiology (G.E., C.P., G.G.S., L.B., E.d.P., A.F., G.C., G.G., G.P., A.C., A.S., M.C.) and Internal Medicine (R.I.), Federico II University, Naples, Italy
| |
Collapse
|
41
|
Lal H, Verma SK, Golden HB, Foster DM, Smith M, Dostal DE. Stretch-induced regulation of angiotensinogen gene expression in cardiac myocytes and fibroblasts: opposing roles of JNK1/2 and p38alpha MAP kinases. J Mol Cell Cardiol 2008; 45:770-8. [PMID: 18926830 PMCID: PMC2645232 DOI: 10.1016/j.yjmcc.2008.09.121] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 09/13/2008] [Accepted: 09/16/2008] [Indexed: 10/21/2022]
Abstract
The cardiac renin-angiotensin system (RAS) has been implicated in mediating myocyte hypertrophy, remodeling, and fibroblast proliferation in the hemodynamically overloaded heart. However, the intracellular signaling mechanisms responsible for regulation of angiotensinogen (Ao), a substrate of the RAS system, are largely unknown. Here we report the identification of JNK1/2 as a negative, and p38alpha as a major positive regulator of Ao gene expression. Isolated neonatal rat ventricular myocytes (NRVM) and fibroblasts (NRFB) plated on deformable membranes coated with collagen IV, were exposed to 20% equiaxial static-stretch (0-24 h). Mechanical stretch initially depressed Ao gene expression (4 h), whereas after 8 h, Ao gene expression increased in a time-dependent manner. Blockade of JNK1/2 with SP600125 increased basal Ao gene expression in NRVM (10.52+/-1.98 fold, P<0.001) and NRFB (13.32+/-2.07 fold, P<0.001). Adenovirus-mediated expression of wild-type JNK1 significantly inhibited, whereas expression of dominant-negative JNK1 and JNK2 increased basal and stretch-mediated (24 h) Ao gene expression, showing both JNK1 and JNK2 to be negative regulators of Ao gene expression in NRVM and NRFB. Blockade of p38alpha/beta by SB202190 or p38alpha by SB203580 significantly inhibited stretch-induced (24 h) Ao gene expression, whereas expression of wild-type p38alpha increased stretch-induced Ao gene expression in both NRVM (8.41+/-1.50 fold, P<0.001) and NRFB (3.39+/-0.74 fold, P<0.001). Conversely, expression of dominant-negative p38alpha significantly inhibited stretch response. Moreover, expression of constitutively active MKK6b (E) significantly stimulated Ao gene expression in the absence of stretch, indicating that p38 activation alone is sufficient to induce Ao gene expression. Taken together p38alpha was demonstrated to be a positive regulator, whereas JNK1/2 was found to be a negative regulator of Ao gene expression. Prolonged stretch diminished JNK1/2 activation, which was accompanied by a reciprocal increase in p38 activation and Ao gene expression. This suggests that a balance in JNK1/2 and p38alpha activation determines the level of Ao gene expression in myocardial cells.
Collapse
Affiliation(s)
- Hind Lal
- Division of Molecular Cardiology, Cardiovascular Research Institute, The Texas A&M University System Health Science Center, Temple, Texas 76504
| | - Suresh K. Verma
- Division of Molecular Cardiology, Cardiovascular Research Institute, The Texas A&M University System Health Science Center, Temple, Texas 76504
| | - Honey B. Golden
- Division of Molecular Cardiology, Cardiovascular Research Institute, The Texas A&M University System Health Science Center, Temple, Texas 76504
| | | | - Manuela Smith
- Division of Molecular Cardiology, Cardiovascular Research Institute, The Texas A&M University System Health Science Center, Temple, Texas 76504
| | - David E. Dostal
- Division of Molecular Cardiology, Cardiovascular Research Institute, The Texas A&M University System Health Science Center, Temple, Texas 76504
| |
Collapse
|
42
|
Muslin AJ. MAPK signalling in cardiovascular health and disease: molecular mechanisms and therapeutic targets. Clin Sci (Lond) 2008; 115:203-18. [PMID: 18752467 PMCID: PMC2707780 DOI: 10.1042/cs20070430] [Citation(s) in RCA: 392] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Intracellular MAPK (mitogen-activated protein kinase) signalling cascades probably play an important role in the pathogenesis of cardiac and vascular disease. A substantial amount of basic science research has defined many of the details of MAPK pathway organization and activation, but the role of individual signalling proteins in the pathogenesis of various cardiovascular diseases is still being elucidated. In the present review, the role of the MAPKs ERK (extracellular signal-regulated kinase), JNK (c-Jun N-terminal kinase) and p38 MAPK in cardiac hypertrophy, cardiac remodelling after myocardial infarction, atherosclerosis and vascular restenosis will be examined, with attention paid to genetically modified murine model systems and to the use of pharmacological inhibitors of protein kinases. Despite the complexities of this field of research, attractive targets for pharmacological therapy are emerging.
Collapse
Affiliation(s)
- Anthony J Muslin
- Center for Cardiovascular Research, John Milliken Department of Internal Medicine, Washington University School of Medicine, 660 South Euclid Ave, St Louis, MO 63110, USA.
| |
Collapse
|
43
|
Errami M, Galindo CL, Tassa AT, Dimaio JM, Hill JA, Garner HR. Doxycycline attenuates isoproterenol- and transverse aortic banding-induced cardiac hypertrophy in mice. J Pharmacol Exp Ther 2008; 324:1196-203. [PMID: 18089841 DOI: 10.1124/jpet.107.133975] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The United States Food and Drug Administration-approved antibiotic doxycycline (DOX) inhibits matrix metalloproteases, which contribute to the development of cardiac hypertrophy (CH). We hypothesized that DOX might serve as a treatment for CH. The efficacy of DOX was tested in two mouse models of CH: induced by the beta-adrenergic agonist isoproterenol (ISO) and induced by transverse aortic banding. DOX significantly attenuated CH in these models, causing a profound reduction of the hypertrophic phenotype and a lower heart/body weight ratio (p < 0.05, n >/= 6). As expected, ISO increased matrix metalloprotease (MMP) 2 and 9 activities, and administration of DOX reversed this effect. Transcriptional profiles of normal, ISO-, and ISO + DOX-treated mice were examined using microarrays, and the results were confirmed by real-time reverse transcriptase-polymerase chain reaction. Genes (206) were differentially expressed between normal and ISO mice that were reversibly altered between ISO- and ISO + DOX-treated mice, indicating their potential role in CH development and DOX-induced improvement. These genes included those involved in the regulation of cell proliferation and fate, stress, and immune responses, cytoskeleton and extracellular matrix organization, and cardiac-specific signal transduction. The overall gene expression profile suggested that MMP2/9 inactivation was not the only mechanism whereby DOX exerts its beneficial effects. Western blot analysis identified potential signaling events associated with CH, including up-regulation of endothelial differentiation sphingolipid G-protein-coupled receptor 1 receptor and activation of extracellular signal-regulated kinase, p38, and the transcription factor activating transcription factor-2, which were reduced after administration of DOX. These results suggest that DOX might be evaluated as a potential CH therapeutic and also provide potential signaling mechanisms to investigate in the context of CH phenotype development and regression.
Collapse
Affiliation(s)
- Mounir Errami
- Division of Translational Research, University of Texas Southwestern Medical Center, 2201 Inwood Rd., Dallas, TX 75390-9185, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Early responses of the left ventricle to pressure overload in Wistar rats. Life Sci 2007; 82:265-72. [PMID: 18155733 DOI: 10.1016/j.lfs.2007.11.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Revised: 11/07/2007] [Accepted: 11/14/2007] [Indexed: 11/23/2022]
Abstract
The early events leading to the establishment of left ventricular hypertrophy associated to pressure overload (PO) are not well characterized. To explore these early events, aortic banding (AB) was performed in rats to induce left ventricle (LV) PO. Animals were sacrificed after 24, 48 h or 14 days. An echocardiogram was performed before the procedure and at sacrifice. LVs were preserved for the evaluation of fibrosis, angiotensin II (AT) receptors expression and stress-related MAP kinases (ERK 1/2, JNK and p38) pathways. We observed that concentric LV hypertrophy was established after only 14 days. Collagen I and fibronectin gene expressions were decreased the first 2 days after AB induction whereas AT receptors mRNA levels were sharply increased. ERK 1/2 and JNK activities in LV homogenates were decreased 24 h after AB but came back to normal after 14 days. p38 activity however was stable during the period studied. We also evaluated the presence of two phosphorylated transcription factors related to JNK signaling pathway (ATF-2 and c-Jun) in cardiomyocyte nuclei. The proportion of LV cell nuclei positive for these two activated transcription factors was significantly reduced in AB rats compared to sham. These results suggest that the early response of the LV to acute PO is to attenuate the expression of some pro-fibrotic and pro-hypertrophic signaling pathways and possibly AT signaling by decreasing ERK 1/2 and JNK relative activities.
Collapse
|
45
|
Asano S, Rice KM, Kakarla S, Katta A, Desai DH, Walker EM, Wehner P, Blough ER. Aging influences multiple indices of oxidative stress in the heart of the Fischer 344/NNia x Brown Norway/BiNia rat. Redox Rep 2007; 12:167-80. [PMID: 17705987 DOI: 10.1179/135100007x200254] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
We report the influence of aging on multiple markers of oxidative-nitrosative stress in the heart of adult (6-month), aged (30-month) and very aged (36-month) Fischer 344/NNiaHSd x Brown Norway/BiNia (F344/NXBN) rats. Compared to adult (6-month) hearts, indices of oxidative (superoxide anion [O2*-], 4-hydroxy-2-nonenal [4-HNE]) and nitrosative (protein nitrotyrosylation) stress were 34.1 +/- 28.1%, 186 +/- 28.1% and 94 +/- 5.8% higher, respectively, in 36-month hearts and these findings were highly correlated with increases in left ventricular wall thickness (r > 0.669; r > 0.710 and P < 0.01, respectively). Regression analysis showed that increases in cardiac oxidative-nitrosative stress with aging were significantly correlated with changes in the expression and/or regulation of proteins involved in transcriptional (NF-kappaB) activities, signaling (mitogen-activated protein kinases along with Src), apoptotic (Bcl-2, Traf-2), and cellular stress (HSPs). These results suggest that the aging F344/NXBN heart may be highly suited for unraveling the molecular events that lead to age-associated alterations in cardiac oxidative stress.
Collapse
Affiliation(s)
- Shinichi Asano
- Department of Biological Sciences, Marshall University, Huntington, West Virginia 25755-1090, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Mitogen-activated protein (MAP) kinases belong to a highly conserved family of Ser-Thr protein kinases in the human kinome and have diverse roles in broad physiological functions. The 4 best-characterized MAP kinase pathways, ERK1/2, JNK, p38, and ERK5, have been implicated in different aspects of cardiac regulation, from development to pathological remodeling. Recent advancements in the development of kinase-specific inhibitors and genetically engineered animal models have revealed significant new insights about MAP kinase pathways in the heart. However, this explosive body of new information also has yielded many controversies about the functional role of specific MAP kinases as either detrimental promoters or critical protectors of the heart during cardiac pathological processes. These uncertainties have raised questions on whether/how MAP kinases can be targeted to develop effective therapies against heart diseases. In this review, recent studies examining the role of MAP kinase subfamilies in cardiac development, hypertrophy, and survival are summarized.
Collapse
Affiliation(s)
- Yibin Wang
- Department of Anesthesiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
47
|
Tran TH, Andreka P, Rodrigues CO, Webster KA, Bishopric NH. Jun kinase delays caspase-9 activation by interaction with the apoptosome. J Biol Chem 2007; 282:20340-50. [PMID: 17483091 DOI: 10.1074/jbc.m702210200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of c-Jun N-terminal kinase 1/2 (JNK) can delay oxidant-induced cell death, but the mechanism is unknown. We found that oxidant stress of cardiac myocytes activated both JNK and mitochondria-dependent apoptosis and that expression of JNK inhibitory mutants accelerated multiple steps in this pathway, including the cleavage and activation of caspases-3 and -9 and DNA internucleosomal cleavage, without affecting the rate of cytochrome c release; JNK inhibition also increased caspase-3 and -9 cleavage in a cell-free system. On activation by GSNO or H(2)O(2), JNK formed a stable association with oligomeric Apaf-1 in a approximately 1.4-2.0 mDa pre-apoptosome complex. Formation of this complex could be triggered by addition of cytochrome c and ATP to the cell-free cytosol. JNK inhibition abrogated JNK-Apaf-1 association and accelerated the association of procaspase-9 and Apaf-1 in both intact cells and cell-free extracts. We conclude that oxidant-activated JNK associates with Apaf-1 and cytochrome c in a catalytically inactive complex. We propose that this interaction delays formation of the active apoptosome, promoting cell survival during short bursts of oxidative stress.
Collapse
Affiliation(s)
- Thanh H Tran
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | | | |
Collapse
|
48
|
Barrick CJ, Rojas M, Schoonhoven R, Smyth SS, Threadgill DW. Cardiac response to pressure overload in 129S1/SvImJ and C57BL/6J mice: temporal- and background-dependent development of concentric left ventricular hypertrophy. Am J Physiol Heart Circ Physiol 2007; 292:H2119-30. [PMID: 17172276 DOI: 10.1152/ajpheart.00816.2006] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Left ventricular hypertrophy (LVH), a risk factor for cardiovascular morbidity and mortality, is commonly caused by essential hypertension. Three geometric patterns of LVH can be induced by hypertension: concentric remodeling, concentric hypertrophy, and eccentric hypertrophy. Clinical studies suggest that different underlying etiologies, genetic modifiers, and risk of mortality are associated with LVH geometric patterns. Since pressure overload-induced LVH can be modeled experimentally using transverse aortic constriction (TAC) and since C57BL/6J (B6) and 129S1/SvImJ (129S1) strains, which have different baseline cardiovascular phenotypes, are commonly used, we conducted serial echocardiographic studies to assess cardiac function up to 8 wk of post-TAC in male B6, 129S1, and B6129F1 (F1) mice. B6 mice had an earlier onset and more pronounced impairment in contractile function, with corresponding left and right ventricular dilatation, fibrosis, change in expression of hypertrophy marker, and increased liver weights at 5 wk of post-TAC. These observations suggest that B6 mice had eccentric hypertrophy with systolic dysfunction and right-sided heart failure. In contrast, we found that 129S1 and F1 mice delayed transition to decompensated heart failure, with 129S1 mice exhibiting preserved systolic function until 8 wk of post-TAC and relatively mild alterations in histology and markers of hypertrophy at 5 wk post-TAC. Consistent with concentric hypertrophy, our results show that these strains manifest different cardiac responses to pressure overload in a time-dependent manner and that genetic susceptibility to initial concentric hypertrophy is dominant to eccentric hypertrophy. These results also imply that genetic background differences can complicate interpretation of TAC studies when using mixed genetic backgrounds.
Collapse
Affiliation(s)
- Cordelia J Barrick
- Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
49
|
Bogoyevitch MA. The isoform-specific functions of the c-Jun N-terminal Kinases (JNKs): differences revealed by gene targeting. Bioessays 2007; 28:923-34. [PMID: 16937364 DOI: 10.1002/bies.20458] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The c-Jun N-terminal kinases (JNKs) are members of the mitogen-activated protein kinase (MAPK) family. In mammalian genomes, three genes encode the JNK family. To evaluate JNK function, mice have been created with deletions in one or more of three Jnk genes. Initial studies on jnk1(-/-) or jnk2(-/-) mice have shown roles for these JNKs in the immune system whereas studies on jnk3(-/-) mice have highlighted roles for JNK3 in the nervous system. Further studies have highlighted the contributions of JNK1 and/or JNK2 to a range of biological and pathological processes. These include bone remodelling and joint disease, inflammatory and autoimmune diseases, obesity, diabetes, cardiovascular disease, liver disease and tumorigenesis in addition to effects in neurons. These results emphasise the differences in the roles played by JNK isoforms in vivo and suggest that the design of JNK inhibitors for subsequent therapeutic uses may benefit from selective inhibition of individual JNK isoforms.
Collapse
Affiliation(s)
- Marie A Bogoyevitch
- Cell Signalling Laboratory, Biochemistry and Molecular Biology (M310), School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia, Crawley, Western Australia, Australia.
| |
Collapse
|
50
|
Gerits N, Kostenko S, Moens U. In vivo functions of mitogen-activated protein kinases: conclusions from knock-in and knock-out mice. Transgenic Res 2007; 16:281-314. [PMID: 17219248 DOI: 10.1007/s11248-006-9052-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Accepted: 10/24/2006] [Indexed: 01/09/2023]
Abstract
Multicellular organisms achieve intercellular communication by means of signalling molecules whose effect on the target cell is mediated by signal transduction pathways. Such pathways relay, amplify and integrate signals to elicit appropriate biological responses. Protein kinases form crucial intermediate components of numerous signalling pathways. One group of protein kinases, the mitogen-activated protein kinases (MAP kinases) are kinases involved in signalling pathways that respond primarily to mitogens and stress stimuli. In vitro studies revealed that the MAP kinases are implicated in several cellular processes, including cell division, differentiation, cell survival/apoptosis, gene expression, motility and metabolism. As such, dysfunction of specific MAP kinases is associated with diseases such as cancer and immunological disorders. However, the genuine in vivo functions of many MAP kinases remain elusive. Genetically modified mouse models deficient in a specific MAP kinase or expressing a constitutive active or a dominant negative variant of a particular MAP kinase offer valuable tools for elucidating the biological role of these protein kinases. In this review, we focus on the current status of MAP kinase knock-in and knock-out mouse models and their phenotypes. Moreover, examples of the application of MAP kinase transgenic mice for validating therapeutic properties of specific MAP kinase inhibitors, and for investigating the role of MAP kinase in pathogen-host interactions will be discussed.
Collapse
Affiliation(s)
- Nancy Gerits
- Department of Microbiology and Virology, Institute of Medical Biology, University of Tromsø, Tromsø, Norway.
| | | | | |
Collapse
|