1
|
Denis AA, Toledo D, Hakim QA, Quintana AA, Escobar CR, Oluwole SA, Costa A, Garcia EG, Hill AR, Agatemor C. Ligand-Independent Activation of Aryl Hydrocarbon Receptor and Attenuation of Glutamine Levels by Natural Deep Eutectic Solvent. Chembiochem 2023; 24:e202300540. [PMID: 37615422 DOI: 10.1002/cbic.202300540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 08/25/2023]
Abstract
Natural deep eutectic solvents (NADESs) are emerging sustainable alternatives to conventional organic solvents. Beyond their role as laboratory solvents, NADESs are increasingly explored in drug delivery and as therapeutics. Their increasing applications notwithstanding, our understanding of how they interact with biomolecules at multiple levels - metabolome, proteome, and transcriptome - within human cell remain poor. Here, we deploy integrated metabolomics, proteomics, and transcriptomics to probe how NADESs perturb the molecular landscape of human cells. In a human cell line model, we found that an archetypal NADES derived from choline and geranic acid (CAGE) significantly altered the metabolome, proteome, and transcriptome. CAGE upregulated indole-3-lactic acid and 4-hydroxyphenyllactic acid levels, resulting in ligand-independent activation of aryl hydrocarbon receptor to signal the transcription of genes with implications for inflammation, immunomodulation, cell development, and chemical detoxification. Further, treating the cell line with CAGE downregulated glutamine biosynthesis, a nutrient rapidly proliferating cancer cells require. CAGE's ability to attenuate glutamine levels is potentially relevant for cancer treatment. These findings suggest that NADESs, even when derived from natural components like choline, can indirectly modulate cell biology at multiple levels, expanding their applications beyond chemistry to biomedicine and biotechnology.
Collapse
Affiliation(s)
| | - Daniela Toledo
- Department of Chemistry, University of Miami, Miami, FL-33146, USA
| | | | | | | | | | - Arthur Costa
- Department of Chemistry, University of Miami, Miami, FL-33146, USA
| | | | - Anaya Rose Hill
- Department of Biology, University of Miami, Miami, FL-33146, USA
| | - Christian Agatemor
- Department of Chemistry, University of Miami, Miami, FL-33146, USA
- Department of Biology, University of Miami, Miami, FL-33146, USA
- Sylvester Comprehensive Cancer Center, University of Miami Health System, University of Miami, Miami, FL-33136, USA
| |
Collapse
|
2
|
Yagishita Y, Joshi T, Kensler TW, Wakabayashi N. Transcriptional Regulation of Math1 by Aryl Hydrocarbon Receptor: Effect on Math1 + Progenitor Cells in Mouse Small Intestine. Mol Cell Biol 2023; 43:43-63. [PMID: 36720468 PMCID: PMC9937019 DOI: 10.1080/10985549.2022.2160610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/29/2022] [Indexed: 01/28/2023] Open
Abstract
The physiological roles of aryl hydrocarbon receptor (AhR) in the small intestine have been revealed as immunomodulatory and barrier functions. However, its contributions to cell fate regulation are incompletely understood. The Notch-activated signaling cascade is a central component of intestinal cell fate determinations. The lateral inhibitory mechanism governed by Notch directs cell fates toward distinct cell lineages (i.e., absorptive and secretory cell lineages) through its downstream effector, mouse atonal homolog 1 (MATH1). An investigation employing cell lines and intestinal crypt cells revealed that AhR regulates Math1 expression in a xenobiotic response element (XRE)-dependent manner. The AhR-Math1 axis was further addressed using intestinal organoids, where AhR-Math1 and HES1-Math1 axes appeared to coexist within the underlying Math1 transcriptional machinery. When the HES1-Math1 axis was pharmacologically suppressed, β-naphthoflavone-mediated AhR activation increased the number of goblet and Math1+ progenitor cells in the organoids. The same pharmacological dissection of the AhR-Math1 axis was applied in vivo, demonstrating an enhanced number of Math1+ progenitor cells in the small intestine following AhR activation. We report here that AhR-Math1 is a direct transcriptional axis with effects on Math1+ progenitor cells in the small intestine, highlighting a novel molecular basis for fine-tuning Notch-mediated cell fate regulation.
Collapse
Affiliation(s)
- Yoko Yagishita
- Translational Research Program, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Tanvi Joshi
- Translational Research Program, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Thomas W. Kensler
- Translational Research Program, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Nobunao Wakabayashi
- Translational Research Program, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| |
Collapse
|
3
|
Fang J, Wang D, Kramer NI, Rietjens IMCM, Boogaard PJ, Kamelia L. The role of receptor-mediated activities of 4- and 5-ring unsubstituted and methylated polycyclic aromatic hydrocarbons (PAHs) in developmental toxicity. J Appl Toxicol 2022; 43:845-861. [PMID: 36585251 DOI: 10.1002/jat.4428] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/11/2022] [Accepted: 12/22/2022] [Indexed: 01/01/2023]
Abstract
The present study evaluated the aryl hydrocarbon receptor (AhR), estrogen receptor-α (ER-α), and retinoic acid receptor (RAR) mediated activities of nine 4- and 5-ring unsubstituted and monomethylated polycyclic aromatic hydrocarbons (PAHs) using a series of Chemical-Activated LUciferase gene eXpression (CALUX) assays. The potential role of these aforementioned receptors in relation to the developmental toxicity of these PAHs was further assessed in the zebrafish embryotoxicity test (ZET). The results show that all nine tested PAHs were AhR agonists, benz[a]anthracene (BaA) and 8-methyl-benz[a]anthracene (8-MeBaA) were ER-α agonists, and none of the tested PAHs induced ER-α antagonistic or RAR (ant)agonistic activities. In the AhR CALUX assay, all the methylated PAHs showed higher potency (lower EC50) in activating the AhR than their respective unsubstituted PAHs, implying that the addition of a methyl substituent on the aromatic ring of PAHs could enhance their AhR-mediated activities. Co-exposure of zebrafish embryos with each individual PAH and an AhR antagonist (CH223191) counteracted the observed developmental retardations and embryo lethality to a certain extent, except for 8-methyl-benzo[a]pyrene (8-MeBaP). Co-exposure of zebrafish embryos with either of the two estrogenic PAHs (i.e., BaA and 8-MeBaA) and an ER-α antagonist (fulvestrant) neutralized embryo lethality induced by 50 μM BaA and the developmental retardations induced by 15 μM 8-MeBaA. Altogether, our findings suggest that the observed developmental retardations in zebrafish embryos by the PAH tested may partially be AhR- and/or ER-α-mediated, whereas the RAR seems not to be relevant for the PAH-induced developmental toxicity in the ZET.
Collapse
Affiliation(s)
- Jing Fang
- Division of Toxicology, Wageningen University and Research, Wageningen, 6708 WE, The Netherlands
| | - Danlei Wang
- Division of Toxicology, Wageningen University and Research, Wageningen, 6708 WE, The Netherlands
| | - Nynke I Kramer
- Division of Toxicology, Wageningen University and Research, Wageningen, 6708 WE, The Netherlands
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University and Research, Wageningen, 6708 WE, The Netherlands
| | - Peter J Boogaard
- Division of Toxicology, Wageningen University and Research, Wageningen, 6708 WE, The Netherlands
| | - Lenny Kamelia
- Shell Global Solutions International B.V., The Hague, The Netherlands
| |
Collapse
|
4
|
Nacarino-Palma A, Rico-Leo EM, Campisi J, Ramanathan A, González-Rico FJ, Rejano-Gordillo CM, Ordiales-Talavero A, Merino JM, Fernández-Salguero PM. Aryl hydrocarbon receptor blocks aging-induced senescence in the liver and fibroblast cells. Aging (Albany NY) 2022; 14:4281-4304. [PMID: 35619220 PMCID: PMC9186759 DOI: 10.18632/aging.204103] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 03/06/2022] [Indexed: 01/10/2023]
Abstract
Aging impairs organismal homeostasis leading to multiple pathologies. Yet, the mechanisms and molecular intermediates involved are largely unknown. Here, we report that aged aryl hydrocarbon receptor-null mice (AhR-/-) had exacerbated cellular senescence and more liver progenitor cells. Senescence-associated markers β-galactosidase (SA-β-Gal), p16Ink4a and p21Cip1 and genes encoding senescence-associated secretory phenotype (SASP) factors TNF and IL1 were overexpressed in aged AhR-/- livers. Chromatin immunoprecipitation showed that AhR binding to those gene promoters repressed their expression, thus adjusting physiological levels in AhR+/+ livers. MCP-2, MMP12 and FGF secreted by senescent cells were overproduced in aged AhR-null livers. Supporting the relationship between senescence and stemness, liver progenitor cells were overrepresented in AhR-/- mice, probably contributing to increased hepatocarcinoma burden. These AhR roles are not liver-specific since adult and embryonic AhR-null fibroblasts underwent senescence in culture, overexpressing SA-β-Gal, p16Ink4a and p21Cip1. Notably, depletion of senescent cells with the senolytic agent navitoclax restored expression of senescent markers in AhR-/- fibroblasts, whereas senescence induction by palbociclib induced an AhR-null-like phenotype in AhR+/+ fibroblasts. AhR levels were downregulated by senescence in mouse lungs but restored upon depletion of p16Ink4a-expressing senescent cells. Thus, AhR restricts age-induced senescence associated to a differentiated phenotype eventually inducing resistance to liver tumorigenesis.
Collapse
Affiliation(s)
- Ana Nacarino-Palma
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, Badajoz 06071, Spain.,Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Badajoz 06071, Spain
| | - Eva M Rico-Leo
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, Badajoz 06071, Spain.,Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Badajoz 06071, Spain
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA 94945, USA.,Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | - Francisco J González-Rico
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, Badajoz 06071, Spain.,Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Badajoz 06071, Spain
| | - Claudia M Rejano-Gordillo
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, Badajoz 06071, Spain.,Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Badajoz 06071, Spain
| | - Ana Ordiales-Talavero
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, Badajoz 06071, Spain.,Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Badajoz 06071, Spain
| | - Jaime M Merino
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, Badajoz 06071, Spain.,Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Badajoz 06071, Spain
| | - Pedro M Fernández-Salguero
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, Badajoz 06071, Spain.,Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Badajoz 06071, Spain
| |
Collapse
|
5
|
The human fungal pathogen Malassezia and its role in cancer. FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2021.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Hansen BH, Nordtug T, Farkas J, Khan EA, Oteri E, Kvæstad B, Faksness LG, Daling PS, Arukwe A. Toxicity and developmental effects of Arctic fuel oil types on early life stages of Atlantic cod (Gadus morhua). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 237:105881. [PMID: 34139396 DOI: 10.1016/j.aquatox.2021.105881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 05/18/2021] [Accepted: 05/30/2021] [Indexed: 06/12/2023]
Abstract
Due to the heavy fuel oil (HFO) ban in Arctic maritime transport and new legislations restricting the sulphur content of fuel oils, new fuel oil types are continuously developed. However, the potential impacts of these new fuel oil types on marine ecosystems during accidental spills are largely unknown. In this study, we studied the toxicity of three marine fuel oils (two marine gas oils with low sulphur contents and a heavy fuel oil) in early life stages of cod (Gadus morhua). Embryos were exposed for 4 days to water-soluble fractions of fuel oils at concentrations ranging from 4.1 - 128.3 µg TPAH/L, followed by recovery in clean seawater until 17 days post fertilization. Exposure to all three fuel oils resulted in developmental toxicity, including severe morphological changes, deformations and cardiotoxicity. To assess underlying molecular mechanisms, we studied fuel oil-mediated activation of aryl hydrocarbon receptor (Ahr) gene battery and genes related to cardiovascular, angiogenesis and osteogenesis pathways. Overall, our results suggest comparable mechanisms of toxicity for the three fuel oils. All fuel oils caused concentration-dependant increases of cyp1a mRNA which paralleled ahrr, but not ahr1b transcript expression. On the angiogenesis and osteogenesis pathways, fuel oils produced concentration-specific transcriptional effects that were either increasing or decreasing, compared to control embryos. Based on the observed toxic responses, toxicity threshold values were estimated for individual endpoints to assess the most sensitive molecular and physiological effects, suggesting that unresolved petrogenic components may be significant contributors to the observed toxicity.
Collapse
Affiliation(s)
| | - Trond Nordtug
- SINTEF Ocean, Climate and Environment, Trondheim, Norway
| | - Julia Farkas
- SINTEF Ocean, Climate and Environment, Trondheim, Norway
| | - Essa A Khan
- Norwegian University of Science and Technology, Department of Biology, Trondheim, Norway
| | - Erika Oteri
- Norwegian University of Science and Technology, Department of Biology, Trondheim, Norway
| | - Bjarne Kvæstad
- SINTEF Ocean, Climate and Environment, Trondheim, Norway
| | | | - Per S Daling
- SINTEF Ocean, Climate and Environment, Trondheim, Norway
| | - Augustine Arukwe
- Norwegian University of Science and Technology, Department of Biology, Trondheim, Norway
| |
Collapse
|
7
|
Kamelia L, Rietjens IMCM, Boogaard PJ. Developmental toxicity testing of the fume condensate extracts of bitumen and oxidized asphalt in a series of in vitro alternative assays. Toxicol In Vitro 2021; 75:105195. [PMID: 34022403 DOI: 10.1016/j.tiv.2021.105195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/03/2021] [Accepted: 05/15/2021] [Indexed: 12/26/2022]
Abstract
The potential developmental toxicity and mode-of-action of fume condensate extracts of bitumen and oxidized asphalt were evaluated in the aryl hydrocarbon receptor (AhR) CALUX assay, the zebrafish embryotoxicity test (ZET), and the mouse embryonic stem cell test (mEST). In the AhR CALUX assay, both fume condensate extracts showed a concentration-dependent AhR induction following 6-h of exposure, but this activity was substantially reduced after 24-h, indicating a transient AhR activation. The main effect observed in the ZET was early embryonic lethality that occurred mostly in the 24 h-post-fertilization (hpf). This typically reflects non-specific toxicity rather than in vitro developmental toxicity of the fume condensate extracts tested since this effect was not seen as a result of the whole cumulative exposure period in the ZET (up to 96 hpf). No malformations were seen in any zebrafish embryo exposed to these fume condensate extracts, although some developed pericardial and/or yolk-sac edemas. Furthermore, both fume condensate extracts tested negative in the mEST. In conclusion, the results show that fume condensate extracts of bitumen and oxidized asphalt do not induce any in vitro developmental toxicity, which is in line with the results observed in the in vivo prenatal developmental toxicity studies performed with the same materials.
Collapse
Affiliation(s)
- Lenny Kamelia
- Division of Toxicology, Wageningen University and Research, 6708 WE, Wageningen, The Netherlands.
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University and Research, 6708 WE, Wageningen, The Netherlands
| | - Peter J Boogaard
- Division of Toxicology, Wageningen University and Research, 6708 WE, Wageningen, The Netherlands; Shell Health, Shell International Bv, PO Box 162, 2501 AN, The Hague, The Netherlands
| |
Collapse
|
8
|
Guzmán-Navarro G, de León MB, Martín-Estal I, Durán RCD, Villarreal-Alvarado L, Vaquera-Vázquez A, Cuevas-Cerda T, Garza-García K, Cuervo-Pérez LE, Barbosa-Quintana Á, Pérez-Saucedo JE, Lara-Díaz VJ, Castorena-Torres F. Prenatal indole-3-carbinol administration activates aryl hydrocarbon receptor-responsive genes and attenuates lung injury in a bronchopulmonary dysplasia model. Exp Biol Med (Maywood) 2021; 246:695-706. [PMID: 33148012 PMCID: PMC7988727 DOI: 10.1177/1535370220963789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Hyperoxia-hypoxia exposure is a proposed cause of alveolar developmental arrest in bronchopulmonary dysplasia in preterm infants, where mitochondrial reactive oxygen species and oxidative stress vulnerability are increased. The aryl hydrocarbon receptor (AhR) is one of the main activators of the antioxidant enzyme system that protects tissues and systems from damage. The present study aimed to determine if the activation of the AhR signaling pathway by prenatal administration of indole-3-carbinol (I3C) protects rat pups from hyperoxia-hypoxia-induced lung injury. To assess the activation of protein-encoding genes related to the AhR signaling pathway (Cyp1a1, Cyp1b1, Ugt1a6, Nqo1, and Gsta1), pup lungs were excised at 0, 24, and 72 h after birth, and mRNA expression levels were quantified by reverse transcription-quantitative polymerase chain reaction assays (RT-qPCR). An adapted Ratner's method was used in rats to evaluate radial alveolar counts (RACs) and the degree of fibrosis. The results reveal that the relative expression of AhR-related genes in rat pups of prenatally I3C-treated dams was significantly different from that of untreated dams. The RAC was significantly lower in the hyperoxia-hypoxia group (4.0 ± 1.0) than that in the unexposed control group (8.0 ± 2.0; P < 0.01). When rat pups of prenatally I3C-treated dams were exposed to hyperoxia-hypoxia, an RAC recovery was observed, and the fibrosis index was similar to that of the unexposed control group. A cytokine antibody array revealed an increase in the NF-κB signaling cascade in I3C-treated pups, suggesting that the pathway could regulate the inflammatory process under the stimulus of this compound. In conclusion, the present study demonstrates that I3C prenatal treatment activates AhR-responsive genes in pup's lungs and hence attenuates lung damage caused by hyperoxia-hypoxia exposure in newborns.
Collapse
Affiliation(s)
- Gabriela Guzmán-Navarro
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, Mexico
| | - Mario Bermúdez de León
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey 64720, Mexico
| | - Irene Martín-Estal
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, Mexico
| | | | | | | | - Tania Cuevas-Cerda
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, Mexico
| | - Karina Garza-García
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, Mexico
| | | | | | | | - Víctor J Lara-Díaz
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, Mexico
| | | |
Collapse
|
9
|
Keshavarzi M, Khoshnoud MJ, Ghaffarian Bahraman A, Mohammadi-Bardbori A. An Endogenous Ligand of Aryl Hydrocarbon Receptor 6-Formylindolo[3,2-b]Carbazole (FICZ) Is a Signaling Molecule in Neurogenesis of Adult Hippocampal Neurons. J Mol Neurosci 2020; 70:806-817. [DOI: 10.1007/s12031-020-01506-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/05/2020] [Indexed: 01/08/2023]
|
10
|
Liu X, Li X, Tao Y, Li N, Ji M, Zhang X, Chen Y, He Z, Yu K, Yu Z. TCDD inhibited the osteogenic differentiation of human fetal palatal mesenchymal cells through AhR and BMP-2/TGF-β/Smad signaling. Toxicology 2019; 431:152353. [PMID: 31887333 DOI: 10.1016/j.tox.2019.152353] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/17/2019] [Accepted: 12/26/2019] [Indexed: 12/13/2022]
Abstract
Exposure to environmental toxicant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) causes cleft palate at high rates, but little is known about the underlying biological mechanisms. In the present study, we cultured osteoblasts from human fetal palate mesenchymal cells (hFPMCs) to explore the effects of TCDD on osteogenic differentiation. The results showed that TCDD significantly decreased cell proliferation, alkaline phosphatase (ALP) activity and calcium deposition. RNA analyses and protein detection demonstrated that TCDD downregulated a wide array of pro-osteogenic biomarkers. Further investigation of the underlying molecular mechanisms revealed that exposure to TCDD activated aryl hydrocarbon receptor (AhR) signaling and inhibited BMP-2/TGF-β1/Smad pathway molecules. The inactivation of AhR signaling using CRISPR/Cas9-mediated AhR deletion or by genetic siRNA knockdown significantly blocked the effects induced by TCDD, suggesting a critical role of AhR activation in the TCDD-mediated inhibition of hFPMC osteogenic differentiation. The cotreatment with TGF-β1 or BMP-2 and TCDD significantly relieved the activation of AhR and rescued the impairment of osteogenesis caused by TCDD. Taken together, our findings indicated that TCDD inhibited the osteogenic differentiation of hFPMCs via crosstalk between AhR and BMP-2/TGF-β1/Smad signaling pathway.
Collapse
Affiliation(s)
- Xiaozhuan Liu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xue Li
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuchang Tao
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Ning Li
- College of Food Science and Technology, Henan Agricultural University, China
| | - Mengmeng Ji
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiuli Zhang
- Division of Blood Vessel Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yao Chen
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhidong He
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Kailun Yu
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Zengli Yu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China; School of Public Health, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
11
|
Kamelia L, de Haan L, Spenkelink B, Bruyneel B, Ketelslegers HB, Boogaard PJ, Rietjens IMCM. The role of metabolism in the developmental toxicity of polycyclic aromatic hydrocarbon-containing extracts of petroleum substances. J Appl Toxicol 2019; 40:330-341. [PMID: 31808176 PMCID: PMC7028058 DOI: 10.1002/jat.3906] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 12/17/2022]
Abstract
In vitro assays presently used for prenatal developmental toxicity (PDT) testing only assess the embryotoxic potential of parent substances and not that of potentially embryotoxic metabolites. Here we combined a biotransformation system, using hamster liver microsomes, with the ES‐D3 cell differentiation assay of the embryonic stem cell test (EST) to compare the in vitro PDT potency of two 5‐ring polycyclic aromatic hydrocarbons (PAHs), benzo[a]pyrene (BaP) and dibenz[a,h]anthracene (DBA), and dimethyl sulfoxide extracts from five PAH‐containing petroleum substances (PS) and a gas‐to‐liquid base oil (GTLb), with and without bioactivation. In the absence of bioactivation, DBA, but not BaP, inhibited the differentiation of ES‐D3 cells into beating cardiomyocytes in a concentration‐dependent manner. Upon bioactivation, BaP induced in vitro PDT, while its major metabolite 3‐hydroxybenzo[a]pyrene was shown to be active in the EST as well. This means BaP needs biotransformation to exert its embryotoxic effects. GTLb extracts tested negative in the EST, with and without bioactivation. The PS‐induced PDT in the EST was not substantially changed following bioactivation, implying that metabolism may not play a crucial role for the PS extracts under study to exert the in vitro PDT effects. Altogether, these results indicate that although some PAH require bioactivation to induce PDT, some do not and this latter appears to hold for the (majority of) the PS constituents responsible for the in vitro PDT of these complex substances. The present study combines a biotransformation system, using hamster liver microsomes, with the embryonic stem cell test to compare the in vitro prenatal developmental toxicity potency of two 5‐ring polycyclic aromatic hydrocarbons, benzo[a]pyrene and dibenz[a,h]anthracene, and dimethyl sulfoxide extracts from five PAH‐containing petroleum substances and a gas‐to‐liquid base oil, with and without bioactivation.
Collapse
Affiliation(s)
- Lenny Kamelia
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands
| | - Laura de Haan
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands
| | - Bert Spenkelink
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands
| | - Ben Bruyneel
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands
| | - Hans B Ketelslegers
- European Petroleum Refiners Association, Concawe Division, Brussels, Belgium
| | - Peter J Boogaard
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands.,Shell Health, Shell International B.V., The Hague, The Netherlands
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
12
|
Hammond CL, Roztocil E, Phipps RP, Feldon SE, Woeller CF. Proton pump inhibitors attenuate myofibroblast formation associated with thyroid eye disease through the aryl hydrocarbon receptor. PLoS One 2019; 14:e0222779. [PMID: 31536596 PMCID: PMC6752849 DOI: 10.1371/journal.pone.0222779] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/06/2019] [Indexed: 12/15/2022] Open
Abstract
Thyroid eye disease (TED) can lead to scar formation and tissue remodeling in the orbital space. In severe cases, the scarring process leads to sight-threatening pathophysiology. There is no known effective way to prevent scar formation in TED patients, or to reverse scarring once it occurs. In this study, we show that the proton pump inhibitors (PPIs), esomeprazole and lansoprazole, can prevent transforming growth factor beta (TGFβ)-mediated differentiation of TED orbital fibroblasts to myofibroblasts, a critical step in scar formation. Both PPIs prevent TGFβ-induced increases in alpha-smooth muscle actin (αSMA), calponin, and collagen production and reduce TED orbital fibroblast cell proliferation and migration. Esomeprazole and lansoprazole exert these effects through an aryl hydrocarbon receptor (AHR)-dependent pathway that includes reducing β-catenin/Wnt signaling. We conclude that PPIs are potentially useful therapies for preventing or treating TED by reducing the myofibroblast accumulation that occurs in the disease.
Collapse
Affiliation(s)
- Christine L. Hammond
- Flaum Eye Institute, School of Medicine and Dentistry, University of Rochester, Rochester, New York, United States of America
| | - Elisa Roztocil
- Flaum Eye Institute, School of Medicine and Dentistry, University of Rochester, Rochester, New York, United States of America
| | - Richard P. Phipps
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, New York, United States of America
| | - Steven E. Feldon
- Flaum Eye Institute, School of Medicine and Dentistry, University of Rochester, Rochester, New York, United States of America
| | - Collynn F. Woeller
- Flaum Eye Institute, School of Medicine and Dentistry, University of Rochester, Rochester, New York, United States of America
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, New York, United States of America
| |
Collapse
|
13
|
Kamelia L, Louisse J, de Haan L, Maslowska-Gornicz A, Ketelslegers HB, Brouwer A, Rietjens IMCM, Boogaard PJ. The Role of Endocrine and Dioxin-Like Activity of Extracts of Petroleum Substances in Developmental Toxicity as Detected in a Panel of CALUX Reporter Gene Assays. Toxicol Sci 2019; 164:576-591. [PMID: 29726971 PMCID: PMC6061685 DOI: 10.1093/toxsci/kfy114] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recent evidence suggests that the interaction of polycyclic aromatic hydrocarbons (PAHs), present in some petroleum substances (PS), with particular nuclear-hormone-receptors and/or the dioxin (aryl hydrocarbon receptor [AhR]) receptor, may play a role in the prenatal developmental toxicity (PDT) induced by these substances. To address this hypothesis, we evaluated the possible endocrine and dioxin-like activity of the dimethylsulfoxide (DMSO)-extracts of 9 PS, varying in PAH content, and 2 gas-to-liquid (GTL) products, containing no PAHs but having similar other properties as PS, using a series of Chemical Activated LUciferase gene eXpression (CALUX) assays. The results show that the extracts of PS tested in this study possess various endocrine and dioxin-like activities and these in vitro potencies are associated with the quantity and type of PAHs they contain. All tested DMSO-extracts of PS show a strong AhR agonist activity and rather weak antiprogesterone, antiandrogen, and estrogenic activities. In the assays that evaluate thyroid-related and antiestrogen activity, only minor effects of specific extracts, particularly those with a substantial amount of 4–5 ring PAHs, ie, sample No. 34, 98, and 99, were observed. None of the GTL extracts interacted with the selected receptors. Of all assays, the AhR agonist activity correlates best (R2 = 0.80) with the in vitro PDT of the substances as quantified previously in the embryonic stem cell test, suggesting an important role of the AhR in mediating this effect. Hierarchic clustering of the combined CALUX data clustered the compounds in line with their chemical characteristics, suggesting a PS class-specific effects signature in the various CALUX assays, depending on the PAH profile. To conclude, our findings indicate a high potential for endocrine and dioxin-like activity of some PS extracts which correlates with their in vitro PDT and is driven by the PAHs present in these substances.
Collapse
Affiliation(s)
- Lenny Kamelia
- Division of Toxicology, Wageningen University and Research, 6708 WE Wageningen, The Netherlands
| | - Jochem Louisse
- Division of Toxicology, Wageningen University and Research, 6708 WE Wageningen, The Netherlands
| | - Laura de Haan
- Division of Toxicology, Wageningen University and Research, 6708 WE Wageningen, The Netherlands
| | - Anna Maslowska-Gornicz
- Division of Toxicology, Wageningen University and Research, 6708 WE Wageningen, The Netherlands
| | - Hans B Ketelslegers
- European Petroleum Refiners Association, Concawe Division, 1160 Brussels, Belgium
| | | | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University and Research, 6708 WE Wageningen, The Netherlands
| | - Peter J Boogaard
- Division of Toxicology, Wageningen University and Research, 6708 WE Wageningen, The Netherlands.,Shell Health, Shell International B.V., 2596HR The Hague, The Netherlands
| |
Collapse
|
14
|
Ghazi Eid B, Hanafy A, Hasan A. Aryl Hydrocarbon Receptor Is Expressed in the Prostate Gland of Lean and Obese Rats. INT J PHARMACOL 2018. [DOI: 10.3923/ijp.2018.992.1000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Silveira LTR, de Mello Santos T, Camora LF, Pinho CF, Anselmo-Franci JA, Domeniconi RF, Justulin LA, Barbisan LF, Scarano WR. Protective effect of resveratrol on urogenital sinus and prostate development in rats exposed in utero to TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin). Reprod Toxicol 2018; 83:82-92. [PMID: 29935225 DOI: 10.1016/j.reprotox.2018.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 06/07/2018] [Accepted: 06/19/2018] [Indexed: 12/21/2022]
Abstract
This study evaluated the protective effects of resveratrol on the prostate development of rats exposed to TCDD. Pregnant rats received TCDD (1 μg/kg) at GD15 and/or RES (20 mg/kg/day) from GD10 to PND21. Newborn and adult males from Control, TCDD, TCDD + RES and RES groups were euthanized and the prostate was excised. On PND1, there was a reduction in the number of prostatic buds, AR-positive mesenchymal cells and proliferation index in epithelial and mesenchymal cells in TCDD group, but restored by RES. AhR immunoreactivity was greater in TCDD group than the other groups. On PND90, there was higher frequency of functional hyperplasia in the distal area of the prostate acini in TCDD group, but restored by RES. AhRR expression was higher in the TCDD while NRF2 was higher in the TCDD + RES compared to the other groups. Resveratrol was able to reduce the adverse effects of TCDD on prostate development and its long-term repercussions.
Collapse
Affiliation(s)
| | | | - Lucas Fredini Camora
- Department of Morphology, São Paulo State University - UNESP, Institute of Biosciences, Brazil
| | | | | | | | - Luis Antonio Justulin
- Department of Morphology, São Paulo State University - UNESP, Institute of Biosciences, Brazil
| | - Luis Fernando Barbisan
- Department of Morphology, São Paulo State University - UNESP, Institute of Biosciences, Brazil
| | | |
Collapse
|
16
|
Roman ÁC, Carvajal-Gonzalez JM, Merino JM, Mulero-Navarro S, Fernández-Salguero PM. The aryl hydrocarbon receptor in the crossroad of signalling networks with therapeutic value. Pharmacol Ther 2017; 185:50-63. [PMID: 29258844 DOI: 10.1016/j.pharmthera.2017.12.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is well-known for its major contributions to the cellular responses against environmental toxins and carcinogens. Notably, AhR has also emerged as a key transcription factor controlling many physiological processes including cell proliferation and apoptosis, differentiation, adhesion and migration, pluripotency and stemness. These novel functions have broadened our understanding of the signalling pathways and molecular intermediates interacting with AhR under both homeostatic and pathological conditions. Recent discoveries link AhR with the function of essential organs such as liver, skin and gonads, and with complex organismal structures including the immune and cardiovascular systems. The identification of potential endogenous ligands able to regulate AhR activity, opens the possibility of designing ad hoc molecules with pharmacological and/or therapeutic value to treat human diseases in which AhR may have a causal role. Integration of experimental data from in vitro and in vivo studies with "omic" analyses of human patients affected with cancer, immune diseases, inflammation or neurological disorders will likely contribute to validate the clinical relevance of AhR and the possible benefits of modulating its activity by pharmacologically-driven strategies. In this review, we will highlight signalling pathways involved in human diseases that could be targetable by AhR modulators and discuss the feasibility of using such molecules in therapy. The pros and cons of AhR-aimed approaches will be also mentioned.
Collapse
Affiliation(s)
- Ángel C Roman
- Champalimaud Neuroscience Programme, Champalimoud Center for the Unknown, Lisbon, Portugal
| | - José M Carvajal-Gonzalez
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain
| | - Jaime M Merino
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain
| | - Sonia Mulero-Navarro
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain.
| | - Pedro M Fernández-Salguero
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain.
| |
Collapse
|
17
|
Zhou Y, Jiang R, An L, Wang H, Cheng S, Qiong S, Weng Y. Benzo[a]pyrene impedes self-renewal and differentiation of mesenchymal stem cells and influences fracture healing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 587-588:305-315. [PMID: 28249752 DOI: 10.1016/j.scitotenv.2017.02.152] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/17/2017] [Accepted: 02/18/2017] [Indexed: 05/20/2023]
Abstract
Mesenchymal stem cells (MSCs) are implicated in the bone-forming process during fracture repair. Benzo[a]pyrene (BaP)-a cigarette smoke component and powerful motivator of the aryl hydrocarbon receptor (Ahr)-unfavorably influences bone condition and osteoblast differentiation. The first thing we noticed decreases self-renewal and differentiation of human bone marrow mesenchymal stem (hBM-MSCs) from smokers and activates Ahr signaling in MSCs by up-regulating the Ahr target gene cytochrome P450 (CYP) 1B1 expression. In vitro studies, we employed C3H10T1/2 and bone marrow mesenchymal stem cells (BM-MSCs) with BaP and discovered that BaP impaired innate properties of MSCs. Further investigation into MSCs showed that exposure to BaP activated Ahr signaling and inhibited TGF-β1/SMAD4 and TGF-β1/ERK/AKT signaling pathways. Corresponding with the outcomes, tibial fracture calluses produced by BaP-administered rats appeared to delay healing. This effect of BaP was abrogated by resveratrol, a natural Ahr antagonist, in vitro and in vivo. These data demonstrated that Ahr may play a key role in BaP-impaired innate properties by inhibiting SMAD-dependent signaling pathways TGF-β1/SMAD4 and SMAD-independent TGF-β1/ERK/AKT signaling pathways. Furthermore, resveratrol inhibited MSCs from adverse effects caused by BaP.
Collapse
Affiliation(s)
- Yiqing Zhou
- Department of Laboratory Medicine, M.O.E. Key Laboratory of Laboratory Medicine Diagnostics, Chongqing Medical University, Chongqing 400016, PR China
| | - Rong Jiang
- Department of Laboratory Medicine, M.O.E. Key Laboratory of Laboratory Medicine Diagnostics, Chongqing Medical University, Chongqing 400016, PR China
| | - Liqin An
- Department of Laboratory Medicine, M.O.E. Key Laboratory of Laboratory Medicine Diagnostics, Chongqing Medical University, Chongqing 400016, PR China
| | - Hong Wang
- Department of Laboratory Medicine, M.O.E. Key Laboratory of Laboratory Medicine Diagnostics, Chongqing Medical University, Chongqing 400016, PR China
| | - Sicheng Cheng
- Department of Laboratory Medicine, M.O.E. Key Laboratory of Laboratory Medicine Diagnostics, Chongqing Medical University, Chongqing 400016, PR China
| | - Shi Qiong
- Department of Laboratory Medicine, M.O.E. Key Laboratory of Laboratory Medicine Diagnostics, Chongqing Medical University, Chongqing 400016, PR China.
| | - Yaguang Weng
- Department of Laboratory Medicine, M.O.E. Key Laboratory of Laboratory Medicine Diagnostics, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
18
|
Liu X, Hu H, Fan H, Zuo D, Shou Z, Liao Y, Nan Z, Tang Q. The role of STAT3 and AhR in the differentiation of CD4+ T cells into Th17 and Treg cells. Medicine (Baltimore) 2017; 96:e6615. [PMID: 28445259 PMCID: PMC5413224 DOI: 10.1097/md.0000000000006615] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND This study aimed to investigate the role of aryl hydrocarbon receptor (AhR) and STAT3 gene during the differentiation of cluster of differentiation (CD)4 T cells into T helper (Th)17 and T regulatory (Treg) cells. METHODS First, CD4 T cells were isolated from the spleen of BALB/c mice. Then, stable CD4 T cells expressing STAT3 shRNA were constructed. CD4 T cells were assigned to one of the following treatments: Th17 group: antibodies against CD3 and CD28, 2.5 ng/mL transforming growth factor β (TGF-β)1, 30 ng/mL interleukin (IL)-6, and 30 ng/mL IL-23; 6-formylindolo[3,2-b]carbazole (FICZ) group: antibodies against CD3 and CD28, 2.5 ng/mL TGF-β1, 30 ng/mL IL-6, 30 ng/mL IL-23, and 100 nM FICZ; FICZ + STAT3 RNAi group (shSTAT3 group): antibodies against CD3 and CD28, 2.5 ng/mL TGF-β1, 30 ng/mL IL-6, 30 ng/mL IL-23, 100 nM FICZ, and STAT3 RNAi; naphthoflavone group: antibodies against CD3 and CD28, 2.5 ng/mL TGF-β1, 30 ng/mL IL-6, 30 ng/mL IL-23, and 3 μM naphthoflavone; 5) no antibodies were added in the control group. Later, the proportions of Th17 and Treg cells in each group were measured by flow cytometry; phospho-STAT3 and -STAT5 levels were measured by western blotting; and AhR, STAT3, STAT5, receptor-related orphan nuclear receptor γt (RORγt), FOXP3, T-cell receptor (TCR), CD25, IL-6R, IL-10, and IL-17 mRNA levels were also measured by real-time PCR. RESULT Th17 cells showed a rise and Treg cells showed a decrease in the FICZ group, but revised in the shSTAT3 group and the naphthoflavone group. Significant differences were observed in CD25, IL-6R, IL-10, and IL-17 mRNA levels among different groups. CONCLUSION STAT3 may cooperate with AhR to regulate the differentiation of both Th17 and Treg cells.
Collapse
Affiliation(s)
- Xingxing Liu
- Department of Integrated Chinese and Western Medicine
| | - Hui Hu
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Heng Fan
- Department of Integrated Chinese and Western Medicine
| | - Dongmei Zuo
- Department of Integrated Chinese and Western Medicine
| | - Zhexing Shou
- Department of Integrated Chinese and Western Medicine
| | - Yi Liao
- Department of Integrated Chinese and Western Medicine
| | - Zhen Nan
- Department of Integrated Chinese and Western Medicine
| | - Qing Tang
- Department of Integrated Chinese and Western Medicine
| |
Collapse
|
19
|
Hahn ME, Karchner SI, Merson RR. Diversity as Opportunity: Insights from 600 Million Years of AHR Evolution. CURRENT OPINION IN TOXICOLOGY 2017; 2:58-71. [PMID: 28286876 DOI: 10.1016/j.cotox.2017.02.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The aryl hydrocarbon receptor (AHR) was for many years of interest only to pharmacologists and toxicologists. However, this protein has fundamental roles in biology that are being revealed through studies in diverse animal species. The AHR is an ancient protein. AHR homologs exist in most major groups of modern bilaterian animals, including deuterostomes (chordates, hemichordates, echinoderms) and the two major clades of protostome invertebrates [ecdysozoans (e.g. arthropods and nematodes) and lophotrochozoans (e.g. molluscs and annelids)]. AHR homologs also have been identified in cnidarians such as the sea anemone Nematostella and in the genome of Trichoplax, a placozoan. Bilaterians, cnidarians, and placozoans form the clade Eumetazoa, whose last common ancestor lived approximately 600 million years ago (MYA). The presence of AHR homologs in modern representatives of all these groups indicates that the original eumetazoan animal possessed an AHR homolog. Studies in invertebrates and vertebrates reveal parallel functions of AHR in the development and function of sensory neural systems, suggesting that these may be ancestral roles. Vertebrate animals are characterized by the expansion and diversification of AHRs, via gene and genome duplications, from the ancestral protoAHR into at least five classes of AHR-like proteins: AHR, AHR1, AHR2, AHR3, and AHRR. The evolution of multiple AHRs in vertebrates coincided with the acquisition of high-affinity binding of halogenated and polynuclear aromatic hydrocarbons and the emergence of adaptive functions involving regulation of xenobiotic-metabolizing enzymes and roles in adaptive immunity. The existence of multiple AHRs may have facilitated subfunction partitioning and specialization of specific AHR types in some taxa. Additional research in diverse model and non-model species will continue to enrich our understanding of AHR and its pleiotropic roles in biology and toxicology.
Collapse
Affiliation(s)
- Mark E Hahn
- Biology Department, Woods Hole Oceanographic Institution, MS-32, Woods Hole, MA 02543, USA
| | - Sibel I Karchner
- Biology Department, Woods Hole Oceanographic Institution, MS-32, Woods Hole, MA 02543, USA
| | - Rebeka R Merson
- Biology Department, Rhode Island College, 600 Mt. Pleasant Avenue, 251 Fogarty Life Sciences, Providence, RI 02908
| |
Collapse
|
20
|
Cai Y, Pan L, Miao J, Liu T. Identification of interacting proteins with aryl hydrocarbon receptor in scallop Chlamys farreri by yeast two hybrid screening. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 133:381-389. [PMID: 27497785 DOI: 10.1016/j.ecoenv.2016.07.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 06/06/2023]
Abstract
The aryl hydrocarbon receptor (AhR) belongs to the basic-helix-loop helix (bHLH) Per-Arnt-Sim (PAS) family of transcription factors. AhR has been known primarily for its role in the regulation of several drug and xenobiotic metabolizing enzymes, as well as the mediation of the toxicity of certain xenobiotics, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Although the AhR is well-studied as a mediator of the toxicity of certain xenobiotics in marine bivalves, the normal physiological function remains unknown. In order to explore the function of the AhR, the bait protein expression plasmid pGBKT7-CfAhR and the cDNA library of gill from Chlamys farreri were constructed. By yeast two hybrid system, after multiple screening with the high screening rate medium, rotary verification, sequencing and bioinformatics analysis, the interactions of the CfAhR with receptor for activated protein kinase C 1 (RACK1), thyroid peroxidase-like protein (TPO), Toll-like receptor 4(TLR 4), androglobin-like, store-operated Ca(2+) entry (SocE), ADP/ATP carrier protein, cytochrome b, thioesterase, actin, ferritin subunit 1, poly-ubiquitin, short-chain collagen C4-like and one hypothetical protein in gill cells were identified. This study suggests that the CfAhR played fundamental roles in immune system homeostasis, oxidative stress response, and in grow and development of C. farreri. The elucidation of these protein interactions is of much importance both in understanding the normal physiological function of AhR, and as potential targets for further research on protein function in AhR interactions.
Collapse
Affiliation(s)
- Yuefeng Cai
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Luqing Pan
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China.
| | - Jingjing Miao
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Tong Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| |
Collapse
|
21
|
Freeburg SH, Engelbrecht E, Powell WH. Subfunctionalization of Paralogous Aryl Hydrocarbon Receptors from the Frog Xenopus Laevis: Distinct Target Genes and Differential Responses to Specific Agonists in a Single Cell Type. Toxicol Sci 2016; 155:337-347. [PMID: 27994169 DOI: 10.1093/toxsci/kfw212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Gene duplication confers genetic redundancy that can facilitate subfunctionalization, the partitioning of ancestral functions between paralogs. We capitalize on a recent genome duplication in Xenopus laevis (African clawed frog) to interrogate possible functional differentiation between alloalleles of the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor that mediates toxicity of dioxin-like compounds and plays a role in the physiology and development of the cardiovascular, hepatic, and immune systems in vertebrates. X. laevis has 2 AHR genes, AHR1α and AHR1β To test the hypothesis that the encoded proteins exhibit different molecular functions, we used TALENs in XLK-WG cells, generating mutant lines lacking functional versions of each AHR and measuring the transcriptional responsiveness of several target genes to the toxic xenobiotic 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and the candidate endogenous ligand 6-formylindolo[3,2-b]carbazole (FICZ). Mutation of either AHR1α or AHR1β reduced TCDD induction of the canonical AHR target, Cytochrome P4501A6, by 75%, despite the much lower abundance of AHR1β in wild-type cells. More modestly induced target genes, encoding aryl hydrocarbon receptor repressor (AHRR), spectrin repeat-containing nuclear envelope protein 1 (SYNE-1), and gap junction protein gamma 1 (GJC1), were regulated solely by AHR1α. AHR1β was responsible for CYP1A6 induction by FICZ, while AHR1α mediated FICZ induction of AHRR We conclude that AHR1α and AHR1β have distinct transcriptional functions in response to specific agonists, even within a single cell type. Functional analysis of frog AHR paralogs advances the understanding of AHR evolution and as well as the use of frog models of developmental toxicology such as FETAX.
Collapse
Affiliation(s)
| | | | - Wade H Powell
- Biology Department, Kenyon College, Gambier, Ohio 43022
| |
Collapse
|
22
|
Inhibition of the aryl hydrocarbon receptor prevents Western diet-induced obesity. Model for AHR activation by kynurenine via oxidized-LDL, TLR2/4, TGFβ, and IDO1. Toxicol Appl Pharmacol 2016; 300:13-24. [PMID: 27020609 DOI: 10.1016/j.taap.2016.03.011] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/11/2016] [Accepted: 03/21/2016] [Indexed: 12/25/2022]
Abstract
Obesity is an increasingly urgent global problem, yet, little is known about its causes and less is known how obesity can be effectively treated. We showed previously that the aryl hydrocarbon receptor (AHR) plays a role in the regulation of body mass in mice fed Western diet. The AHR is a ligand-activated nuclear receptor that regulates genes involved in a number of biological pathways, including xenobiotic metabolism and T cell polarization. This study was an investigation into whether inhibition of the AHR prevents Western diet-based obesity. Male C57Bl/6J mice were fed control and Western diets with and without the AHR antagonist α-naphthoflavone or CH-223191, and a mouse hepatocyte cell line was used to delineate relevant cellular pathways. Studies are presented showing that the AHR antagonists α-naphthoflavone and CH-223191 significantly reduce obesity and adiposity and ameliorates liver steatosis in male C57Bl/6J mice fed a Western diet. Mice deficient in the tryptophan metabolizing enzyme indoleamine 2,3-dioxygenase 1 (IDO1) were also resistant to obesity. Using an AHR-directed, luciferase-expressing mouse hepatocyte cell line, we show that the transforming growth factor β1 (TGFβ1) signaling pathway via PI3K and NF-κB and the toll-like receptor 2/4 (TLR2/4) signaling pathway stimulated by oxidized low-density lipoproteins via NF-κB, each induce luciferase expression; however, TLR2/4 signaling was significantly reduced by inhibition of IDO1. At physiological levels, kynurenine but not kynurenic acid (both tryptophan metabolites and known AHR agonists) activated AHR-directed luciferase expression. We propose a hepatocyte-based model, in which kynurenine production is increased by enhanced IDO1 activity stimulated by TGFβ1 and TLR2/4 signaling, via PI3K and NF-κB, to perpetuate a cycle of AHR activation to cause obesity; and inhibition of the AHR, in turn, blocks the cycle's output to prevent obesity. The AHR with its broad ligand binding specificity is a promising candidate for a potentially simple therapeutic approach for the prevention and treatment of obesity and associated complications.
Collapse
|
23
|
Jung JH, Kim M, Yim UH, Ha SY, Shim WJ, Chae YS, Kim H, Incardona JP, Linbo TL, Kwon JH. Differential Toxicokinetics Determines the Sensitivity of Two Marine Embryonic Fish Exposed to Iranian Heavy Crude Oil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:13639-48. [PMID: 26458192 DOI: 10.1021/acs.est.5b03729] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Interspecific difference in the developmental toxicity of crude oil to embryonic fish allows the prediction of injury extent to a number of resident fish species in oil spill sites. This study clarifies the comparative developmental effects of Iranian heavy crude oil (IHCO) on the differences of biouptake and toxic sensitivity between embryonic spotted sea bass (Lateolabrax maculates) and olive flounder (Paralichthys olivaceus). From 24 h after exposure to IHCO, several morphological defects were observed in both species of embryonic fish, including pericardial edema, dorsal curvature of the trunk, developmental delay, and reduced finfolds. The severity of defects was greater in flounder compared to that in sea bass. While flounder embryos accumulated higher embryo PAH concentrations than sea bass, the former showed significantly lower levels of CYP1A expression. Although bioconcentration ratios were similar between the two species for some PAHs, phenanthrenes and dibenzothiophenes showed selectively higher bioconcentration ratios in flounder, suggesting that this species has a reduced metabolic capacity for these compounds. While consistent with a conserved cardiotoxic mechanism for petrogenic PAHs across diverse marine and freshwater species, these findings indicate that species-specific differences in toxicokinetics can be an important factor underlying species' sensitivity to crude oil.
Collapse
Affiliation(s)
- Jee-Hyun Jung
- Oil & POPs Research Group, Korea Institute of Ocean Science & Technology , 41 Jangmok1-gil Geoje, 53201, Korea
| | - Moonkoo Kim
- Oil & POPs Research Group, Korea Institute of Ocean Science & Technology , 41 Jangmok1-gil Geoje, 53201, Korea
| | - Un Hyuk Yim
- Oil & POPs Research Group, Korea Institute of Ocean Science & Technology , 41 Jangmok1-gil Geoje, 53201, Korea
| | - Sung Yong Ha
- Oil & POPs Research Group, Korea Institute of Ocean Science & Technology , 41 Jangmok1-gil Geoje, 53201, Korea
| | - Won Joon Shim
- Oil & POPs Research Group, Korea Institute of Ocean Science & Technology , 41 Jangmok1-gil Geoje, 53201, Korea
| | - Young Sun Chae
- Oil & POPs Research Group, Korea Institute of Ocean Science & Technology , 41 Jangmok1-gil Geoje, 53201, Korea
| | - Hana Kim
- Oil & POPs Research Group, Korea Institute of Ocean Science & Technology , 41 Jangmok1-gil Geoje, 53201, Korea
| | - John P Incardona
- Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service (NOAA) , 2725 Montlake Boulevard East, Seattle, Washington 98112 United States
| | - Tiffany L Linbo
- Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service (NOAA) , 2725 Montlake Boulevard East, Seattle, Washington 98112 United States
| | - Jung-Hwan Kwon
- Division of Environmental Science and Ecological Engineering, Korea University , 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| |
Collapse
|
24
|
Bunaciu RP, Jensen HA, MacDonald RJ, LaTocha DH, Varner JD, Yen A. 6-Formylindolo(3,2-b)Carbazole (FICZ) Modulates the Signalsome Responsible for RA-Induced Differentiation of HL-60 Myeloblastic Leukemia Cells. PLoS One 2015; 10:e0135668. [PMID: 26287494 PMCID: PMC4545789 DOI: 10.1371/journal.pone.0135668] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 07/24/2015] [Indexed: 12/20/2022] Open
Abstract
6-Formylindolo(3,2-b)carbazole (FICZ) is a photoproduct of tryptophan and an endogenous high affinity ligand for aryl hydrocarbon receptor (AhR). It was previously reported that, in patient-derived HL-60 myeloblastic leukemia cells, retinoic acid (RA)-induced differentiation is driven by a signalsome containing c-Cbl and AhR. FICZ enhances RA-induced differentiation, assessed by expression of the membrane differentiation markers CD38 and CD11b, cell cycle arrest and the functional differentiation marker, inducible oxidative metabolism. Moreover, FICZ augments the expression of a number of the members of the RA-induced signalsome, such as c-Cbl, Vav1, Slp76, PI3K, and the Src family kinases Fgr and Lyn. Pursuing the molecular signaling responsible for RA-induced differentiation, we characterized, using FRET and clustering analysis, associations of key molecules thought to drive differentiation. Here we report that, assayed by FRET, AhR interacts with c-Cbl upon FICZ plus RA-induced differentiation, whereas AhR constitutively interacts with Cbl-b. Moreover, correlation analysis based on the flow cytometric assessment of differentiation markers and western blot detection of signaling factors reveal that Cbl-b, p-p38α and pT390-GSK3β, are not correlated with other known RA-induced signaling components or with a phenotypic outcome. We note that FICZ plus RA elicited signaling responses that were not typical of RA alone, but may represent alternative differentiation-driving pathways. In clusters of signaling molecules seminal to cell differentiation, FICZ co-administered with RA augments type and intensity of the dynamic changes induced by RA. Our data suggest relevance for FICZ in differentiation-induction therapy. The mechanism of action includes modulation of a SFK and MAPK centered signalsome and c-Cbl-AhR association.
Collapse
Affiliation(s)
- Rodica P. Bunaciu
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, 14853, United States of America
| | - Holly A. Jensen
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, 14853, United States of America
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, 14853, United States of America
| | - Robert J. MacDonald
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, 14853, United States of America
| | - Dorian H. LaTocha
- Flow Cytometry Core Facility, Cornell University, Ithaca, New York, 14853, United States of America
| | - Jeffrey D. Varner
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, 14853, United States of America
| | - Andrew Yen
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, 14853, United States of America
- Flow Cytometry Core Facility, Cornell University, Ithaca, New York, 14853, United States of America
- * E-mail:
| |
Collapse
|
25
|
Prenatal Exposure of Cypermethrin Induces Similar Alterations in Xenobiotic-Metabolizing Cytochrome P450s and Rate-Limiting Enzymes of Neurotransmitter Synthesis in Brain Regions of Rat Offsprings During Postnatal Development. Mol Neurobiol 2015; 53:3670-3689. [DOI: 10.1007/s12035-015-9307-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 06/16/2015] [Indexed: 11/30/2022]
|
26
|
Shoots J, Fraccalvieri D, Franks DG, Denison MS, Hahn ME, Bonati L, Powell WH. An Aryl Hydrocarbon Receptor from the Salamander Ambystoma mexicanum Exhibits Low Sensitivity to 2,3,7,8-Tetrachlorodibenzo-p-dioxin. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:6993-7001. [PMID: 25941739 PMCID: PMC4454367 DOI: 10.1021/acs.est.5b01299] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Structural features of the aryl hydrocarbon receptor (AHR) can underlie species- and population-specific differences in its affinity for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). These differences often explain variations in TCDD toxicity. Frogs are relatively insensitive to dioxin, and Xenopus AHRs bind TCDD with low affinity. Weak TCDD binding results from the combination of three residues in the ligand-binding domain: A354 and A370, and N325. Here we sought to determine whether this mechanism of weak TCDD binding is shared by other amphibian AHRs. We isolated an AHR cDNA from the Mexican axolotl (Ambystoma mexicanum). The encoded polypeptide contains identical residues at positions that confer low TCDD affinity to X. laevis AHRs (A364, A380, and N335), and homology modeling predicts they protrude into the binding cavity. Axolotl AHR bound one-tenth the TCDD of mouse AHR in velocity sedimentation analysis, and in transactivation assays, the EC50 for TCDD was 23 nM, similar to X. laevis AHR1β (27 nM) and greater than AHR containing the mouse ligand-binding domain (0.08 nM). Sequence, modeled structure, and function indicate that axolotl AHR binds TCDD weakly, predicting that A. mexicanum lacks sensitivity toTCDD toxicity. We hypothesize that this characteristic of axolotl and Xenopus AHRs arose in a common ancestor of the Caudata and Anura.
Collapse
Affiliation(s)
- Jenny Shoots
- Biology Department, Kenyon College, Gambier, OH 43022 USA
| | - Domenico Fraccalvieri
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Diana G. Franks
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 USA
| | - Michael S. Denison
- Department of Environmental Toxicology, University of California, Davis, CA 95616 USA
| | - Mark E. Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 USA
| | - Laura Bonati
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Wade H. Powell
- Biology Department, Kenyon College, Gambier, OH 43022 USA
| |
Collapse
|
27
|
Gudbrandsson J, Ahi EP, Franzdottir SR, Kapralova KH, Kristjansson BK, Steinhaeuser SS, Maier VH, Johannesson IM, Snorrason SS, Jonsson ZO, Palsson A. The developmental transcriptome of contrasting Arctic charr (Salvelinus alpinus) morphs. F1000Res 2015; 4:136. [PMID: 27635217 PMCID: PMC5007756 DOI: 10.12688/f1000research.6402.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
Abstract
Species and populations with parallel evolution of specific traits can help illuminate how predictable adaptations and divergence are at the molecular and developmental level. Following the last glacial period, dwarfism and specialized bottom feeding morphology evolved rapidly in several landlocked Arctic charrSalvelinus alpinuspopulations in Iceland. To study the genetic divergence between small benthic morphs and limnetic morphs, we conducted RNA-sequencing charr embryos at four stages in early development. We studied two stocks with contrasting morphologies: the small benthic (SB) charr from Lake Thingvallavatn and Holar aquaculture (AC) charr.The data reveal significant differences in expression of several biological pathways during charr development. There was also an expression difference between SB- and AC-charr in genes involved in energy metabolism and blood coagulation genes. We confirmed differing expression of five genes in whole embryos with qPCR, includinglysozymeandnatterin-likewhich was previously identified as a fish-toxin of a lectin family that may be a putative immunopeptide. We also verified differential expression of 7 genes in the developing head that associated consistently with benthic v.s.limnetic morphology (studied in 4 morphs). Comparison of single nucleotide polymorphism (SNP) frequencies reveals extensive genetic differentiation between the SB and AC-charr (~1300 with more than 50% frequency difference). Curiously, three derived alleles in the otherwise conserved 12s and 16s mitochondrial ribosomal RNA genes are found in benthic charr.The data implicate multiple genes and molecular pathways in divergence of small benthic charr and/or the response of aquaculture charr to domestication. Functional, genetic and population genetic studies on more freshwater and anadromous populations are needed to confirm the specific loci and mutations relating to specific ecological traits in Arctic charr.
Collapse
|
28
|
Gudbrandsson J, Ahi EP, Franzdottir SR, Kapralova KH, Kristjansson BK, Steinhaeuser SS, Maier VH, Johannesson IM, Snorrason SS, Jonsson ZO, Palsson A. The developmental transcriptome of contrasting Arctic charr ( Salvelinus alpinus) morphs. F1000Res 2015; 4:136. [PMID: 27635217 PMCID: PMC5007756 DOI: 10.12688/f1000research.6402.2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/05/2016] [Indexed: 12/23/2022] Open
Abstract
Species and populations with parallel evolution of specific traits can help illuminate how predictable adaptations and divergence are at the molecular and developmental level. Following the last glacial period, dwarfism and specialized bottom feeding morphology evolved rapidly in several landlocked Arctic charr
Salvelinus alpinus populations in Iceland. To study the genetic divergence between small benthic morphs and limnetic morphs, we conducted RNA-sequencing charr embryos at four stages in early development. We studied two stocks with contrasting morphologies: the small benthic (SB) charr from Lake Thingvallavatn and Holar aquaculture (AC) charr. The data reveal significant differences in expression of several biological pathways during charr development. There was also an expression difference between SB- and AC-charr in genes involved in energy metabolism and blood coagulation genes. We confirmed differing expression of five genes in whole embryos with qPCR, including
lysozyme and
natterin-like which was previously identified as a fish-toxin of a lectin family that may be a putative immunopeptide. We also verified differential expression of 7 genes in the developing head that associated consistently with benthic v.s.limnetic morphology (studied in 4 morphs). Comparison of single nucleotide polymorphism (SNP) frequencies reveals extensive genetic differentiation between the SB and AC-charr (~1300 with more than 50% frequency difference). Curiously, three derived alleles in the otherwise conserved 12s and 16s mitochondrial ribosomal RNA genes are found in benthic charr. The data implicate multiple genes and molecular pathways in divergence of small benthic charr and/or the response of aquaculture charr to domestication. Functional, genetic and population genetic studies on more freshwater and anadromous populations are needed to confirm the specific loci and mutations relating to specific ecological traits in Arctic charr.
Collapse
Affiliation(s)
- Johannes Gudbrandsson
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| | - Ehsan P Ahi
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| | - Sigridur R Franzdottir
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| | - Kalina H Kapralova
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| | | | - S Sophie Steinhaeuser
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| | - Valerie H Maier
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| | - Isak M Johannesson
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| | - Sigurdur S Snorrason
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| | - Zophonias O Jonsson
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| | - Arnar Palsson
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| |
Collapse
|
29
|
de Solla SR. Exposure, Bioaccumulation, Metabolism and Monitoring of Persistent Organic Pollutants in Terrestrial Wildlife. THE HANDBOOK OF ENVIRONMENTAL CHEMISTRY 2015. [DOI: 10.1007/698_2015_450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
30
|
In vitro re-expression of the aryl hydrocarbon receptor (Ahr) in cultured Ahr-deficient mouse antral follicles partially restores the phenotype to that of cultured wild-type mouse follicles. Toxicol In Vitro 2014; 29:329-36. [PMID: 25500125 DOI: 10.1016/j.tiv.2014.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 11/18/2014] [Accepted: 11/20/2014] [Indexed: 01/19/2023]
Abstract
BACKGROUND The aryl hydrocarbon receptor (AHR) mediates the toxic effects of various endocrine disrupting chemicals. In female mice, global deletion of the Ahr (AhrKO) results in slow growth of ovarian antral follicles. No studies, however, have examined whether injection of the Ahr restores the phenotypes of cultured AhrKO ovarian antral follicles to wild-type levels. METHODS We developed a system to construct a recombinant adenovirus containing the Ahr to re-express the Ahr in AhrKO granulosa cells and whole antral follicles. We then compared follicle growth and levels of factors in the AHR signaling pathway (Ahr, Ahrr, Cyp1a1, and Cyp1b1) in wild-type, AhrKO, and Ahr re-expressed follicles. Further, we compared the response to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in wild-type, AhrKO, and Ahr re-expressed follicles. RESULTS Ahr injection into AhrKO follicles partially restored their growth pattern to wild-type levels. Further, Ahr re-expressed follicles had significantly higher levels of Ahr, Ahrr, Cyp1a1, and Cyp1b1 compared to wild-type follicles. Upon TCDD treatment, only Cyp1a1 levels were significantly higher in Ahr re-expressed follicles compared to the levels in wild-type follicles. CONCLUSION Our system of re-expression of the Ahr partially restores follicle growth and transcript levels of factors in the AHR signaling pathway to wild-type levels.
Collapse
|
31
|
Líbalová H, Krčková S, Uhlířová K, Kléma J, Ciganek M, Rössner P, Šrám RJ, Vondráček J, Machala M, Topinka J. Analysis of gene expression changes in A549 cells induced by organic compounds from respirable air particles. Mutat Res 2014; 770:94-105. [PMID: 25771875 DOI: 10.1016/j.mrfmmm.2014.10.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 10/03/2014] [Accepted: 10/24/2014] [Indexed: 06/04/2023]
Abstract
A number of toxic effects of respirable ambient air particles (genotoxic effects, inflammation, oxidative damage) have been attributed to organic compounds bound onto the particle surface. In this study, we analyzed global gene expression changes caused by the extractable organic matters (EOMs) from respirable airborne particles <2.5μm (PM2.5), collected at 3 localities from heavily polluted areas of the Czech Republic and a control locality with low pollution levels, in human lung epithelial A549 cells. Although the sampled localities differed in both extent and sources of air pollution, EOMs did not induce substantially different gene expression profiles. The number of transcripts deregulated in A549 cells treated with the lowest EOM concentration (10μg/ml) ranged from 65 to 85 in 4 sampling localities compared to the number of transcripts deregulated after 30μg/ml and 60μg/ml of EOMs, which ranged from 90 to 109, and from 149 to 452, respectively. We found numerous commonly deregulated genes and pathways related to activation of the aryl hydrocarbon receptor (AhR) and metabolism of xenobiotics and endogenous compounds. We further identified deregulation of expression of the genes involved in pro-inflammatory processes, oxidative stress response and in cancer and developmental pathways, such as TGF-β and Wnt signaling pathways. No cell cycle arrest, DNA repair or pro-apoptotic responses were identified at the transcriptional level after the treatment of A549 cells with EOMs. In conclusion, numerous processes and pathways deregulated in response to EOMs suggest a significant role of activated AhR. Interestingly, we did not observe substantial gene expression changes related to DNA damage response, possibly due to the antagonistic effect of non-genotoxic EOM components. Moreover, a comparison of EOM effects with other available data on modulation of global gene expression suggests possible overlap among the effects of PM2.5, EOMs and various types of AhR agonists.
Collapse
Affiliation(s)
- Helena Líbalová
- Department of Genetic Ecotoxicology, Institute of Experimental Medicine AS CR, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Simona Krčková
- Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic
| | - Kateřina Uhlířová
- Department of Genetic Ecotoxicology, Institute of Experimental Medicine AS CR, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Jiří Kléma
- Czech Technical University in Prague, Karlovo namesti 13, 121 35 Prague 2, Czech Republic
| | - Miroslav Ciganek
- Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic
| | - Pavel Rössner
- Department of Genetic Ecotoxicology, Institute of Experimental Medicine AS CR, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Radim J Šrám
- Department of Genetic Ecotoxicology, Institute of Experimental Medicine AS CR, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Jan Vondráček
- Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic
| | - Miroslav Machala
- Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic
| | - Jan Topinka
- Department of Genetic Ecotoxicology, Institute of Experimental Medicine AS CR, Videnska 1083, 142 20 Prague 4, Czech Republic.
| |
Collapse
|
32
|
Effect of Gestational Exposure of Cypermethrin on Postnatal Development of Brain Cytochrome P450 2D1 and 3A1 and Neurotransmitter Receptors. Mol Neurobiol 2014; 52:741-56. [DOI: 10.1007/s12035-014-8903-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 09/24/2014] [Indexed: 12/17/2022]
|
33
|
Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol 2014; 6:a016295. [PMID: 25190079 DOI: 10.1101/cshperspect.a016295] [Citation(s) in RCA: 3089] [Impact Index Per Article: 280.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Interleukin 6 (IL-6), promptly and transiently produced in response to infections and tissue injuries, contributes to host defense through the stimulation of acute phase responses, hematopoiesis, and immune reactions. Although its expression is strictly controlled by transcriptional and posttranscriptional mechanisms, dysregulated continual synthesis of IL-6 plays a pathological effect on chronic inflammation and autoimmunity. For this reason, tocilizumab, a humanized anti-IL-6 receptor antibody was developed. Various clinical trials have since shown the exceptional efficacy of tocilizumab, which resulted in its approval for the treatment of rheumatoid arthritis and juvenile idiopathic arthritis. Moreover, tocilizumab is expected to be effective for other intractable immune-mediated diseases. In this context, the mechanism for the continual synthesis of IL-6 needs to be elucidated to facilitate the development of more specific therapeutic approaches and analysis of the pathogenesis of specific diseases.
Collapse
Affiliation(s)
- Toshio Tanaka
- Department of Clinical Application of Biologics, Osaka University Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan Department of Immunopathology, World Premier International Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Masashi Narazaki
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Tadamitsu Kishimoto
- Laboratory of Immune Regulation, World Premier International Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
34
|
Aryl hydrocarbon receptor (AhR) modulates cockroach allergen-induced immune responses through active TGFβ1 release. Mediators Inflamm 2014; 2014:591479. [PMID: 24795504 PMCID: PMC3984807 DOI: 10.1155/2014/591479] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/14/2014] [Accepted: 02/15/2014] [Indexed: 11/17/2022] Open
Abstract
Background. Aryl hydrocarbon receptor (AhR), a multifunctional regulator that senses and responds to environmental stimuli, plays a role in normal cell development and immune regulation. Recent evidence supports a significant link between environmental exposure and AhR in the development of allergic diseases. We sought to investigate whether AhR plays a role in mediating cockroach allergen-induced allergic immune responses. Methods. AhR expression in human lung fibroblasts from asthmatic and healthy individuals and in cockroach extract (CRE) treated human lung fibroblasts (WI-38) was examined. The role of AhR in modulating CRE induced TGFβ1 production was investigated by using AhR agonist, TCDD, antagonist CH122319, and knockdown of AhR. The role of latent TGFβ1 binding protein-1 (LTBP1) in mediating TCDD induced active TGFβ1 release was also examined. Results. AhR expression was higher in airway fibroblasts from asthmatic subjects as compared to healthy controls. AhR in fibroblasts was activated by TCDD with an increased expression of cyp1a1 and cyp1b1. Increased AhR expression was observed in CRE-treated fibroblasts. Importantly, CRE induced TGFβ1 production in fibroblasts was significantly enhanced by TCDD but inhibited by CH122319. Reduced TGFβ1 production was further confirmed in fibroblasts with AhR knockdown. Moreover, AhR knockdown inhibited CRE induced fibroblast differentiation. Furthermore, TCDD induced active TGFβ1 release was significantly inhibited by LTBP1 knockdown. Conclusion. These results provide evidence for the role of AhR in modulating cockroach allergen-induced immune responses through controlling the active TGFβ1 release, suggesting a possible synergistic effect between exposure to allergens and environmental chemicals on the development of allergic diseases.
Collapse
|
35
|
Kimura A, Abe H, Tsuruta S, Chiba S, Fujii-Kuriyama Y, Sekiya T, Morita R, Yoshimura A. Aryl hydrocarbon receptor protects against bacterial infection by promoting macrophage survival and reactive oxygen species production. Int Immunol 2013; 26:209-20. [PMID: 24343818 DOI: 10.1093/intimm/dxt067] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aryl hydrocarbon receptor (AhR) is crucial for various immune responses. The relationship between AhR and infection with the intracellular bacteria Listeria monocytogenes (LM) is poorly understood. Here, we show that in response to LM infection, AhR is required for bacterial clearance by promoting macrophage survival and reactive oxygen species (ROS) production. AhR-deficient mice were more susceptible to listeriosis, and AhR deficiency enhances bacterial growth in vivo and in vitro. On the other hand, pro-inflammatory cytokines were increased in AhR-deficient macrophages infected with LM despite enhanced susceptibility to LM infection in AhR-deficient mice. Subsequent studies demonstrate that AhR protects against macrophage cell death induced by LM infection through the induction of the antiapoptotic factor, the apoptosis inhibitor of macrophages, which promotes macrophage survival in the setting of LM infection. Furthermore, AhR promotes ROS production for bacterial clearance. Our results demonstrate that AhR is essential to the resistance against LM infection as it promotes macrophage survival and ROS production. This suggests that the activation of AhR by its ligands may be an effective strategy against listeriosis.
Collapse
Affiliation(s)
- Akihiro Kimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Ko CI, Wang Q, Fan Y, Xia Y, Puga A. Pluripotency factors and Polycomb Group proteins repress aryl hydrocarbon receptor expression in murine embryonic stem cells. Stem Cell Res 2013; 12:296-308. [PMID: 24316986 DOI: 10.1016/j.scr.2013.11.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 11/07/2013] [Accepted: 11/08/2013] [Indexed: 11/18/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a transcription factor and environmental sensor that regulates expression of genes involved in drug-metabolism and cell cycle regulation. Chromatin immunoprecipitation analyses, Ahr ablation in mice and studies with orthologous genes in invertebrates suggest that AHR may also play a significant role in embryonic development. To address this hypothesis, we studied the regulation of Ahr expression in mouse embryonic stem cells and their differentiated progeny. In ES cells, interactions between OCT3/4, NANOG, SOX2 and Polycomb Group proteins at the Ahr promoter repress AHR expression, which can also be repressed by ectopic expression of reprogramming factors in hepatoma cells. In ES cells, unproductive RNA polymerase II binds at the Ahr transcription start site and drives the synthesis of short abortive transcripts. Activation of Ahr expression during differentiation follows from reversal of repressive marks in Ahr promoter chromatin, release of pluripotency factors and PcG proteins, binding of Sp factors, establishment of histone marks of open chromatin, and engagement of active RNAPII to drive full-length RNA transcript elongation. Our results suggest that reversible Ahr repression in ES cells holds the gene poised for expression and allows for a quick switch to activation during embryonic development.
Collapse
Affiliation(s)
- Chia-I Ko
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, 3223 Eden Avenue, Cincinnati, OH 45267, USA
| | - Qin Wang
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, 3223 Eden Avenue, Cincinnati, OH 45267, USA
| | - Yunxia Fan
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, 3223 Eden Avenue, Cincinnati, OH 45267, USA
| | - Ying Xia
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, 3223 Eden Avenue, Cincinnati, OH 45267, USA
| | - Alvaro Puga
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, 3223 Eden Avenue, Cincinnati, OH 45267, USA.
| |
Collapse
|
37
|
Pieterse B, Felzel E, Winter R, van der Burg B, Brouwer A. PAH-CALUX, an optimized bioassay for AhR-mediated hazard identification of polycyclic aromatic hydrocarbons (PAHs) as individual compounds and in complex mixtures. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:11651-11659. [PMID: 23987121 DOI: 10.1021/es403810w] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) represent a class of ubiquitously occurring environmental compounds that are implicated in a wide range of toxicological effects. Routine measurement of PAH contamination generally involves chemical analytical analysis of a selected group of representatives, for example, EPA-16, which may result in underestimation of the PAH-related toxicity of a sample. Many high molecular weight PAHs are known ligands of the aryl hydrocarbon receptor (AhR), a nuclear receptor that mediates toxic effects related to these compounds. Making use of this property we developed a PAH CALUX assay, a mammalian, H4IIe- cell-based reporter assay for the hazard identification of total PAH mixtures. The PAH CALUX reporter cell line allows for specific, rapid (4 h exposure time) and reliable quantification of AhR-induced luciferase induction relative to benzo[a]pyrene (BaP), which is used as a positive reference PAH congener. Full dose response relationships with inductions over 100-fold were reached within only 2 h of exposure to BaP. The PAH CALUX is highly sensitive, that is, using a 4 h exposure time, a limit of detection (LOD) of 5.2 × 10(-11) M BaP was achieved, and highly accurate, that is, a repeatability of 5.9% and a reproducibility of 6.6% were established. Screening of a selection of PAHs that were prioritized by the European Union and/or the U.S. Environmental Protection Agency showed that the PAH CALUX bioassay has a high predictability, particularly for carcinogenic PAHs. Experiments with synthetic mixtures and reference materials containing complex PAH mixtures show the suitability of the assay for these types of applications. Moreover, the presented results suggest that application of the PAH CALUX will result in a lower risk of underestimation of the toxicity of a sample than chemical analytical approaches that focus on a limited set of prioritized compounds.
Collapse
Affiliation(s)
- B Pieterse
- BioDetection Systems BV. , Science Park 406. Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
38
|
The aryl hydrocarbon receptor and glucocorticoid receptor interact to activate human metallothionein 2A. Toxicol Appl Pharmacol 2013; 273:90-9. [PMID: 23994556 DOI: 10.1016/j.taap.2013.08.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 08/07/2013] [Accepted: 08/12/2013] [Indexed: 01/22/2023]
Abstract
Although the aryl hydrocarbon receptor (AHR) and glucocorticoid receptor (GR) play essential roles in mammalian development, stress responses, and other physiological events, crosstalk between these receptors has been the subject of much debate. Metallothioneins are classic glucocorticoid-inducible genes that were reported to increase upon treatment with AHR agonists in rodent tissues and cultured human cells. In this study, the mechanism of human metallothionein 2A (MT2A) gene transcription activation by AHR was investigated. Cotreatment with 3-methylcholanthrene and dexamethasone, agonists of AHR and GR respectively, synergistically increased MT2A mRNA levels in HepG2 cells. MT2A induction was suppressed by RNA interference against AHR or GR. Coimmunoprecipitation experiments revealed a physical interaction between AHR and GR proteins. Moreover, chromatin immunoprecipitation assays indicated that AHR was recruited to the glucocorticoid response element in the MT2A promoter. Thus, we provide a novel mechanism whereby AHR modulates expression of human MT2A via the glucocorticoid response element and protein-protein interactions with GR.
Collapse
|
39
|
Simic D, Euler C, Haines E, He A, Peden WM, Bunch RT, Sanderson T, Van Vleet T. MicroRNA changes associated with atypical CYP1A1 inducer BMS-764459. Toxicology 2013; 311:169-77. [PMID: 23831372 DOI: 10.1016/j.tox.2013.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/29/2013] [Accepted: 06/18/2013] [Indexed: 01/28/2023]
Abstract
The corticotrophin releasing factor (CRF) receptor I antagonist, BMS-764459 (evaluated as a potential treatment of affective disorders), was orally dosed to female Sprague-Dawley rats once daily for 2 weeks (vehicle control or 175mg/kg/day). To investigate the mechanism of BMS-764459-related liver weight increases, total liver RNA was isolated and evaluated for mRNA gene expression by microarray analysis (assessing the expression of approximately 24,000 genes) from snap-frozen tissue. Subsequently, mRNA and miRNA (microRNA) were also analyzed 5 years later from FFPE (Formalin Fixed Paraffin Embedded) samples via RT-PCR (about 800 miRNA evaluated). Genomic analyses showed that BMS-764459 induces AhR target genes with additional inductions of CYP2B, CYP3A, and Abcc3 consistent with the gene expression pattern of atypical CYP1A1 inducers. Analysis of miRNA expression identified a number of significantly affected miRNAs. To further evaluate their role in atypical CYP1A1 induction, an in silico evaluation of differentially expressed miRNA was performed and their putative mRNA 3'-UTR (untranslated region) binding sequences were evaluated. MiR-680 and miR-29a were identified as potential regulators and biomarkers of atypical CYP1A1 induction by regulating Abcc3, CYP3A and CYP2B as well as a number of AhR targeted genes.
Collapse
Affiliation(s)
- Damir Simic
- Drug Safety Evaluation, Bristol-Myers Squibb, Mt. Vernon, IN 47620, USA.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Beckers A, Aaltonen LA, Daly AF, Karhu A. Familial isolated pituitary adenomas (FIPA) and the pituitary adenoma predisposition due to mutations in the aryl hydrocarbon receptor interacting protein (AIP) gene. Endocr Rev 2013; 34:239-77. [PMID: 23371967 PMCID: PMC3610678 DOI: 10.1210/er.2012-1013] [Citation(s) in RCA: 213] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pituitary adenomas are one of the most frequent intracranial tumors and occur with a prevalence of approximately 1:1000 in the developed world. Pituitary adenomas have a serious disease burden, and their management involves neurosurgery, biological therapies, and radiotherapy. Early diagnosis of pituitary tumors while they are smaller may help increase cure rates. Few genetic predictors of pituitary adenoma development exist. Recent years have seen two separate, complimentary advances in inherited pituitary tumor research. The clinical condition of familial isolated pituitary adenomas (FIPA) has been described, which encompasses the familial occurrence of isolated pituitary adenomas outside of the setting of syndromic conditions like multiple endocrine neoplasia type 1 and Carney complex. FIPA families comprise approximately 2% of pituitary adenomas and represent a clinical entity with homogeneous or heterogeneous pituitary adenoma types occurring within the same kindred. The aryl hydrocarbon receptor interacting protein (AIP) gene has been identified as causing a pituitary adenoma predisposition of variable penetrance that accounts for 20% of FIPA families. Germline AIP mutations have been shown to associate with the occurrence of large pituitary adenomas that occur at a young age, predominantly in children/adolescents and young adults. AIP mutations are usually associated with somatotropinomas, but prolactinomas, nonfunctioning pituitary adenomas, Cushing disease, and other infrequent clinical adenoma types can also occur. Gigantism is a particular feature of AIP mutations and occurs in more than one third of affected somatotropinoma patients. Study of pituitary adenoma patients with AIP mutations has demonstrated that these cases raise clinical challenges to successful treatment. Extensive research on the biology of AIP and new advances in mouse Aip knockout models demonstrate multiple pathways by which AIP may contribute to tumorigenesis. This review assesses the current clinical and therapeutic characteristics of more than 200 FIPA families and addresses research findings among AIP mutation-bearing patients in different populations with pituitary adenomas.
Collapse
Affiliation(s)
- Albert Beckers
- Department of Endocrinology, Centre Hospitalier Universitaire de Liège, University of Liège, Domaine Universitaire du Sart-Tilman, 4000 Liège, Belgium.
| | | | | | | |
Collapse
|
41
|
Odio C, Holzman SA, Denison MS, Fraccalvieri D, Bonati L, Franks DG, Hahn ME, Powell WH. Specific ligand binding domain residues confer low dioxin responsiveness to AHR1β of Xenopus laevis. Biochemistry 2013; 52:1746-54. [PMID: 23394719 DOI: 10.1021/bi301722k] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The aryl hydrocarbon receptor (AHR) is a Per-ARNT-Sim (PAS) family protein that mediates the toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in vertebrates. Frogs are remarkably insensitive to TCDD, and AHRs from Xenopus laevis bind TCDD with low affinity. We sought to identify structural features of X. laevis AHR1β associated with low TCDD sensitivity. Substitution of the entire ligand binding domain (LBD) with the corresponding sequence from mouse AHR(b-1) dramatically increased TCDD responsiveness in transactivation assays. To identify the amino acid residues responsible, we constructed a comparative model of the AHR1β LBD using homologous domains of PAS proteins HIF2α and ARNT. The model revealed an internal cavity with dimensions similar to those of the putative binding cavity of mouse AHR(b-1), suggesting the importance of side chain interactions over cavity size. Of residues with side chains clearly pointing into the cavity, only two differed from the mouse sequence. When A354, located within a conserved β-strand, was changed to serine, the corresponding mouse residue, the EC50 for TCDD decreased more than 15-fold. When N325 was changed to serine, the EC50 decreased 3-fold. When the mutations were combined, the EC50 decreased from 18.6 to 0.8 nM, the value nearly matching the TCDD sensitivity of mouse AHR. Velocity sedimentation analysis confirmed that mutant frog AHRs exhibited correspondingly increased levels of TCDD binding. We also assayed mutant AHRs for responsiveness to a candidate endogenous ligand, 6-formylindolo[3,2-b]carbazole (FICZ). Mutations that increased sensitivity to TCDD also increased sensitivity to FICZ. This comparative study represents a novel approach to discerning fundamental information about the structure of AHR and its interactions with biologically important agonists.
Collapse
Affiliation(s)
- Camila Odio
- Biology Department, Kenyon College , Gambier, Ohio 43022, United States
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Latchney SE, Hein AM, O'Banion MK, DiCicco-Bloom E, Opanashuk LA. Deletion or activation of the aryl hydrocarbon receptor alters adult hippocampal neurogenesis and contextual fear memory. J Neurochem 2013; 125:430-45. [PMID: 23240617 DOI: 10.1111/jnc.12130] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 11/07/2012] [Accepted: 12/13/2012] [Indexed: 12/24/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates the toxicity of dioxin and serves multiple developmental roles. In the adult brain, while we now localize AhR mRNA to nestin-expressing neural progenitor cells in the dentate gyrus (DG) of the hippocampus, its function is unknown. This study tested the hypothesis that AhR participates in hippocampal neurogenesis and associated functions. AhR deletion and activation by the potent environmental toxicant, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), adversely impacted neurogenesis and cognition. Adult AhR-deficient mice exhibited impaired hippocampal-dependent contextual fear memory while hippocampal-independent memory remained intact. AhR-deficient mice displayed reduced cell birth, decreased cell survival, and diminished neuronal differentiation in the DG. Following TCDD exposure, wild-type mice exhibited impaired hippocampal-dependent contextual memory, decreased cell birth, reduced neuronal differentiation, and fewer mature neurons in the DG. Glial differentiation and apoptosis were not altered in either TCDD-exposed or AhR-deficient mice. Finally, defects observed in TCDD-exposed mice were dependent on AhR, as TCDD had no negative effects in AhR-deficient mice. Our findings suggest that AhR should be further evaluated as a potential transcriptional regulator of hippocampal neurogenesis and function, although other sites of action may also warrant consideration. Moreover, TCDD exposure should be considered as an environmental risk factor that disrupts adult neurogenesis and potentially related memory processes.
Collapse
Affiliation(s)
- Sarah E Latchney
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | | | |
Collapse
|
43
|
Huang Z, Jiang Y, Yang Y, Shao J, Sun X, Chen J, Dong L, Zhang J. 3,3'-Diindolylmethane alleviates oxazolone-induced colitis through Th2/Th17 suppression and Treg induction. Mol Immunol 2012; 53:335-44. [PMID: 23085552 DOI: 10.1016/j.molimm.2012.09.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 09/14/2012] [Accepted: 09/23/2012] [Indexed: 12/19/2022]
Abstract
The T cell is pivotal in orchestrating and promoting an immune response during ulcerative colitis (UC). The aryl hydrocarbon receptor (AhR) is involved in the regulation of T cell responses, and 3,3'-diindolylmethane (DIM) is a known ligand of AhR. The aim of this study was to examine the therapeutic effects of DIM in experimental colitis and to investigate the possible mechanisms underlying its effects on mucosal T cell responses. The therapeutic effects of DIM were studied in an oxazolone-induced colitis model. The pathologic markers of colitis were measured, moreover, T-helper cell (Th)- and regulatory T cell (Treg)-related transcription factor expression and associated colonic cytokine production were determined. The impact of DIM on T cell differentiation was further investigated in cultures of naive Th cells that were stimulated with anti-CD3/CD28 monoclonal antibodies (mAbs). The administration of DIM attenuated experimental colitis, as determined by pathological indices. DIM may affect signaling pathways downstream of AhR, leading to decreased Th2/Th17 cells and increased Tregs. Ultimately, this could result in the alleviation of experimental colitis. DIM has shown anti-UC activity in animal models via inhibition of Th2/Th17 cells and promotion of Tregs and may thus offer potential treatments for UC patients.
Collapse
Affiliation(s)
- Zhen Huang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Jing H, Shen G, Wang G, Zhang F, Li Y, Luo F, Yao J, Tian XF. MG132 alleviates liver injury induced by intestinal ischemia/reperfusion in rats: involvement of the AhR and NFκB pathways. J Surg Res 2012; 176:63-73. [PMID: 22079846 DOI: 10.1016/j.jss.2011.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 06/20/2011] [Accepted: 09/01/2011] [Indexed: 02/05/2023]
Abstract
BACKGROUND MG132 is a potent antioxidant and has been reported to play a protective role in ischemia/reperfusion (I/R) of many organs. Recent studies have shown that the Aryl hydrocarbon receptor (AhR) may play a beneficial role in I/R of many organs and an AhR agonist has been implicated in an anti-inflammatory role. MG132 might function as an AhR agonist through proteasome inhibition, possibly through the inhibition of NFκB. Herein, we hypothesized that MG132 may play a protective role in liver injury induced by intestinal I/R and we analyzed the expression behavior of AhR and NFκB to determine whether the two factors play a role in intestinal I/R. MATERIALS AND METHODS Thirty-two Sprague-Dawley rats were divided into four groups: control, I/R, MG132 control, and MG132 pretreatment. The I/R and MG132 pretreatment groups were subjected to mesenteric arterial ischemia for 1 h and reperfusion for 3 h. The control and MG132 control groups underwent surgical preparation including isolation of the superior mesenteric artery (SMA) without occlusion. The MG132 control and MG132 pretreatment groups were subjected to intraperitoneal administration of 0.5 mg/kg MG132 30 min before surgery. We collected serum specimens to measure TNF-α, IL-6, liver tissue levels of malondialdehyde (MDA), AhR, and cyp1a2; NFκB, IκBα, and ICAM-1 were also tested. Histologic changes of liver and intestine were subsequently evaluated. RESULTS Compared with the control group, significant increases in MDA, NFκB, and ICAM-1 levels were accompanied by decreases in AhR, cyp1a2, and IκBα expression in the liver in the I/R group, which is consistent with liver and intestinal tissue injury. MG132 blocked the alterations of the indicators above. There were no changes in the MG132 control group compared with the control group in the indicators above. CONCLUSIONS This study demonstrated that MG132 has a significant effect in protection against liver injury induced by intestinal I/R, which may be due to modulation of the AhR and NFκB pathways.
Collapse
Affiliation(s)
- Huirong Jing
- Department of General Surgery, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Dever DP, Opanashuk LA. The aryl hydrocarbon receptor contributes to the proliferation of human medulloblastoma cells. Mol Pharmacol 2012; 81:669-78. [PMID: 22311706 PMCID: PMC3336804 DOI: 10.1124/mol.111.077305] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 02/06/2012] [Indexed: 01/30/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR), a ligand-activated member of the basic helix-loop-helix (bHLH)/PER-ARNT-SIM (PAS) transcription superfamily, is known to regulate the toxicity of polyaromatic halogenated hydrocarbon environmental chemicals, most notably dioxin. However, the AhR has also been implicated in multiple stages of tumorigenesis. Medulloblastoma (MB), a primary cerebellar brain tumor arising in infants and children, is thought to originate from abnormally proliferating cerebellar granule neuron precursors (GNPs). GNPs express high levels of the AhR in the external germinal layer of the developing cerebellum. Moreover, our laboratory has previously reported that either abnormal activation or deletion of the AhR leads to dysregulation of GNP cell cycle activity and maturation. These observations led to the hypothesis that the AhR promotes the growth of MB. Therefore, this study evaluated whether the AhR serves a pro-proliferative role in an immortalized MB tumor cell line (DAOY). We produced a stable AhR knockdown DAOY cell line [AhR short hairpin RNA (shRNA)], which exhibited a 70% reduction in AhR protein levels. Compared with wild-type DAOY cells, AhR shRNA DAOY cells displayed an impaired G(1)-to-S cell cycle transition, decreased DNA synthesis, and reduced proliferation. Furthermore, these cell cycle perturbations were correlated with decreased levels of the pro-proliferative gene Hes1 and increased levels of the cell cycle inhibitor p27(kip1). Supplementation experiments with human AhR restored the proliferative activity in AhR shRNA DAOY cells. Taken together, our data show that the AhR promotes proliferation of MB cells, suggesting that this pathway should be considered as a potential therapeutic target for MB treatment.
Collapse
Affiliation(s)
- Daniel P Dever
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | |
Collapse
|
46
|
Saberi Hosnijeh F, Boers D, Portengen L, Bueno-de-Mesquita HB, Heederik D, Vermeulen R. Plasma Cytokine Concentrations in Workers Exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Front Oncol 2012; 2:37. [PMID: 22655272 PMCID: PMC3356043 DOI: 10.3389/fonc.2012.00037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 03/27/2012] [Indexed: 11/28/2022] Open
Abstract
Objectives: Few epidemiological studies have studied the effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on blood cytokine levels. In this study we investigated changes in plasma levels of a large panel of cytokines, chemokines, and growth factors among workers from a Dutch historical cohort occupationally exposed to chlorophenoxy herbicides and contaminants including TCDD. Methods: Eighty-five workers who had been exposed to either high (n = 47) or low (n = 38) TCDD levels more than 30 years before serum collection were included in the current investigation. Plasma level of 16 cytokines, 10 chemokines, and 6 growth factors were measured. Current plasma levels of TCDD (TCDDcurrent) were determined by high-resolution gas chromatography/isotope-dilution high-resolution mass spectrometry. TCDD blood levels at the time of last exposure (TCDDmax) were estimated using a one-compartment first order kinetic model. Results: Blood levels of most analytes had a negative association with current and estimated past maximum TCDD levels. These decreases reached formal statistical significance for fractalkine, transforming growth factor alpha (TGF-α), and fibroblast growth factor 2 (FGF2) with increasing TCDD levels. Conclusion: Our study showed a general reduction in most analyte levels with the strongest effects for fractalkine, FGF2, and TGF-α. These findings suggest that TCDD exposure could suppress the immune system and that chemokine and growth factor-dependent cellular pathway changes by TCDD may play role in TCDD toxicity and associated health effects.
Collapse
Affiliation(s)
- Fatemeh Saberi Hosnijeh
- Division Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University Utrecht, Netherlands
| | | | | | | | | | | |
Collapse
|
47
|
Global gene expression changes in human embryonic lung fibroblasts induced by organic extracts from respirable air particles. Part Fibre Toxicol 2012; 9:1. [PMID: 22239852 PMCID: PMC3275518 DOI: 10.1186/1743-8977-9-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 01/12/2012] [Indexed: 12/19/2022] Open
Abstract
Background Recently, we used cell-free assays to demonstrate the toxic effects of complex mixtures of organic extracts from urban air particles (PM2.5) collected in four localities of the Czech Republic (Ostrava-Bartovice, Ostrava-Poruba, Karvina and Trebon) which differed in the extent and sources of air pollution. To obtain further insight into the biological mechanisms of action of the extractable organic matter (EOM) from ambient air particles, human embryonic lung fibroblasts (HEL12469) were treated with the same four EOMs to assess changes in the genome-wide expression profiles compared to DMSO treated controls. Method For this purpose, HEL cells were incubated with subtoxic EOM concentrations of 10, 30, and 60 μg EOM/ml for 24 hours and global gene expression changes were analyzed using human whole genome microarrays (Illumina). The expression of selected genes was verified by quantitative real-time PCR. Results Dose-dependent increases in the number of significantly deregulated transcripts as well as dose-response relationships in the levels of individual transcripts were observed. The transcriptomic data did not differ substantially between the localities, suggesting that the air pollution originating mainly from various sources may have similar biological effects. This was further confirmed by the analysis of deregulated pathways and by identification of the most contributing gene modulations. The number of significantly deregulated KEGG pathways, as identified by Goeman's global test, varied, depending on the locality, between 12 to 29. The Metabolism of xenobiotics by cytochrome P450 exhibited the strongest upregulation in all 4 localities and CYP1B1 had a major contribution to the upregulation of this pathway. Other important deregulated pathways in all 4 localities were ABC transporters (involved in the translocation of exogenous and endogenous metabolites across membranes and DNA repair), the Wnt and TGF-β signaling pathways (associated particularly with tumor promotion and progression), Steroid hormone biosynthesis (involved in the endocrine-disrupting activity of chemicals), and Glycerolipid metabolism (pathways involving the lipids with a glycerol backbone including lipid signaling molecules). Conclusion The microarray data suggested a prominent role of activation of aryl hydrocarbon receptor-dependent gene expression.
Collapse
|
48
|
Kerley-Hamilton JS, Trask HW, Ridley CJA, Dufour E, Lesseur C, Ringelberg CS, Moodie KL, Shipman SL, Korc M, Gui J, Shworak NW, Tomlinson CR. Inherent and benzo[a]pyrene-induced differential aryl hydrocarbon receptor signaling greatly affects life span, atherosclerosis, cardiac gene expression, and body and heart growth in mice. Toxicol Sci 2012; 126:391-404. [PMID: 22228805 DOI: 10.1093/toxsci/kfs002] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Little is known of the environmental factors that initiate and promote disease. The aryl hydrocarbon receptor (AHR) is a key regulator of xenobiotic metabolism and plays a major role in gene/environment interactions. The AHR has also been demonstrated to carry out critical functions in development and disease. A qualitative investigation into the contribution by the AHR when stimulated to different levels of activity was undertaken to determine whether AHR-regulated gene/environment interactions are an underlying cause of cardiovascular disease. We used two congenic mouse models differing at the Ahr gene, which encodes AHRs with a 10-fold difference in signaling potencies. Benzo[a]pyrene (BaP), a pervasive environmental toxicant, atherogen, and potent agonist for the AHR, was used as the environmental agent for AHR activation. We tested the hypothesis that activation of the AHR of different signaling potencies by BaP would have differential effects on the physiology and pathology of the mouse cardiovascular system. We found that differential AHR signaling from an exposure to BaP caused lethality in mice with the low-affinity AHR, altered the growth rates of the body and several organs, induced atherosclerosis to a greater extent in mice with the high-affinity AHR, and had a huge impact on gene expression of the aorta. Our studies also demonstrated an endogenous role for AHR signaling in regulating heart size. We report a gene/environment interaction linking differential AHR signaling in the mouse to altered aorta gene expression profiles, changes in body and organ growth rates, and atherosclerosis.
Collapse
Affiliation(s)
- Joanna S Kerley-Hamilton
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03756, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Wang T, Wyrick KL, Meadows GG, Wills TB, Vorderstrasse BA. Activation of the aryl hydrocarbon receptor by TCDD inhibits mammary tumor metastasis in a syngeneic mouse model of breast cancer. Toxicol Sci 2011; 124:291-8. [PMID: 21948867 PMCID: PMC3216416 DOI: 10.1093/toxsci/kfr247] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Treatment with aryl hydrocarbon receptor (AhR) agonists can slow or reverse the growth of primary mammary tumors in rodents, which has fostered interest in developing selective AhR modulators for treatment of breast cancer. However, the major goal of breast cancer therapy is to inhibit metastasis, the primary cause of mortality in women with this disease. Studies conducted using breast cancer cell lines have demonstrated that AhR agonists suppress proliferation, invasiveness, and colony formation in vitro; however, further exploration using in vivo models of metastasis is warranted. To test the effect of AhR activation on metastasis, 4T1.2 mammary tumor cells were injected into the mammary gland fat pad of syngeneic Balb/c mice treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Primary tumor growth was monitored for 4 weeks, at which time metastasis was determined. TCDD treatment suppressed metastasis by approximately 50%, as measured both in the lung and in mammary glands at sites distant from the primary tumor. Primary tumor growth was not suppressed by TCDD exposure nor was proliferation of 4T1.2 cells affected by TCDD treatment in vitro. Taken together, these results suggest that the protective effect of AhR activation was selective for the metastatic process and not simply the result of a direct decrease in tumor cell proliferation or survival at the primary site. These observations in immunologically intact animals warrant further investigation into the mechanism of the protective effects of AhR activation and support the promise for use of AhR modulators to treat breast cancer.
Collapse
Affiliation(s)
- Tao Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Pullman, Washington 99164, USA
| | | | | | | | | |
Collapse
|
50
|
Hsieh TH, Tsai CF, Hsu CY, Kuo PL, Lee JN, Chai CY, Wang SC, Tsai EM. Phthalates induce proliferation and invasiveness of estrogen receptor-negative breast cancer through the AhR/HDAC6/c-Myc signaling pathway. FASEB J 2011; 26:778-87. [PMID: 22049059 DOI: 10.1096/fj.11-191742] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The environmentally present group of chemical phthalates, or phthalate esters, has been recognized as a rising threat to public health, including cancer. While most studies have addressed the estrogenic effects of phthalates in malignancies of the breast and the prostate, little is known about their role in the etiology of hormone-independent cancer. Here we show that treatments with the phthalates n-butyl benzyl phthalate (BBP) and dibutyl phthalate (DBP) at 1 μM induced proliferation (BBP, 3.2-fold; DBP, 3.2-fold), migration (BBP, 2.6-fold; DBP, 2.6-fold), invasion (BBP, 2.7-fold; DBP, 3.1-fold), and tumor formation (EC(50): BBP, 0.12 μM; DBP, 0.22 μM) in estrogen receptor (ER)-negative breast cancer cells (MDA-MB-231). We further demonstrate that phthalates stimulated the cell surface aryl hydrocarbon receptor (AhR) and triggered the downstream cyclic AMP (cAMP)-PKA-CREB1 signaling cascade. The pathway led to increased expression of HDAC6, which facilitated nuclear assembly of the β-catenin-LEF1/TCF4 transcriptional complex and transactivation of the c-Myc oncogene. This nongenomic pathway emanated from the phthalate-induced AhR promoted tumorigenesis of ER-negative breast cancer. Collectively, our findings revealed a novel oncogenic mechanism of phthalates in breast cancer independent from their estrogenic activities.
Collapse
Affiliation(s)
- Tsung-Hua Hsieh
- Graduate Institute of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|