1
|
AL-Noshokaty TM, Abdelhamid R, Abdelmaksoud NM, Khaled A, Hossam M, Ahmed R, Saber T, Khaled S, Elshaer SS, Abulsoud AI. Unlocking the multifaceted roles of GLP-1: Physiological functions and therapeutic potential. Toxicol Rep 2025; 14:101895. [PMID: 39911322 PMCID: PMC11795145 DOI: 10.1016/j.toxrep.2025.101895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 02/07/2025] Open
Abstract
Glucagon (GCG) like peptide 1 (GLP-1) has emerged as a powerful player in regulating metabolism and a promising therapeutic target for various chronic diseases. This review delves into the physiological roles of GLP-1, exploring its impact on glucose homeostasis, insulin secretion, and satiety. We examine the compelling evidence supporting GLP-1 receptor agonists (GLP-1RAs) in managing type 2 diabetes (T2D), obesity, and other diseases. The intricate molecular mechanisms underlying GLP-1RAs are explored, including their interactions with pathways like extracellular signal-regulated kinase 1/2 (ERK1/2), activated protein kinase (AMPK), cyclic adenine monophosphate (cAMP), mitogen-activated protein kinase (MAPK), and protein kinase C (PKC). Expanding our understanding, the review investigates the potential role of GLP-1 in cancers. Also, microribonucleic acid (RNA) (miRNAs), critical regulators of gene expression, are introduced as potential modulators of GLP-1 signaling. We delve into the link between miRNAs and T2D obesity and explore specific miRNA examples influencing GLP-1R function. Finally, the review explores the rationale for seeking alternatives to GLP-1RAs and highlights natural products with promising GLP-1 modulatory effects.
Collapse
Affiliation(s)
- Tohada M. AL-Noshokaty
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Rehab Abdelhamid
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | | | - Aya Khaled
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mariam Hossam
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Razan Ahmed
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Toka Saber
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Shahd Khaled
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Shereen Saeid Elshaer
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Ahmed I. Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt
- Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| |
Collapse
|
2
|
Canivenc-Lavier MC, Kouidhi W, Boudalia S, Folia M. Taste and endocrine disruption. ANNALES D'ENDOCRINOLOGIE 2025; 86:101768. [PMID: 40403378 DOI: 10.1016/j.ando.2025.101768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Affiliation(s)
- Marie-Chantal Canivenc-Lavier
- Centre des sciences du goût et de l'alimentation, CNRS, INRAE, Institut Agro, Université Bourgogne Europe, 21000 Dijon, France.
| | - Wided Kouidhi
- Indonesia International Institute of Life Sciences, 13210 Jakarta Timur, Indonesia
| | - Sofiane Boudalia
- Département d'écologie et génie de l'environnement, Université 8 mai 1945, Guelma, Algeria
| | - Mireille Folia
- Département d'oto-rhino-laryngologie et chirurgie cervico faciale, Centre Hospitalier Universitaire, 21000 Dijon, France
| |
Collapse
|
3
|
Xia C, Yue L, Wang Y, Li C, Ma G, Ju Y, Wang P, Wang J, Jiang X, Wang X, Chen F. Gut microbiota's role in the enhancement of type 2 diabetes treatment by a traditional Chinese herbal formula compared to metformin. Microbiol Spectr 2025; 13:e0241224. [PMID: 40162751 PMCID: PMC12054121 DOI: 10.1128/spectrum.02412-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 02/24/2025] [Indexed: 04/02/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a rapidly increasing metabolic disorder that poses a significant threat to global public health. Recent evidence suggests that targeting the gut microbiota through dietary and pharmaceutical interventions can effectively manage T2DM. In this study, we developed a novel Chinese herbal formula, CCM, specifically for T2DM, composed of Coptis rhizoma, Cinnamomi cortex, and Mume fructus. To evaluate CCM's efficacy and explore its underlying mechanisms, particularly the role of the gut microbiota, diabetic C57/db/db mice were administered different doses of CCM (low, medium, high) for 4 weeks, with normal C57 mice as healthy controls and metformin as a positive control. Comprehensive clinical indicators of T2DM were measured before and after treatment. High-throughput sequencing was used to assess changes in gut microbiome composition and function. Our results showed that CCM treatment, especially at medium and high doses, resulted in more significant improvements in blood glucose, lipid profiles, and body weight compared to metformin. The CCM-treated group also exhibited more significant changes in the microbial community structure compared to the metformin group, notably enriching three beneficial microbes (>40%): Bacteroidetes spp., Akkermansia spp., and Parabacteroides spp., which correlated with improved diabetic parameters. Further analysis identified that all four microbial metabolic pathways linked to lowering blood glucose were exclusively enriched in the CCM-treated group. Of the 10 pathways related to improved blood lipid levels, five were unique to CCM. These unique pathways enriched by CCM may explain its superior therapeutic effects, indicating its distinct mechanisms in modulating gut microbiota.IMPORTANCEOur study demonstrates that CCM outperforms metformin in managing key clinical indicators in type 2 diabetes mellitus (T2DM) model mice and induces more significant alterations in gut microbiota composition and function. Notably, the uniquely enriched beneficial microbes and microbial metabolic pathways in the CCM samples may explain its enhanced therapeutic effects compared to metformin. Consequently, these findings suggest that CCM offers a promising therapeutic strategy for T2DM, and further provide valuable insights into potential probiotic candidates (such as Bacteroidetes spp., Akkermansia spp., and Parabacteroides spp.) and newly identified functional pathways (such as chondroitin sulfate degradation, geraniol degradation, biotin biosynthesis, colonic acid building blocks biosynthesis, and the biosynthesis of vancomycin group antibiotics) that could be targeted for therapeutic intervention.
Collapse
Affiliation(s)
- Chengdong Xia
- Department of Endocrinology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Liya Yue
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Yinyu Wang
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Cuidan Li
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Guannan Ma
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Yingjiao Ju
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Peihan Wang
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jie Wang
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyuan Jiang
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Xiaotong Wang
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Fei Chen
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
- Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing, China
| |
Collapse
|
4
|
Ren L, Ruan X, Dong H, Cheng Y, Shon K, Chang C, Gu R, Sun Z. The bitter flavor of Banxia Xiexin decoction activates TAS2R38 to ameliorate low-grade inflammation in the duodenum of mice with functional dyspepsia. JOURNAL OF ETHNOPHARMACOLOGY 2025; 341:119309. [PMID: 39746410 DOI: 10.1016/j.jep.2024.119309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/24/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Banxia Xiexin Decoction (BXD) is a traditional herbal formulation with a bitter flavor that has a long-standing history of use in Asia for treating functional dyspepsia (FD). In traditional Chinese medicine, the bitter flavor is believed to play a critical role in the therapeutic activity of BXD. The ethnopharmacological properties of bitter plant extracts are closely associated with their anti-inflammatory effects, which may contribute to their efficacy in FD. However, the specific mechanisms remain unknown. AIM OF THE STUDY The objective of this study is to uncover the bitter active compounds of BXD and their effects in the treatment of FD. MATERIALS AND METHODS The chemical compounds of BXD were identified using HPLC-Q-Exactive-MS. Active compounds in BXD were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) database, and bitter active compounds were further identified using BitterDB and PlantMolecularTasteDB. Molecular docking was employed to identify potential targets of these bitter active compounds, and their activation was validated through flow cytometry analysis of Ca2+. Subsequently, a mouse model of FD was established, and our hypothesis was further validated using enzyme linked immunosorbent assay, immunohistochemistry, immunofluorescence, and western blotting. RESULTS Through HPLC-Q-Exactive-MS analysis, TCMSP, BitterDB, and PlantMolecularTasteDB database, a total of 11 bitter active compounds in BXD were identified: Baicalein, Baicalin, Berberine, Coptisine, Formononetin, Isorhamnetin, Kaempferol, Naringenin, Palmatine, Quercetin, and Wogonin. Molecular docking results indicated that these active compounds exhibited strong affinity for TAS2R38, with Berberine showing the highest scoring. Flow cytometry analysis of Ca2+ revealed that both Berberine and BXD elevated intracellular calcium concentrations, although this effect was partially antagonized by the TAS2R38 inhibitor probenecid. In vivo experiments demonstrated that BXD effectively improved eosinophil infiltration in the duodenum of FD mice, downregulated the expression of inflammatory factors IL-1β, IL-5, and TNF-α, inhibition of NF-κB signaling pathway activation, alleviated damage to the duodenal mucosal barrier, and reversed gastrointestinal motility disorders, with the therapeutic effect enhancing with increasing doses of BXD. However, this therapeutic effect was partially inhibited following probenecid intervention. CONCLUSION BXD contains numerous bitter active compounds that play a significant role in regulating inflammatory activity in the duodenum of FD through the activation of TAS2R38. This finding unveils, for the first time, the ethnopharmacological activity of bitter plant taste agents in anti-inflammatory effects, providing new insights for the treatment and drug development of FD.
Collapse
Affiliation(s)
- Lang Ren
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210008, China.
| | - Xingqiu Ruan
- Department of Integrated Traditional Chinese and Western Medicine, Red Cross Hospital of Yulin City, Yulin, 537006, China.
| | - Hanlin Dong
- The Eighth Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yiyao Cheng
- Jiangsu Province Second Hospital of Chinese Medicine, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210017, China.
| | - Kinyu Shon
- Department of Gastroenterology, Nanjing Hospital of Chinese Medicine, Nanjing, 210022, China.
| | - Cheng Chang
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210008, China.
| | - Renjun Gu
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zhiguang Sun
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210008, China.
| |
Collapse
|
5
|
Wu Z, Yang W, Wu T, Liu Y, Pu Y, Hu W, Jiang Y, Zhang J, Zhu H, Li X, Feng S. Long term Coptidis Rhizoma intake induce gastrointestinal emptying inhibition and colon barrier weaken via bitter taste receptors activation in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156292. [PMID: 39631296 DOI: 10.1016/j.phymed.2024.156292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/17/2024] [Accepted: 11/23/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Coptidis Rhizoma, a classic bitter traditional Chinese medicine, can lead to digestive dysfunction when long-term use according to traditional experience. Bitter taste receptors have been found to regulate gastrointestinal smooth muscle contraction. Coptidis Rhizoma alkaloids are potential agonists for bitter taste receptors, but whether they can induce gastrointestinal dysfunction via bitter taste receptors is not clear. PURPOSE The purpose of this study is to elucidate whether long-term Coptidis Rhizoma decoction/berberine intake can affect gastrointestinal function via bitter taste receptors. METHODS Firstly, mice were orally administered Coptidis Rhizoma decoction (or berberine) for 8 weeks, then their appetite, gastrointestinal emptying function, colon barrier function, and gut microbiota homeostasis were evaluated. Subsequently, isolated intestine, molecular docking, calcium release, and immunofluorescence co-localization experiments were applied to explore the mechanism of Coptidis Rhizoma decoction (or berberine) inhibition effects on gastrointestinal motility. Finally, transmembrane resistance, scratch assay, tight junction and cytoskeletal protein immunofluorescence staining were conducted to verify that the bitter taste receptor is the target for Coptidis Rhizoma decoction (or berberine) to damage the colon barrier function. RESULT Long-term Coptidis Rhizoma decoction (or berberine) intake can reduce appetite, inhibit gastrointestinal contractions, disrupt bacterial balance and colon barrier function in mice. Further mechanistic studies have shown that the alkaloids of Coptidis Rhizoma are agonists for bitter taste receptors, which can promote α-gustducin binding to CHRM3 by activating bitter taste receptors, finally inhibiting gastrointestinal smooth muscle contraction. In addition, Coptidis Rhizoma decoction (or berberine) can activate bitter taste receptors and its downstream pathways PKCβ/RhoA/ROCK1/MLC-2, reshape skeletal proteins, downregulate tight junction protein expression, and ultimately disrupt colon barrier function. CONCLUSIONS Long term Coptidis Rhizoma intake induce gastrointestinal emptying inhibition and colon barrier weaken via bitter taste receptor activation in mice.
Collapse
Affiliation(s)
- Zhizhongbin Wu
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China.
| | - Wei Yang
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China.
| | - Tianyue Wu
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China.
| | - Yulin Liu
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China.
| | - Yu Pu
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China.
| | - Weiqing Hu
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China.
| | - Yunbin Jiang
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China.
| | - Jifen Zhang
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China.
| | - Huifeng Zhu
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China.
| | - Xuegang Li
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China.
| | - Shan Feng
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China.
| |
Collapse
|
6
|
Araj-Khodaei M, Ayati MH, Azizi Zeinalhajlou A, Novinbahador T, Yousefi M, Shiri M, Mahmoodpoor A, Shamekh A, Namazi N, Sanaie S. Berberine-induced glucagon-like peptide-1 and its mechanism for controlling type 2 diabetes mellitus: a comprehensive pathway review. Arch Physiol Biochem 2024; 130:678-685. [PMID: 37921026 DOI: 10.1080/13813455.2023.2258559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/05/2023] [Indexed: 11/04/2023]
Abstract
INTRODUCTION A growing number of studies have thus far showed the association between type 2 diabetes mellitus (DM) and the intestinal microbiome homoeostasis. As reported, the gut microflora can be significantly different in patients with type 2 DM (T2DM) compared to those in healthy individuals. METHODS The authors collected the relevant articles published until 2022 and these are carefully selected from three scientific databases based on keywords. DISCUSSION This review highlights research on the anti-diabetic properties of berberine (BBR)-induced glucagon-like peptide-1 (GLP-1), as a glucose-lowering factor and a balance regulator in the microbial flora of the intestines, which plays an important role in adjusting the signalling pathways affecting insulin secretion. RESULTS Considering the anti-diabetic characteristics of the BBR-induced GLP-1, BBR makes a promising complementary treatment for reducing the clinical symptoms of DM by reducing the hyperglycaemia. Berberin might be a safe and effective drug for T2DM with little or no adverse effects.
Collapse
Affiliation(s)
| | - Mohammad Hossein Ayati
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Akbar Azizi Zeinalhajlou
- Department of Geriatric Health, Faculty of Health Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tannaz Novinbahador
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Shiri
- Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Ata Mahmoodpoor
- Department of Anesthesiology and Critical Care Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Shamekh
- Student Research Committee, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazli Namazi
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sarvin Sanaie
- Research Center of Psychiatry and Behavioral Sciences, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Ni Y, Wu X, Yao W, Zhang Y, Chen J, Ding X. Evidence of traditional Chinese medicine for treating type 2 diabetes mellitus: from molecular mechanisms to clinical efficacy. PHARMACEUTICAL BIOLOGY 2024; 62:592-606. [PMID: 39028269 PMCID: PMC11262228 DOI: 10.1080/13880209.2024.2374794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024]
Abstract
CONTEXT The global prevalence of type 2 diabetes mellitus (T2DM) has increased significantly in recent decades. Despite numerous studies and systematic reviews, there is a gap in comprehensive and up-to-date evaluations in this rapidly evolving field. OBJECTIVE This review provides a comprehensive and current overview of the efficacy of Traditional Chinese Medicine (TCM) in treating T2DM. METHODS A systematic review was conducted using PubMed, Web of Science, Wanfang Data, CNKI, and Medline databases, with a search timeframe extending up to November 2023. The search strategy involved a combination of subject terms and free words in English, including 'Diabetes,' 'Traditional Chinese Medicine,' 'TCM,' 'Hypoglycemic Effect,' 'Clinical Trial,' and 'Randomized Controlled Trial.' The studies were rigorously screened by two investigators, with a third investigator reviewing and approving the final selection based on inclusion and exclusion criteria. RESULTS A total of 108 relevant papers were systematically reviewed. The findings suggest that TCMs not only demonstrate clinical efficacy comparable to existing Western medications in managing hypoglycemia but also offer fewer adverse effects and a multitarget therapeutic approach. Five main biological mechanisms through which TCM treats diabetes were identified: improving glucose transport and utilization, improving glycogen metabolism, promoting GLP-1 release, protecting pancreatic islets from damage, and improving intestinal flora. CONCLUSIONS TCM has demonstrated significant protective effects against diabetes and presents a viable option for the prevention and treatment of T2DM. These findings support the further exploration and integration of TCM into broader diabetes management strategies.
Collapse
Affiliation(s)
- Yadong Ni
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xianglong Wu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wenhui Yao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuna Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jie Chen
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xuansheng Ding
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Precision Medicine Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
8
|
Itoigawa A, Nakagita T, Toda Y. The Remarkable Diversity of Vertebrate Bitter Taste Receptors: Recent Advances in Genomic and Functional Studies. Int J Mol Sci 2024; 25:12654. [PMID: 39684366 PMCID: PMC11641376 DOI: 10.3390/ijms252312654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 12/18/2024] Open
Abstract
Bitter taste perception is crucial for animal survival. By detecting potentially harmful substances, such as plant secondary metabolites, as bitter, animals can avoid ingesting toxic compounds. In vertebrates, this function is mediated by taste receptors type 2 (T2Rs), a family of G protein-coupled receptors (GPCRs) expressed on taste buds. Given their vital roles, T2Rs have undergone significant selective pressures throughout vertebrate evolution, leading to frequent gene duplications and deletions, functional changes, and intrapopulation differentiation across various lineages. Recent advancements in genomic and functional research have uncovered the repertoires and functions of bitter taste receptors in a wide range of vertebrate species, shedding light on their evolution in relation to dietary habits and other ecological factors. This review summarizes recent research on bitter taste receptors and explores the mechanisms driving the diversity of these receptors from the perspective of vertebrate ecology and evolution.
Collapse
Affiliation(s)
- Akihiro Itoigawa
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
- Japan Society for the Promotion of Science, Chiyoda-ku 102-0083, Tokyo, Japan
| | - Tomoya Nakagita
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
| | - Yasuka Toda
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
| |
Collapse
|
9
|
Cui Y, Zhou Q, Jin M, Jiang S, Shang P, Dong X, Li L. Research progress on pharmacological effects and bioavailability of berberine. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8485-8514. [PMID: 38888754 DOI: 10.1007/s00210-024-03199-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024]
Abstract
Berberine (BBR), a benzylisoquinoline alkaloid obtained from natural medicines such as coptidis rhizoma, has a wide range of pharmacological activities such as protecting the nervous system, protecting the cardiovascular system, anti-inflammatory, antidiabetic, antihyperlipidemic, antitumor, antibacterial, and antidiarrheal. However, factors such as poor solubility, low permeability, P-glycoprotein (P-gp) efflux, and hepatic-intestinal metabolism result in BBR having a low bioavailability (< 1%), which restricts its application in clinical settings. Therefore, improving its bioavailability is a prerequisite for its clinical applications. This review summarizes the various pharmacological effects of BBR and analyzes the main reasons for its poor bioavailability. It introduces methods to improve the bioavailability of BBR through the use of absorption enhancers and P-gp inhibitors, structural modification of BBR, and preparation of BBR salts and cocrystals as well as the development of new formulations and focuses on the bioavailability study of the new formulations of BBR. The research of BBR was also prospected in order to provide reference for the further research of BBR.
Collapse
Affiliation(s)
- Yulong Cui
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Quanying Zhou
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Min Jin
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Siqi Jiang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peizhao Shang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaofan Dong
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lingjun Li
- Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
10
|
Liu P, Gongpan P, Wu SL, Li XY, Huang XY, Ma YB, Geng CA. New labdane diterpenoids from Alpinia galanga: A new type of GLP-1 secretagogues targeting the PKA-CREB and PI3K-Akt signaling axes. Arch Pharm (Weinheim) 2024; 357:e2400383. [PMID: 39031533 DOI: 10.1002/ardp.202400383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/22/2024]
Abstract
Glucagon-like peptide-1 (GLP-1) secretagogues are fascinating pharmacotherapies to overcome the defects of GLP-1 analogs and dipeptidyl peptidase-4 (DPP-4) inhibitors in treating diabetes and obesity. To discover new GLP-1 secretagogues from natural sources, alpigalangols A-Q (1-17), 17 new labdane diterpenoids including four unusual nor-labdane and N-containing ones, were isolated from the fruits of Alpinia galanga. Most of the isolates showed GLP-1 promotive effects in NCl-H716 cells, of which compounds 3, 4, 12, and 14-17 were revealed with high promoting rates of 246.0%-413.8% at 50 µM. A mechanistic study manifested that the most effective compound 12 upregulated the mRNA expression of Gcg and Pcsk1, and the protein phosphorylation of PKA, CREB, and GSK3β, but was inactive on GPBAR and GPR119 receptors. Network pharmacology analysis indicated that the PI3K-Akt pathway was involved in the GLP-1 stimulation of 12, which was highly associated with AKT1, CASP3, PPARG, and ICAM1 proteins. This study suggests that A. galanga is rich in diverse labdane diterpenoids with GLP-1 promoting effects, representing a new type of antidiabetic candidates from natural sources.
Collapse
Affiliation(s)
- Pei Liu
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, People's Republic of China
| | - Pianchou Gongpan
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, People's Republic of China
| | - Sheng-Li Wu
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xin-Yu Li
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiao-Yan Huang
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, People's Republic of China
| | - Yun-Bao Ma
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, People's Republic of China
| | - Chang-An Geng
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, People's Republic of China
| |
Collapse
|
11
|
Trius-Soler M, Moreno JJ. Bitter taste receptors: Key target to understand the effects of polyphenols on glucose and body weight homeostasis. Pathophysiological and pharmacological implications. Biochem Pharmacol 2024; 228:116192. [PMID: 38583811 DOI: 10.1016/j.bcp.2024.116192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/22/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Experimental and clinical research has reported beneficial effects of polyphenol intake on high prevalent diseases such as type 2 diabetes and obesity. These phytochemicals are ligands of taste 2 receptors (T2Rs) that have been recently located in a variety of organs and extra-oral tissues. Therefore, the interaction between polyphenol and T2Rs in brain structures can play a direct effect on appetite/satiety regulation and food intake. T2Rs are also expressed along the digestive tract, and their interaction with polyphenols can induce the release of gastrointestinal hormones (e.g., ghrelin, GLP-1, CCK) influencing appetite, gastrointestinal functionally, and glycemia control. Intestinal microbiota can also influence on network effects of polyphenols-T2Rs interaction and vice versa, impacting innate immune responses and consequently on gut functionally. Furthermore, polyphenols binding to T2Rs present important effects on adipose tissue metabolism. Interestingly, T2R polymorphism could, at least partially, explain the inter-individual variability of the effects of polyphenols on glucose and body weight homeostasis. Together, these factors can contribute to understand the beneficial effects of polyphenol-rich diets but also might aid in identifying new pharmacological pathway targets for the treatment of diabetes and obesity.
Collapse
Affiliation(s)
- Marta Trius-Soler
- Department of Public Health and Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Juan José Moreno
- Department of Nutrition, Food Science and Gastronomy, XIA, School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; Institute for Nutrition and Food Safety Research, University of Barcelona, Barcelona, Spain; Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
12
|
Wang Q, Shen W, Shao W, Hu H. Berberine alleviates cholesterol and bile acid metabolism disorders induced by high cholesterol diet in mice. Biochem Biophys Res Commun 2024; 719:150088. [PMID: 38740003 DOI: 10.1016/j.bbrc.2024.150088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
Berberine (BBR) is a traditional Chinese herb with broad antimicrobial activity. Gut microbiota plays an important role in the metabolism of bile acids and cholesterol. Our study investigated the effects of BBR on alleviating cholesterol and bile acid metabolism disorders induced by high cholesterol diet in mice. Adult male C57BL/6J mice fed with high cholesterol diet (HC) containing 1.25 % cholesterol (HC group) or fed with chow diet containing 0.02 % cholesterol (Chow group) served as controls. BBR50 and BBR100 group mice were fed with HC, and oral BBR daily at doses of 50 or 100 mg/kg respectively for 8 weeks. The results showed that BBR could reshape the homeostasis and composition of gut microbiota. The abundance of Clostridium genera was significantly inhibited by BBR, which resulted in a significant reduction of secondary bile acids within the enterohepatic circulation and a significant lower hydrophobic index of bile acids. The absorption of cholesterol in intestine, the deposition of cholesterol in liver and the excretion of cholesterol in biliary tract were significantly inhibited by BBR, which promoted the unsaturation of cholesterol in bile. These findings suggest the potential utility of BBR as a functional food to alleviate the negative effects of high cholesterol diet.
Collapse
Affiliation(s)
- Qihan Wang
- Center of Gallstone Disease, Shanghai East Hospital, Tongji University School of Medicine, and Institution of Gallstone Disease, Tongji University School of Medicine, Shanghai, China
| | - Weiyi Shen
- Center of Gallstone Disease, Shanghai East Hospital, Tongji University School of Medicine, and Institution of Gallstone Disease, Tongji University School of Medicine, Shanghai, China
| | - Wentao Shao
- Center of Gallstone Disease, Shanghai East Hospital, Tongji University School of Medicine, and Institution of Gallstone Disease, Tongji University School of Medicine, Shanghai, China; State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hai Hu
- Center of Gallstone Disease, Shanghai East Hospital, Tongji University School of Medicine, and Institution of Gallstone Disease, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
13
|
Sun A, Yang H, Li T, Luo J, Zhou L, Chen R, Han L, Lin Y. Molecular mechanisms, targets and clinical potential of berberine in regulating metabolism: a review focussing on databases and molecular docking studies. Front Pharmacol 2024; 15:1368950. [PMID: 38957396 PMCID: PMC11217548 DOI: 10.3389/fphar.2024.1368950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/29/2024] [Indexed: 07/04/2024] Open
Abstract
Background: Metabolic imbalance is the common basis of many diseases. As natural isoquinoline alkaloid, berberine (BBR) has shown great promise in regulating glucose and lipids metabolism and treating metabolic disorders. However, the related mechanism still lacks systematic research. Aim: To discuss the role of BBR in the whole body's systemic metabolic regulation and further explore its therapeutic potential and targets. Method: Based on animal and cell experiments, the mechanism of BBR regulating systemic metabolic processes is reviewed. Potential metabolism-related targets were summarized using Therapeutic Target Database (TTD), DrugBank, GeneCards, and cutting-edge literature. Molecular modeling was applied to explore BBR binding to the potential targets. Results: BBR regulates the whole-body metabolic response including digestive, circulatory, immune, endocrine, and motor systems through adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR), sirtuin (SIRT)1/forkhead box O (FOXO)1/sterol regulatory element-binding protein (SREBP)2, nuclear factor erythroid 2-related factor (Nrf) 2/heme oxygenase (HO)-1, and other signaling pathways. Through these reactions, BBR exerts hypoglycemic, lipid-regulating, anti-inflammatory, anti-oxidation, and immune regulation. Molecular docking results showed that BBR could regulate metabolism targeting FOXO3, Nrf2, NAD(P)H quinone oxidoreductase 1 (NQO1), glutathione peroxidase (Gpx) 4 and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA). Evaluating the target clinical effects, we found that BBR has the therapeutic potential of anti-aging, anti-cancer, relieving kidney disease, regulating the nervous system, and alleviating other chronic diseases. Conclusion: This review elucidates the interaction between potential targets and small molecular metabolites by exploring the mechanism of BBR regulating metabolism. That will help pharmacologists to identify new promising metabolites interacting with these targets.
Collapse
Affiliation(s)
- Aru Sun
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Haoyu Yang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tao Li
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinli Luo
- China Traditional Chinese Medicine Holdings Co. Limited, Guangdong e-fong Pharmaceutical Co., Ltd., Foshan, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Ling Zhou
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Rui Chen
- College of Basic Medical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Lin Han
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yiqun Lin
- Department of Endocrinology, Guang’anmen Hospital South Campus, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
14
|
Morini G. The taste for health: the role of taste receptors and their ligands in the complex food/health relationship. Front Nutr 2024; 11:1396393. [PMID: 38873558 PMCID: PMC11169839 DOI: 10.3389/fnut.2024.1396393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/03/2024] [Indexed: 06/15/2024] Open
Abstract
Taste, food, and health are terms that have since always accompanied the act of eating, but the association was simple: taste serves to classify a food as good or bad and therefore influences food choices, which determine the nutritional status and therefore health. The identification of taste receptors, particularly, the G protein-coupled receptors that mediate sweet, umami, and bitter tastes, in the gastrointestinal tract has assigned them much more relevant tasks, from nutrient sensing and hormone release to microbiota composition and immune response and finally to a rationale for the gut-brain axis. Particularly interesting are bitter taste receptors since most of the times they do not mediate macronutrients (energy). The relevant roles of bitter taste receptors in the gut indicate that they could become new drug targets and their ligands new medications or components in nutraceutical formulations. Traditional knowledge from different cultures reported that bitterness intensity was an indicator for distinguishing plants used as food from those used as medicine, and many non-cultivated plants were used to control glucose level and treat diabetes, modulate hunger, and heal gastrointestinal disorders caused by pathogens and parasites. This concept represents a means for the scientific integration of ancient wisdom with advanced medicine, constituting a possible boost for more sustainable food and functional food innovation and design.
Collapse
|
15
|
Di W, Zhang Y, Zhang X, Han L, Zhao L, Hao Y, Zhai Z. Heterologous expression of P9 from Akkermansia muciniphila increases the GLP-1 secretion of intestinal L cells. World J Microbiol Biotechnol 2024; 40:199. [PMID: 38727988 DOI: 10.1007/s11274-024-04012-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/02/2024] [Indexed: 06/22/2024]
Abstract
Glucagon-like peptide-1(GLP-1) is an incretin hormone secreted primarily from the intestinal L-cells in response to meals. GLP-1 is a key regulator of energy metabolism and food intake. It has been proven that P9 protein from A. muciniphila could increase GLP-1 release and improve glucose homeostasis in HFD-induced mice. To obtain an engineered Lactococcus lactis which produced P9 protein, mature polypeptide chain of P9 was codon-optimized, fused with N-terminal signal peptide Usp45, and expressed in L. lactis NZ9000. Heterologous secretion of P9 by recombinant L. lactis NZP9 were successfully detected by SDS-PAGE and western blotting. Notably, the supernatant of L. lactis NZP9 stimulated GLP-1 production of NCI-H716 cells. The relative expression level of GLP-1 biosynthesis gene GCG and PCSK1 were upregulated by 1.63 and 1.53 folds, respectively. To our knowledge, this is the first report on the secretory expression of carboxyl-terminal processing protease P9 from A. muciniphila in L. lactis. Our results suggest that genetically engineered L. lactis which expressed P9 may have therapeutic potential for the treatment of diabetes, obesity and other metabolic disorders.
Collapse
Affiliation(s)
- Wenxuan Di
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yuchen Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xinyuan Zhang
- Department of Food Science, Beijing University of Agriculture, Beijing, China
| | - Luxuan Han
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Liang Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Food Laboratory of Zhongyuan, Luohe, Henan, 462300, China
| | - Yanling Hao
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100093, China
- Food Laboratory of Zhongyuan, Luohe, Henan, 462300, China
| | - Zhengyuan Zhai
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
- Food Laboratory of Zhongyuan, Luohe, Henan, 462300, China.
| |
Collapse
|
16
|
Huang W, O'Hara SE, Xie C, Liu N, Rayner CK, Nicholas LM, Wu T. Effects of a bitter substance, denatonium benzoate, on pancreatic hormone secretion. Am J Physiol Endocrinol Metab 2024; 326:E537-E544. [PMID: 38477876 DOI: 10.1152/ajpendo.00046.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/14/2024]
Abstract
There is increasing evidence linking bitter taste receptor (BTR) signaling to gut hormone secretion and glucose homeostasis. However, its effect on islet hormone secretion has been poorly characterized. This study investigated the effect of the bitter substance, denatonium benzoate (DB), on hormone secretion from mouse pancreatic islets and INS-1 832/13 cells. DB (0.5-1 mM) augmented insulin secretion at both 2.8 mM and 16.7 mM glucose. This effect was no longer present at 5 mM DB likely due to the greater levels of cellular apoptosis. DB-stimulated insulin secretion involved closure of the KATP channel, activation of T2R signaling in beta-cells, and intraislet glucagon-like peptide-1 (GLP-1) release. DB also enhanced glucagon and somatostatin secretion, but the underlying mechanism was less clear. Together, this study demonstrates that the bitter substance, DB, is a strong potentiator of islet hormone secretion independent of glucose. This observation highlights the potential for widespread off-target effects associated with the clinical use of bitter-tasting substances.NEW & NOTEWORTHY We show that the bitter substance, denatonium benzoate (DB), stimulates insulin, glucagon, somatostatin, and GLP-1 secretion from pancreatic islets, independent of glucose, and that DB augments insulin release via the KATP channel, bitter taste receptor signaling, and intraislet GLP-1 secretion. Exposure to a high dose of DB (5 mM) induces cellular apoptosis in pancreatic islets. Therefore, clinical use of bitter substances to improve glucose homeostasis may have unintended negative impacts beyond the gut.
Collapse
Affiliation(s)
- Weikun Huang
- Centre for Research Excellence in Translating Nutritional Sciences to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Institute for Photonics and Advanced Sensing, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Stephanie E O'Hara
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
- Adelaide Centre for Epigenetics, School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Cong Xie
- Centre for Research Excellence in Translating Nutritional Sciences to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Ning Liu
- Bioinformatics Division, The Walter and Eliza Hall Institute, Melbourne, Victoria, Australia
| | - Christopher K Rayner
- Centre for Research Excellence in Translating Nutritional Sciences to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Lisa M Nicholas
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
- Adelaide Centre for Epigenetics, School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Tongzhi Wu
- Centre for Research Excellence in Translating Nutritional Sciences to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
17
|
Grădinaru TC, Vlad A, Gilca M. Bitter Phytochemicals as Novel Candidates for Skin Disease Treatment. Curr Issues Mol Biol 2023; 46:299-326. [PMID: 38248322 PMCID: PMC10814078 DOI: 10.3390/cimb46010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Skin diseases represent a global healthcare challenge due to their rising incidence and substantial socio-economic burden. While biological, immunological, and targeted therapies have brought a revolution in improving quality of life and survival rates for certain dermatological conditions, there remains a stringent demand for new remedies. Nature has long served as an inspiration for drug development. Recent studies have identified bitter taste receptors (TAS2Rs) in both skin cell lines and human skin. Additionally, bitter natural compounds have shown promising benefits in addressing skin aging, wound healing, inflammatory skin conditions, and even skin cancer. Thus, TAS2Rs may represent a promising target in all these processes. In this review, we summarize evidence supporting the presence of TAS2Rs in the skin and emphasize their potential as drug targets for addressing skin aging, wound healing, inflammatory skin conditions, and skin carcinogenesis. To our knowledge, this is a pioneering work in connecting information on TAS2Rs expression in skin and skin cells with the impact of bitter phytochemicals on various beneficial effects related to skin disorders.
Collapse
Affiliation(s)
- Teodora-Cristiana Grădinaru
- Department of Functional Sciences I/Biochemistry, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (T.-C.G.); (M.G.)
| | - Adelina Vlad
- Department of Functional Sciences I/Physiology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Marilena Gilca
- Department of Functional Sciences I/Biochemistry, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (T.-C.G.); (M.G.)
| |
Collapse
|
18
|
Chandrasekaran S, Gonzalez de Mejia E. Germinated chickpea protein ficin hydrolysate and its peptides inhibited glucose uptake and affected the bitter receptor signaling pathway in vitro. Food Funct 2023; 14:8467-8486. [PMID: 37646191 DOI: 10.1039/d3fo01408h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The objective of this study was to evaluate germinated chickpea protein hydrolysate (GCPH) in vitro for its effect on markers of type 2 diabetes (T2D) and bitter taste receptor expression in intestinal epithelial cells. Protein hydrolysate was obtained using ficin, and the resulting peptides were sequenced using LC-ESI-MS/MS. Caco-2 cells were used to determine glucose uptake and extra-oral bitter receptor activation. Three peptides, VVFW, GEAGR, and FDLPAL, were identified in legumin. FDLPAL was the most potent peptide in molecular docking studies with a DPP-IV energy of affinity of -9.8 kcal mol-1. GCPH significantly inhibited DPP-IV production by Caco-2 cells (IC50 = 2.1 mM). Glucose uptake was inhibited in a dose-dependent manner (IC25 = 2.0 mM). A negative correlation was found between glucose uptake and PLCβ2 expression in Caco-2 cells (R value, -0.62). Thus, GCPH has the potential to be commercialized as a functional ingredient.
Collapse
Affiliation(s)
- Subhiksha Chandrasekaran
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Elvira Gonzalez de Mejia
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
19
|
Utami AR, Maksum IP, Deawati Y. Berberine and Its Study as an Antidiabetic Compound. BIOLOGY 2023; 12:973. [PMID: 37508403 PMCID: PMC10376565 DOI: 10.3390/biology12070973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023]
Abstract
Diabetes mellitus (DM) is a metabolic disorder that causes hyperglycemia conditions and leads to various chronic complications that causes death. The prevalence of diabetes is predicted to continue to increase, and with the high toxicity levels of current diabetes drugs, the exploration of natural compounds as alternative diabetes treatment has been widely carried out, one of which is berberine. Berberine and several other alkaloid compounds, including some of its derivatives, have shown many bioactivities, such as neuraminidase and hepatoprotective activity. Berberine also exhibits antidiabetic activity. As an antidiabetic compound, berberine is known to reduce blood glucose levels, increase insulin secretion, and weaken glucose tolerance and insulin resistance by activating the AMPK pathway. Apart from being an antidiabetic compound, berberine also exhibits various other activities such as being anti-adipogenic, anti-hyperlipidemic, anti-inflammatory, and antioxidant. Many studies have been conducted on berberine, but its exact mechanism still needs to be clarified and requires further investigation. This review will discuss berberine and its mechanism as a natural compound with various activities, mainly as an antidiabetic.
Collapse
Affiliation(s)
- Ayudiah Rizki Utami
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Iman Permana Maksum
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Yusi Deawati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia
| |
Collapse
|
20
|
Wu W, Xia Q, Guo Y, Wang H, Dong H, Lu F, Yuan F. Berberine enhances the function of db/db mice islet β cell through GLP-1/GLP-1R/PKA signaling pathway in intestinal L cell and islet α cell. Front Pharmacol 2023; 14:1228722. [PMID: 37469873 PMCID: PMC10352779 DOI: 10.3389/fphar.2023.1228722] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/26/2023] [Indexed: 07/21/2023] Open
Abstract
Background: The evidence on berberine stimulating the secretion of GLP-1 in intestinal L cell has been studied. However, few research has explored its role on generating GLP-1 of islet α cell. Our experiment aims to clarify the mechanism of berberine promoting the secretion of GLP-1 in intestinal L cell and islet α cell, activating GLP-1R and its downstream molecules through endocrine and paracrine ways, thus improving the function of islet β cell and treating T2DM. Methods: After confirming that berberine can lower blood glucose and improve insulin resistance in db/db mice, the identity maintenance, proliferation and apoptosis of islet cells were detected by immunohistochemistry and immunofluorescence. Then, the activation of berberine on GLP-1/GLP-1R/PKA signaling pathway was evaluated by Elisa, Western blot and PCR. Finally, this mechanism was verified by in vitro experiments on Min6 cells, STC-1 cells and aTC1/6 cells. Results: Berberine ameliorates glucose metabolism in db/db mice. Additionally, it also increases the number and enhances the function of islet β cell. This process is closely related to improve the secretion of intestinal L cell and islet α cell, activate GLP-1R/PKA signaling pathway through autocrine and paracrine, and increase the expression of its related molecule such as GLP-1, GLP-1R, PC1/3, PC2, PKA, Pdx1. In vitro, the phenomenon that berberine enhanced the GLP-1/GLP-1R/PKA signal pathway had also been observed, which confirmed the results of animal experiments. Conclusion: Berberine can maintain the identity and normal function of islet β cell, and its mechanism is related to the activation of GLP-1/GLP-1R/PKA signal pathway in intestinal L cell and islet α cell.
Collapse
Affiliation(s)
- Wenbin Wu
- Institution of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qingsong Xia
- Institution of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yujin Guo
- Institution of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongzhan Wang
- Institution of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Dong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fuer Lu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fen Yuan
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
21
|
Huang J, Zhu Y, Xiao H, Liu J, Li S, Zheng Q, Tang J, Meng X. Formation of a traditional Chinese medicine self-assembly nanostrategy and its application in cancer: a promising treatment. Chin Med 2023; 18:66. [PMID: 37280646 DOI: 10.1186/s13020-023-00764-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/06/2023] [Indexed: 06/08/2023] Open
Abstract
Traditional Chinese medicine (TCM) has been used for centuries to prevent and treat a variety of illnesses, and its popularity is increasing worldwide. However, the clinical applications of natural active components in TCM are hindered by the poor solubility and low bioavailability of these compounds. To address these issues, Chinese medicine self-assembly nanostrategy (CSAN) is being developed. Many active components of TCM possess self-assembly properties, allowing them to form nanoparticles (NPs) through various noncovalent forces. Self-assembled NPs (SANs) are also present in TCM decoctions, and they are closely linked to the therapeutic effects of these remedies. SAN is gaining popularity in the nano research field due to its simplicity, eco-friendliness, and enhanced biodegradability and biocompatibility compared to traditional nano preparation methods. The self-assembly of active ingredients from TCM that exhibit antitumour effects or are combined with other antitumour drugs has generated considerable interest in the field of cancer therapeutics. This paper provides a review of the principles and forms of CSAN, as well as an overview of recent reports on TCM that can be used for self-assembly. Additionally, the application of CSAN in various cancer diseases is summarized, and finally, a concluding summary and thoughts are proposed. We strongly believe that CSAN has the potential to offer fresh strategies and perspectives for the modernization of TCM.
Collapse
Affiliation(s)
- Ju Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Yu Zhu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Hang Xiao
- Capital Medical University, Beijing, People's Republic of China
| | - Jingwen Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Songtao Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Qiao Zheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Jianyuan Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China.
| | - Xiangrui Meng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China.
| |
Collapse
|
22
|
Wang Y, Geng R, Zhao Y, Fang J, Li M, Kang SG, Huang K, Tong T. The gut odorant receptor and taste receptor make sense of dietary components: A focus on gut hormone secretion. Crit Rev Food Sci Nutr 2023; 64:6975-6989. [PMID: 36785901 DOI: 10.1080/10408398.2023.2177610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Odorant receptors (ORs) and taste receptors (TRs) are expressed primarily in the nose and tongue in which they transduce electrical signals to the brain. Advances in deciphering the dietary component-sensing mechanisms in the nose and tongue prompted research on the role of gut chemosensory cells. Acting as the pivotal interface between the body and dietary cues, gut cells "smell" and "taste" dietary components and metabolites by taking advantage of chemoreceptors-ORs and TRs, to maintain physiological homeostasis. Here, we reviewed this novel field, highlighting the latest discoveries pertinent to gut ORs and TRs responding to dietary components, their impacts on gut hormone secretion, and the mechanisms involved. Recent studies indicate that gut cells sense dietary components including fatty acid, carbohydrate, and phytochemical by activating relevant ORs, thereby modulating GLP-1, PYY, CCK, and 5-HT secretion. Similarly, gut sweet, umami, and bitter receptors can regulate the gut hormone secretion and maintain homeostasis in response to dietary components. A deeper understanding of the favorable influence of dietary components on gut hormone secretion via gut ORs and TRs, coupled with the facts that gut hormones are involved in diverse physiological or pathophysiological phenomena, may ultimately lead to a promising treatment for various human diseases.
Collapse
Affiliation(s)
- Yanan Wang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Ruixuan Geng
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Yuhan Zhao
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Jingjing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Mengjie Li
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Seong-Gook Kang
- Department of Food Engineering, Mokpo National University, Muangun, Korea
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, PR China
- Beijing Laboratory for Food Quality and Safety, Beijing, PR China
| | - Tao Tong
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, PR China
- Beijing Laboratory for Food Quality and Safety, Beijing, PR China
| |
Collapse
|
23
|
Lee SH, Ko HM, Jee W, Kim H, Chung WS, Jang HJ. Isosinensetin Stimulates Glucagon-like Peptide-1 Secretion via Activation of hTAS2R50 and the G βγ-Mediated Signaling Pathway. Int J Mol Sci 2023; 24:ijms24043682. [PMID: 36835092 PMCID: PMC9959872 DOI: 10.3390/ijms24043682] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Bitter taste receptors (TAS2Rs) are G protein-coupled receptors localized in the taste buds of the tongue. They may also be present in non-lingual organs, including the brain, lung, kidney, and gastrointestinal (GI) tract. Recent studies on bitter taste receptor functions have suggested TAS2Rs as potential therapeutic targets. The human bitter taste receptor subtype hTAS2R50 responds to its agonist isosinensetin (ISS). Here, we demonstrated that, unlike other TAS2R agonists, isosinensetin activated hTAS2R50 as well as increased Glucagon-like peptide 1 (GLP-1) secretion through the Gβγ-mediated pathway in NCI-H716 cells. To confirm this mechanism, we showed that ISS increased intracellular Ca2+ and was suppressed by the IP3R inhibitor 2-APB as well as the PLC inhibitor U73122, suggesting that TAS2Rs alters the physiological state of enteroendocrine L cells in a PLC-dependent manner. Furthermore, we demonstrated that ISS upregulated proglucagon mRNA and stimulated GLP-1 secretion. ISS-mediated GLP-1 secretion was suppressed in response to small interfering RNA-mediated silencing of Gα-gust and hTAS2R50 as well as 2-APB and U73122. Our findings improved the understanding of how ISS modulates GLP-1 secretion and indicates the possibility of using ISS as a therapeutic agent in the treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Seung-Hyeon Lee
- College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyun Min Ko
- College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wona Jee
- College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyungsuk Kim
- College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Won-Seok Chung
- College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Hyeung-Jin Jang
- College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Correspondence:
| |
Collapse
|
24
|
Jia H, Qin Z, Wei B, Guo X, Xiao H, Zhang H, Li Z, Wu Q, Zheng R, Wu W. Substance P and Glucagon-like Peptide-1 7-36 Amide Mediate Anorexic Responses to Trichothecene Deoxynivalenol and Its Congeners. Toxins (Basel) 2022; 14:toxins14120885. [PMID: 36548782 PMCID: PMC9785148 DOI: 10.3390/toxins14120885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/10/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Type B trichothecenes commonly contaminate cereal grains and include five structurally related congeners: deoxynivalenol (DON), 3-acetyldeoxynivalenol (3-ADON), 15-acetyldeoxynivalenol (15-ADON), fusarenon X (FX), and nivalenol (NIV). These toxins are known to have negative effects on human and animal health, particularly affecting food intake. However, the pathophysiological basis for anorexic effect is not fully clarified. The purpose of this study is to explore the potential roles of the brain-gut peptides substance P (SP) and glucagon-like peptide-17-36 amide (GLP-1) in anorexic responses induced by type B trichothecenes following both intraperitoneal (IP) and oral administration. SP and GLP-1 were elevated at 1 or 2 h and returned to basal levels at 6 h following exposure to DON and both ADONs. FX induced the production of both brain gut peptides with initial time at 1 or 2 h and duration > 6 h. Similar to FX, exposing IP to NIV caused elevations of SP and GLP-1 at 1 h and lasted more than 6 h, whereas oral exposure to NIV only increased both brain gut peptides at 2 h. The neurokinin-1 receptor (NK-1R) antagonist Emend® dose-dependently attenuated both SP- and DON-induced anorexic responses. Pretreatment with the GLP-1 receptor (GLP-1R) antagonist Exending9-39 induced a dose-dependent attenuation of both GLP-1- and DON-induced anorexic responses. To summarize, the results suggest that both SP and GLP-1 play important roles in anorexia induction by type B trichothecenes.
Collapse
Affiliation(s)
- Hui Jia
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China
| | - Zihui Qin
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ben Wei
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinyi Guo
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Huiping Xiao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Huayue Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zelin Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Qinghua Wu
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Ruibo Zheng
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China
| | - Wenda Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic
- Correspondence:
| |
Collapse
|
25
|
Sun S, Yang Y, Xiong R, Ni Y, Ma X, Hou M, Chen L, Xu Z, Chen L, Ji M. Oral berberine ameliorates high-fat diet-induced obesity by activating TAS2Rs in tuft and endocrine cells in the gut. Life Sci 2022; 311:121141. [PMID: 36341914 DOI: 10.1016/j.lfs.2022.121141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
|
26
|
Coquant G, Aguanno D, Brot L, Belloir C, Delugeard J, Roger N, Pham HP, Briand L, Moreau M, de Sordi L, Carrière V, Grill JP, Thenet S, Seksik P. 3-oxo-C12:2-HSL, quorum sensing molecule from human intestinal microbiota, inhibits pro-inflammatory pathways in immune cells via bitter taste receptors. Sci Rep 2022; 12:9440. [PMID: 35676403 PMCID: PMC9177545 DOI: 10.1038/s41598-022-13451-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/13/2022] [Indexed: 12/26/2022] Open
Abstract
In the gut ecosystem, microorganisms regulate group behaviour and interplay with the host via a molecular system called quorum sensing (QS). The QS molecule 3-oxo-C12:2-HSL, first identified in human gut microbiota, exerts anti-inflammatory effects and could play a role in inflammatory bowel diseases where dysbiosis has been described. Our aim was to identify which signalling pathways are involved in this effect. We observed that 3-oxo-C12:2-HSL decreases expression of pro-inflammatory cytokines such as Interleukine-1β (- 35%) and Tumor Necrosis Factor-α (TNFα) (- 40%) by stimulated immune RAW264.7 cells and decreased TNF secretion by stimulated PBMC in a dose-dependent manner, between 25 to 100 µM. Transcriptomic analysis of RAW264.7 cells exposed to 3-oxo-C12:2-HSL, in a pro-inflammatory context, highlighted JAK-STAT, NF-κB and TFN signalling pathways and we confirmed that 3-oxo-C12:2-HSL inhibited JAK1 and STAT1 phosphorylation. We also showed through a screening assay that 3-oxo-C12:2-HSL interacted with several human bitter taste receptors. Its anti-inflammatory effect involved TAS2R38 as shown by pharmacologic inhibition and led to an increase in intracellular calcium levels. We thus unravelled the involvement of several cellular pathways in the anti-inflammatory effects exerted by the QS molecule 3-oxo-C12:2-HSL.
Collapse
Affiliation(s)
- Garance Coquant
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, 75012, Paris, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, APHP, Paris, Ile-de-France, France
| | - Doriane Aguanno
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, 75012, Paris, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, APHP, Paris, Ile-de-France, France
- EPHE, PSL University, 75014, Paris, France
| | - Loïc Brot
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, 75012, Paris, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, APHP, Paris, Ile-de-France, France
| | - Christine Belloir
- Centre des Sciences du Goût et de l'Alimentation, UMR 1324 INRAE, UMR 6265 CNRS, University of Bourgogne Franche-Comté, 21000, Dijon, France
| | - Julie Delugeard
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, 75012, Paris, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, APHP, Paris, Ile-de-France, France
| | - Nathalie Roger
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, 75012, Paris, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, APHP, Paris, Ile-de-France, France
| | | | - Loïc Briand
- Centre des Sciences du Goût et de l'Alimentation, UMR 1324 INRAE, UMR 6265 CNRS, University of Bourgogne Franche-Comté, 21000, Dijon, France
| | - Marielle Moreau
- LVMH Recherche, Life Science Department, 45800, Saint Jean de Braye, France
| | - Luisa de Sordi
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, 75012, Paris, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, APHP, Paris, Ile-de-France, France
| | - Véronique Carrière
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, 75012, Paris, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, APHP, Paris, Ile-de-France, France
| | - Jean-Pierre Grill
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, 75012, Paris, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, APHP, Paris, Ile-de-France, France
| | - Sophie Thenet
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, 75012, Paris, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, APHP, Paris, Ile-de-France, France
- EPHE, PSL University, 75014, Paris, France
| | - Philippe Seksik
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, 75012, Paris, France.
- Paris Center for Microbiome Medicine (PaCeMM) FHU, APHP, Paris, Ile-de-France, France.
- Département de Gastroentérologie et Nutrition, APHP, Hôpital Saint-Antoine, Sorbonne Université, 75012, Paris, France.
| |
Collapse
|
27
|
MacMillan HJ, Kong Y, Calvo-Roitberg E, Alonso LC, Pai AA. High-throughput analysis of ANRIL circRNA isoforms in human pancreatic islets. Sci Rep 2022; 12:7745. [PMID: 35546161 PMCID: PMC9095874 DOI: 10.1038/s41598-022-11668-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/20/2022] [Indexed: 01/05/2023] Open
Abstract
The antisense non-coding RNA in the INK locus (ANRIL) is a hotspot for genetic variants associated with cardiometabolic disease. We recently found increased ANRIL abundance in human pancreatic islets from donors with certain Type II Diabetes (T2D) risk-SNPs, including a T2D risk-SNP located within ANRIL exon 2 associated with beta cell proliferation. Recent studies have found that expression of circular species of ANRIL is linked to the regulation of cardiovascular phenotypes. Less is known about how the abundance of circular ANRIL may influence T2D phenotypes. Herein, we sequence circular RNA in pancreatic islets to characterize circular isoforms of ANRIL. We identify several consistently expressed circular ANRIL isoforms whose expression is correlated across dozens of individuals and characterize ANRIL splice sites that are commonly involved in back-splicing. We find that samples with the T2D risk allele in ANRIL exon 2 had higher ratios of circular to linear ANRIL compared to protective-allele carriers, and that higher circular:linear ANRIL was associated with decreased beta cell proliferation. Our study points to a combined involvement of both linear and circular ANRIL species in T2D phenotypes and opens the door for future studies of the molecular mechanisms by which ANRIL impacts cellular function in pancreatic islets.
Collapse
Affiliation(s)
- Hannah J MacMillan
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Yahui Kong
- UMass Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Curia Global, Inc., Hopkinton, MA, 01748, USA
| | - Ezequiel Calvo-Roitberg
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Laura C Alonso
- Division of Endocrinology, Diabetes and Metabolism, Weill Cornell Medicine, New York, NY, 10021, USA.
- Weill Center for Metabolic Health, Weill Cornell Medicine, New York, NY, 10021, USA.
| | - Athma A Pai
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
28
|
Infantino V, Riva A, Petrangolini G, Allegrini P, Perna S, Iannello G, Peroni G, Gasparri C, Rondanelli M. The Use of Berberine in Diabetes and Metabolic Syndrome: Two Sides of
the Same Coin. A Bibliometric Analysis. CURRENT NUTRITION & FOOD SCIENCE 2022. [DOI: 10.2174/1573401317666211125101041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
The increased prevalence of obesity, metabolic syndrome and type 2 diabetes has
prompted scientists to look for new active and safe molecules that may help the prevention of metabolic
disorders: hyperglycemia, insulin-resistance and dyslipidemia. Berberine is an alkaloid
compound derived from plants, and it is largely used in traditional Chinese medicine. The aim of
this study is to investigate in SCOPUS and Web of Science (WOS) databases how the scientists
focused on the use of berberine against metabolic disorders, in human subjects. We carried A bibliometric
analysis of scientific literature and performed 2 searches: 1) “Berberine” AND “Diabetes”
AND “Diabetes Type 2”, 2) “Berberine” AND “Metabolic Syndrome”, both in ARTICLE
(Title/Abstract/Keyword) with a time limitation of 1st January, 2000 through 31st December,
2018, with the filter on “HUMAN” AND/OR “HUMANS”. The research sorted out 500 papers,
finding about 300 (60 %) in the first search definition and 200 (40 %) in the second. The refined
research sorted out 46 papers regarding the use of berberine in diabetes, and 40 articles on the use
of the alkaloid compound in metabolic syndrome. For both topics, we found increasing interest
between 2008 and 2009, with citation trends in a constant crescendo in the overall period studied.
These findings underlined that berberine is a safe and interesting botanical compound, especially
against chronic-metabolic disorder that affects billions of people globally, and emphasized that
scientists are interested in searching for long-term therapies that show no major adverse effects.
Collapse
Affiliation(s)
- Vittoria Infantino
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia-27100, Italy
| | - Antonella Riva
- Research
and Development Unit, Indena, Milan-20139, Italy
| | | | | | - Simone Perna
- University of Bahrain, Department of Biology, College of Science,
Sakhir-32038, Kingdom of Bahrain
| | - Giancarlo Iannello
- General Management, Azienda di Servizi alla Persona “Istituto Santa Margherita”,
Pavia-27100 Italy
| | - Gabriella Peroni
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona ‘‘Istituto Santa Margherita’’, University of Pavia, Pavia,Italy
| | - Clara Gasparri
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”,
University of Pavia, Pavia, 27100, Italy
| | - Mariangela Rondanelli
- Research
and Development Unit, Indena, Milan-20139, Italy
- IRCCS Mondino Foundation, Pavia-27100, Italy
| |
Collapse
|
29
|
Nutrient Sensing via Gut in Drosophila melanogaster. Int J Mol Sci 2022; 23:ijms23052694. [PMID: 35269834 PMCID: PMC8910450 DOI: 10.3390/ijms23052694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 01/08/2023] Open
Abstract
Nutrient-sensing mechanisms in animals' sense available nutrients to generate a physiological regulatory response involving absorption, digestion, and regulation of food intake and to maintain glucose and energy homeostasis. During nutrient sensing via the gastrointestinal tract, nutrients interact with receptors on the enteroendocrine cells in the gut, which in return respond by secreting various hormones. Sensing of nutrients by the gut plays a critical role in transmitting food-related signals to the brain and other tissues informing the composition of ingested food to digestive processes. These signals modulate feeding behaviors, food intake, metabolism, insulin secretion, and energy balance. The increasing significance of fly genetics with the availability of a vast toolbox for studying physiological function, expression of chemosensory receptors, and monitoring the gene expression in specific cells of the intestine makes the fly gut the most useful tissue for studying the nutrient-sensing mechanisms. In this review, we emphasize on the role of Drosophila gut in nutrient-sensing to maintain metabolic homeostasis and gut-brain cross talk using endocrine and neuronal signaling pathways stimulated by internal state or the consumption of various dietary nutrients. Overall, this review will be useful in understanding the post-ingestive nutrient-sensing mechanisms having a physiological and pathological impact on health and diseases.
Collapse
|
30
|
Huang TT, Gu PP, Zheng T, Gou LS, Liu YW. Piperine, as a TAS2R14 agonist, stimulates the secretion of glucagon-like peptide-1 in the human enteroendocrine cell line Caco-2. Food Funct 2022; 13:242-254. [PMID: 34881772 DOI: 10.1039/d1fo02932k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Piperine is reported to ameliorate common metabolic diseases, however, its molecular mechanism is still unclear. In the present study, we examined whether piperine could stimulate glucagon-like peptide-1 (GLP-1) secretion in a human enteroendocrine cell line, Caco-2, and explored the potential mechanisms from the activation of human bitter taste receptors (TAS2Rs). It was found that TAS2R14 was highly expressed in Caco-2 cells, far more than TAS2R4 and TAS2R10. Piperine and flufenamic acid (FA, a known TAS2R14 agonist) markedly increased intracellular calcium mobilization and significantly enhanced the GLP-1 secretion, accompanied by elevated levels of proglucagon mRNA in Caco-2 cells compared with the control. Moreover, piperine and FA activated TAS2R14 signaling as evidenced by the increased mRNA and protein levels of TAS2R14, and the protein expression of its downstream key molecules including phospholipase C β2 (PLCβ2) and a transient receptor potential channel melastatin 5 (TRPM5). On the other hand, a G protein βγ subunit inhibitor Gallein or a PLC inhibitor U73122 alleviated piperine-stimulated GLP-1 secretion in Caco-2 cells. In the meantime, a flavanone hesperetin significantly attenuated piperine and FA induced the intracellular calcium mobilization and GLP-1 secretion. Furthermore, TAS2R14 knockdown reversed the piperine-triggered up-regulation of PLCβ2 and TRPM5 as well as increased the GLP-1 secretion in Caco-2 cells by TAS2R14 shRNA transfection. In summary, our findings demonstrated that piperine promoted the GLP-1 secretion from enteroendocrine cells through the activation of TAS2R14 signaling. Moreover, TAS2R14 was likely a target of piperine in the alleviation of metabolic diseases.
Collapse
Affiliation(s)
- Ting-Ting Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| | - Pan-Pan Gu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| | - Ting Zheng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| | - Ling-Shan Gou
- Center for Genetic Medicine, Xuzhou Maternity and Child Health Care Hospital, Xuzhou 221009, Jiangsu, China
| | - Yao-Wu Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China. .,Department of Pharmacology, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| |
Collapse
|
31
|
Optimization, identification, and comparison of peptides from germinated chickpea (Cicer arietinum) protein hydrolysates using either papain or ficin and their relationship with markers of type 2 diabetes. Food Chem 2021; 374:131717. [PMID: 34920404 DOI: 10.1016/j.foodchem.2021.131717] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/14/2021] [Accepted: 11/27/2021] [Indexed: 02/06/2023]
Abstract
The objective was to optimize and compare the production of antidiabetic peptides from germinated chickpea isolated protein using either papain or ficin. Kabuli chickpeas were germinated for 2, 4 and 6 days. Proteins were isolated, and peptides were produced based on a central composite design selecting human dipeptidyl peptidase (DPP-IV) inhibition as a response. Peptide sequencing was performed to identify and evaluate the physiochemical, biochemical and bitterness properties. DPP-IV inhibition using papain was 84.66 ± 8.72%, with ficin being 72.05 ± 1.20%. The optimum hydrolysate conditions were 6 days germination, 1:10 E/S, and 30 min ficin hydrolysis; SPGAGKG, GLAR, and STSA were identified. Pure SPGAGKG had relatively high affinity for DPP-IV (-7.2 kcal/mol) and α-glucosidase inhibition (-5.9 kcal/mol), with an IC50 of 0.27 mg/mL for DPP-IV inhibition. Peptides in the chickpea hydrolysate inhibited markers of T2D, indicating that the optimal conditions could be used to prepare a functional food ingredient.
Collapse
|
32
|
Wang J, Wei LR, Liu YL, Ding CZ, Guo F, Wang J, Qin Q, Huang FJ, Xin Y, Ma SN, Zhai QR, Wang SJ, Qin GJ. Berberine activates the β-catenin/TCF4 signaling pathway by down-regulating miR-106b to promote GLP-1 production by intestinal L cells. Eur J Pharmacol 2021; 911:174482. [PMID: 34481875 DOI: 10.1016/j.ejphar.2021.174482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/05/2021] [Accepted: 09/01/2021] [Indexed: 10/20/2022]
Abstract
Berberine facilitates the production of glucagon-like peptide-1 (GLP-1) by intestinal L cells. Here, we aimed to reveal the mechanism of berberine facilitating the production of GLP-1 by intestinal L cells. In this study, we confirmed that the 100 mg/kg berberine daily through diet decreased the miR-106b expression and elevated the expressions of β-catenin and T-cell factor 4 (TCF4) in colon tissues of high-fat diet mice; berberine decreased the concentrations of triglycerides, total cholesterol and the ratio of low-density lipoprotein cholesterol and high-density lipoprotein cholesterol in mouse serum samples; berberine decreased the blood glucose in the mouse tail vein blood and promoted GLP-1 production by intestinal L cells in mouse serum samples and elevated the GLP-1 expression in mouse colon tissues. Meanwhile, the mechanism analysis demonstrated that a dose of 100 μM berberine down-regulated the miR-106b expression by elevating the methylation levels of miR-106b in STC-1 cells and miR-106b bound to TCF4 in 293T cells. Moreover, the 100 mg/kg berberine daily through diet activated the β-catenin/TCF4 signaling pathway by decreasing miR-106b, thereby facilitating GLP-1 production in intestinal L cells through the in vivo assays. Conclusively, our experimental data illustrated that berberine decreased miR-106b expression by increasing its methylation levels and then activated the β-catenin/TCF4 signaling pathway, thereby facilitating GLP-1 production by intestinal L cells.
Collapse
Affiliation(s)
- Jiao Wang
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, PR China.
| | - Li-Rui Wei
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, PR China
| | - Yan-Ling Liu
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, PR China
| | - Cheng-Zhi Ding
- Department of Thoracic Oncology, Henan Provincial Chest Hospital, 450008, Zhengzhou, PR China
| | - Feng Guo
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, PR China
| | - Jiao Wang
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, PR China
| | - Qian Qin
- Physical Examination Center, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Feng-Jiao Huang
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, PR China
| | - Ying Xin
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, PR China
| | - Sheng-Nan Ma
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, PR China
| | - Qiu-Ran Zhai
- Child Health Care Clinics, The Third Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, PR China
| | - Shou-Jun Wang
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, PR China.
| | - Gui-Jun Qin
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, PR China.
| |
Collapse
|
33
|
D'Urso O, Drago F. Pharmacological significance of extra-oral taste receptors. Eur J Pharmacol 2021; 910:174480. [PMID: 34496302 DOI: 10.1016/j.ejphar.2021.174480] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 01/17/2023]
Abstract
It has recently been shown that taste receptors, in addition to being present in the oral cavity, exist in various extra-oral organs and tissues such as the thyroid, lungs, skin, stomach, intestines, and pancreas. Although their physiological function is not yet fully understood, it appears that they can help regulate the body's homeostasis and provide an additional defense function against pathogens. Since the vast majority of drugs are bitter, the greatest pharmacological interest is in the bitter taste receptors. In this review, we describe how bitter taste 2 receptors (TAS2Rs) induce bronchodilation and mucociliary clearance in the airways, muscle relaxation in various tissues, inhibition of thyroid stimulating hormone (TSH) in thyrocytes, and release of glucagon-like peptide-1 (GLP-1) and ghrelin in the digestive system. In fact, substances such as dextromethorphan, chloroquine, methimazole and probably glimepiride, being agonists of TAS2Rs, lead to these effects. TAS2Rs and taste 1 receptors (TAS1R2/3) are G protein-coupled receptors (GPCR). TAS1R2/3 are responsible for sweet taste perception and may induce GLP-1 release and insulin secretion. Umami taste receptors, belonging to the same superfamily of receptors, perform a similar function with regard to insulin. The sour and salty taste receptors work in a similar way, both being channel receptors sensitive to amiloride. Finally, gene-protein coupled receptor 40 (GPR40) and GPR120 for fatty taste perception are also protein-coupled receptors and may induce GLP-1 secretion and insulin release, similar to those of other receptors belonging to the same superfamily.
Collapse
Affiliation(s)
- Ottavio D'Urso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, 95125 Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, 95125 Catania, Italy.
| |
Collapse
|
34
|
Abstract
Bitter taste-sensing type 2 receptors (TAS2Rs or T2Rs), belonging to the subgroup of family A G-protein coupled receptors (GPCRs), are of crucial importance in the perception of bitterness. Although in the first instance, TAS2Rs were considered to be exclusively distributed in the apical microvilli of taste bud cells, numerous studies have detected these sensory receptor proteins in several extra-oral tissues, such as in pancreatic or ovarian tissues, as well as in their corresponding malignancies. Critical points of extra-oral TAS2Rs biology, such as their structure, roles, signaling transduction pathways, extensive mutational polymorphism, and molecular evolution, have been currently broadly studied. The TAS2R cascade, for instance, has been recently considered to be a pivotal modulator of a number of (patho)physiological processes, including adipogenesis or carcinogenesis. The latest advances in taste receptor biology further raise the possibility of utilizing TAS2Rs as a therapeutic target or as an informative index to predict treatment responses in various disorders. Thus, the focus of this review is to provide an update on the expression and molecular basis of TAS2Rs functions in distinct extra-oral tissues in health and disease. We shall also discuss the therapeutic potential of novel TAS2Rs targets, which are appealing due to their ligand selectivity, expression pattern, or pharmacological profiles.
Collapse
Affiliation(s)
- Kamila Tuzim
- Department of Clinical Pathomorphology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090, Lublin, Poland.
| | - Agnieszka Korolczuk
- Department of Clinical Pathomorphology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090, Lublin, Poland
| |
Collapse
|
35
|
Ming J, Yu X, Xu X, Wang L, Ding C, Wang Z, Xie X, Li S, Yang W, Luo S, He Q, Du Y, Tian Z, Gao X, Ma K, Fang Y, Li C, Zhao J, Wang X, Ji Q. Effectiveness and safety of Bifidobacterium and berberine in human hyperglycemia and their regulatory effect on the gut microbiota: a multi-center, double-blind, randomized, parallel-controlled study. Genome Med 2021; 13:125. [PMID: 34365978 PMCID: PMC8351344 DOI: 10.1186/s13073-021-00942-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/21/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Berberine and Bifidobacterium have been reported to improve glucose tolerance in people with hyperglycemia or other metabolic disorders. This study aimed to assess the hypoglycemic effect and the regulation of the gut microbiota caused by berberine and Bifidobacterium and the possible additive benefits of their combination. METHODS This was an 18-week, multi-center, randomized, double-blind, parallel-controlled study of patients newly diagnosed with hyperglycemia. After a 2-week run-in period, 300 participants were randomly assigned to the following four groups for 16 weeks of treatment: berberine (Be), Bifidobacterium (Bi), berberine and Bifidobacterium (BB), and placebo group. The primary efficacy endpoint was the absolute value of fasting plasma glucose (FPG) compared with baseline after 16 weeks of treatment. RESULTS Between October 2015 and April 2018, a total of 297 participants were included in the primary analysis. Significant reductions of FPG were observed in the Be and BB groups compared with the placebo group, with a least square (LS) mean difference of - 0.50, 95% CI [- 0.85, - 0.15] mmol/L, and - 0.55, 95% CI [- 0.91, - 0.20] mmol/L, respectively. The Be and BB groups also showed significant reductions in 2-h postprandial plasma glucose. A pronounced decrease in HbA1c occurred in the BB group compared to the placebo group. Moreover, compared with the Bi and placebo groups, the Be and BB groups had more changes in the gut microbiota from the baseline. CONCLUSIONS Berberine could regulate the structure and function of the human gut microbiota, and Bifidobacterium has the potential to enhance the hypoglycemic effect of berberine. These findings provide new insights into the hypoglycemic potential of berberine and Bifidobacterium. TRIAL REGISTRATION ClinicalTrials.gov , NCT03330184. Retrospectively registered on 18 October 2017.
Collapse
Affiliation(s)
- Jie Ming
- Endocrinology Research Center, Department of Endocrinology and Metabolism, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xinwen Yu
- Endocrinology Research Center, Department of Endocrinology and Metabolism, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | | | - Li Wang
- Endocrinology Research Center, Department of Endocrinology and Metabolism, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Chao Ding
- Department of General Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | | | - Xuan Xie
- Department of Endocrinology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Sheli Li
- Department of Endocrinology, Affiliated Hospital of Yan'an University, Yan'an, China
| | - Wenjuan Yang
- The Fifth Department of Internal Medicine, Shaanxi Aerospace Hospital, Xi'an, China
- Department of Endocrinology, Xi'an Daxing Hospital, Xi'an, China
| | - Shu Luo
- Genertec Universal Xi'an Aero-Engine Hospital, Xi'an, China
| | - Qingzhen He
- Department of Endocrinology, Xi'an High-Tech Hospital, Xi'an, China
| | - Yafang Du
- Department of Endocrinology, Chang'an Hospital, Xi'an, China
| | - Zhufang Tian
- Department of Endocrinology, Xi'an Central Hospital, Xi'an, China
| | - Xiling Gao
- Department of Endocrinology, Yan'an People's Hospital, Yan'an, China
| | - Kaiyan Ma
- Department of Endocrinology, Shangluo Central Hospital, Shangluo, China
| | - Yujie Fang
- Endocrinology Research Center, Department of Endocrinology and Metabolism, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Chen Li
- Department of Health Statistics, Fourth Military Medical University, Xi'an, China
| | - Jiajun Zhao
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China.
| | | | - Qiuhe Ji
- Endocrinology Research Center, Department of Endocrinology and Metabolism, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
36
|
Qin W, Ying W, Hamaker B, Zhang G. Slow digestion-oriented dietary strategy to sustain the secretion of GLP-1 for improved glucose homeostasis. Compr Rev Food Sci Food Saf 2021; 20:5173-5196. [PMID: 34350681 DOI: 10.1111/1541-4337.12808] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/08/2021] [Accepted: 06/24/2021] [Indexed: 12/18/2022]
Abstract
Dysregulated glucose metabolism is associated with many chronic diseases such as obesity and type 2 diabetes mellitus (T2DM), and strategies to restore and maintain glucose homeostasis are essential to health. The incretin hormone of glucagon-like peptide-1 (GLP-1) is known to play a critical role in regulating glucose homeostasis and dietary nutrients are the primary stimuli to the release of intestinal GLP-1. However, the GLP-1 producing enteroendocrine L-cells are mainly distributed in the distal region of the gastrointestinal tract where there are almost no nutrients to stimulate the secretion of GLP-1 under normal situations. Thus, a dietary strategy to sustain the release of GLP-1 was proposed, and the slow digestion property and dipeptidyl peptidase IV (DPP-IV) inhibitory activity of food components, approaches to reduce the rate of food digestion, and mechanisms to sustain the release of GLP-1 were reviewed. A slow digestion-oriented dietary approach through encapsulation of nutrients, incorporation of viscous dietary fibers, and enzyme inhibitors of phytochemicals in a designed whole food matrix will be implemented to efficiently reduce the digestion rate of food nutrients, potentiate their distal deposition and a sustained secretion of GLP-1, which will be beneficial to improved glucose homeostasis and health.
Collapse
Affiliation(s)
- Wangyan Qin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wang Ying
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Bruce Hamaker
- Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, Indiana, USA
| | - Genyi Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
37
|
Morini G, Winnig M, Vennegeerts T, Borgonovo G, Bassoli A. Vanillin Activates Human Bitter Taste Receptors TAS2R14, TAS2R20, and TAS2R39. Front Nutr 2021; 8:683627. [PMID: 34307435 PMCID: PMC8298857 DOI: 10.3389/fnut.2021.683627] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/09/2021] [Indexed: 12/11/2022] Open
Abstract
Vanilla is widely used in food preparation worldwide for its sensory properties, mainly related to its fragrance, being vanillin the major compound present in the processed vanilla. Vanillin is also known to elicit bitterness as a secondary sensory sensation, but the molecular mechanism of its bitterness has never been reported. Assay buffers of vanillin were tested in vitro on all known 25 human bitter taste receptors TAS2Rs. Three receptors, TAS2R14, TAS2R20, and TAS2R39, were activated, showing that these receptors are mediating the bitterness of vanillin. The result could be useful to improve the overall sensory profile of this broadly used food ingredient, but even more could represent the starting point for further studies to investigate the potential of vanillin in sensory nutrition and other pharmaceutical applications.
Collapse
Affiliation(s)
| | - Marcel Winnig
- IMAX Discovery GmbH, Dortmund, Germany.,Axxam S.p.A. Bresso, Italy
| | - Timo Vennegeerts
- IMAX Discovery GmbH, Dortmund, Germany.,Axxam S.p.A. Bresso, Italy
| | - Gigliola Borgonovo
- DeFENS - Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Angela Bassoli
- DeFENS - Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| |
Collapse
|
38
|
Verbeure W, Deloose E, Tóth J, Rehfeld JF, Van Oudenhove L, Depoortere I, Tack J. The endocrine effects of bitter tastant administration in the gastrointestinal system: intragastric versus intraduodenal administration. Am J Physiol Endocrinol Metab 2021; 321:E1-E10. [PMID: 34029163 DOI: 10.1152/ajpendo.00636.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Bitter tastants are recently introduced as potential hunger-suppressive compounds, the so-called "Bitter pill." However, the literature about bitter administration lacks consistency in methods and findings. We want to test whether hunger ratings and hormone plasma levels are affected by: 1) the site of administration: intragastrically (IG) or intraduodenally (ID), 2) the bitter tastant itself, quinine hydrochloride (QHCl) or denatonium benzoate (DB), and 3) the timing of infusion. Therefore, 14 healthy, female volunteers participated in a randomized, placebo-controlled six-visit crossover study. After an overnight fast, DB (1 µmol/kg), QHCl (10 µmol/kg), or placebo were given IG or ID via a nasogastric feeding tube. Blood samples were taken 10 min before administration and every 10 min after administration for a period of 2 h. Hunger was rated at the same time points on a visual analogue scale. ID bitter administration did not affect hunger sensations, motilin, or acyl-ghrelin release compared with its placebo infusion. IG QHCl infusion tended to suppress hunger increase, especially between 50 and 70 min after infusion, simultaneously with reduced motilin values. Here, acyl-ghrelin was not affected. IG DB did not affect hunger or motilin, however acyl-ghrelin levels were reduced 50-70 minutes after infusion. Plasma values of glucagon-like peptide 1 and cholecystokinin were too low to be properly detected or to have any physiological relevance. In conclusion, bitter tastants should be infused into the stomach to reduce hunger sensations and orexigenic gut peptides. QHCl has the best potential to reduce hunger sensations, and it should be infused 60 min before food intake.NEW & NOTEWORTHY Bitter tastants are a potential new weight-loss treatment. This is a noninvasive, easy approach, which should be received with considerable enthusiasm by the public. However, literature about bitter administration lacks consistency in methods and findings. We summarize how the compound should be given based on: the site of administration, the best bitter compound to use, and at what timing in respect to the meal. This paper is therefore a fundamental step to continue research toward the further development of the "bitter pill."
Collapse
Affiliation(s)
- Wout Verbeure
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Eveline Deloose
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Joran Tóth
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Lukas Van Oudenhove
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Inge Depoortere
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Jan Tack
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| |
Collapse
|
39
|
Rose BD, Bitarafan V, Rezaie P, Fitzgerald PCE, Horowitz M, Feinle-Bisset C. Comparative Effects of Intragastric and Intraduodenal Administration of Quinine on the Plasma Glucose Response to a Mixed-Nutrient Drink in Healthy Men: Relations with Glucoregulatory Hormones and Gastric Emptying. J Nutr 2021; 151:1453-1461. [PMID: 33704459 DOI: 10.1093/jn/nxab020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/07/2020] [Accepted: 01/19/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND In preclinical studies, bitter compounds, including quinine, stimulate secretion of glucoregulatory hormones [e.g., glucagon-like peptide-1 (GLP-1)] and slow gastric emptying, both key determinants of postprandial glycemia. A greater density of bitter-taste receptors has been reported in the duodenum than the stomach. Thus, intraduodenal (ID) delivery may be more effective in stimulating GI functions to lower postprandial glucose. OBJECTIVE We compared effects of intragastric (IG) and ID quinine [as quinine hydrochloride (QHCl)] administration on the plasma glucose response to a mixed-nutrient drink and relations with gastric emptying, plasma C-peptide (reflecting insulin secretion), and GLP-1. METHODS Fourteen healthy men [mean ± SD age: 25 ± 3 y; BMI (in kg/m2): 22.5 ± 0.5] received, on 4 separate occasions, in double-blind, randomly assigned order, 600 mg QHCl or control, IG or ID, 60 min (IG conditions) or 30 min (IG conditions) before a mixed-nutrient drink. Plasma glucose (primary outcome) and hormones were measured before, and for 2 h following, the drink. Gastric emptying of the drink was measured using a 13C-acetate breath test. Data were analyzed using repeated-measures 2-way ANOVAs (factors: treatment and route of administration) to evaluate effects of QHCl alone and 3-way ANOVAs (factors: treatment, route-of-administration, and time) for responses to the drink. RESULTS After QHCl alone, there were effects of treatment, but not route of administration, on C-peptide, GLP-1, and glucose (P < 0.05); QHCl stimulated C-peptide and GLP-1 and lowered glucose concentrations (IG control: 4.5 ± 0.1; IG-QHCl: 3.9 ± 0.1; ID-control: 4.6 ± 0.1; ID-QHCl: 4.2 ± 0.1 mmol/L) compared with control. Postdrink, there were treatment × time interactions for glucose, C-peptide, and gastric emptying, and a treatment effect for GLP-1 (all P < 0.05), but no route-of-administration effects. QHCl stimulated C-peptide and GLP-1, slowed gastric emptying, and reduced glucose (IG control: 7.2 ± 0.3; IG-QHCl: 6.2 ± 0.3; ID-control: 7.2 ± 0.3; ID-QHCl: 6.4 ± 0.4 mmol/L) compared with control. CONCLUSIONS In healthy men, IG and ID quinine administration similarly lowered plasma glucose, increased plasma insulin and GLP-1, and slowed gastric emptying. These findings have potential implications for lowering blood glucose in type 2 diabetes. This study was registered as a clinical trial with the Australian New Zealand Clinical Trials at www.anzctr.org.au as ACTRN12619001269123.
Collapse
Affiliation(s)
- Braden D Rose
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Vida Bitarafan
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Peyman Rezaie
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Penelope C E Fitzgerald
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Michael Horowitz
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, South Australia 5000, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
| | - Christine Feinle-Bisset
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, South Australia 5000, Australia
| |
Collapse
|
40
|
Therapeutic potential of targeting intestinal bitter taste receptors in diabetes associated with dyslipidemia. Pharmacol Res 2021; 170:105693. [PMID: 34048925 DOI: 10.1016/j.phrs.2021.105693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/23/2021] [Accepted: 05/23/2021] [Indexed: 12/19/2022]
Abstract
Intestinal release of incretin hormones after food intake promotes glucose-dependent insulin secretion and regulates glucose homeostasis. The impaired incretin effects observed in the pathophysiologic abnormality of type 2 diabetes have triggered the pharmacological development of incretin-based therapy through the activation of glucagon-like peptide-1 (GLP-1) receptor, including GLP-1 receptor agonists (GLP-1 RAs) and dipeptidyl peptidase 4 (DPP4) inhibitors. In the light of the mechanisms involved in the stimulation of GLP-1 secretion, it is a fundamental question to explore whether glucose and lipid homeostasis can be manipulated by the digestive system in response to nutrient ingestion and taste perception along the gastrointestinal tract. While glucose is a potent stimulant of GLP-1 secretion, emerging evidence highlights the importance of bitter tastants in the enteroendocrine secretion of gut hormones through activation of bitter taste receptors. This review summarizes bitter chemosensation in the intestines for GLP-1 secretion and metabolic regulation based on recent advances in biological research of bitter taste receptors and preclinical and clinical investigation of bitter medicinal plants, including bitter melon, hops strobile, and berberine-containing herbs (e.g. coptis rhizome and barberry root). Multiple mechanisms of action of relevant bitter phytochemicals are discussed with the consideration of pharmacokinetic studies. Current evidence suggests that specific agonists targeting bitter taste receptors, such as human TAS2R1 and TAS2R38, may provide both metabolic benefits and anti-inflammatory effects with the modulation of the enteroendocrine hormone secretion and bile acid turnover in metabolic syndrome individuals or diabetic patients with dyslipidemia-related comorbidities.
Collapse
|
41
|
Rezaie P, Bitarafan V, Horowitz M, Feinle-Bisset C. Effects of Bitter Substances on GI Function, Energy Intake and Glycaemia-Do Preclinical Findings Translate to Outcomes in Humans? Nutrients 2021; 13:1317. [PMID: 33923589 PMCID: PMC8072924 DOI: 10.3390/nu13041317] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/07/2021] [Accepted: 04/15/2021] [Indexed: 12/25/2022] Open
Abstract
Bitter substances are contained in many plants, are often toxic and can be present in spoiled food. Thus, the capacity to detect bitter taste has classically been viewed to have evolved primarily to signal the presence of toxins and thereby avoid their consumption. The recognition, based on preclinical studies (i.e., studies in cell cultures or experimental animals), that bitter substances may have potent effects to stimulate the secretion of gastrointestinal (GI) hormones and modulate gut motility, via activation of bitter taste receptors located in the GI tract, reduce food intake and lower postprandial blood glucose, has sparked considerable interest in their potential use in the management or prevention of obesity and/or type 2 diabetes. However, it remains to be established whether findings from preclinical studies can be translated to health outcomes, including weight loss and improved long-term glycaemic control. This review examines information relating to the effects of bitter substances on the secretion of key gut hormones, gastric motility, food intake and blood glucose in preclinical studies, as well as the evidence from clinical studies, as to whether findings from animal studies translate to humans. Finally, the evidence that bitter substances have the capacity to reduce body weight and/or improve glycaemic control in obesity and/or type 2 diabetes, and potentially represent a novel strategy for the management, or prevention, of obesity and type 2 diabetes, is explored.
Collapse
Affiliation(s)
| | | | | | - Christine Feinle-Bisset
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide 5005, Australia; (P.R.); (V.B.); (M.H.)
| |
Collapse
|
42
|
Harmon CP, Deng D, Breslin PA. Bitter Taste Receptors (T2Rs) are Sentinels that Coordinate Metabolic and Immunological Defense Responses. CURRENT OPINION IN PHYSIOLOGY 2021; 20:70-76. [PMID: 33738371 PMCID: PMC7963268 DOI: 10.1016/j.cophys.2021.01.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In addition to being responsible for bitter taste, type 2 taste receptors (T2Rs) regulate endocrine, behavioral, and immunological responses. T2R agonists include indicators of incoming threats to metabolic homeostasis, pathogens, and irritants. This review will provide an overview of T2R-regulated processes throughout the body that function defensively. We propose a broader definition of T2Rs as chemosensory sentinels that monitor toxic, metabolic, and infectious threats and initiate defensive responses.
Collapse
Affiliation(s)
- Caroline P. Harmon
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Daiyong Deng
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Paul A.S. Breslin
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
43
|
Guo S, Yan T, Shi L, Liu A, Zhang T, Xu Y, Jiang W, Yang Q, Yang L, Liu L, Zhao R, Zhang S. Matrine, as a CaSR agonist promotes intestinal GLP-1 secretion and improves insulin resistance in diabetes mellitus. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 84:153507. [PMID: 33636577 DOI: 10.1016/j.phymed.2021.153507] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Matrine (Mat), a bitter tastes compounds of derived from leguminosae such as Sophora flavescens and S. subprostrata, commonly used to improve obesity and diabetes. PURPOSE Our study to demonstrate bitter substances can stimulate the Bitter taste receptors (TAS2Rs) or Calcium-sensing receptor (CaSR) to stimulate the secretion of GLP-1 to promote blood glucose regulation. METHODS The diabetic mice and intestinal secretory cell model were established to evaluate the Mat on glucose metabolism, intestinal insulin secretion and GLP-1 secretion related substances. To clarify the mechanism of Mat in regulating GLP-1 secretion by immunofluorescence, calcium labeling, siRNA, and molecular docking. RESULTS The results showed that Mat could significantly improve glucose metabolism and increased insulin and GLP-1 secretion in diabetic mice and increased trisphosphate inositol (IP3) levels by affecting the expression of phospholipase C β2 (PLCβ2) and promote an increase in intracellular Ca2+ levels in STC-1 cells to subsequently stimulate the secretion of GLP-1. Knockdown of the bitter taste receptors mTas2r108, mTas2r137, and mTas2r138 in STC-1 cells by siRNA did could not affect the role of Mat in regulating GLP-1. However, the secretion of GLP-1 by Mat could be significantly inhibited by administration of a CaSR inhibitor or siRNA CaSR. Molecular docking analysis showed that Mat could embed CaSR protein and bind to the original ligand of the egg white at the same amino acid site to play the role of an agonist. CONCLUSION Matrine is a typical bitter alkaloid could be used as an agonist of CaSR to stimulate the secretion of GLP-1 in the intestine, and it may be used as a potential drug for diabetes treatment.
Collapse
Affiliation(s)
- Shun Guo
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710038, PR China
| | - Tao Yan
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710038, PR China
| | - Lei Shi
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710038, PR China
| | - An Liu
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710038, PR China
| | - Tian Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710038, PR China
| | - Yuan Xu
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710038, PR China
| | - Wei Jiang
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710038, PR China
| | - Qi Yang
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710038, PR China
| | - Le Yang
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710038, PR China
| | - Linna Liu
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710038, PR China..
| | - Rong Zhao
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Air Force Medical University, Xi'an 710032, PR China..
| | - Song Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710038, PR China..
| |
Collapse
|
44
|
Boosting GLP-1 by Natural Products. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1328:513-522. [DOI: 10.1007/978-3-030-73234-9_36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Chang CI, Cheng SY, Nurlatifah AO, Sung WW, Tu JH, Lee LL, Cheng HL. Bitter Melon Extract Yields Multiple Effects on Intestinal Epithelial Cells and Likely Contributes to Anti-diabetic Functions. Int J Med Sci 2021; 18:1848-1856. [PMID: 33746602 PMCID: PMC7976585 DOI: 10.7150/ijms.55866] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/04/2021] [Indexed: 12/16/2022] Open
Abstract
The intestines have been recognized as important tissues for metabolic regulation, including glycemic control, but their vital role in promoting the anti-diabetic effects of bitter melon, the fruit of Momordica charantia L, has seldom been characterized, nor acknowledged. Evidence suggests that bitter melon constituents can have substantial interactions with the intestinal epithelial cells before circulating to other tissues. We therefore characterized the effects of bitter melon extract (BME) on intestinal epithelial cells. BME was found to contain substantial amounts of carbohydrates, proteins, and triterpenoids. TNF-α induced insulin resistance in an enterocyte cell line of IEC-18 cells, and BME promoted glucose utilization of the insulin-resistant cells. Further analysis suggested that the increased glucose consumption was a result of the combined effects of insulin sensitizing and insulin substitution functions of BME. The functions of insulin substitution were likely generated due to the activation of AMP-activated protein kinase. Meanwhile, BME acted as a glucagon-like peptide 1 (GLP-1) secretagogue on enteroendocrine cells, which may be mediated by the activation of bitter-taste receptors. Therefore, BME possesses insulin sensitizing, insulin substitution, and GLP-1 secretagogue functions upon intestinal cells. These effects of BME on intestinal cells likely play a significant part in the anti-diabetic action of bitter melon.
Collapse
Affiliation(s)
- Chi-I Chang
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Shi-Yie Cheng
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung 811, Taiwan
| | - Annisa Oktafianti Nurlatifah
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan.,Department of Agroindustrial Biotechnology, Brawijaya University, Jalan, Veteran Malang 65145, Indonesia
| | - Wei-Wen Sung
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Jing-Hong Tu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Lin-Lee Lee
- Department of English, National Kaohsiung Normal University, Kaohsiung 80201, Taiwan
| | - Hsueh-Ling Cheng
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| |
Collapse
|
46
|
Xiong X, Cheng Z, Wu F, Hu M, Liu Z, Dong R, Chen G. Berberine in the treatment of ulcerative colitis: A possible pathway through Tuft cells. Biomed Pharmacother 2020; 134:111129. [PMID: 33348308 DOI: 10.1016/j.biopha.2020.111129] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 01/04/2023] Open
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease with complex pathogenesis, which is affected by genetic factors, intestinal immune status and intestinal microbial homeostasis. Intestinal epithelial barrier defect is crucial to the development of UC. Berberine, extracted from Chinese medicine, can identify bitter taste receptor on intestinal Tuft cells and activate IL-25-ILC2-IL-13 immune pathway to impair damaged intestinal tract by promoting differentiation of intestinal stem cells, which might be a potential approach for the treatment of UC.
Collapse
Affiliation(s)
- Xinyu Xiong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhe Cheng
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fan Wu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Meilin Hu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhimin Liu
- Department of Coloproctology, The Sixth Affiliated Hospital of Sun Yat-sen University (Gastrointestinal & Anal Hospital of Sun Yat-sen University), Guangzhou 510655, China
| | - Ruolan Dong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guang Chen
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
47
|
Kang C, Wang L, Feng J, Zhu W, Hang S. l-Glutamate stimulates cholecystokinin secretion via the T1R1/T1R3 mediated PLC/TRPM5 transduction pathway. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:4818-4825. [PMID: 32478409 DOI: 10.1002/jsfa.10541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 05/17/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND It is known that cholecystokinin (CCK) plays an essential role in reducing food intake and driving weight loss. Previous studies demonstrated that amino acids were capable of triggering CCK release through G protein-coupled receptors, but the sensing mechanism remains obscure, especially the intracellular signaling pathway. RESULTS l-Glu, rather than its d-isomer, robustly stimulated CCK secretion in a porcine duodenal model, and the secretory response was augmented by incubation with the allosteric ligand of T1R1, while T1R3 antagonist attenuated it. Upon inhibiting phospholipase C (PLC) or transient receptor potential M5 (TRPM5) activity, l-Glu failed to increase CCK release. Oral administration of monosodium glutamate in rats also suppressed food intake and increased plasma CCK levels, accompanied by elevated expression of T1R1, PLCβ2 and TRPM5 in the duodenum. CONCLUSION These data demonstrated that l-Glu stimulated CCK secretion through the activation of T1R1/T1R3 in a PLC/TRPM5-dependent manner. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Cuicui Kang
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Lvyang Wang
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jiangyin Feng
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Weiyun Zhu
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Suqin Hang
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
48
|
Jeruzal-Świątecka J, Fendler W, Pietruszewska W. Clinical Role of Extraoral Bitter Taste Receptors. Int J Mol Sci 2020; 21:E5156. [PMID: 32708215 PMCID: PMC7404188 DOI: 10.3390/ijms21145156] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/15/2022] Open
Abstract
Humans can recognise five basic tastes: sweet, sour, salty, bitter and umami. Sour and salty substances are linked to ion channels, while sweet, bitter and umami flavours are transmitted through receptors linked to the G protein (G protein-coupled receptors; GPCRs). There are two main types of GPCRs that transmit information about sweet, umami and bitter tastes-the Tas1r and TAS2R families. There are about 25 functional TAS2R genes coding bitter taste receptor proteins. They are found not only in the mouth and throat, but also in the intestines, brain, bladder and lower and upper respiratory tract. The determination of their purpose in these locations has become an inspiration for much research. Their presence has also been confirmed in breast cancer cells, ovarian cancer cells and neuroblastoma, revealing a promising new oncological marker. Polymorphisms of TAS2R38 have been proven to have an influence on the course of chronic rhinosinusitis and upper airway defensive mechanisms. TAS2R receptors mediate the bronchodilatory effect in human airway smooth muscle, which may lead to the creation of another medicine group used in asthma or chronic obstructive pulmonary disease. The discovery that functionally compromised TAS2R receptors negatively impact glucose homeostasis has produced a new area of diabetes research. In this article, we would like to focus on what facts have been already established in the matter of extraoral TAS2R receptors in humans.
Collapse
Affiliation(s)
- Joanna Jeruzal-Świątecka
- Department of Otolaryngology, Head and Neck Oncology, Medical University of Lodz, 90-419 Lodz, Poland;
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 90-419 Lodz, Poland;
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Wioletta Pietruszewska
- Department of Otolaryngology, Head and Neck Oncology, Medical University of Lodz, 90-419 Lodz, Poland;
| |
Collapse
|
49
|
Li G, Wang T, Zhang X, Zhao S, Wang Y, Wu J, Peng S, Zhao M. Development of 13-Cys-BBR as an Agent Having Dual Action of Anti-Thrombosis and Anti-Inflammation. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:2187-2197. [PMID: 32581515 PMCID: PMC7276341 DOI: 10.2147/dddt.s249228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/25/2020] [Indexed: 12/11/2022]
Abstract
Background There is a correlation between tumor and inflammation. The activity of 13-[CH2CO-Cys(Bzl)-OBzl]-berberine (13-Cys-BBR) slowing tumor growth is higher than that of BBR. Whether the anti-inflammation activity of 13-Cys-BBR is higher than that of BBR remains unknown. There is a correlation between thrombosis and inflammation. Whether 13-Cys-BBR is an inhibitor of thrombosis remains unknown. Purpose The object of this investigation is to compare the activities of 13-Cys-BBR inhibiting thrombosis and inflammation to those of BBR. Methods In vivo anti-thrombosis assay was performed on rat model of arterial and venous thrombosis. In vivo anti-inflammation assay was performed on mouse model of xylene induced ear edema. Results At oral dose of 66.7 nmol/kg, 13-Cys-BBR, but not BBR, inhibited the rats to form both venous thrombus and arterial thrombus. At oral dose of 2 μmol/kg, 13-Cys-BBR, but not BBR, inhibited the ears of the mice to occur edema. Conclusion The anti-venous thrombosis activity, anti-arterial thrombosis activity and anti-inflammation activity of 13-Cys-BBR were significantly higher than those of BBR. 13-Cys-BBR is a promising preclinical candidate.
Collapse
Affiliation(s)
- Guanyu Li
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, People's Republic of China.,Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, People's Republic of China
| | - Tong Wang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, People's Republic of China.,Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, People's Republic of China
| | - Xiaoyi Zhang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, People's Republic of China.,Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, People's Republic of China
| | - Shurui Zhao
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, People's Republic of China.,Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, People's Republic of China
| | - Yaonan Wang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, People's Republic of China.,Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, People's Republic of China
| | - Jianhui Wu
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, People's Republic of China.,Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, People's Republic of China
| | - Shiqi Peng
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, People's Republic of China.,Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, People's Republic of China
| | - Ming Zhao
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, People's Republic of China.,Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, People's Republic of China.,Beijing Laboratory of Biomedical Materials and Key Laboratory of Biomedical Materials of Natural Macromolecules, Department of Biomaterials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100026, People's Republic of China
| |
Collapse
|
50
|
Effect of Berberine on Glycation, Aldose Reductase Activity, and Oxidative Stress in the Lenses of Streptozotocin-Induced Diabetic Rats In Vivo-A Preliminary Study. Int J Mol Sci 2020; 21:ijms21124278. [PMID: 32560082 PMCID: PMC7349706 DOI: 10.3390/ijms21124278] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus affects the eye lens, leading to cataract formation by glycation, osmotic stress, and oxidative stress. Berberine, an isoquinoline alkaloid, is a natural compound that has been reported to counteract all these pathological processes in various tissues and organs. The goal of this study was to evaluate whether berberine administered at a dose of 50 mg/kg by oral gavage for 28 days to rats with streptozotocin-induced diabetes reveals such effects on the biochemical parameters in the lenses. For this purpose, the following lenticular parameters were studied: concentrations of soluble protein, non-protein sulfhydryl groups (NPSH), advanced oxidation protein products (AOPP), advanced glycation end-products (AGEs), thiobarbituric acid reactive substances (TBARS), and activities of aldose reductase (AR), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). Diabetes induced unfavorable changes in the majority of the examined parameters. The administration of berberine resulted in an increased soluble protein level, decreased activity of AR, and lowered AOPP and AGEs levels. The results suggest that berberine administered orally positively affects the lenses of diabetic rats, and should be further examined with regard to its anticataract potential.
Collapse
|