1
|
Alikhani MS, Nazari M, Hatamkhani S. Enhancing antibiotic therapy through comprehensive pharmacokinetic/pharmacodynamic principles. Front Cell Infect Microbiol 2025; 15:1521091. [PMID: 40070375 PMCID: PMC11893874 DOI: 10.3389/fcimb.2025.1521091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/30/2025] [Indexed: 03/14/2025] Open
Abstract
Antibiotic therapy relies on understanding both pharmacokinetics (PK) and pharmacodynamics (PD), which respectively address drug absorption, distribution, and elimination, and the relationship between drug concentration and antimicrobial efficacy. This review synthesizes decades of research, drawing from in-vitro studies, in-vivo models, and clinical observations, to elucidate the temporal dynamics of antibiotic activity. We explore how these dynamics, including concentration-effect relationships and post antibiotic effects, inform the classification of antibiotics based on their PD profiles. Additionally, we discuss the pivotal role of PK/PD principles in determining optimal dosage regimens. By providing a comprehensive overview of PK/PD principles in antibiotic therapy, this review aims to enhance understanding and improve treatment outcomes in clinical practice.
Collapse
Affiliation(s)
| | - Mohsen Nazari
- Department of Microbiology, Hamadan University of Medical Sciences, Hamadan, Iran
- Infectious Disease Research Center, Avicenna Institute of Clinical Sciences, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shima Hatamkhani
- Department of Clinical Pharmacy, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
2
|
Tabuchi F, Mikami K, Miyauchi M, Sekimizu K, Miyashita A. Discovery of new AMR drugs targeting modulators of antimicrobial activity using in vivo silkworm screening systems. J Antibiot (Tokyo) 2025; 78:69-77. [PMID: 39543333 PMCID: PMC11769840 DOI: 10.1038/s41429-024-00788-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024]
Abstract
Global concerns about drug-resistant bacteria have underscored the need for new antimicrobial drugs. Emerging strategies in drug discovery include considering the third factors that influence drug activity. These factors include host-derived elements, adjuvants, and drug combinations, which are crucial in regulating antimicrobial efficacy. Traditional in vivo assessments have relied on animal models to study drug absorption, distribution, metabolism, excretion, and toxicity (ADMET). Alternative models, such as silkworms, are being explored to overcome the ethical and financial barriers associated with mammalian models. The silkworm has been proven effective in evaluating ADMET and in highlighting the therapeutic potential enhanced by third factors. Host factors (either mammalian or non-mammalian) enhance the antimicrobial activity of antimicrobial agents such as lysocin E. Additionally, using D-cycloserine to potentiate vancomycin has successfully combated vancomycin-resistant infections in silkworms. Leveraging silkworms in drug discovery could establish a novel screening method incorporating interactions with third factors, whether host related or non-host-related, thus promising new pathways for identifying antimicrobial drugs with unique mechanisms of action.
Collapse
Affiliation(s)
- Fumiaki Tabuchi
- Teikyo University Institute of Medical Mycology, Hachioji, Tokyo, Japan
| | - Kazuhiro Mikami
- Teikyo University Institute of Medical Mycology, Hachioji, Tokyo, Japan
- Graduate School of Medical Care and Technology, Teikyo University, Itabashi, Tokyo, Japan
| | - Masanobu Miyauchi
- Teikyo University Institute of Medical Mycology, Hachioji, Tokyo, Japan
| | - Kazuhisa Sekimizu
- Faculty of Pharma-Science, Teikyo University, Itabashi, Tokyo, Japan
| | - Atsushi Miyashita
- Teikyo University Institute of Medical Mycology, Hachioji, Tokyo, Japan.
| |
Collapse
|
3
|
Nazeer RR, Askenasy I, Swain JEV, Welch M. Contribution of the infection ecosystem and biogeography to antibiotic failure in vivo. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:45. [PMID: 39649078 PMCID: PMC11618093 DOI: 10.1038/s44259-024-00063-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/11/2024] [Indexed: 12/10/2024]
Abstract
The acquisition of antibiotic resistance in bacteria, though a deeply concerning international issue, is reasonably well-understood at a mechanistic level. Less well-understood is why bacteria that are sensitive in vitro to well-established and widely-used antibiotics sometimes fail to respond to these agents in vivo. This is a particularly common problem in chronic, polymicrobial infection scenarios. Here, we discuss this in vitro-in vivo disconnect from the perspective of the bacterium, focusing in particular on how infection micro/macro-environment, biogeography, and the presence of co-habiting species affect the response to antibiotics. Using selected exemplars, we also consider interventions that might improve treatment outcomes, as well as ecologically 'eubiotic' approaches that have less of an impact on the patient's commensal microflora. In our view, the accrued data strongly suggest that we need a more comprehensive understanding of the in situ microbiology at infection sites.
Collapse
Affiliation(s)
| | - Isabel Askenasy
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - Martin Welch
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
4
|
Chanket W, Pipatthana M, Sangphukieo A, Harnvoravongchai P, Chankhamhaengdecha S, Janvilisri T, Phanchana M. The complete catalog of antimicrobial resistance secondary active transporters in Clostridioides difficile: evolution and drug resistance perspective. Comput Struct Biotechnol J 2024; 23:2358-2374. [PMID: 38873647 PMCID: PMC11170357 DOI: 10.1016/j.csbj.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/01/2024] [Accepted: 05/16/2024] [Indexed: 06/15/2024] Open
Abstract
Secondary active transporters shuttle substrates across eukaryotic and prokaryotic membranes, utilizing different electrochemical gradients. They are recognized as one of the antimicrobial efflux pumps among pathogens. While primary active transporters within the genome of C. difficile 630 have been completely cataloged, the systematical study of secondary active transporters remains incomplete. Here, we not only identify secondary active transporters but also disclose their evolution and role in drug resistance in C. difficile 630. Our analysis reveals that C. difficile 630 carries 147 secondary active transporters belonging to 27 (super)families. Notably, 50 (34%) of them potentially contribute to antimicrobial resistance (AMR). AMR-secondary active transporters are structurally classified into five (super)families: the p-aminobenzoyl-glutamate transporter (AbgT), drug/metabolite transporter (DMT) superfamily, major facilitator (MFS) superfamily, multidrug and toxic compound extrusion (MATE) family, and resistance-nodulation-division (RND) family. Surprisingly, complete RND genes found in C. difficile 630 are likely an evolutionary leftover from the common ancestor with the diderm. Through protein structure comparisons, we have potentially identified six novel AMR-secondary active transporters from DMT, MATE, and MFS (super)families. Pangenome analysis revealed that half of the AMR-secondary transporters are accessory genes, which indicates an important role in adaptive AMR function rather than innate physiological homeostasis. Gene expression profile firmly supports their ability to respond to a wide spectrum of antibiotics. Our findings highlight the evolution of AMR-secondary active transporters and their integral role in antibiotic responses. This marks AMR-secondary active transporters as interesting therapeutic targets to synergize with other antibiotic activity.
Collapse
Affiliation(s)
- Wannarat Chanket
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Methinee Pipatthana
- Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Apiwat Sangphukieo
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | | | - Tavan Janvilisri
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Matthew Phanchana
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
5
|
Adenaya A, Spriahailo D, Berger M, Noster J, Milke F, Schulz C, Reinthaler T, Poehlein A, Wurl O, Ribas-Ribas M, Hamprecht A, Brinkhoff T. Occurrence of antibiotic-resistant bacteria in the sea surface microlayer of coastal waters in the southern North Sea. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117259. [PMID: 39471667 DOI: 10.1016/j.ecoenv.2024.117259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/09/2024] [Accepted: 10/25/2024] [Indexed: 11/01/2024]
Abstract
The emergence of antibiotic-resistant bacteria in coastal waters is a global health problem posing potential risks to the health of humans who depend on coastal resources. Monitoring and increased efforts are needed to maintain the health of marine ecosystems. The sea surface microlayer (SML) is poorly studied for antibiotic resistance of the inhabiting bacteria. Therefore, we examined the antibiotic resistance patterns of 41 bacterial strains isolated from the SML in a harbor in the southern North Sea. The strains are affiliated with 17 genera typically found in the marine environment. Using the disc diffusion assay, we found extensive resistance, particularly to gentamycin, kanamycin, nalidixic acid, penicillin, sulfadimidine, and streptomycin. A broth microdilution assay showed high minimum inhibitory concentrations (MICs) for most isolates for amikacin, aztreonam, ceftazidime, cefepime, minocycline, and tobramycin. Genome analysis of three strains affiliated with the genera Pseudoseohaeicola, Nereida, and Vibrio, all showing a highly resistant phenotype, revealed the presence of 57, 42, and 90 genes, respectively, associated with antibiotic resistance. Over 50 % of these genes are multidrug efflux pumps. Our study shows that the SML in anthropogenic-influenced coastal regions harbors a wide diversity of antibiotic-resistant bacteria equipped with a broad range of multidrug efflux pumps.
Collapse
Affiliation(s)
- Adenike Adenaya
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Carl von Ossietzky Str. 9-11, Oldenburg 26129, Germany; Center for Marine Sensors, Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Wilhelmshaven, Germany.
| | - Dmytro Spriahailo
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Martine Berger
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Carl von Ossietzky Str. 9-11, Oldenburg 26129, Germany
| | - Janina Noster
- Institute of Medical Microbiology and Virology, University of Oldenburg, Oldenburg, Germany
| | - Felix Milke
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Carl von Ossietzky Str. 9-11, Oldenburg 26129, Germany
| | - Christiane Schulz
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Carl von Ossietzky Str. 9-11, Oldenburg 26129, Germany
| | - Thomas Reinthaler
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, University of Göttingen, Göttingen, Germany
| | - Oliver Wurl
- Center for Marine Sensors, Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Wilhelmshaven, Germany
| | - Mariana Ribas-Ribas
- Center for Marine Sensors, Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Wilhelmshaven, Germany
| | - Axel Hamprecht
- Institute of Medical Microbiology and Virology, University of Oldenburg, Oldenburg, Germany
| | - Thorsten Brinkhoff
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Carl von Ossietzky Str. 9-11, Oldenburg 26129, Germany.
| |
Collapse
|
6
|
Oh S, Nguyen AH, Kim JS, Chung SY, Maeng SK, Jung YH, Cho K. A microbiome-biochar composite synergistically eliminates the environmental risks of antibiotic mixtures and their toxic byproducts. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135474. [PMID: 39173370 DOI: 10.1016/j.jhazmat.2024.135474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/15/2024] [Accepted: 08/08/2024] [Indexed: 08/24/2024]
Abstract
This study developed a continuous reactor system employing a hybrid hydrogel composite synthesized using a complex sludge microbiome and an adsorbent (HSA). This HSA-based system effectively eliminated the environmental risks associated with a mixture of the antibiotics ciprofloxacin and sulfamethoxazole, which exhibited higher toxicity in combination than individually at environmentally relevant levels. Analytical chemistry experiments revealed the in-situ generation of various byproducts (BPs) within the bioreactor system, with two of these BPs recording toxicity levels that surpassed those of their parent compound. The HSA approach successfully prevented the functional microbiome from being washed out of the reactor, while HSA efficiently removed antibiotic residues in their original and BP forms through synergistic adsorptive and biotransformation mechanisms, ultimately reducing the overall ecotoxicity. The use of HSA thus demonstrates promise not only as a mean to reduce the threat posed by toxic antibiotic residues to aquatic ecosystems but also as a practical solution to operational challenges, such as biomass loss/washout, that are frequently encountered in various environmental bioprocesses.
Collapse
Affiliation(s)
- Seungdae Oh
- Department of Civil Engineering, College of Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| | - Anh H Nguyen
- Department of Civil Engineering, College of Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Ji-Su Kim
- Department of Civil Engineering, University of Seoul, Dongdaemun-gu, Seoul, Republic of Korea
| | - Sang-Yeop Chung
- Department of Civil and Environmental Engineering, Yonsei University, Seodaemun-gu, Seoul, Republic of Korea
| | - Sung Kyu Maeng
- Department of Civil and Environmental Engineering, Sejong University, Gwangjin-gu, Seoul, Republic of Korea
| | - Young-Hoon Jung
- Department of Civil Engineering, College of Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Kyungjin Cho
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; Center for Water Cycle Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Energy & Environment Technology, KIST school, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| |
Collapse
|
7
|
Adane WD, Chandravanshi BS, Getachew N, Tessema M. A cutting-edge electrochemical sensing platform for the simultaneous determination of the residues of antimicrobial drugs, rifampicin and norfloxacin, in water samples. Anal Chim Acta 2024; 1312:342746. [PMID: 38834274 DOI: 10.1016/j.aca.2024.342746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND The widespread use and abuse of antibiotics has resulted in the pollution of water sources with antibiotic residues, posing a threat to human health, the environment, and the economy. Therefore, a highly sensitive and selective method is required for their detection in water samples. Herein, advanced ultrasensitive electrochemical sensor platform was developed by integrating gold-silver alloy nanocoral clusters (Au-Ag-ANCCs) with functionalized multi-walled carbon nanotube-carbon paste electrode (f-MWCNT-CPE) and choline chloride (ChCl) nanocomposites for simultaneously determining the residues of antimicrobial drugs, rifampicin (RAMP) and norfloxacin (NFX), in water samples. RESULTS The developed sensor (Au-Ag-ANCCs/f-MWCNTs-CPE/ChCl) was extensively characterized using several analytical (UV-Vis, FT-IR, XRD, SEM, and EDX) and electrochemical (EIS, CV, and SWV) techniques. It exhibited outstanding performance in a wide linear range, from 14 pM to 115 μM for RAMP, and from 0.9 nM to 200 μM for NFX, with a limit of detection (LOD, 3σ/m, S/N = 3, n = 5) and a limit of quantification (LOQ, 10σ/m, S/N = 3, n = 5) values of 2.7 pM and 8.85 pM for RAMP, and 0.14 nM and 0.47 nM for NFX, respectively. The sensor also exhibited exceptional reproducibility, stability, and resistance to interference. SIGNIFICANCE The developed sensor was effectively utilized to determine RAMP and NFX residues in hospital wastewater, river, and tap water samples, yielding recoveries within the range of 96.8-103 % and relative standard deviations below 5 %. Generally, the proposed sensor demonstrated remarkable performance in detecting the target analytes, making it an ideal tool and the first of its kind for addressing global antibiotic residue pollutants in water sources.
Collapse
Affiliation(s)
| | | | - Negash Getachew
- Department of Chemistry, Addis Ababa University, P. O. Box 1176, Addis Ababa, Ethiopia
| | - Merid Tessema
- Department of Chemistry, Addis Ababa University, P. O. Box 1176, Addis Ababa, Ethiopia.
| |
Collapse
|
8
|
Liu X, Shi D, Cheng S, Chen X, Ma C, Jiang Y, Wang T, Chen T, Shaw C, Wang L, Zhou M. Modification and Synergistic Studies of a Novel Frog Antimicrobial Peptide against Pseudomonas aeruginosa Biofilms. Antibiotics (Basel) 2024; 13:574. [PMID: 39061256 PMCID: PMC11274128 DOI: 10.3390/antibiotics13070574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
The overuse of traditional antibiotics has resulted in bacterial resistance and seriously compromised the therapeutic efficacy of traditional antibiotics, making the exploration of new antimicrobials particularly important. Several studies have shown that bioactive peptides have become an important source of new antimicrobial drugs due to their broad-spectrum antibacterial action and lack of susceptibility to resistance. In this study, a novel bioactive peptide Nigrosin-6VL was characterised from the skin secretion of the golden cross band frog, Odorrana andersonii, by using the 'shotgun' cloning strategy. Modifications on the Rana Box of Nigrosin-6VL revealed its critical role in antimicrobial functions. The peptide analogue, 2170-2R, designed to preserve the Rana Box structure while enhancing cationicity, exhibited improved therapeutic efficacy, particularly against Gram-negative bacteria, with a therapeutic value of 45.27. Synergistic studies demonstrated that 2170-2R inherits the synergistic antimicrobial activities of the parent peptides and effectively enhances the antimicrobial capacity of cefepime and gentamicin against both planktonic cells and biofilms. Specifically, 2170-2R can synergise effectively with cefepime and gentamicin against different strains of P. aeruginosa biofilms. Consequently, 2170-2R holds promise as a potent antimicrobial agent developed to combat infections induced by Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Xinze Liu
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (X.L.); (S.C.); (X.C.); (C.M.); (T.C.); (C.S.); (L.W.); (M.Z.)
| | - Daning Shi
- Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing 100081, China;
| | - Shiya Cheng
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (X.L.); (S.C.); (X.C.); (C.M.); (T.C.); (C.S.); (L.W.); (M.Z.)
| | - Xiaoling Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (X.L.); (S.C.); (X.C.); (C.M.); (T.C.); (C.S.); (L.W.); (M.Z.)
| | - Chengbang Ma
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (X.L.); (S.C.); (X.C.); (C.M.); (T.C.); (C.S.); (L.W.); (M.Z.)
| | - Yangyang Jiang
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (X.L.); (S.C.); (X.C.); (C.M.); (T.C.); (C.S.); (L.W.); (M.Z.)
| | - Tao Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (X.L.); (S.C.); (X.C.); (C.M.); (T.C.); (C.S.); (L.W.); (M.Z.)
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (X.L.); (S.C.); (X.C.); (C.M.); (T.C.); (C.S.); (L.W.); (M.Z.)
| | - Chris Shaw
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (X.L.); (S.C.); (X.C.); (C.M.); (T.C.); (C.S.); (L.W.); (M.Z.)
| | - Lei Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (X.L.); (S.C.); (X.C.); (C.M.); (T.C.); (C.S.); (L.W.); (M.Z.)
| | - Mei Zhou
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (X.L.); (S.C.); (X.C.); (C.M.); (T.C.); (C.S.); (L.W.); (M.Z.)
| |
Collapse
|
9
|
Ganjo AR, Balaky STJ, Mawlood AH, Smail SB, Shabila NP. Characterization of genes related to the efflux pump and porin in multidrug-resistant Escherichia coli strains isolated from patients with COVID-19 after secondary infection. BMC Microbiol 2024; 24:122. [PMID: 38600509 PMCID: PMC11005145 DOI: 10.1186/s12866-024-03283-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Escherichia coli (E. coli) is a multidrug resistant opportunistic pathogen that can cause secondary bacterial infections in patients with COVID-19. This study aimed to determine the antimicrobial resistance profile of E. coli as a secondary bacterial infection in patients with COVID-19 and to assess the prevalence and characterization of genes related to efflux pumps and porin. METHODS A total of 50 nonduplicate E. coli isolates were collected as secondary bacterial infections in COVID-19 patients. The isolates were cultured from sputum samples. Confirmation and antibiotic susceptibility testing were conducted by Vitek 2. PCR was used to assess the prevalence of the efflux pump and porin-related genes in the isolates. The phenotypic and genotypic evolution of antibiotic resistance genes related to the efflux pump was evaluated. RESULTS The E. coli isolates demonstrated high resistance to ampicillin (100%), cefixime (62%), cefepime (62%), amoxicillin-clavulanic acid (60%), cefuroxime (60%), and ceftriaxone (58%). The susceptibility of E. coli to ertapenem was greatest (92%), followed by imipenem (88%), meropenem (86%), tigecycline (80%), and levofloxacin (76%). Regarding efflux pump gene combinations, there was a significant association between the acrA gene and increased resistance to levofloxacin, between the acrB gene and decreased resistance to meropenem and increased resistance to levofloxacin, and between the ompF and ompC genes and increased resistance to gentamicin. CONCLUSIONS The antibiotics ertapenem, imipenem, meropenem, tigecycline, and levofloxacin were effective against E. coli in patients with COVID-19. Genes encoding efflux pumps and porins, such as acrA, acrB, and outer membrane porins, were highly distributed among all the isolates. Efflux pump inhibitors could be alternative antibiotics for restoring tetracycline activity in E. coli isolates.
Collapse
Affiliation(s)
- Aryan R Ganjo
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Iraq
| | - Salah Tofik Jalal Balaky
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Iraq.
- Department of Medical Microbiology, College of Health Sciences, Hawler Medical University, Erbil, Kurdistan Region, Iraq.
| | - Ahang Hasan Mawlood
- Department of Medical Microbiology, College of Health Sciences, Hawler Medical University, Erbil, Kurdistan Region, Iraq
- Department of Medical Laboratory Technique, College of Medical Technology, AL-Kitab University, Kirkuk, Iraq
| | | | - Nazar P Shabila
- College of Health Sciences, Catholic University in Erbil, Erbil, Kurdistan Region, Iraq
- Department of Community Medicine, College of Medicine, Hawler Medical University, Erbil, Iraq
| |
Collapse
|
10
|
Jiang C, Zhu G, Liu Q. Current application and future perspectives of antimicrobial degradable bone substitutes for chronic osteomyelitis. Front Bioeng Biotechnol 2024; 12:1375266. [PMID: 38600942 PMCID: PMC11004352 DOI: 10.3389/fbioe.2024.1375266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/19/2024] [Indexed: 04/12/2024] Open
Abstract
Chronic osteomyelitis remains a persistent challenge for the surgeons due to its refractory nature. Generally, treatment involves extensive debridement of necrotic bone, filling of dead space, adequate antimicrobial therapy, bone reconstruction, and rehabilitation. However, the optimal choice of bone substitute to manage the bone defect remains debatable. This paper reviewed the clinical evidence for antimicrobial biodegradable bone substitutes in the treatment of osteomyelitis in recent years. Indeed, this combination was proved to eradicate infection and facilitate bone reconstruction, which might reduce the cost and hospital stay. Handling was associated with increased risk of unwanted side effect to affect bone healing. The study provides some valuable insights into the clinical evaluation of treatment outcomes in the aspects of infection eradication, bone reconstruction, and complications caused by materials. However, achieving complete infection eradication and subsequently perfect bone reconstruction remains challenging in compromised conditions, hence advanced innovative bone substitutes are imperative. In this review, we mainly focus on the desired functional effects of advanced bone substitutes on infection eradication and bone reconstruction from the future perspective. Handling property was optimized to simplify surgery process. It is expected that this review will provide an important opportunity to enhance the understanding of the design and application of innovative biomaterials to synergistically eradicate infection and restore integrity and function of bone.
Collapse
Affiliation(s)
- Chenxi Jiang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Guangxun Zhu
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Liu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
11
|
Pang L, He K, Zhang Y, Li P, Lin Y, Yue J. Predicting environmental risks of pharmaceutical residues by wastewater surveillance: An analysis based on pharmaceutical sales and their excretion data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170204. [PMID: 38262535 DOI: 10.1016/j.scitotenv.2024.170204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/23/2023] [Accepted: 01/14/2024] [Indexed: 01/25/2024]
Abstract
Pharmaceutical residues are increasingly becoming a significant source of environmental water pollution and ecological risk. This study, leveraging official national pharmaceutical sales statistics, predicts the environmental concentrations of 33 typical pharmaceuticals in the Tianjin area. The results show that 52 % of the drugs have a PEC/MEC (Predicted Environmental Concentration/Measured Environmental Concentration) ratio within the acceptable range of 0.5-2, including atenolol (1.21), carbamazepine (1.22), and sulfamethoxazole (0.91). Among the selected drugs, tetracycline, ciprofloxacin, and acetaminophen had the highest predicted concentrations. The EPI (Estimation Programs Interface) biodegradation model, a tool from the US Environmental Protection Agency, is used to predict the removal efficiency of compounds in wastewater treatment plants. The results indicate that the EPI predictions are acceptable for macrolide antibiotics and β-blockers, with removal rates of roxithromycin, spiramycin, acetaminophen, and carbamazepine being 14.1 %, 61.2 %, 75.1 %, and 44.5 %, respectively. However, the model proved to be less effective for fluoroquinolone antibiotics. The ECOSAR (Ecological Structure-Activity Relationships) model was used to supplement the assessment of the potential impacts of drugs on aquatic ecosystems, further refining the analysis of pharmaceutical environmental risks. By combining the concentration and detection frequency of pharmaceutical wastewater, this study identified 9 drugs with significant toxicological risks and marked another 24 drugs as substances of potential concern. Additionally, this study provides data support for addressing pharmaceutical residues of priority concern in subsequent research.
Collapse
Affiliation(s)
- Lihao Pang
- College of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Kai He
- College of Civil Engineering, Sun Yat-Sen University, Guangzhou 51000, China.
| | - Yuxuan Zhang
- College of Civil Engineering, Sun Yat-Sen University, Guangzhou 51000, China
| | - Penghui Li
- College of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yingchao Lin
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Junjie Yue
- College of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
12
|
Yang J, Ran Y, Liu S, Ren C, Lou Y, Ju P, Li G, Li X, Zhang D. Synergistic D-Amino Acids Based Antimicrobial Cocktails Formulated via High-Throughput Screening and Machine Learning. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307173. [PMID: 38126652 PMCID: PMC10916672 DOI: 10.1002/advs.202307173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/29/2023] [Indexed: 12/23/2023]
Abstract
Antimicrobial resistance (AMR) from pathogenic bacterial biofilms has become a global health issue while developing novel antimicrobials is inefficient and costly. Combining existing multiple drugs with enhanced efficacy and/or reduced toxicity may be a promising approach to treat AMR. D-amino acids mixtures coupled with antibiotics can provide new therapies for drug-resistance infection with reduced toxicity by lower drug dosage requirements. However, iterative trial-and-error experiments are not tenable to prioritize credible drug formulations, owing to the extremely large number of possible combinations. Herein, a new avenue is provide to accelerate the exploration of desirable antimicrobial formulations via high-throughput screening and machine learning optimization. Such an intelligent method can navigate the large search space and rapidly identify the D-amino acid mixtures with the highest anti-biofilm efficiency and also the synergisms between D-amino acid mixtures and antibiotics. The optimized drug cocktails exhibit high antimicrobial efficacy while remaining non-toxic, which is demonstrated not only from in vitro assessments but also the first in vivo study using a lung infection mouse model.
Collapse
Affiliation(s)
- Jingzhi Yang
- Beijing Advanced Innovation Center for Materials Genome EngineeringInstitute for Advanced Materials and TechnologyUniversity of Science and Technology BeijingBeijing100083China
- National Materials Corrosion and Protection Data CenterUniversity of Science and Technology BeijingBeijing100083China
| | - Yami Ran
- Beijing Advanced Innovation Center for Materials Genome EngineeringInstitute for Advanced Materials and TechnologyUniversity of Science and Technology BeijingBeijing100083China
- National Materials Corrosion and Protection Data CenterUniversity of Science and Technology BeijingBeijing100083China
- BRI Southeast Asia Network for Corrosion and ProtectionShunde Graduate School of University of Science and Technology BeijingFoshan528000China
| | - Shaopeng Liu
- Beijing Advanced Innovation Center for Materials Genome EngineeringInstitute for Advanced Materials and TechnologyUniversity of Science and Technology BeijingBeijing100083China
- National Materials Corrosion and Protection Data CenterUniversity of Science and Technology BeijingBeijing100083China
| | - Chenhao Ren
- Beijing Advanced Innovation Center for Materials Genome EngineeringInstitute for Advanced Materials and TechnologyUniversity of Science and Technology BeijingBeijing100083China
- National Materials Corrosion and Protection Data CenterUniversity of Science and Technology BeijingBeijing100083China
| | - Yuntian Lou
- Beijing Advanced Innovation Center for Materials Genome EngineeringInstitute for Advanced Materials and TechnologyUniversity of Science and Technology BeijingBeijing100083China
- National Materials Corrosion and Protection Data CenterUniversity of Science and Technology BeijingBeijing100083China
- BRI Southeast Asia Network for Corrosion and ProtectionShunde Graduate School of University of Science and Technology BeijingFoshan528000China
| | - Pengfei Ju
- Shanghai Aerospace Equipment ManufacturerShanghai200245China
| | - Guoliang Li
- College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Xiaogang Li
- Beijing Advanced Innovation Center for Materials Genome EngineeringInstitute for Advanced Materials and TechnologyUniversity of Science and Technology BeijingBeijing100083China
- National Materials Corrosion and Protection Data CenterUniversity of Science and Technology BeijingBeijing100083China
- BRI Southeast Asia Network for Corrosion and ProtectionShunde Graduate School of University of Science and Technology BeijingFoshan528000China
| | - Dawei Zhang
- Beijing Advanced Innovation Center for Materials Genome EngineeringInstitute for Advanced Materials and TechnologyUniversity of Science and Technology BeijingBeijing100083China
- National Materials Corrosion and Protection Data CenterUniversity of Science and Technology BeijingBeijing100083China
- BRI Southeast Asia Network for Corrosion and ProtectionShunde Graduate School of University of Science and Technology BeijingFoshan528000China
| |
Collapse
|
13
|
Sajjad M, Almufarij R, Ali Z, Sajid M, Raza N, Manzoor S, Hayat M, Abdelrahman EA. Magnetic solid phase extraction of aminoglycosides residue in chicken egg samples using Fe 3O 4-GO-Agarose-Chitosan composite. Food Chem 2024; 430:137092. [PMID: 37544153 DOI: 10.1016/j.foodchem.2023.137092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/23/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
Difficulties in identification of drug residues in food products arise due to their trace amounts in complex matrices. An eco-friendly and low-cost agarose-chitosan-magnetic graphene oxide based adsorbent was synthesized and employed for determination of aminoglycosides from chicken egg samples through HPLC. Synthesized adsorbent was characterized by SEM, FTIR, XRD, and VSM. Among two investigated aminoglycosides, streptomycin was derivatized with ninhydrin while gentamicin was detected without its derivatization. Impact of experimental variables such as adsorbent dose, extraction time, temperature, pH, and analyte concentration on extraction efficiency was investigated. Statistical analysis for determination of streptomycin and gentamicin demonstrated excellent linearity in the range of 0.2-1.6 µg kg-1, LOQ of 0.3 and 0.6 µg kg-1 for streptomycin and gentamicin, respectively and LOD of 0.1 and 0.19 µg kg-1 for streptomycin and gentamicin, respectively with RSD of 2.5% and recoveries up to 94%. Regeneration studies revealed that composite film can be used four times without considerable reduction in its extraction efficiency.
Collapse
Affiliation(s)
- Muhammad Sajjad
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Rasmiah Almufarij
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Zeeshan Ali
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Sajid
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan.
| | - Nadeem Raza
- Department of Chemistry, College of Science, Imam Muhammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; Department of Chemistry, Govt. Alamdar Hussain Islamia Degree College, Multan, Pakistan.
| | - Suryyia Manzoor
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Hayat
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Ehab A Abdelrahman
- Department of Chemistry, College of Science, Imam Muhammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; Chemistry Department, Faculty of Science, Benha University, Benha 13518, Egypt
| |
Collapse
|
14
|
Otun SO, Graca R, Achilonu I. Combating Aminoglycoside Resistance: From Structural and Functional Characterisation to Therapeutic Challenges with RKAAT. Curr Protein Pept Sci 2024; 25:454-468. [PMID: 38314602 DOI: 10.2174/0113892037278814231226104509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 02/06/2024]
Abstract
A comprehensive knowledge of aminoglycoside-modifying enzymes (AMEs) and their role in bacterial resistance mechanisms is urgently required due to the rising incidence of antibiotic resistance, particularly in Klebsiella pneumoniae infections. This study explores the essential features of AMEs, including their structural and functional properties, the processes by which they contribute to antibiotic resistance, and the therapeutic importance of aminoglycosides. The study primarily examines the Recombinant Klebsiella pneumoniae Aminoglycoside Adenylyl Transferase (RKAAT), particularly emphasizing its biophysical characteristics and the sorts of resistance it imparts. Furthermore, this study examines the challenges presented by RKAAT-mediated resistance, an evaluation of treatment methods and constraints, and options for controlling infection. The analysis provides a prospective outlook on strategies to address and reduce antibiotic resistance. This extensive investigation seeks to provide vital insights into the continuing fight against bacterial resistance, directing future research efforts and medicinal approaches.
Collapse
Affiliation(s)
- Sarah Oluwatobi Otun
- Department of Molecular and Cell Biology, Protein Structure-function Unit, University of Witwatersrand, Johannesburg, South Africa
| | - Richard Graca
- Department of Molecular and Cell Biology, Protein Structure-function Unit, University of Witwatersrand, Johannesburg, South Africa
| | - Ikechukwu Achilonu
- Department of Molecular and Cell Biology, Protein Structure-function Unit, University of Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
15
|
de Barros M, da Silva Lopes I, Moreira AJ, Dos Santos Oliveira Almeida R, Matiuzzi da Costa M, Mota RA, Nero LA, Scatamburlo Moreira MA. Multidrug Efflux System-mediated resistance in Staphylococcus aureus under a One Health approach. World J Microbiol Biotechnol 2023; 40:9. [PMID: 37938391 DOI: 10.1007/s11274-023-03793-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 10/05/2023] [Indexed: 11/09/2023]
Abstract
The aim of the study was to track the spread of antimicrobial resistance among the different sectors of One Health through the detection of Multidrug-Efflux-System in multidrug-resistant Staphylococcus aureus isolates. Multidrug-resistant (MDR) and methicillin-resistant (MRSA) S. aureus isolates were selected: 25 of human, one of animal and eight of food origin. The efflux system genes norA, norB, norC, LmrS, tet38 and msrA were screened by PCR. The activity of the efflux systems was determined by the minimum inhibitory concentration (MIC) of tetracycline and ciprofloxacin in the presence and absence of CCCP and in the quantification of ethidium bromide efflux. Furthermore, biofilm formation was determined in the presence and absence of the CCCP. The molecular epidemiology of the isolates was traced with the aid of PFGE. The gene norC was the most prevalent, detected in all isolates and msrA was the least prevalent, detected in only two isolates from humans. There was no difference in the MICs of tetracycline and ciprofloxacin in the presence of CCCP, but 55.9% of isolates showed ethidium bromide efflux. The presence of CCCP decreased the biofilm formation. Regarding the molecular epidemiology, in three clusters was a mixture of the isolates from different origins. Therefore, S. aureus MDR with active multidrug efflux systems are circulating between One Health domains and it is necessary to consider strategies to decrease this circulation in order to prevent the dissemination of resistance mediated by MES.
Collapse
Affiliation(s)
- Mariana de Barros
- Department of Veterinary, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | | | - Ana Júlia Moreira
- Department of Veterinary, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | | | | | | | - Luis Augusto Nero
- Department of Veterinary, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | | |
Collapse
|
16
|
Doghish AS, Shehabeldine AM, El-Mahdy HA, Hassanin MMH, Al-Askar AA, Marey SA, AbdElgawad H, Hashem AH. Thymus Vulgaris Oil Nanoemulsion: Synthesis, Characterization, Antimicrobial and Anticancer Activities. Molecules 2023; 28:6910. [PMID: 37836753 PMCID: PMC10574288 DOI: 10.3390/molecules28196910] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Essential oil nanoemulsions have received much attention due to their biological activities. Thus, a thyme essential oil nanoemulsion (Th-nanoemulsion) was prepared using a safe and eco-friendly method. DLS and TEM were used to characterize the prepared Th-nanoemulsion. Our findings showed that the nanoemulsion was spherical and ranged in size from 20 to 55.2 nm. The micro-broth dilution experiment was used to evaluate the in vitro antibacterial activity of a Th-emulsion and the Th-nanoemulsion. The MIC50 values of the thymol nanoemulsion were 62.5 mg/mL against Escherichia coli and Klebsiella oxytoca, 250 mg/mL against Bacillus cereus, and 125 mg/mL against Staphylococcus aureus. Meanwhile, it emerged that the MIC50 values of thymol against four strains were not detected. Moreover, the Th-nanoemulsion exhibited promising antifungal activity toward A. brasiliensis and A. fumigatus, where inhibition zones and MIC50 were 20.5 ± 1.32 and 26.4 ± 1.34 mm, and 12.5 and 6.25 mg/mL, respectively. On the other hand, the Th-nanoemulsion displayed weak antifungal activity toward C. albicans where the inhibition zone was 12.0 ± 0.90 and MIC was 50 mg/mL. Also, the Th-emulsion exhibited antifungal activity, but lower than that of the Th-nanoemulsion, toward all the tested fungal strains, where MIC was in the range of 12.5-50 mg/mL. The in vitro anticancer effects of Taxol, Th-emulsion, and Th-nanoemulsion were evaluated using the standard MTT method against breast cancer (MCF-7) and hepatocellular carcinoma (HepG2). Additionally, the concentration of VEGFR-2 was measured, and the activities of caspase-8 (casp-8) and caspase-9 (casp-9) were evaluated. The cytotoxic effect was the most potent against the MCF-7 breast cancer cell line after the Th-nanoemulsion treatment (20.1 ± 0.85 µg/mL), and was 125.1 ± 5.29 µg/mL after the Th-emulsion treatment. The lowest half-maximal inhibitory concentration (IC50) value, 20.1 ± 0.85 µg/mL, was achieved when the MCF-7 cell line was treated with the Th-nanoemulsion. In addition, Th-nanoemulsion treatments on MCF-7 cells led to the highest elevations in casp-8 and casp-9 activities (0.66 ± 0.042 ng/mL and 17.8 ± 0.39 pg/mL, respectively) compared to those with Th-emulsion treatments. In comparison to that with the Th-emulsion (0.982 0.017 ng/mL), the VEGFR-2 concentration was lower with the Th-nanoemulsion treatment (0.672 ± 0.019ng/mL). In conclusion, the Th-nanoemulsion was successfully prepared and appeared in nanoform with a spherical shape according to DLS and TEM, and also exhibited antibacterial, antifungal, as well as anticancer activities.
Collapse
Affiliation(s)
- Ahmed S. Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo 11829, Egypt;
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Egypt;
| | - Amr M. Shehabeldine
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Egypt
| | - Hesham A. El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Egypt;
| | - Mahmoud M. H. Hassanin
- Ornamental, Medicinal and Aromatic Plant Disease Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt;
| | - Abdulaziz A. Al-Askar
- Department of Botany and Microbiology, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.A.-A.); (S.A.M.)
| | - Samy A. Marey
- Department of Botany and Microbiology, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.A.-A.); (S.A.M.)
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2020 Antwerp, Belgium;
| | - Amr H. Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Egypt
| |
Collapse
|
17
|
Leitão AC, Ferreira TL, Gurgel do Amaral Valente Sá L, Rodrigues DS, de Souza BO, Barbosa AD, Moreira LEA, de Andrade Neto JB, Cabral VPDF, Rios MEF, Cavalcanti BC, Silva J, Marinho ES, Dos Santos HS, de Moraes MO, Júnior HVN, da Silva CR. Antibacterial activity of menadione alone and in combination with oxacillin against methicillin-resistant Staphylococcus aureus and its impact on biofilms. J Med Microbiol 2023; 72. [PMID: 37707372 DOI: 10.1099/jmm.0.001751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023] Open
Abstract
Introduction. Antibiotic resistance is a major threat to public health, particularly with methicillin-resistant Staphylococcus aureus (MRSA) being a leading cause of antimicrobial resistance. To combat this problem, drug repurposing offers a promising solution for the discovery of new antibacterial agents.Hypothesis. Menadione exhibits antibacterial activity against methicillin-sensitive and methicillin-resistant S. aureus strains, both alone and in combination with oxacillin. Its primary mechanism of action involves inducing oxidative stress.Methodology. Sensitivity assays were performed using broth microdilution. The interaction between menadione, oxacillin, and antioxidants was assessed using checkerboard technique. Mechanism of action was evaluated using flow cytometry, fluorescence microscopy, and in silico analysis.Aim. The aim of this study was to evaluate the in vitro antibacterial potential of menadione against planktonic and biofilm forms of methicillin-sensitive and resistant S. aureus strains. It also examined its role as a modulator of oxacillin activity and investigated the mechanism of action involved in its activity.Results. Menadione showed antibacterial activity against planktonic cells at concentrations ranging from 2 to 32 µg ml-1, with bacteriostatic action. When combined with oxacillin, it exhibited an additive and synergistic effect against the tested strains. Menadione also demonstrated antibiofilm activity at subinhibitory concentrations and effectively combated biofilms with reduced sensitivity to oxacillin alone. Its mechanism of action involves the production of reactive oxygen species (ROS) and DNA damage. It also showed interactions with important targets, such as DNA gyrase and dehydroesqualene synthase. The presence of ascorbic acid reversed its effects.Conclusion. Menadione exhibited antibacterial and antibiofilm activity against MRSA strains, suggesting its potential as an adjunct in the treatment of S. aureus infections. The main mechanism of action involves the production of ROS, which subsequently leads to DNA damage. Additionally, the activity of menadione can be complemented by its interaction with important virulence targets.
Collapse
Affiliation(s)
- Amanda Cavalcante Leitão
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Thais Lima Ferreira
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Lívia Gurgel do Amaral Valente Sá
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
- Christus University Center, Fortaleza, CE, Brazil
| | - Daniel Sampaio Rodrigues
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Beatriz Oliveira de Souza
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Amanda Dias Barbosa
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Lara Elloyse Almeida Moreira
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Vitória Pessoa de Farias Cabral
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | | | - Jacilene Silva
- Department of Chemistry, Theoretical Chemistry and Electrochemistry Group (GQTE), State University of Ceará, Limoeiro do Norte, CE, Brazil
| | - Emmanuel Silva Marinho
- Department of Chemistry, Theoretical Chemistry and Electrochemistry Group (GQTE), State University of Ceará, Limoeiro do Norte, CE, Brazil
| | - Hélcio Silva Dos Santos
- Center for Exact Sciences and Technology, Acaraú Valley State University, Sobral, CE, Brazil
| | | | - Hélio Vitoriano Nobre Júnior
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Cecília Rocha da Silva
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
18
|
Zhang Z, Shao J, Gao Y, Li Y, Liu T, Yang M. Research progress and future prospects of antimicrobial modified polyetheretherketone (PEEK) for the treatment of bone infections. Front Bioeng Biotechnol 2023; 11:1244184. [PMID: 37600311 PMCID: PMC10436002 DOI: 10.3389/fbioe.2023.1244184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Infection of the bone is a difficult problem in orthopedic diseases. The key and basis of the treatment of bone infection is the effective control of local infection, as well as the elimination of infection focus and dead cavities. The most commonly used approach utilized for the prevention and management of bone infection is the application of antibiotic bone cement. However, the incorporation of antibiotics into the cement matrix has been found to considerably compromise the mechanical characteristics of bone cement. Moreover, some investigations have indicated that the antibiotic release rate of antibiotic bone cement is relatively low. Polyetheretherketone (PEEK) and its composites have been considered to perfectly address the challenges above, according to its favorable biomechanical characteristics and diverse surface functionalizations. This article provides a comprehensive overview of the recent advancements in the antimicrobial modification of PEEK composites in the field of antibacterial therapy of bone infection. Furthermore, the potential application of PEEK-modified materials in clinical treatment was discussed and predicted.
Collapse
Affiliation(s)
- Ziyi Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Junxing Shao
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Yu Gao
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Yuhuan Li
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Te Liu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Modi Yang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
19
|
Cadamuro RD, Bastos IMADS, de Freitas ACO, Rosa MDS, Costa GDO, da Silva IT, Robl D, Stoco PH, Sandjo LP, Treichel H, Steindel M, Fongaro G. Bioactivity Screening and Chemical Characterization of Biocompound from Endophytic Neofusicoccum parvum and Buergenerula spartinae Isolated from Mangrove Ecosystem. Microorganisms 2023; 11:1599. [PMID: 37375101 DOI: 10.3390/microorganisms11061599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The discovery of biomolecules has been the subject of extensive research for several years due to their potential to combat harmful pathogens that can lead to environmental contamination and infections in both humans and animals. This study aimed to identify the chemical profile of endophytic fungi, namely Neofusicoccum parvum and Buergenerula spartinae, which were isolated from Avecinnia schaueriana and Laguncularia racemosa. We identified several HPLC-MS compounds, including Ethylidene-3,39-biplumbagin, Pestauvicolactone A, Phenylalanine, 2-Isopropylmalic acid, Fusaproliferin, Sespendole, Ansellone, Calanone derivative, Terpestacin, and others. Solid-state fermentation was conducted for 14-21 days, and methanol and dichloromethane extraction were performed to obtain a crude extract. The results of our cytotoxicity assay revealed a CC50 value > 500 μg/mL, while the virucide, Trypanosoma, leishmania, and yeast assay demonstrated no inhibition. Nevertheless, the bacteriostatic assay showed a 98% reduction in Listeria monocytogenes and Escherichia coli. Our findings suggest that these endophytic fungi species with distinct chemical profiles represent a promising niche for further exploring new biomolecules.
Collapse
Affiliation(s)
- Rafael Dorighello Cadamuro
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | | | - Ana Claudia Oliveira de Freitas
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Marilene da Silva Rosa
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | | | - Izabella Thaís da Silva
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Diogo Robl
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Patricia Hermes Stoco
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Louis Pergaud Sandjo
- Department of Chemistry, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Helen Treichel
- Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim 99700970, RS, Brazil
| | - Mário Steindel
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Gislaine Fongaro
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| |
Collapse
|
20
|
Liu H, Hu Z, Li M, Yang Y, Lu S, Rao X. Therapeutic potential of bacteriophage endolysins for infections caused by Gram-positive bacteria. J Biomed Sci 2023; 30:29. [PMID: 37101261 PMCID: PMC10131408 DOI: 10.1186/s12929-023-00919-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023] Open
Abstract
Gram-positive (G+) bacterial infection is a great burden to both healthcare and community medical resources. As a result of the increasing prevalence of multidrug-resistant G+ bacteria such as methicillin-resistant Staphylococcus aureus (MRSA), novel antimicrobial agents must urgently be developed for the treatment of infections caused by G+ bacteria. Endolysins are bacteriophage (phage)-encoded enzymes that can specifically hydrolyze the bacterial cell wall and quickly kill bacteria. Bacterial resistance to endolysins is low. Therefore, endolysins are considered promising alternatives for solving the mounting resistance problem. In this review, endolysins derived from phages targeting G+ bacteria were classified based on their structural characteristics. The active mechanisms, efficacy, and advantages of endolysins as antibacterial drug candidates were summarized. Moreover, the remarkable potential of phage endolysins in the treatment of G+ bacterial infections was described. In addition, the safety of endolysins, challenges, and possible solutions were addressed. Notwithstanding the limitations of endolysins, the trends in development indicate that endolysin-based drugs will be approved in the near future. Overall, this review presents crucial information of the current progress involving endolysins as potential therapeutic agents, and it provides a guideline for biomaterial researchers who are devoting themselves to fighting against bacterial infections.
Collapse
Affiliation(s)
- He Liu
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China
| | - Zhen Hu
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China
| | - Mengyang Li
- Department of Microbiology, School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Yi Yang
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China
| | - Shuguang Lu
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China.
| | - Xiancai Rao
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
21
|
Başaran SN, Öksüz L. The role of efflux pumps ın antıbıotıc resıstance of gram negatıve rods. Arch Microbiol 2023; 205:192. [PMID: 37060362 DOI: 10.1007/s00203-023-03539-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/16/2023]
Abstract
Antibiotic resistance is an important public health problem today, causing increased morbidity and mortality. Resistance to antibiotics in bacteria can develop by various mechanisms such as a change in the target site of the drug, a change in the outer membrane permeability, enzymatic defusing of the drug and efflux of the antimicrobial compound. Some bacteria have the potential to develop resistance to more than one drug by using several mechanisms together. One of the important resistance mechanisms of bacteria is active efflux pumps (EPs). EPs are pump proteins found in all cell types, located in the cell membrane. They are responsible for the excretion of various intracellular and extracellular substances (antibiotics, etc.) out of the cell. There is much research on various antimicrobials that cause antibiotic resistance in Gram negative rods, but studies on EPs are relatively few. Due to the concern that antibiotics will be insufficient in the treatment of diseases, a good understanding of EPs and the discovery of new EP inhibitors will shed light on the future of humanity. In this review, the structure of bacterial EPs in Gram negative bacteria, the role of EPs in multidrug resistance, the importance of EP inhibitors in the fight against antibiotic resistance and the phenotypic and genotypic detection methods of EPs are discussed.
Collapse
Affiliation(s)
- Sena Nur Başaran
- Department of Medical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
| | - Lütfiye Öksüz
- Department of Medical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
22
|
Ciulla MG, Gelain F. Structure-activity relationships of antibacterial peptides. Microb Biotechnol 2023; 16:757-777. [PMID: 36705032 PMCID: PMC10034643 DOI: 10.1111/1751-7915.14213] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 12/08/2022] [Accepted: 01/01/2023] [Indexed: 01/28/2023] Open
Abstract
Antimicrobial peptides play a crucial role in innate immunity, whose components are mainly peptide-based molecules with antibacterial properties. Indeed, the exploration of the immune system over the past 40 years has revealed a number of natural peptides playing a pivotal role in the defence mechanisms of vertebrates and invertebrates, including amphibians, insects, and mammalians. This review provides a discussion regarding the antibacterial mechanisms of peptide-based agents and their structure-activity relationships (SARs) with the aim of describing a topic that is not yet fully explored. Some growing evidence suggests that innate immunity should be strongly considered for the development of novel antibiotic peptide-based libraries. Also, due to the constantly rising concern of antibiotic resistance, the development of new antibiotic drugs is becoming a priority of global importance. Hence, the study and the understanding of defence phenomena occurring in the immune system may inspire the development of novel antibiotic compound libraries and set the stage to overcome drug-resistant pathogens. Here, we provide an overview of the importance of peptide-based antibacterial sources, focusing on accurately selected molecular structures, their SARs including recently introduced modifications, their latest biotechnology applications, and their potential against multi-drug resistant pathogens. Last, we provide cues to describe how antibacterial peptides show a better scope of action selectivity than several anti-infective agents, which are characterized by non-selective activities and non-targeted actions toward pathogens.
Collapse
Affiliation(s)
- Maria Gessica Ciulla
- Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Fabrizio Gelain
- Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| |
Collapse
|
23
|
Maikhuri VK, Verma V, Mathur D, Prasad AK, Chaudhary A, Kumar R. Sugars in Multicomponent Reactions: A Toolbox for Diversity-Oriented Synthesis. SYNTHESIS-STUTTGART 2023. [DOI: 10.1055/s-0042-1751418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
AbstractMulticomponent reactions (MCRs) cover strategically employed chemical transformations that incorporate three or more reactants in one pot leading to a functionalized final product. Thus, it is an ideal tool to achieve high levels of complexity, diversity, yields of desired products, atom economy, and reduced reaction times. Sugars belong to the class of naturally occurring compounds with fascinating applications in the field of drug discovery due to the presence of various hydroxy groups and well-defined stereochemistry. However, their potential in MCRs has been realized only recently. This account describes recent advances in the synthesis of sugar-derived heterocycles synthesized by MCRs. We hope to encourage the synthetic and medicinal chemistry community to apply this powerful MCR chemistry to generate novel glycoconjugate challenges.1 Introduction2 Synthesis of Various Functionalized Sugar Compounds2.1 Passerini and Ugi Multicomponent Reactions2.2 Petasis Reaction2.3 Hantzsch Reaction2.4 Domino Ferrier–Povarov Reaction2.5 Marckwald Reaction2.6 Groebke–Blackburn–Bienaymé (GBB) Reaction2.7 Prins–Ritter Reaction2.8 Debus–Radziszewski Imidazole Synthesis Reaction2.9 Mannich Reaction2.10 A3-Coupling Reaction2.11 [3+2]-Cycloaddition Reactions2.12 Miscellaneous Reactions3 Conclusion
Collapse
Affiliation(s)
| | - Vineet Verma
- Bioorganic Laboratory, Department of Chemistry, University of Delhi
- Department of Chemistry, Starex University
| | - Divya Mathur
- Bioorganic Laboratory, Department of Chemistry, University of Delhi
- Daulat Ram College, Department of Chemistry, University of Delhi
| | - Ashok K. Prasad
- Bioorganic Laboratory, Department of Chemistry, University of Delhi
| | | | - Rajesh Kumar
- Department of Chemistry, R.D.S. College, B.R.A. Bihar University
| |
Collapse
|
24
|
Karupppaiah B, Jeyaraman A, Chen SM, Huang YC. Development of Highly Sensitive Electrochemical Sensor for Antibiotic Drug Ronidazole Based on Spinel Cobalt Oxide Nanorods Embedded with Hexagonal Boron Nitride. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
Zhao B, van Bodegom PM, Trimbos KB. Antibiotic Resistance Genes in Interconnected Surface Waters as Affected by Agricultural Activities. Biomolecules 2023; 13:biom13020231. [PMID: 36830600 PMCID: PMC9953135 DOI: 10.3390/biom13020231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
Pastures have become one of the most important sources of antibiotic resistance genes (ARGs) pollution, bringing risks to human health through the environment and the food that is grown there. Another significant source of food production is greenhouse horticulture, which is typically located near pastures. Through waterways, pasture-originated ARGs may transfer to the food in greenhouses. However, how these pasture-originated ARGs spread to nearby waterways and greenhouses has been much less investigated, while this may pose risks to humans through agricultural products. We analyzed 29 ARGs related to the most used antibiotics in livestock in the Netherlands at 16 locations in an agricultural area, representing pastures, greenhouses and lakes. We found that ARGs were prevalent in all surface waters surrounding pastures and greenhouses and showed a similar composition, with sulfonamide ARGs being dominant. This indicates that both pastures and greenhouses cause antibiotic resistance pressures on neighboring waters. However, lower pressures were found in relatively larger and isolated lakes, suggesting that a larger water body or a non-agricultural green buffer zone could help reducing ARG impacts from agricultural areas. We also observed a positive relationship between the concentrations of the class 1 integron (intl1 gene)-used as a proxy for horizontal gene transfer-and ARG concentration and composition. This supports that horizontal gene transfer might play a role in dispersing ARGs through landscapes. In contrast, none of the measured four abiotic factors (phosphate, nitrate, pH and dissolved oxygen) showed any impact on ARG concentrations. ARGs from different classes co-occurred, suggesting simultaneous use of different antibiotics. Our findings help to understand the spatial patterns of ARGs, specifically the impacts of ARGs from pastures and greenhouses on each other and on nearby waterways. In this way, this study guides management aiming at reducing ARGs' risk to human health from agricultural products.
Collapse
|
26
|
Skłodowski K, Chmielewska-Deptuła SJ, Piktel E, Wolak P, Wollny T, Bucki R. Metallic Nanosystems in the Development of Antimicrobial Strategies with High Antimicrobial Activity and High Biocompatibility. Int J Mol Sci 2023; 24:2104. [PMID: 36768426 PMCID: PMC9917064 DOI: 10.3390/ijms24032104] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Antimicrobial resistance is a major and growing global problem and new approaches to combat infections caused by antibiotic resistant bacterial strains are needed. In recent years, increasing attention has been paid to nanomedicine, which has great potential in the development of controlled systems for delivering drugs to specific sites and targeting specific cells, such as pathogenic microbes. There is continued interest in metallic nanoparticles and nanosystems based on metallic nanoparticles containing antimicrobial agents attached to their surface (core shell nanosystems), which offer unique properties, such as the ability to overcome microbial resistance, enhancing antimicrobial activity against both planktonic and biofilm embedded microorganisms, reducing cell toxicity and the possibility of reducing the dosage of antimicrobials. The current review presents the synergistic interactions within metallic nanoparticles by functionalizing their surface with appropriate agents, defining the core structure of metallic nanoparticles and their use in combination therapy to fight infections. Various approaches to modulate the biocompatibility of metallic nanoparticles to control their toxicity in future medical applications are also discussed, as well as their ability to induce resistance and their effects on the host microbiome.
Collapse
Affiliation(s)
- Karol Skłodowski
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, 15-222 Bialystok, Poland
| | | | - Ewelina Piktel
- Independent Laboratory of Nanomedicine, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Przemysław Wolak
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, IX Wieków Kielce 19A, 25-317 Kielce, Poland
| | - Tomasz Wollny
- Holy Cross Oncology Center of Kielce, Artwińskiego 3, 25-734 Kielce, Poland
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, 15-222 Bialystok, Poland
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, IX Wieków Kielce 19A, 25-317 Kielce, Poland
| |
Collapse
|
27
|
Zhang M, Wang Y, Bai M, Jiang H, Cui R, Lin K, Tan C, Gao C, Zhang C. Metagenomics analysis of antibiotic resistance genes, the bacterial community and virulence factor genes of fouled filters and effluents from household water purifiers in drinking water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158572. [PMID: 36075417 DOI: 10.1016/j.scitotenv.2022.158572] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
The aim of this study was to explore the influence and removal of household water purifiers (HWPs) on emerging contaminants in drinking water, and their distribution characteristics. The antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), virulence factor genes (VFGs) and bacterial communities were profiled in the fouled filters, influents, and effluents from HWPs with five steps of filtration after 150 days operation, using metagenomics. The results showed that the diversity of dominant species in Poly Propylene 1 μm (PP1) and nanofiltration membrane (NM) was significantly higher than that in other filters. Post-activated carbon (AC) was used to detect low species richness or diversity, and the highest proportion of dominant species, which contributes to the greater microbial risk of HWPs effluents in drinking water. The number of dominant bacterial genera in the filters disinfected with chloramine was higher than that in the same group disinfected with chlorine. The bacterial species richness or diversity in water was reduced by the purification of HWPs because the filter elements effectively trapped a variety of microorganisms. The relative abundance of Antibiotic efflux in the effluents of chlorinated and chloraminated HWPs was 5.58 × 10-3 and 4.60 × 10-3, respectively, which was the main resistance mechanism. High abundance of VFGs was found in HWPs effluents and the relative abundance of aggressive VFGs was significantly higher than those of defensive VFGs. Based on the co-occurrence results, 243 subtypes of ARGs co-occurred with VFGs, and a variety of bacteria were thought to be possible ARGs hosts, which indicated that the host bacteria of VFGs in HWP effluents had a stronger attack ability. The effluent of HWPs with only filtration processes is exposed to the risk of ARGs and VFGs. This study helps to understand the actual purification effect of HWPs and provides a theoretical reference for the management and control of ARGs pollution in domestic drinking water.
Collapse
Affiliation(s)
- Minglu Zhang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Yue Wang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Miao Bai
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Center for Disease Control and Prevention of Chinese PLA, Beijing 100071, China
| | - Hairong Jiang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Ruoqi Cui
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Kaizong Lin
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Chaohong Tan
- School of Environmental and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 102616, China
| | - Cuiling Gao
- Shandong Institute of Product Quality Inspection, Testing Technology Lab of Material Safety, Jinan 250102, China
| | - Can Zhang
- Center for Disease Control and Prevention of Chinese PLA, Beijing 100071, China.
| |
Collapse
|
28
|
Li S, Wu Y, Zheng H, Li H, Zheng Y, Nan J, Ma J, Nagarajan D, Chang JS. Antibiotics degradation by advanced oxidation process (AOPs): Recent advances in ecotoxicity and antibiotic-resistance genes induction of degradation products. CHEMOSPHERE 2023; 311:136977. [PMID: 36309060 DOI: 10.1016/j.chemosphere.2022.136977] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/09/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Antibiotic contamination could cause serious risks of ecotoxicity and resistance gene induction. Advanced oxidation processes (AOPs) such as Fenton, photocatalysis, activated persulfate, electrochemistry and other AOPs technologies have been proven effective in the degradation of high-risk, refractory organic pollutants such as antibiotics. However, due to the limited mineralization ability, a large number of degradation intermediates will be produced in the oxidation process. The residual or undiscovered ecological risks of degradation products are potential safety hazards and problems necessitating comprehensive studies. In-depth investigations especially on the full assessments of ecotoxicity and resistance genes induction capability of antibiotic degradation products are important issues in reducing the environmental problems of antibiotics. Therefore, this review presents an overview of the current knowledge on the efficiency of different AOPs systems in reducing antibiotics toxicity and antibiotic resistance.
Collapse
Affiliation(s)
- Shuo Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China; Urban Water Resources Development and Northern National Engineering Research Center, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yanan Wu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Heshan Zheng
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China.
| | - Hongbin Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Yongjie Zheng
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Jun Nan
- Urban Water Resources Development and Northern National Engineering Research Center, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jun Ma
- Urban Water Resources Development and Northern National Engineering Research Center, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Dillirani Nagarajan
- Department of Chemical Engineering, National Cheng-Kung University, Tainan, Taiwan
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng-Kung University, Tainan, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung, 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taiwan.
| |
Collapse
|
29
|
Huang W, Kong R, Chen L, An Y. Physiological responses and antibiotic-degradation capacity of duckweed ( Lemna aequinoctialis) exposed to streptomycin. FRONTIERS IN PLANT SCIENCE 2022; 13:1065199. [PMID: 36570884 PMCID: PMC9774486 DOI: 10.3389/fpls.2022.1065199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/21/2022] [Indexed: 06/12/2023]
Abstract
Aquatic plants are constantly exposed to various water environmental pollutants. Few data on how antibiotics affect duckweed health and its removal ability. The aim of this study was to investigate the impact of streptomycin on the physiological change and uptake capability in duckweed (Lemna aequinoctialis) after exposure at different time points (0, 5, 10, 15 and 20 days). Duckweeds were exposed to streptomycin at a range of concentrations (0.1-10 mM). Results indicated that the high streptomycin concentrations (≥1 mM) resulted in a lower duckweed biomass (21.5-41.5%), RGR (0.258-0.336 g d-1), decrease in total Chl and increase in carotenoids. Antioxidative enzymes, including CAT (18-42.88 U mg protein-1), APX (0.41-0.76 U mg protein-1), and SOD (0.52-0.71 U mg protein-1) were found to accumulate in the streptomycin groups in comparison to the control group. The significant reduction (72-82%) in streptomycin content at 20 d compared to the control (40-55%) suggested that duckweed has a high ability in removing streptomycin. Transcriptome analysis showed that the secondary metabolic pathways including phenylpropanoid biosynthesis and flavonoid biosynthesis were significantly upregulated in the streptomycin setup compared to the control. Therefore, our findings suggested that duckweed can contribute to the streptomycin degradation, which should be highly recommended to the treatment of aquaculture wastewater and domestic sewage.
Collapse
|
30
|
Kim M, Park SJ, Choi S, Chang J, Kim SM, Jeong S, Park YJ, Lee G, Son JS, Ahn JC, Park SM. Association between antibiotics and dementia risk: A retrospective cohort study. Front Pharmacol 2022; 13:888333. [PMID: 36225572 PMCID: PMC9548656 DOI: 10.3389/fphar.2022.888333] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022] Open
Abstract
Background: The possible relation between antibiotic exposure and the alteration of gut microbiota, which may affect dementia risk, has been revealed. However, the association between antibiotics and dementia incidence has rarely been studied. We aimed to determine the association between antibiotic exposure and the risk of dementia. Methods: This population-based retrospective cohort study used data from the National Health Insurance Service-Health Screening Cohort (NHIS-HEALS) in South Korea. Exposure was the cumulative days of antibiotic prescription from 2002 to 2005. Newly diagnosed overall dementia, Alzheimer’s disease (AD), and vascular dementia (VD) were identified based on diagnostic codes and prescriptions for dementia-related drugs. The follow-up investigation was carried out from 1 January 2006 to 31 December 2013. The Cox proportional hazards regression was used to assess the association between cumulative antibiotic prescription days and dementia incidence. Results: A total of 313,161 participants were analyzed in this study. Compared to antibiotic non-users, the participants who used antibiotics for 91 or more days had an increased risk of overall dementia [adjusted hazard ratio (aHR), 1.44; 95% confidence interval (CI), 1.19–1.74], AD (aHR, 1.46; 95% CI, 1.17–1.81), and VD (aHR, 1.38; 95% CI, 0.83–2.30). Those who used five or more antibiotic classes had higher risks of overall dementia (aHR, 1.28; 95% CI, 1.00–1.66) and AD (aHR, 1.34; 95% CI, 1.00–1.78) than antibiotic non-users. Conclusion: Antibiotic exposure may increase the risk of dementia in a cumulative duration-dependent manner among adult participants. Future studies are needed to assess the causality between the long-term prescription of antibiotics and dementia risk.
Collapse
Affiliation(s)
- Minseo Kim
- Department of Biomedical Sciences, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
- College of Medicine, Jeonbuk National University, Jeonju, South Korea
| | - Sun Jae Park
- Department of Biomedical Sciences, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Seulggie Choi
- Department of Biomedical Sciences, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Jooyoung Chang
- Department of Biomedical Sciences, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Sung Min Kim
- Department of Biomedical Sciences, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Seogsong Jeong
- Department of Biomedical Informatics, CHA University School of Medicine, Seongnam, South Korea
| | - Young Jun Park
- Medical Research Center, Genomic Medicine Institute, Seoul National University, Seoul, South Korea
| | - Gyeongsil Lee
- Department of Family Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Joung Sik Son
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang, South Korea
| | - Joseph C. Ahn
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, NY, United States
| | - Sang Min Park
- Department of Biomedical Sciences, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
- Department of Family Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
- *Correspondence: Sang Min Park,
| |
Collapse
|
31
|
Impact of Antibiotics as Waste, Physical, Chemical, and Enzymatical Degradation: Use of Laccases. Molecules 2022; 27:molecules27144436. [PMID: 35889311 PMCID: PMC9319608 DOI: 10.3390/molecules27144436] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
The first traces of Tetracycline (TE) were detected in human skeletons from Sudan and Egypt, finding that it may be related to the diet of the time, the use of some dyes, and the use of soils loaded with microorganisms, such as Streptomyces spp., among other microorganisms capable of producing antibiotics. However, most people only recognise authors dating between 1904 and 1940, such as Ehrlich, Domagk, and Fleming. Antibiotics are the therapeutic option for countless infections treatment; unfortunately, they are the second most common group of drugs in wastewaters worldwide due to failures in industrial waste treatments (pharmaceutics, hospitals, senior residences) and their irrational use in humans and animals. The main antibiotics problem lies in delivered and non-prescribed human use, use in livestock as growth promoters, and crop cultivation as biocides (regulated activities that have not complied in some places). This practice has led to the toxicity of the environment as antibiotics generate eutrophication, water pollution, nutrient imbalance, and press antibiotic resistance. In addition, the removal of antibiotics is not a required process in global wastewater treatment standards. This review aims to raise awareness of the negative impact of antibiotics as residues and physical, chemical, and biological treatments for their degradation. We discuss the high cost of physical and chemical treatments, the risk of using chemicals that worsen the situation, and the fact that each antibiotic class can be transformed differently with each of these treatments and generate new compounds that could be more toxic than the original ones; also, we discuss the use of enzymes for antibiotic degradation, with emphasis on laccases.
Collapse
|
32
|
Liguori K, Keenum I, Davis BC, Calarco J, Milligan E, Harwood VJ, Pruden A. Antimicrobial Resistance Monitoring of Water Environments: A Framework for Standardized Methods and Quality Control. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9149-9160. [PMID: 35732277 DOI: 10.1080/10643389.2021.2024739] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Antimicrobial resistance (AMR) is a grand societal challenge with important dimensions in the water environment that contribute to its evolution and spread. Environmental monitoring could provide vital information for mitigating the spread of AMR; this includes assessing antibiotic resistance genes (ARGs) circulating among human populations, identifying key hotspots for evolution and dissemination of resistance, informing epidemiological and human health risk assessment models, and quantifying removal efficiencies by domestic wastewater infrastructure. However, standardized methods for monitoring AMR in the water environment will be vital to producing the comparable data sets needed to address such questions. Here we sought to establish scientific consensus on a framework for such standardization, evaluating the state of the science and practice of AMR monitoring of wastewater, recycled water, and surface water, through a literature review, survey, and workshop leveraging the expertise of academic, governmental, consulting, and water utility professionals.
Collapse
Affiliation(s)
- Krista Liguori
- The Charles Edward Via, Jr., Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Ishi Keenum
- The Charles Edward Via, Jr., Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Benjamin C Davis
- The Charles Edward Via, Jr., Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Jeanette Calarco
- Department of Integrative Biology, University of South Florida, Tampa, Florida 33620, United States
| | - Erin Milligan
- The Charles Edward Via, Jr., Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Valerie J Harwood
- Department of Integrative Biology, University of South Florida, Tampa, Florida 33620, United States
| | - Amy Pruden
- The Charles Edward Via, Jr., Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| |
Collapse
|
33
|
Miri AH, Kamankesh M, Llopis-Lorente A, Liu C, Wacker MG, Haririan I, Asadzadeh Aghdaei H, Hamblin MR, Yadegar A, Rad-Malekshahi M, Zali MR. The Potential Use of Antibiotics Against Helicobacter pylori Infection: Biopharmaceutical Implications. Front Pharmacol 2022; 13:917184. [PMID: 35833028 PMCID: PMC9271669 DOI: 10.3389/fphar.2022.917184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Helicobacter pylori (H. pylori) is a notorious, recalcitrant and silent germ, which can cause a variety of debilitating stomach diseases, including gastric and duodenal ulcers and gastric cancer. This microbe predominantly colonizes the mucosal layer of the human stomach and survives in the inhospitable gastric microenvironment, by adapting to this hostile milieu. In this review, we first discuss H. pylori colonization and invasion. Thereafter, we provide a survey of current curative options based on polypharmacy, looking at pharmacokinetics, pharmacodynamics and pharmaceutical microbiology concepts, in the battle against H. pylori infection.
Collapse
Affiliation(s)
- Amir Hossein Miri
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojtaba Kamankesh
- Polymer Chemistry Department, School of Science, University of Tehran, Tehran, Iran
| | - Antoni Llopis-Lorente
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Chenguang Liu
- College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Matthias G. Wacker
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Ismaeil Haririan
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mazda Rad-Malekshahi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
Hu Y, Wei X, Zhu Q, Li L, Liao C, Jiang G. COVID-19 Pandemic Impacts on Humans Taking Antibiotics in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8338-8349. [PMID: 35675530 PMCID: PMC9195570 DOI: 10.1021/acs.est.1c07655] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/31/2022] [Accepted: 05/24/2022] [Indexed: 05/24/2023]
Abstract
The outbreak of the novel coronavirus 2019 (COVID-19) pandemic has resulted in the increased human consumption of medicines. Antibiotics are of great concern due to their adverse effects, such as increased bacterial resistance and dysbiosis of gut microbiota. Nevertheless, very little is known about the changes in self-medication with antibiotics during the COVID-19 pandemic and the resultant potential health risks. Herein, we examined the concentration profiles of some commonly used antibiotics in human urine collected from several geographical regions in China between 2020 and 2021. Antibiotics were found in 99.2% of the urine samples at concentrations ranging from not detected (nd) to 357 000 (median: 10.2) ng/mL. During the COVID-19 pandemic, concentrations of urinary antibiotics were remarkably higher than those found either before the pandemic or in the smooth period of the pandemic. Moreover, elevated levels of antibiotics were determined in urine samples from the regions with more confirmed cases. The exposure assessment showed that hazard index values >1 were determined in 35.2% of people. These findings show that human exposure to antibiotics increased during the COVID-19 pandemic, and further research is imperative to identify the public health risks.
Collapse
Affiliation(s)
- Yu Hu
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianping Wei
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- Hubei
Key Laboratory of Environmental and Health Effects of Persistent Toxic
Substances, School of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China
| | - Qingqing Zhu
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingxiangyu Li
- School
of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310024, China
| | - Chunyang Liao
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- Hubei
Key Laboratory of Environmental and Health Effects of Persistent Toxic
Substances, School of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China
- School
of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310024, China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- Hubei
Key Laboratory of Environmental and Health Effects of Persistent Toxic
Substances, School of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China
- School
of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310024, China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
35
|
Cabezudo I, Lobertti CA, Véscovi EG, Furlan RLE. Effect-Directed Synthesis of PhoP/PhoQ Inhibitors to Regulate Salmonella Virulence. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6755-6763. [PMID: 35607919 DOI: 10.1021/acs.jafc.2c01087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Salmonella spp. are among the leading bacterial causes of foodborne infections. The PhoP/PhoQ two-component regulatory system serves as a master virulence regulator in Salmonella. Although PhoP/PhoQ represents an ideal target for disarming Salmonella virulence, it has very few inhibitors reported so far. We describe a novel platform by which an inhibitor was selected out of around 185 compounds directly from reaction media containing thiosemicarbazones and mono-, di-, and trihydrazones. To achieve this, tandem library preparation, thin-layer chromatography (TLC) bioautography, and effect-directed deconvolution were applied. We illustrate the potential of this effect-directed synthesis for the identification of new useful bioactive compounds for the food field.
Collapse
Affiliation(s)
- Ignacio Cabezudo
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rosario 2000 Argentina
| | - Carlos A Lobertti
- Instituto de Biología Molecular y Celular de Rosario (IBR CONICET), Rosario S2000EZP Argentina
- Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario 2000 Argentina
| | - Eleonora García Véscovi
- Instituto de Biología Molecular y Celular de Rosario (IBR CONICET), Rosario S2000EZP Argentina
| | - Ricardo L E Furlan
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rosario 2000 Argentina
| |
Collapse
|
36
|
Jing L, Yang W, Wang T, Wang J, Kong X, Lv S, Li X, Quan R, Zhu H. Porous boron nitride micro-nanotubes efficiently anchor CoFe2O4 as a magnetic recyclable catalyst for peroxymonosulfate activation and oxytetracycline rapid degradation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Sukhum KV, Newcomer EP, Cass C, Wallace MA, Johnson C, Fine J, Sax S, Barlet MH, Burnham CAD, Dantas G, Kwon JH. Antibiotic-resistant organisms establish reservoirs in new hospital built environments and are related to patient blood infection isolates. COMMUNICATIONS MEDICINE 2022; 2:62. [PMID: 35664456 PMCID: PMC9160058 DOI: 10.1038/s43856-022-00124-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 05/06/2022] [Indexed: 02/03/2023] Open
Abstract
Background Healthcare-associated infections due to antibiotic-resistant organisms pose an acute and rising threat to critically ill and immunocompromised patients. To evaluate reservoirs of antibiotic-resistant organisms as a source of transmission to patients, we interrogated isolates from environmental surfaces, patient feces, and patient blood infections from an established and a newly built intensive care unit. Methods We used selective culture to recover 829 antibiotic-resistant organisms from 1594 environmental and 72 patient fecal samples, in addition to 81 isolates from blood cultures. We conducted antibiotic susceptibility testing and short- and long-read whole genome sequencing on recovered isolates. Results Antibiotic-resistant organism burden is highest in sink drains compared to other surfaces. Pseudomonas aeruginosa is the most frequently cultured organism from surfaces in both intensive care units. From whole genome sequencing, different lineages of P. aeruginosa dominate in each unit; one P. aeruginosa lineage of ST1894 is found in multiple sink drains in the new intensive care unit and 3.7% of blood isolates analyzed, suggesting movement of this clone between the environment and patients. Conclusions These results highlight antibiotic-resistant organism reservoirs in hospital built environments as an important target for infection prevention in hospitalized patients.
Collapse
Affiliation(s)
- Kimberley V. Sukhum
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St Louis, St Louis, MO USA
- Department of Pathology and Immunology, Washington University School of Medicine in St Louis, St Louis, MO USA
| | - Erin P. Newcomer
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St Louis, St Louis, MO USA
- Department of Pathology and Immunology, Washington University School of Medicine in St Louis, St Louis, MO USA
- Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO USA
| | - Candice Cass
- Department of Medicine, Washington University School of Medicine in St Louis, St Louis, MO USA
| | - Meghan A. Wallace
- Department of Pathology and Immunology, Washington University School of Medicine in St Louis, St Louis, MO USA
| | - Caitlin Johnson
- Department of Pathology and Immunology, Washington University School of Medicine in St Louis, St Louis, MO USA
| | - Jeremy Fine
- Department of Pathology and Immunology, Washington University School of Medicine in St Louis, St Louis, MO USA
| | - Steven Sax
- Department of Medicine, Washington University School of Medicine in St Louis, St Louis, MO USA
| | - Margaret H. Barlet
- Department of Medicine, Washington University School of Medicine in St Louis, St Louis, MO USA
| | - Carey-Ann D. Burnham
- Department of Pathology and Immunology, Washington University School of Medicine in St Louis, St Louis, MO USA
- Department of Medicine, Washington University School of Medicine in St Louis, St Louis, MO USA
- Department of Molecular Microbiology, Washington University School of Medicine in St Louis, St Louis, MO USA
- Department of Pediatrics, Washington University School of Medicine in St Louis, St Louis, MO USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St Louis, St Louis, MO USA
- Department of Pathology and Immunology, Washington University School of Medicine in St Louis, St Louis, MO USA
- Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO USA
- Department of Molecular Microbiology, Washington University School of Medicine in St Louis, St Louis, MO USA
| | - Jennie H. Kwon
- Department of Medicine, Washington University School of Medicine in St Louis, St Louis, MO USA
| |
Collapse
|
38
|
Shi Z, Zhang P, Liu Y, Zhao Y, Wang C. Accumulation of antibiotic resistance genes in pakchoi (Brassica chinensis L.) grown in chicken manure-fertilized soil amended with fresh and aged biochars. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:39410-39420. [PMID: 35103947 DOI: 10.1007/s11356-022-18941-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Biochar has been used to alleviate the contamination of antibiotic resistance genes (ARGs) in soil and to inhibit ARGs transfer from soil to plants. However, the effect of aged biochar on ARGs abundance in soil and ARGs enrichment in plants are scarcely investigated. In this study, a pot experiment was conducted to compare the effects of fresh and aged biochars on the accumulation of five typical ARGs including tetX, tetW, sul2, ermB, and intI1 in a chicken manure-fertilized soil and in pakchoi (Brassica chinensis L.). Results showed that both biochars significantly decreased the abundance of tetW, sul2, and ermB and increased the abundance of tetX and intI1 in soil. However, the accumulation of all tested ARGs in pakchoi were significantly decreased by both biochars. At the lower addition rate (1%), the fresh biochar was superior to the aged biochar in decreasing the accumulation of some genes (tetW, tetX, and sul2) in pakchoi, whereas an opposite tendency was observed for other genes (ermB and intI1). As the addition rate increased to 2%, the difference between the two biochars diminished, and a similar capacity of decreasing ARGs transfer was observed. The reduction in ARGs accumulation in pakchoi was highly related to the type of ARGs, the biochar addition level, and the aging of biochar. Our results provide insights into the naturally aged biochar on the fate of ARGs in a soil-plant system.
Collapse
Affiliation(s)
- Zhiming Shi
- College of Environmental and Resource Sciences, Shanxi University, Taiyuan, 030006, PR China
- Shaanxi Key Laboratory of Land Consolidation, School of Earth Science and Resources, Chang'an University, Xi'an, 710064, PR China
- Shanxi Laboratory for Yellow River, Shanxi University, Taiyuan, 030006, PR China
| | - Peng Zhang
- College of Environmental and Resource Sciences, Shanxi University, Taiyuan, 030006, PR China
- Shanxi Laboratory for Yellow River, Shanxi University, Taiyuan, 030006, PR China
| | - Yan Liu
- College of Environmental and Resource Sciences, Shanxi University, Taiyuan, 030006, PR China
- Shanxi Laboratory for Yellow River, Shanxi University, Taiyuan, 030006, PR China
| | - Yonghua Zhao
- Shaanxi Key Laboratory of Land Consolidation, School of Earth Science and Resources, Chang'an University, Xi'an, 710064, PR China.
| | - Congying Wang
- College of Environmental and Resource Sciences, Shanxi University, Taiyuan, 030006, PR China.
- Shaanxi Key Laboratory of Land Consolidation, School of Earth Science and Resources, Chang'an University, Xi'an, 710064, PR China.
- Shanxi Laboratory for Yellow River, Shanxi University, Taiyuan, 030006, PR China.
| |
Collapse
|
39
|
Ali W, Elsahn A, Ting DSJ, Dua HS, Mohammed I. Host Defence Peptides: A Potent Alternative to Combat Antimicrobial Resistance in the Era of the COVID-19 Pandemic. Antibiotics (Basel) 2022; 11:475. [PMID: 35453226 PMCID: PMC9032040 DOI: 10.3390/antibiotics11040475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 12/07/2022] Open
Abstract
One of the greatest challenges facing the medical community today is the ever-increasing trajectory of antimicrobial resistance (AMR), which is being compounded by the decrease in our antimicrobial armamentarium. From their initial discovery to the current day, antibiotics have seen an exponential increase in their usage, from medical to agricultural use. Benefits aside, this has led to an exponential increase in AMR, with the fear that over 10 million lives are predicted to be lost by 2050, according to the World Health Organisation (WHO). As such, medical researchers are turning their focus to discovering novel alternatives to antimicrobials, one being Host Defence Peptides (HDPs). These small cationic peptides have shown great efficacy in being used as an antimicrobial therapy for currently resistant microbial variants. With the sudden emergence of the SARS-CoV-2 variant and the subsequent global pandemic, the great versatility and potential use of HDPs as an alternative to conventional antibiotics in treating as well as preventing the spread of COVID-19 has been reviewed. Thus, to allow the reader to have a full understanding of the multifaceted therapeutic use of HDPs, this literature review shall cover the association between COVID-19 and AMR whilst discussing and evaluating the use of HDPs as an answer to antimicrobial resistance (AMR).
Collapse
Affiliation(s)
| | | | | | | | - Imran Mohammed
- Section of Ophthalmology, Larry A. Donoso Laboratory for Eye Research, Academic Unit of Mental Health and Clinical Neuroscience, School of Medicine, University of Nottingham, Queens Medical Centre, Eye and ENT Building, Nottingham NG7 2UH, UK; (W.A.); (A.E.); (D.S.J.T.); (H.S.D.)
| |
Collapse
|
40
|
Wang X, Lin Y, Zheng Y, Meng F. Antibiotics in mariculture systems: A review of occurrence, environmental behavior, and ecological effects. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118541. [PMID: 34800588 DOI: 10.1016/j.envpol.2021.118541] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Antibiotics are widely applied to prevent and treat diseases occurred in mariculture. The often-open nature of mariculture production systems has led to antibiotic residue accumulation in the culturing and adjacent environments, which can adversely affect aquatic ecosystems, and even human. This review summarizes the occurrence, environmental behavior, and ecological effects of antibiotics in mariculture systems based on peer-reviewed papers. Forty-five different antibiotics (categorized into ten groups) have been detected in mariculture systems around the world, which is far greater than the number officially allowed. Indiscriminate use of antibiotics is relatively high among major producing countries in Asia, which highlights the need for stricter enforcement of regulations and policies and effective antibiotic removal methods. Compared with other environmental systems, some environmental characteristics of mariculture systems, such as high salinity and dissolved organic matter (DOM) content, can affect the migration and transformation processes of antibiotics. Residues of antibiotics favor the proliferation of antibiotic resistance genes (ARGs). Antibiotics and ARGs alter microbial communities and biogeochemical cycles, as well as posing threats to marine organisms and human health. This review may provide a valuable summary of the effects of antibiotics on mariculture systems.
Collapse
Affiliation(s)
- Xiaotong Wang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yufei Lin
- National Marine Hazard Mitigation Service, Ministry of Natural Resource of the People's Republic of China, Beijing, 100194, China
| | - Yang Zheng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; National Marine Hazard Mitigation Service, Ministry of Natural Resource of the People's Republic of China, Beijing, 100194, China
| | - Fanping Meng
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
41
|
Markulin I, Matasin M, Turk VE, Salković-Petrisic M. Challenges of repurposing tetracyclines for the treatment of Alzheimer's and Parkinson's disease. J Neural Transm (Vienna) 2022; 129:773-804. [PMID: 34982206 DOI: 10.1007/s00702-021-02457-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022]
Abstract
The novel antibiotic-exploiting strategy in the treatment of Alzheimer's (AD) and Parkinson's (PD) disease has emerged as a potential breakthrough in the field. The research in animal AD/PD models provided evidence on the antiamyloidogenic, anti-inflammatory, antioxidant and antiapoptotic activity of tetracyclines, associated with cognitive improvement. The neuroprotective effects of minocycline and doxycycline in animals initiated investigation of their clinical efficacy in AD and PD patients which led to inconclusive results and additionally to insufficient safety data on a long-standing doxycycline and minocycline therapy in these patient populations. The safety issues should be considered in two levels; in AD/PD patients (particularly antibiotic-induced alteration of gut microbiota and its consequences), and as a world-wide threat of development of bacterial resistance to these antibiotics posed by a fact that AD and PD are widespread incurable diseases which require daily administered long-lasting antibiotic therapy. Recently proposed subantimicrobial doxycycline doses should be thoroughly explored for their effectiveness and long-term safety especially in AD/PD populations. Keeping in mind the antibacterial activity-related far-reaching undesirable effects both for the patients and globally, further work on repurposing these drugs for a long-standing therapy of AD/PD should consider the chemically modified tetracycline compounds tailored to lack antimicrobial but retain (or introduce) other activities effective against the AD/PD pathology. This strategy might reduce the risk of long-term therapy-related adverse effects (particularly gut-related ones) and development of bacterial resistance toward the tetracycline antibiotic agents but the therapeutic potential and desirable safety profile of such compounds in AD/PD patients need to be confirmed.
Collapse
Affiliation(s)
- Iva Markulin
- Community Health Centre Zagreb-Centre, Zagreb, Croatia
| | | | - Viktorija Erdeljic Turk
- Division of Clinical Pharmacology, Department of Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Melita Salković-Petrisic
- Department of Pharmacology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Salata 11, 10 000, Zagreb, Croatia.
| |
Collapse
|
42
|
Wang J, Zhang Y, Lu Q, Xing D, Zhang R. Exploring Carbohydrates for Therapeutics: A Review on Future Directions. Front Pharmacol 2021; 12:756724. [PMID: 34867374 PMCID: PMC8634948 DOI: 10.3389/fphar.2021.756724] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/08/2021] [Indexed: 12/02/2022] Open
Abstract
Carbohydrates are important components of foods and essential biomolecules performing various biological functions in living systems. A variety of biological activities besides providing fuel have been explored and reported for carbohydrates. Some carbohydrates have been approved for the treatment of various diseases; however, carbohydrate-containing drugs represent only a small portion of all of the drugs on the market. This review summarizes several potential development directions of carbohydrate-containing therapeutics, with the hope of promoting the application of carbohydrates in drug development.
Collapse
Affiliation(s)
- Jie Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| | - Yukun Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| | - Qi Lu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Renshuai Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| |
Collapse
|
43
|
Alhassani RY, Bagadood RM, Balubaid RN, Barno HI, Alahmadi MO, Ayoub NA. Drug Therapies Affecting Renal Function: An Overview. Cureus 2021; 13:e19924. [PMID: 34976524 PMCID: PMC8712249 DOI: 10.7759/cureus.19924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2021] [Indexed: 11/24/2022] Open
Abstract
Undesirable side effects of medication are inevitable. Due to the role of the kidneys in clearance and filtration, the renal system faces a unique situation when it comes to the side effects of drugs. It has an important role for different classes of drugs to be excreted, and drugs are a key factor for this system to be at risk. Medications in articles were divided into classes using the standard set by the Saudi Pharmaceutical Journal. Many drug classes cause renal insults. The top six classes were pain killers, antibiotics, proton pump inhibitors, antidiabetics, antihyperlipidemics, and agents for erectile dysfunction. Renal insults caused by these agents could vary in severity. Some drugs could cause nephrotoxicity from one dose, while others may only need continuous monitoring. Different populations also operate under different rules, as some people need dose adjustments while others who are medically free of major illnesses do not. A variety of unfavorable outcomes for the kidney could take place, such as acute kidney injury, chronic kidney disease, and end-stage renal disease, and unfortunately, some of these issues could lead to the need for renal replacement therapies. The outcome of this review paper will help multidisciplinary physicians to understand the renal side effects of the most used drug classes in the Kingdom of Saudi Arabia, their destructive mechanisms, and most importantly, the clinical presentations of renal dysfunction in relation to each class. Emphasizing these adverse effects will prevent future unfavorable outcomes, especially in commonly used drugs that are frequently prescribed for different age groups. Moreover, some of these drugs are considered to be over-the-counter medications, which makes them a serious problem that needs to be handled cautiously.
Collapse
|
44
|
PBPK Modeling and Simulation and Therapeutic Drug Monitoring: Possible Ways for Antibiotic Dose Adjustment. Processes (Basel) 2021. [DOI: 10.3390/pr9112087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pharmacokinetics (PK) is a branch of pharmacology present and of vital importance for the research and development (R&D) of new drugs, post-market monitoring, and continued optimizations in clinical contexts. Ultimately, pharmacokinetics can contribute to improving patients’ clinical outcomes, helping enhance the efficacy of treatments, and reducing possible adverse side effects while also contributing to precision medicine. This article discusses the methods used to predict and study human pharmacokinetics and their evolution to the current physiologically based pharmacokinetic (PBPK) modeling and simulation methods. The importance of therapeutic drug monitoring (TDM) and PBPK as valuable tools for Model-Informed Precision Dosing (MIPD) are highlighted, with particular emphasis on antibiotic therapy since dosage adjustment of antibiotics can be vital to ensure successful clinical outcomes and to prevent the spread of resistant bacterial strains.
Collapse
|
45
|
Ragheb SM, Govinden U, Osei Sekyere J. Genetic support of carbapenemases: a One Health systematic review and meta-analysis of current trends in Africa. Ann N Y Acad Sci 2021; 1509:50-73. [PMID: 34753206 DOI: 10.1111/nyas.14703] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/06/2021] [Accepted: 09/26/2021] [Indexed: 11/28/2022]
Abstract
Antimicrobial resistance (AMR) is a public health threat globally. Carbapenems are β-lactam antibiotics used as last-resort agents for treating antibiotic-resistant infections. Mobile genetic elements (MGEs) play an important role in the dissemination and expression of antimicrobial resistance genes (ARGs), including the mobilization of ARGs within and between species. The presence of MGEs around carbapenem-hydrolyzing enzymes, called carbapenemases, in bacterial isolates in Africa is concerning. The association between MGEs and carbapenemases is described herein. Specific plasmid replicons, integrons, transposons, and insertion sequences were found flanking specific and different carbapenemases across the same and different clones and species isolated from humans, animals, and the environment. Notably, similar genetic contexts have been reported in non-African countries, supporting the importance of MGEs in driving the intra- and interclonal and species transmission of carbapenemases in Africa and globally. Technical and budgetary limitations remain challenges for epidemiological analysis of carbapenemases in Africa, as studies undertaken with whole-genome sequencing remained relatively few. Characterization of MGEs in antibiotic-resistant infections can deepen our understanding of carbapenemase epidemiology and facilitate the control of AMR in Africa. Investment in genomic epidemiology will facilitate faster clinical interventions and containment of outbreaks.
Collapse
Affiliation(s)
- Suzan Mohammed Ragheb
- Department of Microbiology and Immunology, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo, Egypt
| | - Usha Govinden
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, KwaZulu-Natal, South Africa
| | - John Osei Sekyere
- Department of Microbiology & Immunology, Indiana University School of Medicine-Northwest, Gary, Indiana.,Department of Dermatology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
46
|
Ferreira A, Martins H, Oliveira JC, Lapa R, Vale N. PBPK Modeling and Simulation of Antibiotics Amikacin, Gentamicin, Tobramycin, and Vancomycin Used in Hospital Practice. Life (Basel) 2021; 11:life11111130. [PMID: 34833005 PMCID: PMC8620954 DOI: 10.3390/life11111130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/22/2022] Open
Abstract
The importance of closely observing patients receiving antibiotic therapy, performing therapeutic drug monitoring (TDM), and regularly adjusting dosing regimens has been extensively demonstrated. Additionally, antibiotic resistance is a contemporary concerningly dangerous issue. Optimizing the use of antibiotics is crucial to ensure treatment efficacy and prevent toxicity caused by overdosing, as well as to combat the prevalence and wide spread of resistant strains. Some antibiotics have been selected and reserved for the treatment of severe infections, including amikacin, gentamicin, tobramycin, and vancomycin. Critically ill patients often require long treatments, hospitalization, and require particular attention regarding TDM and dosing adjustments. As these antibiotics are eliminated by the kidneys, critical deterioration of renal function and toxic effects must be prevented. In this work, clinical data from a Portuguese cohort of 82 inpatients was analyzed and physiologically based pharmacokinetic (PBPK) modeling and simulation was used to study the influence of different therapeutic regimens and parameters as biological sex, body weight, and renal function on the biodistribution and pharmacokinetic (PK) profile of these four antibiotics. Renal function demonstrated the greatest impact on plasma concentration of these antibiotics, and vancomycin had the most considerable accumulation in plasma over time, particularly in patients with impaired renal function. Thus, through a PBPK study, it is possible to understand which pharmacokinetic parameters will have the greatest variation in a given population receiving antibiotic administrations in hospital context.
Collapse
Affiliation(s)
- Abigail Ferreira
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- LAQV/REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
| | - Helena Martins
- Departament of Pathology, Clinical Chemistry Service, Centro Hospitalar Universitário do Porto (CHUP), 4099-001 Porto, Portugal; (H.M.); (J.C.O.)
| | - José Carlos Oliveira
- Departament of Pathology, Clinical Chemistry Service, Centro Hospitalar Universitário do Porto (CHUP), 4099-001 Porto, Portugal; (H.M.); (J.C.O.)
| | - Rui Lapa
- LAQV/REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Correspondence: ; Tel.: +351-220426537
| |
Collapse
|
47
|
Zhang Y, Xu S, Yang Y, Chou SH, He J. A 'time bomb' in the human intestine-the multiple emergence and spread of antibiotic-resistant bacteria. Environ Microbiol 2021; 24:1231-1246. [PMID: 34632679 DOI: 10.1111/1462-2920.15795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 11/30/2022]
Abstract
Antibiotics have a strong killing effect on bacteria and are the first choice for the prevention and treatment of bacterial infectious diseases. Therefore, they have been widely used in the medical field, animal husbandry and planting industry. However, with the massive use of antibiotics, more and more antibiotic-resistant bacteria (ARB) have emerged. Because human intestines are rich in nutrients, have suitable temperature, and are high in bacterial abundance, they can easily become a hotbed for the spread of ARB and antibiotic-resistant genes (ARGs). When opportunistic pathogenic bacteria in the intestine acquire ARGs, the infectious diseases caused by such opportunistic pathogens will become more difficult to treat, or even impossible to cure. Therefore, ARB in the human intestine are like a 'time bomb'. In this review, we discuss the sources of intestinal ARB and the transmission routes of ARGs in the human intestine from the perspective of One Health. Further, we describe various methods to prevent the emergence of ARB and inhibit the spread of ARGs in the human intestine. Finally, we may be able to overcome ARB in the human intestine using an interdisciplinary 'One Health' approach.
Collapse
Affiliation(s)
- Yuling Zhang
- State Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Siyang Xu
- State Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yijun Yang
- State Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Shan-Ho Chou
- State Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jin He
- State Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| |
Collapse
|
48
|
Solomou N, Minella M, Vione D, Psillakis E. UVC-induced degradation of cilastatin in natural water and treated wastewater. CHEMOSPHERE 2021; 280:130668. [PMID: 33962299 DOI: 10.1016/j.chemosphere.2021.130668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
This work reports for the first time the UVC photodegradation of cilastatin, a renal dehydropeptidase inhibitor co-adminstered with the imipenem antibiotic. Initially, solutions of cilastatin at varying concentrations were prepared in ultra-pure water and the direct photolysis of cilastatin was monitored under 254-nm irradiation. Degradation was slower at higher initial cilastatin concentrations, due to absorption saturation. Of the different eluting photoproducts, only one was tentatively identified as oxidized cilastatin bearing a sulfoxide group. UV-254 photolysis occurred faster at lower pH values, because the protonated forms of the molecule (H3A+, H2A) have both higher absorption coefficients and higher photolysis quantum yields than the non-protonated ones (HA-, A2-). The direct photolysis of cilastatin does not involve •OH, as excluded by experiments in which t-butanol was added as •OH scavenger, whereas the presence of humic acids inhibited photolysis due to competition for radiation absorption. The same explanation partially accounts for the observation that the photolysis kinetics of cilastatin was slower in tap water, river water and treated wastewater samples compared to ultra-pure water. Moreover, the direct photolysis quantum yield was also lower in water matrices compared to ultra-pure water. Similar findings reported for triclosan and the herbicide 2-methyl-4-chlorophenoxyacetic acid in previous studies might suggest that the water matrix components could carry out either physical quenching of cilastatin's excited states or back-reduction to cilastatin of the partially oxidized degradation intermediates. Overall, the present results demonstrate that UVC irradiation is a fast and efficient process for the degradation of cilastatin in natural water and treated wastewater.
Collapse
Affiliation(s)
- Nicoleta Solomou
- Laboratory of Aquatic Chemistry, School of Environmental Engineering, Technical University of Crete, GR-73100, Chania, Crete, Greece
| | - Marco Minella
- Department of Chemistry, University of Torino, Via P. Giuria 5, 10125, Torino, Italy
| | - Davide Vione
- Department of Chemistry, University of Torino, Via P. Giuria 5, 10125, Torino, Italy.
| | - Elefteria Psillakis
- Laboratory of Aquatic Chemistry, School of Environmental Engineering, Technical University of Crete, GR-73100, Chania, Crete, Greece.
| |
Collapse
|
49
|
Kim C, Kassu M, Smith KP, Kirby JE, Manetsch R. Pyrazole-Thiazole Core-Containing Analogs Exhibit Adjunctive Activity with Meropenem against Carbapenem-Resistant Enterobacteriaceae (CRE). ChemMedChem 2021; 16:2775-2780. [PMID: 34096189 DOI: 10.1002/cmdc.202100321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Indexed: 01/06/2023]
Abstract
Pyrazole-thiazole core-containing compound KP-40 and 20 novel derivatives were designed and synthesized through traditional SAR analysis. These molecules displayed adjunctive activity with meropenem against Gram-negative bacteria evidenced by a range of fractional inhibitory concentration (FIC=0.5-0.25) and minimum adjunctive concentration (MAC=128-32 μM) values. Of this series of molecules, four compounds displayed notable adjunctive potential, with FIC and MAC values of 0.25 and 32 μM, respectively. Moreover, the solubility of these compounds was improved to an acceptable range. Further analysis using our "in house" permeation and efflux multi parameter optimization (PEMPO) algorithm revealed key physicochemical properties that may be critical for the development of active Gram-negative antibacterials. Taking PEMPO scores into consideration prior to executing synthesis of analogs may be a simple, yet rapid and effective strategy that can be used in conjunction with traditional SAR approaches to aid in the design of potent Gram-negative antibacterials.
Collapse
Affiliation(s)
- Chungsik Kim
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, MA 02115, USA
| | - Mintesinot Kassu
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, MA 02115, USA
| | - Kenneth P Smith
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - James E Kirby
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Roman Manetsch
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, MA 02115, USA
- Department of Pharmaceutical Science, Northeastern University, 360 Huntington Ave., Boston, MA 02115, USA
| |
Collapse
|
50
|
Kell DB. The Transporter-Mediated Cellular Uptake and Efflux of Pharmaceutical Drugs and Biotechnology Products: How and Why Phospholipid Bilayer Transport Is Negligible in Real Biomembranes. Molecules 2021; 26:5629. [PMID: 34577099 PMCID: PMC8470029 DOI: 10.3390/molecules26185629] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Over the years, my colleagues and I have come to realise that the likelihood of pharmaceutical drugs being able to diffuse through whatever unhindered phospholipid bilayer may exist in intact biological membranes in vivo is vanishingly low. This is because (i) most real biomembranes are mostly protein, not lipid, (ii) unlike purely lipid bilayers that can form transient aqueous channels, the high concentrations of proteins serve to stop such activity, (iii) natural evolution long ago selected against transport methods that just let any undesirable products enter a cell, (iv) transporters have now been identified for all kinds of molecules (even water) that were once thought not to require them, (v) many experiments show a massive variation in the uptake of drugs between different cells, tissues, and organisms, that cannot be explained if lipid bilayer transport is significant or if efflux were the only differentiator, and (vi) many experiments that manipulate the expression level of individual transporters as an independent variable demonstrate their role in drug and nutrient uptake (including in cytotoxicity or adverse drug reactions). This makes such transporters valuable both as a means of targeting drugs (not least anti-infectives) to selected cells or tissues and also as drug targets. The same considerations apply to the exploitation of substrate uptake and product efflux transporters in biotechnology. We are also beginning to recognise that transporters are more promiscuous, and antiporter activity is much more widespread, than had been realised, and that such processes are adaptive (i.e., were selected by natural evolution). The purpose of the present review is to summarise the above, and to rehearse and update readers on recent developments. These developments lead us to retain and indeed to strengthen our contention that for transmembrane pharmaceutical drug transport "phospholipid bilayer transport is negligible".
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool L69 7ZB, UK;
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs Lyngby, Denmark
- Mellizyme Biotechnology Ltd., IC1, Liverpool Science Park, Mount Pleasant, Liverpool L3 5TF, UK
| |
Collapse
|