1
|
Sul C, Lewis CV, Posey J, Jordan M, Colon Hidalgo D, Porfilio T, Elajaili H, McCormack G, Burciaga S, Delaney C, Nozik ES. Increased Circulating Extracellular Superoxide Dismutase Attenuates Platelet-Neutrophil Interactions. Am J Respir Cell Mol Biol 2025; 72:653-662. [PMID: 39531632 DOI: 10.1165/rcmb.2024-0292oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024] Open
Abstract
Acute respiratory distress syndrome is a serious illness accounting for 10% of ICU admissions and has a high mortality of 31-45%, with a paucity of pharmacologic treatment options. Dysregulated inflammation and oxidative stress are hallmark features of acute respiratory distress syndrome. We previously showed that transgenic mice expressing a naturally occurring polymorphism of the antioxidant enzyme EC-SOD (extracellular superoxide dismutase) are protected against Staphylococcus aureus pneumonia, acute lung injury, and pulmonary neutrophilia. In this mouse strain, an R213G amino acid substitution leads to lower tissue-binding affinity and elevated alveolar and plasma EC-SOD amounts, although the redox-regulated mechanisms responsible for protection against S. aureus are not yet elucidated. Neutrophils are recruited to the areas of injury and inflammation, in part by activated platelets, which contain multiple redox-sensitive targets. Thus, we hypothesize that increased circulating EC-SOD due to the EC-SOD R213G variant protects against S. aureus pneumonia by reducing platelet activation and subsequent neutrophil recruitment to the lung. We demonstrate that, compared with wild-type mice with S. aureus pneumonia, platelet activation, formation of platelet-neutrophil aggregates, and influx of neutrophils and platelet-neutrophil aggregates into the lung are decreased in the infected R213G mice. Furthermore, pretreatment with a MnTE-2-PyP SOD mimetic protects against S. aureus-induced platelet activation, pulmonary neutrophilia, and acute lung injury. Our data highlight the redox regulation of platelet activation as a driver of S. aureus-induced acute lung injury.
Collapse
Affiliation(s)
- Christina Sul
- Division of Critical Care
- Cardiovascular Pulmonary Research Group, Departments of Pediatrics and Internal Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Caitlin V Lewis
- Division of Critical Care
- Cardiovascular Pulmonary Research Group, Departments of Pediatrics and Internal Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | | | - Daniel Colon Hidalgo
- Division of Pulmonology and Critical Care, Department of Internal Medicine, and
- Cardiovascular Pulmonary Research Group, Departments of Pediatrics and Internal Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | - Hanan Elajaili
- Division of Critical Care
- Cardiovascular Pulmonary Research Group, Departments of Pediatrics and Internal Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | | | - Cassidy Delaney
- Division of Neonatology, Department of Pediatrics
- Cardiovascular Pulmonary Research Group, Departments of Pediatrics and Internal Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Eva S Nozik
- Division of Critical Care
- Cardiovascular Pulmonary Research Group, Departments of Pediatrics and Internal Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
2
|
López-López M, Regueiro U, Bravo S, Pena C, Pastoriza Y, Conde-Amboage M, Hervella P, Lema I. Tear Proteomic Analysis From Offspring of Keratoconus Patients: New Insights Into Corneal Biomechanical Weakness and Disease Risk Stages. Invest Ophthalmol Vis Sci 2025; 66:41. [PMID: 40434347 DOI: 10.1167/iovs.66.5.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2025] Open
Abstract
Purpose To analyze the tear proteome of keratoconus offspring (O-KC) and assess the molecular drivers underlying corneal biomechanical weakening at KC-risk stages. Methods This cross-sectional study included 80 O-KC young participants and 42 controls without a KC family history. Based on the corneal biomechanical behavior, O-KC eyes were classified as low, moderate, and high-risk of KC development (O-KC-LR, O-KC-MR, O-KC-HR). Tear fluid was extracted using Schirmer strips, and the proteomic profile was mapped using LC-MS/MS. Bioinformatic tools were used to determine the dysregulated protein's biological implications. The sensitivity-specificity of each biomarker for differentiating between controls and O-KC groups was determined. Logistic regression analysis (LRA) identified the optimal subset of predictors for modeling each biomechanical condition's probability. Results Twenty-nine percent of O-KC eyes showed moderate/high alterations in corneal biomechanical behavior. Fifteen proteins were dysregulated in the tear samples of O-KC groups compared to controls (P < 0.05). Dysregulated proteins were associated with oxidative stress, cell adhesion, cytoskeleton organization, and mechanotransduction paths such as RhoA, mTOR, or E-cadherin/N-cadherin signaling. LRA determined three protein panels with high sensitivity-specificity for discriminating between the control and O-KC groups with different biomechanical risks. Conclusions This study revealed promising new biomarkers for early detection of KC risk. Oxidative stress and cellular structural alterations seem to begin long before clinical signs and even before the biomechanical alterations can be detected with current clinical tools. Understanding how an initial imbalance of oxidative stress affects cellular mechanobiology is critical to developing new therapeutic strategies for the early treatment of KC.
Collapse
Affiliation(s)
- Maite López-López
- Corneal Neurodegeneration Group (RENOIR), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Departamento de Ciruxía e Especialidades Médico-Cirúrxicas, Facultade de Óptica e Optometría, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Uxía Regueiro
- Corneal Neurodegeneration Group (RENOIR), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Departamento de Ciruxía e Especialidades Médico-Cirúrxicas, Facultade de Óptica e Optometría, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Susana Bravo
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Carmen Pena
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Yaiza Pastoriza
- Corneal Neurodegeneration Group (RENOIR), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Departamento de Ciruxía e Especialidades Médico-Cirúrxicas, Facultade de Óptica e Optometría, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Mercedes Conde-Amboage
- Department of Statistics, Mathematical Analysis and Optimization, Universidade de Santiago de Compostela (USC), Spain
- CITMAga, Santiago de Compostela, Spain
| | - Pablo Hervella
- Neuroimaging and Biotechnology Group (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Isabel Lema
- Corneal Neurodegeneration Group (RENOIR), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Departamento de Ciruxía e Especialidades Médico-Cirúrxicas, Facultade de Óptica e Optometría, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Instituto Galego de Oftalmoloxía (INGO), Complexo Hospitalario Universitario de Santiago (CHUS), Santiago de Compostela, Spain
| |
Collapse
|
3
|
Greco V, Lanza V, Tomasello B, Naletova I, Cairns WRL, Sciuto S, Rizzarelli E. Copper Complexes with New Glycyl-l-histidyl-l-lysine-Hyaluronan Conjugates Show Antioxidant Properties and Osteogenic and Angiogenic Synergistic Effects. Bioconjug Chem 2025; 36:662-675. [PMID: 40123442 DOI: 10.1021/acs.bioconjchem.4c00545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
In recent years, hyaluronic acid (HA) and the natural tripeptide glycyl-l-histidyl-l-lysine (GHK), especially its copper(II) complex (GHK-Cu), individually have been shown to exert helpful properties for bone protection and regeneration. However, they are not strong enough to handle oxidative stress, hydrolytic attack, or environmental conditions. Being aware that conjugation chemistry has recently emerged as an appealing approach for generating new molecular entities capable of preserving the molecular integrity of their moieties or delaying their degradation, herein we present the synthesis of conjugates of HA with GHK (GHK-HA), at different loadings of the tripeptide. GHK-HA binds copper(II) ions and potentiates the chemical and biological properties of the two components in in vitro assays. The results highlight copper's role in promoting the expression and release of certain trophic, angiogenic, and osteogenic factors, including brain-derived neurotrophic factor (BDNF), vascular endothelial growth factor (VEGF), as well as bone morphogenetic protein-2 (BMP-2). The protective and regenerative activities of the metal ion are related to the translocation of its intracellular chaperones Copper Chaperone for Superoxide Dismutase (CCS) and Antioxidant-1 (Atox1) to the nucleus where they act as transcription factors.
Collapse
Affiliation(s)
- Valentina Greco
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Valeria Lanza
- Institute of Crystallography, National Council of Research (CNR), Via P. Gaifami 18, 95126 Catania, Italy
| | - Barbara Tomasello
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Irina Naletova
- Institute of Crystallography, National Council of Research (CNR), Via P. Gaifami 18, 95126 Catania, Italy
| | - Warren R L Cairns
- CNR-Institute of Polar Sciences (CNR-ISP), Via Torino 155, 30172 Venice, Italy
| | - Sebastiano Sciuto
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Enrico Rizzarelli
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
- Institute of Crystallography, National Council of Research (CNR), Via P. Gaifami 18, 95126 Catania, Italy
| |
Collapse
|
4
|
Abo-Zaid MA, Alfattah MA, Elashmawy NF, Hamdi HA, Yatimi BA, Hakami LA, Malhan AA, AlFaifi T, Mashlawi AM, Areshi S, Amin AH, Elazab KM, Ramadan MF, Ismail AH. A comprehensive assessment of smokeless tobacco (Shammah) extract: unraveling the effects on hematological parameters, antioxidant defense mechanisms, and organ health in rats. J Mol Histol 2025; 56:130. [PMID: 40186725 DOI: 10.1007/s10735-025-10403-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 03/19/2025] [Indexed: 04/07/2025]
Abstract
Shammah, also known as smokeless tobacco, is a form of tobacco product consumed without combustion, commonly used in various cultures, particularly in the Middle East and parts of Africa. The experiment was conducted in four groups control male and female, also treated male and female. The administration of Shammah extract induced significant hematological, biochemical, and histopathological changes in both female and male rats. Treated females showed a decrease in total leukocyte count (TLC) to 9900, while treated males increased to 14,525. Lymphocyte percentage decreased by 9.5% in females and 6.02% in males, with neutrophil counts rising by 24.6% and 20.5%, respectively. Eosinophil levels surged by 240% in females and 50.3% in males. Hemoglobin levels decreased by 12.4-13.1% in females, while males showed a non-significant increase to 15.68. Malondialdehyde (MDA) levels increased to 1.57 in females (57% increase) and 1.93 in males (70.8% increase). Antioxidant enzymes decreased, with superoxide dismutase (SOD) at 3.53 (116.2% decrease) in females and 3.90 (45.8% decrease) in males. Kidney function assessments revealed elevated urea levels of 36.35 (84.8% increase) in females and 43.17 (131.2% increase) in males, alongside creatinine levels of 1.28 (75.3% increase) in females and 1.56 (90.2% increase) in males. Histopathological examinations showed untreated livers with a typical structure, while treated livers exhibited infiltrative cell aggregations, venous congestion, hemorrhage, and edema. Treated kidneys showed severe glomerular atrophy and degeneration. Spleens from treated groups had blending of white and red pulp, while brains displayed hemorrhage and distorted neurons in males, and ghost neurons in females. Treated testes exhibited dilated blood vessels, edema, and reduced spermatogenesis, while treated ovaries showed cyst formation and vacuolar degeneration. These findings indicate significant oxidative stress and organ damage associated with Shammah extract exposure.
Collapse
Affiliation(s)
- Mabrouk A Abo-Zaid
- Department of Biology, College of Sciences, Jazan University, P.O. Box 114, 45142, Jazan, Saudi Arabia.
| | | | - Nabila Fathi Elashmawy
- Department of Biology, College of Sciences, Jazan University, P.O. Box 114, 45142, Jazan, Saudi Arabia
| | - Hanan Ahmed Hamdi
- Department of Biology, College of Sciences, Jazan University, P.O. Box 114, 45142, Jazan, Saudi Arabia
| | - Bedor Ali Yatimi
- Department of Biology, College of Sciences, Jazan University, P.O. Box 114, 45142, Jazan, Saudi Arabia
| | - Latifah Abdu Hakami
- Department of Biology, College of Sciences, Jazan University, P.O. Box 114, 45142, Jazan, Saudi Arabia
| | - Amira Ahmed Malhan
- Department of Biology, College of Sciences, Jazan University, P.O. Box 114, 45142, Jazan, Saudi Arabia
| | - Tawfiq AlFaifi
- Department of Biology, College of Sciences, Jazan University, P.O. Box 114, 45142, Jazan, Saudi Arabia
| | - Abadi M Mashlawi
- Department of Biology, College of Sciences, Jazan University, P.O. Box 114, 45142, Jazan, Saudi Arabia
| | - Sultan Areshi
- Department of Biology, College of Sciences, Jazan University, P.O. Box 114, 45142, Jazan, Saudi Arabia
| | - Ali Hassan Amin
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Khalid M Elazab
- Department of Biology, College of Sciences, Jazan University, P.O. Box 114, 45142, Jazan, Saudi Arabia
| | - Mohamed Fawzy Ramadan
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Ahmed Hanafy Ismail
- Department of Biology, College of Sciences, Jazan University, P.O. Box 114, 45142, Jazan, Saudi Arabia.
| |
Collapse
|
5
|
Huang CT, Chen CY, Liang YJ. Effects of Heyndrickxia coagulans on Waterborne Copper Toxicity. Life (Basel) 2025; 15:300. [PMID: 40003709 PMCID: PMC11857749 DOI: 10.3390/life15020300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Copper contamination in coastal water environments poses a significant health risk, and traditional treatments for copper intoxication include gastric lavage, chelation, and hemodialysis. Recent research suggests that probiotics may help mitigate heavy metal toxicity by promoting biosorption in the intestinal tract. To explore this potential, we investigated the protective effects of Heyndrickxia coagulans (H. coagulans) against copper-induced toxicity in rats. After eight weeks of exposure, rats receiving both copper and H. coagulans exhibited significant improvements in renal function, lipid profiles, antioxidant enzyme activity, and histological markers compared to the copper-only group. However, liver function remained largely unchanged, suggesting a more pronounced protective effect on renal health. These findings highlight the potential of H. coagulans as a supportive intervention for mitigating the adverse effects of copper intoxication.
Collapse
Affiliation(s)
- Chung-Tsui Huang
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan;
| | - Chao-Yi Chen
- Graduate Institute of Applied Science and Engineering, Fu-Jen Catholic University, New Taipei City 242, Taiwan;
| | - Yao-Jen Liang
- Graduate Institute of Applied Science and Engineering, Fu-Jen Catholic University, New Taipei City 242, Taiwan;
- Department and Institute of Life Science, Fu-Jen Catholic University, New Taipei City 242, Taiwan
| |
Collapse
|
6
|
Summer K, Guo Q, Liu L, Barkla B, Giles S, Benkendorff K. Antimicrobial proteins from oyster hemolymph improve the efficacy of conventional antibiotics. PLoS One 2025; 20:e0312305. [PMID: 39836702 PMCID: PMC11750097 DOI: 10.1371/journal.pone.0312305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 09/11/2024] [Indexed: 01/23/2025] Open
Abstract
Discovering new antibiotics and increasing the efficacy of existing antibiotics are priorities to address antimicrobial resistance. Antimicrobial proteins and peptides (AMPPs) are considered among the most promising antibiotic alternatives and complementary therapies. Here, we build upon previous work investigating the antibacterial activity of a semi-purified hemolymph protein extract (HPE) of the Australian oyster Saccostrea glomerata. HPE showed antimicrobial-biofilm inhibitory activity toward laboratory and clinical strains of Streptococcus pneumoniae and Streptococcus pyogenes at 4.4 and 24.1 μg/mL total protein, respectively. In combination assays, the effectiveness of conventional antibiotics (ampicillin, gentamicin, trimethoprim and ciprofloxacin) was improved between 2 to 32-fold in the presence of HPE (1-12 μg/mL) against a range of clinically important bacteria including Streptococcus spp., Pseudomonas aeruginosa, Moraxella catarrhalis, Klebsiella pneumoniae and Staphylococcus aureus. Effective HPE concentrations are comparable to AMPPs currently approved for use or in clinical trials pipelines. Proteomics analysis of HPE identified a number of proteins including abundant known AMPPs. It was non-toxic to A549 human lung cells up to 205 μg/mL, demonstrating safety well above effective concentrations. Activity was retained with storage at -80°C and ambient laboratory temperature (~24°C), but declined after treatment at either 37°C or 60°C (1 h). This study is in agreement with growing evidence that AMPPs show specificity and a high capacity for synergism with antibiotics. The discovery of HPE provides great opportunities for both pharmaceutical and aquaculture industry development.
Collapse
Affiliation(s)
- Kate Summer
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, Australia
| | - Qi Guo
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, Australia
| | - Lei Liu
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, Australia
| | - Bronwyn Barkla
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, Australia
| | - Sarah Giles
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | - Kirsten Benkendorff
- National Marine Science Centre, Southern Cross University, Coffs Harbour, NSW, Australia
| |
Collapse
|
7
|
Li R, Cho SH. Fish Meal Replacement by Chicken By-Product Meal in Diet: Impacts on Growth and Feed Availability of Juvenile Rockfish ( Sebastes schlegeli), and Economical Analysis. Animals (Basel) 2025; 15:80. [PMID: 39795023 PMCID: PMC11718779 DOI: 10.3390/ani15010080] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/24/2024] [Accepted: 10/04/2024] [Indexed: 01/13/2025] Open
Abstract
A 56-day feeding experiment was carried out to evaluate the effects of substituting fish meal (FM) with chicken by-product meal (CBM) in diets on the growth and feed utilization of rockfish (Sebastes schlegeli). Six experimental diets were formulated to be isonitrogenous and isolipidic. The control (Con) diet included 55% FM. In the Con diet, 10%, 20%, 30%, 40%, and 50% of FM was replaced with CBM, named as the CBM10, CBM20, CBM30, CBM40, and CBM50 diets, respectively. A total of 540 juvenile fish were distributed into 18 tanks (30 fish per tank and 3 tanks per diet) and fed to apparent satiation two times daily for 56 days. The weight gain and specific growth rate of rockfish fed the CBM10 and CBM20 diets were comparable to rockfish fed the Con diet. The feed consumption of rockfish fed the Con and CBM10 diets was significantly (p < 0.001) higher than that of fish fed all other diets, except for the CBM20 diet. However, protein retention, biometric indices, chemical composition, amino acid profiles, and plasma and serum parameters of rockfish were not significantly influenced by dietary FM substitution with CBM. The Con, CBM10, and CBM20 diets showed superior (p < 0.001) economic profit index (EPI) compared to the CBM30, CBM40, and CBM50 diets. Conclusively, FM up to 20% could be substituted by CBM in diets without impairing growth, feed availability, chemical composition, amino acid profiles, and blood parameters of rockfish grown from 2.5 g to 12.5 g. However, the long-term effects of CBM substitution or the potential use of combined CBM and other alternative protein sources for FM in rockfish diets are needed in future.
Collapse
Affiliation(s)
- Ran Li
- Xingzhi College, Zhejiang Normal University, Jinhua 321004, China;
| | - Sung Hwoan Cho
- Division of Convergence on Marine Science, Korea Maritime and Ocean University, Busan 49112, Republic of Korea
| |
Collapse
|
8
|
Dutczak R, Pietrucha-Dutczak M. Effects of Selected Antioxidants on Electroretinography in Rodent Diabetic Retinopathy. Antioxidants (Basel) 2024; 14:21. [PMID: 39857355 PMCID: PMC11762402 DOI: 10.3390/antiox14010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Electroretinography (ERG) is a non-invasive technique for evaluating the retinal function in various ocular diseases. Its results are useful for diagnosing ocular disorders and assessing disease progression or treatment effectiveness. Since numerous studies are based on animal models, validating the ERG results from animals is pivotal. The first part of this paper presents basic information on the types of ERG tests used on rodents, and the second part describes the recorded functional changes in rodents' retinas when various antioxidant treatments for diabetic retinopathy were used. Our study showed that among the tests for diabetic retinopathy diagnosis in rodents, full-field ERG is accurate and the most commonly used, and pattern ERG and the photopic negative response of the flash ERG tests are rarely chosen. Furthermore, antioxidants generally protect retinas from functional losses. Their beneficial influence is expressed in the preserved amplitudes of the a- and b-waves and the oscillatory potentials. However, prolonging the drug exposure showed that the antioxidants could delay the onset of adverse changes but did not stop them. Future studies should concentrate on how long-term antioxidant supplementation affects the retinal function.
Collapse
Affiliation(s)
| | - Marita Pietrucha-Dutczak
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland;
| |
Collapse
|
9
|
Li P, Alenazi KKK, Dally J, Woods EL, Waddington RJ, Moseley R. Role of oxidative stress in impaired type II diabetic bone repair: scope for antioxidant therapy intervention? FRONTIERS IN DENTAL MEDICINE 2024; 5:1464009. [PMID: 39917650 PMCID: PMC11797775 DOI: 10.3389/fdmed.2024.1464009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/02/2024] [Indexed: 02/09/2025] Open
Abstract
Impaired bone healing is a significant complication observed in individuals with type 2 diabetes mellitus (T2DM), leading to prolonged recovery, increased risk of complications, impaired quality of life, and increased risk of patient morbidity. Oxidative stress, resulting from an imbalance between the generation of reactive oxygen species (ROS) and cellular/tissue antioxidant defence mechanisms, has been identified as a critical contributor to the pathogenesis of impaired bone healing in T2DM. Antioxidants have shown promise in mitigating oxidative stress and promoting bone repair, particularly non-enzymic antioxidant entities. This comprehensive narrative review aims to explore the underlying mechanisms and intricate relationship between oxidative stress, impaired bone healing and T2DM, with a specific focus on the current preclinical and clinical evidence advocating the potential of antioxidant therapeutic interventions in improving bone healing outcomes in individuals with T2DM. From the ever-emerging evidence available, it is apparent that exogenously supplemented antioxidants, especially non-enzymic antioxidants, can ameliorate the detrimental effects of oxidative stress, inflammation, and impaired cellular function on bone healing processes during uncontrolled hyperglycaemia; and therefore, hold considerable promise as novel efficacious therapeutic entities. However, despite such conclusions, several important gaps in our knowledge remain to be addressed, including studies involving more sophisticated enzymic antioxidant-based delivery systems, further mechanistic studies into how these antioxidants exert their desirable reparative effects; and more extensive clinical trial studies into the optimisation of antioxidant therapy dosing, frequency, duration and their subsequent biodistribution and bioavailability. By enhancing our understanding of such crucial issues, we can fully exploit the oxidative stress-neutralising properties of these antioxidants to develop effective antioxidant interventions to mitigate impaired bone healing and reduce the associated complications in such T2DM patient populations.
Collapse
Affiliation(s)
- Pui Li
- Disease Mechanisms Group, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Kuraym Khalid Kuraym Alenazi
- Disease Mechanisms Group, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Jordanna Dally
- Disease Mechanisms Group, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Emma Louise Woods
- Disease Mechanisms Group, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Rachel Jane Waddington
- Biomaterials Group, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Ryan Moseley
- Disease Mechanisms Group, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
10
|
Liu X, Bian DD, Jiang Q, Jiang JJ, Jin Y, Chen FX, Zhang DZ, Liu QN, Tang BP, Dai LS. Insights into chlorantraniliprole exposure via activating cytochrome P450-mediated xenobiotic metabolism pathway in the Procambarus clarkii: Identification of P450 genes involved in detoxification. Int J Biol Macromol 2024; 277:134231. [PMID: 39074699 DOI: 10.1016/j.ijbiomac.2024.134231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
To investigate the impact of chlorantraniliprole on Procambarus clarkii, acute toxicity tests were performed. Results indicated that 96 h post-exposure to chlorantraniliprole (60 mg/L) led to the separation of the hepatopancreas basement membrane, causing cell swelling, rupture, and vacuolation. Moreover, acid phosphatase (ACP) and alkaline phosphatase (AKP) activities exhibited divergent trends across four concentrations of chlorantraniliprole (0, 30, 60, and 90 mg/L). Hydrogen peroxide (H2O2) and catalase (CAT) levels significantly increased, while total superoxide dismutase (T-SOD) and malonaldehyde (MDA) activities decreased, indicating oxidative stress in the hepatopancreas. A total of 276 differentially expressed genes (DEGs) were identified, with 204 up-regulated and 72 down-regulated. Out of these, 114 DEGs were successfully annotated and classified into 99 pathways, with a primary focus on the cytochrome P450-mediated xenobiotic metabolism pathway. The DEGs enriched in this pathway, along with transcriptome data, were validated using quantitative-polymerase chain reaction. This study enhances the transcriptome database of P. clarkii and provides fundamental insights into its immune defense and antioxidant mechanisms. Additionally, it lays a theoretical foundation for future research on disease prevention in P. clarkii within rice-shrimp culture systems.
Collapse
Affiliation(s)
- Xin Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, College of Aquaculture and Life Science, Shanghai Ocean University, Shanghai 201306, People's Republic of China
| | - Dan-Dan Bian
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China; Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, College of Life Sciences, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Qi Jiang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Jun-Jie Jiang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, College of Aquaculture and Life Science, Shanghai Ocean University, Shanghai 201306, People's Republic of China
| | - Ye Jin
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Fan-Xing Chen
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Dai-Zhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China.
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China.
| | - Li-Shang Dai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China.
| |
Collapse
|
11
|
Yan Y, Ye X, Huang C, Wu J, Liu Y, Zheng P, Shen C, Bai Z, Tingming S. Anoectochilus roxburghii polysaccharide reduces D-GalN/LPS-induced acute liver injury by regulating the activation of multiple inflammasomes. J Pharm Pharmacol 2024; 76:1212-1224. [PMID: 38985664 DOI: 10.1093/jpp/rgae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 06/02/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Acute liver injury (ALI) is a serious syndrome with a high mortality rate due to viral infection, toxic exposure, and autoimmunity, and its severity can range from mildly elevated liver enzymes to severe liver failure. Activation of the nod-like receptor pyrin domain-containing 3 (NLRP3) inflammasome is closely associated with the development of ALI, and the search for an inhibitor targeting this pathway may be a novel therapeutic option. Anoectochilus roxburghii polysaccharide (ARP) is a biologically active ingredient extracted from Anoectochilus roxburghii with immunomodulatory, antioxidant, and anti-inflammatory bioactivities and pharmacological effects. In this study, we focused on D-galactosamine (D-GalN)/lipopolysaccharide (LPS)-induced acute liver injury by ARP through inhibition of NLRP3 inflammasome. METHODS An inflammasome activation model was established in bone marrow-derived macrophages (BMDMs) to investigate the effects of ARP on caspase-1 cleavage, IL-1β secretion, and ASC oligomerization in inflammasomes under different agonists. We used the D-GalN/LPS-induced acute liver injury model in mice, intraperitoneally injected ARP or MCC950, and collected liver tissues, serum, and intraperitoneal lavage fluid for pathological and biochemical indexes. RESULTS ARP effectively inhibited the activation of the NLRP3 inflammasome and had an inhibitory effect on non-classical NLRP3, AIM2, and NLRC4 inflammasomes. It also effectively inhibited the oligomerization of apoptosis-associated speck-like protein (ASC) from a variety of inflammatory vesicles. Meanwhile, ARP has good therapeutic effects on acute liver injury induced by D-GaIN/LPS. CONCLUSION The inhibitory effect of ARP on a wide range of inflammasomes, as well as its excellent protection against acute liver injury, suggests that ARP may be a candidate for acute liver injury.
Collapse
Affiliation(s)
- Yulu Yan
- Ningde Hospital of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fujian, 352100, China
| | - Xiqi Ye
- Ningde Hospital of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fujian, 352100, China
| | - Chunqing Huang
- Ningde Hospital of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fujian, 352100, China
| | - Junjun Wu
- Ningde Hospital of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fujian, 352100, China
| | - Yunbiao Liu
- Pingnan County Hospital of Traditional Chinese Medicine, Ningde City, Fujian Province, 352300, China
| | - Pingping Zheng
- Shouning County Hospital of Traditional Chinese Medicine, Ningde City, Fujian Province, 355500, China
| | - Congqi Shen
- Shanxi University of Traditional Chinese Medicine, 030619,China
| | - Zhaofang Bai
- China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Shen Tingming
- Ningde Hospital of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fujian, 352100, China
| |
Collapse
|
12
|
Wang F, Wang RY, Zhong DB, Zhao P, Xia QY. Highly efficient expression of human extracellular superoxide dismutase (rhEcSOD) with ultraviolet-B-induced damage-resistance activity in transgenic silkworm cocoons. INSECT SCIENCE 2024; 31:1150-1164. [PMID: 38010045 DOI: 10.1111/1744-7917.13289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/20/2023] [Accepted: 09/24/2023] [Indexed: 11/29/2023]
Abstract
Extracellular superoxide dismutase (EcSOD) protects tissues from oxidative stress, and thus is considered as a therapeutic agent for many diseases such as atherosclerosis, hypertension, and cancer. However, cost-effective production of bioactive recombinant human EcSOD (rhEcSOD) remains a challenge. Herein, we developed an efficient strategy for producing active rhEcSOD by transgenic silkworms. rhEcSOD was successfully synthesized as homodimers and homotetramers in the middle silk gland and spun into the cocoons with a concentration of 9.48 ± 0.21 mg/g. Purification of rhEcSOD from the cocoons could be conveniently achieved with a purity of 99.50% and a yield of 3.5 ± 0.5 mg/g. Additionally, N-glycosylation at the only site of N89 in rhEcSOD with 10 types were identified. The purified rhEcSOD gained the potent enzymatic activity of 4 162 ± 293 U/mg after Cu/Zn ions incorporation. More importantly, rhEcSOD was capable of penetrating and accumulating in the nuclei of cells to maintain cell morphology and attenuate ultraviolet B-induced cell apoptosis by eliminating reactive oxygen species and inhibiting the C-Jun N-terminal kinase signaling pathway. These results demonstrated that the transgenic silkworm could successfully produce rhEcSOD with enzymatic and biological activities for biomedical applications.
Collapse
Affiliation(s)
- Feng Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Ri-Yuan Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - De-Bin Zhong
- Century Legend Biotechnology Research Institute (Chongqing) Co., Ltd., Chongqing, China
| | - Ping Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Qing-You Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| |
Collapse
|
13
|
Emmanuel NS, Yusuf T, Bako IG, Malgwi IS, Eze ED, Ali Z, Aliyu M. Hematological changes, oxidative stress assessment, and dysregulation of aquaporin-3 channel, prolactin, and oxytocin receptors in kidneys of lactating Wistar rats treated with monosodium glutamate. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6213-6229. [PMID: 38446217 DOI: 10.1007/s00210-024-03008-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 02/12/2024] [Indexed: 03/07/2024]
Abstract
High consumption of locally produced delicacies could expose nursing mothers to high monosodium glutamate (MSG) levels, frequently used as a necessary condiment in low-income countries. Thus, this study evaluated some novel preliminary changes in renal hormonal receptors, the aquaporin-3 channel, oxidative stress markers, and hematological indices induced by monosodium glutamate in lactating rats. Post-parturition, twenty-four (24) lactating Wistar rats were divided into four (4) groups of six rats each (n = 6). Oral administration of distilled water and MSG started three (3) days postpartum as follows: group 1: distilled water (1 ml/kg BW), group 2: MSG (925 mg/kg BW), group 3: MSG (1850 mg/kg BW), and group 4: MSG (3700 mg/kg BW). At the end of the experiment, which lasted fourteen (14) days, animals were sacrificed and samples of blood and tissues were obtained for biochemical analysis. MSG administration significantly (p < 0.05) increased ROS and MDA, with a significant (p < 0.05) decrease in kidney antioxidants. Serum creatinine, total, conjugated, and unconjugated bilirubin significantly (p < 0.05) increased with MSG administration. The prolactin receptor was significantly reduced (p < 0.05), while the oxytocin receptor and aquaporin-3 channel were significantly (p < 0.05) increased in the MSG-administered groups. There were significant (p < 0.05) changes in the hematological indices of the MSG-administered animals. Thus, the findings of this study suggest that high MSG consumption causes hematological alterations and may alter renal function via increased ROS production and dysregulation of the AQP-3 channel, prolactin, and oxytocin receptors in the kidneys of lactating Wistar rats.
Collapse
Affiliation(s)
- Nachamada Solomon Emmanuel
- Department of Human Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria, Kaduna, Nigeria.
| | - Tanko Yusuf
- Department of Human Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria, Kaduna, Nigeria
| | - Ibrahim Gaya Bako
- Department of Human Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria, Kaduna, Nigeria
| | - Ibrahim Samaila Malgwi
- Department of Human Physiology, College of Medical Sciences, University of Maiduguri, Maiduguri, Borno, Nigeria
| | - Ejike Daniel Eze
- Department of Physiology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye Campus, Huye, Rwanda
| | - Zubairu Ali
- Department of Human Physiology, College of Medical Sciences, Abubakar Tafawa Balewa University, Bauchi, Nigeria
| | - Mohammed Aliyu
- Department of Human Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria, Kaduna, Nigeria
| |
Collapse
|
14
|
Guo Z, Li C, Liang H, Zhu J. Identification and functional characterization of a superoxide dismutase (CuZnSOD) from Pinctada fucata martensii. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109599. [PMID: 38701990 DOI: 10.1016/j.fsi.2024.109599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Copper/zinc superoxide dismutase (Cu/Zn-SOD) can effectively eliminate reactive oxygen species (ROS),avoid damage from O2 to the body, and maintain O2 balance. In this study, multi-step high-performance liquid chromatography (HPLC), combined with Mass Spectrometry (MS), was used to isolate and identify Cu/Zn-SOD from the serum of Pinctada fucata martensii (P. f. martensii) and was designated as PmECSOD. With a length of 1864 bp and an open reading frame (ORF) of 1422 bp, the cDNA encodes a 473 amino acid protein. The PmECSOD transcript was detected in multiple tissues by quantitative real-time PCR (qRT-PCR), with its highest expression level being in the gills. Additionally, the temporal expression of PmECSOD mRNA in the hemolymph was highest at 48 h after in vivo stimulation with Escherichia coli and Micrococcus luteus. The results from this study provide a valuable base for further exploration of molluscan innate immunity and immune response.
Collapse
Affiliation(s)
- Zhijie Guo
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Chaojie Li
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Haiying Liang
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, Guangdong, 524088, China.
| | - Jiaping Zhu
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| |
Collapse
|
15
|
Li T, Zheng PH, Zhang XX, Zhang ZL, Li JT, Li JJ, Xu JR, Wang DM, Xian JA, Guo H, Lu YP. Effects of dietary astaxanthin on growth performance, muscle composition, non-specific immunity, gene expression, and ammonia resistance of juvenile ivory shell (Babylonia areolate). FISH & SHELLFISH IMMUNOLOGY 2024; 145:109363. [PMID: 38185392 DOI: 10.1016/j.fsi.2024.109363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/09/2024]
Abstract
Astaxanthin is one of the important immunopotentators in aquaculture. However, little is known about the physiological changes and stress resistance effects of astaxanthin in marine gastropods. In this study, the effects of different astaxanthin concentrations (0, 25, 50, 75, and 100 mg/kg) on the growth, muscle composition, immune function, and resistance to ammonia stress in Babylonia areolata were investigated after three months of rearing. With the increase in astaxanthin content, the weight gain rate (WGR), specific growth rate (SGR), and survival rate (SR) of B. areolata showed an increasing trend. The 75-100 mg/kg group was significantly higher than the control group (0 mg/kg). There was no significant difference in the flesh shell ratio (FSR), viscerosomatic index (VSI), and soft tissue index (STI) of the experimental groups. Astaxanthin (75 mg/kg) significantly increased muscle crude protein content and increased hepatopancreas alkaline phosphatase (AKP), superoxide dismutase (SOD), and catalase (CAT) activity. Astaxanthin (75-100 mg/kg) significantly increased the total antioxidant capacity (T-AOC) and acid phosphatase (ACP) of the hepatopancreas and decreased the malondialdehyde (MDA) content of B. areolata. Astaxanthin significantly induced the expression levels of functional genes, such as SOD, Cu/ZnSOD, ferritin, ACP, and CYC in hepatopancreas and increased the survival rate of B. areolata under ammonia stress. The addition of 75-100 mg/kg astaxanthin to the feed improved the growth performance, muscle composition, immune function, and resistance to ammonia stress of B. areolata.
Collapse
Affiliation(s)
- Teng Li
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, People's Republic of China; Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, People's Republic of China
| | - Pei-Hua Zheng
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, People's Republic of China
| | - Xiu-Xia Zhang
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, People's Republic of China
| | - Ze-Long Zhang
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, People's Republic of China
| | - Jun-Tao Li
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, People's Republic of China
| | - Jia-Jun Li
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, People's Republic of China
| | - Jia-Rui Xu
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, People's Republic of China
| | - Dong-Mei Wang
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, People's Republic of China
| | - Jian-An Xian
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, People's Republic of China; Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, People's Republic of China.
| | - Hui Guo
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, People's Republic of China.
| | - Yao-Peng Lu
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, People's Republic of China.
| |
Collapse
|
16
|
Arnhold J. Inflammation-Associated Cytotoxic Agents in Tumorigenesis. Cancers (Basel) 2023; 16:81. [PMID: 38201509 PMCID: PMC10778456 DOI: 10.3390/cancers16010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Chronic inflammatory processes are related to all stages of tumorigenesis. As inflammation is closely associated with the activation and release of different cytotoxic agents, the interplay between cytotoxic agents and antagonizing principles is highlighted in this review to address the question of how tumor cells overcome the enhanced values of cytotoxic agents in tumors. In tumor cells, the enhanced formation of mitochondrial-derived reactive species and elevated values of iron ions and free heme are antagonized by an overexpression of enzymes and proteins, contributing to the antioxidative defense and maintenance of redox homeostasis. Through these mechanisms, tumor cells can even survive additional stress caused by radio- and chemotherapy. Through the secretion of active agents from tumor cells, immune cells are suppressed in the tumor microenvironment and an enhanced formation of extracellular matrix components is induced. Different oxidant- and protease-based cytotoxic agents are involved in tumor-mediated immunosuppression, tumor growth, tumor cell invasion, and metastasis. Considering the special metabolic conditions in tumors, the main focus here was directed on the disturbed balance between the cytotoxic agents and protective mechanisms in late-stage tumors. This knowledge is mandatory for the implementation of novel anti-cancerous therapeutic approaches.
Collapse
Affiliation(s)
- Jürgen Arnhold
- Institute of Medical Physics and Biophysics, Medical Faculty, Leipzig University, Härtelstr. 16-18, 04107 Leipzig, Germany
| |
Collapse
|
17
|
Zou S, Jie H, Han X, Wang J. The role of neutrophil extracellular traps in sepsis and sepsis-related acute lung injury. Int Immunopharmacol 2023; 124:110436. [PMID: 37688916 DOI: 10.1016/j.intimp.2023.110436] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 09/11/2023]
Abstract
Neutrophils release neutrophil extracellular traps (NETs) to trap pathogenic microorganisms. NETs are involved in the inflammatory response and bacterial killing and clearance. However, their excessive activation can lead to an inflammatory storm in the body, which may damage tissues and cause organ dysfunction. Organ dysfunction is the main pathophysiological cause of sepsis and also a cause of the high mortality rate in sepsis. Acute lung injury caused by sepsis accounts for the highest proportion of organ damage in sepsis. NET formation can lead to the development of sepsis because by promoting the release of interleukin-1 beta, interleukin-8, and tumor necrosis factor-alpha, thereby accelerating acute lung injury. In this review, we describe the critical role of NETs in sepsis-associated acute lung injury and review the current knowledge and novel therapeutic approaches.
Collapse
Affiliation(s)
- Shujing Zou
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| | - Hongyu Jie
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| | - Xinai Han
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| | - Jinghong Wang
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
18
|
Lohana P, Suryaprawira A, Woods EL, Dally J, Gait-Carr E, Alaidaroos NYA, Heard CM, Lee KY, Ruge F, Farrier JN, Enoch S, Caley MP, Peake MA, Davies LC, Giles PJ, Thomas DW, Stephens P, Moseley R. Role of Enzymic Antioxidants in Mediating Oxidative Stress and Contrasting Wound Healing Capabilities in Oral Mucosal/Skin Fibroblasts and Tissues. Antioxidants (Basel) 2023; 12:1374. [PMID: 37507914 PMCID: PMC10375950 DOI: 10.3390/antiox12071374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Unlike skin, oral mucosal wounds are characterized by rapid healing and minimal scarring, attributable to the "enhanced" healing properties of oral mucosal fibroblasts (OMFs). As oxidative stress is increasingly implicated in regulating wound healing outcomes, this study compared oxidative stress biomarker and enzymic antioxidant profiles between patient-matched oral mucosal/skin tissues and OMFs/skin fibroblasts (SFs) to determine whether superior oral mucosal antioxidant capabilities and reduced oxidative stress contributed to these preferential healing properties. Oral mucosa and skin exhibited similar patterns of oxidative protein damage and lipid peroxidation, localized within the lamina propria/dermis and oral/skin epithelia, respectively. SOD1, SOD2, SOD3 and catalase were primarily localized within epithelial tissues overall. However, SOD3 was also widespread within the lamina propria localized to OMFs, vasculature and the extracellular matrix. OMFs were further identified as being more resistant to reactive oxygen species (ROS) generation and oxidative DNA/protein damage than SFs. Despite histological evaluation suggesting that oral mucosa possessed higher SOD3 expression, this was not fully substantiated for all OMFs examined due to inter-patient donor variability. Such findings suggest that enzymic antioxidants have limited roles in mediating privileged wound healing responses in OMFs, implying that other non-enzymic antioxidants could be involved in protecting OMFs from oxidative stress overall.
Collapse
Affiliation(s)
- Parkash Lohana
- Disease Mechanisms Group, Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
- Canniesburn Plastic Surgery Unit, Glasgow Royal Infirmary, Glasgow G4 0SF, UK
| | - Albert Suryaprawira
- Disease Mechanisms Group, Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
| | - Emma L Woods
- Disease Mechanisms Group, Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
| | - Jordanna Dally
- Disease Mechanisms Group, Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
| | - Edward Gait-Carr
- Disease Mechanisms Group, Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
| | - Nadia Y A Alaidaroos
- Disease Mechanisms Group, Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
| | - Charles M Heard
- School of Pharmacy and Pharmaceutical Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF10 3NB, UK
| | - Kwok Y Lee
- Disease Mechanisms Group, Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
| | - Fiona Ruge
- Disease Mechanisms Group, Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Jeremy N Farrier
- Disease Mechanisms Group, Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
- Oral and Maxilliofacial Surgery, Gloucestershire Royal General Hospital, Gloucester GL1 3NN, UK
| | - Stuart Enoch
- Disease Mechanisms Group, Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
- Department of Burns and Plastic Surgery, University Hospital of South Manchester, Manchester M23 9LT, UK
| | - Matthew P Caley
- Disease Mechanisms Group, Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
- Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Matthew A Peake
- Disease Mechanisms Group, Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
- School of Biology, Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
| | - Lindsay C Davies
- Disease Mechanisms Group, Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, Biomedicum, 17165 Solna, Sweden
| | - Peter J Giles
- Division of Medical Genetics, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XN, UK
| | - David W Thomas
- Advanced Therapies Group, Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
| | - Phil Stephens
- Advanced Therapies Group, Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
| | - Ryan Moseley
- Disease Mechanisms Group, Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
| |
Collapse
|
19
|
Mori T, Machida K, Kudou Y, Kimishima M, Sassa K, Goto-Inoue N, Minei R, Ogura A, Kobayashi Y, Kamiya K, Nakaya D, Yamamoto N, Kashiwagi A, Kashiwagi K. Novel predator-induced phenotypic plasticity by hemoglobin and physiological changes in the brain of Xenopus tropicalis. Front Physiol 2023; 14:1178869. [PMID: 37346489 PMCID: PMC10279953 DOI: 10.3389/fphys.2023.1178869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/22/2023] [Indexed: 06/23/2023] Open
Abstract
Organisms adapt to changes in their environment to survive. The emergence of predators is an example of environmental change, and organisms try to change their external phenotypic systems and physiological mechanisms to adapt to such changes. In general, prey exhibit different phenotypes to predators owing to historically long-term prey-predator interactions. However, when presented with a novel predator, the extent and rate of phenotypic plasticity in prey are largely unknown. Therefore, exploring the physiological adaptive response of organisms to novel predators is a crucial topic in physiology and evolutionary biology. Counterintuitively, Xenopus tropicalis tadpoles do not exhibit distinct external phenotypes when exposed to new predation threats. Accordingly, we examined the brains of X. tropicalis tadpoles to understand their response to novel predation pressure in the absence of apparent external morphological adaptations. Principal component analysis of fifteen external morphological parameters showed that each external morphological site varied nonlinearly with predator exposure time. However, the overall percentage change in principal components during the predation threat (24 h) was shown to significantly (p < 0.05) alter tadpole morphology compared with that during control or 5-day out treatment (5 days of exposure to predation followed by 5 days of no exposure). However, the adaptive strategy of the altered sites was unknown because the changes were not specific to a particular site but were rather nonlinear in various sites. Therefore, RNA-seq, metabolomic, Ingenuity Pathway Analysis, and Kyoto Encyclopedia of Genes and Genomes analyses were performed on the entire brain to investigate physiological changes in the brain, finding that glycolysis-driven ATP production was enhanced and ß-oxidation and the tricarboxylic acid cycle were downregulated in response to predation stress. Superoxide dismutase was upregulated after 6 h of exposure to new predation pressure, and radical production was reduced. Hemoglobin was also increased in the brain, forming oxyhemoglobin, which is known to scavenge hydroxyl radicals in the midbrain and hindbrain. These suggest that X. tropicalis tadpoles do not develop external morphological adaptations that are positively correlated with predation pressure, such as tail elongation, in response to novel predators; however, they improve their brain functionality when exposed to a novel predator.
Collapse
Affiliation(s)
- Tsukasa Mori
- Nihon University College of Bioresource Sciences, Fujisawa, Japan
| | - Kazumasa Machida
- Nihon University College of Bioresource Sciences, Fujisawa, Japan
| | - Yuki Kudou
- Nihon University College of Bioresource Sciences, Fujisawa, Japan
| | - Masaya Kimishima
- Nihon University College of Bioresource Sciences, Fujisawa, Japan
| | - Kaito Sassa
- Nihon University College of Bioresource Sciences, Fujisawa, Japan
| | - Naoko Goto-Inoue
- Nihon University College of Bioresource Sciences, Fujisawa, Japan
| | - Ryuhei Minei
- Department of Computer Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Japan
| | - Atsushi Ogura
- Department of Computer Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Japan
| | | | | | | | - Naoyuki Yamamoto
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | | | - Keiko Kashiwagi
- Hiroshima University Amphibian Research Center, Hiroshima, Japan
| |
Collapse
|
20
|
Tian J, Yang Y, Du X, Xu W, Zhu B, Huang Y, Ye Y, Zhao Y, Li Y. Effects of dietary soluble β-1,3-glucan on the growth performance, antioxidant status, and immune response of the river prawn (Macrobrachium nipponense). FISH & SHELLFISH IMMUNOLOGY 2023; 138:108848. [PMID: 37230308 DOI: 10.1016/j.fsi.2023.108848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 05/27/2023]
Abstract
The effects of dietary β-1,3-glucan on the growth performance, body composition, hepatopancreas tissue structure, antioxidant activities, and immune response of the river prawn (Macrobrachium nipponense) were investigated. In total, 900 juvenile prawns were fed one of five diets with different contents of β-1,3-glucan (0%, 0.1%, 0.2%, and 1.0%) or 0.2% curdlan for 6 weeks. The growth rate, weight gain rate, specific growth rate, specific weight gain rate, condition factor, and hepatosomatic index of juvenile prawns fed 0.2% β-1,3-glucan were significantly higher than those fed 0% β-1,3-glucan and 0.2% curdlan (p < 0.05). The whole-body crude lipid content of prawns supplemented with curdlan and β-1,3-glucan was significantly higher than that of the control group (p < 0.05). The antioxidant and immune enzyme activities of superoxide dismutase (SOD), total antioxidant capacity (T-AOC), catalase (CAT), lysozyme (LZM), phenoloxidase (PO), acid phosphatase (ACP), and alkaline phosphatase (AKP) in the hepatopancreas of juvenile prawns fed 0.2% β-1,3-glucan were significantly higher than those of the control and 0.2% curdlan groups (p < 0.05), and tended to increase and then decrease with increasing dietary β-1,3-glucan. The highest malondialdehyde (MDA) content was observed in juvenile prawns without β-1,3-glucan supplementation. The results of real-time quantitative PCR indicated that dietary β-1,3-glucan promoted expression of antioxidant and immune-related genes. Binomial fit analysis of weight gain rate and specific weight gain rate showed that the optimum β-1,3-glucan requirement of juvenile prawns was 0.550%-0.553%. We found that suitable dietary β-1,3-glucan improved juvenile prawns growth performance, antioxidant capacity, and non-specific immunity, which provide reference for shrimp healthy culture.
Collapse
Affiliation(s)
- Jiangtao Tian
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Ying Yang
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Xinglin Du
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Wenyue Xu
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Bihong Zhu
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Yizhou Huang
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Yucong Ye
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Yunlong Zhao
- School of Life Science, East China Normal University, Shanghai, 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China.
| | - Yiming Li
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai, 200092, China.
| |
Collapse
|
21
|
Zuo Z, Shang B, Liu H, Sun J, Li W, Liu Y, Sun J. Identification and evaluation of potential probiotics against skin-ulceration disease in the Chinese tongue sole (Cynoglossus semilaevis). FISH & SHELLFISH IMMUNOLOGY 2023; 137:108769. [PMID: 37100310 DOI: 10.1016/j.fsi.2023.108769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/08/2023] [Accepted: 04/23/2023] [Indexed: 05/10/2023]
Abstract
In this study, three highly pathogenic bacterial strains (Vibrio harveyi TB6, Vibrio alginolyticus TN1, and Vibrio parahaemolyticus TN3) were isolated from skin ulcers and intestines of diseased Chinese tongue sole (Cynoglossus semilaevis). The bacteria were investigated using hemolytic activity tests, in vitro co-culture with intestinal epithelial cells, and artificial infection of C. semilaevis. A further 126 strains were isolated from the intestines of healthy C. semilaevis. The three pathogens were used as indicator bacteria, and the antagonistic strains were identified from the 126 strains. The activities of exocrine digestive enzymes in the strains were also tested. Four strains with antibacterial and digestive enzyme activities were obtained and the best strains, Bacillus subtilis Y2 and Bacillus amyloliquefaciens Y9, were selected according to their ability to protect epithelial cells from infection. In addition, the effects of strains Y2 and Y9 at the individual level were investigated, finding that the activities of the immune-related enzymes superoxide dismutase, catalase, acid phosphatase, and peroxidase were significantly increased in the sera of the treatment group compared with the control group (p < 0.05). The specific growth rate (SGR, %) was also increased, especially in the Y2 group, and was significantly higher compared with the controls (p < 0.05). The result of the artificial infection test showed that the cumulative mortality within 72 h in the Y2 group was the lowest (50.5%), and in the Y9 group (68.5%) it was significantly lower than that in the control group (100%) (p < 0.05). Analysis of the intestinal microbial communities indicated that Y2 and Y9 could alter the composition of the intestinal flora, increasing both species richness and evenness, and inhibiting the growth of Vibrio in the intestine. These results suggested food supplemented with Y2 and Y9 could improve both immune function and disease resistance, as well as have a positive effect on the growth performance and the intestinal morphology of C. semilaevis.
Collapse
Affiliation(s)
- Zhihan Zuo
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, RP, China
| | - Bijiao Shang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, RP, China
| | - Hongrui Liu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, RP, China
| | - Jiacheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, RP, China
| | - Wenyue Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, RP, China
| | - Yichen Liu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, RP, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, RP, China.
| |
Collapse
|
22
|
Zhou J, Liu K, Bauer C, Bendner G, Dietrich H, Slivka JP, Wink M, Wong MBF, Chan MKS, Skutella T. Modulation of Cellular Senescence in HEK293 and HepG2 Cells by Ultrafiltrates UPla and ULu Is Partly Mediated by Modulation of Mitochondrial Homeostasis under Oxidative Stress. Int J Mol Sci 2023; 24:6748. [PMID: 37047720 PMCID: PMC10095350 DOI: 10.3390/ijms24076748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Protein probes, including ultrafiltrates from the placenta (UPla) and lung (ULu) of postnatal rabbits, were investigated in premature senescent HEK293 and HepG2 cells to explore whether they could modulate cellular senescence. Tris-Tricine-PAGE, gene ontology (GO), and LC-MS/MS analysis were applied to describe the characteristics of the ultrafiltrates. HEK293 and HepG2 cells (both under 25 passages) exposed to a sub-toxic concentration of hydrogen peroxide (H2O2, 300 μM) became senescent; UPla (10 μg/mL), ULu (10 μg/mL), as well as positive controls lipoic acid (10 μg/mL) and transferrin (10 μg/mL) were added along with H2O2 to the cells. Cell morphology; cellular proliferation; senescence-associated beta-galactosidase (SA-β-X-gal) activity; expression of senescence biomarkers including p16 INK4A (p16), p21 Waf1/Cip1 (p21), HMGB1, MMP-3, TNF-α, IL-6, lamin B1, and phospho-histone H2A.X (γ-H2AX); senescence-related gene expression; reactive oxygen species (ROS) levels; and mitochondrial fission were examined. Tris-Tricine-PAGE revealed prominent detectable bands between 10 and 100 kDa. LC-MS/MS identified 150-180 proteins and peptides in the protein probes, and GO analysis demonstrated a distinct enrichment of proteins associated with "extracellular space" and "proteasome core complex". UPla and ULu modulated senescent cell morphology, improved cell proliferation, and decreased beta-galactosidase activity, intracellular and mitochondrial ROS production, and mitochondrial fission caused by H2O2. The results from this study demonstrated that UPla and Ulu, as well as lipoic acid and transferrin, could protect HEK293 and HepG2 cells from H2O2-induced oxidative damage via protecting mitochondrial homeostasis and thus have the potential to be explored in anti-aging therapies.
Collapse
Affiliation(s)
- Junxian Zhou
- Institute for Anatomy and Cell Biology, Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
| | - Kang Liu
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, China
| | | | - Gerald Bendner
- Institute for Anatomy and Cell Biology, Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
| | - Heike Dietrich
- Institute for Anatomy and Cell Biology, Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
| | | | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, 69120 Heidelberg, Germany
| | | | - Mike K. S. Chan
- EW European Wellness International GmbH, 72184 Eutingen im Gäu, Germany
| | - Thomas Skutella
- Institute for Anatomy and Cell Biology, Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
23
|
Sul C, Lewis C, Dee N, Burns N, Oshima K, Schmidt E, Vohwinkel C, Nozik E. Release of extracellular superoxide dismutase into alveolar fluid protects against acute lung injury and inflammation in Staphylococcus aureus pneumonia. Am J Physiol Lung Cell Mol Physiol 2023; 324:L445-L455. [PMID: 36749572 PMCID: PMC10026994 DOI: 10.1152/ajplung.00217.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/13/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) remains a significant cause of morbidity and mortality in critically ill patients. Oxidative stress and inflammation play a crucial role in the pathogenesis of ARDS. Extracellular superoxide dismutase (EC-SOD) is abundant in the lung and is an important enzymatic defense against superoxide. Human single-nucleotide polymorphism in matrix binding region of EC-SOD leads to the substitution of arginine to glycine at position 213 (R213G) and results in release of EC-SOD into alveolar fluid, without affecting enzyme activity. We hypothesized that R213G EC-SOD variant protects against lung injury and inflammation via the blockade of neutrophil recruitment in infectious model of methicillin-resistant S. aureus (MRSA) pneumonia. After inoculation with MRSA, wild-type (WT) mice had impaired integrity of alveolar-capillary barrier and increased levels of IL-1β, IL-6, and TNF-α in the broncho-alveolar lavage fluid (BALF), while infected mice expressing R213G EC-SOD variant maintained the integrity of alveolar-capillary interface and had attenuated levels of proinflammatory cytokines. MRSA-infected mice expressing R213G EC-SOD variant also had attenuated neutrophil numbers in BALF and decreased expression of neutrophil chemoattractant CXCL1 by the alveolar epithelial ATII cells, compared with the infected WT group. The decreased neutrophil numbers in R213G mice were not due to increased rate of apoptosis. Mice expressing R213G variant had a differential effect on neutrophil functionality-the generation of neutrophil extracellular traps (NETs) but not myeloperoxidase (MPO) levels were attenuated in comparison with WT controls. Despite having the same bacterial load in the lung as WT controls, mice expressing R213G EC-SOD variant were protected from extrapulmonary dissemination of bacteria.
Collapse
Affiliation(s)
- Christina Sul
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, Division of Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Caitlin Lewis
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, Division of Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Nathan Dee
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, Division of Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Nana Burns
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, Division of Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Kaori Oshima
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Eric Schmidt
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Christine Vohwinkel
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, Division of Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Eva Nozik
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, Division of Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
24
|
Links between Vitamin K, Ferroptosis and SARS-CoV-2 Infection. Antioxidants (Basel) 2023; 12:antiox12030733. [PMID: 36978981 PMCID: PMC10045478 DOI: 10.3390/antiox12030733] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/27/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Ferroptosis is a recently discovered form of programmed cell death. It is characterized by the accumulation of iron and lipid hydroperoxides in cells. Vitamin K is known to have antioxidant properties and plays a role in reducing oxidative stress, particularly in lipid cell membranes. Vitamin K reduces the level of reactive oxygen species by modulating the expression of antioxidant enzymes. Additionally, vitamin K decreases inflammation and potentially prevents ferroptosis. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leading to coronavirus disease 2019 (COVID-19) is associated with oxidant–antioxidant imbalance. Studies have shown that intensified ferroptosis occurs in various tissues and cells affected by COVID-19. Vitamin K supplementation during SARS-CoV-2 infection may have a positive effect on reducing the severity of the disease. Preliminary research suggests that vitamin K may reduce lipid peroxidation and inhibit ferroptosis, potentially contributing to its therapeutic effects in COVID-19 patients. The links between ferroptosis, vitamin K, and SARS-CoV-2 infection require further investigation, particularly in the context of developing potential treatment strategies for COVID-19.
Collapse
|
25
|
Vinci G, Prencipe SA, Armeli F, Businaro R. A Multimethodological Approach for the Valorization of "Senatore Cappelli" Wheat Milling By-Products as a Source of Bioactive Compounds and Nutraceutical Activity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5057. [PMID: 36981970 PMCID: PMC10048793 DOI: 10.3390/ijerph20065057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Wheat is the third most cultivated cereal in the world and represents the major contributor to human nutrition. Milling wheat by-products such as husks (17-20% of the total processing output weight), even if still containing high-value-added bioactive compounds, are often left untreated or unused, thus resulting in environmental and human health burdens. In these regards, the present study is aimed at evaluating in a multimethodological approach the nutraceutical properties of durum wheat husks belonging to the ancient cultivar "Senatore Cappelli", thus assessing their potential as bioactive compound sources in terms of phytochemical, cytotoxic, and nutraceutical properties. By means of HPLC-FD analyses, wheat husk samples analyzed revealed a higher content of serotonin, amounting to 35% of the total BAs, and were confirmed to occur at biogenic amines quality index (BAQI) values <10 mg/100 g. In addition, spectrophotometric assays showed a significant variable content in the phenolic (189.71-351.14 mg GAE/100 g) and antioxidant compounds (31.23-37.84 mg TE/100 g) within the wheat husk samples analyzed, according to the different cultivar areas of origin. Considering wheat husk extracts' anti-inflammatory and antioxidant activity, in vitro analyses were performed on BV-2 murine microglia cells cultured in the presence or absence of LPS, thus evaluating their ability to promote microglia polarization towards an anti-inflammatory phenotype. Cytotoxicity assays showed that wheat extracts do not affect microglia viability. Wheat husks activity on microglial polarization was assessed by analyzing the expression of M1 and M2 markers' mRNA by RT-PCR. Wheat husk antioxidant activity was assessed by analysis of NRF2 and SOD1 mRNA expression. Moreover, the sustainability assessment for the recovery of bioactive components from wheat by-products was carried out by applying the life cycle assessment (LCA) methodology using SimaPro v9.2.2. software.
Collapse
Affiliation(s)
- Giuliana Vinci
- Department of Management, Sapienza University of Rome, 00161 Rome, Italy
| | | | - Federica Armeli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy
| | - Rita Businaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy
| |
Collapse
|
26
|
Kemal R, Fauzi IA, Nuryati S, Wardani WW, Suprayudi MA. Evaluation of Selenoprotein Supplementation on Digestibility, Growth, and Health Performance of Pacific White Shrimp Litopenaeus vannamei. AQUACULTURE NUTRITION 2023; 2023:2008517. [PMID: 36860982 PMCID: PMC9973150 DOI: 10.1155/2023/2008517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 06/18/2023]
Abstract
Selenoprotein is a feed additive that can overcome oxidative stress in intensive Pacific white shrimp (Litopenaeus vannamei) culture. This study evaluated the effects of selenoprotein supplementation at various doses on Pacific white shrimp's digestibility, growth, and health performance. The experimental design used was a completely randomized design consisting of four feed treatments, namely, control and treatments with selenoprotein supplementation of 2.5, 5, and 7.5 g kg feed-1 with four replications. Shrimps (1.5 g) were reared for 70 days and challenged for 14 days by the bacteria Vibrio parahaemolyticus (107 CFU mL-1). Shrimps used in the digestibility performance evaluation (6.1 g) were reared until sufficient quantities of feces were collected for analysis. Shrimp supplemented with selenoprotein exhibited superior digestibility, growth, and health performance compared to the control (P < 0.05). The use of selenoprotein at a dose of 7.5 g kg of feed-1 (2.72 mg Se kg of feed-1) was considered the most effective for increasing productivity and preventing disease attacks in intensive shrimp culture.
Collapse
Affiliation(s)
- Rafi Kemal
- Department of Aquaculture, Faculty of Fisheries and Marine Sciences, IPB University, Bogor 16680, Indonesia
| | - Ichsan Achmad Fauzi
- Department of Aquaculture, Faculty of Fisheries and Marine Sciences, IPB University, Bogor 16680, Indonesia
| | - Sri Nuryati
- Department of Aquaculture, Faculty of Fisheries and Marine Sciences, IPB University, Bogor 16680, Indonesia
| | - Wira Wisnu Wardani
- PT Aquacell Indo Pasifik, Jl. Pedurenan 5, Gunung Sindur, Bogor 16340, Indonesia
| | - Muhammad Agus Suprayudi
- Department of Aquaculture, Faculty of Fisheries and Marine Sciences, IPB University, Bogor 16680, Indonesia
| |
Collapse
|
27
|
Wang Z, Fan X, Li Z, Guo L, Ren Y, Li Q. Comparative analysis for immune response of coelomic fluid from coelom and polian vesicle in Apostichopus japonicus to Vibrio splendidus infection. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2022; 4:100074. [PMID: 36618076 PMCID: PMC9811217 DOI: 10.1016/j.fsirep.2022.100074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/29/2022] Open
Abstract
The polian vesicle and coelom of sea cucumber Apostichopus japonicus were full of coelomic fluid in which many types of coelomocytes with different functions were suspended. Our previous work has indicated the differences of coelomocytes between two sites mainly in subtype proportion, non-specific immune enzymes activities and several immune-related genes expression levels in healthy A. japonicus. However, the functional similarities and differences of coelomic fluid in two sites including the coelom and polian vesicle after pathogenic infection still remain unclear. Here, we investigated the changes of the total coelomocyte density (TCD) and differential coelomocyte density (DCD) after pathogen infection by Vibrio splendidus in coelom and polian vesicle. After infected by V. splendidus, the TCD in the coelom and polian vesicle rapidly declined at 12 h, and then the TCD in the coelom showed a stably ascending trend, while the TCD in the polian vesicle reached a peak at 24 h post infection (hpi), and then showed a continuously decline trend from 24 hpi to 72 hpi followed by a slow elevation until recovering the normal level from 72 hpi to 96 hpi. Then the activities of acidic phosphatase (ACP), alkaline phosphatase (AKP), catalase (CAT) and superoxide dismutase (SOD) were determined to evaluate the response of cell-free coelomic fluid to V. splendidus infection. The activities of ACP, AKP and CAT showed similar trends in the coelom and polian vesicle. The SOD activity significantly increased in the polian vesicle, whereas it exhibited a decreasing trend in the coelom. Finally, the expression profiles of nine immune-related genes including Aj-MyD88, Aj-IRAK4, Aj-i-Lys, Aj-Rel, Aj-p50, Aj-DMBT1, Aj-CDC, Aj-Rrp15 and Aj-Fibrinogen C were detected after V. splendidus challenge. The results suggested all the detected genes were significantly up-regulated both in the coelom and polian vesicle, and the expression levels of these genes in two sites shared similar trends except Aj-MyD88 and Aj-DMBT1. This research provides a new insight into the differentially immune roles of coelomic fluid and coelomocytes in polian vesicle and coelom response to bacterial infections and supplements comprehensive resources for better understanding the innate immune response of A. japonicus.
Collapse
Affiliation(s)
- Zhenhui Wang
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Xuyuan Fan
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China,College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Zhen Li
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Liyuan Guo
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China,College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Yuan Ren
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China,School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Qiang Li
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China,Corresponding author.
| |
Collapse
|
28
|
Ligina V, Martin R, Aiswarya MV, Mashirin KR, Chitra KC. Acute and sublethal effects of acrylamide on the freshwater fish Anabas testudineus (Bloch, 1792). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:90835-90851. [PMID: 35879632 DOI: 10.1007/s11356-022-22155-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Acrylamide, a synthetic compound, has a wide range of industrial applications that find multiple ways to reach aquatic ecosystem. The median lethal concentration of acrylamide determined using probit analysis in the fish Anabas testudineus was 132 µg L-1 concentration together with altered behavioral patterns. Hematological and antioxidant status was evaluated at a sublethal concentration (one-tenth of LC50-96 h), i.e., 13.2 µg L-1 concentration for 24, 48, 72, and 96 h. A reduction in erythrocytes count, hemoglobin content, and packed cell volume with a significant (P < 0.05) increase in leukocyte counts and differential counts were observed. Erythrocyte indices like mean corpuscular volume (MCV) and mean corpuscular hemoglobin (MCH) increased, whereas the mean corpuscular hemoglobin concentration (MCHC) showed a significant (P < 0.05) decrease when compared with control groups. The activities of superoxide dismutase, catalase, and glutathione reductase in gill tissues showed significant (P < 0.05) reduction, whereas the levels of hydrogen peroxide and lipid peroxidation increased significantly (P < 0.05) indicating oxidative stress. The findings suggest that acrylamide at sublethal concentration caused alteration in hematological parameters and induced oxidative stress in gill tissue of the fish A. testudineus. Hence, restrictions on the use of acrylamide in food and industrial products are recommended since humans are the direct consumer of fish products.
Collapse
Affiliation(s)
- Velliyath Ligina
- Endocrinology and Toxicology Laboratory, Department of Zoology, University of Calicut, Malappuram District, Kerala, 673 635, India
| | - Ranjana Martin
- Endocrinology and Toxicology Laboratory, Department of Zoology, University of Calicut, Malappuram District, Kerala, 673 635, India
| | | | - Kajahussain Reeha Mashirin
- Endocrinology and Toxicology Laboratory, Department of Zoology, University of Calicut, Malappuram District, Kerala, 673 635, India
| | - Kumari Chidambaran Chitra
- Endocrinology and Toxicology Laboratory, Department of Zoology, University of Calicut, Malappuram District, Kerala, 673 635, India.
| |
Collapse
|
29
|
The Influence of Circadian Rhythm on the Activity of Oxidative Stress Enzymes. Int J Mol Sci 2022; 23:ijms232214275. [PMID: 36430753 PMCID: PMC9697911 DOI: 10.3390/ijms232214275] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
The circadian system synchronizes daily with the day-night cycle of our environment. Disruption of this rhythm impacts the emergence and development of many diseases caused, for example, by the overproduction of free radicals, leading to oxidative damage of cellular components. The goal of this study was to determine the activity of superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), glutathione transferase (GST), glutathione reductase (R-GSSG), and the concentration of glutathione (GSH) in the circadian rhythm. The study group comprised 66 healthy volunteers (20-50 years; 33 women; 33 men). The blood was collected at 2, 8 a.m., and 2, 8 p.m. All samples marked the serum melatonin concentration to confirm the correct sleeping rhythm and wakefulness throughout the day. The activity of study enzymes and the concentration of GSH were measured by the spectrophotometric method. Confirmed the existence of circadian regulation of oxidative stress enzymes except for GST activity. The peak of activity of study enzymes and GSH concentration was observed at 2 a.m. The increased activity of enzymes and the increase in GSH concentration observed at night indicate that during sleep, processes allowing to maintain of the redox balance are intensified, thus limiting the formation of oxidative stress.
Collapse
|
30
|
Lopez-Cantu DO, González-González RB, Sharma A, Bilal M, Parra-Saldívar R, Iqbal HM. Bioactive material-based nanozymes with multifunctional attributes for biomedicine: Expanding antioxidant therapeutics for neuroprotection, cancer, and anti-inflammatory pathologies. Coord Chem Rev 2022; 469:214685. [DOI: 10.1016/j.ccr.2022.214685] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Wang H, Cao X, Guo J, Yang X, Sun X, Fu Z, Qin A, Wu Y, Zhao J. BNTA alleviates inflammatory osteolysis by the SOD mediated anti-oxidation and anti-inflammation effect on inhibiting osteoclastogenesis. Front Pharmacol 2022; 13:939929. [PMID: 36249770 PMCID: PMC9559729 DOI: 10.3389/fphar.2022.939929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/09/2022] [Indexed: 11/15/2022] Open
Abstract
Abnormal activation and overproliferation of osteoclast in inflammatory bone diseases lead to osteolysis and bone mass loss. Although current pharmacological treatments have made extensive advances, limitations still exist. N-[2-bromo-4-(phenylsulfonyl)-3-thienyl]-2-chlorobenzamide (BNTA) is an artificially synthesized molecule compound that has antioxidant and anti-inflammatory properties. In this study, we presented that BNTA can suppress intracellular ROS levels through increasing ROS scavenging enzymes SOD1 and SOD2, subsequently attenuating the MARK signaling pathway and the transcription of NFATc1, leading to the inhibition of osteoclast formation and osteolytic resorption. Moreover, the results also showed an obvious restrained effect of BNTA on RANKL-stimulated proinflammatory cytokines, which indirectly mediated osteoclastogenesis. In line with the in vitro results, BNTA protected LPS-induced severe bone loss in vivo by enhancing scavenging enzymes, reducing proinflammatory cytokines, and decreasing osteoclast formation. Taken together, all of the results demonstrate that BNTA effectively represses oxidation, regulates inflammatory activity, and inhibits osteolytic bone resorption, and it may be a potential and exploitable drug to prevent inflammatory osteolytic bone diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yujie Wu
- *Correspondence: Yujie Wu, ; Jie Zhao,
| | - Jie Zhao
- *Correspondence: Yujie Wu, ; Jie Zhao,
| |
Collapse
|
32
|
The Interplay of Oxidative Stress and ROS Scavenging: Antioxidants as a Therapeutic Potential in Sepsis. Vaccines (Basel) 2022; 10:vaccines10101575. [PMID: 36298439 PMCID: PMC9609850 DOI: 10.3390/vaccines10101575] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 12/05/2022] Open
Abstract
Oxidative stress resulting from the disproportion of oxidants and antioxidants contributes to both physiological and pathological conditions in sepsis. To combat this, the antioxidant defense system comes into the picture, which contributes to limiting the amount of reactive oxygen species (ROS) leading to the reduction of oxidative stress. However, a strong relationship has been found between scavengers of ROS and antioxidants in preclinical in vitro and in vivo models. ROS is widely believed to cause human pathology most specifically in sepsis, where a small increase in ROS levels activates signaling pathways to initiate biological processes. An inclusive understanding of the effects of ROS scavenging in cellular antioxidant signaling is essentially lacking in sepsis. This review compiles the mechanisms of ROS scavenging as well as oxidative damage in sepsis, as well as antioxidants as a potent therapeutic. Direct interaction between ROS and cellular pathways greatly affects sepsis, but such interaction does not provide the explanation behind diverse biological outcomes. Animal models of sepsis and a number of clinical trials with septic patients exploring the efficiency of antioxidants in sepsis are reviewed. In line with this, both enzymatic and non-enzymatic antioxidants were effective, and results from recent studies are promising. The usage of these potent antioxidants in sepsis patients would greatly impact the field of medicine.
Collapse
|
33
|
Yan Z, Liu S, Liu Y, Zheng M, Peng J, Chen Q. Effects of dietary superoxide dismutase on growth performance,
antioxidant capacity and digestive enzyme activity
of yellow-feather broilers during the early breeding period (1–28d). JOURNAL OF ANIMAL AND FEED SCIENCES 2022. [DOI: 10.22358/jafs/149331/2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Soheili M, Alinaghipour A, Salami M. Good bacteria, oxidative stress and neurological disorders: Possible therapeutical considerations. Life Sci 2022; 301:120605. [DOI: 10.1016/j.lfs.2022.120605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 12/11/2022]
|
35
|
Lucena Périco L, de Cássia Dos Santos R, Peixoto Rodrigues V, Vasti Alfieri Nunes V, Vilegas W, Machado da Rocha LR, Dos Santos C, Hiruma-Lima CA. Role of the antioxidant pathway in the healing of peptic ulcers induced by ischemia-reperfusion in male and female rats treated with Eugenia punicifolia. Inflammopharmacology 2022; 30:1383-1394. [PMID: 35445989 DOI: 10.1007/s10787-022-00946-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/14/2022] [Indexed: 11/09/2022]
Abstract
Ischaemia and reperfusion (I/R)-induced gastrointestinal disorders are caused by free radicals, resulting in organ damage and functional disarrangement. This study aimed to investigate the healing effects of hydroalcoholic extracts from the leaves of Eugenia punicifolia (Kunth) DC. (HEEP) in male and female Wistar rats with I/R-induced peptic injuries, and the role of antioxidants in improving this response. After I/R-induced gastric and duodenal injuries, male and female [intact (INT) and ovariectomized (OVZ)] rats were orally treated with HEEP for 6 days. Biochemical analysis was used to determine the catalase (CAT), superoxide dismutase (SOD), and myeloperoxidase (MPO) activities, as well as malondialdehyde and reduced glutathione levels, to measure the gastric and duodenal healing process. Six days of HEEP treatment significantly decreased the I/R-induced gastric [male (73.68%), INT (52.83%), and OVZ (43.13%)] and duodenal damage [male (57.03%), INT (56.04%), and OVZ (54.83%)] in all groups. In OVZ rats, the healing effect of HEEP occurred because of the increased activity of SOD (2x) and CAT (1.16x) in the gastric mucosa. In the duodenal mucosa of INT rats, the extract reduced MPO (20.83%) activity. The 6-day HEEP treatment improved the healing of I/R-induced peptic ulcer injury, with the system acting differently in males and females. The antioxidant system is an important component of the HEEP activity during post-I/R mucosal recovery. This result revealed the importance of antioxidant compounds in minimizing the severity of I/R-related events.
Collapse
Affiliation(s)
- Larissa Lucena Périco
- Department of Structural and Functional Biology (Physiology), Biosciences Institute, UNESP-São Paulo State University, Botucatu, São Paulo, CEP 18618-689, Brazil. .,Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
| | - Raquel de Cássia Dos Santos
- Laboratory of Pharmacology and Molecular Biology, São Francisco University, CEP 12916-900, Bragança Paulista, São Paulo, Brazil
| | - Vinícius Peixoto Rodrigues
- Department of Structural and Functional Biology (Physiology), Biosciences Institute, UNESP-São Paulo State University, Botucatu, São Paulo, CEP 18618-689, Brazil
| | - Vânia Vasti Alfieri Nunes
- Department of Structural and Functional Biology (Physiology), Biosciences Institute, UNESP-São Paulo State University, Botucatu, São Paulo, CEP 18618-689, Brazil
| | - Wagner Vilegas
- Biosciences Institute, UNESP-São Paulo State University, São Vicente, São Paulo, CEP 11330-900, Brazil
| | - Lúcia Regina Machado da Rocha
- Department of Structural and Functional Biology (Physiology), Biosciences Institute, UNESP-São Paulo State University, Botucatu, São Paulo, CEP 18618-689, Brazil
| | - Catarina Dos Santos
- Department of Biological Science, Faculty of Sciences and Languages, UNESP-São Paulo State University, Assis, São Paulo, CEP 19806-900, Brazil
| | - Clélia Akiko Hiruma-Lima
- Department of Structural and Functional Biology (Physiology), Biosciences Institute, UNESP-São Paulo State University, Botucatu, São Paulo, CEP 18618-689, Brazil
| |
Collapse
|
36
|
Lee JY, Kim M, Oh SB, Kim HY, Kim C, Kim TY, Park YH. Superoxide dismutase 3 prevents early stage diabetic retinopathy in streptozotocin-induced diabetic rat model. PLoS One 2022; 17:e0262396. [PMID: 35015779 PMCID: PMC8751990 DOI: 10.1371/journal.pone.0262396] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 12/23/2021] [Indexed: 12/16/2022] Open
Abstract
Purpose To identify the effects of superoxide dismutase (SOD)3 on diabetes mellitus (DM)-induced retinal changes in a diabetic rat model. Methods Diabetic models were established by a single intraperitoneal injection of streptozotocin (STZ) in Sprague-Dawley rats. After purification of the recombinant SOD3, intravitreal injection of SOD3 was performed at the time of STZ injection, and 1 and 2 weeks following STZ injection. Scotopic and photopic electroretinography (ERG) were recorded. Immunofluorescence staining with ɑ-smooth muscle actin (SMA), glial fibrillary acidic protein (GFAP), pigment epithelium-derived factor (PEDF), Flt1, recoverin, parvalbumin, extracellular superoxide dismutase (SOD3), 8-Hydroxy-2’deoxyguanosine (8-OHdG) and tumor necrosis factor-ɑ (TNF-ɑ) were evaluated. Results In the scotopic ERG, the diabetic group showed reduced a- and b-wave amplitudes compared with the control group. In the photopic ERG, b-wave amplitude showed significant (p < 0.0005) reduction at 8 weeks following DM induction. However, the trend of a- and b-wave reduction was not evident in the SOD3 treated group. GFAP, Flt1, 8-OHdG and TNF-ɑ immunoreactivity were increased, and ɑ-SMA, PEDF and SOD3 immunoreactivity were decreased in the diabetic retina. The immunoreactivity of these markers was partially recovered in the SOD3 treated group. Parvalbumin expression was not decreased in the SOD3 treated group. In the diabetic retinas, the immunoreactivity of recoverin was weakly detected in both of the inner nuclear layer and inner plexiform layer compared to the control group but not in the SOD3 treated group. Conclusions SOD3 treatment attenuated the loss of a/b-wave amplitudes in the diabetic rats, which was consistent with the immunohistochemical evaluation. We also suggest that in rod-dominant rodents, the use of blue on green photopic negative response (PhNR) is effective in measuring the inner retinal function in animal models of diabetic retinopathy. SOD3 treatment ameliorated the retinal Müller cell activation in diabetic rats and pericyte dysfunction. These results suggested that SOD3 exerted protective effects on the development of diabetic retinopathy.
Collapse
Affiliation(s)
- Ji-Yeon Lee
- Catholic Institute for Visual Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Mirinae Kim
- Catholic Institute for Visual Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Ophthalmology and Visual Science, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Su Bin Oh
- Catholic Institute for Visual Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hae-Young Kim
- Department of Dermatology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chongtae Kim
- Catholic Institute for Visual Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Tae-Yoon Kim
- Department of Dermatology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Young-Hoon Park
- Catholic Institute for Visual Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Ophthalmology and Visual Science, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
37
|
Yurchenko V, Morozov A. Responses of hepatic biotransformation and antioxidant enzymes in Japanese medaka (Oryzias latipes) exposed to humic acid. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1-13. [PMID: 34816351 DOI: 10.1007/s10695-021-01034-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Humic substances, a major component of natural organic matter in surface waters, can induce biotransformation enzyme activities and influence antioxidant defense in fish. The study aimed to provide a molecular basis for the stress responses, the synthesis of biotransformation, and antioxidant enzymes in particular. Adult medaka fish (Hd-rR strain) were exposed to environmentally relevant concentrations of humic acid for 96 h. The actual humic acid concentrations in water were determined photometrically and expressed as organic carbon concentrations. Liquid chromatography with tandem mass spectrometry was used for protein profile analysis of medaka liver samples. The relative amount of isozymes was determined using the label-free quantification approach. Hepatic biotransformation enzyme activities were measured as well. Thus, ethoxyresorufin-O-deethylase activity showed a pronounced induction at the highest tested concentration (9.4 mg C/L). Various biotransformation and antioxidant isozymes responded to humic acid differently, reflecting a balanced interplay of proteins that ensures the metabolism of humic acid in fish liver. Some isozymes were not affected by humic acid. The study provides new insight into the molecular mechanisms of the fish stress response to the humic acid-related challenge.
Collapse
Affiliation(s)
- Victoria Yurchenko
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia.
| | - Alexey Morozov
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| |
Collapse
|
38
|
Radioresistance in Prostate Cancer: Focus on the Interplay between NF-κB and SOD. Antioxidants (Basel) 2021; 10:antiox10121925. [PMID: 34943029 PMCID: PMC8750009 DOI: 10.3390/antiox10121925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/15/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
Prostate cancer occurs frequently in men and can often lead to death. Many cancers, including prostate cancer, can be initiated by oxidative insult caused by free radicals and reactive oxygen species. The superoxide dismutase family removes the oxygen-derived reactive oxygen species, and increased superoxide dismutase activity can often be protective against prostate cancer. Prostate cancer can be treated in a variety of ways, including surgery, androgen deprivation therapy, radiation therapy, and chemotherapy. The clinical trajectory of prostate cancer varies from patient to patient, but more aggressive tumors often tend to be radioresistant. This is often due to the free-radical and reactive-oxygen-species-neutralizing effects of the superoxide dismutase family. Superoxide dismutase 2, which is especially important in this regard, can be induced by the NF-κB pathway, which is an important mechanism in radioresistance. This information has enabled the development of interventions that manipulate the NF-κB mechanism to treat prostate cancer.
Collapse
|
39
|
ROS as Regulators of Cellular Processes in Melanoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1208690. [PMID: 34725562 PMCID: PMC8557056 DOI: 10.1155/2021/1208690] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022]
Abstract
In this review, we examine the multiple roles of ROS in the pathogenesis of melanoma, focusing on signal transduction and regulation of gene expression. In recent years, different studies have analyzed the dual role of ROS in regulating the redox system, with both negative and positive consequences on human health, depending on cell concentration of these agents. High ROS levels can result from an altered balance between oxidant generation and intracellular antioxidant activity and can produce harmful effects. In contrast, low amounts of ROS are considered beneficial, since they trigger signaling pathways involved in physiological activities and programmed cell death, with protective effects against melanoma. Here, we examine these beneficial roles, which could have interesting implications in melanoma treatment.
Collapse
|
40
|
Guo L, Zhou M, Chen D, Yi C, Sun B, Wang S, Ru Y, Chen H, Wang H. A new insight to characterize immunomodulation based on hepatopancreatic transcriptome and humoral immune factor analysis of the Cherax quadricarinatus infected with Aeromonas veronii. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 219:112347. [PMID: 34044307 DOI: 10.1016/j.ecoenv.2021.112347] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Cherax quadricarinatus is a type of large freshwater crayfish that is characterized by rapid growth and formidable adaptability. It has also been widely cultured and studied as a model organism. Aeromonas veronii is the dominant pathogen in aquatic environments and the primary threat to aquaculture's economic stability. To better understand the interactions between C. quadricarinatus and A. veronii, high-throughput RNA sequencing of the C. quadricarinatus hepatopancreas was carried out on a control group, susceptible group (6 h after infection), and resistant group (48 h after infection). A total of 65,850,929 genes were obtained. Compared with the control group, 2616 genes were up-regulated and 1551 genes were down-regulated in the susceptible group; while 1488 genes were up-regulated and 1712 genes were down-regulated in the resistant group. GO and KEGG analysis showed that these differentially expressed genes (DEGs) were associated with multiple immune pathways, including Toll-like receptors (TLRs), antigen processing and presentation, NOD-like receptor signaling pathway, phagosome, lysosome, JAK-STAT signaling pathway. qRT-PCR showed that infection by A. veronii changed the expression pattern of the serine proteinase inhibitor (SPI), crustacean hyperglycemic hormone (CHH), anti-lipopolysaccharide factor (ALF), and extracellular copper/zinc superoxide dismutase (SOD1), all of which were significantly higher than in the control group up to 48 h after infection. In addition, detection of superoxide dismutase (SOD), catalase (CAT), lysozyme (LZM), and phenoloxidase (PO) activity, as well as ceruloplasmin (CP) concentration at different times after infection showed diverse trends. Furthermore, pathological sections obtained 24 h after infection show lesions on the hepatopancreas and intestinal tissues caused by A. veronii. The results of this study provide a foundation for analyzing the immune mechanism of C. quadricarinatus infected with A. veronii at the transcriptional level and a theoretical basis for screening disease-resistant individuals to ensure healthy economic development of the aquatic industry.
Collapse
Affiliation(s)
- Leifeng Guo
- Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China
| | - Min Zhou
- Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China
| | - Duanduan Chen
- Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China
| | - Cao Yi
- Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China
| | - Bing Sun
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
| | - Shouquan Wang
- Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China
| | - Yuanyuan Ru
- Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China
| | - Hongju Chen
- Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China.
| | - Hui Wang
- Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
41
|
Bai K, Jiang L, Li Q, Zhang J, Zhang L, Wang T. Dietary dimethylglycine sodium salt supplementation improves growth performance, redox status, and skeletal muscle function of intrauterine growth-restricted weaned piglets. J Anim Sci 2021; 99:6295646. [PMID: 34107017 DOI: 10.1093/jas/skab186] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/07/2021] [Indexed: 01/04/2023] Open
Abstract
Few studies have focused on the role of dimethylglycine sodium (DMG-Na) salt in protecting the redox status of skeletal muscle, although it is reported to be beneficial in animal husbandry. This study investigated the beneficial effects of DMG-Na salt on the growth performance, longissimus dorsi muscle (LM) redox status, and mitochondrial function in weaning piglets that were intrauterine growth restricted (IUGR). Ten normal birth weight (NBW) newborn piglets (1.53 ± 0.04 kg) and 20 IUGR newborn piglets (0.76 ± 0.06 kg) from 10 sows were obtained. All piglets were weaned at 21 d of age and allocated to the three groups with 10 replicates per group: NBW weaned piglets fed a common basal diet (N); IUGR weaned piglets fed a common basal diet (I); IUGR weaned piglets fed a common basal diet supplemented with 0.1% DMG-Na (ID). They were slaughtered at 49 d of age to collect the serum and LM samples. Compared with the N group, the growth performance, LM structure, serum, and, within the LM, mitochondrial redox status, mitochondrial respiratory chain complex activity, energy metabolites, redox status-related, cell adhesion-related, and mitochondrial function-related gene expression, and protein expression deteriorated in group I (P < 0.05). The ID group showed improved growth performance, LM structure, serum, and, within the LM, mitochondrial redox status, mitochondrial respiratory chain complex activity, energy metabolites, redox status-related, cell adhesion-related, and mitochondrial function-related gene expression, and protein expression compared with those in the I group (P < 0.05). The above results indicated that the DMG-Na salt treatment could improve the LM redox status and mitochondrial function in IUGR weaned piglets via the nuclear factor erythroid 2-related factor 2/sirtuin 1/peroxisome proliferator-activated receptorγcoactivator-1α network, thus improving their growth performance.
Collapse
Affiliation(s)
- Kaiwen Bai
- College of Animal Sciences and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P. R. China
| | - Luyi Jiang
- College of Animal Science, Zhejiang University, Hangzhou, Zhejiang, 310000, P. R. China
| | - Qiming Li
- College of Animal Sciences and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P. R. China
| | - Jingfei Zhang
- College of Animal Sciences and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P. R. China
| | - Lili Zhang
- College of Animal Sciences and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P. R. China
| | - Tian Wang
- College of Animal Sciences and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P. R. China
| |
Collapse
|
42
|
Superoxide Dismutase 3-Transduced Mesenchymal Stem Cells Preserve Epithelial Tight Junction Barrier in Murine Colitis and Attenuate Inflammatory Damage in Epithelial Organoids. Int J Mol Sci 2021; 22:ijms22126431. [PMID: 34208517 PMCID: PMC8233984 DOI: 10.3390/ijms22126431] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/04/2021] [Accepted: 06/11/2021] [Indexed: 01/08/2023] Open
Abstract
Superoxide dismutase 3 (SOD3), also known as extracellular superoxide dismutase, is an enzyme that scavenges reactive oxygen species (ROS). It has been reported that SOD3 exerts anti-inflammatory abilities in several immune disorders. However, the effect of SOD3 and the underlying mechanism in inflammatory bowel disease (IBD) have not been uncovered. Therefore, in the present study, we investigated whether SOD3 can protect intestinal cells or organoids from inflammation-mediated epithelial damage. Cells or mice were treated with SOD3 protein or SOD3-transduced mesenchymal stem cells (MSCs). Caco-2 cells or intestinal organoids stimulated with pro-inflammatory cytokines were used to evaluate the protective effect of SOD3 on epithelial junctional integrity. Dextran sulfate sodium (DSS)-induced colitis mice received SOD3 or SOD3-transduced MSCs (SOD3-MSCs), and were assessed for severity of disease and junctional protein expression. The activation of the mitogen-activated protein kinase (MAPK) pathway and elevated expression of cytokine-encoding genes decreased in TNF-α-treated Caco-2 cells or DSS-induced colitis mice when treated with SOD3 or SOD3-MSCs. Moreover, the SOD3 supply preserved the expression of tight junction (ZO-1, occludin) or adherence junction (E-cadherin) proteins when inflammation was induced. SOD3 also exerted a protective effect against cytokine- or ROS-mediated damage to intestinal organoids. These results indicate that SOD3 can effectively alleviate enteritis symptoms by maintaining the integrity of epithelial junctions and regulating inflammatory- and oxidative stress.
Collapse
|
43
|
Sun YL, Bai T, Zhou L, Zhu RT, Wang WJ, Liang RP, Li J, Zhang CX, Gou JJ. SOD3 deficiency induces liver fibrosis by promoting hepatic stellate cell activation and epithelial-mesenchymal transition. J Cell Physiol 2021; 236:4313-4329. [PMID: 33230845 DOI: 10.1002/jcp.30174] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/14/2020] [Accepted: 10/06/2020] [Indexed: 12/18/2022]
Abstract
Hepatic stellate cell (HSC) activation plays an important role in the pathogenesis of liver fibrosis, and epithelial-mesenchymal transition (EMT) is suggested to potentially promote HSC activation. Superoxide dismutase 3 (SOD3) is an extracellular antioxidant defense against oxidative damage. Here, we found downregulation of SOD3 in a mouse model of liver fibrosis induced by carbon tetrachloride (CCl4 ). SOD3 deficiency induced spontaneous liver injury and fibrosis with increased collagen deposition, and further aggravated CCl4 -induced liver injury in mice. Depletion of SOD3 enhanced HSC activation marked by increased α-smooth muscle actin and subsequent collagen synthesis primarily collagen type I in vivo, and promoted transforming growth factor-β1 (TGF-β1)-induced HSC activation in vitro. SOD3 deficiency accelerated EMT process in the liver and TGF-β1-induced EMT of AML12 hepatocytes, as evidenced by loss of E-cadherin and gain of N-cadherin and vimentin. Notably, SOD3 expression and its pro-fibrogenic effect were positively associated with sirtuin 1 (SIRT1) expression. SOD3 deficiency inhibited adenosine monophosphate-activated protein kinase (AMPK) signaling to downregulate SIRT1 expression and thus involving in liver fibrosis. Enforced expression of SIRT1 inhibited SOD3 deficiency-induced HSC activation and EMT, whereas depletion of SIRT1 counteracted the inhibitory effect of SOD3 in vitro. These findings demonstrate that SOD3 deficiency contributes to liver fibrogenesis by promoting HSC activation and EMT process, and suggest a possibility that SOD3 may function through modulating SIRT1 via the AMPK pathway in liver fibrosis.
Collapse
Affiliation(s)
- Yu-Ling Sun
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, China
- Key Lab of Hepatobiliary and Pancreatic Diseases, Zhengzhou, China
| | - Tao Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, China
- Key Lab of Hepatobiliary and Pancreatic Diseases, Zhengzhou, China
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lin Zhou
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, China
- Key Lab of Hepatobiliary and Pancreatic Diseases, Zhengzhou, China
- Department of Digestive, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rong-Tao Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, China
- Key Lab of Hepatobiliary and Pancreatic Diseases, Zhengzhou, China
| | - Wei-Jie Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, China
- Key Lab of Hepatobiliary and Pancreatic Diseases, Zhengzhou, China
| | - Ruo-Peng Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, China
- Key Lab of Hepatobiliary and Pancreatic Diseases, Zhengzhou, China
| | - Jian Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, China
- Key Lab of Hepatobiliary and Pancreatic Diseases, Zhengzhou, China
| | - Chi-Xian Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, China
- Key Lab of Hepatobiliary and Pancreatic Diseases, Zhengzhou, China
| | - Jian-Jun Gou
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, China
- Key Lab of Hepatobiliary and Pancreatic Diseases, Zhengzhou, China
| |
Collapse
|
44
|
Teixeira de Alencar Filho JM, Sampaio PA, Silva de Carvalho I, Rocha da Silva A, Pereira ECV, Araujo E Amariz I, Nishimura RHV, Cavalcante da Cruz Araújo E, Rolim-Neto PJ, Rolim LA. Metal organic frameworks (MOFs) with therapeutic and biomedical applications: a patent review. Expert Opin Ther Pat 2021; 31:937-949. [PMID: 33915072 DOI: 10.1080/13543776.2021.1924149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Metal organic frameworks (MOFs) are a recent group of nano porous materials with exceptional physical properties, such as large surface areas, high pore volumes, low densities and well-defined pores. This type of material has been used frequently for biomedical and therapeutic applications, such as drug delivery systems and theranostic materials.Areas covered: In this review, the authors searched for patents filed in the last 10 years, found in different databases, related to the therapeutic or biomedical application of MOFs for use in different health fields. The possibility of these new materials becoming new therapeutic possibilities available to the population was emphasized.Expert opinion: The advances in research with MOFs have grown in the last 10 years and with that many possibilities for their applications have emerged in several areas, especially biomedical. The possibility of using these materials in drug delivery systems is the most common form of possibility of use in the health area, mainly due to easy obtaining and high reproducibility, which are seen very positively by the drug development technology sector.
Collapse
Affiliation(s)
| | - Pedrita Alves Sampaio
- Central de Análises de Fármacos, Medicamentos E Alimentos, Universidade Federal do Vale do São Francisco, Petrolina-PE, Brasil
| | - Iure Silva de Carvalho
- Central de Análises de Fármacos, Medicamentos E Alimentos, Universidade Federal do Vale do São Francisco, Petrolina-PE, Brasil
| | | | | | - Isabela Araujo E Amariz
- Central de Análises de Fármacos, Medicamentos E Alimentos, Universidade Federal do Vale do São Francisco, Petrolina-PE, Brasil
| | | | | | - Pedro José Rolim-Neto
- Laboratório de Tecnologia de Medicamentos, Universidade Federal de Pernambuco, Recife-PE, Brasil
| | - Larissa Araújo Rolim
- Central de Análises de Fármacos, Medicamentos E Alimentos, Universidade Federal do Vale do São Francisco, Petrolina-PE, Brasil
| |
Collapse
|
45
|
Miró J, Catalán J, Marín H, Yánez-Ortiz I, Yeste M. Specific Seminal Plasma Fractions Are Responsible for the Modulation of Sperm-PMN Binding in the Donkey. Animals (Basel) 2021; 11:1388. [PMID: 34068214 PMCID: PMC8153123 DOI: 10.3390/ani11051388] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/11/2021] [Indexed: 02/08/2023] Open
Abstract
While artificial insemination (AI) with frozen-thawed sperm results in low fertility rates in donkeys, the addition of seminal plasma, removed during cryopreservation, partially counteracts that reduction. Related to this, an apparent inflammatory reaction in jennies is induced following AI with frozen-thawed sperm, as a high amount of polymorphonuclear neutrophils (PMN) are observed within the donkey uterus six hours after AI. While PMN appear to select the sperm that ultimately reach the oviduct, two mechanisms, phagocytosis and NETosis, have been purported to be involved in that clearance. Remarkably, sperm interacts with PMN, but the presence of seminal plasma reduces that binding. As seminal plasma is a complex fluid made up of different molecules, including proteins, this study aimed to evaluate how different seminal plasma fractions, separated by molecular weight (<3, 3-10, 10-30, 30-50, 50-100, and >100 kDa), affect sperm-PMN binding. Sperm motility, viability, and sperm-PMN binding were evaluated after 0 h, 1 h, 2 h, 3 h, and 4 h of co-incubation at 38 °C. Two seminal plasma fractions, including 30-50 kDa or 50-100 kDa proteins, showed the highest sperm motility and viability. As viability of sperm not bound to PMN after 3 h of incubation was the highest in the presence of 30-50 and 50-100 kDa proteins, we suggest that both fractions are involved in the control of the jenny's post-breeding inflammatory response. In conclusion, this study has shown for the first time that specific fractions rather than the entire seminal plasma modulate sperm-PMN binding within the donkey uterus. As several proteins suggested to be involved in the control of post-AI endometritis have a molecular weight between 30 and 100 kDa, further studies aimed at determining the identity of these molecules and evaluating their potential effect in vivo are much warranted.
Collapse
Affiliation(s)
- Jordi Miró
- Equine Reproduction Service, Department of Animal Medicine and Surgery, Faculty of Veterinary Sciences, Autonomous University of Barcelona, ES-08193 Bellaterra (Cerdanyola del Vallès), Spain; (J.C.); (H.M.); (I.Y.-O.)
| | - Jaime Catalán
- Equine Reproduction Service, Department of Animal Medicine and Surgery, Faculty of Veterinary Sciences, Autonomous University of Barcelona, ES-08193 Bellaterra (Cerdanyola del Vallès), Spain; (J.C.); (H.M.); (I.Y.-O.)
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain;
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain
| | - Henar Marín
- Equine Reproduction Service, Department of Animal Medicine and Surgery, Faculty of Veterinary Sciences, Autonomous University of Barcelona, ES-08193 Bellaterra (Cerdanyola del Vallès), Spain; (J.C.); (H.M.); (I.Y.-O.)
| | - Iván Yánez-Ortiz
- Equine Reproduction Service, Department of Animal Medicine and Surgery, Faculty of Veterinary Sciences, Autonomous University of Barcelona, ES-08193 Bellaterra (Cerdanyola del Vallès), Spain; (J.C.); (H.M.); (I.Y.-O.)
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain;
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain;
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain
| |
Collapse
|
46
|
Bergwik J, Kristiansson A, Larsson J, Ekström S, Åkerström B, Allhorn M. Binding of the human antioxidation protein α 1-microglobulin (A1M) to heparin and heparan sulfate. Mapping of binding site, molecular and functional characterization, and co-localization in vivo and in vitro. Redox Biol 2021; 41:101892. [PMID: 33607500 PMCID: PMC7900767 DOI: 10.1016/j.redox.2021.101892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/27/2022] Open
Abstract
Heparin and heparan sulfate (HS) are linear sulfated disaccharide polymers. Heparin is found mainly in mast cells, while heparan sulfate is found in connective tissue, extracellular matrix and on cell membranes in most tissues. α1-microglobulin (A1M) is a ubiquitous protein with thiol-dependent antioxidant properties, protecting cells and matrix against oxidative damage due to its reductase activities and radical- and heme-binding properties. In this work, it was shown that A1M binds to heparin and HS and can be purified from human plasma by heparin affinity chromatography and size exclusion chromatography. The binding strength is inversely dependent of salt concentration and proportional to the degree of sulfation of heparin and HS. Potential heparin binding sites, located on the outside of the barrel-shaped A1M molecule, were determined using hydrogen deuterium exchange mass spectrometry (HDX-MS). Immunostaining of endothelial cells revealed pericellular co-localization of A1M and HS and the staining of A1M was almost completely abolished after treatment with heparinase. A1M and HS were also found to be co-localized in vivo in the lungs, aorta, kidneys and skin of mice. The redox-active thiol group of A1M was unaffected by the binding to HS, and the cell protection and heme-binding abilities of A1M were slightly affected. The discovery of the binding of A1M to heparin and HS provides new insights into the biological role of A1M and represents the basis for a novel method for purification of A1M from plasma.
Collapse
Affiliation(s)
- Jesper Bergwik
- Section for Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden.
| | - Amanda Kristiansson
- Section for Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Jörgen Larsson
- Section for Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Simon Ekström
- Swedish National Infrastructure for Biological Mass Spectrometry (BioMS), Lund University, Lund, Sweden
| | - Bo Åkerström
- Section for Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Maria Allhorn
- Section for Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
47
|
Agrahari G, Sah SK, Bang CH, Kim YH, Kim TY. Superoxide Dismutase 3 Controls the Activation and Differentiation of CD4 +T Cells. Front Immunol 2021; 12:628117. [PMID: 33717151 PMCID: PMC7947887 DOI: 10.3389/fimmu.2021.628117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/21/2021] [Indexed: 12/11/2022] Open
Abstract
Superoxide dismutase 3 (SOD3), a well-known antioxidant has been shown to possess immunomodulatory properties through inhibition of T cell differentiation. However, the underlying inhibitory mechanism of SOD3 on T cell differentiation is not well understood. In this study, we investigated the effect of SOD3 on anti-CD3/CD28- or phorbol myristate acetate (PMA) and ionomycin (ION)-mediated activation of mouse naive CD4+ T cells. Our data showed that SOD3 suppressed the expression of activation-induced surface receptor proteins such as CD25, and CD69, and cytokines production. Similarly, SOD3 was found to reduce CD4+T cells proliferation and suppress the activation of downstream pathways such as ERK, p38, and NF-κB. Moreover, naïve CD4+T cells isolated from global SOD3 knock-out mice showed higher expression of CD25, CD69, and CD71, IL-2 production, proliferation, and downstream signals compared to wild-type CD4+T cells. Whereas, the use of DETCA, a known inhibitor of SOD3 activity, found to nullify the inhibitory effect of SOD3 on CD4+T cell activation of both SOD3 KO and wild-type mice. Furthermore, the expression of surface receptor proteins, IL-2 production, and downstream signals were also reduced in Th2 and Th17 differentiated cells upon SOD3 treatment. Overall, our data showed that SOD3 can attenuate CD4+T cell activation through modulation of the downstream signalings and restrict CD4+T cell differentiation. Therefore, SOD3 can be a promising therapeutic for T cell-mediated disorders.
Collapse
Affiliation(s)
- Gaurav Agrahari
- Laboratory of Dermato-Immunology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Shyam Kishor Sah
- Department of Reconstructive Sciences, Center for Regenerative Medicine and Skeletal Development, UConn Health, Farmington, CT, United States
| | - Chul Hwan Bang
- Laboratory of Dermato-Immunology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Yeong Ho Kim
- Laboratory of Dermato-Immunology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Tae-Yoon Kim
- Laboratory of Dermato-Immunology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
48
|
Kim CH, Kim EJ, Nam YK. Superoxide Dismutase Multigene Family from a Primitive Chondrostean Sturgeon, Acipenser baerii: Molecular Characterization, Evolution, and Antioxidant Defense during Development and Pathogen Infection. Antioxidants (Basel) 2021; 10:232. [PMID: 33546486 PMCID: PMC7913737 DOI: 10.3390/antiox10020232] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/16/2022] Open
Abstract
Three distinct superoxide dismutases (SODs)-copper/zinc-SOD (SOD1), manganese-SOD (SOD2), and extracellular copper/zinc-SOD (SOD3)-were identified from a primitive chondrostean fish, Acipenser baerii, enabling the comparison of their transcriptional regulation patterns during development, prelarval ontogeny, and immune stimulation. Each A. baerii SOD isoform (AbSOD) shared conserved structural features with its vertebrate orthologs; however, phylogenetic analyses hypothesized a different evolutionary history for AbSOD3 relative to AbSOD1 and AbSOD2 in the vertebrate lineage. The AbSOD isoforms showed different tissue distribution patterns; AbSOD1 was predominantly expressed in most tissues. The expression of the AbSOD isoforms showed isoform-dependent dynamic modulation according to embryonic development and prelarval ontogenic behaviors. Prelarval microinjections revealed that lipopolysaccharide only induced AbSOD3 expression, while Aeromonas hydrophila induced the expression of AbSOD2 and AbSOD3. In fingerlings, the transcriptional response of each AbSOD isoform to bacterial infection was highly tissue-specific, and the three isoforms exhibited different response patterns within a given tissue type; AbSOD3 was induced the most sensitively, and its induction was the most pronounced in the kidneys and skin. Collectively, these findings suggest isoform-dependent roles for the multigene SOD family in antioxidant defenses against the oxidative stress associated with development and immune responses in these endangered sturgeon fish.
Collapse
Affiliation(s)
| | | | - Yoon Kwon Nam
- Department of Marine Bio-Materials and Aquaculture, College of Fisheries Sciences, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Korea; (C.-H.K.); (E.J.K.)
| |
Collapse
|
49
|
Kunene SC, Lin KS, Mdlovu NV, Shih WC. Bioaccumulation of trace metals and speciation of copper and zinc in Pacific oysters (Crassostrea gigas) using XANES/EXAFS spectroscopies. CHEMOSPHERE 2021; 265:129067. [PMID: 33246704 DOI: 10.1016/j.chemosphere.2020.129067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 06/11/2023]
Abstract
Copper (Cu) and zinc (Zn) concentrations in oyster soft tissues can be particularly high due to contamination, leading to extremely green/blue colors. This raises key questions regarding the behavior and speciation of trace metals in oyster soft tissues. This study investigated trace metal concentration profiles of contaminated Pacific oyster (Crassostrea gigas) soft tissues collected from trace metal-contaminated coastal area of Xiangshan District using inductively coupled plasma optical emission spectrometry (ICP-OES), energy dispersive X-ray (EDX), Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). Moreover, Cu and Zn speciation in contaminated and non-contaminated oyster soft tissues were investigated by X-ray absorption near edge structure spectroscopy/extended X-ray absorption fine structure (XANES/EXAFS) spectroscopic methods. The contents of Cu (1,100-1,400 mg/kg) and Zn (500-700 mg/kg) dry weight were high in oyster soft tissue samples. The XANES/EXAFS results revealed that Cu and Zn existed primarily as copper (II) oxide (CuO) and zinc oxide (ZnO) in contaminated oysters. Furthermore, Cu and Zn formed clusters with Cu-O and Zn-O interatomic distances of 1.97 and 2.21 Å, (coordination numbers 1.0 and 5.6), respectively. In non-contaminated oysters, the less abundant Cu and Zn existed mainly as copper(I) sulfide (Cu2S) and zinc sulfide (ZnS) forming clusters with Cu-S and Zn-S (thiolates) bond distances of 2.09 and 1.23 Å (coordination numbers of 4.6 and 2.4). These results provide further understanding on the chemical speciation of Cu and Zn in contaminated and non-contaminated oyster soft tissues as well as the bioaccumulation of trace metals in the oyster soft tissues.
Collapse
Affiliation(s)
- Sikhumbuzo Charles Kunene
- Department of Chemical Engineering and Materials Science/Environmental Technology Research Center, Yuan Ze University, Chung-Li District, Taoyuan City, 32003, Taiwan.
| | - Kuen-Song Lin
- Department of Chemical Engineering and Materials Science/Environmental Technology Research Center, Yuan Ze University, Chung-Li District, Taoyuan City, 32003, Taiwan.
| | - Ndumiso Vukile Mdlovu
- Department of Chemical Engineering and Materials Science/Environmental Technology Research Center, Yuan Ze University, Chung-Li District, Taoyuan City, 32003, Taiwan.
| | - Wei-Cheng Shih
- Department of Chemical Engineering and Materials Science/Environmental Technology Research Center, Yuan Ze University, Chung-Li District, Taoyuan City, 32003, Taiwan.
| |
Collapse
|
50
|
Vona R, Pallotta L, Cappelletti M, Severi C, Matarrese P. The Impact of Oxidative Stress in Human Pathology: Focus on Gastrointestinal Disorders. Antioxidants (Basel) 2021; 10:201. [PMID: 33573222 PMCID: PMC7910878 DOI: 10.3390/antiox10020201] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/15/2022] Open
Abstract
Accumulating evidence shows that oxidative stress plays an essential role in the pathogenesis and progression of many diseases. The imbalance between the production of reactive oxygen species (ROS) and the antioxidant systems has been extensively studied in pulmonary, neurodegenerative cardiovascular disorders; however, its contribution is still debated in gastrointestinal disorders. Evidence suggests that oxidative stress affects gastrointestinal motility in obesity, and post-infectious disorders by favoring the smooth muscle phenotypic switch toward a synthetic phenotype. The aim of this review is to gain insight into the role played by oxidative stress in gastrointestinal pathologies (GIT), and the involvement of ROS in the signaling underlying the muscular alterations of the gastrointestinal tract (GIT). In addition, potential therapeutic strategies based on the use of antioxidants for the treatment of inflammatory gastrointestinal diseases are reviewed and discussed. Although substantial progress has been made in identifying new techniques capable of assessing the presence of oxidative stress in humans, the biochemical-molecular mechanisms underlying GIT mucosal disorders are not yet well defined. Therefore, further studies are needed to clarify the mechanisms through which oxidative stress-related signaling can contribute to the alteration of the GIT mucosa in order to devise effective preventive and curative therapeutic strategies.
Collapse
Affiliation(s)
- Rosa Vona
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Lucia Pallotta
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy; (L.P.); (M.C.); (C.S.)
| | - Martina Cappelletti
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy; (L.P.); (M.C.); (C.S.)
| | - Carola Severi
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy; (L.P.); (M.C.); (C.S.)
| | - Paola Matarrese
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| |
Collapse
|