1
|
Mitchell JD, Peterson LR. ASO Author Reflections: Plasma Ceramide Levels Aid in Prognosis in Pancreatic Ductal Adenocarcinoma. Ann Surg Oncol 2025:10.1245/s10434-025-17274-0. [PMID: 40185980 DOI: 10.1245/s10434-025-17274-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/16/2025] [Indexed: 04/07/2025]
Affiliation(s)
- Joshua D Mitchell
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Linda R Peterson
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
2
|
Gaggini M, Suman AF, Vassalle C. Ceramide in Coronary Artery Disease: Troublesome or Helpful Future Tools in the Assessment of Risk Prediction and Therapy Effectiveness? Metabolites 2025; 15:168. [PMID: 40137133 PMCID: PMC11943838 DOI: 10.3390/metabo15030168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025] Open
Abstract
Lipids are a complex entity of different molecules, among which ceramides (Cers), ubiquitous sphingolipids with remarkable biological activity, can represent a potential additive biomarker that can be used to better understand the underlying mechanisms which drive the onset and development of atherosclerotic damage and plaque vulnerability and facilitate coronary disease management, as possible risk/prognostic biomarkers and targets for therapeutic intervention. Accordingly, this review aims to discuss the available results on the role Cersplay in contributing to atherosclerosis development and acute coronary event precipitation, their impact on complications and adverse prognosis, as well as the impact of treatment options in modulating Cerlevels.
Collapse
Affiliation(s)
- Melania Gaggini
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (M.G.); (A.F.S.)
| | - Adrian Florentin Suman
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (M.G.); (A.F.S.)
| | - Cristina Vassalle
- Fondazione CNR-Regione Toscana G Monasterio, Via G. Moruzzi 1, 56124 Pisa, Italy
| |
Collapse
|
3
|
Lassallette E, Pierron A, Tardieu D, Reymondaud S, Gallissot M, Rodriguez MA, Collén PN, Roy O, Guerre P. Biomarkers of Fumonisin Exposure in Pigs Fed the Maximum Recommended Level in Europe. Toxins (Basel) 2025; 17:69. [PMID: 39998086 PMCID: PMC11861712 DOI: 10.3390/toxins17020069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/24/2025] [Accepted: 02/01/2025] [Indexed: 02/26/2025] Open
Abstract
This study investigated biomarkers of fumonisin exposure in pigs fed diets contaminated with fumonisins at the European Union's maximum recommended level. Pigs were assigned to either a fumonisin (FB) diet or a fumonisin plus AlgoClay (FB + AC) diet for durations of 4, 9, and 14 days. At 14 days, the plasma Sa1P:So1P ratio increased in pigs fed the FB diet, while the Sa:So ratio remained unchanged. In the liver, FB1 was detected at four days of exposure, with the concentration tending to increase through day 14. The Sa:So and C22-24:C16 ratios of 18:1-, 18:2-, and m18:1-ceramides were elevated at 9 and 14 days, respectively. In the kidneys, FB1 was only detectable at 14 days, and the Sa:So and C22-24:C16 ratios of 18:1-ceramides were increased. In both the liver and kidneys, the increase in the C22-24:C16 ratio was attributed to a reduction of C16 ceramides. In the lungs, no FB1 was detected; however, the Sa:So and Sa1P:So1P ratios increased, and C16 ceramide concentrations decreased at 14 days. Feeding the pigs the FB + AC diet resulted in a reduction of the FB1 tissue-to-feed ratio in the liver and kidneys but did not affect the Sa:So or Sa1P:So1P ratios. Interestingly, the decreases in C16 ceramides observed in the FB diet group were no longer detectable in the FB + AC group. Overall, these findings highlight the complexity of the relationship between FB1 tissue concentrations and sphingolipid changes, suggesting that a comprehensive analysis of multiple biomarkers is required to fully understand fumonisin's effects.
Collapse
Affiliation(s)
- Elodie Lassallette
- National Veterinary School of Toulouse, ENVT, Université de Toulouse, 31076 Toulouse, France; (E.L.); (A.P.); (D.T.); (S.R.)
- Olmix S.A., ZA du Haut du Bois, 56580 Bréhan, France; (M.G.); (M.A.R.); (P.N.C.)
| | - Alix Pierron
- National Veterinary School of Toulouse, ENVT, Université de Toulouse, 31076 Toulouse, France; (E.L.); (A.P.); (D.T.); (S.R.)
| | - Didier Tardieu
- National Veterinary School of Toulouse, ENVT, Université de Toulouse, 31076 Toulouse, France; (E.L.); (A.P.); (D.T.); (S.R.)
| | - Solène Reymondaud
- National Veterinary School of Toulouse, ENVT, Université de Toulouse, 31076 Toulouse, France; (E.L.); (A.P.); (D.T.); (S.R.)
| | - Marie Gallissot
- Olmix S.A., ZA du Haut du Bois, 56580 Bréhan, France; (M.G.); (M.A.R.); (P.N.C.)
| | | | - Pi Nyvall Collén
- Olmix S.A., ZA du Haut du Bois, 56580 Bréhan, France; (M.G.); (M.A.R.); (P.N.C.)
| | - Olivier Roy
- Cebiphar, 1 Rue de la Bodinière, 37230 Fondettes, France;
| | - Philippe Guerre
- National Veterinary School of Toulouse, ENVT, Université de Toulouse, 31076 Toulouse, France; (E.L.); (A.P.); (D.T.); (S.R.)
| |
Collapse
|
4
|
Mitchell JD, Panni U, Fergestrom N, Toriola AT, Nywening TM, Goedegebuure SP, Jiang X, Mudd JL, Cao Y, Ippolito J, Fields RC, Hawkins WG, Peterson LR. Plasma Ceramide C24:0/C16:0 Ratio is Associated with Improved Survival in Patients with Pancreatic Ductal Adenocarcinoma. Ann Surg Oncol 2024; 31:8725-8733. [PMID: 39306621 PMCID: PMC11616724 DOI: 10.1245/s10434-024-16245-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/10/2024] [Indexed: 11/10/2024]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) has a high fatality rate, with surgery as the only curative treatment. Identification of new biomarkers related to survival may help guide discovery of new pathophysiologic pathways and potential therapeutic targets. As long-chain ceramides have been linked to tumor proliferation, we sought to determine if ceramide levels were prognostic in PDAC. METHODS Patients from two phase I studies of PDAC were followed for all-cause mortality. Ceramide levels (C24:0, C22:0, and C16:0) were quantified before treatment and at study intervals. Multivariable Cox regression models assessed the association of ceramide levels and mortality after adjusting for other univariable predictors, including time-dependent tumor resection. The ability of repeated ceramide measures to discriminate patients at risk for mortality was also assessed using multivariable modeling and the c-statistic. RESULTS Higher plasma C16:0 concentration was associated with higher all-cause mortality in univariable and multivariable analysis (adjusted hazard ratio [aHR] 1.41, 95% confidence interval [CI] 1.09-1.82; p < 0.01). In contrast, a higher plasma C24:0/C16:0 ratio was associated with lower all-cause mortality in multivariable analysis (aHR 0.69, 95% CI 0.49-0.97; p = 0.032). Discrimination of mortality was significantly improved with the addition of either plasma C16:0 or C24:0/C16:0 levels, with optimal discrimination occurring using repeated measures of the C24:0/C16:0 ratio (c-statistic 0.73 vs. c-statistic 0.66; p < 0.001). CONCLUSIONS Higher plasma C16:0 and lower C24:0/C16:0 ratios are independently associated with mortality in PDAC and show an ability to improve discrimination of mortality in this deadly disease. Further studies are needed to confirm this association and evaluate this novel pathway for potential therapeutic targets.
Collapse
Affiliation(s)
- Joshua D Mitchell
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Alvin J Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Usman Panni
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Nicole Fergestrom
- Center for Advancing Population Science, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Adetunji T Toriola
- Alvin J Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Timothy M Nywening
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - S Peter Goedegebuure
- Alvin J Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Xuntian Jiang
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jacqueline L Mudd
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Yin Cao
- Alvin J Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Joseph Ippolito
- Alvin J Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Ryan C Fields
- Alvin J Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - William G Hawkins
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Linda R Peterson
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
5
|
Merz N, Hartel JC, Grösch S. How ceramides affect the development of colon cancer: from normal colon to carcinoma. Pflugers Arch 2024; 476:1803-1816. [PMID: 38635059 PMCID: PMC11582153 DOI: 10.1007/s00424-024-02960-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/16/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024]
Abstract
The integrity of the colon and the development of colon cancer depend on the sphingolipid balance in colon epithelial cells. In this review, we summarize the current knowledge on how ceramides and their complex derivatives influence normal colon development and colon cancer development. Ceramides, glucosylceramides and sphingomyelin are essential membrane components and, due to their biophysical properties, can influence the activation of membrane proteins, affecting protein-protein interactions and downstream signalling pathways. Here, we review the cellular mechanisms known to be affected by ceramides and their effects on colon development. We also describe which ceramides are deregulated during colorectal carcinogenesis, the molecular mechanisms involved in ceramide deregulation and how this affects carcinogenesis. Finally, we review new methods that are now state of the art for studying lipid-protein interactions in the physiological environment.
Collapse
Affiliation(s)
- Nadine Merz
- Goethe-University Frankfurt, Institute of Clinical Pharmacology, Theodor Stern Kai 7, 60590, Frankfurt, Germany
| | - Jennifer Christina Hartel
- Goethe-University Frankfurt, Institute of Clinical Pharmacology, Theodor Stern Kai 7, 60590, Frankfurt, Germany
| | - Sabine Grösch
- Goethe-University Frankfurt, Institute of Clinical Pharmacology, Theodor Stern Kai 7, 60590, Frankfurt, Germany.
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596, Frankfurt Am Main, Germany.
| |
Collapse
|
6
|
Yan K, Zhang W, Song H, Xu X. Sphingolipid metabolism and regulated cell death in malignant melanoma. Apoptosis 2024; 29:1860-1878. [PMID: 39068623 DOI: 10.1007/s10495-024-02002-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2024] [Indexed: 07/30/2024]
Abstract
Malignant melanoma (MM) is a highly invasive and therapeutically resistant skin malignancy, posing a significant clinical challenge in its treatment. Programmed cell death plays a crucial role in the occurrence and progression of MM. Sphingolipids (SP), as a class of bioactive lipids, may be associated with many kinds of diseases. SPs regulate various forms of programmed cell death in tumors, including apoptosis, necroptosis, ferroptosis, and more. This review will delve into the mechanisms by which different types of SPs modulate various forms of programmed cell death in MM, such as their regulation of cell membrane permeability and signaling pathways, and how they influence the survival and death fate of MM cells. An in-depth exploration of the role of SPs in programmed cell death in MM aids in unraveling the molecular mechanisms of melanoma development and holds significant importance in developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Kexin Yan
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China
| | - Wei Zhang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China
| | - Hao Song
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China.
| | - Xiulian Xu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China.
| |
Collapse
|
7
|
Clark C, Barzegar Behrooz A, da Silva Rosa SC, Jacobs J, Weng X, Srivastava A, Vitorino R, Ande SR, Ravandi A, Dhingra S, Pecic S, Miller D, Shojaei S, Ghavami S. BCL2L13 Influences Autophagy and Ceramide Metabolism without Affecting Temozolomide Resistance in Glioblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609447. [PMID: 39253475 PMCID: PMC11383306 DOI: 10.1101/2024.08.23.609447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Temozolomide (TMZ) resistance in glioblastoma (GB) poses a significant therapeutic challenge. We developed a TMZ-resistant (TMZ-R) U251 GB model, revealing distinct differences in cell viability, apoptosis, autophagy, and lipid metabolism between TMZ-R and non-resistant (TMZ-NR) cells. TMZ-NR cells exhibited heightened sensitivity to TMZ-induced apoptosis, while TMZ-R cells-maintained viability. Autophagy flux was completely inhibited in TMZ-R cells, indicated by LC3βII and SQSTM1 accumulation. BCL2L13, which showed higher expression in TMZ-R cells, demonstrated increased interaction with Ceramide Synthase 6 (CerS6) and reduced interaction with Ceramide Synthase 2 (CerS2) in TMZ-NR cells. BCL2L13 knockdown (KD) disrupted autophagy flux, decreasing autophagosome accumulation in TMZ-R cells while increasing it in TMZ-NR cells. These changes contributed to altered ceramide profiles, where TMZ-R cells displayed elevated levels of Cer 16:0, 18:0, 20:0, 22:0, 24:0, and 24:1. Our findings highlight BCL2L13 and altered ceramide metabolism as potential therapeutic targets to overcome TMZ resistance in GB.
Collapse
|
8
|
Liu J, Koutalos Y, Fan J. Lack of ceramide synthase 5 protects retinal ganglion cells from ocular hypertensive injury. Exp Eye Res 2024; 247:110061. [PMID: 39182597 PMCID: PMC11392625 DOI: 10.1016/j.exer.2024.110061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/15/2024] [Accepted: 08/23/2024] [Indexed: 08/27/2024]
Abstract
Ceramides with varying acyl-chain lengths can have unique biological actions and hence, cellular responses to ceramides may depend not on their overall concentration but on that of individual ceramide species. The purpose of this study was to determine individual ceramide species impacting retinal ganglion cell (RGC) loss under the ocular hypertensive condition. Induced pluripotent stem cell (iPSC)-derived RGCs and primary cultures of human astrocytes were used to determine the effect of individual ceramide species on both RGC viability and astrocyte secretion of inflammatory cytokines in vitro. In in vivo experiments with wild-type (WT) and ceramide synthase 5 (CerS5) knockout mice, intraocular pressure was unilaterally elevated with microbead injection. Retinal function and morphology were evaluated using pattern electroretinography (pERG) and immunofluorescence, respectively. Ceramide levels were determined by LC-MS/MS analysis. Exposure to C16:0-, C18:0-, C18:1-, C20:0- and C24:0-ceramides significantly reduces RGC viability in vitro, with the very long chain C24:0-ceramide being the most neurotoxic; treatment with C18:0-, C18:1- and C24:0-ceramides stimulates an increase of TNF-α secretion by astrocytes. The retinas of CerS5 KO mice have significantly reduced levels of C16:0- and C18:1-ceramides compared to WT; ocular hypertensive eyes of these mice maintain higher pERG amplitudes and RGC numbers compared to WT. Individual ceramides with different chain lengths have different effects on RGCs and astrocytes. Our results demonstrate that suppressing C16:0- and C18:1-ceramide species effectively protects RGCs against ocular hypertensive injury. These results provide a basis for targeting specific ceramide species in the treatment of glaucoma.
Collapse
Affiliation(s)
- Jian Liu
- Storm Eye Institute, Medical University of South Carolina, Department of Ophthalmology, 167 Ashley Ave, Charleston, SC, 29425, USA
| | - Yiannis Koutalos
- Storm Eye Institute, Medical University of South Carolina, Department of Ophthalmology, 167 Ashley Ave, Charleston, SC, 29425, USA
| | - Jie Fan
- Storm Eye Institute, Medical University of South Carolina, Department of Ophthalmology, 167 Ashley Ave, Charleston, SC, 29425, USA.
| |
Collapse
|
9
|
Yadav AK, MacNeill JJ, Krylov A, Ashrafi N, Mimi RA, Saxena R, Liu S, Graham SF, Wan J, Morral N. Sex- and age-associated factors drive the pathophysiology of MASLD. Hepatol Commun 2024; 8:e0523. [PMID: 39185904 PMCID: PMC11357696 DOI: 10.1097/hc9.0000000000000523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/08/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is strongly associated with obesity. Sex and age affect MASLD prevalence and pathophysiology. The use of animal models fed Western-style diets is vital for investigating the molecular mechanisms contributing to metabolic dysregulation and for facilitating novel drug target identification. However, the sex-associated and age-associated mechanisms underlying the pathophysiology remain poorly understood. This knowledge gap limits the development of personalized sex-specific and age-specific drug treatments. METHODS Young (7 wk) and aged (52 wk) male and female mice were fed a high-fat diet (HFD) or low-fat diet. Liver metabolome (>600 molecules) and transcriptome profiles were analyzed. RESULTS Male and female mice fed an HFD developed obesity, glucose intolerance, and hepatic steatosis. However, fasting blood glucose, insulin, and serum alanine aminotransferase levels were higher in males fed an HFD, indicating a more severe metabolic disease. In addition, males showed significant increases in liver diacylglycerides and glycosylceramides (known mediators of insulin resistance and fibrosis), and more changes in the transcriptome: extracellular matrix organization and proinflammatory genes were elevated only in males. In contrast, no major increase in damaging lipid classes was observed in females fed an HFD. However, aging affected the liver to a greater extent in females. Acylcarnitine levels were significantly reduced, suggestive of changes in fatty acid oxidation, and broad changes in the transcriptome were observed, including reduced oxidative stress response gene expression and alterations in lipid partitioning genes. CONCLUSIONS Here, we show distinct responses to an HFD between males and females. Our study underscores the need for using both sexes in drug target identification studies, and characterizing the molecular mechanisms contributing to the MASLD pathophysiology in aging animals.
Collapse
Affiliation(s)
- Ajay K. Yadav
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Justin J. MacNeill
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Aleksei Krylov
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nadia Ashrafi
- Metabolomics Department, Corewell Health Research Institute, Royal Oak, Michigan, USA
- Corewell Health William Beaumont University Hospital, Royal Oak, Michigan, USA
| | - Romana Ashrafi Mimi
- Metabolomics Department, Corewell Health Research Institute, Royal Oak, Michigan, USA
- Corewell Health William Beaumont University Hospital, Royal Oak, Michigan, USA
| | - Romil Saxena
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Stewart F. Graham
- Metabolomics Department, Corewell Health Research Institute, Royal Oak, Michigan, USA
- Corewell Health William Beaumont University Hospital, Royal Oak, Michigan, USA
- Oakland University-William Beaumont School of Medicine, Rochester, Michigan USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Núria Morral
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
10
|
Wang H, Zhao M, Chen G, Lin Y, Kang D, Yu L. Identifying MSMO1, ELOVL6, AACS, and CERS2 related to lipid metabolism as biomarkers of Parkinson's disease. Sci Rep 2024; 14:17478. [PMID: 39080336 PMCID: PMC11289109 DOI: 10.1038/s41598-024-68585-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024] Open
Abstract
The mechanisms underlying lipid metabolic disorders in Parkinson's diseases (PD) remain unclear. Weighted Gene Co-Expression Network Analysis (WGCNA) was conducted to identify PD-related modular genes and differentially expressed genes (DEGs). Lipid metabolism-related genes (LMRGs) were extracted from Molecular Signatures Database. Candidate genes were assessed with overlapping modular genes, DEGs, and LMRGs for the purpose of building protein-protein interaction (PPI) networks. Then, biomarkers were generated by machine learning and Backpropagation Neural Network development according to candidate genes. Biomarker-based enrichment and network modulation analyses were executed to investigate related signaling pathways. Following dimensionality reduction clustering and annotation, scRNA-seq was submitted to cellular interactions and trajectory analysis to analyze regulatory mechanisms of critical cells. Finally, qRT-PCR was conducted to confirm the expression of biomarkers in PD patients. Four biomarkers (MSMO1, ELOVL6, AACS, and CERS2) were obtained and highly predictive after analysis mentioned above. Then, OPC, Oli, and Neu cells were the primary expression sites for biomarkers according to scRNA-seq studies. Finally, we confirmed mRNA of MSMO1, ELOVL6 and AACS were downregulated in PD patients comparing with control, while CERS2 was upregulated. In conclusion, MSMO1, ELOVL6, AACS, and CERS2 related to LMRGs could be new biomarkers for diagnosing and treating PD.
Collapse
Affiliation(s)
- Huiqing Wang
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Mingpei Zhao
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Guorong Chen
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yuanxiang Lin
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Dezhi Kang
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| | - Lianghong Yu
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
11
|
Jing R, Fu M, Huang Y, Zhang K, Ye J, Gong F, Jihea Ali Naji Nasser AB, Xu X, Xiao J, Yu G, Lin S, Zhao W, Xu N, Li X, Li Z, Gao S. Oat β-glucan repairs the epidermal barrier by upregulating the levels of epidermal differentiation, cell-cell junctions and lipids via Dectin-1. Br J Pharmacol 2024; 181:1596-1613. [PMID: 38124222 DOI: 10.1111/bph.16306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/07/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND AND PURPOSE Oat β-glucan could ameliorate epidermal hyperplasia and accelerate epidermal barrier repair. Dectin-1 is one of the receptors of β-glucan and many biological functions of β-glucan are mediated by Dectin-1. Dectin-1 promotes wound healing through regulating the proliferation and migration of skin cells. Thus, this study aimed to investigate the role of oat β-glucan and Dectin-1 in epidermal barrier repair. EXPERIMENTAL APPROACH To investigate the role of Dectin-1 in the epidermal barrier, indicators associated with the recovery of a damaged epidermal barrier, including histopathological changes, keratinization, proliferation, apoptosis, differentiation, cell-cell junctions and lipid content were compared between WT and Dectin-1-/- mice. Further, the effect of oat β-glucan on the disruption of the epidermal barrier was also compared between WT and Dectin-1-/- mice. KEY RESULTS Dectin-1 deficiency resulted in delayed recovery and marked keratinization, as well as abnormal levels of keratinocyte differentiation, cell-cell junctions and lipid synthesis during the restoration of the epidermal barrier. Oat β-glucan significantly reduces epidermal hyperplasia, promotes epidermal differentiation, increases cell-cell junction expression, promotes lipid synthesis and ultimately accelerates the recovery of damaged epidermal barriers via Dectin-1. Oat β-glucan could promote CaS receptor expression and activate the PPAR-γ signalling pathway via Dectin-1. CONCLUSION AND IMPLICATIONS Oat β-glucan promote the recovery of damaged epidermal barriers through promoting epidermal differentiation, increasing the expression of cell-cell junctions and lipid synthesis through Dectin-1. Dectin-1 deficiency delay the recovery of epidermal barriers, which indicated that Dectin-1 may be a potential target in epidermal barrier repair.
Collapse
Affiliation(s)
- Rongrong Jing
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Mengli Fu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Yuhan Huang
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kaini Zhang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Jiabin Ye
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Fanghua Gong
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | | | - Xiashun Xu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Jiali Xiao
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Guangdong Yu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Shisheng Lin
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Wengang Zhao
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Nuo Xu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhiming Li
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shuang Gao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
12
|
Ko JY, Kim MY, Jeon JY, Jung JY, Han YH, Kim JH. Syntheses of the ω-pyridinium-containing very-long-chain ceramides PyrCer(24:1(15Z)) and PyrCer(24:0) and their anticancer activity. Bioorg Med Chem Lett 2024; 98:129585. [PMID: 38086468 DOI: 10.1016/j.bmcl.2023.129585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/22/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Ceramides, crucial sphingolipids in cellular biology, play various roles ranging from structural membrane integrity to signaling pathway regulation. Structurally, a ceramide consists of a fatty acid connected to a sphingoid base. The characteristics of the fatty acid chain, including length and saturation, determine the physiological properties of the ceramide. Ceramides typically fall into the following categories based on chain length: medium, long, very-long, and ultra-long. Among them, two very-long-chain ceramides, Cer(24:1(15Z)) and Cer(24:0), have been extensively studied, and they are known for their regulatory functions. However, the hydrophobic natures of ceramides, arising from their long hydrocarbon chain impedes their solubilities and levels of cellular delivery. Although ω-pyridinium ceramide analogs (ω-PyrCers) have been developed to address this issue, ω-PyrCers with very-long fatty acid chains or unsaturation have not been developed, presumably due to limited access to the corresponding ω-bromo fatty acids required in their syntheses. In this study, we prepared the ω-PyrCers of Cer(24:1(15Z)) and Cer(24:0), PyrCer(24:1(15Z)) and PyrCer(24:0), respectively. The key in the synthesis is the Wittig reaction to prepare the ω-bromo fatty acid with an appropriate chain length and (Z)-double bond position. Preliminary evaluation of the PyrCer(24:1(15Z)) and PyrCer(24:0) revealed their potential in hepatocellular carcinoma treatment.
Collapse
Affiliation(s)
- Ju Young Ko
- Department of Global Innovative Drugs, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Mi-Yeon Kim
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ji-Yoon Jeon
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jin Yi Jung
- Department of Global Innovative Drugs, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yong-Hyun Han
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea; Multidimensional Genomics Research Center, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Jae Hyun Kim
- Department of Global Innovative Drugs, Chung-Ang University, Seoul 06974, Republic of Korea; College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea.
| |
Collapse
|
13
|
El Hindi K, Brachtendorf S, Hartel JC, Renné C, Birod K, Schilling K, Labocha S, Thomas D, Ferreirós N, Hahnefeld L, Dorochow E, Del Turco D, Deller T, Scholich K, Fuhrmann DC, Weigert A, Brüne B, Geisslinger G, Wittig I, Link KH, Grösch S. Hypoxia induced deregulation of sphingolipids in colon cancer is a prognostic marker for patient outcome. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166906. [PMID: 37802156 DOI: 10.1016/j.bbadis.2023.166906] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/08/2023]
Abstract
Sphingolipids are important for the physicochemical properties of cellular membranes and deregulated in tumors. In human colon cancer tissue ceramide synthase (CerS) 4 and CerS5 are reduced which correlates with a reduced survival probability of late-stage colon cancer patients. Both enzymes are reduced after hypoxia in advanced colorectal cancer (CRC) cells (HCT-116, SW620) but not in non-metastatic CRC cells (SW480, Caco-2). Downregulation of CerS4 or CerS5 in advanced CRC cells enhanced tumor formation in nude mice and organoid growth in vitro. This was accompanied by an enhanced proliferation rate and metabolic changes leading to a shift towards the Warburg effect. In contrast, CerS4 or CerS5 depletion in Caco-2 cells reduced tumor growth in vivo. Lipidomic and proteomic analysis of membrane fractions revealed significant changes in tumor-promoting cellular pathways and cellular transporters. This study identifies CerS4 and CerS5 as prognostic markers for advanced colon cancer patients and provides a comprehensive overview about the associated cellular metabolic changes. We propose that the expression level of CerS4 and CerS5 in colon tumors could serve as a basis for decision-making for personalized treatment of advanced colon cancer patients. Trial registration: The study was accredited by the study board of the Deutsche Krebsgesellschaft (Registration No: St-D203, 2017/06/30, retrospectively registered).
Collapse
Affiliation(s)
- Khadija El Hindi
- Goethe-University Frankfurt, Institute of Clinical Pharmacology, Faculty of Medicine, Theodor Stern Kai 7, 60590 Frankfurt, Germany
| | - Sebastian Brachtendorf
- Goethe-University Frankfurt, Institute of Clinical Pharmacology, Faculty of Medicine, Theodor Stern Kai 7, 60590 Frankfurt, Germany
| | - Jennifer C Hartel
- Goethe-University Frankfurt, Institute of Clinical Pharmacology, Faculty of Medicine, Theodor Stern Kai 7, 60590 Frankfurt, Germany; Goethe-University Frankfurt, Department of Life Sciences, 60590 Frankfurt, Germany
| | - Christoph Renné
- Institute of Pathology and Cytology, Group Practice Wiesbaden, Germany
| | - Kerstin Birod
- Goethe-University Frankfurt, Institute of Clinical Pharmacology, Faculty of Medicine, Theodor Stern Kai 7, 60590 Frankfurt, Germany
| | - Karin Schilling
- Goethe-University Frankfurt, Institute of Clinical Pharmacology, Faculty of Medicine, Theodor Stern Kai 7, 60590 Frankfurt, Germany
| | - Sandra Labocha
- Goethe-University Frankfurt, Institute of Clinical Pharmacology, Faculty of Medicine, Theodor Stern Kai 7, 60590 Frankfurt, Germany
| | - Dominique Thomas
- Goethe-University Frankfurt, Institute of Clinical Pharmacology, Faculty of Medicine, Theodor Stern Kai 7, 60590 Frankfurt, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Nerea Ferreirós
- Goethe-University Frankfurt, Institute of Clinical Pharmacology, Faculty of Medicine, Theodor Stern Kai 7, 60590 Frankfurt, Germany
| | - Lisa Hahnefeld
- Goethe-University Frankfurt, Institute of Clinical Pharmacology, Faculty of Medicine, Theodor Stern Kai 7, 60590 Frankfurt, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Erika Dorochow
- Goethe-University Frankfurt, Institute of Clinical Pharmacology, Faculty of Medicine, Theodor Stern Kai 7, 60590 Frankfurt, Germany
| | - Domenico Del Turco
- Goethe-University Frankfurt, Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Faculty of Medicine, Theodor Stern Kai 7, 60596 Frankfurt am Main, Germany
| | - Thomas Deller
- Goethe-University Frankfurt, Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Faculty of Medicine, Theodor Stern Kai 7, 60596 Frankfurt am Main, Germany
| | - Klaus Scholich
- Goethe-University Frankfurt, Institute of Clinical Pharmacology, Faculty of Medicine, Theodor Stern Kai 7, 60590 Frankfurt, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Dominik C Fuhrmann
- Goethe-University Frankfurt, Institute of Biochemistry I, Faculty of Medicine, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany
| | - Andreas Weigert
- Goethe-University Frankfurt, Institute of Biochemistry I, Faculty of Medicine, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany
| | - Bernhard Brüne
- Goethe-University Frankfurt, Institute of Biochemistry I, Faculty of Medicine, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany
| | - Gerd Geisslinger
- Goethe-University Frankfurt, Institute of Clinical Pharmacology, Faculty of Medicine, Theodor Stern Kai 7, 60590 Frankfurt, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Ilka Wittig
- Goethe-University Frankfurt, Functional Proteomics, Institute of Cardiovascular Physiology, Faculty of Medicine, Frankfurt am Main, Germany
| | - Karl-Heinrich Link
- Asklepios Tumor Center (ATC) and Surgical Center, Asklepios Paulinen Klinik, Wiesbaden 65197, Germany
| | - Sabine Grösch
- Goethe-University Frankfurt, Institute of Clinical Pharmacology, Faculty of Medicine, Theodor Stern Kai 7, 60590 Frankfurt, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany.
| |
Collapse
|
14
|
Bassi R, Dei Cas M, Tringali C, Compostella F, Paroni R, Giussani P. Ceramide Is Involved in Temozolomide Resistance in Human Glioblastoma U87MG Overexpressing EGFR. Int J Mol Sci 2023; 24:15394. [PMID: 37895074 PMCID: PMC10607229 DOI: 10.3390/ijms242015394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most frequent and deadly brain tumor. Many sphingolipids are crucial players in the regulation of glioma cell growth as well as in the response to different chemotherapeutic drugs. In particular, ceramide (Cer) is a tumor suppressor lipid, able to induce antiproliferative and apoptotic responses in different types of tumors including GBM, most of which overexpress the epidermal growth factor receptor variant III (EGFRvIII). In this paper, we investigated whether Cer metabolism is altered in the U87MG human glioma cell line overexpressing EGFRvIII (EGFR+ cells) to elucidate their possible interplay in the mechanisms regulating GBM survival properties and the response to the alkylating agent temozolomide (TMZ). Notably, we demonstrated that a low dose of TMZ significantly increases Cer levels in U87MG cells but slightly in EGFR+ cells (sensitive and resistant to TMZ, respectively). Moreover, the inhibition of the synthesis of complex sphingolipids made EGFR+ cells sensitive to TMZ, thus involving Cer accumulation/removal in TMZ resistance of GBM cells. This suggests that the enhanced resistance of EGFR+ cells to TMZ is dependent on Cer metabolism. Altogether, our results indicate that EGFRvIII expression confers a TMZ-resistance phenotype to U87MG glioma cells by counteracting Cer increase.
Collapse
Affiliation(s)
- Rosaria Bassi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Via Fratelli Cervi, 93, 20090 Segrate, Italy
| | - Michele Dei Cas
- Department of Scienze della Salute, Università degli Studi di Milano, Via di Rudini, 8, 20142 Milan, Italy
| | - Cristina Tringali
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Via Fratelli Cervi, 93, 20090 Segrate, Italy
| | - Federica Compostella
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Via Fratelli Cervi, 93, 20090 Segrate, Italy
| | - Rita Paroni
- Department of Scienze della Salute, Università degli Studi di Milano, Via di Rudini, 8, 20142 Milan, Italy
| | - Paola Giussani
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Via Fratelli Cervi, 93, 20090 Segrate, Italy
| |
Collapse
|
15
|
Boyd AE, Grizzard PJ, Hylton Rorie K, Lima S. Lipidomic Profiling Reveals Biological Differences between Tumors of Self-Identified African Americans and Non-Hispanic Whites with Cancer. Cancers (Basel) 2023; 15:2238. [PMID: 37190166 PMCID: PMC10136787 DOI: 10.3390/cancers15082238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/27/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
In the US, the incidence and mortality of many cancers are disproportionately higher in African Americans (AA). Yet, AA remain poorly represented in molecular studies investigating the roles that biological factors might play in the development, progression, and outcomes of many cancers. Given that sphingolipids, key components of mammalian cellular membranes, have well-established roles in the etiology of cancer progression, malignancy, and responses to therapy, we conducted a robust mass spectrometry analysis of sphingolipids in normal adjacent uninvolved tissues and tumors of self-identified AA and non-Hispanic White (NHW) males with cancers of the lung, colon, liver, and head and neck and of self-identified AA and NHW females with endometrial cancer. In these cancers, AA have worse outcomes than NHW. The goal of our study was to identify biological candidates to be evaluated in future preclinical studies targeting race-specific alterations in the cancers of AA. We have identified that various sphingolipids are altered in race-specific patterns, but more importantly, the ratios of 24- to 16-carbon fatty acyl chain-length ceramides and glucosylceramides are higher in the tumors of AA. As there is evidence that ceramides with 24-carbon fatty acid chain length promote cellular survival and proliferation, whereas 16-carbon chain length promote apoptosis, these results provide important support for future studies tailored to evaluate the potential roles these differences may play in the outcomes of AA with cancer.
Collapse
Affiliation(s)
- April E. Boyd
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Pamela J. Grizzard
- Tissue and Data Acquisition and Analysis Core, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | - Santiago Lima
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA
- Massey Cancer Center, Richmond, VA 23298, USA
| |
Collapse
|
16
|
Xu Y, Pan J, Lin Y, Wu Y, Chen Y, Li H. Ceramide Synthase 1 Inhibits Brain Metastasis of Non-Small Cell Lung Cancer by Interacting with USP14 and Downregulating the PI3K/AKT/mTOR Signaling Pathway. Cancers (Basel) 2023; 15:cancers15071994. [PMID: 37046655 PMCID: PMC10093008 DOI: 10.3390/cancers15071994] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Brain metastasis (BM) is common in patients with non-small cell lung cancer (NSCLC) and is associated with a poor prognosis. Ceramide synthase 1 (CERS1) participates in malignancy development, but its potential role in NSCLC BM remains unclear. This study aimed to explore the physiological effects and molecular mechanism of CERS1 in NSCLC BM. CERS1 expression was evaluated in NSCLC tissues and cell lines, and its physiological roles were subsequently explored in vivo and in vitro. Mass spectrometry and co-immunoprecipitation were performed to explore CERS1-interacting proteins. The associated signaling pathways of CERS1 in NSCLC BM were further investigated using bioinformatics analysis and molecular biotechnology. We demonstrated that CERS1 was significantly downregulated in NSCLC cell lines and BM tissues, and its upregulation was associated with better prognoses. In vitro, CERS1 overexpression inhibited cell migration, invasion, and the ability to penetrate the blood-brain barrier. Moreover, CERS1 interacted with ubiquitin-specific protease 14 (USP14) and inhibited BM progression by downregulating the PI3K/AKT/mTOR signaling pathway. Further, CERS1 expression substantially suppressed BM tumor formation in vivo. This study demonstrated that CERS1 plays a suppressor role in NSCLC BM by interacting with USP14 and downregulating the PI3K/AKT/mTOR signaling pathway, thereby serving as a novel therapeutic target for NSCLC BM.
Collapse
|
17
|
Casadomé-Perales Á, Naya S, Fernández-Martínez E, Mille BG, Guerrero-Valero M, Peinado H, Guix FX, Dotti CG, Palomer E. Neuronal Prosurvival Role of Ceramide Synthase 2 by Olidogendrocyte-to-Neuron Extracellular Vesicle Transfer. Int J Mol Sci 2023; 24:ijms24065986. [PMID: 36983060 PMCID: PMC10052063 DOI: 10.3390/ijms24065986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Ageing is associated with notorious alterations in neurons, i.e., in gene expression, mitochondrial function, membrane degradation or intercellular communication. However, neurons live for the entire lifespan of the individual. One of the reasons why neurons remain functional in elderly people is survival mechanisms prevail over death mechanisms. While many signals are either pro-survival or pro-death, others can play both roles. Extracellular vesicles (EVs) can signal both pro-toxicity and survival. We used young and old animals, primary neuronal and oligodendrocyte cultures and neuroblastoma and oligodendrocytic lines. We analysed our samples using a combination of proteomics and artificial neural networks, biochemistry and immunofluorescence approaches. We found an age-dependent increase in ceramide synthase 2 (CerS2) in cortical EVs, expressed by oligodendrocytes. In addition, we show that CerS2 is present in neurons via the uptake of oligodendrocyte-derived EVs. Finally, we show that age-associated inflammation and metabolic stress favour CerS2 expression and that oligodendrocyte-derived EVs loaded with CerS2 lead to the expression of the antiapoptotic factor Bcl2 in inflammatory conditions. Our study shows that intercellular communication is altered in the ageing brain, which favours neuronal survival through the transfer of oligodendrocyte-derived EVs containing CerS2.
Collapse
Affiliation(s)
- Álvaro Casadomé-Perales
- Molecular Neuropathology Unit, Physiological and Pathological Processes Program, Centro de Biología Molecular Severo Ochoa, CSIC/UAM, 28049 Madrid, Spain
| | - Sara Naya
- Molecular Neuropathology Unit, Physiological and Pathological Processes Program, Centro de Biología Molecular Severo Ochoa, CSIC/UAM, 28049 Madrid, Spain
| | - Elisa Fernández-Martínez
- Molecular Neuropathology Unit, Physiological and Pathological Processes Program, Centro de Biología Molecular Severo Ochoa, CSIC/UAM, 28049 Madrid, Spain
| | - Bea G Mille
- Molecular Neuropathology Unit, Physiological and Pathological Processes Program, Centro de Biología Molecular Severo Ochoa, CSIC/UAM, 28049 Madrid, Spain
| | - Marta Guerrero-Valero
- Molecular Neuropathology Unit, Physiological and Pathological Processes Program, Centro de Biología Molecular Severo Ochoa, CSIC/UAM, 28049 Madrid, Spain
| | - Héctor Peinado
- Microenvironment and Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Francesc X Guix
- Molecular Neuropathology Unit, Physiological and Pathological Processes Program, Centro de Biología Molecular Severo Ochoa, CSIC/UAM, 28049 Madrid, Spain
- Department of Bioengineering, Institut Químic de Sarrià (IQS), Universitat Ramón Llull (URL), 08017 Barcelona, Spain
| | - Carlos G Dotti
- Molecular Neuropathology Unit, Physiological and Pathological Processes Program, Centro de Biología Molecular Severo Ochoa, CSIC/UAM, 28049 Madrid, Spain
| | - Ernest Palomer
- Molecular Neuropathology Unit, Physiological and Pathological Processes Program, Centro de Biología Molecular Severo Ochoa, CSIC/UAM, 28049 Madrid, Spain
| |
Collapse
|
18
|
Fisher-Wellman KH, Kassai M, Hagen JT, Neufer PD, Kester M, Loughran TP, Chalfant CE, Feith DJ, Tan SF, Fox TE, Ung J, Fabrias G, Abad JL, Sharma A, Golla U, Claxton DF, Shaw JJP, Bhowmick D, Cabot MC. Simultaneous Inhibition of Ceramide Hydrolysis and Glycosylation Synergizes to Corrupt Mitochondrial Respiration and Signal Caspase Driven Cell Death in Drug-Resistant Acute Myeloid Leukemia. Cancers (Basel) 2023; 15:1883. [PMID: 36980769 PMCID: PMC10046858 DOI: 10.3390/cancers15061883] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Acute myelogenous leukemia (AML), the most prevalent acute and aggressive leukemia diagnosed in adults, often recurs as a difficult-to-treat, chemotherapy-resistant disease. Because chemotherapy resistance is a major obstacle to successful treatment, novel therapeutic intervention is needed. Upregulated ceramide clearance via accelerated hydrolysis and glycosylation has been shown to be an element in chemotherapy-resistant AML, a problem considering the crucial role ceramide plays in eliciting apoptosis. Herein we employed agents that block ceramide clearance to determine if such a "reset" would be of therapeutic benefit. SACLAC was utilized to limit ceramide hydrolysis, and D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-threo-PDMP) was used to block the glycosylation route. The SACLAC D-threo-PDMP inhibitor combination was synergistically cytotoxic in drug-resistant, P-glycoprotein-expressing (P-gp) AML but not in wt, P-gp-poor cells. Interestingly, P-gp antagonists that can limit ceramide glycosylation via depression of glucosylceramide transit also synergized with SACLAC, suggesting a paradoxical role for P-gp in the implementation of cell death. Mechanistically, cell death was accompanied by a complete drop in ceramide glycosylation, concomitant, striking increases in all molecular species of ceramide, diminished sphingosine 1-phosphate levels, resounding declines in mitochondrial respiratory kinetics, altered Akt, pGSK-3β, and Mcl-1 expression, and caspase activation. Although ceramide was generated in wt cells upon inhibitor exposure, mitochondrial respiration was not corrupted, suggestive of mitochondrial vulnerability in the drug-resistant phenotype, a potential therapeutic avenue. The inhibitor regimen showed efficacy in an in vivo model and in primary AML cells from patients. These results support the implementation of SL enzyme targeting to limit ceramide clearance as a therapeutic strategy in chemotherapy-resistant AML, inclusive of a novel indication for the use of P-gp antagonists.
Collapse
Affiliation(s)
- Kelsey H. Fisher-Wellman
- Department of Integrative Physiology and Metabolism, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27858, USA
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Miki Kassai
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27858, USA
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - James T. Hagen
- Department of Integrative Physiology and Metabolism, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27858, USA
| | - P. Darrell Neufer
- Department of Integrative Physiology and Metabolism, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27858, USA
| | - Mark Kester
- Department of Medicine, Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- University of Virginia Cancer Center, Charlottesville, VA 22908, USA
| | - Thomas P. Loughran
- Department of Medicine, Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- University of Virginia Cancer Center, Charlottesville, VA 22908, USA
| | - Charles E. Chalfant
- Department of Medicine, Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- University of Virginia Cancer Center, Charlottesville, VA 22908, USA
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22903, USA
- Research Service, Richmond Veterans Administration Medical Center, Richmond, VA 23298, USA
| | - David J. Feith
- Department of Medicine, Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- University of Virginia Cancer Center, Charlottesville, VA 22908, USA
| | - Su-Fern Tan
- Department of Medicine, Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Todd E. Fox
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22904, USA
| | - Johnson Ung
- Department of Medicine, Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- University of Virginia Cancer Center, Charlottesville, VA 22908, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Gemma Fabrias
- Research Unit on Bioactive Molecules (RUBAM), Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Jose’ Luis Abad
- Research Unit on Bioactive Molecules (RUBAM), Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Arati Sharma
- Penn State Cancer Institute, Hershey, PA 17033, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Upendarrao Golla
- Penn State Cancer Institute, Hershey, PA 17033, USA
- Division of Hematology and Oncology, Penn State Cancer Institute, Hershey, PA 17033, USA
| | - David F. Claxton
- Division of Hematology and Oncology, Penn State Cancer Institute, Hershey, PA 17033, USA
| | - Jeremy J. P. Shaw
- University of Virginia Cancer Center, Charlottesville, VA 22908, USA
- Department of Experimental Pathology, University of Virginia School of Medicine, Charlottesville, VA 22904, USA
| | - Debajit Bhowmick
- Flow Cytometry Division, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Myles C. Cabot
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27858, USA
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
19
|
Galper J, Kim WS, Dzamko N. LRRK2 and Lipid Pathways: Implications for Parkinson's Disease. Biomolecules 2022; 12:1597. [PMID: 36358947 PMCID: PMC9687231 DOI: 10.3390/biom12111597] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 04/10/2024] Open
Abstract
Genetic alterations in the LRRK2 gene, encoding leucine-rich repeat kinase 2, are a common risk factor for Parkinson's disease. How LRRK2 alterations lead to cell pathology is an area of ongoing investigation, however, multiple lines of evidence suggest a role for LRRK2 in lipid pathways. It is increasingly recognized that in addition to being energy reservoirs and structural entities, some lipids, including neural lipids, participate in signaling cascades. Early investigations revealed that LRRK2 localized to membranous and vesicular structures, suggesting an interaction of LRRK2 and lipids or lipid-associated proteins. LRRK2 substrates from the Rab GTPase family play a critical role in vesicle trafficking, lipid metabolism and lipid storage, all processes which rely on lipid dynamics. In addition, LRRK2 is associated with the phosphorylation and activity of enzymes that catabolize plasma membrane and lysosomal lipids. Furthermore, LRRK2 knockout studies have revealed that blood, brain and urine exhibit lipid level changes, including alterations to sterols, sphingolipids and phospholipids, respectively. In human LRRK2 mutation carriers, changes to sterols, sphingolipids, phospholipids, fatty acyls and glycerolipids are reported in multiple tissues. This review summarizes the evidence regarding associations between LRRK2 and lipids, and the functional consequences of LRRK2-associated lipid changes are discussed.
Collapse
Affiliation(s)
- Jasmin Galper
- Charles Perkins Centre and Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW 2050, Australia
| | - Woojin S Kim
- Brain and Mind Centre and Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW 2050, Australia
| | - Nicolas Dzamko
- Charles Perkins Centre and Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW 2050, Australia
- Brain and Mind Centre and Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW 2050, Australia
| |
Collapse
|
20
|
Metabolites Associated with Memory and Gait: A Systematic Review. Metabolites 2022; 12:metabo12040356. [PMID: 35448544 PMCID: PMC9024701 DOI: 10.3390/metabo12040356] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 01/19/2023] Open
Abstract
We recently found that dual decline in memory and gait speed was consistently associated with an increased risk of dementia compared to decline in memory or gait only or no decline across six aging cohorts. The mechanisms underlying this relationship are unknown. We hypothesize that individuals who experience dual decline may have specific pathophysiological pathways to dementia which can be indicated by specific metabolomic signatures. Here, we summarize blood-based metabolites that are associated with memory and gait from existing literature and discuss their relevant pathways. A total of 39 eligible studies were included in this systematic review. Metabolites that were associated with memory and gait belonged to five shared classes: sphingolipids, fatty acids, phosphatidylcholines, amino acids, and biogenic amines. The sphingolipid metabolism pathway was found to be enriched in both memory and gait impairments. Existing data may suggest that metabolites from sphingolipids and the sphingolipid metabolism pathway are important for both memory and gait impairments. Future studies using empirical data across multiple cohorts are warranted to identify metabolomic signatures of dual decline in memory and gait and to further understand its relationship with future dementia risk.
Collapse
|
21
|
Köhler N, Höring M, Czepukojc B, Rose TD, Buechler C, Kröhler T, Haybaeck J, Liebisch G, Pauling JK, Kessler SM, Kiemer AK. Kupffer cells are protective in alcoholic steatosis. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166398. [DOI: 10.1016/j.bbadis.2022.166398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 11/29/2022]
|
22
|
Guerre P, Travel A, Tardieu D. Targeted Analysis of Sphingolipids in Turkeys Fed Fusariotoxins: First Evidence of Key Changes That Could Help Explain Their Relative Resistance to Fumonisin Toxicity. Int J Mol Sci 2022; 23:2512. [PMID: 35269655 PMCID: PMC8910753 DOI: 10.3390/ijms23052512] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023] Open
Abstract
The effects of fumonisins on sphingolipids in turkeys are unknown, except for the increased sphinganine to sphingosine ratio (Sa:So) used as a biomarker. Fumonisins fed at 20.2 mg/kg for 14 days were responsible for a 4.4 fold increase in the Sa:So ratio and a decrease of 33% and 36% in C14-C16 ceramides and C14-C16 sphingomyelins, respectively, whereas C18-C26 ceramides and C18-C26 sphingomyelins remained unaffected or were increased. Glucosyl- and lactosyl-ceramides paralleled the concentrations of ceramides. Fumonisins also increased dihydroceramides but had no effect on deoxysphinganine. A partial least squfares discriminant analysis revealed that all changes in sphingolipids were important in explaining the effect of fumonisins. Because deoxynivalenol and zearalenone are often found in feed, their effects on sphingolipids alone and in combination with fumonisins were investigated. Feeding 5.12 mg deoxynivalenol/kg reduced dihydroceramides in the liver. Zearalenone fed at 0.47 mg/kg had no effect on sphingolipids. When fusariotoxins were fed simultaneously, the effects on sphingolipids were similar to those observed in turkeys fed fumonisins alone. The concentration of fumonisin B1 in the liver of turkeys fed fumonisins was 0.06 µmol/kg. Changes in sphingolipid concentrations differed but were consistent with the IC50 of fumonisin B1 measured in mammals; these changes could explain the relative resistance of turkeys to fumonisins.
Collapse
Affiliation(s)
- Philippe Guerre
- National Veterinary School of Toulouse, ENVT, Université de Toulouse, F-31076 Toulouse, France
| | | | - Didier Tardieu
- National Veterinary School of Toulouse, ENVT, Université de Toulouse, F-31076 Toulouse, France
| |
Collapse
|
23
|
Lee WK, Maaß M, Quach A, Poscic N, Prangley H, Pallott EC, Kim JL, Pierce JS, Ogretmen B, Futerman AH, Thévenod F. Dependence of ABCB1 transporter expression and function on distinct sphingolipids generated by ceramide synthases-2 and -6 in chemoresistant renal cancer. J Biol Chem 2021; 298:101492. [PMID: 34915026 PMCID: PMC8804196 DOI: 10.1016/j.jbc.2021.101492] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/07/2021] [Indexed: 11/18/2022] Open
Abstract
Oncogenic multidrug resistance is commonly intrinsic to renal cancer based on the physiological expression of detoxification transporters, particularly ABCB1, thus hampering chemotherapy. ABCB1 activity is directly dependent on its lipid microenvironment, localizing to cholesterol- and sphingomyelin (SM)-rich domains. As ceramides are the sole source for SMs, we hypothesized that ceramide synthase (CerS)-derived ceramides regulate ABCB1 activity. Using data from RNA-Seq databases, we found that patient kidney tumors exhibited increased CerS2 mRNA, which was inversely correlated with CerS6 mRNA in ABCB1+ clear cell carcinomas. Endogenous elevated CerS2 and lower CerS5/6 mRNA and protein resulted in disproportionately higher CerS2 to CerS5/6 activities (approximately twofold) in chemoresistant ABCB1high (A498, Caki-1) compared with chemosensitive ABCB1low (ACHN, normal human proximal convoluted tubule cell) cells. In addition, lipidomics analyses by HPLC–MS/MS showed bias toward CerS2-associated C20:0/C20:1-ceramides compared with CerS5/6-associated C14:0/C16:0-ceramides (2:1). SMs were similarly altered. We demonstrated that chemoresistance to doxorubicin in ABCB1high cells was partially reversed by inhibitors of de novo ceramide synthesis (l-cycloserine) and CerS (fumonisin B1) in cell viability assays. Downregulation of CerS2/6, but not CerS5, attenuated ABCB1 mRNA, protein, plasma membrane localization, rhodamine 123+ efflux transport activity, and doxorubicin resistance. Similar findings were observed with catalytically inactive CerS6-H212A. Furthermore, CerS6-targeting siRNA shifted ceramide and SM composition to ultra long-chain species (C22–C26). Inhibitors of endoplasmic reticulum–associated degradation (eeyarestatin I) and the proteasome (MG132, bortezomib) prevented ABCB1 loss induced by CerS2/6 downregulation. We conclude that a critical balance in ceramide/SM species is prerequisite to ABCB1 expression and functionalization, which could be targeted to reverse multidrug resistance in renal cancers.
Collapse
Affiliation(s)
- Wing-Kee Lee
- Institute for Physiology, Pathophysiology and Toxicology, ZBAF, Witten/Herdecke University, Germany; Physiology & Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, Germany.
| | - Michelle Maaß
- Institute for Physiology, Pathophysiology and Toxicology, ZBAF, Witten/Herdecke University, Germany
| | - Amy Quach
- Institute for Physiology, Pathophysiology and Toxicology, ZBAF, Witten/Herdecke University, Germany; Faculty of Life Sciences, University of Manchester, UK
| | - Nataliya Poscic
- Institute for Physiology, Pathophysiology and Toxicology, ZBAF, Witten/Herdecke University, Germany
| | - Holly Prangley
- Institute for Physiology, Pathophysiology and Toxicology, ZBAF, Witten/Herdecke University, Germany; Faculty of Life Sciences, University of Manchester, UK
| | - Erin-Claire Pallott
- Institute for Physiology, Pathophysiology and Toxicology, ZBAF, Witten/Herdecke University, Germany; Faculty of Life Sciences, University of Manchester, UK
| | - Jiyoon L Kim
- Department of Biomolecular Sciences, Weizmann Institute of Science, Israel
| | - Jason S Pierce
- Lipidomics Shared Resource, Medical University of South Carolina, USA
| | - Besim Ogretmen
- Lipidomics Shared Resource, Medical University of South Carolina, USA; Department of Biochemistry and Molecular Biology, Medical University of South Carolina, USA
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Israel
| | - Frank Thévenod
- Institute for Physiology, Pathophysiology and Toxicology, ZBAF, Witten/Herdecke University, Germany
| |
Collapse
|
24
|
Gaggini M, Pingitore A, Vassalle C. Plasma Ceramides Pathophysiology, Measurements, Challenges, and Opportunities. Metabolites 2021; 11:metabo11110719. [PMID: 34822377 PMCID: PMC8622894 DOI: 10.3390/metabo11110719] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 01/22/2023] Open
Abstract
Ceramides are a family of lipid molecules, composed of sphingosine and a fatty acid, and transported by lipoproteins (primarily by low-density lipoproteins) in the bloodstream. They are not only structural lipids, but multifunctional and bioactive molecules with key roles in many important cellular pathways, such as inflammatory processes and apoptosis, representing potential biomarkers of cardiometabolic diseases as well as pharmacological targets. Recent data reported ceramide modulation by diet and aerobic exercise, suggesting nutrients and exercise-targeting sphingolipid pathways as a countermeasure, also in combination with other therapies, for risk and progression of chronic disease prevention and health maintenance. In this review, we focus on the available data regarding remarks on ceramide structure and metabolism, their pathophysiologic roles, and the effect of dietary habit and aerobic exercise on ceramide levels. Moreover, advancements and limitations of lipidomic techniques and simplification attempts to overcome difficulties of interpretation and to facilitate practical applications, such as the proposal of scores, are also discussed.
Collapse
Affiliation(s)
- Melania Gaggini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (M.G.); (A.P.)
| | - Alessandro Pingitore
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (M.G.); (A.P.)
| | - Cristina Vassalle
- Fondazione CNR-Regione Toscana G. Monasterio, Via Moruzzi, 1, 56124 Pisa, Italy
- Correspondence: ; Tel.: +39-050-3153525
| |
Collapse
|
25
|
The unfolding role of ceramide in coordinating retinoid-based cancer therapy. Biochem J 2021; 478:3621-3642. [PMID: 34648006 DOI: 10.1042/bcj20210368] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/30/2022]
Abstract
Sphingolipid-mediated regulation in cancer development and treatment is largely ceramide-centered with the complex sphingolipid metabolic pathways unfolding as attractive targets for anticancer drug discovery. The dynamic interconversion of sphingolipids is tightly controlled at the level of enzymes and cellular compartments in response to endogenous or exogenous stimuli, such as anticancer drugs, including retinoids. Over the past two decades, evidence emerged that retinoids owe part of their potency in cancer therapy to modulation of sphingolipid metabolism and ceramide generation. Ceramide has been proposed as a 'tumor-suppressor lipid' that orchestrates cell growth, cell cycle arrest, cell death, senescence, autophagy, and metastasis. There is accumulating evidence that cancer development is promoted by the dysregulation of tumor-promoting sphingolipids whereas cancer treatments can kill tumor cells by inducing the accumulation of endogenous ceramide levels. Resistance to cancer therapy may develop due to a disrupted equilibrium between the opposing roles of tumor-suppressor and tumor-promoter sphingolipids. Despite the undulating effect and complexity of sphingolipid pathways, there are emerging opportunities for a plethora of enzyme-targeted therapeutic interventions that overcome resistance resulting from perturbed sphingolipid pathways. Here, we have revisited the interconnectivity of sphingolipid metabolism and the instrumental role of ceramide-biosynthetic and degradative enzymes, including bioactive sphingolipid products, how they closely relate to cancer treatment and pathogenesis, and the interplay with retinoid signaling in cancer. We focused on retinoid targeting, alone or in combination, of sphingolipid metabolism nodes in cancer to enhance ceramide-based therapeutics. Retinoid and ceramide-based cancer therapy using novel strategies such as combination treatments, synthetic retinoids, ceramide modulators, and delivery formulations hold promise in the battle against cancer.
Collapse
|
26
|
Acid ceramidase controls apoptosis and increases autophagy in human melanoma cells treated with doxorubicin. Sci Rep 2021; 11:11221. [PMID: 34045496 PMCID: PMC8159975 DOI: 10.1038/s41598-021-90219-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 05/04/2021] [Indexed: 02/04/2023] Open
Abstract
Acid ceramidase (AC) is a lysosomal hydrolase encoded by the ASAH1 gene, which cleaves ceramides into sphingosine and fatty acid. AC is expressed at high levels in most human melanoma cell lines and may confer resistance against chemotherapeutic agents. One such agent, doxorubicin, was shown to increase ceramide levels in melanoma cells. Ceramides contribute to the regulation of autophagy and apoptosis. Here we investigated the impact of AC ablation via CRISPR-Cas9 gene editing on the response of A375 melanoma cells to doxorubicin. We found that doxorubicin activates the autophagic response in wild-type A375 cells, which effectively resist apoptotic cell death. In striking contrast, doxorubicin fails to stimulate autophagy in A375 AC-null cells, which rapidly undergo apoptosis when exposed to the drug. The present work highlights changes that affect melanoma cells during incubation with doxorubicin, in A375 melanoma cells lacking AC. We found that the remarkable reduction in recovery rate after doxorubicin treatment is strictly associated with the impairment of autophagy, that forces the AC-inhibited cells into apoptotic path.
Collapse
|
27
|
Petrick L, Imani P, Perttula K, Yano Y, Whitehead T, Metayer C, Schiffman C, Dolios G, Dudoit S, Rappaport S. Untargeted metabolomics of newborn dried blood spots reveals sex-specific associations with pediatric acute myeloid leukemia. Leuk Res 2021; 106:106585. [PMID: 33971561 PMCID: PMC8275155 DOI: 10.1016/j.leukres.2021.106585] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 04/06/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023]
Abstract
The etiology of pediatric acute myeloid leukemia (AML) is largely unknown, but evidence for mutations in utero and long latency periods suggests that environmental factors play a role. Therefore, we used untargeted metabolomics of archived newborn dried blood spots (DBS) to investigate neonatal exposures as potential causal risk factors for AML. Untargeted metabolomics profiling was performed on DBS punches from 48 pediatric patients with AML and 46 healthy controls as part of the California Childhood Leukemia Study (CCLS). Because sex disparities are suggested by differences in AML incidence rates, metabolite features associated with AML were identified in analyses stratified by sex. There was no overlap between the 16 predictors of AML in females and 15 predictors in males, suggesting that neonatal metabolomic profiles of pediatric AML risk are sex-specific. In females, four predictors of AML were putatively annotated as ceramides, a class of metabolites that has been linked with cancer cell proliferation. In females, two metabolite predictors of AML were strongly correlated with breastfeeding duration, indicating a possible biological link between this putative protective risk factor and childhood leukemia. In males, a heterogeneous metabolite profile of AML predictors was observed. Replication with larger participant numbers is required to validate findings.
Collapse
Affiliation(s)
- Lauren Petrick
- The Institute of Exposomics Research, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Center for Integrative Research on Childhood Leukemia and the Environment, University of California, Berkeley, CA, 94720, USA.
| | - Partow Imani
- Division of Biostatistics, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Kelsi Perttula
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, 94720, USA; Department of Health Sciences, California State University East Bay, Hayward, CA, 94542, USA
| | - Yukiko Yano
- Center for Integrative Research on Childhood Leukemia and the Environment, University of California, Berkeley, CA, 94720, USA; Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Todd Whitehead
- Center for Integrative Research on Childhood Leukemia and the Environment, University of California, Berkeley, CA, 94720, USA; Division of Epidemiology, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Catherine Metayer
- Center for Integrative Research on Childhood Leukemia and the Environment, University of California, Berkeley, CA, 94720, USA; Division of Epidemiology, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Courtney Schiffman
- Division of Biostatistics, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Georgia Dolios
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sandrine Dudoit
- Division of Biostatistics, School of Public Health, University of California, Berkeley, CA, 94720, USA; Department of Statistics, University of California, Berkeley, CA, 94720, USA
| | - Stephen Rappaport
- Center for Integrative Research on Childhood Leukemia and the Environment, University of California, Berkeley, CA, 94720, USA; Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
28
|
Restoration of ceramide de novo synthesis by the synthetic retinoid ST1926 as it induces adult T-cell leukemia cell death. Biosci Rep 2021; 40:226649. [PMID: 33048123 PMCID: PMC7593536 DOI: 10.1042/bsr20200050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 09/21/2020] [Accepted: 09/30/2020] [Indexed: 01/15/2023] Open
Abstract
Ceramide (Cer) is a bioactive cellular lipid with compartmentalized and tightly regulated levels. Distinct metabolic pathways lead to the generation of Cer species with distinguishable roles in oncogenesis. Deregulation of Cer pathways has emerged as an important mechanism for acquired chemotherapeutic resistance. Adult T-cell leukemia (ATL) cells are defective in Cer synthesis. ATL is an aggressive neoplasm that develops following infection with human T-cell lymphotropic virus-1 (HTLV-1) where the viral oncogene Tax contributes to the pathogenesis of the disease. ATL cells, resistant to all-trans-retinoic acid, are sensitive to pharmacologically achievable concentrations of the synthetic retinoid ST1926. We studied the effects of ST1926 on Cer pathways in ATL cells. ST1926 treatment resulted in early Tax oncoprotein degradation in HTLV-1-treated cells. ST1926 induced cell death and a dose- and time-dependent accumulation of Cer in malignant T cells. The kinetics and degree of Cer production showed an early response upon ST1926 treatment. ST1926 enhanced de novo Cer synthesis via activation of ceramide synthase CerS(s) without inhibiting dihydroceramide desaturase, thereby accumulating Cer rather than the less bioactive dihydroceramide. Using labeling experiments with the unnatural 17-carbon sphinganine and measuring the generated Cer species, we showed that ST1926 preferentially induces the activities of a distinct set of CerS(s). We detected a delay in cell death response and interruption of Cer generation in response to ST1926 in Molt-4 cells overexpressing Bcl-2. These results highlight the potential role of ST1926 in inducing Cer levels, thus lowering the threshold for cell death in ATL cells.
Collapse
|
29
|
Song N, Sengupta S, Khoruzhenko S, Welsh RA, Kim A, Kumar MR, Sønder SU, Sidhom JW, Zhang H, Jie C, Siliciano RF, Sadegh-Nasseri S. Multiple genetic programs contribute to CD4 T cell memory differentiation and longevity by maintaining T cell quiescence. Cell Immunol 2020; 357:104210. [PMID: 32987276 PMCID: PMC7737224 DOI: 10.1016/j.cellimm.2020.104210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/14/2020] [Accepted: 08/28/2020] [Indexed: 01/12/2023]
Abstract
While memory T-cells represent a hallmark of adaptive immunity, little is known about the genetic mechanisms regulating the longevity of memory CD4 T cells. Here, we studied the dynamics of gene expression in antigen specific CD4 T cells during infection, memory differentiation, and long-term survival up to nearly a year in mice. We observed that differentiation into long lived memory cells is associated with increased expression of genes inhibiting cell proliferation and apoptosis as well as genes promoting DNA repair response, lipid metabolism, and insulin resistance. We identified several transmembrane proteins in long-lived murine memory CD4 T cells, which co-localized exclusively within the responding antigen-specific memory CD4 T cells in human. The unique gene signatures of long-lived memory CD4 T cells, along with the new markers that we have defined, will enable a deeper understanding of memory CD4 T cell biology and allow for designing novel vaccines and therapeutics.
Collapse
Affiliation(s)
- Nianbin Song
- Department of Pathology, Johns Hopkins University, United States
| | - Srona Sengupta
- The Graduate Program in Immunology, USA; Medical Scientist Training Program, USA
| | - Stanislav Khoruzhenko
- MaxCyte, Inc., Gaithersburg, MD 20878, USA; Department of Pathology, Johns Hopkins University, United States
| | | | - AeRyon Kim
- The Graduate Program in Immunology, USA; Amgen, South San Francisco, CA, USA; Department of Pathology, Johns Hopkins University, United States
| | - Mithra R Kumar
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Søren Ulrik Sønder
- Amerimmune LLC, Fairfax, VA 22030, USA; Department of Pathology, Johns Hopkins University, United States
| | - John-William Sidhom
- Medical Scientist Training Program, USA; Department of Biomedical Engineering, and Bloomberg Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, USA
| | - Hao Zhang
- Department of Molecular Microbiology and Immunology, Johns Hopkins University School of Public Health, Baltimore, MD 21205, USA
| | - Chunfa Jie
- Des Moines University, Des Moines, IA 50312, USA
| | - Robert F Siliciano
- Howard Hughes Medical Institute, Baltimore, MD, USA; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
30
|
Sudhadevi T, Ha AW, Ebenezer DL, Fu P, Putherickal V, Natarajan V, Harijith A. Advancements in understanding the role of lysophospholipids and their receptors in lung disorders including bronchopulmonary dysplasia. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158685. [PMID: 32169655 PMCID: PMC7206974 DOI: 10.1016/j.bbalip.2020.158685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/25/2020] [Accepted: 03/09/2020] [Indexed: 12/14/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is a devastating chronic neonatal lung disease leading to serious adverse consequences. Nearly 15 million babies are born preterm accounting for >1 in 10 births globally. The aetiology of BPD is multifactorial and the survivors suffer lifelong respiratory morbidity. Lysophospholipids (LPL), which include sphingosine-1-phosphate (S1P), and lysophosphatidic acid (LPA) are both naturally occurring bioactive lipids involved in a variety of physiological and pathological processes such as cell survival, death, proliferation, migration, immune responses and vascular development. Altered LPL levels have been observed in a number of lung diseases including BPD, which underscores the importance of these signalling lipids under normal and pathophysiological situations. Due to the paucity of information related to LPLs in BPD, most of the ideas related to BPD and LPL are speculative. This article is intended to promote discussion and generate hypotheses, in addition to the limited review of information related to BPD already established in the literature.
Collapse
Affiliation(s)
- Tara Sudhadevi
- Department of Pediatrics, University of Illinois, Chicago, IL, United States of America
| | - Alison W Ha
- Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, IL, United States of America
| | - David L Ebenezer
- Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, IL, United States of America
| | - Panfeng Fu
- Department of Pharmacology, University of Illinois, Chicago, IL, United States of America
| | - Vijay Putherickal
- Department of Pharmacology, University of Illinois, Chicago, IL, United States of America
| | - Viswanathan Natarajan
- Department of Pharmacology, University of Illinois, Chicago, IL, United States of America; Department of Medicine, University of Illinois, Chicago, IL, United States of America
| | - Anantha Harijith
- Department of Pediatrics, University of Illinois, Chicago, IL, United States of America; Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, IL, United States of America; Department of Pharmacology, University of Illinois, Chicago, IL, United States of America.
| |
Collapse
|
31
|
Urman JM, Herranz JM, Uriarte I, Rullán M, Oyón D, González B, Fernandez-Urién I, Carrascosa J, Bolado F, Zabalza L, Arechederra M, Alvarez-Sola G, Colyn L, Latasa MU, Puchades-Carrasco L, Pineda-Lucena A, Iraburu MJ, Iruarrizaga-Lejarreta M, Alonso C, Sangro B, Purroy A, Gil I, Carmona L, Cubero FJ, Martínez-Chantar ML, Banales JM, Romero MR, Macias RI, Monte MJ, Marín JJG, Vila JJ, Corrales FJ, Berasain C, Fernández-Barrena MG, Avila MA. Pilot Multi-Omic Analysis of Human Bile from Benign and Malignant Biliary Strictures: A Machine-Learning Approach. Cancers (Basel) 2020; 12:1644. [PMID: 32575903 PMCID: PMC7352944 DOI: 10.3390/cancers12061644] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022] Open
Abstract
Cholangiocarcinoma (CCA) and pancreatic adenocarcinoma (PDAC) may lead to the development of extrahepatic obstructive cholestasis. However, biliary stenoses can also be caused by benign conditions, and the identification of their etiology still remains a clinical challenge. We performed metabolomic and proteomic analyses of bile from patients with benign (n = 36) and malignant conditions, CCA (n = 36) or PDAC (n = 57), undergoing endoscopic retrograde cholangiopancreatography with the aim of characterizing bile composition in biliopancreatic disease and identifying biomarkers for the differential diagnosis of biliary strictures. Comprehensive analyses of lipids, bile acids and small molecules were carried out using mass spectrometry (MS) and nuclear magnetic resonance spectroscopy (1H-NMR) in all patients. MS analysis of bile proteome was performed in five patients per group. We implemented artificial intelligence tools for the selection of biomarkers and algorithms with predictive capacity. Our machine-learning pipeline included the generation of synthetic data with properties of real data, the selection of potential biomarkers (metabolites or proteins) and their analysis with neural networks (NN). Selected biomarkers were then validated with real data. We identified panels of lipids (n = 10) and proteins (n = 5) that when analyzed with NN algorithms discriminated between patients with and without cancer with an unprecedented accuracy.
Collapse
Affiliation(s)
- Jesús M. Urman
- Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, 31008 Pamplona, Spain; (J.M.U.); (M.R.); (D.O.); (B.G.); (I.F.-U.); (J.C.); (F.B.); (L.Z.); (J.J.V.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain; (M.A.); (B.S.); (A.P.); (I.G.); (C.B.); (M.G.F.-B.)
| | - José M. Herranz
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, Carlos III Health Institute, 28029 Madrid, Spain; (J.M.H.); (I.U.); (G.A.-S.); (M.L.M.-C.); (J.M.B.); (M.R.R.); (R.I.R.M.); (M.J.M.); (J.J.G.M.); (F.J.C.)
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (L.C.); (M.U.L.)
| | - Iker Uriarte
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, Carlos III Health Institute, 28029 Madrid, Spain; (J.M.H.); (I.U.); (G.A.-S.); (M.L.M.-C.); (J.M.B.); (M.R.R.); (R.I.R.M.); (M.J.M.); (J.J.G.M.); (F.J.C.)
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (L.C.); (M.U.L.)
| | - María Rullán
- Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, 31008 Pamplona, Spain; (J.M.U.); (M.R.); (D.O.); (B.G.); (I.F.-U.); (J.C.); (F.B.); (L.Z.); (J.J.V.)
| | - Daniel Oyón
- Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, 31008 Pamplona, Spain; (J.M.U.); (M.R.); (D.O.); (B.G.); (I.F.-U.); (J.C.); (F.B.); (L.Z.); (J.J.V.)
| | - Belén González
- Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, 31008 Pamplona, Spain; (J.M.U.); (M.R.); (D.O.); (B.G.); (I.F.-U.); (J.C.); (F.B.); (L.Z.); (J.J.V.)
| | - Ignacio Fernandez-Urién
- Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, 31008 Pamplona, Spain; (J.M.U.); (M.R.); (D.O.); (B.G.); (I.F.-U.); (J.C.); (F.B.); (L.Z.); (J.J.V.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain; (M.A.); (B.S.); (A.P.); (I.G.); (C.B.); (M.G.F.-B.)
| | - Juan Carrascosa
- Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, 31008 Pamplona, Spain; (J.M.U.); (M.R.); (D.O.); (B.G.); (I.F.-U.); (J.C.); (F.B.); (L.Z.); (J.J.V.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain; (M.A.); (B.S.); (A.P.); (I.G.); (C.B.); (M.G.F.-B.)
| | - Federico Bolado
- Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, 31008 Pamplona, Spain; (J.M.U.); (M.R.); (D.O.); (B.G.); (I.F.-U.); (J.C.); (F.B.); (L.Z.); (J.J.V.)
| | - Lucía Zabalza
- Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, 31008 Pamplona, Spain; (J.M.U.); (M.R.); (D.O.); (B.G.); (I.F.-U.); (J.C.); (F.B.); (L.Z.); (J.J.V.)
| | - María Arechederra
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain; (M.A.); (B.S.); (A.P.); (I.G.); (C.B.); (M.G.F.-B.)
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (L.C.); (M.U.L.)
| | - Gloria Alvarez-Sola
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, Carlos III Health Institute, 28029 Madrid, Spain; (J.M.H.); (I.U.); (G.A.-S.); (M.L.M.-C.); (J.M.B.); (M.R.R.); (R.I.R.M.); (M.J.M.); (J.J.G.M.); (F.J.C.)
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (L.C.); (M.U.L.)
| | - Leticia Colyn
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (L.C.); (M.U.L.)
| | - María U. Latasa
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (L.C.); (M.U.L.)
| | - Leonor Puchades-Carrasco
- Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain;
| | - Antonio Pineda-Lucena
- Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain;
- Program of Molecular Therapeutics, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain;
| | - María J. Iraburu
- Department of Biochemistry and Genetics, School of Sciences; University of Navarra, 31008 Pamplona, Spain;
| | | | - Cristina Alonso
- OWL Metabolomics, Bizkaia Technology Park, 48160 Derio, Spain; (M.I.-L.); (C.A.)
| | - Bruno Sangro
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain; (M.A.); (B.S.); (A.P.); (I.G.); (C.B.); (M.G.F.-B.)
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, Carlos III Health Institute, 28029 Madrid, Spain; (J.M.H.); (I.U.); (G.A.-S.); (M.L.M.-C.); (J.M.B.); (M.R.R.); (R.I.R.M.); (M.J.M.); (J.J.G.M.); (F.J.C.)
- Hepatology Unit, Department of Internal Medicine, University of Navarra Clinic, 31008 Pamplona, Spain
| | - Ana Purroy
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain; (M.A.); (B.S.); (A.P.); (I.G.); (C.B.); (M.G.F.-B.)
- Navarrabiomed Biobank Unit, IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Isabel Gil
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain; (M.A.); (B.S.); (A.P.); (I.G.); (C.B.); (M.G.F.-B.)
- Navarrabiomed Biobank Unit, IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Lorena Carmona
- Proteomics Unit, Centro Nacional de Biotecnología (CNB) Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain;
| | - Francisco Javier Cubero
- Department of Immunology, Ophtalmology & Ear, Nose and Throat (ENT), Complutense University School of Medicine and 12 de Octubre Health Research Institute (Imas12), 28040 Madrid, Spain;
| | - María L. Martínez-Chantar
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, Carlos III Health Institute, 28029 Madrid, Spain; (J.M.H.); (I.U.); (G.A.-S.); (M.L.M.-C.); (J.M.B.); (M.R.R.); (R.I.R.M.); (M.J.M.); (J.J.G.M.); (F.J.C.)
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - Jesús M. Banales
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, Carlos III Health Institute, 28029 Madrid, Spain; (J.M.H.); (I.U.); (G.A.-S.); (M.L.M.-C.); (J.M.B.); (M.R.R.); (R.I.R.M.); (M.J.M.); (J.J.G.M.); (F.J.C.)
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, 20014 San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Marta R. Romero
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, Carlos III Health Institute, 28029 Madrid, Spain; (J.M.H.); (I.U.); (G.A.-S.); (M.L.M.-C.); (J.M.B.); (M.R.R.); (R.I.R.M.); (M.J.M.); (J.J.G.M.); (F.J.C.)
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, Biomedical Research Institute of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Rocio I.R. Macias
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, Carlos III Health Institute, 28029 Madrid, Spain; (J.M.H.); (I.U.); (G.A.-S.); (M.L.M.-C.); (J.M.B.); (M.R.R.); (R.I.R.M.); (M.J.M.); (J.J.G.M.); (F.J.C.)
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, Biomedical Research Institute of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Maria J. Monte
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, Carlos III Health Institute, 28029 Madrid, Spain; (J.M.H.); (I.U.); (G.A.-S.); (M.L.M.-C.); (J.M.B.); (M.R.R.); (R.I.R.M.); (M.J.M.); (J.J.G.M.); (F.J.C.)
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, Biomedical Research Institute of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Jose J. G. Marín
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, Carlos III Health Institute, 28029 Madrid, Spain; (J.M.H.); (I.U.); (G.A.-S.); (M.L.M.-C.); (J.M.B.); (M.R.R.); (R.I.R.M.); (M.J.M.); (J.J.G.M.); (F.J.C.)
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, Biomedical Research Institute of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Juan J. Vila
- Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, 31008 Pamplona, Spain; (J.M.U.); (M.R.); (D.O.); (B.G.); (I.F.-U.); (J.C.); (F.B.); (L.Z.); (J.J.V.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain; (M.A.); (B.S.); (A.P.); (I.G.); (C.B.); (M.G.F.-B.)
| | - Fernando J. Corrales
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, Carlos III Health Institute, 28029 Madrid, Spain; (J.M.H.); (I.U.); (G.A.-S.); (M.L.M.-C.); (J.M.B.); (M.R.R.); (R.I.R.M.); (M.J.M.); (J.J.G.M.); (F.J.C.)
- Proteomics Unit, Centro Nacional de Biotecnología (CNB) Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain;
| | - Carmen Berasain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain; (M.A.); (B.S.); (A.P.); (I.G.); (C.B.); (M.G.F.-B.)
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, Carlos III Health Institute, 28029 Madrid, Spain; (J.M.H.); (I.U.); (G.A.-S.); (M.L.M.-C.); (J.M.B.); (M.R.R.); (R.I.R.M.); (M.J.M.); (J.J.G.M.); (F.J.C.)
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (L.C.); (M.U.L.)
| | - Maite G. Fernández-Barrena
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain; (M.A.); (B.S.); (A.P.); (I.G.); (C.B.); (M.G.F.-B.)
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, Carlos III Health Institute, 28029 Madrid, Spain; (J.M.H.); (I.U.); (G.A.-S.); (M.L.M.-C.); (J.M.B.); (M.R.R.); (R.I.R.M.); (M.J.M.); (J.J.G.M.); (F.J.C.)
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (L.C.); (M.U.L.)
| | - Matías A. Avila
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain; (M.A.); (B.S.); (A.P.); (I.G.); (C.B.); (M.G.F.-B.)
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, Carlos III Health Institute, 28029 Madrid, Spain; (J.M.H.); (I.U.); (G.A.-S.); (M.L.M.-C.); (J.M.B.); (M.R.R.); (R.I.R.M.); (M.J.M.); (J.J.G.M.); (F.J.C.)
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (L.C.); (M.U.L.)
| |
Collapse
|
32
|
Transcriptomics Reveal Altered Metabolic and Signaling Pathways in Podocytes Exposed to C16 Ceramide-Enriched Lipoproteins. Genes (Basel) 2020; 11:genes11020178. [PMID: 32045989 PMCID: PMC7073971 DOI: 10.3390/genes11020178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 11/16/2022] Open
Abstract
Sphingolipids are bioactive lipids associated with cellular membranes and plasma lipoproteins, and their synthesis and degradation are tightly regulated. We have previously determined that low plasma concentrations of certain ceramide species predict the development of nephropathy in diabetes patients with normal albumin excretion rates at baseline. Herein, we tested the hypothesis that altering the sphingolipid content of circulating lipoproteins can alter the metabolic and signaling pathways in podocytes, whose dysfunction leads to an impairment of glomerular filtration. Cultured human podocytes were treated with lipoproteins from healthy subjects enriched in vitro with C16 ceramide, or D-erythro 2-hydroxy C16 ceramide, a ceramide naturally found in skin. The RNA-Seq data demonstrated differential expression of genes regulating sphingolipid metabolism, sphingolipid signaling, and mTOR signaling pathways. A multiplex analysis of mTOR signaling pathway intermediates showed that the majority (eight) of the pathway phosphorylated proteins measured (eleven) were significantly downregulated in response to C16 ceramide-enriched HDL2 compared to HDL2 alone and hydroxy ceramide-enriched HDL2. In contrast, C16 ceramide-enriched HDL3 upregulated the phosphorylation of four intermediates in the mTOR pathway. These findings highlight a possible role for lipoprotein-associated sphingolipids in regulating metabolic and signaling pathways in podocytes and could lead to novel therapeutic targets in glomerular kidney diseases.
Collapse
|
33
|
Hoogendoorn A, den Hoedt S, Hartman EMJ, Krabbendam-Peters I, Te Lintel Hekkert M, van der Zee L, van Gaalen K, Witberg KT, Dorst K, Ligthart JMR, Drouet L, Van der Heiden K, van Lennep JR, van der Steen AFW, Duncker DJ, Mulder MT, Wentzel JJ. Variation in Coronary Atherosclerosis Severity Related to a Distinct LDL (Low-Density Lipoprotein) Profile: Findings From a Familial Hypercholesterolemia Pig Model. Arterioscler Thromb Vasc Biol 2019; 39:2338-2352. [PMID: 31554418 PMCID: PMC6818985 DOI: 10.1161/atvbaha.119.313246] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE In an adult porcine model of familial hypercholesterolemia (FH), coronary plaque development was characterized. To elucidate the underlying mechanisms of the observed inter-individual variation in disease severity, detailed lipoprotein profiles were determined. Approach and Results: FH pigs (3 years old, homozygous LDLR R84C mutation) received an atherogenic diet for 12 months. Coronary atherosclerosis development was monitored using serial invasive imaging and histology. A pronounced difference was observed between mildly diseased pigs which exclusively developed early lesions (maximal plaque burden, 25% [23%-34%]; n=5) and advanced-diseased pigs (n=5) which developed human-like, lumen intruding plaques (maximal plaque burden, 69% [57%-77%]) with large necrotic cores, intraplaque hemorrhage, and calcifications. Advanced-diseased pigs and mildly diseased pigs displayed no differences in conventional risk factors. Additional plasma lipoprotein profiling by size-exclusion chromatography revealed 2 different LDL (low-density lipoprotein) subtypes: regular and larger LDL. Cholesterol, sphingosine-1-phosphate, ceramide, and sphingomyelin levels were determined in these LDL-subfractions using standard laboratory techniques and high-pressure liquid chromatography mass-spectrometry analyses, respectively. At 3 months of diet, regular LDL of advanced-diseased pigs contained relatively more cholesterol (LDL-C; regular/larger LDL-C ratio 1.7 [1.3-1.9] versus 0.8 [0.6-0.9]; P=0.008) than mildly diseased pigs, while larger LDL contained more sphingosine-1-phosphate, ceramides, and sphingomyelins. Larger and regular LDL was also found in plasma of 3 patients with homozygous FH with varying LDL-C ratios. CONCLUSIONS In our adult FH pig model, inter-individual differences in atherosclerotic disease severity were directly related to the distribution of cholesterol and sphingolipids over a distinct LDL profile with regular and larger LDL shortly after the diet start. A similar LDL profile was detected in patients with homozygous FH.
Collapse
Affiliation(s)
- Ayla Hoogendoorn
- From the Department of Cardiology, Biomedical Engineering, Erasmus MC, Rotterdam, the Netherlands (A.H., E.M.J.H., K.v.G., K.V.d.H., A.F.W.v.d.S., J.J.W.)
| | - Sandra den Hoedt
- Department of Internal Medicine, Laboratory of Vascular Medicine, Division of Pharmacology, Vascular & Metabolic Disease (S.d.H., L.v.d.Z., K.D., J.R.v.L., M.T.M.), Erasmus MC, Rotterdam, the Netherlands
| | - Eline M J Hartman
- From the Department of Cardiology, Biomedical Engineering, Erasmus MC, Rotterdam, the Netherlands (A.H., E.M.J.H., K.v.G., K.V.d.H., A.F.W.v.d.S., J.J.W.)
| | - Ilona Krabbendam-Peters
- Department of Cardiology, Experimental Cardiology (I.K.-P., M.t.L.H., D.J.D.), Erasmus MC, Rotterdam, the Netherlands
| | - Maaike Te Lintel Hekkert
- Department of Cardiology, Experimental Cardiology (I.K.-P., M.t.L.H., D.J.D.), Erasmus MC, Rotterdam, the Netherlands
| | - Leonie van der Zee
- Department of Internal Medicine, Laboratory of Vascular Medicine, Division of Pharmacology, Vascular & Metabolic Disease (S.d.H., L.v.d.Z., K.D., J.R.v.L., M.T.M.), Erasmus MC, Rotterdam, the Netherlands
| | - Kim van Gaalen
- From the Department of Cardiology, Biomedical Engineering, Erasmus MC, Rotterdam, the Netherlands (A.H., E.M.J.H., K.v.G., K.V.d.H., A.F.W.v.d.S., J.J.W.)
| | - Karen Th Witberg
- Department of Cardiology, Interventional Cardiology (K.T.W., J.M.R.L.), Erasmus MC, Rotterdam, the Netherlands
| | - Kristien Dorst
- Department of Internal Medicine, Laboratory of Vascular Medicine, Division of Pharmacology, Vascular & Metabolic Disease (S.d.H., L.v.d.Z., K.D., J.R.v.L., M.T.M.), Erasmus MC, Rotterdam, the Netherlands
| | - Jurgen M R Ligthart
- Department of Cardiology, Interventional Cardiology (K.T.W., J.M.R.L.), Erasmus MC, Rotterdam, the Netherlands
| | - Ludovic Drouet
- Department of Angiohematology, Hospital Lariboisiere, Paris, France (L.D.)
| | - Kim Van der Heiden
- From the Department of Cardiology, Biomedical Engineering, Erasmus MC, Rotterdam, the Netherlands (A.H., E.M.J.H., K.v.G., K.V.d.H., A.F.W.v.d.S., J.J.W.)
| | - Jeanine Roeters van Lennep
- Department of Internal Medicine, Laboratory of Vascular Medicine, Division of Pharmacology, Vascular & Metabolic Disease (S.d.H., L.v.d.Z., K.D., J.R.v.L., M.T.M.), Erasmus MC, Rotterdam, the Netherlands
| | - Antonius F W van der Steen
- From the Department of Cardiology, Biomedical Engineering, Erasmus MC, Rotterdam, the Netherlands (A.H., E.M.J.H., K.v.G., K.V.d.H., A.F.W.v.d.S., J.J.W.)
| | - Dirk J Duncker
- Department of Cardiology, Experimental Cardiology (I.K.-P., M.t.L.H., D.J.D.), Erasmus MC, Rotterdam, the Netherlands
| | - Monique T Mulder
- Department of Internal Medicine, Laboratory of Vascular Medicine, Division of Pharmacology, Vascular & Metabolic Disease (S.d.H., L.v.d.Z., K.D., J.R.v.L., M.T.M.), Erasmus MC, Rotterdam, the Netherlands
| | - Jolanda J Wentzel
- From the Department of Cardiology, Biomedical Engineering, Erasmus MC, Rotterdam, the Netherlands (A.H., E.M.J.H., K.v.G., K.V.d.H., A.F.W.v.d.S., J.J.W.)
| |
Collapse
|
34
|
La Corte E, Dei Cas M, Raggi A, Patanè M, Broggi M, Schiavolin S, Calatozzolo C, Pollo B, Pipolo C, Bruzzone MG, Campisi G, Paroni R, Ghidoni R, Ferroli P. Long and Very-Long-Chain Ceramides Correlate with A More Aggressive Behavior in Skull Base Chordoma Patients. Int J Mol Sci 2019; 20:E4480. [PMID: 31514293 PMCID: PMC6769603 DOI: 10.3390/ijms20184480] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/07/2019] [Accepted: 09/09/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Skull base chordomas are rare tumors arising from notochord. Sphingolipids analysis is a promising approach in molecular oncology, and it has never been applied in chordomas. Our aim is to investigate chordoma behavior and the role of ceramides. METHODS Ceramides were extracted and evaluated by liquid chromatography and mass spectrometry in a cohort of patients with a skull base chordoma. Clinical data were also collected and correlated with ceramide levels. Linear regression and correlation analyses were conducted. RESULTS Analyzing the association between ceramides level and MIB-1, total ceramides and dihydroceramides showed a strong association (r = 0.7257 and r = 0.6733, respectively) with MIB-1 staining (p = 0.0033 and p = 0.0083, respectively). Among the single ceramide species, Cer C24:1 (r = 0.8814, p ≤ 0.0001), DHCer C24:1 (r = 0.8429, p = 0.0002) and DHCer C18:0 (r = 0.9426, p ≤ 0.0001) showed a significant correlation with MIB-1. CONCLUSION Our lipid analysis showed ceramides to be promising tumoral biomarkers in skull base chordomas. Long- and very-long-chain ceramides, such as Cer C24:1 and DHCer C24:1, may be related to a prolonged tumor survival and aggressiveness, and the understanding of their effective biological role will hopefully shed light on the mechanisms of chordoma radio-resistance, tendency to recur, and use of agents targeting ceramide metabolism.
Collapse
Affiliation(s)
- Emanuele La Corte
- PhD School in Molecular and Translational Medicine, Department of Health Sciences, University of Milan, 20142 Milan, Italy
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico "Carlo Besta", 20133 Milan, Italy
| | - Michele Dei Cas
- PhD School in Molecular and Translational Medicine, Department of Health Sciences, University of Milan, 20142 Milan, Italy
- Clinical Biochemistry and Mass Spectrometry Laboratory, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Alberto Raggi
- Neurology, Public Health and Disability Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta", 20133 Milan, Italy
| | - Monica Patanè
- Neuropathology Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta", 20133 Milan, Italy
| | - Morgan Broggi
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico "Carlo Besta", 20133 Milan, Italy
| | - Silvia Schiavolin
- Neurology, Public Health and Disability Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta", 20133 Milan, Italy
| | - Chiara Calatozzolo
- Neuropathology Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta", 20133 Milan, Italy
| | - Bianca Pollo
- Neuropathology Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta", 20133 Milan, Italy
| | - Carlotta Pipolo
- Otolaryngology Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Maria Grazia Bruzzone
- Neuroradiology Department, Fondazione IRCCS Istituto Neurologico "Carlo Besta", 20133 Milan, Italy
| | - Giuseppe Campisi
- PhD School in Molecular and Translational Medicine, Department of Health Sciences, University of Milan, 20142 Milan, Italy
- Clinical Biochemistry and Mass Spectrometry Laboratory, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Rita Paroni
- Clinical Biochemistry and Mass Spectrometry Laboratory, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Riccardo Ghidoni
- PhD School in Molecular and Translational Medicine, Department of Health Sciences, University of Milan, 20142 Milan, Italy.
- Clinical Biochemistry and Mass Spectrometry Laboratory, Department of Health Sciences, University of Milan, 20142 Milan, Italy.
| | - Paolo Ferroli
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico "Carlo Besta", 20133 Milan, Italy
| |
Collapse
|
35
|
Ceramide Domains in Health and Disease: A Biophysical Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1159:79-108. [DOI: 10.1007/978-3-030-21162-2_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Wennberg AMV, Schafer MJ, LeBrasseur NK, Savica R, Bui HH, Hagen CE, Hollman JH, Petersen RC, Mielke MM. Plasma Sphingolipids are Associated With Gait Parameters in the Mayo Clinic Study of Aging. J Gerontol A Biol Sci Med Sci 2019; 73:960-965. [PMID: 28977376 DOI: 10.1093/gerona/glx139] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Indexed: 12/31/2022] Open
Abstract
Background Disrupted gait has been associated with an increased risk of frailty, disability, and death, but the causal molecular pathways are not well understood. Sphingolipids, including ceramides, are associated with multiple age-related diseases. Ceramides promote atrophy, necrosis, and proteolysis in cellular and animal models, and ceramide C16:0 levels are negatively correlated with muscle mass in men. However, there is a paucity of evidence examining sphingolipids and physical function. Methods We examined the cross-sectional association between plasma ceramides, sphingosine-1-phosphate (S1P), and ceramide/S1P ratios and gait, a robust measure of physical function, in 340 clinically normal participants aged 70 years and older enrolled in the Mayo Clinic Study of Aging. GAITRite® instrumentation was used to measure gait speed, cadence, step width, double support time, and intra-individual stride time variability. Based on previous studies, we hypothesized that higher plasma levels of ceramide C16:0 would be associated with worse gait. Results Multivariable adjusted linear regression models revealed that higher levels of ceramide C16:0 were associated with slower gait speed, decreased cadence, and increased double support time. Conclusions These results suggest an association between plasma ceramide C16:0 and physical function. Longitudinal studies are needed to determine whether elevated ceramide C16:0 can be utilized as a prognostic marker for functional decline.
Collapse
Affiliation(s)
| | - Marissa J Schafer
- Department of Physical Medicine and Rehabilitation, Mayo Clinic Rochester, Minnesota
| | - Nathan K LeBrasseur
- Department of Physical Medicine and Rehabilitation, Mayo Clinic Rochester, Minnesota.,Department of Physiology, Mayo Clinic Rochester, Minnesota
| | - Rodolfo Savica
- Department of Health Sciences Research, Mayo Clinic Rochester, Minnesota.,Department of Neurology, Mayo Clinic Rochester, Minnesota
| | - Hai H Bui
- Eli Lilly and Company, Indianapolis, Indiana
| | - Clinton E Hagen
- Department of Health Sciences Research, Mayo Clinic Rochester, Minnesota
| | - John H Hollman
- Department of Physical Medicine and Rehabilitation, Mayo Clinic Rochester, Minnesota
| | | | - Michelle M Mielke
- Department of Health Sciences Research, Mayo Clinic Rochester, Minnesota.,Department of Neurology, Mayo Clinic Rochester, Minnesota
| |
Collapse
|
37
|
Zeitler S, Ye L, Andreyeva A, Schumacher F, Monti J, Nürnberg B, Nowak G, Kleuser B, Reichel M, Fejtová A, Kornhuber J, Rhein C, Friedland K. Acid sphingomyelinase - a regulator of canonical transient receptor potential channel 6 (TRPC6) activity. J Neurochem 2019; 150:678-690. [PMID: 31310676 DOI: 10.1111/jnc.14823] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 12/28/2022]
Abstract
Recent investigations propose the acid sphingomyelinase (ASM)/ceramide system as a novel target for antidepressant action. ASM catalyzes the breakdown of the abundant membrane lipid sphingomyelin to the lipid messenger ceramide. This ASM-induced lipid modification induces a local shift in membrane properties, which influences receptor clustering and downstream signaling. Canonical transient receptor potential channels 6 (TRPC6) are non-selective cation channels located in the cell membrane that play an important role in dendritic growth, synaptic plasticity and cognition in the brain. They can be activated by hyperforin, an ingredient of the herbal remedy St. John's wort for treatment of depression disorders. Because of their role in the context of major depression, we investigated the crosstalk between the ASM/ceramide system and TRPC6 ion channels in a pheochromocytoma cell line 12 neuronal cell model (PC12 rat pheochromocytoma cell line). Ca2+ imaging experiments indicated that hyperforin-induced Ca2+ influx through TRPC6 channels is modulated by ASM activity. While antidepressants, known as functional inhibitors of ASM activity, reduced TRPC6-mediated Ca2+ influx, extracellular application of bacterial sphingomyelinase rebalanced TRPC6 activity in a concentration-related way. This effect was confirmed in whole-cell patch clamp electrophysiology recordings. Lipidomic analyses revealed a decrease in very long chain ceramide/sphingomyelin molar ratio after ASM inhibition, which was connected with changes in the abundance of TRPC6 channels in flotillin-1-positive lipid rafts as visualized by western blotting. Our data provide evidence that the ASM/ceramide system regulates TRPC6 channels likely by controlling their recruitment to specific lipid subdomains and thereby fine-tuning their physical properties.
Collapse
Affiliation(s)
- Stefanie Zeitler
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Chemistry and Pharmacy, Molecular and Clinical Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lian Ye
- Department of Chemistry and Pharmacy, Molecular and Clinical Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Aksana Andreyeva
- Department of Chemistry and Pharmacy, Molecular and Clinical Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Fabian Schumacher
- Department of Toxicology, Faculty of Mathematics and Natural Science, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.,Department of Molecular Biology, University Clinic, University of Duisburg-Essen, Essen, Germany
| | - Juliana Monti
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Bernd Nürnberg
- Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics and Interfaculty Center of Pharmacogenomics and Drug Research (ICePhA), Tübingen, Germany
| | - Gabriel Nowak
- Department of Pharmacobiology, Jagiellonian University Medical College, Kraków, Poland.,Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Burkhard Kleuser
- Department of Toxicology, Faculty of Mathematics and Natural Science, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Martin Reichel
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anna Fejtová
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Cosima Rhein
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Kristina Friedland
- Department of Chemistry and Pharmacy, Molecular and Clinical Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Institute for Pharmacy and Biochemistry, Pharmacology and Toxicology, Johannes-Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
38
|
Brachtendorf S, El-Hindi K, Grösch S. WITHDRAWN: Ceramide synthases in cancer therapy and chemoresistance. Prog Lipid Res 2019:100992. [PMID: 31442523 DOI: 10.1016/j.plipres.2019.100992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 10/26/2022]
Affiliation(s)
- Sebastian Brachtendorf
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern Kai 7, Frankfurt 60590, Germany
| | - Khadija El-Hindi
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern Kai 7, Frankfurt 60590, Germany
| | - Sabine Grösch
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern Kai 7, Frankfurt 60590, Germany
| |
Collapse
|
39
|
The Lipid Status in Patients with Ulcerative Colitis: Sphingolipids are Disease-Dependent Regulated. J Clin Med 2019; 8:jcm8070971. [PMID: 31277430 PMCID: PMC6678307 DOI: 10.3390/jcm8070971] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/13/2019] [Accepted: 07/02/2019] [Indexed: 02/06/2023] Open
Abstract
The factors that contribute to the development of ulcerative colitis (UC), are still not fully identified. Disruption of the colon barrier is one of the first events leading to invasion of bacteria and activation of the immune system. The colon barrier is strongly influenced by sphingolipids. Sphingolipids impact cell-cell contacts and function as second messengers. We collected blood and colon tissue samples from UC patients and healthy controls and investigated the sphingolipids and other lipids by LC-MS/MS or LC-QTOFMS. The expression of enzymes of the sphingolipid pathway were determined by RT-PCR and immunohistochemistry. In inflamed colon tissue, the de novo-synthesis of sphingolipids is reduced, whereas lactosylceramides are increased. Reduction of dihydroceramides was due to posttranslational inhibition rather than altered serine palmitoyl transferase or ceramide synthase expression in inflamed colon tissue. Furthermore, in human plasma from UC-patients, several sphinglipids change significantly in comparison to healthy controls. Beside sphingolipids free fatty acids, lysophosphatidylcholines and triglycerides changed significantly in the blood of colitis patients dependent on the disease severity. Our data indicate that detraction of the sphingolipid de novo synthesis in colon tissue might be an important trigger for UC. Several lipids changed significantly in the blood, which might be used as biomarkers for disease control; however, diet-related variabilities need to be considered.
Collapse
|
40
|
Brachtendorf S, El-Hindi K, Grösch S. Ceramide synthases in cancer therapy and chemoresistance. Prog Lipid Res 2019; 74:160-185. [DOI: 10.1016/j.plipres.2019.04.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 12/24/2022]
|
41
|
Pakiet A, Kobiela J, Stepnowski P, Sledzinski T, Mika A. Changes in lipids composition and metabolism in colorectal cancer: a review. Lipids Health Dis 2019; 18:29. [PMID: 30684960 PMCID: PMC6347819 DOI: 10.1186/s12944-019-0977-8] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/16/2019] [Indexed: 02/06/2023] Open
Abstract
Altered metabolism of lipids is currently considered a hallmark characteristic of many malignancies, including colorectal cancer (CRC). Lipids are a large group of metabolites that differ in terms of their fatty acid composition. This review summarizes recent evidence, documenting many alterations in the content and composition of fatty acids, polar lipids, oxylipins and triacylglycerols in CRC patients' sera, tumor tissues and adipose tissue. Some of altered lipid molecules may be potential biomarkers of CRC risk, development and progression. Owing to a significant role of many lipids in cancer cell metabolism, some of lipid metabolism pathways may also constitute specific targets for anti-CRC therapy.
Collapse
Affiliation(s)
- Alicja Pakiet
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Dębinki 1, 80-211, Gdansk, Poland
| | - Jarosław Kobiela
- Department of General, Endocrine and Transplant Surgery, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Dębinki 1, 80-211, Gdansk, Poland.
| | - Adriana Mika
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Dębinki 1, 80-211, Gdansk, Poland
| |
Collapse
|
42
|
Manni MM, Sot J, Arretxe E, Gil-Redondo R, Falcón-Pérez JM, Balgoma D, Alonso C, Goñi FM, Alonso A. The fatty acids of sphingomyelins and ceramides in mammalian tissues and cultured cells: Biophysical and physiological implications. Chem Phys Lipids 2018; 217:29-34. [PMID: 30359584 DOI: 10.1016/j.chemphyslip.2018.09.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 09/18/2018] [Indexed: 02/07/2023]
Abstract
Sphingolipids consist of a sphingoid base N-linked to a fatty acyl chain. Among them, sphingomyelins (SM) are major components of mammalian cells, while ceramide (Cer) plays an important role as a lipid second messenger. We have performed a quantitative lipidomic study of Cer and SM species in different mammalian tissues (adipose tissue, liver, brain and blood serum of human, mice, rat and dog), as well as in cell cultures of mammalian origin (primary hepatocytes, immortalized MDCK cells, mice melanoma b16 cells, and mice primary CD4 + T lymphocytes) using an ultra-high performance liquid chromatography coupled to time-of-flight mass spectrometry (UHPLC-ToF-MS)-based platform. The data have been compared with published, in general semi-quantitative, results from 20 other samples, with good agreement. The sphingoid base was predominantly d18-1 sphingosine (2-amino-4-octadecene-1,3-diol) in all cases. The fatty acid composition of SM was clearly different from that of Cer. In virtually all samples the most abundant Cer species were those containing C24:0 and C24:1 in their N-acyl chains, while the main species contained in SM was C16:0. Brain was the most divergent tissue, in which Cer and SM C18:0 were very abundant.
Collapse
Affiliation(s)
- Marco M Manni
- Instituto Biofisika (CSIC, UPV/EHU), Campus Universitario, 48940 Leioa, Spain; Departamento de Bioquímica, Universidad del País Vasco, B. Sarriena s/n, 48940 Leioa, Spain
| | - Jesús Sot
- Instituto Biofisika (CSIC, UPV/EHU), Campus Universitario, 48940 Leioa, Spain; Departamento de Bioquímica, Universidad del País Vasco, B. Sarriena s/n, 48940 Leioa, Spain
| | - Enara Arretxe
- OWL Metabolomics, Parque Tecnológico de Bizkaia, 48160, Derio, Spain
| | - Rubén Gil-Redondo
- CIC bioGUNE, CIBERehd, Parque Tecnológico de Bizkaia, 48160, Derio, Spain
| | - Juan M Falcón-Pérez
- CIC bioGUNE, CIBERehd, Parque Tecnológico de Bizkaia, 48160, Derio, Spain; IKERBASQUE, Basque Foundation for Science, 48013, Bilbao, Spain
| | - David Balgoma
- OWL Metabolomics, Parque Tecnológico de Bizkaia, 48160, Derio, Spain
| | - Cristina Alonso
- OWL Metabolomics, Parque Tecnológico de Bizkaia, 48160, Derio, Spain
| | - Félix M Goñi
- Instituto Biofisika (CSIC, UPV/EHU), Campus Universitario, 48940 Leioa, Spain; Departamento de Bioquímica, Universidad del País Vasco, B. Sarriena s/n, 48940 Leioa, Spain
| | - Alicia Alonso
- Instituto Biofisika (CSIC, UPV/EHU), Campus Universitario, 48940 Leioa, Spain; Departamento de Bioquímica, Universidad del País Vasco, B. Sarriena s/n, 48940 Leioa, Spain.
| |
Collapse
|
43
|
Wegner MS, Schömel N, Gruber L, Örtel SB, Kjellberg MA, Mattjus P, Kurz J, Trautmann S, Peng B, Wegner M, Kaulich M, Ahrends R, Geisslinger G, Grösch S. UDP-glucose ceramide glucosyltransferase activates AKT, promoted proliferation, and doxorubicin resistance in breast cancer cells. Cell Mol Life Sci 2018; 75:3393-3410. [PMID: 29549423 PMCID: PMC11105721 DOI: 10.1007/s00018-018-2799-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 02/19/2018] [Accepted: 03/13/2018] [Indexed: 10/17/2022]
Abstract
The UDP-glucose ceramide glucosyltransferase (UGCG) is a key enzyme in the synthesis of glycosylated sphingolipids, since this enzyme generates the precursor for all complex glycosphingolipids (GSL), the GlcCer. The UGCG has been associated with several cancer-related processes such as maintaining cancer stem cell properties or multidrug resistance induction. The precise mechanisms underlying these processes are unknown. Here, we investigated the molecular mechanisms occurring after UGCG overexpression in breast cancer cells. We observed alterations of several cellular properties such as morphological changes, which enhanced proliferation and doxorubicin resistance in UGCG overexpressing MCF-7 cells. These cellular effects seem to be mediated by an altered composition of glycosphingolipid-enriched microdomains (GEMs), especially an accumulation of globotriaosylceramide (Gb3) and glucosylceramide (GlcCer), which leads to an activation of Akt and ERK1/2. The induction of the Akt and ERK1/2 signaling pathway results in an increased gene expression of multidrug resistance protein 1 (MDR1) and anti-apoptotic genes and a decrease of pro-apoptotic gene expression. Inhibition of the protein kinase C (PKC) and phosphoinositide 3 kinase (PI3K) reduced MDR1 gene expression. This study discloses how changes in UGCG expression impact several cellular signaling pathways in breast cancer cells resulting in enhanced proliferation and multidrug resistance.
Collapse
Affiliation(s)
- Marthe-Susanna Wegner
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, House 74, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany.
| | - Nina Schömel
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, House 74, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Lisa Gruber
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, House 74, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Stephanie Beatrice Örtel
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, House 74, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Matti Aleksi Kjellberg
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Artillerigatan 6A, III, BioCity, 20520, Turku, Finland
| | - Peter Mattjus
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Artillerigatan 6A, III, BioCity, 20520, Turku, Finland
| | - Jennifer Kurz
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology (TMP), Frankfurt am Main, Germany
| | - Sandra Trautmann
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, House 74, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Bing Peng
- Leibniz-Institut für Analytische Wissenschaften, ISAS e. V., Otto-Hahn-Straße 6b, 44227, Dortmund, Germany
| | - Martin Wegner
- Institute of Biochemistry II, Johann Wolfgang Goethe University, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Manuel Kaulich
- Institute of Biochemistry II, Johann Wolfgang Goethe University, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Robert Ahrends
- Leibniz-Institut für Analytische Wissenschaften, ISAS e. V., Otto-Hahn-Straße 6b, 44227, Dortmund, Germany
| | - Gerd Geisslinger
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, House 74, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology (TMP), Frankfurt am Main, Germany
| | - Sabine Grösch
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, House 74, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
| |
Collapse
|
44
|
The relevance of ceramides and their synthesizing enzymes for multiple sclerosis. Clin Sci (Lond) 2018; 132:1963-1976. [PMID: 30219773 DOI: 10.1042/cs20180506] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/07/2018] [Accepted: 08/12/2018] [Indexed: 12/16/2022]
Abstract
Ceramide synthases (CerS) synthesize chain length specific ceramides (Cer), which mediate cellular processes in a chain length-dependent manner. In experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), we observed that the genetic deletion of CerS2 suppresses EAE pathology by interaction with granulocyte-colony stimulating factor (G-CSF) signaling and CXC motif chemokine receptor 2 (CXCR2) expression, leading to impaired neutrophil migration. In the present study, we investigated the importance of Cers and their synthesizing/metabolizing enzymes in MS. For this purpose, a longitudinal study with 72 MS patients and 25 healthy volunteers was performed. Blood samples were collected from healthy controls and MS patients over 1- or 3-year periods, respectively. Immune cells were counted using flow cytometry, ceramide levels were determined using liquid chromatography-tandem mass spectrometry, and mRNA expression was analyzed using quantitative PCR. In white blood cells, C16-LacCer and C24-Cer were down-regulated in MS patients in comparison with healthy controls. In plasma, C16-Cer, C24:1-Cer, C16-GluCer, and C24:1-GluCer were up-regulated and C16-LacCer was down-regulated in MS patients in comparison with healthy controls. Blood samples from MS patients were characterized by an increased B-cell number. However, there was no correlation between B-cell number and Cer levels. mRNA expression of Cer metabolizing enzymes and G-CSF signaling enzymes was significantly increased in MS patients. Interestingly, G-CSF receptor (G-CSFR) and CXCR2 mRNA expression correlated with CerS2 and UDP-glucose Cer glucosyltransferase (UGCG) mRNA expression. In conclusion, our results indicate that Cer metabolism is linked to G-CSF signaling in MS.
Collapse
|
45
|
Brachtendorf S, Wanger RA, Birod K, Thomas D, Trautmann S, Wegner MS, Fuhrmann DC, Brüne B, Geisslinger G, Grösch S. Chemosensitivity of human colon cancer cells is influenced by a p53-dependent enhancement of ceramide synthase 5 and induction of autophagy. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1214-1227. [PMID: 30059758 DOI: 10.1016/j.bbalip.2018.07.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 07/03/2018] [Accepted: 07/24/2018] [Indexed: 12/21/2022]
Abstract
Resistance against chemotherapy is a life-threatening complication in colon cancer therapy. To increase response rate, new additional targets that contribute to chemoresistance are still needed to be explored. Ceramides, which belong to the group of sphingolipids, are well-known regulators of cell death and survival, respectively. Here, we show that in human wild-type (wt) p53 HCT-116 colon cancer cells treatment with oxaliplatin or 5-fluorouracil (5-FU) leads to a strong increase in ceramide synthase 5 (CerS5) expression and C16:0-ceramide levels, which was not shown in HCT-116 lacking p53 expression (HCT-116 p53-/-). The increase in CerS5 expression occurs by stabilizing CerS5 mRNA at the 3'-UTR. By contrast, in the p53-deficient cells CerS2 expression and CerS2-related C24:0- and C24:1-ceramide levels were elevated which is possibly related to enhanced polyadenylation of the CerS2 transcript in these cells. Stable knockdown of CerS5 expression using CerS5-targeting shRNA led to an increased sensitivity of HCT-116 p53wt cells, but not of p53-/- cells, to oxaliplatin and 5-FU. Enhanced sensitivity was accompanied by an inhibition of autophagy and inhibition of mitochondrial respiration in these cells. However, knockdown of CerS2 had no significant effects on chemosensitivity of both cell lines. In conclusion, in p53wt colon cancer cells chemosensitivity against oxaliplatin or 5-FU could be enhanced by downregulation of CerS5 expression leading to reduced autophagy and mitochondrial respiration.
Collapse
Affiliation(s)
- Sebastian Brachtendorf
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Germany
| | - Ruth Anna Wanger
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Germany
| | - Kerstin Birod
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Germany
| | - Dominique Thomas
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Germany
| | - Sandra Trautmann
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Germany
| | - Marthe-Susanna Wegner
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Germany
| | - Dominik C Fuhrmann
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Bernhard Brüne
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology (TMP), Frankfurt, Germany
| | - Sabine Grösch
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Germany.
| |
Collapse
|
46
|
The role of sphingolipid metabolism disruption on lipopolysaccharide-induced lung injury in mice. Pulm Pharmacol Ther 2018; 50:100-110. [DOI: 10.1016/j.pupt.2018.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/08/2018] [Accepted: 04/21/2018] [Indexed: 02/01/2023]
|
47
|
de Wit NM, Snkhchyan H, den Hoedt S, Wattimena D, de Vos R, Mulder MT, Walter J, Martinez-Martinez P, Hoozemans JJ, Rozemuller AJ, de Vries HE. Altered Sphingolipid Balance in Capillary Cerebral Amyloid Angiopathy. J Alzheimers Dis 2018; 60:795-807. [PMID: 27662305 DOI: 10.3233/jad-160551] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND The majority of patients with Alzheimer's disease (AD) exhibit amyloid-β (Aβ) deposits at the brain vasculature, a process referred to as cerebral amyloid angiopathy (CAA). In over 51% of AD cases, Aβ also accumulates in cortical capillaries, which is termed capillary CAA (capCAA). It has been postulated that the presence of capCAA in AD is a specific subtype of AD, although underlying mechanisms are not yet fully understood. Sphingolipids (SLs) are implicated in neurodegenerative disorders, including AD. However, to date it remains unknown whether alterations in the SL pathway are involved in capCAA pathogenesis and if these differ from AD. OBJECTIVE To determine whether AD cases with capCAA have an altered SL profile compared to AD cases without capCAA. METHODS Immunohistochemistry was performed to assess the expression and localization of ceramide, acid sphingomyelinase (ASM), and sphingosine-1-phosphate receptors (S1P1, S1P3). In addition, we determined the concentrations of S1P as well as different chain-lengths of ceramides using HPLC-MS/MS. RESULTS Immunohistochemical analysis revealed an altered expression of ceramide, ASM, and S1P receptors by reactive astrocytes and microglial cells specifically associated with capCAA. Moreover, a shift in the balance of ceramides with different chain-lengths and S1P content is observed in capCAA. CONCLUSION Here we provide evidence of a deregulated SL balance in capCAA. The increased levels of ASM and ceramide in activated glia cells suggest that the SL pathway is involved in the neuroinflammatory response in capCAA pathogenesis. Future research is needed to elucidate the role of S1P in capCAA.
Collapse
Affiliation(s)
- Nienke M de Wit
- Department of Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Hripsime Snkhchyan
- Department of Pathology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Sandra den Hoedt
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Darcos Wattimena
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Rob de Vos
- Laboratorium Pathology Oost Nederland, Enschede, The Netherlands
| | - Monique T Mulder
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jochen Walter
- Department of Neurology, University of Bonn, Bonn, Germany
| | - Pilar Martinez-Martinez
- Department of Neuroscience, School of Mental Health and Neuroscience, Maastricht University, The Netherlands
| | - Jeroen J Hoozemans
- Department of Pathology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Annemieke J Rozemuller
- Department of Pathology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
48
|
Rein-Fischboeck L, Haberl EM, Pohl R, Schmid V, Feder S, Krautbauer S, Liebisch G, Buechler C. Alpha-syntrophin null mice are protected from non-alcoholic steatohepatitis in the methionine-choline-deficient diet model but not the atherogenic diet model. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:526-537. [PMID: 29474931 DOI: 10.1016/j.bbalip.2018.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 01/23/2018] [Accepted: 02/17/2018] [Indexed: 12/13/2022]
Abstract
Adipose tissue dysfunction contributes to the pathogenesis of non-alcoholic steatohepatitis (NASH). The adapter protein alpha-syntrophin (SNTA) is expressed in adipocytes. Knock-down of SNTA increases preadipocyte proliferation and formation of small lipid droplets, which are both characteristics of healthy adipose tissue. To elucidate a potential protective role of SNTA in NASH, SNTA null mice were fed a methionine-choline-deficient (MCD) diet or an atherogenic diet which are widely used as preclinical NASH models. MCD diet mediated loss of fat mass was largely improved in SNTA-/- mice compared to the respective wild type animals. Hepatic lipids were mostly unchanged while the oxidative stress marker malondialdehyde was only induced in the wild type mice. The expression of inflammatory markers and macrophage immigration into the liver were reduced in SNTA-/- animals. This protective function of SNTA loss was absent in atherogenic diet induced NASH. Here, hepatic expression of inflammatory and fibrotic genes was similar in both genotypes though mutant mice gained less body fat during feeding. Hepatic cholesterol and ceramide were strongly induced in both strains upon feeding the atherogenic diet, while hepatic sphingomyelin, phosphatidylserine and phosphatidylethanolamine levels were suppressed. SNTA deficient mice are protected from fat loss and NASH in the experimental MCD model. NASH induced by an atherogenic diet is not influenced by loss of SNTA. The present study suggests the use of different experimental NASH models to study the pathophysiological role of proteins like SNTA in NASH.
Collapse
Affiliation(s)
- Lisa Rein-Fischboeck
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, Germany
| | - Elisabeth M Haberl
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, Germany
| | - Rebekka Pohl
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, Germany
| | - Verena Schmid
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, Germany
| | - Susanne Feder
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, Germany
| | - Sabrina Krautbauer
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, Germany.
| |
Collapse
|
49
|
den Hoedt S, Janssen CI, Astarita G, Piomelli D, Leijten FP, Crivelli SM, Verhoeven AJ, de Vries HE, Walter J, Martinez-Martinez P, Sijbrands EJ, Kiliaan AJ, Mulder MT. Pleiotropic Effect of Human ApoE4 on Cerebral Ceramide and Saturated Fatty Acid Levels. J Alzheimers Dis 2017; 60:769-781. [DOI: 10.3233/jad-160739] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Sandra den Hoedt
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Carola I.F. Janssen
- Department of Anatomy, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Giuseppe Astarita
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington DC, USA
| | - Daniele Piomelli
- Department of Pharmacology, University of California Irvine, CA, USA
| | - Frank P.J. Leijten
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Simone M. Crivelli
- Department of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Adrie J.M. Verhoeven
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Helga E. de Vries
- Department of Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam, VU Medical Center, Amsterdam, The Netherlands
| | - Jochen Walter
- Department of Neurology, University of Bonn, Bonn, Germany
| | - Pilar Martinez-Martinez
- Department of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Eric J.G. Sijbrands
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Amanda J. Kiliaan
- Department of Anatomy, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Monique T. Mulder
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
50
|
Oertel S, Scholich K, Weigert A, Thomas D, Schmetzer J, Trautmann S, Wegner MS, Radeke HH, Filmann N, Brüne B, Geisslinger G, Tegeder I, Grösch S. Ceramide synthase 2 deficiency aggravates AOM-DSS-induced colitis in mice: role of colon barrier integrity. Cell Mol Life Sci 2017; 74:3039-3055. [PMID: 28405720 PMCID: PMC11107765 DOI: 10.1007/s00018-017-2518-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 03/30/2017] [Accepted: 04/03/2017] [Indexed: 02/07/2023]
Abstract
Loss of intestinal barrier functions is a hallmark of inflammatory bowel disease like ulcerative colitis. The molecular mechanisms are not well understood, but likely involve dysregulation of membrane composition, fluidity, and permeability, which are all essentially regulated by sphingolipids, including ceramides of different chain length and saturation. Here, we used a loss-of-function model (CerS2+/+ and CerS2-/- mice) to investigate the impact of ceramide synthase 2, a key enzyme in the generation of very long-chain ceramides, in the dextran sodium salt (DSS) evoked model of UC. CerS2-/- mice developed more severe disease than CerS2+/+ mice in acute DSS and chronic AOM/DSS colitis. Deletion of CerS2 strongly reduced very long-chain ceramides (Cer24:0, 24:1) but concomitantly increased long-chain ceramides and sphinganine in plasma and colon tissue. In naive CerS2-/- mice, the expression of tight junction proteins including ZO-1 was almost completely lost in the colon epithelium, leading to increased membrane permeability. This could also be observed in vitro in CerS2 depleted Caco-2 cells. The increase in membrane permeability in CerS2-/- mice did not manifest with apparent clinical symptoms in naive mice, but with slight inflammatory signs such as an increase in monocytes and IL-10. AOM/DSS and DSS treatment alone led to a further deterioration of membrane integrity and to severe clinical symptoms of the disease. This was associated with stronger upregulation of cytokines in CerS2-/- mice and increased infiltration of the colon wall by immune cells, particularly monocytes, CD4+ and Th17+ T-cells, and an increase in tumor burden. In conclusion, CerS2 is crucial for the maintenance of colon barrier function and epithelial integrity. CerS2 knockdown, and associated changes in several sphingolipids such as a drop in very long-chain ceramides/(dh)-ceramides, an increase in long-chain ceramides/(dh)-ceramides, and sphinganine in the colon, may weaken endogenous defense against the endogenous microbiome.
Collapse
Affiliation(s)
- Stephanie Oertel
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Klaus Scholich
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Andreas Weigert
- Institute of Biochemistry I-Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Dominique Thomas
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Julia Schmetzer
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Sandra Trautmann
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Marthe-Susanna Wegner
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Heinfried H Radeke
- Institute of General Pharmacology and Toxicology, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Natalie Filmann
- Institute of Biostatistics and Mathematical Modeling Faculty of Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I-Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology (TMP), Frankfurt am Main, Germany
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Sabine Grösch
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.
| |
Collapse
|