1
|
Chen N, Zeng Z, Chen H, Liu H, Zhang Z, Ke F, Ji X, Liu L, Zhang Z, Chen Y. Enhanced Transdermal Delivery of Liraglutide for Sustained Obesity Management. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:12189-12198. [PMID: 40347179 DOI: 10.1021/acs.langmuir.5c00949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2025]
Abstract
Liraglutide, a glucagon-like peptide-1 (GLP-1) receptor agonist, is recognized for its effectiveness in glycemic control and weight reduction. However, the pain associated with the traditional subcutaneous administration of liraglutide and needle phobia in some patients will seriously affect medication adherence. Transdermal delivery represents a promising alternative to subcutaneous injection for its convenience, noninvasiveness, and painlessness, and it can bypass the first-pass metabolism and multiple biological barriers of oral administration and be delivered in a controlled manner, resulting in steady drug levels. Nonetheless, due to skin barriers, effective transdermal delivery of peptide-based drugs like liraglutide remains challenging. This study developed a two-step platform for preparing peptide nanoparticles based on flash nanocomplexation (FNC) technology to improve the efficacy of transdermal liraglutide delivery. Liraglutide was first encapsulated in nanoparticles formed by tannic acid (TA) and aluminum ions (Al3+), wherein coordination interactions between TA and Al3+, as well as hydrogen bonding interactions involving TA and liraglutide. Then, liraglutide nanoparticles were coated with positively charged hydroxypropyl trimethylammonium chloride chitosan (HTCC) to improve transdermal delivery efficacy. The resulting liraglutide nanoparticles exhibited superior transdermal penetration, durable hypoglycemic effects, and long-acting therapeutic efficacy for obesity, indicating that the developed Lira nanoparticle offers a promising platform for the transdermal delivery of peptide-based drugs.
Collapse
Affiliation(s)
- Nipeng Chen
- PCFM Lab, Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Zhipeng Zeng
- PCFM Lab, Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Haolin Chen
- PCFM Lab, Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Hong Liu
- PCFM Lab, Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
- State Key Laboratory of Antiviral Drugs, College of Chemistry and Molecular Science, Henan University, Zhengzhou 450046, People's Republic of China
| | - Zhihui Zhang
- PCFM Lab, Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Fangfang Ke
- PCFM Lab, Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Xiaoyu Ji
- PCFM Lab, Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Lixin Liu
- PCFM Lab, Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Zhen Zhang
- PCFM Lab, Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Yongming Chen
- PCFM Lab, Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
- State Key Laboratory of Antiviral Drugs, College of Chemistry and Molecular Science, Henan University, Zhengzhou 450046, People's Republic of China
| |
Collapse
|
2
|
Wei S, Zhai Z, Kong X, Wu C, Zhu B, Zhao Z, Zhang X. The review of nasal drug delivery system: The strategies to enhance the efficiency of intranasal drug delivery by improving drug absorption. Int J Pharm 2025; 676:125584. [PMID: 40216038 DOI: 10.1016/j.ijpharm.2025.125584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/02/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025]
Abstract
Nasal drug administration constitutes an efficient and non-invasive modality of drug delivery, and its distinctive physiological structure offers potentialities for treating a variety of diseases. To elevate the drug absorption and delivery efficiency, it is of paramount importance to delineate the transport routes and their enhancement mechanisms. Nevertheless, drug absorption pathways vary depending on the disease target, these variations present opportunities for targeted delivery and challenges for achieving precision. Hence, this review outlines the anatomical structure of the nasal cavity, and subsequently elaborates on the drug transport pathways within the nasal cavity and their influencing factors. Based on the distinct sites of drug action, diseases suitable for nasal drug administration are categorized into three types: systemic diseases, local nasal diseases, and central nervous system diseases. Grounded on multiple transport routes and their influencing factors, this review proposes strategies like optimizing formulation viscosity, using penetration enhancers, adding mucosal adhesives and improving delivery device, offering insights into future advancements in nasal drug delivery systems.
Collapse
Affiliation(s)
- Shuhua Wei
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510006, PR China
| | - Zizhao Zhai
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510006, PR China
| | - Xi Kong
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510006, PR China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510006, PR China
| | - Bing Zhu
- Respirent Pharmaceuticals Co. Ltd., Chongqing 40070, PR China.
| | - Ziyu Zhao
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510006, PR China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Pharmacy, Jinan University, Guangzhou 511443, PR China.
| | - Xuejuan Zhang
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510006, PR China.
| |
Collapse
|
3
|
Li T, Zhang Y, Li C, Song Y, Jiang T, Yin Y, Chang M, Song X, Zheng X, Zhang W, Yu Z, Feng W, Zhang Q, Ding L, Chen Y, Wang S. Microbial Photosynthetic Oxygenation and Radiotherapeutic Sensitization Enables Pyroptosis Induction for Combinatorial Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2503138. [PMID: 40285553 DOI: 10.1002/adma.202503138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 04/08/2025] [Indexed: 04/29/2025]
Abstract
Rectal cancer surgery is challenging due to the complex anatomy, making it difficult to achieve clear surgical margins. Radiotherapy (RT) plays a crucial role, especially in treating locally recurrent rectal cancer and preserving anal function. However, its effectiveness is often limited by tumor hypoxia, particularly prevalent in hypoxic regions near the bowel wall in colorectal cancer. Hypoxia contributes to both radiation resistance and apoptosis resistance, compromising RT outcomes. To overcome hypoxia-driven radiotherapy resistance, this work designs and engineers a radiotherapy-sensitizing bioplatform for efficient cancer RT. It combines lanthanum oxide nanoparticles (La2O3 NPs) with cyanobacteria, which produces oxygen through photosynthesis. This bioplatform uniquely reduces tumor hypoxia, enhances radiation deposition, and improves RT efficacy. La2O3 NPs further enhance reactive oxygen species (ROS) production induced by radiation, triggering pyroptosis via the ROS-NLRP3-GSDMD pathway, while RT amplifies pyroptosis through GSDME, circumventing tumor apoptosis resistance. The further integrated thermosensitive hydrogels ensure precise localization of the bioplatform, reducing systemic toxicity and improving therapeutic specificity. Compared to conventional therapies, this dual-action system addresses hypoxia, RT resistance, and apoptosis resistance more effectively. In vivo and in vitro hypoxia models validate its potent anti-tumor efficacy, offering valuable insights for refining clinical treatment paradigms.
Collapse
Affiliation(s)
- Tianyu Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China
| | - Ya Zhang
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
| | - Cong Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China
| | - Yanwei Song
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China
| | - Tiaoyan Jiang
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
| | - Yipengchen Yin
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China
| | - Xinran Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Xiaojun Zheng
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
| | - Wenqing Zhang
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
| | - Zhongdan Yu
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Qin Zhang
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
| | - Li Ding
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Sheng Wang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China
| |
Collapse
|
4
|
Meng Y, Xu L, Cheng G. Bioelectronics hydrogels for implantable cardiac and brain disease medical treatment application. Int J Biol Macromol 2025; 299:139945. [PMID: 39837454 DOI: 10.1016/j.ijbiomac.2025.139945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/28/2024] [Accepted: 01/14/2025] [Indexed: 01/23/2025]
Abstract
Hydrogel-based bioelectronic systems offer significant benefits for point-of-care diagnosis, treatment of cardiac and cerebral disease, surgical procedures, and other medical applications, ushering in a new era of advancements in medical technology. Progress in hydrogel-based bioelectronics has advanced from basic instrument and sensing capabilities to sophisticated multimodal perceptions and feedback systems. Addressing challenges related to immune responses and inflammation regulation after implantation, physiological dynamic mechanism, biological toxicology as well as device size, power consumption, stability, and signal conversion is crucial for the practical implementation of hydrogel-based bioelectronics in medical implants. Therefore, further exploration of hydrogel-based bioelectronics is imperative, and a comprehensive review is necessary to steer the development of these technologies for use in implantable therapies for cardiac and brain/neural conditions. In this review, a concise overview is provided on the fundamental principles underlying ionic electronic and ionic bioelectronic mechanisms. Additionally, a comprehensive examination is conducted on various bioelectronic materials integrated within hydrogels for applications in implantable medical treatments. The analysis encompasses a detailed discussion on the representative structures and physical attributes of hydrogels. This includes an exploration of their intrinsic properties such as mechanical strength, dynamic capabilities, shape-memory features, stability, stretchability, and water retention characteristics. Moreover, the discussion extends to properties related to interactions with tissues or the environment, such as adhesiveness, responsiveness, and degradability. The intricate relationships between the structure and properties of hydrogels are thoroughly examined, along with an elucidation of how these properties influence their applications in implantable medical treatments. The review also delves into the processing techniques and characterization methods employed for hydrogels. Furthermore, recent breakthroughs in the applications of hydrogels are logically explored, covering aspects such as materials, structure, properties, functions, fabrication procedures, and hybridization with other materials. Finally, the review concludes by outlining the future prospects and challenges associated with hydrogels-based bioelectronics systems.
Collapse
Affiliation(s)
- Yanfang Meng
- School of Mechanical Engineering, Jiangsu University, No.301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Lin Xu
- School of Mechanical Engineering, Jiangsu University, No.301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China.
| | - Guanggui Cheng
- School of Mechanical Engineering, Jiangsu University, No.301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China.
| |
Collapse
|
5
|
Zhang J, Meng L, Jia Y, Li J, Xu X, Xu X. Development of an injectable salicylic acid-choline eutectic hydrogel for enhanced treatment of periodontitis. MATERIALS HORIZONS 2025. [PMID: 40052257 DOI: 10.1039/d4mh01563k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
Periodontitis, a chronic inflammatory disease triggered by dental plaque, often presents challenges in management, particularly in severe cases where mechanical debridement alone may be insufficient. As a result, adjunctive therapies, particularly localized drug delivery systems with both antimicrobial and anti-inflammatory properties, are essential to enhance the efficacy of periodontitis management. In this study, we developed a multifunctional hydrogel by incorporating a salicylic acid-choline deep eutectic solvent (DES) into a chitosan/β-glycerol phosphate sodium (CS/GP) hydrogel matrix for the treatment of periodontitis. The DES-CS/GP hydrogel demonstrated favorable physicochemical properties, including gelation and injectability, making it highly suitable for application in the oral cavity. The hydrogel effectively inhibited the growth of key periodontal pathogens, Porphyromonas gingivalis and Fusobacterium nucleatum, and significantly downregulated the expression of pro-inflammatory cytokines TNF-α and IL-1β in vitro. Cytocompatibility assessments showed over 80% cell viability in human gingival fibroblasts, human gingival epithelial cells, and human oral keratinocytes over 5 days treated with DES-CS/GP, with fluorescence microscopy confirming robust cytoskeletal integrity. Furthermore, the hydrogel enhanced permeability through gingival tissues in vitro. In a rat model of periodontitis, the hydrogel significantly mitigated bone loss, reduced bacterial loads of P. g, and suppressed TNF-α and IL-1β expression in gingival tissues. These findings underscore the hydrogel's potential as a safe and effective adjunctive therapy for periodontitis, offering a combination of antimicrobial, anti-inflammatory, and tissue-permeating properties with high biosafety and ease of application.
Collapse
Affiliation(s)
- Jin Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Lingzhuang Meng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China.
| | - Yinan Jia
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China.
| | - Xinyuan Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China.
| | - Xin Xu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
6
|
Shergujri DA, Khanday MA, Noor A, Adnan M, Arif I, Raza SN, Mir RH, Khan NA. Next-generation biopolymer gels: innovations in drug delivery and theranostics. J Mater Chem B 2025; 13:3222-3244. [PMID: 39903271 DOI: 10.1039/d4tb02068e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Biopolymers or natural polymers like chitosan, cellulose, alginate, collagen, etc. have gained significant interest recently due to their remarkable tunable properties that make them appropriate for a variety of applications & play a crucial role in everyday life. The features of biopolymers which include biodegradability, biocompatibility, sustainability, affordability, & availability are vital for creating products for use in biomedical fields. Apart from these characteristics, smart or stimuli-responsive biopolymers also show a distinctive property of being susceptible to various factors like pH, temperature, light intensity, & electrical or magnetic fields. The current review would present a brief idea about smart biopolymer gels along with their biomedical applications. The use of smart biopolymers gels as theranostic agents are also discussed in the present review. This review also focuses on the application of biopolymers in the fields of drug delivery, cancer treatment, tissue engineering & wound healing. These areas demonstrate the development and utilization of different types of biopolymers in current biomedical applications.
Collapse
Affiliation(s)
- Danish Ahmad Shergujri
- Pharmaceutics Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Jammu and Kashmir, India.
| | - Murtaza Ahmad Khanday
- Pharmaceutics Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Jammu and Kashmir, India.
| | - Aisha Noor
- Pharmaceutics Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Jammu and Kashmir, India.
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, Ha'il, P.O. Box 2440, Saudi Arabia
| | - Iqra Arif
- Pharmaceutics Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Jammu and Kashmir, India.
| | - Syed Naiem Raza
- Pharmaceutics Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Jammu and Kashmir, India.
| | - Reyaz Hassan Mir
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Jammu and Kashmir, India.
| | - Nisar Ahmad Khan
- Pharmaceutics Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Jammu and Kashmir, India.
| |
Collapse
|
7
|
Ashfaq R, Kovács A, Berkó S, Budai-Szűcs M. Smart biomaterial gels for periodontal therapy: A novel approach. Biomed Pharmacother 2025; 183:117836. [PMID: 39832427 DOI: 10.1016/j.biopha.2025.117836] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/02/2025] [Accepted: 01/09/2025] [Indexed: 01/22/2025] Open
Abstract
Periodontitis, a chronic inflammatory condition of the oral cavity, is characterized by the progressive destruction of the supporting structures of the teeth. The pathogenic effects of periodontopathogens extend beyond the local periodontal environment, contributing to systemic health complications, thereby underscoring the need for effective therapeutic strategies. Current standard treatments, which involve mechanical debridement coupled with systemic anti-inflammatory and antibiotic therapies, are often associated with limited efficacy, adverse effects, and the emergence of antibiotic resistance. Recent advancements in localized drug delivery systems present an innovative alternative, offering site-specific targeting with sustained therapeutic action. Smart drug delivery platforms, designed to respond to the unique microenvironment of periodontal pockets, undergo physicochemical transformations such as gelation or controlled drug release, enhancing treatment efficacy. This review comprehensively explores the etiological and prognostic factors of periodontitis, critical diagnostic biomarkers, and an in-depth analysis of stimuli-responsive biomacromolecule-based gels. These systems are evaluated for their structural properties, biological compatibility, and therapeutic potential while addressing their limitations and barriers to clinical translation. By integrating insights into the interplay between material properties and biological performance, this review highlights the future role of these advanced delivery systems in overcoming challenges in periodontal healthcare. Such approaches aim to bridge the gap between bench-side innovation and bedside application, offering the transformative potential to enhance therapeutic outcomes and improve patient quality of life in managing periodontal diseases.
Collapse
Affiliation(s)
- Rabia Ashfaq
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6 Eötvös u., Szeged H-6720, Hungary
| | - Anita Kovács
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6 Eötvös u., Szeged H-6720, Hungary
| | - Szilvia Berkó
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6 Eötvös u., Szeged H-6720, Hungary
| | - Mária Budai-Szűcs
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6 Eötvös u., Szeged H-6720, Hungary.
| |
Collapse
|
8
|
Chen Y, Song H, Wang X, Huang R, Li S, Guan X. Propionate-functionalized chitosan hydrogel nanoparticles for effective oral delivery of insulin. Int J Biol Macromol 2025; 291:139159. [PMID: 39725095 DOI: 10.1016/j.ijbiomac.2024.139159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Oral delivery of macromolecular drugs is often hampered by the harsh gastrointestinal environment, which makes the drugs have poor bioavailability. Insulin, the most used drug for diabetes, also faces the same challenge for oral administration. Hence, we decorated microbial metabolite propionate on chitosan (CS) to fabricate insulin-loaded propionate-modified CS hydrogel nanoparticles (IN-CS/PA HNPs). The prepared IN-CS/PA HNPs exhibited high encapsulation efficiency (> 95 %) and loading capacity (∼10 %) for insulin. The system provided better protection for insulin in gastrointestinal environment compared to unmodified IN-CS HNPs. Moreover, the active functional group of propionate can be recognized and transported by mono-carboxylate transporter protein 1 (MCT1) targeting. Thus, in both Caco-2 cells and the ligated intestinal loops of rats, IN-CS/PA HNPs significantly improved permeability and uptake of insulin on intestinal epithelium, which was attributed to MCT1-mediated endocytosis. In type 1 diabetic (T1D) rats, oral delivery of IN-CS/PA HNPs with 60 IU/kg insulin led to more stable and long-lasting hypoglycemic effect than a 5IU/kg dose of subcutaneously injected insulin. It also generated 2.29-fold and 11.88-fold higher relative oral bioavailability compared with empty IN-CS HNPs and free insulin, respectively. This study demonstrated that propanoic acid-functionalized chitosan hydrogel nanoparticles could improve the oral absorption of insulin by overcoming multiple barriers in gastrointestinal tract, providing a promising active targeting strategy for the oral delivery of macromolecules drugs.
Collapse
Affiliation(s)
- Yaqiong Chen
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Hongdong Song
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Xinyue Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ruihan Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Sen Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China.
| |
Collapse
|
9
|
Banazadeh M, Ilaghi M, Abadi B, Joushi S, Pishbin E, Dabiri S, Ramezani Farani M, Rahi A, Mostafavi E, Zare I. Chitosan nanoparticles-hydrogel composites for biomedical applications. FUNDAMENTALS AND BIOMEDICAL APPLICATIONS OF CHITOSAN NANOPARTICLES 2025:633-678. [DOI: 10.1016/b978-0-443-14088-4.00010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
10
|
López-Maldonado EA, Mavaei M, Dan S, Banitaba SN, Gholamhosseinpour M, Hamedi S, Villarreal-Gómez LJ, Pérez-González GL, Mashkouri S, Khademolqorani S, Elgarahy AM. Diverse applications of versatile quaternized chitosan salts: A review. Int J Biol Macromol 2024; 281:136276. [PMID: 39383902 DOI: 10.1016/j.ijbiomac.2024.136276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
In the ever-evolving world of materials science, modifying natural polymers has garnered significant attention across diverse industries, driven by their inherent availability and cost-effectiveness. Among these, chitosan, a pseudo-natural cationic polymer, has emerged as a versatile player, finding applications in medical, pharmaceutical, filtration, and textile sectors, owing to its exceptional biodegradability, non-allergenicity, antimicrobial properties, and eco-friendly nature. However, the limitations of chitosan, such as low surface area, poor solubility at neutral to alkaline pH, and inadequate thermal-mechanical properties, have prompted researchers to explore innovative modification strategies, including graft copolymerization, quaternization, and cross-linking. This review delves into the remarkable potential of a specific chitosan derivative, N-[(2-hydroxy-3-trimethylammonium) propyl] chitosan salts (N-HTCS), a quaternized form of chitosan. This review uniquely examines the properties and multifaceted applications of N-HTCS, spanning biomedical, textile, food packaging, and environmental domains. The outstanding features of N-HTCS, including antioxidant, anticancer, and antimicrobial bioactivity, as well as biocompatibility, biodegradability, hemostatic, piezoelectric, superparamagnetic, water solubility, and permeation-enhancing effects, offer novel solutions to the limitations of unmodified chitosan. Notably, while previous reviews have addressed the significance of chitosan, this work presents a groundbreaking focus on the N-HTCS derivative, providing a fresh perspective and paving the way for the design and engineering of cutting-edge N-HTCS-based devices and applications. The comprehensive coverage of this review aims to inspire researchers and industry professionals to explore the untapped potential of this remarkable chitosan derivative, unlocking new frontiers in material science and technology.
Collapse
Affiliation(s)
- Eduardo Alberto López-Maldonado
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California, 22424 Tijuana, Baja California, Mexico.
| | - Maryamosadat Mavaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sasan Dan
- Chemical Engineering Department, Faculty of Engineering, Shahid Bahonar University of Kerman, Iran
| | - Seyedeh Nooshin Banitaba
- Department of Textile Engineering, Amirkabir University of Technology, Tehran 159163-4311, Iran; Emerald Experts laboratory, Isfahan Science and Technology Town, Isfahan 84156-83111, Iran
| | - Maryam Gholamhosseinpour
- Molecular and Cellular Biosciences, Institute of Biology, Martin Luther University Halle-Wittenberg (MLU), Weinbergweg10, Halle (Saale) 06120, Germany
| | - Sepideh Hamedi
- Faculty of New Technologies Engineering, Shahid Beheshti University, Tehran, Iran.
| | - Luis Jesús Villarreal-Gómez
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, México, and Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana, Baja California, Mexico
| | - Graciela Lizeth Pérez-González
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, México, and Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana, Baja California, Mexico
| | - Sara Mashkouri
- Department of chemistry, Iran university of Science and Technology, Iran
| | - Sanaz Khademolqorani
- Emerald Experts laboratory, Isfahan Science and Technology Town, Isfahan 84156-83111, Iran; Department of Textile Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Ahmed M Elgarahy
- Environmental Chemistry Division, Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt.
| |
Collapse
|
11
|
El Bejjaji S, Ramos-Yacasi G, Suñer-Carbó J, Mallandrich M, Goršek L, Quilchez C, Calpena AC. Nanocomposite Gels Loaded with Flurbiprofen: Characterization and Skin Permeability Assessment in Different Skin Species. Gels 2024; 10:362. [PMID: 38920910 PMCID: PMC11203155 DOI: 10.3390/gels10060362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Nanocomposite gels consist of nanoparticles dispersed in a gel matrix. The main aim of this work was to develop nanocomposite gels for topical delivery of Flurbiprofen (FB) for humans and farm animals. Nanocomposite gels were prepared stemming from nanoparticles (NPs) freeze-dried with two different cryoprotectants, D-(+)-trehalose (NPs-TRE) and polyethylene glycol 3350 (NPs-PEG), sterilized by gamma (γ) irradiation, and gelled with Sepigel® 305. Nanocomposite gels with FB-NPs-TRE and FB-NPs-PEG were physiochemically characterized in terms of appearance, pH, morphological studies, porosity, swelling, degradation, extensibility, and rheological behavior. The drug release profile and kinetics were assessed, as well as, the ex vivo permeation of FB was assessed in human, porcine and bovine skin. In vivo studies in healthy human volunteers were tested without FB to assess the tolerance of the gels with nanoparticles. Physicochemical studies demonstrated the suitability of the gel formulations. The ex vivo skin permeation capacity of FB-NPs nanocomposite gels with different cryoprotectants allowed us to conclude that these formulations are suitable topical delivery systems for human and veterinary medicine. However, there were statistically significant differences in the permeation of each formulation depending on the skin. Results suggested that FB-NPs-PEG nanocomposite gel was most suitable for human and porcine skin, and the FB-NPs-TRE nanocomposite gel was most suitable for bovine skin.
Collapse
Affiliation(s)
- Sheimah El Bejjaji
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (S.E.B.); (L.G.); (A.C.C.)
| | - Gladys Ramos-Yacasi
- Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María (UCSM), Arequipa 04001, Peru;
| | - Joaquim Suñer-Carbó
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (S.E.B.); (L.G.); (A.C.C.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Mireia Mallandrich
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (S.E.B.); (L.G.); (A.C.C.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Lara Goršek
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (S.E.B.); (L.G.); (A.C.C.)
| | - Chandler Quilchez
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA;
| | - Ana Cristina Calpena
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (S.E.B.); (L.G.); (A.C.C.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
12
|
Wong CYJ, Baldelli A, Tietz O, van der Hoven J, Suman J, Ong HX, Traini D. An overview of in vitro and in vivo techniques for characterization of intranasal protein and peptide formulations for brain targeting. Int J Pharm 2024; 654:123922. [PMID: 38401871 DOI: 10.1016/j.ijpharm.2024.123922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 02/26/2024]
Abstract
The surge in neurological disorders necessitates innovative strategies for delivering active pharmaceutical ingredients to the brain. The non-invasive intranasal route has emerged as a promising approach to optimize drug delivery to the central nervous system by circumventing the blood-brain barrier. While the intranasal approach offers numerous advantages, the lack of a standardized protocol for drug testing poses challenges to both in vitro and in vivo studies, limiting the accurate interpretation of nasal drug delivery and pharmacokinetic data. This review explores the in vitro experimental assays employed by the pharmaceutical industry to test intranasal formulation. The focus lies on understanding the diverse techniques used to characterize the intranasal delivery of drugs targeting the brain. Parameters such as drug release, droplet size measurement, plume geometry, deposition in the nasal cavity, aerodynamic performance and mucoadhesiveness are scrutinized for their role in evaluating the performance of nasal drug products. The review further discusses the methodology for in vivo characterization in detail, which is essential in evaluating and refining drug efficacy through the nose-to-brain pathway. Animal models are indispensable for pre-clinical drug testing, offering valuable insights into absorption efficacy and potential variables affecting formulation safety. The insights presented aim to guide future research in intranasal drug delivery for neurological disorders, ensuring more accurate predictions of therapeutic efficacy in clinical contexts.
Collapse
Affiliation(s)
- Chun Yuen Jerry Wong
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia; Faculty of Medicine and Health Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
| | - Alberto Baldelli
- Faculty of Food and Land Systems, The University of British Columbia, 2357 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Ole Tietz
- Dementia Research Centre, Faculty of Medicine and Health Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
| | - Julia van der Hoven
- Dementia Research Centre, Faculty of Medicine and Health Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
| | - Julie Suman
- Next Breath, an Aptar Pharma Company, Baltimore, MD 21227, USA
| | - Hui Xin Ong
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia; Faculty of Medicine and Health Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia.
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia; Faculty of Medicine and Health Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
13
|
Ryu HS, Abueva C, Padalhin A, Park SY, Yoo SH, Seo HH, Chung PS, Woo SH. Oral ulcer treatment using human tonsil-derived mesenchymal stem cells encapsulated in trimethyl chitosan hydrogel: an animal model study. Stem Cell Res Ther 2024; 15:103. [PMID: 38589946 PMCID: PMC11003084 DOI: 10.1186/s13287-024-03694-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/08/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Oral ulcers are a common side effect of chemotherapy and affect patients' quality of life. While stem cell transplantation is a potential treatment for oral ulcers, its efficacy is limited as the stem cells tend to remain in the affected area for a short time. This study aims to develop a treatment for oral ulcers by using trimethyl chitosan (TMC) hydrogel with human tonsil-derived stem cells (hTMSCs) to increase the therapeutic effect of stem cells and investigate their effectiveness. METHODS Animals were divided into four experimental groups: Control, TMC hydrogel, hTMSCs, and hTMSCs loaded in TMC hydrogel (Hydrogel + hTMSCs) (each n = 8). Oral ulcers were chemically induced by anesthetizing the rats followed by injection of dilute acetic acid in the right buccal mucosa. After confirming the presence of oral ulcers in the animals, a single subcutaneous injection of 100 µL of each treatment was applied to the ulcer area. Histological analyses were performed to measure inflammatory cells, oral mucosal thickness, and fibrosis levels. The expression level of inflammatory cytokines was also measured using RT-PCR to gauge therapeutic the effect. RESULTS The ulcer size was significantly reduced in the TMC hydrogel + hTMSCs group compared to the control group. The stem cells in the tissue were only observed until Day 3 in the hTMSCs treated group, while the injected stem cells in the TMC Hydrogel + hTMSCs group were still present until day 7. Cytokine analysis related to the inflammatory response in the tissue confirmed that the TMC Hydrogel + hTMSCs treated group demonstrated superior wound healing compared to other experimental groups. CONCLUSION This study has shown that the adhesion and viability of current stem cell therapies can be resolved by utilizing a hydrogel prepared with TMC and combining it with hTMSCs. The combined treatment can promote rapid healing of oral cavity wounds by enhancing anti-inflammatory effects and expediting wound healing. Therefore, hTMSC loaded in TMC hydrogel was the most effective wound-healing approach among all four treatment groups prolonging stem cell survival. However, further research is necessary to minimize the initial inflammatory response of biomaterials and assess the safety and long-term effects for potential clinical applications.
Collapse
Affiliation(s)
- Hyun Seok Ryu
- Beckman Laser Institute Korea, Dankook University College of Medicine, Cheonan, Republic of Korea
- Medical Laser Research Center, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Celine Abueva
- Beckman Laser Institute Korea, Dankook University College of Medicine, Cheonan, Republic of Korea
- Medical Laser Research Center, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Andrew Padalhin
- Beckman Laser Institute Korea, Dankook University College of Medicine, Cheonan, Republic of Korea
- Medical Laser Research Center, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - So Young Park
- Beckman Laser Institute Korea, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Seung Hyeon Yoo
- School of Medical Laser, Dankook University, Cheonan, Republic of Korea
| | - Hwee Hyon Seo
- School of Medical Laser, Dankook University, Cheonan, Republic of Korea
| | - Phil-Sang Chung
- Beckman Laser Institute Korea, Dankook University College of Medicine, Cheonan, Republic of Korea
- Medical Laser Research Center, Dankook University College of Medicine, Cheonan, Republic of Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Dankook University College of Medicine, 201 Manghyang-ro, Dongnam-gu, Cheonan, 31116, Republic of Korea
| | - Seung Hoon Woo
- Beckman Laser Institute Korea, Dankook University College of Medicine, Cheonan, Republic of Korea.
- Medical Laser Research Center, Dankook University College of Medicine, Cheonan, Republic of Korea.
- Department of Otorhinolaryngology-Head and Neck Surgery, Dankook University College of Medicine, 201 Manghyang-ro, Dongnam-gu, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
14
|
Luo D, Ni X, Yang H, Feng L, Chen Z, Bai L. A comprehensive review of advanced nasal delivery: Specially insulin and calcitonin. Eur J Pharm Sci 2024; 192:106630. [PMID: 37949195 DOI: 10.1016/j.ejps.2023.106630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/18/2023] [Accepted: 11/08/2023] [Indexed: 11/12/2023]
Abstract
Peptide drugs through nasal mucous membrane, such as insulin and calcitonin have been widely used in the medical field. There are always two sides to a coin. One side, intranasal drug delivery can imitate the secretion pattern in human body, having advantages of physiological structure and convenient use. Another side, the low permeability of nasal mucosa, protease environment and clearance effect of nasal cilia hinder the intranasal absorption of peptide drugs. Researchers have taken multiple means to achieve faster therapeutic concentration, lower management dose, and fewer side effects for better nasal preparations. To improve the peptide drugs absorption, various strategies had been explored via the nasal mucosa route. In this paper, we reviewed the achievements of 18 peptide drugs in the past decade about the perspectives of the efficacy, mechanism of enhancing intranasal absorption and safety. The most studies were insulin and calcitonin. As a result, absorption enhancers, nanoparticles (NPs) and bio-adhesive system are the most widely used. Among them, chitosan (CS), cell penetrating peptides (CPPs), tight junction modulators (TJMs), soft NPs and gel/hydrogel are the most promising strategies. Moreover, two or three strategies can be combined to prepare drug vectors. In addition, spray freeze dried (SFD), self-emulsifying nano-system (SEN), and intelligent glucose reaction drug delivery system are new research directions in the future.
Collapse
Affiliation(s)
- Dan Luo
- Department of Pharmacy, Shantou Hospital of Traditional Chinese Medicine, Shantou, Guangdong, China
| | - Xiaoqing Ni
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hao Yang
- Power China Chengdu Engineering Corporation Limited, Chengdu, Sichuan, China
| | - Lu Feng
- Department of Emergency, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.
| | - Zhaoqun Chen
- Department of Pharmacy, Shantou Hospital of Traditional Chinese Medicine, Shantou, Guangdong, China.
| | - Lan Bai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; The State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
15
|
Kamali H, Tafaghodi M, Eisvand F, Ahmadi-Soleimani SM, Khajouee M, Ghazizadeh H, Mosafer J. Preparation and Evaluation of the In situ Gel-forming Chitosan Hydrogels for Nasal Delivery of Morphine in a Single Unit dose in Rats to Enhance the Analgesic Responses. Curr Drug Deliv 2024; 21:1024-1035. [PMID: 37491854 DOI: 10.2174/1567201820666230724161205] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/30/2023] [Accepted: 06/05/2023] [Indexed: 07/27/2023]
Abstract
INTRODUCTION In this study, an in situ gel-forming chitosan hydrogel was prepared with the use of glutamate salt of chitosan (Ch-Ga), β-glycerophosphate (Gp), and morphine (Mor). The paper is focused on in vitro physicochemical properties and in-vivo analgesic effects of the prepared chitosan hydrogel. METHOD The thermosensitive properties of prepared chitosan hydrogel were evaluated during the different temperatures and times. The physicochemical properties of chitosan hydrogel were investigated by infrared (IR) spectroscopy and X-ray diffraction analysis (XRD). Also, its cell cytotoxicity effects were evaluated in murine NIH/3T3 normal cells. Subsequently, the distribution of chitosan hydrogel in the nasal cavity of rats and its analgesic responses were evaluated. The prepared chitosan hydrogel showed that it could be gelled at the temperature of 34 °C before leaving the nose in the shortest possible time of 30 s. RESULT The analgesic responses of the intranasal (IN) injection of chitosan hydrogel (IN-chitosan hydrogel, 10 mg Mor/kg) in a single unit dose in rat relative to the placebo and intranasal or intraperitoneal (IP) injection of free morphine solution (IN-Free Mor or IP-Free Mor, 10 mg Mor/kg) via the hot plate test, reveal that the IN-chitosan hydrogel could induce fast analgesic effects of morphine with maximum possible effect (MPE) of 93% after 5 min compare to the IN-Free Mor and IP-Free Mor with MPE of 80% after 15 min and 66% after 30 min, respectively. Also, prolonged analgesic effects with MPE of 78 % after 6 h of injection were only seen in the IN-chitosan hydrogel injected group. The obtained fluorescent images of rat's brain injected with IN-chitosan hydrogel containing doxorubicine (Dox) as a fluorescent agent showed that the mucosal adhesive and absorption enhancer properties of IN-chitosan hydrogel resulting in longer presence of them in the nasal cavity of rats followed by more absorption of Dox from the blood vessels of olfactory bulbs with a 74% color intensity compared to the IN-Free Mor and IN-Free Dox with 15%. CONCLUSION These data reveal that the IN-chitosan hydrogel could induce fast and prolonged analgesic effects of morphine compare to the IN/IP-Free Mor, which could be considered as an in situ gel-forming thermosensitive chitosan hydrogel for nasal delivery of wide ranges of therapeutic agents.
Collapse
Affiliation(s)
- Hossein Kamali
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Tafaghodi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farhad Eisvand
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - S Mohammad Ahmadi-Soleimani
- Department of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mina Khajouee
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hosnieh Ghazizadeh
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jafar Mosafer
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| |
Collapse
|
16
|
Hu X, Wang S, Fu S, Qin M, Lyu C, Ding Z, Wang Y, Wang Y, Wang D, Zhu L, Jiang T, Sun J, Ding H, Wu J, Chang L, Cui Y, Pang X, Wang Y, Huang W, Yang P, Wang L, Ma G, Wei W. Intranasal mask for protecting the respiratory tract against viral aerosols. Nat Commun 2023; 14:8398. [PMID: 38110357 PMCID: PMC10728126 DOI: 10.1038/s41467-023-44134-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/01/2023] [Indexed: 12/20/2023] Open
Abstract
The spread of many infectious diseases relies on aerosol transmission to the respiratory tract. Here we design an intranasal mask comprising a positively-charged thermosensitive hydrogel and cell-derived micro-sized vesicles with a specific viral receptor. We show that the positively charged hydrogel intercepts negatively charged viral aerosols, while the viral receptor on vesicles mediates the entrapment of viruses for inactivation. We demonstrate that when displaying matched viral receptors, the intranasal masks protect the nasal cavity and lung of mice from either severe acute respiratory syndrome coronavirus 2 or influenza A virus. With computerized tomography images of human nasal cavity, we further conduct computational fluid dynamics simulation and three-dimensional printing of an anatomically accurate human nasal cavity, which is connected to human lung organoids to generate a human respiratory tract model. Both simulative and experimental results support the suitability of intranasal masks in humans, as the likelihood of viral respiratory infections induced by different variant strains is dramatically reduced.
Collapse
Affiliation(s)
- Xiaoming Hu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Shuang Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Shaotong Fu
- School of Chemical Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China
| | - Meng Qin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Chengliang Lyu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China
| | - Zhaowen Ding
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China
| | - Yan Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yishu Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Dongshu Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, 100071, Beijing, China
| | - Li Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, 100071, Beijing, China
| | - Tao Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 100071, Beijing, China
| | - Jing Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100029, Beijing, China
| | - Hui Ding
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 518035, Shenzhen, China
| | - Jie Wu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Lingqian Chang
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering, Beihang University, 100083, Beijing, China
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, 100034, Beijing, China
- Institute of Clinical Pharmacology, Peking University, 100191, Beijing, China
| | - Xiaocong Pang
- Department of Pharmacy, Peking University First Hospital, 100034, Beijing, China
- Institute of Clinical Pharmacology, Peking University, 100191, Beijing, China
| | - Youchun Wang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, 102629, Beijing, China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, 102629, Beijing, China
| | - Peidong Yang
- Department of Breast Surgery, Affiliated Quanzhou First Hospital of Fujian Medical University, 362000, Quanzhou, China
| | - Limin Wang
- School of Chemical Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China.
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China.
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
17
|
Wang J, Liu L, Zhang S, Liao B, Zhao K, Li Y, Xu J, Chen L. Review of the Perspectives and Study of Thermo-Responsive Polymer Gels and Applications in Oil-Based Drilling Fluids. Gels 2023; 9:969. [PMID: 38131955 PMCID: PMC10742521 DOI: 10.3390/gels9120969] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/30/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Thermoresponsive polymer gels are a type of intelligent material that can react to changes in temperature. These materials possess excellent innovative properties and find use in various fields. This paper systematically analyzes the methods for testing and regulating phase transition temperatures of thermo-responsive polymer gels based on their response mechanism. The report thoroughly introduces the latest research on thermo-responsive polymer gels in oil and gas extraction, discussing their advantages and challenges across various environments. Additionally, it elucidates how the application limitations of high-temperature and high-salt conditions can be resolved through process optimization and material innovation, ultimately broadening the scope of application of thermo-responsive polymer gels in oil and gas extraction. The article discusses the technological development and potential applications of thermo-responsive polymer gels in oil-based drilling fluids. This analysis aims to offer researchers in the oil and gas industry detailed insights into future possibilities for thermo-responsive polymer gels and to provide helpful guidance for their practical use in oil-based drilling fluids.
Collapse
Affiliation(s)
- Jintang Wang
- State Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Ministry of Education, Qingdao 266580, China; (L.L.); (K.Z.); (Y.L.); (J.X.)
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China;
| | - Lei Liu
- State Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Ministry of Education, Qingdao 266580, China; (L.L.); (K.Z.); (Y.L.); (J.X.)
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China;
| | - Siyang Zhang
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China;
| | - Bo Liao
- State Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Ministry of Education, Qingdao 266580, China; (L.L.); (K.Z.); (Y.L.); (J.X.)
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China;
| | - Ke Zhao
- State Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Ministry of Education, Qingdao 266580, China; (L.L.); (K.Z.); (Y.L.); (J.X.)
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China;
| | - Yiyao Li
- State Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Ministry of Education, Qingdao 266580, China; (L.L.); (K.Z.); (Y.L.); (J.X.)
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China;
| | - Jiaqi Xu
- State Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Ministry of Education, Qingdao 266580, China; (L.L.); (K.Z.); (Y.L.); (J.X.)
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China;
| | - Longqiao Chen
- CNPC Offshore Engineering Company Limited, Beijing 100028, China;
| |
Collapse
|
18
|
Chung TW, Cheng CL, Liu YH, Huang YC, Chen WP, Panda AK, Chen WL. Dopamine-dependent functions of hyaluronic acid/dopamine/silk fibroin hydrogels that highly enhance N-acetyl-L-cysteine (NAC) delivered from nasal cavity to brain tissue through a near-infrared photothermal effect on the NAC-loaded hydrogels. BIOMATERIALS ADVANCES 2023; 154:213615. [PMID: 37716334 DOI: 10.1016/j.bioadv.2023.213615] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/18/2023]
Abstract
Hyaluronic acid/silk fibroin (HA/SF or HS) hydrogels with remarkable mechanical characteristics have been reported as tissue engineering biomaterials. Herein, the addition of dopamine/polydopamine (DA/PDA) to HS hydrogels to develop multifunctional HA/PDA/SF (or HDS) hydrogels for the delivery of drugs such as N-acetyl-L-cysteine (NAC) from nasal to brain tissue is examined. Herein, DA-dependent functions of HDS hydrogels with highly adhesive forces, photothermal response (PTR) effects generated by near infrared (NIR) irradiation, and anti-oxidative effects were demonstrated. An in-vitro study shows that the HDS/NAC hydrogels could open tight junctions in the RPMI 2650 cell line, a model cell of the nasal mucosa, as demonstrated by the decreased values of transepithelial electrical resistance (TEER) and more discrete ZO-1 staining than those for the control group. This effect was markedly enhanced by NIR irradiation of the HDS/NAC-NIR hydrogels. Compared to the results obtained using NAC solution, an in-vivo imaging study (IVIS) in rats showed an approximately nine-fold increase in the quantity of NAC delivered from the nasal cavity to the brain tissue in the span of 2 h through the PTR effect generated by the NIR irradiation of the nasal tissue and administration of the HDS/NAC hydrogels. Herein, dopamine-dependent multifunctional HDS hydrogels were studied, and the nasal administration of HDS/NAC-NIR hydrogels with PTR effects generated by NIR irradiation was found to have significantly enhanced NAC delivery to brain tissues.
Collapse
Affiliation(s)
- Tze-Wen Chung
- Biomedical Engineering Research and Development Center, National Yang-Ming Chiao-Tung University, Taipei, Taiwan; Department of Biomedical Engineering, National Yang-Ming Chiao-Tung University, 112 Taipei, Taiwan.
| | - Ching-Lin Cheng
- Department of Biomedical Engineering, National Yang-Ming Chiao-Tung University, 112 Taipei, Taiwan
| | - Yun-Huan Liu
- Department of Biomedical Engineering, National Yang-Ming Chiao-Tung University, 112 Taipei, Taiwan
| | - Yi-Cheng Huang
- Department of Food Science, National Taiwan Ocean University, No.2, Beining Rd., Zhongzheng Dist., Keelung City 20224, Taiwan.
| | - Weng-Pin Chen
- Department of Mechanical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan.
| | - Asit Kumar Panda
- Biomedical Engineering Research and Development Center, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Wei-Ling Chen
- Department of Biomedical Engineering, National Yang-Ming Chiao-Tung University, 112 Taipei, Taiwan
| |
Collapse
|
19
|
Zhang H, Cui M, Zhang T, Qin X. Eco-friendly composite nanofibrous membranes loaded with chitosan microcapsules for enhanced antibacterial and deodorant application. POLYMER 2023; 283:126249. [DOI: 10.1016/j.polymer.2023.126249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
20
|
Sharma A, Kaur I, Dheer D, Nagpal M, Kumar P, Venkatesh DN, Puri V, Singh I. A propitious role of marine sourced polysaccharides: Drug delivery and biomedical applications. Carbohydr Polym 2023; 308:120448. [PMID: 36813329 DOI: 10.1016/j.carbpol.2022.120448] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/06/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Numerous compounds, with extensive applications in biomedical and biotechnological fields, are present in the oceans, which serve as a prime renewable source of natural substances, further promoting the development of novel medical systems and devices. Polysaccharides are present in the marine ecosystem in abundance, promoting minimal extraction costs, in addition to their solubility in extraction media, and an aqueous solvent, along with their interactions with biological compounds. Certain algae-derived polysaccharides include fucoidan, alginate, and carrageenan, while animal-derived polysaccharides comprise hyaluronan, chitosan and many others. Furthermore, these compounds can be modified to facilitate their processing into multiple shapes and sizes, as well as exhibit response dependence to external conditions like temperature and pH. All these properties have promoted the use of these biomaterials as raw materials for the development of drug delivery carrier systems (hydrogels, particles, capsules). The present review enlightens marine polysaccharides providing its sources, structures, biological properties, and its biomedical applications. In addition to this, their role as nanomaterials is also portrayed by the authors, along with the methods employed to develop them and associated biological and physicochemical properties designed to develop suitable drug delivery systems.
Collapse
Affiliation(s)
- Ameya Sharma
- Chitkara School of Pharmacy, Chitkara University, Himachal Pradesh, India
| | - Ishnoor Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India; University of Glasgow, College of Medical, Veterinary and Life Sciences, Glasgow, United Kingdom, G12 8QQ
| | - Divya Dheer
- Chitkara School of Pharmacy, Chitkara University, Himachal Pradesh, India
| | - Manju Nagpal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Pradeep Kumar
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - D Nagasamy Venkatesh
- JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamil Nadu, India
| | - Vivek Puri
- Chitkara School of Pharmacy, Chitkara University, Himachal Pradesh, India.
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| |
Collapse
|
21
|
Yeruva T, Yang S, Doski S, Duncan GA. Hydrogels for Mucosal Drug Delivery. ACS APPLIED BIO MATERIALS 2023; 6:1684-1700. [PMID: 37126538 PMCID: PMC11966650 DOI: 10.1021/acsabm.3c00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Mucosal tissues are often a desirable site of drug action to treat disease and engage the immune system. However, systemically administered drugs suffer from limited bioavailability in mucosal tissues where technologies to enable direct, local delivery to these sites would prove useful. In this Spotlight on Applications article, we discuss hydrogels as an attractive means for local delivery of therapeutics to address a range of conditions affecting the eye, nose, oral cavity, gastrointestinal, urinary bladder, and vaginal tracts. Considering the barriers to effective mucosal delivery, we provide an overview of the key parameters in the use of hydrogels for these applications. Finally, we highlight recent work demonstrating their use for inflammatory and infectious diseases affecting these tissues.
Collapse
Affiliation(s)
- Taj Yeruva
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Sydney Yang
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Shadin Doski
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Gregg A. Duncan
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
22
|
Halligan E, Zhuo S, Colbert DM, Alsaadi M, Tie BSH, Bezerra GSN, Keane G, Geever LM. Modulation of the Lower Critical Solution Temperature of Thermoresponsive Poly( N-vinylcaprolactam) Utilizing Hydrophilic and Hydrophobic Monomers. Polymers (Basel) 2023; 15:polym15071595. [PMID: 37050207 PMCID: PMC10096650 DOI: 10.3390/polym15071595] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/23/2023] [Accepted: 03/06/2023] [Indexed: 04/14/2023] Open
Abstract
Four-dimensional printing is primarily based on the concept of 3D printing technology. However, it requires additional stimulus and stimulus-responsive materials. Poly-N-vinylcaprolactam is a temperature-sensitive polymer. Unique characteristics of poly-N-vinylcaprolactam -based hydrogels offer the possibility of employing them in 4D printing. The main aim of this study is to alter the phase transition temperature of poly-N-vinylcaprolactam hydrogels. This research focuses primarily on incorporating two additional monomers with poly-N-vinylcaprolactam: Vinylacetate and N-vinylpyrrolidone. This work contributes to this growing area of research by altering (increasing and decreasing) the lower critical solution temperature of N-vinylcaprolactam through photopolymerisation. Poly-N-vinylcaprolactam exhibits a lower critical solution temperature close to the physiological temperature range of 34-37 °C. The copolymers were analysed using various characterisation techniques, such as FTIR, DSC, and UV-spectrometry. The main findings show that the inclusion of N-vinylpyrrolidone into poly-N-vinylcaprolactam increased the lower critical solution temperature above the physiological temperature. By incorporating vinylacetate, the lower critical solution temperature dropped to 21 °C, allowing for potential self-assembly of 4D-printed objects at room temperature. In this case, altering the lower critical solution temperature of the material can potentially permit the transformation of the 4D-printed object at a particular temperature.
Collapse
Affiliation(s)
- Elaine Halligan
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM) Center, Technological University of the Shannon: Midlands Midwest, Dublin Road, Athlone, N37 HD68 Co. Westmeath, Ireland
| | - Shuo Zhuo
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM) Center, Technological University of the Shannon: Midlands Midwest, Dublin Road, Athlone, N37 HD68 Co. Westmeath, Ireland
| | - Declan Mary Colbert
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM) Center, Technological University of the Shannon: Midlands Midwest, Dublin Road, Athlone, N37 HD68 Co. Westmeath, Ireland
| | - Mohamad Alsaadi
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM) Center, Technological University of the Shannon: Midlands Midwest, Dublin Road, Athlone, N37 HD68 Co. Westmeath, Ireland
- CONFIRM Centre for Smart Manufacturing, University of Limerick, V94 C928 Co. Limerick, Ireland
| | - Billy Shu Hieng Tie
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM) Center, Technological University of the Shannon: Midlands Midwest, Dublin Road, Athlone, N37 HD68 Co. Westmeath, Ireland
| | - Gilberto S N Bezerra
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM) Center, Technological University of the Shannon: Midlands Midwest, Dublin Road, Athlone, N37 HD68 Co. Westmeath, Ireland
| | - Gavin Keane
- Centre for Industrial Service & Design, Technological University of the Shannon: Midlands Midwest, Dublin Road, Athlone, N37 HD68 Co. Westmeath, Ireland
| | - Luke M Geever
- Applied Polymer Technologies Gateway, Material Research Institute, Technological University of the Shannon: Midlands Midwest, Dublin Road, Athlone, N37 HD68 Co. Westmeath, Ireland
| |
Collapse
|
23
|
Hocine S, Ghemati D, Aliouche D. Synthesis, characterization and swelling behavior of pH-sensitive polyvinylalcohol grafted poly(acrylic acid-co-2-acrylamido-2-methylpropane sulfonic acid) hydrogels for protein delivery. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-022-04664-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
24
|
Temperature-responsive hydrogel for tumor embolization therapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
25
|
Lee J, Kim KS, Na K. Intranasal administration of an aronia extract and carrageenan nanocomposite for the prevention of influenza A H1N1 virus infection. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00591-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Zhuo S, Halligan E, Tie BSH, Breheny C, Geever LM. Lower Critical Solution Temperature Tuning and Swelling Behaviours of NVCL-Based Hydrogels for Potential 4D Printing Applications. Polymers (Basel) 2022; 14:polym14153155. [PMID: 35956668 PMCID: PMC9370960 DOI: 10.3390/polym14153155] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 11/17/2022] Open
Abstract
The phase transitions of poly (N-vinyl caprolactam) (PNVCL) hydrogels are currently under investigation as possible materials for biomedical applications thanks to their thermosensitive properties. This study aims to use the photopolymerisation process to simulate the 4D printing process. NVCL-based polymers with different thermal properties and swellability were prepared to explore the possibility of synthetic hydrogels being used for 4D printing. In this contribution, the thermal behaviours of novel photopolymerised NVCL-based hydrogels were analysed. The lower critical solution temperature (LCST) of the physically crosslinked gels was detected using differential scanning calorimetry (DSC), ultraviolet (UV) spectroscopy, and cloud point measurement. The chemical structure of the xerogels was characterised by means of Fourier transform infrared spectroscopy (FTIR). Pulsatile swelling studies indicated that the hydrogels had thermo-reversible properties. As a result, the effect of varying the macromolecular monomer concentration was apparent. The phase transition temperature is increased when different concentrations of hydrophilic monomers are incorporated. The transition temperature of the hydrogels may allow for excellent flexibility in tailoring transition for specific applications, while the swelling and deswelling behaviour of the gels is strongly temperature- and monomer feed ratio-dependent.
Collapse
Affiliation(s)
- Shuo Zhuo
- Material Research Institute, Technological University of the Shannon, Midlands Midwest, Dublin Road, N37 HD68 Athlone, County Westmeath, Ireland; (E.H.); (B.S.H.T.); (C.B.)
- Correspondence: (S.Z.); (L.M.G.)
| | - Elaine Halligan
- Material Research Institute, Technological University of the Shannon, Midlands Midwest, Dublin Road, N37 HD68 Athlone, County Westmeath, Ireland; (E.H.); (B.S.H.T.); (C.B.)
| | - Billy Shu Hieng Tie
- Material Research Institute, Technological University of the Shannon, Midlands Midwest, Dublin Road, N37 HD68 Athlone, County Westmeath, Ireland; (E.H.); (B.S.H.T.); (C.B.)
| | - Colette Breheny
- Material Research Institute, Technological University of the Shannon, Midlands Midwest, Dublin Road, N37 HD68 Athlone, County Westmeath, Ireland; (E.H.); (B.S.H.T.); (C.B.)
| | - Luke M. Geever
- Applied Polymer Technologies Gateway, Material Research Institute, Technological University of the Shannon, Midlands Midwest, Dublin Road, N37 HD68 Athlone, County Westmeath, Ireland
- Correspondence: (S.Z.); (L.M.G.)
| |
Collapse
|
27
|
Chung TW, Wu TY, Siah ZY, Liu DZ. Antioxidative NAC-Loaded Silk Nanoparticles with Opening Mucosal Tight Junctions for Nasal Drug Delivery: An In Vitro and In Vivo Study. Pharmaceutics 2022; 14:pharmaceutics14061288. [PMID: 35745861 PMCID: PMC9229699 DOI: 10.3390/pharmaceutics14061288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 01/27/2023] Open
Abstract
Using nasal routes to deliver drugs to the brain using multifunctional nanoparticles (NPs) to bypass the blood–brain barrier (BBB) might enhance the delivery efficacy. Anti-oxidative N-Acetyl-L-cysteine (NAC)-loaded silk fibroin (SF/NAC) NPs are produced, characterized and studied as a potential delivery vehicle for NAC delivered to the brain via nasal for both in vitro and in vivo studies. The NPs are not cytotoxic to RPMI 2650 cells, mucosal model cells, at a concentration of 6000 μg/mL. The anti-oxidative activities of SF/NAC NPs are demonstrated by high H2O2 scavenge capacities of the NPs and shown by mitochondrial superoxide (MitoSOX) immunostaining of human mesenchymal stem cells. Tight junctions in RPMI 2650 cells are opened after 30 min of incubation with SF/NAC NPs, which are demonstrated by measuring the decrease in trans-epithelial electrical resistance (TEER) values and discreteness in ZO-1 stains. The cellular uptake of SF/NAC NPs by RPMI 2650 cells is significantly greater than that for SF NPs and increased with increasing incubation time. In an in vivo imaging study (IVIS) using rats shows that the amount of NAC that is delivered to the brain by SF/NAC NPs increased by 1.40–2.60 times and NAC is retained longer in the nasal cavity than NAC solutions in a 2-h study.
Collapse
Affiliation(s)
- Tze-Wen Chung
- Biomedical Engineering Research and Development Center, National Yang-Ming Chiao-Tung University, Taipei 112, Taiwan
- Department of Biomedical Engineering, National Yang-Ming Chiao-Tung University, Taipei 112, Taiwan; (T.-Y.W.); (Z.-Y.S.)
- Correspondence:
| | - Ting-Ya Wu
- Department of Biomedical Engineering, National Yang-Ming Chiao-Tung University, Taipei 112, Taiwan; (T.-Y.W.); (Z.-Y.S.)
| | - Zheng-Yu Siah
- Department of Biomedical Engineering, National Yang-Ming Chiao-Tung University, Taipei 112, Taiwan; (T.-Y.W.); (Z.-Y.S.)
| | - Der-Zen Liu
- Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei 110, Taiwan;
| |
Collapse
|
28
|
Cesur S, Cam ME, Sayın FS, Su S, Harker A, Edirisinghe M, Gunduz O. Metformin-Loaded Polymer-Based Microbubbles/Nanoparticles Generated for the Treatment of Type 2 Diabetes Mellitus. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5040-5051. [PMID: 34096296 DOI: 10.1021/acs.langmuir.1c00587] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease that is increasingly common all over the world with a high risk of progressive hyperglycemia and high microvascular and macrovascular complications. The currently used drugs in the treatment of T2DM have insufficient glucose control and can carry detrimental side effects. Several drug delivery systems have been investigated to decrease the side effects and frequency of dosage, and also to increase the effect of oral antidiabetic drugs. In recent years, the use of microbubbles in biomedical applications has greatly increased, and research into microactive carrier bubbles continues to generate more and more clinical interest. In this study, various monodisperse polymer nanoparticles at different concentrations were produced by bursting microbubbles generated using a T-junction microfluidic device. Morphological analysis by scanning electron microscopy, molecular interactions between the components by FTIR, drug release by UV spectroscopy, and physical analysis such as surface tension and viscosity measurement were carried out for the particles generated and solutions used. The microbubbles and nanoparticles had a smooth outer surface. When the microbubbles/nanoparticles were compared, it was observed that they were optimized with 0.3 wt % poly(vinyl alcohol) (PVA) solution, 40 kPa pressure, and a 110 μL/min flow rate, thus the diameters of the bubbles and particles were 100 ± 10 μm and 70 ± 5 nm, respectively. Metformin was successfully loaded into the nanoparticles in these optimized concentrations and characteristics, and no drug crystals and clusters were seen on the surface. Metformin was released in a controlled manner at pH 1.2 for 60 min and at pH 7.4 for 240 min. The process and structures generated offer great potential for the treatment of T2DM.
Collapse
Affiliation(s)
| | - Muhammet Emin Cam
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K
| | | | | | - Anthony Harker
- London Centre for Nanotechnology and Department of Physics & Astronomy, University College London, London WC1E 6BT, U.K
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K
| | | |
Collapse
|
29
|
Kim S, Lee J, Im S, Kim WJ. Injectable immunogel based on polymerized phenylboronic acid and mannan for cancer immunotherapy. J Control Release 2022; 345:138-146. [PMID: 35271910 DOI: 10.1016/j.jconrel.2022.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/17/2022] [Accepted: 03/03/2022] [Indexed: 11/24/2022]
Abstract
The recent development and prospects of cancer immunotherapy have led to diversification of the types of therapeutic agents used. By simultaneously administering various agents, a more effective therapeutic effect can be expected due to the synergistic effects of multiple therapeutics. In particular, if a substance with adjuvanticity and tumor antigen is delivered at the same time, enhanced cancer immunotherapy can be achieved through high cross-presentation and antigen-presenting cell (APC) maturation. To this end, we developed a polymerized phenylboronic acid (pPBA)-based immunogel for the simultaneous delivery of mannan, which has adjuvanticity and tumor antigen. The immunogel was formed by simple mixing of the polysaccharide mannan with pPBA through the formation of phenylboronic ester between the diol of mannose monomers and phenylboronic acids of pPBA. The immunogel was slowly degraded by hydrolysis to release the loaded tumor antigen. In addition, the released mannan played a key role in both APC maturation in vitro and the upregulation of cross-presentation. Finally, the pPBA-mannan immunogel exhibited a significant anticancer effect in the 4 T1 cell-inoculated mouse model, implying the potential of a codelivery system of antigens and adjuvants for effective cancer immunotherapy.
Collapse
Affiliation(s)
- Seonil Kim
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Junseok Lee
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology, Pohang 37673, Republic of Korea; OmniaMed Co, Ltd., Pohang 37673, Republic of Korea
| | - Sooseok Im
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea; OmniaMed Co, Ltd., Pohang 37673, Republic of Korea
| | - Won Jong Kim
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology, Pohang 37673, Republic of Korea; School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea; OmniaMed Co, Ltd., Pohang 37673, Republic of Korea.
| |
Collapse
|
30
|
Elnahtawy AI, Elshafei NS, Elzoghby AO. Marine Polymer-Based Nano-carriers for Drug Delivery Applications. MARINE BIOMATERIALS 2022:15-59. [DOI: 10.1007/978-981-16-4787-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
31
|
Asfour MH, Abd El-Alim SH, Awad GEA, Kassem AA. Chitosan/β-glycerophosphate in situ forming thermo-sensitive hydrogel for improved ocular delivery of moxifloxacin hydrochloride. Eur J Pharm Sci 2021; 167:106041. [PMID: 34655737 DOI: 10.1016/j.ejps.2021.106041] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/29/2021] [Accepted: 10/12/2021] [Indexed: 01/17/2023]
Abstract
The aim of the current work is to develop a thermo-sensitive hydrogel system of moxifloxacin hydrochloride (MOX) for improved ocular delivery. Fifteen formulations were prepared at different concentrations of β-glycerophosphate disodium salt (β-GP) 12-20% (w/v) and chitosan (CS) 1.7-1.9% (w/v). The optimized MOX loaded thermo-sensitive hydrogel system (F8), consisting of CS (1.8%, w/v) and β-GP (16%, w/v), showed optimum gelation temperature (35 °C) and gelation time (2 min), thus was selected for further investigations. It showed a significant decrease (p < 0.05) in the zeta potential value compared to CS solution with a favorable pH value (7.1) and confirmed thermoreversible behavior. MOX loaded F8 displayed a porous structure under scanning electron microscopy. Rheological investigation of MOX loaded F8 revealed the presence of a strong hydrogel network with high elasticity along with a small loss factor of 0.08 indicating a great ease of gel formation. The release of MOX from F8 was found to be governed by a combined mechanism of diffusion and relaxation. Biological assessment of two concentrations of MOX loaded F8 (0.25 and 0.5%) was conducted using healthy and infected male albino New Zealand rabbits, where an improved and prolonged antibacterial activity against Staphylococcus aureus compared to plain MOX (0.5%), marketed MOX eye drops (0.5%), was shown. Moreover, histopathological examination of ocular tissues confirmed the antibacterial efficacy of the optimized formulation eight days post topical therapy. Consequently, the developed CS/β-GP thermo-sensitive hydrogel system (F8) reveals a promising potential for enhancing the ocular delivery of MOX for treatment of bacterial infections.
Collapse
Affiliation(s)
- Marwa Hasanein Asfour
- Pharmaceutical Technology Department, National Research Centre, El-Buhouth St., Dokki, Cairo 12622, Egypt
| | - Sameh Hosam Abd El-Alim
- Pharmaceutical Technology Department, National Research Centre, El-Buhouth St., Dokki, Cairo 12622, Egypt.
| | - Ghada Elsayed Ahmed Awad
- Chemistry of Natural and Microbial Products Department, National Research Centre, El-Buhouth St., Dokki, Cairo 12622, Egypt
| | - Ahmed Alaa Kassem
- Pharmaceutical Technology Department, National Research Centre, El-Buhouth St., Dokki, Cairo 12622, Egypt
| |
Collapse
|
32
|
Peters JT, Wechsler ME, Peppas NA. Advanced biomedical hydrogels: molecular architecture and its impact on medical applications. Regen Biomater 2021; 8:rbab060. [PMID: 34925879 PMCID: PMC8678442 DOI: 10.1093/rb/rbab060] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/22/2021] [Accepted: 10/18/2021] [Indexed: 12/13/2022] Open
Abstract
Hydrogels are cross-linked polymeric networks swollen in water, physiological aqueous solutions or biological fluids. They are synthesized by a wide range of polymerization methods that allow for the introduction of linear and branched units with specific molecular characteristics. In addition, they can be tuned to exhibit desirable chemical characteristics including hydrophilicity or hydrophobicity. The synthesized hydrogels can be anionic, cationic, or amphiphilic and can contain multifunctional cross-links, junctions or tie points. Beyond these characteristics, hydrogels exhibit compatibility with biological systems, and can be synthesized to render systems that swell or collapse in response to external stimuli. This versatility and compatibility have led to better understanding of how the hydrogel's molecular architecture will affect their physicochemical, mechanical and biological properties. We present a critical summary of the main methods to synthesize hydrogels, which define their architecture, and advanced structural characteristics for macromolecular/biological applications.
Collapse
Affiliation(s)
- Jonathan T Peters
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, 200 E. Dean Keeton, Austin, TX 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
| | - Marissa E Wechsler
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Nicholas A Peppas
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, 200 E. Dean Keeton, Austin, TX 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
- Department of Surgery and Perioperative Care, and Department of Pediatrics, Dell Medical School, The University of Texas at Austin, 1601 Trinity St., Bldg. B, Austin, TX 78712, USA
| |
Collapse
|
33
|
Li J, Qiang H, Yang W, Xu Y, Feng T, Cai H, Wang S, Liu Z, Zhang Z, Zhang J. Oral insulin delivery by epithelium microenvironment-adaptive nanoparticles. J Control Release 2021; 341:31-43. [PMID: 34793919 DOI: 10.1016/j.jconrel.2021.11.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/18/2022]
Abstract
Oral protein drug delivery using nano-based systems remains challenging, as contradictory surface properties are required for efficient navigation through the intestinal mucus and epithelium barriers. Therefore, new nanoplatforms with tunable surface properties in vivo are urgently needed. Inspired by the slightly acidic microclimate of the jejunal epithelial surface, we report a novel epithelium microenvironment-adaptive nanoplatform that undergoes a hydrophilicity-hydrophobicity transition at the epithelial surface. First, we synthesized and characterized a biodegradable copolymer consisting of PEG and PLGA building blocks linked by a hydrazone bond (PLGA-Hyd-PEG) to fabricate the pH-sensitive core-shell architecture of an oral insulin system. Then we loaded the system as a freeze-dried powder into enteric-coated capsules. PLGA-Hyd-PEG nanoparticles showed excellent drug protection and rapid mucus penetration owing to the high stability of the PEG coating in jejunal fluid. In the acidic microenvironment of the jejunal epithelial surface (pH ~5.5), PEG was rapidly cleaved and the hydrazone bond was hydrolyzed, converting the nanoparticle surface from hydrophilic to hydrophobic, thereby facilitating internalization into cells. Pharmacodynamic studies showed that PLGA-Hyd-PEG nanoparticles resulted in significant decrease in blood glucose level after intrajejunal administration in both normal and diabetic rats relative to control nanoparticles. In addition, enteric-coated capsules containing PLGA-Hyd-PEG nanoparticles reduced blood glucose by 35% for up to 10 h after oral administration to diabetic rats. Our findings provide a new strategy for regulating the surface properties of nanoparticles for efficient oral drug delivery.
Collapse
Affiliation(s)
- Jianbo Li
- Henan Key Laboratory for Pharmacology of Liver Diseases, Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, No. 40 Daxue Road, Zhengzhou, Henan Province 450052, China
| | - Hong Qiang
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001, Henan Province, China
| | - Weijing Yang
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001, Henan Province, China
| | - Yaru Xu
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001, Henan Province, China
| | - Tiange Feng
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001, Henan Province, China
| | - Huijie Cai
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001, Henan Province, China
| | - Shuaishuai Wang
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001, Henan Province, China
| | - Zhilei Liu
- Henan Key Laboratory for Pharmacology of Liver Diseases, Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, No. 40 Daxue Road, Zhengzhou, Henan Province 450052, China
| | - Zhenzhong Zhang
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001, Henan Province, China.
| | - Jinjie Zhang
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001, Henan Province, China.
| |
Collapse
|
34
|
Chitosan for biomedical applications, promising antidiabetic drug delivery system, and new diabetes mellitus treatment based on stem cell. Int J Biol Macromol 2021; 190:417-432. [PMID: 34450151 DOI: 10.1016/j.ijbiomac.2021.08.154] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023]
Abstract
Since chitosan's excellent pharmacokinetic and chemical properties, it is an attractive and promising carbohydrate biopolymer in biomedical applications. Chitosan's beneficial function in the defense and propagation of pancreatic β cells, reducing hyperglycemia, and avoiding diabetes mellitus associated with impaired lipid metabolism has been demonstrated in several studies. Additionally, chitosan has also been used in various nanocarriers to deliver various antidiabetic drugs to reduce glucose levels. Herein, the first to provide the currently available potential benefits of chitosan in diabetes mellitus treatment focuses on chitosan-based nanocarriers for oral administration of various antidiabetic drugs nasal and subcutaneous passages. Moreover, chitosan is used to activate and deliver stem cells and differentiate them into cells similar to pancreatic beta cells as a new type of treatment for type one diabetes mellitus. The results of this review will be helpful in the development of promising treatments and better control of diabetes mellitus.
Collapse
|
35
|
Fan Q, Miao C, Huang Y, Yue H, Wu A, Wu J, Wu J, Ma G. Hydroxypropyltrimethyl ammonium chloride chitosan-based hydrogel as the split H5N1 mucosal adjuvant: Structure-activity relationship. Carbohydr Polym 2021; 266:118139. [PMID: 34044953 DOI: 10.1016/j.carbpol.2021.118139] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/03/2021] [Accepted: 04/27/2021] [Indexed: 01/16/2023]
Abstract
In this study, 2-hydroxypropyltrimethyl ammonium chloride chitosan (HTCC)-based hydrogel was devised as a mucosal adjuvant for H5N1 vaccine. Aimed to investigate the structure activity relationship between HTCC hydrogel and immune response, we prepared a series of HTCC hydrogel with defined quaternization degrees (DQs, 0%, 21%, 41%, 60%, 80%). Results suggested that with DQ increasing, the positive charge and gelation time of HTCC hydrogel increased but the viscosity decreased. We applied in vivo imaging system and found that the moderate DQ 41% prolonged antigen residence time in nasal cavity, resulting in the most potent systemic responses (IgG, IgG1, IgG2a, HI). While, the lowest DQ 0% produced the best mucosal IgA antibody responses, most likely due to the closer contact with mucosa. Furthermore, the influence of animal gender was also discussed. These data add to the growing understanding of the relationship between physicochemical features of chitosan-based hydrogel and how they influence the immune responses.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/chemistry
- Adjuvants, Immunologic/pharmacology
- Administration, Intranasal
- Animals
- Antigens, Viral/immunology
- Antigens, Viral/metabolism
- Chitosan/administration & dosage
- Chitosan/analogs & derivatives
- Chitosan/chemistry
- Chitosan/pharmacology
- Female
- Hydrogels/administration & dosage
- Hydrogels/chemistry
- Hydrogels/pharmacology
- Immunity/drug effects
- Immunity, Mucosal/drug effects
- Influenza A Virus, H5N1 Subtype/drug effects
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/immunology
- Male
- Mice, Inbred BALB C
- Nasal Mucosa/virology
- Quaternary Ammonium Compounds/administration & dosage
- Quaternary Ammonium Compounds/chemistry
- Quaternary Ammonium Compounds/pharmacology
- Rats, Sprague-Dawley
- Sex Factors
- Structure-Activity Relationship
- Mice
- Rats
Collapse
Affiliation(s)
- Qingze Fan
- Department of Pharmacy, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, PR China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Chunyu Miao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yilan Huang
- Department of Pharmacy, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, PR China
| | - Hua Yue
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Anguo Wu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China
| | - Jianming Wu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China
| | - Jie Wu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
36
|
Shi X, Wu P. A Smart Patch with On-Demand Detachable Adhesion for Bioelectronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101220. [PMID: 34105250 DOI: 10.1002/smll.202101220] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/13/2021] [Indexed: 06/12/2023]
Abstract
A smart ionic skin patch with on-demand detachable adhesion has been developed as human-machine interface for physiological signal monitoring. In spite of the multifunctions demonstrated by existing ionic skin, it is still difficult to distinguish different signals simultaneously. Moreover, the secondary damages to the tissues are often overlooked when the adhesive materials are removing from the wound. Herein, a multifunctional biomimetic hydrogel with temperature, mechanical, electrical, and pH response is developed. This hydrogel is designed by in situ polymerizing of hydrophilic anion monomers in a natural cationic polysaccharide to construct multifunctional biomimetic ionic channel. Due to the reversible physical cross-linked network and thermosensitivity, the mechanical properties, adhesion, and visual effect of the hydrogel can be tuned by changing hydrogen bonding density via phase transition, thus making it an excellent biosafe material for wearable device. The hydrogel is utilized as skin patch intended for monitoring physiological signals stimulated by physical and chemical changes involving pressure, temperature, pH value, and electrocardiograph. Especially, this ionic skin patch can recognize temperature change signals precisely either in broad or extremely narrow temperature range. This smart skin patch can even recognize the pressure and temperature signals in real time and differentiate the signals simultaneously.
Collapse
Affiliation(s)
- Xiaofang Shi
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Peiyi Wu
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, P. R. China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai, 201620, China
| |
Collapse
|
37
|
Review of Applications and Future Prospects of Stimuli-Responsive Hydrogel Based on Thermo-Responsive Biopolymers in Drug Delivery Systems. Polymers (Basel) 2021; 13:polym13132086. [PMID: 34202828 PMCID: PMC8272167 DOI: 10.3390/polym13132086] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 01/03/2023] Open
Abstract
Some of thermo-responsive polysaccharides, namely, cellulose, xyloglucan, and chitosan, and protein-like gelatin or elastin-like polypeptides can exhibit temperature dependent sol–gel transitions. Due to their biodegradability, biocompatibility, and non-toxicity, such biomaterials are becoming popular for drug delivery and tissue engineering applications. This paper aims to review the properties of sol–gel transition, mechanical strength, drug release (bioavailability of drugs), and cytotoxicity of stimuli-responsive hydrogel made of thermo-responsive biopolymers in drug delivery systems. One of the major applications of such thermos-responsive biopolymers is on textile-based transdermal therapy where the formulation, mechanical, and drug release properties and the cytotoxicity of thermo-responsive hydrogel in drug delivery systems of traditional Chinese medicine have been fully reviewed. Textile-based transdermal therapy, a non-invasive method to treat skin-related disease, can overcome the poor bioavailability of drugs from conventional non-invasive administration. This study also discusses the future prospects of stimuli-responsive hydrogels made of thermo-responsive biopolymers for non-invasive treatment of skin-related disease via textile-based transdermal therapy.
Collapse
|
38
|
Witika BA, Mweetwa LL, Tshiamo KO, Edler K, Matafawali SK, Ntemi PV, Chikukwa MTR, Makoni PA. Vesicular drug delivery for the treatment of topical disorders: current and future perspectives. J Pharm Pharmacol 2021; 73:1427-1441. [PMID: 34132342 DOI: 10.1093/jpp/rgab082] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/12/2021] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Vesicular drug delivery has become a useful approach for therapeutic administration of pharmaceutical compounds. Lipid vesicles have found application in membrane biology, immunology, genetic engineering and theragnostics. This review summarizes topical delivery, specifically dermal/transdermal, ocular and transungual, via these vesicles, including future formulation perspectives. KEY FINDINGS Liposomes and their subsequent derivatives, viz. niosomes, transferosomes, pharmacososmes and ethosomes, form a significant part of vesicular systems that have been successfully utilized in treating an array of topical disorders. These vesicles are thought to be a safe and effective mode of improving the delivery of lipophilic and hydrophilic drugs. SUMMARY Several drug molecules are available for topical disorders. However, physicochemical properties and undesirable toxicity have limited their efficacy. Vesicular delivery systems have the potential to overcome these shortcomings due to properties such as high biocompatibility, simplicity of surface modification and suitability as controlled delivery vehicles. However, incorporating these systems into environmentally responsive dispersants such as hydrogels, ionic liquids and deep eutectic solvents may further enhance therapeutic prowess of these delivery systems. Consequently, improved vesicular drug delivery can be achieved by considering combining some of these formulation approaches.
Collapse
Affiliation(s)
- Bwalya A Witika
- Division of Pharmaceutics, Department of Pharmacy, DDT College of Medicine, Gaborone, Botswana
| | - Larry L Mweetwa
- Division of Pharmaceutics, Department of Pharmacy, DDT College of Medicine, Gaborone, Botswana
| | - Kabo O Tshiamo
- Division of Pharmaceutics, Department of Pharmacy, DDT College of Medicine, Gaborone, Botswana
| | - Karen Edler
- Department of Chemistry, University of Bath, Bath, UK
| | - Scott K Matafawali
- Department of Basic Sciences, School of Medicine, Copperbelt University, Ndola, Zambia
| | - Pascal V Ntemi
- Department of Pharmaceutics, School of Pharmacy, Muhimbili University of Health Allied Sciences, Dar es Salaam, Tanzania
| | - Melissa T R Chikukwa
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda, South Africa
| | - Pedzisai A Makoni
- Division of Pharmacology, Faculty of Pharmacy, Rhodes University, Makhanda, South Africa
| |
Collapse
|
39
|
Viscusi G, Gorrasi G. Facile preparation of layered double hydroxide (LDH)-alginate beads as sustainable system for the triggered release of diclofenac: Effect of pH and temperature on release rate. Int J Biol Macromol 2021; 184:271-281. [PMID: 34139243 DOI: 10.1016/j.ijbiomac.2021.05.217] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 11/19/2022]
Abstract
This paper concerns the facile preparation of alginate beads encapsulating layered double hydroxide (LDH) intercalated with diclofenac sodium as drug delivery systems. To better evaluate the effect of LDH carrier, alginate beads loaded with free diclofenac were also prepared. Composites hydrogel beads were ionotropically crosslinked in CaCl2 solution at 4 °C. Thermal and barrier properties were evaluated and correlated with the presence of the inorganic phase. Swelling behavior was investigated over time. Release kinetics of diclofenac at different pH and temperatures were evaluated. The diclofenac release behavior appeared to be affected by the presence of LDH, the pH of release medium and the temperature allowing for fabricating a sustainable composite characterized by a triggered drug release rate. Finally, empirical relationships correlating the drug diffusion as a function of temperature and pH were extrapolated.
Collapse
Affiliation(s)
- Gianluca Viscusi
- Department of Industrial Engineering, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Giuliana Gorrasi
- Department of Industrial Engineering, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy.
| |
Collapse
|
40
|
Zuo Z, Zou Y, Li Q, Guo Y, Zhang T, Wu J, He C, Eko FO. Intranasal immunization with inactivated chlamydial elementary bodies formulated in VCG-chitosan nanoparticles induces robust immunity against intranasal Chlamydia psittaci challenge. Sci Rep 2021; 11:10389. [PMID: 34001988 PMCID: PMC8129140 DOI: 10.1038/s41598-021-89940-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 05/04/2021] [Indexed: 02/03/2023] Open
Abstract
Vaccines based on live attenuated Chlamydia elementary bodies (EBs) can cause disease in vaccinated animals and the comparably safer inactivated whole EBs are only marginally protective. Recent studies show that a vaccine formulation comprising UV-inactivated EBs (EB) and appropriate mucosal delivery systems and/or adjuvants induced significant protective immunity. We tested the hypothesis that intranasal delivery of UV-inactivated C. psittaci EB formulated in Vibrio cholerae ghosts (VCG)-chitosan nanoparticles will induce protective immunity against intranasal challenge in SPF chickens. We first compared the impact of VCG and CpG adjuvants on protective immunity following IN mucosal and IM systemic delivery of EB formulated in chitosan hydrogel/microspheres. Immunologic analysis revealed that IN immunization in the presence of VCG induced higher levels of IFN-γ response than IM delivery or the CpG adjuvanted groups. Also, vaccine efficacy evaluation showed enhanced pharyngeal bacterial clearance and protection against lung lesions with the VCG adjuvanted vaccine formulation, thereby establishing the superior adjuvanticity of VCG over CpG. We next evaluated the impact of different concentrations of VCG on protective immunity following IN mucosal immunization. Interestingly, the adjuvanticity of VCG was concentration-dependent, since protective immunity induced following IN mucosal immunization showed dose-dependent immune responses and protection. These studies reveal that formulation of inactivated chlamydial antigens with adjuvants, such as VCG and chitosan increases their ability to induce protective immune responses against challenge.
Collapse
Affiliation(s)
- Zonghui Zuo
- grid.22935.3f0000 0004 0530 8290Key Lab of Animal Epidemiology and Zoonosis, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 People’s Republic of China
| | - Yongjuan Zou
- grid.9227.e0000000119573309Key Laboratory of Biopharmaceutical Production and Formulation Engineering, Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Qiang Li
- grid.22935.3f0000 0004 0530 8290Key Lab of Animal Epidemiology and Zoonosis, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 People’s Republic of China
| | - Yongxia Guo
- grid.22935.3f0000 0004 0530 8290Key Lab of Animal Epidemiology and Zoonosis, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 People’s Republic of China
| | - Tianyuan Zhang
- grid.22935.3f0000 0004 0530 8290Key Lab of Animal Epidemiology and Zoonosis, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 People’s Republic of China
| | - Jie Wu
- grid.9227.e0000000119573309Key Laboratory of Biopharmaceutical Production and Formulation Engineering, Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Cheng He
- grid.22935.3f0000 0004 0530 8290Key Lab of Animal Epidemiology and Zoonosis, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 People’s Republic of China
| | - Francis O. Eko
- grid.9001.80000 0001 2228 775XDepartment of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310 USA
| |
Collapse
|
41
|
Rahmanian-Devin P, Baradaran Rahimi V, Askari VR. Thermosensitive Chitosan- β-Glycerophosphate Hydrogels as Targeted Drug Delivery Systems: An Overview on Preparation and Their Applications. Adv Pharmacol Pharm Sci 2021; 2021:6640893. [PMID: 34036263 PMCID: PMC8116164 DOI: 10.1155/2021/6640893] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 04/09/2021] [Accepted: 04/20/2021] [Indexed: 12/14/2022] Open
Abstract
Today, with the advances in technology and science, more advanced drug delivery formulations are required. One of these new systems is an intelligent hydrogel. These systems are affected by the environment or conditions that become a gel, stay in the circumstance for a certain period, and slowly release the drug. As an advantage, only a lower dose of the drug is required, and it provides less toxicity and minor damage to other tissues. Hydrogels are of different types, including temperature-sensitive, pH-sensitive, ion change-sensitive, and magnetic field-sensitive. In this study, we investigated a kind of temperature-sensitive smart hydrogel, which has a liquid form at room temperature and becomes gel with increasing temperature. Chitosan-β-glycerophosphate hydrogels have been researched and used in many studies. This study investigates the various factors that influence the gelation mechanism, such as gel formation rates, temperature, pH, time, and gel specificity. Hydrogels are used in many drug delivery systems and diseases, including nasal drug delivery, vaginal drug delivery, wound healing, peritoneal adhesion, ophthalmic drug delivery, tissue engineering, and peptide and protein delivery. Overall, the chitosan-β-glycerophosphate hydrogel is a suitable drug carrier for a wide range of drugs. It shows little toxicity to the body, is biodegradable, and is compatible with other organs. This system can be used in different conditions and different medication ways, such as oral, nasal, and injection.
Collapse
Affiliation(s)
- Pouria Rahmanian-Devin
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Sciences in Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
42
|
Pourjabbar B, Biazar E, Heidari Keshel S, Ahani-Nahayati M, Baradaran-Rafii A, Roozafzoon R, Alemzadeh-Ansari MH. Bio-polymeric hydrogels for regeneration of corneal epithelial tissue*. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1909586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Bahareh Pourjabbar
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Esmaeil Biazar
- Tissue Engineering group, Department of Biomedical Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Saeed Heidari Keshel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Milad Ahani-Nahayati
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Reza Roozafzoon
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Hasan Alemzadeh-Ansari
- Ophthalmic Research Center, Department of Ophthalmology, Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
43
|
Mohamad SA, Badawi AM, Mansour HF. Insulin fast-dissolving film for intranasal delivery via olfactory region, a promising approach for the treatment of anosmia in COVID-19 patients: Design, in-vitro characterization and clinical evaluation. Int J Pharm 2021; 601:120600. [PMID: 33862126 DOI: 10.1016/j.ijpharm.2021.120600] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022]
Abstract
The present work aimed to formulate intranasal insulin fast-dissolving films for treatment of anosmia in patients post COVID-19 infection. Variant films were prepared employing the casting method and using hydroxypropyl methyl cellulose and polyvinyl alcohol. The formulated films were investigated for insulin content, weight variation, surface pH, thickness, folding endurance and disintegration time. In vitro release study was conducted for the selected formulations (F6, F7, F8). A drug/polymer interaction was investigated in the optimized formulation (F7) employing Fourier transform infrared spectroscopy. Clinical study was accomplished for F7 on 20 patients. Sniffin's and olfactory discrimination tests were used for assessing patients. The formulated films displayed appropriate physical characteristics. F7 showed the shortest disintegration time (50 ± 7 s) and fastest release. It displayed compatibility between the drug and the used polymers. The results of the clinical study revealed a significant increase in the olfactory detection scores and olfactory discrimination values in the intervention group (7.9 ± 1.2, 6.7 ± 0.5 respectively) compared to placebo group (3 ± 0.8, 2.8 ± 1).. Intervention group showed significant differences between these scores before and after treatment while the placebo group did not display any significant differences. Thus, the optimized film can be considered as an auspicious approach for managing post COVID-19 anosmia.
Collapse
Affiliation(s)
- Soad A Mohamad
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Ahmed M Badawi
- Department of Otorhinolaryngology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Heba F Mansour
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt.
| |
Collapse
|
44
|
Bahmanpour A, Ghaffari M, Milan PB, Moztarzadeh F, Mozafari M. Synthesis and characterization of thermosensitive hydrogel based on quaternized chitosan for intranasal delivery of insulin. Biotechnol Appl Biochem 2021; 68:247-256. [PMID: 32250466 DOI: 10.1002/bab.1917] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/26/2020] [Indexed: 12/15/2022]
Abstract
Nasal administration is a form of systemic administration in which drugs are insufflated through the nasal cavity. Steroids, nicotine replacement, antimigraine drugs, and peptide drugs are examples of the available systematically active drugs as nasal sprays. For diabetic patients who need to use insulin daily, the nasal pathway can be used as an alternative to subcutaneous injection. In this regard, intranasal insulin delivery as a user-friendly and systemic administration has recently attracted more attention. In this study, a novel formulation consists of chitosan, chitosan quaternary ammonium salt (HTCC), and gelatin (Gel) was proposed and examined as a feasible carrier for intranasal insulin administration. First, the optimization of the chitosan-HTCC hydrogel combination has done. Afterward, Gel with various amounts blended with the chitosan-HTCC optimized samples. In the next step, swelling rate, gelation time, degradation, adhesion, and other mechanical, chemical, and biological properties of the hydrogels were studied. Finally, insulin in clinical formulation and dosage was blended with optimized thermosensitive hydrogel and the release procedure of insulin was studied with electrochemiluminescence technique. The optimal formulation (consisted of 2 wt% chitosan, 1 wt% HTCC, and 0.5 wt% Gel) showed low gelation time, uniform pore structure, and the desirable swelling rate, which were resulted in the adequate encapsulation and prolonged release of insulin in 24 H. The optimal samples released 65% of the total amount of insulin in the first 24 H, which is favorable for this study.
Collapse
Affiliation(s)
- AmirHossein Bahmanpour
- Biomaterial Group, Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology, Tehran, Iran
| | - Maryam Ghaffari
- Biomaterial Group, Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology, Tehran, Iran
| | - Peiman B Milan
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fathollah Moztarzadeh
- Biomaterial Group, Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology, Tehran, Iran
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
45
|
Taymouri S, Minaiyan M, Ebrahimi F, Tavakoli N. In-vitro and in-vivo evaluation of chitosan-based thermosensitive gel containing lorazepam NLCs for the treatment of status epilepticus. IET Nanobiotechnol 2021; 14:148-154. [PMID: 32433032 DOI: 10.1049/iet-nbt.2019.0156] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The objective of this study was to develop an in-situ gel containing lorazepam (LZM) loaded nanostructured lipid carriers (NLCs) for direct nose-to-brain delivery in order to increase drug therapeutic efficacy in the treatment of epilepsy. Accordingly, LZM loaded NLCs were formulated using emulsification solvent diffusion and evaporation method; then the effects of the formulation variables on different physicochemical characteristics of NLCs were investigated. Thermosensitive in-situ gels containing LZM-NLCs were prepared using a combination of chitosan and β-glycerol phosphate (β-GP). The anticonvulsant efficacy of LZM-NLCs-Gel was then examined using the pentylenetetrazole (PTZ) model. The optimised NLCs were spherical, showing the particle size of 71.70 ± 5.16 nm and the zeta potential of -20.06 ± 2.70 mV. The pH and gelation time for the chitosan solution with 15% (w/v) β-GP were determined to be 7.12 ± 0.03 and 5.33 ± 0.58 min, respectively. The in-vivo findings showed that compared with the control group and the group that received LZM-Gel, the occurrence of PTZ-induced seizures in the rats was significantly reduced by LZM-NLCs-Gel after intranasal administration. These results, therefore, suggested that the LZM-NLCs-Gel system could have potential applications for brain targeting through nasal route and might increase LZM therapeutic efficacy in the treatment of epilepsy.
Collapse
Affiliation(s)
- Somayeh Taymouri
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohsen Minaiyan
- Department of Pharmacology, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farnaz Ebrahimi
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Naser Tavakoli
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
46
|
Fuchs S, Ernst AU, Wang LH, Shariati K, Wang X, Liu Q, Ma M. Hydrogels in Emerging Technologies for Type 1 Diabetes. Chem Rev 2020; 121:11458-11526. [DOI: 10.1021/acs.chemrev.0c01062] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Stephanie Fuchs
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Alexander U. Ernst
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Long-Hai Wang
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Kaavian Shariati
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Xi Wang
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Qingsheng Liu
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Minglin Ma
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
47
|
Agrawal M, Saraf S, Saraf S, Dubey SK, Puri A, Gupta U, Kesharwani P, Ravichandiran V, Kumar P, Naidu VGM, Murty US, Ajazuddin, Alexander A. Stimuli-responsive In situ gelling system for nose-to-brain drug delivery. J Control Release 2020; 327:235-265. [PMID: 32739524 DOI: 10.1016/j.jconrel.2020.07.044] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 12/15/2022]
Abstract
The diagnosis and treatment of neurological ailments always remain an utmost challenge for research fraternity due to the presence of BBB. The intranasal route appeared as an attractive and alternative route for brain targeting of therapeutics without the intrusion of BBB and GI exposure. This route directly and effectively delivers the therapeutics to different regions of the brain via olfactory and trigeminal nerve pathways. However, shorter drug retention time and mucociliary clearance curtail the efficiency of the intranasal route. The in situ mucoadhesive gel overthrow the limitations of direct nose-to-brain delivery by not only enhancing nasal residence time but also minimizing the mucociliary clearance and enzymatic degradation. This delivery system further improves the nasal absorption as well as bioavailability of drugs in the brain. The in situ mucoadhesive gel is a controlled and sustained release system that facilitates the absorption of various proteins, peptides and other larger lipophilic and hydrophilic moieties. Owing to multiple benefits, in situ gelling system has been widely explored to target the brain via nasal route. However, very few review works are reported which explains the application of in situ nasal gel for brain delivery of CNS acting moieties. Hence, in this piece of work, we have initially discussed the global statistics of neurological disorders reported by WHO and other reputed organizations, nasal anatomy, mechanism and challenges of nose-to-brain drug delivery. The work mainly focused on the use of different stimuli-responsive polymers, specifically thermoresponsive, pH-responsive, and ion triggered systems for the development of an effective and controlled dosage form, i.e., in situ nasal gel for brain targeting of bioactives. We have also highlighted the origin, structure, nature and phase transition behavior of the smart polymers found suitable for nasal administration, including poloxamer, chitosan, EHEC, xyloglucan, Carbopol, gellan gum and DGG along with their application in the treatment of neurological disorders. The article is aimed to gather all the information of the past 10 years related to the development and application of stimuli-responsive in situ nasal gel for brain drug delivery.
Collapse
Affiliation(s)
- Mukta Agrawal
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh 490024, India
| | - Shailendra Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Swarnlata Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Sunil K Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, (BITS-PILANI), Pilani Campus, Pilani, Rajasthan, India
| | - Anu Puri
- RNA Structure and Design Section, RNA Biology Laboratory (RBL), Center for Cancer Research, NCI-Frederick, NIH, Frederick, USA
| | - Umesh Gupta
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan 305817, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - V Ravichandiran
- National Institute of Pharmaceutical Education and Research (NIPER-Kolkata), Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Govt. of India, Chunilal Bhawan 168, Maniktala Main Road, Kolkata 700054, India
| | - Pramod Kumar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Govt. of India, Sila Katamur (Halugurisuk), Changsari, Kamrup-781101, Guwahati, Assam, India
| | - V G M Naidu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Govt. of India, Sila Katamur (Halugurisuk), Changsari, Kamrup-781101, Guwahati, Assam, India
| | - Upadhyayula Suryanarayana Murty
- National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Govt. of India, Sila Katamur (Halugurisuk), Changsari, Kamrup-781101, Guwahati, Assam, India
| | - Ajazuddin
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh 490024, India
| | - Amit Alexander
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Govt. of India, Sila Katamur (Halugurisuk), Changsari, Kamrup-781101, Guwahati, Assam, India.
| |
Collapse
|
48
|
Sarkar S, Das D, Dutta P, Kalita J, Wann SB, Manna P. Chitosan: A promising therapeutic agent and effective drug delivery system in managing diabetes mellitus. Carbohydr Polym 2020; 247:116594. [PMID: 32829787 DOI: 10.1016/j.carbpol.2020.116594] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023]
|
49
|
Wang J, Wang S, Ye T, Li F, Gao X, Wang Y, Ye P, Qing S, Wang C, Yue H, Wu J, Wei W, Ma G. Choice of Nanovaccine Delivery Mode Has Profound Impacts on the Intralymph Node Spatiotemporal Distribution and Immunotherapy Efficacy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001108. [PMID: 33042743 PMCID: PMC7539204 DOI: 10.1002/advs.202001108] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/23/2020] [Indexed: 05/19/2023]
Abstract
Nanovaccines have attracted booming interests in vaccinology studies, but the profound impacts of their delivery mode on immune response remain unrealized. Herein, immunostimulatory CpG-modified tumor-derived nanovesicles (CNVs) are used as a nanovaccine testbed to initially evaluate the impacts of three distinct delivery modes, including mono-pulse CNVs, staggered-pulse CNVs, and gel-confined CNVs. Fundamentally, delivery mode has enormous impacts on the immunomodulatory effects, altering the spatiotemporal distribution of nanovaccine residence and dendritic cell-T cell interaction in lymph nodes, and finally affecting subsequent T cell-mediated immune performance. As a result, the gel-confined delivery mode offers the best therapeutic performance in multiple tumor models. When extending evaluation to examine how the various delivery modes impact the performance of liposome-based nanovaccines, similar trends in intralymph node distribution and antitumor effect are observed. This work provides a strong empirical foundation that nanovaccine researchers should position delivery mode near the top of their considerations for the experimental design, which should speed up nanovaccine development and facilitate efficient selection of appropriate delivery modes in the clinic.
Collapse
Affiliation(s)
- Jianghua Wang
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences1 North 2nd Street, Zhongguancun, Haidian DistrictBeijing100190P. R. China
- University of Chinese Academy of Sciences19A Yuquan RoadBeijing100049P. R. China
| | - Shuang Wang
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences1 North 2nd Street, Zhongguancun, Haidian DistrictBeijing100190P. R. China
| | - Tong Ye
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences1 North 2nd Street, Zhongguancun, Haidian DistrictBeijing100190P. R. China
- University of Chinese Academy of Sciences19A Yuquan RoadBeijing100049P. R. China
| | - Feng Li
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences1 North 2nd Street, Zhongguancun, Haidian DistrictBeijing100190P. R. China
- University of Chinese Academy of Sciences19A Yuquan RoadBeijing100049P. R. China
| | - Xiaoyong Gao
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences1 North 2nd Street, Zhongguancun, Haidian DistrictBeijing100190P. R. China
| | - Yan Wang
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences1 North 2nd Street, Zhongguancun, Haidian DistrictBeijing100190P. R. China
- University of Chinese Academy of Sciences19A Yuquan RoadBeijing100049P. R. China
| | - Peng Ye
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences1 North 2nd Street, Zhongguancun, Haidian DistrictBeijing100190P. R. China
| | - Shuang Qing
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences1 North 2nd Street, Zhongguancun, Haidian DistrictBeijing100190P. R. China
- University of Chinese Academy of Sciences19A Yuquan RoadBeijing100049P. R. China
| | - Changlong Wang
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences1 North 2nd Street, Zhongguancun, Haidian DistrictBeijing100190P. R. China
- University of Chinese Academy of Sciences19A Yuquan RoadBeijing100049P. R. China
| | - Hua Yue
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences1 North 2nd Street, Zhongguancun, Haidian DistrictBeijing100190P. R. China
| | - Jie Wu
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences1 North 2nd Street, Zhongguancun, Haidian DistrictBeijing100190P. R. China
| | - Wei Wei
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences1 North 2nd Street, Zhongguancun, Haidian DistrictBeijing100190P. R. China
- University of Chinese Academy of Sciences19A Yuquan RoadBeijing100049P. R. China
| | - Guanghui Ma
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences1 North 2nd Street, Zhongguancun, Haidian DistrictBeijing100190P. R. China
- University of Chinese Academy of Sciences19A Yuquan RoadBeijing100049P. R. China
| |
Collapse
|
50
|
Pakzad Y, Fathi M, Omidi Y, Mozafari M, Zamanian A. Synthesis and characterization of timolol maleate-loaded quaternized chitosan-based thermosensitive hydrogel: A transparent topical ocular delivery system for the treatment of glaucoma. Int J Biol Macromol 2020; 159:117-128. [PMID: 32380105 DOI: 10.1016/j.ijbiomac.2020.04.274] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/12/2022]
Abstract
The chitosan-based thermosensitive hydrogel is one of the attractive in situ forming drug delivery systems that are suggested for ophthalmic applications. However, the use of this thermogel has been limited by non-transparency, relatively low solubility and prolonged gelation time. In this study, a convenient approach has been reported to develop transparent thermosensitive hydrogel with suitable cytocompatibility and gelation properties for glaucoma treatment. After obtaining the optimum quaternization conditions, the developed in-situ gelling formulation of quaternized chitosan was achieved by mixing sodium hydrogen carbonate with β-glycerophosphate as a gelling agent. The formulation was a solution below or at room temperature and turned to a transparent hydrogel around ocular surface temperature within several minutes. The results of thermal and rheological evaluations demonstrated that adding sodium hydrogen carbonate has a synergic effect in enhancing the thermosensitivity of the hydrogel. Also, the prepared hydrogels based on quaternized chitosan presented obvious porous architectures, good swelling, and degradability. Hemolysis and cytotoxicity evaluations suggested that the developed hydrogels indicated good biocompatibility as a drug carrier. Finally, the in vitro release profile of timolol maleate as an anti-glaucoma model drug showed the initial burst release in the early hours and a steady linear release of drug from the hydrogel over 1 week. The obtained results confirmed that the developed hydrogel can be considered as an efficient drug delivery candidate for glaucoma therapy.
Collapse
Affiliation(s)
- Yousef Pakzad
- Bioengineering Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Tehran, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Mozafari
- Bioengineering Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Tehran, Iran; Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Zamanian
- Bioengineering Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Tehran, Iran.
| |
Collapse
|