1
|
Heisser RH, Bawa M, Shah J, Bu A, Raman R. Soft Biological Actuators for Meter-Scale Homeostatic Biohybrid Robots. Chem Rev 2025; 125:3976-4007. [PMID: 40138615 DOI: 10.1021/acs.chemrev.4c00785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Skeletal muscle's elegant protein-based architecture powers motion throughout the animal kingdom, with its constituent actomyosin complexes driving intra- and extra-cellular motion. Classical motors and recently developed soft actuators cannot match the packing density and contractility of individual muscle fibers that scale to power the motion of ants and elephants alike. Accordingly, the interdisciplinary fields of robotics and tissue engineering have combined efforts to build living muscle actuators that can power a new class of robots to be more energy-efficient, dexterous, and safe than existing motor-powered and hydraulic paradigms. Doing so ethically and at scale─creating meter-scale tissue constructs from sustainable muscle progenitor cell lines─has inspired innovations in biomaterials and tissue culture methodology. We weave discussions of muscle cell biology, materials chemistry, tissue engineering, and biohybrid design to review the state of the art in soft actuator biofabrication. Looking forward, we outline a vision for meter-scale biohybrid robotic systems and tie discussions of recent progress to long-term research goals.
Collapse
Affiliation(s)
- Ronald H Heisser
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States of America
| | - Maheera Bawa
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States of America
| | - Jessica Shah
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States of America
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, 45 Carleton St., Cambridge, Massachusetts 02142, United States of America
| | - Angel Bu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States of America
| | - Ritu Raman
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States of America
| |
Collapse
|
2
|
Melzener L, Spaans S, Hauck N, Pötgens AJG, Flack JE, Post MJ, Doğan A. Short-Stranded Zein Fibers for Muscle Tissue Engineering in Alginate-Based Composite Hydrogels. Gels 2023; 9:914. [PMID: 37999004 PMCID: PMC10671123 DOI: 10.3390/gels9110914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/04/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
Cultivated meat is a nascent technology that aims to create an environmentally and animal-friendly alternative to conventional meat. Producing skeletal muscle tissue in an animal-free system allowing for high levels of myofusion and maturation is important for the nutritional and sensorial value of cultivated meat. Alginate is an attractive biomaterial to support muscle formation as it is food-safe, sustainable and cheap and can be crosslinked using non-toxic methods. Although alginate can be functionalized to promote cell attachment, limitations in its mechanical properties, including form, viscosity, and stress relaxation, hinder the cellular capacity for myogenic differentiation and maturation in alginate-based hydrogels. Here, we show that the addition of electrospun short-stranded zein fibers increased hydrogel degradation, resulting in faster compaction, improved cell-gel interaction, and enhanced alignment of bovine muscle precursor cells. We conclude that fiber-hydrogel composites are a promising approach to support optimal formation of 3D constructs, by improving tissue stability and thus prolonging culture duration. Together, this improves muscle-related protein content by facilitating myogenic differentiation and priming muscle organoids for maturation.
Collapse
Affiliation(s)
- Lea Melzener
- Department of Physiology, Maastricht University, 6200 MD Maastricht, The Netherlands; (L.M.); (M.J.P.)
- Mosa Meat B.V., 6229 PM Maastricht, The Netherlands; (S.S.); (A.J.G.P.); (J.E.F.)
| | - Sergio Spaans
- Mosa Meat B.V., 6229 PM Maastricht, The Netherlands; (S.S.); (A.J.G.P.); (J.E.F.)
| | - Nicolas Hauck
- Mosa Meat B.V., 6229 PM Maastricht, The Netherlands; (S.S.); (A.J.G.P.); (J.E.F.)
| | - André J. G. Pötgens
- Mosa Meat B.V., 6229 PM Maastricht, The Netherlands; (S.S.); (A.J.G.P.); (J.E.F.)
| | - Joshua E. Flack
- Mosa Meat B.V., 6229 PM Maastricht, The Netherlands; (S.S.); (A.J.G.P.); (J.E.F.)
| | - Mark J. Post
- Department of Physiology, Maastricht University, 6200 MD Maastricht, The Netherlands; (L.M.); (M.J.P.)
- Mosa Meat B.V., 6229 PM Maastricht, The Netherlands; (S.S.); (A.J.G.P.); (J.E.F.)
| | - Arın Doğan
- Mosa Meat B.V., 6229 PM Maastricht, The Netherlands; (S.S.); (A.J.G.P.); (J.E.F.)
| |
Collapse
|
3
|
Jangir H, Hickman JJ. Mimicking the Tendon Microenvironment to Enhance Skeletal Muscle Adhesion and Longevity in a Functional Microcantilever Platform. ACS Biomater Sci Eng 2023; 9:4698-4708. [PMID: 37462389 PMCID: PMC10430766 DOI: 10.1021/acsbiomaterials.3c00235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/23/2023] [Indexed: 08/15/2023]
Abstract
Microcantilever platforms are functional models for studying skeletal muscle force dynamics in vitro. However, the contractile force generated by the myotubes can cause them to detach from the cantilevers, especially during long-term experiments, thus impeding the chronic investigations of skeletal muscles for drug efficacy and toxicity. To improve the integration of myotubes with microcantilevers, we drew inspiration from the elastomeric proteins, elastin and resilin, that are present in the animal and insect worlds, respectively. The spring action of these proteins plays a critical role in force dampening in vivo. In animals, elastin is present in the collagenous matrix of the tendon which is the attachment point of muscles to bones. The tendon microenvironment consists of elastin, collagen, and an aqueous jelly-like mass of proteoglycans. In an attempt to mimic this tendon microenvironment, elastin, collagen, heparan sulfate proteoglycan, and hyaluronic acid were deposited on a positively charged silane substrate. This enabled the long-term survival of mechanically active myotubes on glass and silicon microcantilevers for over 28 days. The skeletal muscle cultures were derived from both primary and induced pluripotent stem cell (iPSC)-derived human skeletal muscles. Both types of myoblasts formed myotubes which survived for five weeks. Primary skeletal muscles and iPSC-derived skeletal muscles also showed a similar trend in fatigue index values. Upon integration with the microcantilever system, the primary muscle and iPSC-derived myotubes were tested successively over a one month period, thus paving the way for long-term chronic experiments on these systems for both drug efficacy and toxicity studies.
Collapse
Affiliation(s)
- Himanshi Jangir
- Nanoscience Technology Center, University of Central Florida, 12424 Research Pkwy, Orlando, Florida 32826, United States
| | - James J. Hickman
- Nanoscience Technology Center, University of Central Florida, 12424 Research Pkwy, Orlando, Florida 32826, United States
| |
Collapse
|
4
|
Trossmann VT, Scheibel T. Design of Recombinant Spider Silk Proteins for Cell Type Specific Binding. Adv Healthc Mater 2023; 12:e2202660. [PMID: 36565209 PMCID: PMC11468868 DOI: 10.1002/adhm.202202660] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/19/2022] [Indexed: 12/25/2022]
Abstract
Cytophilic (cell-adhesive) materials are very important for tissue engineering and regenerative medicine. However, for engineering hierarchically organized tissue structures comprising different cell types, cell-specific attachment and guidance are decisive. In this context, materials made of recombinant spider silk proteins are promising scaffolds, since they exhibit high biocompatibility, biodegradability, and the underlying proteins can be genetically functionalized. Here, previously established spider silk variants based on the engineered Araneus diadematus fibroin 4 (eADF4(C16)) are genetically modified with cell adhesive peptide sequences from extracellular matrix proteins, including IKVAV, YIGSR, QHREDGS, and KGD. Interestingly, eADF4(C16)-KGD as one of 18 tested variants is cell-selective for C2C12 mouse myoblasts, one out of 11 tested cell lines. Co-culturing with B50 rat neuronal cells confirms the cell-specificity of eADF4(C16)-KGD material surfaces for C2C12 mouse myoblast adhesion.
Collapse
Affiliation(s)
- Vanessa Tanja Trossmann
- Chair of BiomaterialsEngineering FacultyUniversity of BayreuthProf.‐Rüdiger‐Bormann‐Straße 195447BayreuthGermany
| | - Thomas Scheibel
- Chair of BiomaterialsEngineering FacultyUniversity of BayreuthProf.‐Rüdiger‐Bormann‐Straße 195447BayreuthGermany
- Bayreuth Center for Colloids and Interfaces (BZKG)Bavarian Polymer Institute (BPI)Bayreuth Center for Molecular Biosciences (BZMB)Bayreuth Center for Material Science (BayMAT)University of BayreuthUniversitätsstraße 3095447BayreuthGermany
| |
Collapse
|
5
|
Benlefki S, Sanchez-Vicente A, Milla V, Lucas O, Soulard C, Younes R, Gergely C, Bowerman M, Raoul C, Scamps F, Hilaire C. Expression of ALS-linked SOD1 Mutation in Motoneurons or Myotubes Induces Differential Effects on Neuromuscular Function In vitro. Neuroscience 2020; 435:33-43. [PMID: 32234507 DOI: 10.1016/j.neuroscience.2020.03.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/31/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that selectively affects upper and lower motoneurons. Dismantlement of the neuromuscular junction (NMJ) is an early pathological hallmark of the disease whose cellular origin remains still debated. We developed an in vitro NMJ model to investigate the differential contribution of motoneurons and muscle cells expressing ALS-causing mutation in the superoxide dismutase 1 (SOD1) to neuromuscular dysfunction. The primary co-culture system allows the formation of functional NMJs and fosters the expression of the ALS-sensitive fast fatigable type II-b myosin heavy chain (MHC) isoform. Expression of SOD1G93A in myotubes does not prevent the formation of a functional NMJ but leads to decreased contraction frequency and lowers the slow type I MHC isoform transcript levels. Expression of SOD1G93A in both motoneurons and myotubes or in motoneurons alone however alters the formation of a functional NMJ. Our results strongly suggest that motoneurons are a major factor involved in the process of NMJ dismantlement in an experimental model of ALS.
Collapse
Affiliation(s)
- Salim Benlefki
- The Neuroscience Institute of Montpellier, Inserm UMR1051, Montpellier University, Saint Eloi Hospital, Montpellier, France
| | - Ana Sanchez-Vicente
- The Neuroscience Institute of Montpellier, Inserm UMR1051, Montpellier University, Saint Eloi Hospital, Montpellier, France
| | - Vanessa Milla
- The Neuroscience Institute of Montpellier, Inserm UMR1051, Montpellier University, Saint Eloi Hospital, Montpellier, France
| | - Olivier Lucas
- The Neuroscience Institute of Montpellier, Inserm UMR1051, Montpellier University, Saint Eloi Hospital, Montpellier, France
| | - Claire Soulard
- The Neuroscience Institute of Montpellier, Inserm UMR1051, Montpellier University, Saint Eloi Hospital, Montpellier, France
| | - Richard Younes
- The Neuroscience Institute of Montpellier, Inserm UMR1051, Montpellier University, Saint Eloi Hospital, Montpellier, France; Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Csilla Gergely
- Charles Coulomb Laboratory, L2C, UMR5221, Montpellier University, CNRS, Montpellier, France
| | - Mélissa Bowerman
- The Neuroscience Institute of Montpellier, Inserm UMR1051, Montpellier University, Saint Eloi Hospital, Montpellier, France
| | - Cédric Raoul
- The Neuroscience Institute of Montpellier, Inserm UMR1051, Montpellier University, Saint Eloi Hospital, Montpellier, France
| | - Frédérique Scamps
- The Neuroscience Institute of Montpellier, Inserm UMR1051, Montpellier University, Saint Eloi Hospital, Montpellier, France.
| | - Cécile Hilaire
- The Neuroscience Institute of Montpellier, Inserm UMR1051, Montpellier University, Saint Eloi Hospital, Montpellier, France.
| |
Collapse
|
6
|
Lewandowska MK, Bogatikov E, Hierlemann AR, Punga AR. Long-Term High-Density Extracellular Recordings Enable Studies of Muscle Cell Physiology. Front Physiol 2018; 9:1424. [PMID: 30356837 PMCID: PMC6190753 DOI: 10.3389/fphys.2018.01424] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/19/2018] [Indexed: 11/29/2022] Open
Abstract
Skeletal (voluntary) muscle is the most abundant tissue in the body, thus making it an important biomedical research subject. Studies of neuromuscular transmission, including disorders of ion channels or receptors in autoimmune or genetic neuromuscular disorders, require high-spatial-resolution measurement techniques and an ability to acquire repeated recordings over time in order to track pharmacological interventions. Preclinical techniques for studying diseases of neuromuscular transmission can be enhanced by physiologic ex vivo models of tissue-tissue and cell-cell interactions. Here, we present a method, which allows tracking the development of primary skeletal muscle cells from myoblasts into mature contracting myotubes over more than 2 months. In contrast to most previous studies, the myotubes did not detach from the surface but instead formed functional networks between the myotubes, whose electrical signals were observed over the entire culturing period. Primary cultures of mouse myoblasts differentiated into contracting myotubes on a chip that contained an array of 26,400 platinum electrodes at a density of 3,265 electrodes per mm2. Our ability to track extracellular action potentials at subcellular resolution enabled study of skeletal muscle development and kinetics, modes of spiking and spatio-temporal relationships between muscles. The developed system in turn enables creation of a novel electrophysiological platform for establishing ex vivo disease models.
Collapse
Affiliation(s)
- Marta K Lewandowska
- Department of Neuroscience, Clinical Neurophysiology, Uppsala University, Uppsala, Sweden
| | - Evgenii Bogatikov
- Department of Neuroscience, Clinical Neurophysiology, Uppsala University, Uppsala, Sweden
| | - Andreas R Hierlemann
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Anna Rostedt Punga
- Department of Neuroscience, Clinical Neurophysiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
7
|
Ge J, Liu K, Niu W, Chen M, Wang M, Xue Y, Gao C, Ma PX, Lei B. Gold and gold-silver alloy nanoparticles enhance the myogenic differentiation of myoblasts through p38 MAPK signaling pathway and promote in vivo skeletal muscle regeneration. Biomaterials 2018; 175:19-29. [PMID: 29793089 DOI: 10.1016/j.biomaterials.2018.05.027] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 12/12/2022]
Abstract
Under the severe trauma condition, the skeletal muscles regeneration process is inhibited by forming fibrous scar tissues. Understanding the interaction between bioactive nanomaterials and myoblasts perhaps has important effect on the enhanced skeletal muscle tissue regeneration. Herein, we investigate the effect of monodispersed gold and gold-silver nanoparticles (AuNPs and Au-AgNPs) on the proliferation, myogenic differentiation and associated molecular mechanism of myoblasts (C2C12), as well as the in vivo skeletal muscle tissue regeneration. Our results showed that AuNPs and Au-AgNPs could support myoblast attachment and proliferation with negligible cytotoxicity. Under various incubation conditions (normal and differentiation medium), AuNPs and Au-AuNPs significantly enhanced the myogenic differentiation of myoblasts by upregulating the expressions of myosin heavy chain (MHC) protein and myogenic genes (MyoD, MyoG and Tnnt-1). The further analysis demonstrated that AuNPs and Au-AgNPs could activate the p38α mitogen-activated protein kinase pathway (p38α MAPK) signaling pathway and enhance the myogenic differentiation. Additionally, the AuNPs and Au-AgNPs significantly promote the in vivo skeletal muscle regeneration in a tibialis anterior muscle defect model of rat. This study may provide a nanomaterials-based strategy to improve the skeletal muscle repair and regeneration.
Collapse
Affiliation(s)
- Juan Ge
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China
| | - Kai Liu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China
| | - Wen Niu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China
| | - Mi Chen
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China
| | - Min Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China
| | - Yumeng Xue
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China
| | - Chuanbo Gao
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China
| | - Peter X Ma
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China; Department of Biomedical Engineering, Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor MI 48109-1078, USA; Department of Materials Science and Engineering, University of Michigan, Ann Arbor MI 48109-1078, USA
| | - Bo Lei
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China; State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710054, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710054, China; Instrument Analysis Center, Xi'an Jiaotong University, Xi'an 710054, China.
| |
Collapse
|
8
|
Srisuk P, Berti FV, da Silva LP, Marques AP, Reis RL, Correlo VM. Electroactive Gellan Gum/Polyaniline Spongy-Like Hydrogels. ACS Biomater Sci Eng 2018; 4:1779-1787. [DOI: 10.1021/acsbiomaterials.7b00917] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pathomthat Srisuk
- 3B’s Research Group, Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, 4806-909 Taipas, Guimarães, Portugal
- ICVS/3B’s
PT Government Associated Laboratory, 4710-057 Braga, Portugal
- Division of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Mittraphap Highway, Muang District, Khon Kaen 40002, Thailand
| | - Fernanda V. Berti
- 3B’s Research Group, Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, 4806-909 Taipas, Guimarães, Portugal
- ICVS/3B’s
PT Government Associated Laboratory, 4710-057 Braga, Portugal
| | - Lucilia P. da Silva
- 3B’s Research Group, Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, 4806-909 Taipas, Guimarães, Portugal
- ICVS/3B’s
PT Government Associated Laboratory, 4710-057 Braga, Portugal
| | - Alexandra P. Marques
- 3B’s Research Group, Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, 4806-909 Taipas, Guimarães, Portugal
- ICVS/3B’s
PT Government Associated Laboratory, 4710-057 Braga, Portugal
| | - Rui L. Reis
- 3B’s Research Group, Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, 4806-909 Taipas, Guimarães, Portugal
- ICVS/3B’s
PT Government Associated Laboratory, 4710-057 Braga, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Vitor M. Correlo
- 3B’s Research Group, Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, 4806-909 Taipas, Guimarães, Portugal
- ICVS/3B’s
PT Government Associated Laboratory, 4710-057 Braga, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| |
Collapse
|
9
|
Young J, Margaron Y, Fernandes M, Duchemin-Pelletier E, Michaud J, Flaender M, Lorintiu O, Degot S, Poydenot P. MyoScreen, a High-Throughput Phenotypic Screening Platform Enabling Muscle Drug Discovery. SLAS DISCOVERY 2018; 23:790-806. [PMID: 29498891 DOI: 10.1177/2472555218761102] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite the need for more effective drug treatments to address muscle atrophy and disease, physiologically accurate in vitro screening models and higher information content preclinical assays that aid in the discovery and development of novel therapies are lacking. To this end, MyoScreen was developed: a robust and versatile high-throughput high-content screening (HT/HCS) platform that integrates a physiologically and pharmacologically relevant micropatterned human primary skeletal muscle model with a panel of pertinent phenotypic and functional assays. MyoScreen myotubes form aligned, striated myofibers, and they show nerve-independent accumulation of acetylcholine receptors (AChRs), excitation-contraction coupling (ECC) properties characteristic of adult skeletal muscle and contraction in response to chemical stimulation. Reproducibility and sensitivity of the fully automated MyoScreen platform are highlighted in assays that quantitatively measure myogenesis, hypertrophy and atrophy, AChR clusterization, and intracellular calcium release dynamics, as well as integrating contractility data. A primary screen of 2560 compounds to identify stimulators of myofiber regeneration and repair, followed by further biological characterization of two hits, validates MyoScreen for the discovery and testing of novel therapeutics. MyoScreen is an improvement of current in vitro muscle models, enabling a more predictive screening strategy for preclinical selection of the most efficacious new chemical entities earlier in the discovery pipeline process.
Collapse
|
10
|
Ostrovidov S, Ebrahimi M, Bae H, Nguyen HK, Salehi S, Kim SB, Kumatani A, Matsue T, Shi X, Nakajima K, Hidema S, Osanai M, Khademhosseini A. Gelatin-Polyaniline Composite Nanofibers Enhanced Excitation-Contraction Coupling System Maturation in Myotubes. ACS APPLIED MATERIALS & INTERFACES 2017; 9:42444-42458. [PMID: 29023089 DOI: 10.1021/acsami.7b03979] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In this study, composite gelatin-polyaniline (PANI) nanofibers doped with camphorsulfonic acid (CSA) were fabricated by electrospinning and used as substrates to culture C2C12 myoblast cells. We observed enhanced myotube formation on composite gelatin-PANI nanofibers compared to gelatin nanofibers, concomitantly with enhanced myotube maturation. Thus, in myotubes, intracellular organization, colocalization of the dihydropyridine receptor (DHPR) and ryanodine receptor (RyR), expression of genes correlated to the excitation-contraction (E-C) coupling apparatus, calcium transients, and myotube contractibility were increased. Such composite material scaffolds combining topographical and electrically conductive cues may be useful to direct skeletal muscle cell organization and to improve cellular maturation, functionality, and tissue formation.
Collapse
Affiliation(s)
- Serge Ostrovidov
- WPI-Advanced Institute for Materials Research, Tohoku University , Sendai 980-8577, Japan
- Department of Medicine, Center for Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School , Cambridge, Massachusetts 02139, United States
| | - Majid Ebrahimi
- WPI-Advanced Institute for Materials Research, Tohoku University , Sendai 980-8577, Japan
| | - Hojae Bae
- KU Convergence Science and Technology Institute, Department of Stem Cell and Regenerative Biotechnology, Konkuk University , Hwayang-dong, Kwangjin-gu, Seoul 05029, Republic of Korea
| | - Hung Kim Nguyen
- WPI-Advanced Institute for Materials Research, Tohoku University , Sendai 980-8577, Japan
| | - Sahar Salehi
- WPI-Advanced Institute for Materials Research, Tohoku University , Sendai 980-8577, Japan
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth , Bayreuth 95440, Germany
| | - Sang Bok Kim
- Department of Eco-Machinery system, Korea Institute of Machinery and Materials , Daejeon 305-343, Republic of Korea
| | - Akichika Kumatani
- WPI-Advanced Institute for Materials Research, Tohoku University , Sendai 980-8577, Japan
- Graduate School of Environmental Studies, Tohoku University , Sendai 980-8579, Japan
| | - Tomokazu Matsue
- WPI-Advanced Institute for Materials Research, Tohoku University , Sendai 980-8577, Japan
- Graduate School of Environmental Studies, Tohoku University , Sendai 980-8579, Japan
| | - Xuetao Shi
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology , Guangzhou 510006, PR China
| | - Ken Nakajima
- School of Materials and Chemical Technology, Tokyo Institute of Technology , Tokyo 152-8550, Japan
| | - Shizu Hidema
- Graduate School of Agricultural Science, Department of Molecular and Cell Biology, Tohoku University , Sendai 981-8555, Japan
| | - Makoto Osanai
- Department of Radiological Imaging and Informatics, Tohoku University Graduate School of Medicine , Sendai 980-8575, Japan
- Department of Intelligent Biomedical Systems Engineering, Graduate School of Biomedical Engineering, Tohoku University , Sendai 980-8575, Japan
| | - Ali Khademhosseini
- WPI-Advanced Institute for Materials Research, Tohoku University , Sendai 980-8577, Japan
- Department of Medicine, Center for Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School , Cambridge, Massachusetts 02139, United States
- KU Convergence Science and Technology Institute, Department of Stem Cell and Regenerative Biotechnology, Konkuk University , Hwayang-dong, Kwangjin-gu, Seoul 05029, Republic of Korea
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University , Boston, Massachusetts 02115, United States
- Department of Physics, Faculty of Science, King Abdulaziz University , Jeddah 21569, Saudi Arabia
- California NanoSystems Institute (CNSI), and Center for Minimally Invasive Therapeutics (C-MIT), Department of Bioengineering and Department of Radiology, University of California , Los Angeles, California 90095, United States
| |
Collapse
|
11
|
Colón A, Guo X, Akanda N, Cai Y, Hickman JJ. Functional analysis of human intrafusal fiber innervation by human γ-motoneurons. Sci Rep 2017; 7:17202. [PMID: 29222416 PMCID: PMC5722897 DOI: 10.1038/s41598-017-17382-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 11/21/2017] [Indexed: 11/09/2022] Open
Abstract
Investigation of neuromuscular deficits and diseases such as SMA, as well as for next generation prosthetics, utilizing in vitro phenotypic models would benefit from the development of a functional neuromuscular reflex arc. The neuromuscular reflex arc is the system that integrates the proprioceptive information for muscle length and activity (sensory afferent), to modify motoneuron output to achieve graded muscle contraction (actuation efferent). The sensory portion of the arc is composed of proprioceptive sensory neurons and the muscle spindle, which is embedded in the muscle tissue and composed of intrafusal fibers. The gamma motoneurons (γ-MNs) that innervate these fibers regulate the intrafusal fiber's stretch so that they retain proper tension and sensitivity during muscle contraction or relaxation. This mechanism is in place to maintain the sensitivity of proprioception during dynamic muscle activity and to prevent muscular damage. In this study, a co-culture system was developed for innervation of intrafusal fibers by human γ-MNs and demonstrated by morphological and immunocytochemical analysis, then validated by functional electrophysiological evaluation. This human-based fusimotor model and its incorporation into the reflex arc allows for a more accurate recapitulation of neuromuscular function for applications in disease investigations, drug discovery, prosthetic design and neuropathic pain investigations.
Collapse
Affiliation(s)
- A Colón
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
| | - X Guo
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
| | - N Akanda
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
| | - Y Cai
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
| | - J J Hickman
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA.
| |
Collapse
|
12
|
Hamilton NJI, Birchall MA. Tissue-Engineered Larynx: Future Applications in Laryngeal Cancer. CURRENT OTORHINOLARYNGOLOGY REPORTS 2017; 5:42-48. [PMID: 28367360 PMCID: PMC5357481 DOI: 10.1007/s40136-017-0144-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Purpose of Review This article reviews the latest developments in tissue engineering for the larynx with a specific focus on the treatment of laryngeal cancer. Recent Findings Challenges in tissue engineering a total larynx can be divided into scaffold design, methods of re-mucosalization, and how to restore laryngeal function. The literature described a range of methods to deliver a laryngeal scaffold including examples of synthetic, biomimetic, and biological scaffolds. Methods to regenerate laryngeal mucosa can be divided into examples that use a biological dressing and those that engineer a new mucosal layer de novo. Studies aiming to restore laryngeal function have been reported, but to date, the optimum method for achieving this as part of a total laryngeal transplant is yet to be determined. Summary There is great potential for tissue engineering to improve the treatments available for laryngeal cancer within the next 10 years. A number of challenges exist however and advances in restoring function must keep pace with developments in scaffold design.
Collapse
|
13
|
Wang YI, Oleaga C, Long CJ, Esch MB, McAleer CW, Miller PG, Hickman JJ, Shuler ML. Self-contained, low-cost Body-on-a-Chip systems for drug development. Exp Biol Med (Maywood) 2017; 242:1701-1713. [PMID: 29065797 DOI: 10.1177/1535370217694101] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Integrated multi-organ microphysiological systems are an evolving tool for preclinical evaluation of the potential toxicity and efficacy of drug candidates. Such systems, also known as Body-on-a-Chip devices, have a great potential to increase the successful conversion of drug candidates entering clinical trials into approved drugs. Systems, to be attractive for commercial adoption, need to be inexpensive, easy to operate, and give reproducible results. Further, the ability to measure functional responses, such as electrical activity, force generation, and barrier integrity of organ surrogates, enhances the ability to monitor response to drugs. The ability to operate a system for significant periods of time (up to 28 d) will provide potential to estimate chronic as well as acute responses of the human body. Here we review progress towards a self-contained low-cost microphysiological system with functional measurements of physiological responses. Impact statement Multi-organ microphysiological systems are promising devices to improve the drug development process. The development of a pumpless system represents the ability to build multi-organ systems that are of low cost, high reliability, and self-contained. These features, coupled with the ability to measure electrical and mechanical response in addition to chemical or metabolic changes, provides an attractive system for incorporation into the drug development process. This will be the most complete review of the pumpless platform with recirculation yet written.
Collapse
Affiliation(s)
- Ying I Wang
- 1 Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Carlota Oleaga
- 2 NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
| | - Christopher J Long
- 2 NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA.,3 Hesperos, Inc., Orlando, FL 32826, USA
| | - Mandy B Esch
- 4 Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Christopher W McAleer
- 2 NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA.,3 Hesperos, Inc., Orlando, FL 32826, USA
| | - Paula G Miller
- 1 Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - James J Hickman
- 2 NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA.,3 Hesperos, Inc., Orlando, FL 32826, USA
| | - Michael L Shuler
- 1 Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA.,3 Hesperos, Inc., Orlando, FL 32826, USA
| |
Collapse
|
14
|
On-chip, multisite extracellular and intracellular recordings from primary cultured skeletal myotubes. Sci Rep 2016; 6:36498. [PMID: 27812002 PMCID: PMC5095645 DOI: 10.1038/srep36498] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/17/2016] [Indexed: 02/07/2023] Open
Abstract
In contrast to the extensive use of microelectrode array (MEA) technology in electrophysiological studies of cultured neurons and cardiac muscles, the vast field of skeletal muscle research has yet to adopt the technology. Here we demonstrate an empowering MEA technology for high quality, multisite, long-term electrophysiological recordings from cultured skeletal myotubes. Individual rat skeletal myotubes cultured on micrometer sized gold mushroom-shaped microelectrode (gMμE) based MEA tightly engulf the gMμEs, forming a high seal resistance between the myotubes and the gMμEs. As a consequence, spontaneous action potentials generated by the contracting myotubes are recorded as extracellular field potentials with amplitudes of up to 10 mV for over 14 days. Application of a 10 ms, 0.5-0.9 V voltage pulse through the gMμEs electroporated the myotube membrane, and transiently converted the extracellular to intracellular recording mode for 10-30 min. In a fraction of the cultures stable attenuated intracellular recordings were spontaneously produced. In these cases or after electroporation, subthreshold spontaneous potentials were also recorded. The introduction of the gMμE-MEA as a simple-to-use, high-quality electrophysiological tool together with the progress made in the use of cultured human myotubes opens up new venues for basic and clinical skeletal muscle research, preclinical drug screening, and personalized medicine.
Collapse
|
15
|
Chal J, Al Tanoury Z, Hestin M, Gobert B, Aivio S, Hick A, Cherrier T, Nesmith AP, Parker KK, Pourquié O. Generation of human muscle fibers and satellite-like cells from human pluripotent stem cells in vitro. Nat Protoc 2016; 11:1833-50. [PMID: 27583644 DOI: 10.1038/nprot.2016.110] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Progress toward finding a cure for muscle diseases has been slow because of the absence of relevant cellular models and the lack of a reliable source of muscle progenitors for biomedical investigation. Here we report an optimized serum-free differentiation protocol to efficiently produce striated, millimeter-long muscle fibers together with satellite-like cells from human pluripotent stem cells (hPSCs) in vitro. By mimicking key signaling events leading to muscle formation in the embryo, in particular the dual modulation of Wnt and bone morphogenetic protein (BMP) pathway signaling, this directed differentiation protocol avoids the requirement for genetic modifications or cell sorting. Robust myogenesis can be achieved in vitro within 1 month by personnel experienced in hPSC culture. The differentiating culture can be subcultured to produce large amounts of myogenic progenitors amenable to numerous downstream applications. Beyond the study of myogenesis, this differentiation method offers an attractive platform for the development of relevant in vitro models of muscle dystrophies and drug screening strategies, as well as providing a source of cells for tissue engineering and cell therapy approaches.
Collapse
Affiliation(s)
- Jérome Chal
- Institut de Génétique et de Biologie Moléculaireet Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch-Graffenstaden, France
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Boston, Massachusetts, USA
| | - Ziad Al Tanoury
- Institut de Génétique et de Biologie Moléculaireet Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch-Graffenstaden, France
| | - Marie Hestin
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Boston, Massachusetts, USA
| | - Bénédicte Gobert
- Institut de Génétique et de Biologie Moléculaireet Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch-Graffenstaden, France
| | - Suvi Aivio
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Boston, Massachusetts, USA
| | - Aurore Hick
- Anagenesis Biotechnologies, Parc d'innovation, Illkirch-Graffenstaden, France
| | - Thomas Cherrier
- Institut de Génétique et de Biologie Moléculaireet Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch-Graffenstaden, France
| | - Alexander P Nesmith
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Kevin K Parker
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Olivier Pourquié
- Institut de Génétique et de Biologie Moléculaireet Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch-Graffenstaden, France
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Shi H, Xie H, Zhao Y, Lin C, Cui F, Pan Y, Wang X, Zhu J, Cai P, Zhang H, Fu X, Xiao J, Jiang L. Myoprotective effects of bFGF on skeletal muscle injury in pressure-related deep tissue injury in rats. BURNS & TRAUMA 2016; 4:26. [PMID: 27574694 PMCID: PMC4987989 DOI: 10.1186/s41038-016-0051-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/09/2016] [Indexed: 01/09/2023]
Abstract
BACKGROUND Pressure ulcers (PUs) are a major clinical problem that constitutes a tremendous economic burden on healthcare systems. Deep tissue injury (DTI) is a unique serious type of pressure ulcer that arises in skeletal muscle tissue. DTI arises in part because skeletal muscle tissues are more susceptible than skin to external compression. Unfortunately, few effective therapies are currently available for muscle injury. Basic fibroblast growth factor (bFGF), a potent mitogen and survival factor for various cells, plays a crucial role in the regulation of muscle development and homeostasis. The main purpose of this study was to test whether local administration of bFGF could accelerate muscle regeneration in a rat DTI model. METHODS Male Sprague Dawley (SD) rats (age 12 weeks) were individually housed in plastic cages and a DTI PU model was induced according to methods described before. Animals were randomly divided into three groups: a normal group, a PU group treated with saline, and a PU group treated with bFGF (10 μg/0.1 ml) subcutaneously near the wound. RESULTS We found that application of bFGF accelerated the rate of wound closure and promoted cell proliferation and tissue angiogenesis. In addition, compared to saline administration, bFGF treatment prevented collagen deposition, a measure of fibrosis, and up-regulated the myogenic marker proteins MyHC and myogenin, suggesting bFGF promoted injured muscle regeneration. Moreover, bFGF treatment increased levels of myogenesis-related proteins p-Akt and p-mTOR. CONCLUSIONS Our findings show that bFGF accelerated injured skeletal muscle regeneration through activation of the PI3K/Akt/mTOR signaling pathway and suggest that administration of bFGF is a potential therapeutic strategy for the treatment of skeletal muscle injury in PUs.
Collapse
Affiliation(s)
- Hongxue Shi
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035 People's Republic of China
| | - Haohuang Xie
- Department of Nursing School, Wenzhou Medical University, Wenzhou, 325035 People's Republic of China
| | - Yan Zhao
- Department of Nursing, The Affiliated Xinhua Hospital of Shanghai Jiaotong University School of Medicine, Shanghai, 200092 People's Republic of China
| | - Cai Lin
- Department of Burns, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035 People's Republic of China
| | - Feifei Cui
- Department of Nursing School, Wenzhou Medical University, Wenzhou, 325035 People's Republic of China.,Department of Nursing, The Affiliated Dongyang People's Hospital of Wenzhou Medical University, Jinhua, 322100 People's Republic of China
| | - Yingying Pan
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035 People's Republic of China.,Department of Nursing School, Wenzhou Medical University, Wenzhou, 325035 People's Republic of China
| | - Xiaohui Wang
- Department of Nursing School, Wenzhou Medical University, Wenzhou, 325035 People's Republic of China
| | - Jingjing Zhu
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035 People's Republic of China
| | - Pingtao Cai
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035 People's Republic of China
| | - Hongyu Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035 People's Republic of China
| | - Xiaobing Fu
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Trauma Center of Postgraduate Medical School, Chinese PLA General Hospital, Beijing, 100853 People's Republic of China
| | - Jian Xiao
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035 People's Republic of China
| | - Liping Jiang
- Department of Nursing, The Affiliated Xinhua Hospital of Shanghai Jiaotong University School of Medicine, Shanghai, 200092 People's Republic of China
| |
Collapse
|
17
|
Vilmont V, Cadot B, Ouanounou G, Gomes ER. A system for studying mechanisms of neuromuscular junction development and maintenance. Development 2016; 143:2464-77. [PMID: 27226316 PMCID: PMC4958317 DOI: 10.1242/dev.130278] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 05/12/2016] [Indexed: 12/12/2022]
Abstract
The neuromuscular junction (NMJ), a cellular synapse between a motor neuron and a skeletal muscle fiber, enables the translation of chemical cues into physical activity. The development of this special structure has been subject to numerous investigations, but its complexity renders in vivo studies particularly difficult to perform. In vitro modeling of the neuromuscular junction represents a powerful tool to delineate fully the fine tuning of events that lead to subcellular specialization at the pre-synaptic and post-synaptic sites. Here, we describe a novel heterologous co-culture in vitro method using rat spinal cord explants with dorsal root ganglia and murine primary myoblasts to study neuromuscular junctions. This system allows the formation and long-term survival of highly differentiated myofibers, motor neurons, supporting glial cells and functional neuromuscular junctions with post-synaptic specialization. Therefore, fundamental aspects of NMJ formation and maintenance can be studied using the described system, which can be adapted to model multiple NMJ-associated disorders.
Collapse
Affiliation(s)
- Valérie Vilmont
- Myology Research Center, UM76-INSERM U974-CNRS FRE 3617 Sorbonne Universités, UPMC Université Paris 06, Paris, France
| | - Bruno Cadot
- Myology Research Center, UM76-INSERM U974-CNRS FRE 3617 Sorbonne Universités, UPMC Université Paris 06, Paris, France
| | - Gilles Ouanounou
- FRE CNRS 3693 (U.N.I.C), Unité de Neuroscience, Information et Complexité CNRS, Bât. 33, 1 Ave de la Terasse, Gif sur Yvette 91198, France
| | - Edgar R Gomes
- Myology Research Center, UM76-INSERM U974-CNRS FRE 3617 Sorbonne Universités, UPMC Université Paris 06, Paris, France Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
18
|
Poosala P, Ichinose H, Kitaoka T. Spatial Geometries of Self-Assembled Chitohexaose Monolayers Regulate Myoblast Fusion. Int J Mol Sci 2016; 17:ijms17050686. [PMID: 27164094 PMCID: PMC4881512 DOI: 10.3390/ijms17050686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 04/28/2016] [Accepted: 05/03/2016] [Indexed: 01/31/2023] Open
Abstract
Myoblast fusion into functionally-distinct myotubes to form in vitro skeletal muscle constructs under differentiation serum-free conditions still remains a challenge. Herein, we report that our microtopographical carbohydrate substrates composed of bioactive hexa-N-acetyl-d-glucosamine (GlcNAc6) modulated the efficiency of myoblast fusion without requiring horse serum or any differentiation medium during cell culture. Promotion of the differentiation of dissociated mononucleated skeletal myoblasts (C2C12; a mouse myoblast cell line) into robust myotubes was found only on GlcNAc6 micropatterns, whereas the myoblasts on control, non-patterned GlcNAc6 substrates or GlcNAc6-free patterns exhibited an undifferentiated form. We also examined the possible role of GlcNAc6 micropatterns with various widths in the behavior of C2C12 cells in early and late stages of myogenesis through mRNA expression of myosin heavy chain (MyHC) isoforms. The spontaneous contraction of myotubes was investigated via the regulation of glucose transporter type 4 (GLUT4), which is involved in stimulating glucose uptake during cellular contraction. Narrow patterns demonstrated enhanced glucose uptake rate and generated a fast-twitch muscle fiber type, whereas the slow-twitch muscle fiber type was dominant on wider patterns. Our findings indicated that GlcNAc6-mediated integrin interactions are responsible for guiding myoblast fusion forward along with myotube formation.
Collapse
Affiliation(s)
- Pornthida Poosala
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1, Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.
| | - Hirofumi Ichinose
- Faculty of Agriculture, Kyushu University, 6-10-1, Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.
| | - Takuya Kitaoka
- Faculty of Agriculture, Kyushu University, 6-10-1, Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.
| |
Collapse
|
19
|
McAleer CW, Rumsey JW, Stancescu M, Hickman JJ. Functional myotube formation from adult rat satellite cells in a defined serum-free system. Biotechnol Prog 2015; 31:997-1003. [PMID: 25683642 PMCID: PMC5015122 DOI: 10.1002/btpr.2063] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 01/28/2015] [Indexed: 12/28/2022]
Abstract
This manuscript describes the development of a culture system whereby mature contracting myotubes were formed from adult rat derived satellite cells. Satellite cells, extracted from the Tibialis Anterior of adult rats, were grown in defined serum-free growth and differentiation media, on a nonbiological substrate, N-1[3-trimethoxysilyl propyl] diethylenetriamine. Myotubes were evaluated morphologically and immunocytochemically, using MyHC specific antibodies, as well as functionally using patch clamp electrophysiology to measure ion channel activity. Results indicated the establishment of the rapid expression of adult myosin isoforms that contrasts to their slow development in embryonic cultures. This culture system has applications in the understanding and treatment of age-related muscle myopathy, muscular dystrophy, and for skeletal muscle engineering by providing a more relevant phenotype for both in vitro and in vivo applications.
Collapse
Affiliation(s)
- Christopher W McAleer
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826
| | - John W Rumsey
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826
| | - Maria Stancescu
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826
| | - James J Hickman
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826
| |
Collapse
|
20
|
Benam KH, Dauth S, Hassell B, Herland A, Jain A, Jang KJ, Karalis K, Kim HJ, MacQueen L, Mahmoodian R, Musah S, Torisawa YS, van der Meer AD, Villenave R, Yadid M, Parker KK, Ingber DE. Engineered in vitro disease models. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2015; 10:195-262. [PMID: 25621660 DOI: 10.1146/annurev-pathol-012414-040418] [Citation(s) in RCA: 374] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ultimate goal of most biomedical research is to gain greater insight into mechanisms of human disease or to develop new and improved therapies or diagnostics. Although great advances have been made in terms of developing disease models in animals, such as transgenic mice, many of these models fail to faithfully recapitulate the human condition. In addition, it is difficult to identify critical cellular and molecular contributors to disease or to vary them independently in whole-animal models. This challenge has attracted the interest of engineers, who have begun to collaborate with biologists to leverage recent advances in tissue engineering and microfabrication to develop novel in vitro models of disease. As these models are synthetic systems, specific molecular factors and individual cell types, including parenchymal cells, vascular cells, and immune cells, can be varied independently while simultaneously measuring system-level responses in real time. In this article, we provide some examples of these efforts, including engineered models of diseases of the heart, lung, intestine, liver, kidney, cartilage, skin and vascular, endocrine, musculoskeletal, and nervous systems, as well as models of infectious diseases and cancer. We also describe how engineered in vitro models can be combined with human inducible pluripotent stem cells to enable new insights into a broad variety of disease mechanisms, as well as provide a test bed for screening new therapies.
Collapse
Affiliation(s)
- Kambez H Benam
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115;
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Chaturvedi V, Dye DE, Kinnear BF, van Kuppevelt TH, Grounds MD, Coombe DR. Interactions between Skeletal Muscle Myoblasts and their Extracellular Matrix Revealed by a Serum Free Culture System. PLoS One 2015; 10:e0127675. [PMID: 26030912 PMCID: PMC4450880 DOI: 10.1371/journal.pone.0127675] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 04/17/2015] [Indexed: 12/19/2022] Open
Abstract
Decellularisation of skeletal muscle provides a system to study the interactions of myoblasts with muscle extracellular matrix (ECM). This study describes the efficient decellularisation of quadriceps muscle with the retention of matrix components and the use of this matrix for myoblast proliferation and differentiation under serum free culture conditions. Three decellularisation approaches were examined; the most effective was phospholipase A2 treatment, which removed cellular material while maximizing the retention of ECM components. Decellularised muscle matrices were then solubilized and used as substrates for C2C12 mouse myoblast serum free cultures. The muscle matrix supported myoblast proliferation and differentiation equally as well as collagen and fibronectin. Immunofluorescence analyses revealed that myoblasts seeded on muscle matrix and fibronectin differentiated to form long, well-aligned myotubes, while myoblasts seeded on collagen were less organized. qPCR analyses showed a time dependent increase in genes involved in skeletal muscle differentiation and suggested that muscle-derived matrix may stimulate an increased rate of differentiation compared to collagen and fibronectin. Decellularized whole muscle three-dimensional scaffolds also supported cell adhesion and spreading, with myoblasts aligning along specific tracts of matrix proteins within the scaffolds. Thus, under serum free conditions, intact acellular muscle matrices provided cues to direct myoblast adhesion and migration. In addition, myoblasts were shown to rapidly secrete and organise their own matrix glycoproteins to create a localized ECM microenvironment. This serum free culture system has revealed that the correct muscle ECM facilitates more rapid cell organisation and differentiation than single matrix glycoprotein substrates.
Collapse
Affiliation(s)
- Vishal Chaturvedi
- School of Biomedical Science, CHIRI Biosciences Research Precinct, Faculty of Health Sciences, Curtin University, Perth, Western Australia, Australia
| | - Danielle E. Dye
- School of Biomedical Science, CHIRI Biosciences Research Precinct, Faculty of Health Sciences, Curtin University, Perth, Western Australia, Australia
| | - Beverley F. Kinnear
- School of Biomedical Science, CHIRI Biosciences Research Precinct, Faculty of Health Sciences, Curtin University, Perth, Western Australia, Australia
| | - Toin H. van Kuppevelt
- Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Miranda D. Grounds
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Perth, Western Australia, Australia
| | - Deirdre R. Coombe
- School of Biomedical Science, CHIRI Biosciences Research Precinct, Faculty of Health Sciences, Curtin University, Perth, Western Australia, Australia
- * E-mail:
| |
Collapse
|
22
|
Smith AST, Long CJ, McAleer C, Guo X, Esch M, Prot JM, Shuler ML, Hickman JJ. ‘Body-on-a-Chip’ Technology and Supporting Microfluidics. HUMAN-BASED SYSTEMS FOR TRANSLATIONAL RESEARCH 2014. [DOI: 10.1039/9781782620136-00132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In order to effectively streamline current drug development protocols, there is a need to generate high information content preclinical screens capable of generating data with a predictive power in relation to the activity of novel therapeutics in humans. Given the poor predictive power of animal models, and the lack of complexity and interconnectivity of standard in vitro culture methodologies, many investigators are now moving toward the development of physiologically and functionally accurate culture platforms composed of human cells to investigate cellular responses to drug compounds in high-throughput preclinical studies. The generation of complex, multi-organ in vitro platforms, built to recapitulate physiological dimensions, flow rates and shear stresses, is being investigated as the logical extension of this drive. Production and application of a biologically accurate multi-organ platform, or ‘body-on-a-chip’, would facilitate the correct modelling of the dynamic and interconnected state of living systems for high-throughput drug studies as well as basic and applied biomolecular research. This chapter will discuss current technologies aimed at producing ‘body-on-a-chip’ models, as well as highlighting recent advances and important challenges still to be met in the development of biomimetic single-organ systems for drug development purposes.
Collapse
Affiliation(s)
- A. S. T. Smith
- NanoScience Technology Center, University of Central Florida Orlando FL 32826 USA
| | - C. J. Long
- NanoScience Technology Center, University of Central Florida Orlando FL 32826 USA
| | - C. McAleer
- NanoScience Technology Center, University of Central Florida Orlando FL 32826 USA
| | - X. Guo
- NanoScience Technology Center, University of Central Florida Orlando FL 32826 USA
| | - M. Esch
- Biomedical Engineering, Cornell University Ithaca NY USA
| | - J. M. Prot
- Biomedical Engineering, Cornell University Ithaca NY USA
| | - M. L. Shuler
- Biomedical Engineering, Cornell University Ithaca NY USA
| | - J. J. Hickman
- NanoScience Technology Center, University of Central Florida Orlando FL 32826 USA
| |
Collapse
|
23
|
Ostrovidov S, Ahadian S, Ramon-Azcon J, Hosseini V, Fujie T, Parthiban SP, Shiku H, Matsue T, Kaji H, Ramalingam M, Bae H, Khademhosseini A. Three-dimensional co-culture of C2C12/PC12 cells improves skeletal muscle tissue formation and function. J Tissue Eng Regen Med 2014; 11:582-595. [PMID: 25393357 DOI: 10.1002/term.1956] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 06/19/2014] [Accepted: 08/28/2014] [Indexed: 01/16/2023]
Abstract
Engineered muscle tissues demonstrate properties far from native muscle tissue. Therefore, fabrication of muscle tissues with enhanced functionalities is required to enable their use in various applications. To improve the formation of mature muscle tissues with higher functionalities, we co-cultured C2C12 myoblasts and PC12 neural cells. While alignment of the myoblasts was obtained by culturing the cells in micropatterned methacrylated gelatin (GelMA) hydrogels, we studied the effects of the neural cells (PC12) on the formation and maturation of muscle tissues. Myoblasts cultured in the presence of neural cells showed improved differentiation, with enhanced myotube formation. Myotube alignment, length and coverage area were increased. In addition, the mRNA expression of muscle differentiation markers (Myf-5, myogenin, Mefc2, MLP), muscle maturation markers (MHC-IId/x, MHC-IIa, MHC-IIb, MHC-pn, α-actinin, sarcomeric actinin) and the neuromuscular markers (AChE, AChR-ε) were also upregulated. All these observations were amplified after further muscle tissue maturation under electrical stimulation. Our data suggest a synergistic effect on the C2C12 differentiation induced by PC12 cells, which could be useful for creating improved muscle tissue. Copyright © 2014 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Serge Ostrovidov
- Advanced Institute for Materials Research (WPI), Tohoku University, Sendai, Japan
| | - Samad Ahadian
- Advanced Institute for Materials Research (WPI), Tohoku University, Sendai, Japan
| | - Javier Ramon-Azcon
- Advanced Institute for Materials Research (WPI), Tohoku University, Sendai, Japan
| | - Vahid Hosseini
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH, Zurich, Switzerland
| | - Toshinori Fujie
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - S Prakash Parthiban
- Advanced Institute for Materials Research (WPI), Tohoku University, Sendai, Japan
| | - Hitoshi Shiku
- Graduate School of Environmental Studies, Tohoku University, Sendai, Japan
| | - Tomokazu Matsue
- Advanced Institute for Materials Research (WPI), Tohoku University, Sendai, Japan.,Graduate School of Environmental Studies, Tohoku University, Sendai, Japan
| | - Hirokazu Kaji
- Department of Bioengineering and Robotics, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Murugan Ramalingam
- Advanced Institute for Materials Research (WPI), Tohoku University, Sendai, Japan.,Centre for Stem Cell Research, A unit of the Institute for Stem Cell Biology and Regenerative Medicine, Christian Medical College Campus, Vellore, India.,Institut National de la Santé et de la Recherche Médicale U977, Faculté de Chirurgie Dentaire, Université de Strasbourg, France
| | - Hojae Bae
- College of Animal Bioscience and Technology, Department of Bioindustrial Technologies, Konkuk University, Seoul, Republic of Korea
| | - Ali Khademhosseini
- Advanced Institute for Materials Research (WPI), Tohoku University, Sendai, Japan.,Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea.,Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School and Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.,Center of Nanotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
24
|
Trapecar M, Kelc R, Gradisnik L, Vogrin M, Rupnik MS. Myogenic progenitors and imaging single-cell flow analysis: a model to study commitment of adult muscle stem cells. J Muscle Res Cell Motil 2014; 35:249-57. [PMID: 25380573 DOI: 10.1007/s10974-014-9398-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 10/30/2014] [Indexed: 12/12/2022]
Abstract
Research on skeletal muscles suffers from a lack of appropriate human models to study muscle formation and regeneration on the regulatory level of single cells. This hampers both basic understanding and the development of new therapeutic approaches. The use of imaging multicolour flow cytometry and myogenic stem cells can help fill this void by allowing researchers to visualize and quantify the reaction of individual cultured cells to bioactives or other physiological impulses. As proof of concept, we subjected human CD56+ satellite cells to reference bioactives follistatin and Malva sylvestris extracts and then used imaging multicolor flow cytometry to visualize the stepwise activation of myogenic factors MyoD and myogenin in individual cells. This approach enabled us to evaluate the potency of these bioactives to stimulate muscle commitment. To validate this method, we used multi-photon confocal microscopy to confirm the potential of bioactives to stimulate muscle differentiation and expression of desmin. Imaging multicolor flow cytometry revealed statistically significant differences between treated and untreated groups of myogenic progenitors and we propose the utilization of this concept as an integral part of future muscle research strategies.
Collapse
Affiliation(s)
- Martin Trapecar
- Faculty of Medicine, Institute of Physiology, University of Maribor, Taborska ulica 8, 2000, Maribor, Slovenia,
| | | | | | | | | |
Collapse
|
25
|
Smith AST, Long CJ, McAleer C, Bobbitt N, Srinivasan B, Hickman JJ. Utilization of microscale silicon cantilevers to assess cellular contractile function in vitro. J Vis Exp 2014:e51866. [PMID: 25350792 DOI: 10.3791/51866] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The development of more predictive and biologically relevant in vitro assays is predicated on the advancement of versatile cell culture systems which facilitate the functional assessment of the seeded cells. To that end, microscale cantilever technology offers a platform with which to measure the contractile functionality of a range of cell types, including skeletal, cardiac, and smooth muscle cells, through assessment of contraction induced substrate bending. Application of multiplexed cantilever arrays provides the means to develop moderate to high-throughput protocols for assessing drug efficacy and toxicity, disease phenotype and progression, as well as neuromuscular and other cell-cell interactions. This manuscript provides the details for fabricating reliable cantilever arrays for this purpose, and the methods required to successfully culture cells on these surfaces. Further description is provided on the steps necessary to perform functional analysis of contractile cell types maintained on such arrays using a novel laser and photo-detector system. The representative data provided highlights the precision and reproducible nature of the analysis of contractile function possible using this system, as well as the wide range of studies to which such technology can be applied. Successful widespread adoption of this system could provide investigators with the means to perform rapid, low cost functional studies in vitro, leading to more accurate predictions of tissue performance, disease development and response to novel therapeutic treatment.
Collapse
Affiliation(s)
- Alec S T Smith
- NanoScience Technology Center, University of Central Florida
| | | | | | | | | | - James J Hickman
- NanoScience Technology Center, University of Central Florida;
| |
Collapse
|
26
|
Esch MB, Smith AS, Prot JM, Oleaga C, Hickman JJ, Shuler ML. How multi-organ microdevices can help foster drug development. Adv Drug Deliv Rev 2014; 69-70:158-69. [PMID: 24412641 DOI: 10.1016/j.addr.2013.12.003] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 11/26/2013] [Accepted: 12/10/2013] [Indexed: 10/25/2022]
Abstract
Multi-organ microdevices can mimic tissue-tissue interactions that occur as a result of metabolite travel from one tissue to other tissues in vitro. These systems are capable of simulating human metabolism, including the conversion of a pro-drug to its effective metabolite as well as its subsequent therapeutic actions and toxic side effects. Since tissue-tissue interactions in the human body can play a significant role in determining the success of new pharmaceuticals, the development and use of multi-organ microdevices present an opportunity to improve the drug development process. The devices have the potential to predict potential toxic side effects with higher accuracy before a drug enters the expensive phase of clinical trials as well as to estimate efficacy and dose response. Multi-organ microdevices also have the potential to aid in the development of new therapeutic strategies by providing a platform for testing in the context of human metabolism (as opposed to animal models). Further, when operated with human biopsy samples, the devices could be a gateway for the development of individualized medicine. Here we review studies in which multi-organ microdevices have been developed and used in a ways that demonstrate how the devices' capabilities can present unique opportunities for the study of drug action. We will also discuss challenges that are inherent in the development of multi-organ microdevices. Among these are how to design the devices, and how to create devices that mimic the human metabolism with high authenticity. Since single organ devices are testing platforms for tissues that can later be combined with other tissues within multi-organ devices, we will also mention single organ devices where appropriate in the discussion.
Collapse
|
27
|
Guo X, Greene K, Akanda N, Smith A, Stancescu M, Lambert S, Vandenburgh H, Hickman J. In vitro Differentiation of Functional Human Skeletal Myotubes in a Defined System. Biomater Sci 2014; 2:131-138. [PMID: 24516722 DOI: 10.1039/c3bm60166h] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In vitro human skeletal muscle systems are valuable tools for the study of human muscular development, disease and treatment. However, published in vitro human muscle systems have so far only demonstrated limited differentiation capacities. Advanced differentiation features such as cross-striations and contractility have only been observed in co-cultures with motoneurons. Furthermore, it is commonly regarded that cultured human myotubes do not spontaneously contract, and any contraction has been considered to originate from innervation. This study developed a serum-free culture system in which human skeletal myotubes demonstrated advanced differentiation. Characterization by immunocytochemistry, electrophysiology and analysis of contractile function revealed these major features: A) well defined sarcomeric development, as demonstrated by the presence of cross-striations. B) finely developed excitation-contraction coupling apparatus characterized by the close apposition of dihydropyridine receptors on T-tubules and Ryanodine receptors on sarcoplasmic reticulum membranes. C) spontaneous and electrically controlled contractility. This report not only demonstrates an improved level of differentiation of cultured human skeletal myotubes, but also provides the first published evidence that such myotubes are capable of spontaneous contraction. Use of this functional in vitro human skeletal muscle system would advance studies concerning human skeletal muscle development and physiology, as well as muscle-related disease and therapy.
Collapse
Affiliation(s)
- Xiufang Guo
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, USA
| | - Keshel Greene
- Biomolecular Science Center, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32826, USA
| | - Nesar Akanda
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, USA
| | - Alec Smith
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, USA
| | - Maria Stancescu
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, USA ; Department of Chemistry, 4000 Central Florida Blvd., Physical Sciences Building (PS) Room 255, University of Central Florida, Orlando, FL 32816-2366, USA
| | - Stephen Lambert
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, USA ; College of Medicine, University of Central Florida, 12201 Research Parkway, Suite 479, Room 463, Orlando, FL 32826, USA
| | - Herman Vandenburgh
- Brown University, Professor Emeritus, Department of Pathology and Lab Medicine, Providence, Rhode Island, 02913 USA ; Myomics, 148 West River Str, Providence, Rhode Island 02904
| | - James Hickman
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, USA ; Biomolecular Science Center, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32826, USA ; Department of Chemistry, 4000 Central Florida Blvd., Physical Sciences Building (PS) Room 255, University of Central Florida, Orlando, FL 32816-2366, USA
| |
Collapse
|
28
|
Abstract
A multiorgan, functional, human in vitro assay system or 'Body-on-a-Chip' would be of tremendous benefit to the drug discovery and toxicology industries, as well as providing a more biologically accurate model for the study of disease as well as applied and basic biological research. Here, we describe the advances our team has made towards this goal, as well as the most pertinent issues facing further development of these systems. Description is given of individual organ models with appropriate cellular functionality, and our efforts to produce human iterations of each using primary and stem cell sources for eventual incorporation into this system. Advancement of the 'Body-on-a-Chip' field is predicated on the availability of abundant sources of human cells, capable of full differentiation and maturation to adult phenotypes, for which researchers are largely dependent on stem cells. Although this level of maturation is not yet achievable in all cell types, the work of our group highlights the high level of functionality that can be achieved using current technology, for a wide variety of cell types. As availability of functional human cell types for in vitro culture increases, the potential to produce a multiorgan in vitro system capable of accurately reproducing acute and chronic human responses to chemical and pathological challenge in real time will also increase.
Collapse
|
29
|
Pirozzi KL, Long CJ, McAleer CW, Smith AST, Hickman JJ. Correlation of embryonic skeletal muscle myotube physical characteristics with contractile force generation on an atomic force microscope-based bio-microelectromechanical systems device. APPLIED PHYSICS LETTERS 2013; 103:83108. [PMID: 24046483 PMCID: PMC3765224 DOI: 10.1063/1.4817939] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 07/23/2013] [Indexed: 05/27/2023]
Abstract
Rigorous analysis of muscle function in in vitro systems is needed for both acute and chronic biomedical applications. Forces generated by skeletal myotubes on bio-microelectromechanical cantilevers were calculated using a modified version of Stoney's thin-film equation and finite element analysis (FEA), then analyzed for regression to physical parameters. The Stoney's equation results closely matched the more intensive FEA and the force correlated to cross-sectional area (CSA). Normalizing force to measured CSA significantly improved the statistical sensitivity and now allows for close comparison of in vitro data to in vivo measurements for applications in exercise physiology, robotics, and modeling neuromuscular diseases.
Collapse
Affiliation(s)
- K L Pirozzi
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Orlando, Florida 32826, USA
| | | | | | | | | |
Collapse
|
30
|
Myelination and node of Ranvier formation on sensory neurons in a defined in vitro system. In Vitro Cell Dev Biol Anim 2013; 49:608-618. [PMID: 23949775 DOI: 10.1007/s11626-013-9647-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 05/29/2013] [Indexed: 10/26/2022]
Abstract
One of the most important developmental modifications of the nervous system is Schwann cell myelination of axons. Schwann cells ensheath axons to create myelin segments to provide protection to the axon as well as increase the conduction of action potentials. In vitro neuronal systems provide a unique modality to study a variety of factors influencing myelination as well as diseases associated with myelin sheath degradation. This work details the development of a patterned in vitro myelinating dorsal root ganglion culture. This defined system utilized a serum-free medium in combination with a patterned substrate, utilizing the cytophobic and cytophilic molecules (poly)ethylene glycol (PEG) and N-1[3 (trimethoxysilyl) propyl] diethylenetriamine (DETA), respectively. Directional outgrowth of the neurites and subsequent myelination was controlled by surface modifications, and conformity to the pattern was measured over the duration of the experiments. The myelinated segments and nodal proteins were visualized and quantified using confocal microscopy. This tissue-engineered system provides a highly controlled, reproducible model for studying Schwann cell interactions with sensory neurons, as well as the myelination process, and its effect on neuronal plasticity and peripheral nerve regeneration. It is also compatible for use in bio-hybrid constructs to reproduce the stretch reflex arc on a chip because the media combination used is the same that we have used previously for motoneurons, muscle, and for neuromuscular junction (NMJ) formation. This work could have application for the study of demyelinating diseases such as diabetes induced peripheral neuropathy and could rapidly translate to a role in the discovery of drugs promoting enhanced peripheral nervous system (PNS) remyelination.
Collapse
|
31
|
Kalganov A, Shalabi N, Zitouni N, Kachmar LH, Lauzon AM, Rassier DE. Forces measured with micro-fabricated cantilevers during actomyosin interactions produced by filaments containing different myosin isoforms and loop 1 structures. Biochim Biophys Acta Gen Subj 2012; 1830:2710-2719. [PMID: 23220701 DOI: 10.1016/j.bbagen.2012.11.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 11/23/2012] [Accepted: 11/26/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND There is evidence that the actin-activated ATP kinetics and the mechanical work produced by muscle myosin molecules are regulated by two surface loops, located near the ATP binding pocket (loop 1), and in a region that interfaces with actin (loop 2). These loops regulate force and velocity of contraction, and have been investigated mostly in single molecules. There is a lack of information of the work produced by myosin molecules ordered in filaments and working cooperatively, which is the actual muscle environment. METHODS We use micro-fabricated cantilevers to measure forces produced by myosin filaments isolated from mollusk muscles, skeletal muscles, and smooth muscles containing variations in the structure of loop 1 (tonic and phasic myosins). We complemented the experiments with in-vitro assays to measure the velocity of actin motility. RESULTS Smooth muscle myosin filaments produced more force than skeletal and mollusk myosin filaments when normalized per filament overlap. Skeletal muscle myosin propelled actin filaments in a higher sliding velocity than smooth muscle myosin. The values for force and velocity were consistent with previous studies using myosin molecules, and suggest a close correlation with the myosin isoform and structure of surface loop 1. GENERAL SIGNIFICANCE The technique using micro-fabricated cantilevers to measure force of filaments allows for the investigation of the relation between myosin structure and contractility, allowing experiments to be conducted with an array of different myosin isoforms. Using the technique we observed that the work produced by myosin molecules is regulated by amino-acid sequences aligned in specific loops.
Collapse
Affiliation(s)
- Albert Kalganov
- Department of Kinesiology and Physical Education, Faculty of Education, McGill University, Canada
| | - Nabil Shalabi
- Department of Mechanical Engineering, Faculty of Engineering McGill University, Canada
| | - Nedjma Zitouni
- Meakins-Christie Laboratories, McGill University, Canada; Department of Experimental Medicine, Faculty of Medicine McGill University, Canada
| | - Linda Hussein Kachmar
- Meakins-Christie Laboratories, McGill University, Canada; Department of Experimental Medicine, Faculty of Medicine McGill University, Canada
| | - Anne-Marie Lauzon
- Meakins-Christie Laboratories, McGill University, Canada; Department of Experimental Medicine, Faculty of Medicine McGill University, Canada; Departments of Physics, Faculty of Science, McGill University, Canada; Department of Physiology, Faculty of Medicine, McGill University, Canada
| | - Dilson E Rassier
- Department of Kinesiology and Physical Education, Faculty of Education, McGill University, Canada; Meakins-Christie Laboratories, McGill University, Canada; Department of Experimental Medicine, Faculty of Medicine McGill University, Canada; Departments of Physics, Faculty of Science, McGill University, Canada; Department of Physiology, Faculty of Medicine, McGill University, Canada.
| |
Collapse
|
32
|
Gibbons MC, Foley MA, Cardinal KO. Thinking inside the box: keeping tissue-engineered constructs in vitro for use as preclinical models. TISSUE ENGINEERING PART B-REVIEWS 2012; 19:14-30. [PMID: 22800715 DOI: 10.1089/ten.teb.2012.0305] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tissue engineers have made great strides toward the creation of living tissue replacements for a wide range of tissue types and applications, with eventual patient implantation as the primary goal. However, an alternate use of tissue-engineered constructs exists: as in vitro preclinical models for purposes such as drug screening and device testing. Tissue-engineered preclinical models have numerous potential advantages over existing models, including cultivation in three-dimensional geometries, decreased cost, increased reproducibility, precise control over cultivation conditions, and the incorporation of human cells. Over the past decade, a number of researchers have developed and used tissue-engineered constructs as preclinical models for testing pharmaceuticals, gene therapies, stents, and other technologies, with examples including blood vessels, skeletal muscle, bone, cartilage, skin, cardiac muscle, liver, cornea, reproductive tissues, adipose, small intestine, neural tissue, and kidney. The focus of this article is to review accomplishments toward the creation and use of tissue-engineered preclinical models of each of these different tissue types.
Collapse
Affiliation(s)
- Michael C Gibbons
- Department of Biomedical and General Engineering, Cal Poly San Luis Obispo, San Luis Obispo, California 93407, USA
| | | | | |
Collapse
|
33
|
Guo X, Ayala JE, Gonzalez M, Stancescu M, Lambert S, Hickman JJ. Tissue engineering the monosynaptic circuit of the stretch reflex arc with co-culture of embryonic motoneurons and proprioceptive sensory neurons. Biomaterials 2012; 33:5723-31. [PMID: 22594977 DOI: 10.1016/j.biomaterials.2012.04.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 04/16/2012] [Indexed: 01/08/2023]
Abstract
The sensory circuit of the stretch reflex arc is composed of intrafusal muscle fibers and their innervating proprioceptive neurons that convert mechanical information regarding muscle length and tension into action potentials that synapse onto the homonymous motoneurons in the ventral spinal cord which innervate the extrafusal fibers of the same muscle. To date, the in vitro synaptic connection between proprioceptive sensory neurons and spinal motoneurons has not been demonstrated. A functional in vitro system demonstrating this connection would enable the understanding of feedback by the integration of sensory input into the spinal reflex arc. Here we report a co-culture of rat embryonic motoneurons and proprioceptive sensory neurons from dorsal root ganglia (DRG) in a defined serum-free medium on a synthetic silane substrate (DETA). Furthermore, we have demonstrated functional synapse formation in the co-culture by immunocytochemistry and electrophysiological analysis. This work will be valuable for enabling in vitro model systems for the study of spinal motor control and related pathologies such as spinal cord injury, muscular dystrophy and spasticity by improving our understanding of the integration of the mechanosensitive feedback mechanism.
Collapse
Affiliation(s)
- Xiufang Guo
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA
| | | | | | | | | | | |
Collapse
|
34
|
Bian W, Juhas M, Pfeiler TW, Bursac N. Local tissue geometry determines contractile force generation of engineered muscle networks. Tissue Eng Part A 2012; 18:957-67. [PMID: 22115339 DOI: 10.1089/ten.tea.2011.0313] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The field of skeletal muscle tissue engineering is currently hampered by the lack of methods to form large muscle constructs composed of dense, aligned, and mature myofibers and limited understanding of structure-function relationships in developing muscle tissues. In our previous studies, engineered muscle sheets with elliptical pores ("muscle networks") were fabricated by casting cells and fibrin gel inside elastomeric tissue molds with staggered hexagonal posts. In these networks, alignment of cells around the elliptical pores followed the local distribution of tissue strains that were generated by cell-mediated compaction of fibrin gel against the hexagonal posts. The goal of this study was to assess how systematic variations in pore elongation affect the morphology and contractile function of muscle networks. We found that in muscle networks with more elongated pores the force production of individual myofibers was not altered, but the myofiber alignment and efficiency of myofiber formation were significantly increased yielding an increase in the total contractile force despite a decrease in the total tissue volume. Beyond a certain pore length, increase in generated contractile force was mainly contributed by more efficient myofiber formation rather than enhanced myofiber alignment. Collectively, these studies show that changes in local tissue geometry can exert both direct structural and indirect myogenic effects on the functional output of engineered muscle. Different hydrogel formulations and pore geometries will be explored in the future to further augment contractile function of engineered muscle networks and promote their use for basic structure-function studies in vitro and, eventually, for efficient muscle repair in vivo.
Collapse
Affiliation(s)
- Weining Bian
- Department of Anesthesia and Medicine and Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
35
|
Guo X, Das M, Rumsey J, Gonzalez M, Stancescu M, Hickman J. Neuromuscular junction formation between human stem-cell-derived motoneurons and rat skeletal muscle in a defined system. Tissue Eng Part C Methods 2010; 16:1347-55. [PMID: 20337513 PMCID: PMC2988647 DOI: 10.1089/ten.tec.2010.0040] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
To date, the coculture of motoneurons (MNs) and skeletal muscle in a defined in vitro system has only been described in one study and that was between rat MNs and rat skeletal muscle. No in vitro studies have demonstrated human MN to rat muscle synapse formation, although numerous studies have attempted to implant human stem cells into rat models to determine if they could be of therapeutic use in disease or spinal injury models, although with little evidence of neuromuscular junction (NMJ) formation. In this report, MNs differentiated from human spinal cord stem cells, together with rat skeletal myotubes, were used to build a coculture system to demonstrate that NMJ formation between human MNs and rat skeletal muscles is possible. The culture was characterized by morphology, immunocytochemistry, and electrophysiology, while NMJ formation was demonstrated by immunocytochemistry and videography. This defined system provides a highly controlled reproducible model for studying the formation, regulation, maintenance, and repair of NMJs. The in vitro coculture system developed here will be an important model system to study NMJ development, the physiological and functional mechanism of synaptic transmission, and NMJ- or synapse-related disorders such as amyotrophic lateral sclerosis, as well as for drug screening and therapy design.
Collapse
Affiliation(s)
- Xiufang Guo
- NanoScience Technology Center, University of Central Florida, Orlando, Florida
| | - Mainak Das
- NanoScience Technology Center, University of Central Florida, Orlando, Florida.,Biomolecular Science Center, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida
| | - John Rumsey
- NanoScience Technology Center, University of Central Florida, Orlando, Florida.,Biomolecular Science Center, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida
| | - Mercedes Gonzalez
- NanoScience Technology Center, University of Central Florida, Orlando, Florida.,Biomolecular Science Center, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida
| | - Maria Stancescu
- NanoScience Technology Center, University of Central Florida, Orlando, Florida
| | - James Hickman
- NanoScience Technology Center, University of Central Florida, Orlando, Florida.,Biomolecular Science Center, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida
| |
Collapse
|
36
|
Measurement of contractile stress generated by cultured rat muscle on silicon cantilevers for toxin detection and muscle performance enhancement. PLoS One 2010; 5:e11042. [PMID: 20548775 PMCID: PMC2883552 DOI: 10.1371/journal.pone.0011042] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 04/28/2010] [Indexed: 02/01/2023] Open
Abstract
Background To date, biological components have been incorporated into MEMS devices to create cell-based sensors and assays, motors and actuators, and pumps. Bio-MEMS technologies present a unique opportunity to study fundamental biological processes at a level unrealized with previous methods. The capability to miniaturize analytical systems enables researchers to perform multiple experiments in parallel and with a high degree of control over experimental variables for high-content screening applications. Methodology/Principal Findings We have demonstrated a biological microelectromechanical system (BioMEMS) based on silicon cantilevers and an AFM detection system for studying the physiology and kinetics of myotubes derived from embryonic rat skeletal muscle. It was shown that it is possible to interrogate and observe muscle behavior in real time, as well as selectively stimulate the contraction of myotubes with the device. Stress generation of the tissue was estimated using a modification of Stoney's equation. Calculated stress values were in excellent agreement with previously published results for cultured myotubes, but not adult skeletal muscle. Other parameters such as time to peak tension (TPT), the time to half relaxation (½RT) were compared to the literature. It was observed that the myotubes grown on the BioMEMS device, while generating stress magnitudes comparable to those previously published, exhibited slower TPT and ½RT values. However, growth in an enhanced media increased these values. From these data it was concluded that the myotubes cultured on the cantilevers were of an embryonic phenotype. The system was also shown to be responsive to the application of a toxin, veratridine. Conclusions/Significance The device demonstrated here will provide a useful foundation for studying various aspects of muscle physiology and behavior in a controlled high-throughput manner as well as be useful for biosensor and drug discovery applications.
Collapse
|
37
|
A defined long-term in vitro tissue engineered model of neuromuscular junctions. Biomaterials 2010; 31:4880-8. [PMID: 20346499 DOI: 10.1016/j.biomaterials.2010.02.055] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 02/21/2010] [Indexed: 01/08/2023]
Abstract
Neuromuscular junction (NMJ) formation, occurring between motoneurons and skeletal muscle, is a complex multistep process involving a variety of signaling molecules and pathways. In vitro motoneuron-muscle co-cultures are powerful tools to study the role of different growth factors, hormones and cellular structures involved in NMJ formation. In this study, a serum-free culture system utilizing defined temporal growth factor application and a non-biological substrate resulted in the formation of robust NMJs. The system resulted in long-term survival of the co-culture and selective expression of neonatal myosin heavy chain, a marker of myotube maturation. NMJ formation was verified by colocalization of dense clusters of acetylcholine receptors visualized using alpha-bungarotoxin and synaptophysin containing vesicles present in motoneuron axonal terminals. This model will find applications in basic NMJ research and tissue engineering applications such as bio-hybrid device development for limb prosthesis and regenerative medicine as well as for high-throughput drug and toxin screening applications.
Collapse
|