1
|
Wu Y, Wang L, Yan M, Wang X, Liao X, Zhong C, Ke D, Lu Y. Poly(3,4-Ethylenedioxythiophene)/Functional Gold Nanoparticle films for Improving the Electrode-Neural Interface. Adv Healthc Mater 2024; 13:e2400836. [PMID: 38757738 DOI: 10.1002/adhm.202400836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/07/2024] [Indexed: 05/18/2024]
Abstract
Implantable neural electrodes are indispensable tools for recording neuron activity, playing a crucial role in neuroscience research. However, traditional neural electrodes suffer from limited electrochemical performance, compromised biocompatibility, and tentative stability, posing great challenges for reliable long-term studies in free-moving animals. In this study, a novel approach employing a hybrid film composed of poly(3,4-ethylenedioxythiophene)/functional gold nanoparticles (PEDOT/3-MPA-Au) to improve the electrode-neural interface is presented. The deposited PEDOT/3-MPA-Au demonstrates superior cathodal charge storage capacity, reduced electrochemical impedance, and remarkable electrochemical and mechanical stability. Upon implantation into the cortex of mice for a duration of 12 weeks, the modified electrodes exhibit notably decreased levels of glial fibrillary acidic protein and increased neuronal nuclei immunostaining compared to counterparts utilizing poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate). Additionally, the PEDOT/3-MPA-Au modified electrodes consistently capture high-quality, stable long-term electrophysiological signals in vivo, enabling continuous recording of target neurons for up to 16 weeks. This innovative modification strategy offers a promising solution for fabricating low-impedance, tissue-friendly, and long-term stable neural interfaces, thereby addressing the shortcomings of conventional neural electrodes. These findings mark a significant advancement toward the development of more reliable and efficacious neural interfaces, with broad implications for both research and clinical applications.
Collapse
Affiliation(s)
- Yiyong Wu
- Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, 518055, China
| | - Lulu Wang
- Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, 518055, China
| | - Mengying Yan
- Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, 518055, China
| | - Xufang Wang
- Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, 518055, China
| | - Xin Liao
- Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, 518055, China
| | - Cheng Zhong
- Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, 518055, China
| | - Dingning Ke
- Experiment and Innovation Center, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Yi Lu
- Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, 518055, China
| |
Collapse
|
2
|
Duan W, Robles UA, Poole‐Warren L, Esrafilzadeh D. Bioelectronic Neural Interfaces: Improving Neuromodulation Through Organic Conductive Coatings. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306275. [PMID: 38115740 PMCID: PMC11251570 DOI: 10.1002/advs.202306275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/07/2023] [Indexed: 12/21/2023]
Abstract
Integration of bioelectronic devices in clinical practice is expanding rapidly, focusing on conditions ranging from sensory to neurological and mental health disorders. While platinum (Pt) electrodes in neuromodulation devices such as cochlear implants and deep brain stimulators have shown promising results, challenges still affect their long-term performance. Key among these are electrode and device longevity in vivo, and formation of encapsulating fibrous tissue. To overcome these challenges, organic conductors with unique chemical and physical properties are being explored. They hold great promise as coatings for neural interfaces, offering more rapid regulatory pathways and clinical implementation than standalone bioelectronics. This study provides a comprehensive review of the potential benefits of organic coatings in neuromodulation electrodes and the challenges that limit their effective integration into existing devices. It discusses issues related to metallic electrode use and introduces physical, electrical, and biological properties of organic coatings applied in neuromodulation. Furthermore, previously reported challenges related to organic coating stability, durability, manufacturing, and biocompatibility are thoroughly reviewed and proposed coating adhesion mechanisms are summarized. Understanding organic coating properties, modifications, and current challenges of organic coatings in clinical and industrial settings is expected to provide valuable insights for their future development and integration into organic bioelectronics.
Collapse
Affiliation(s)
- Wenlu Duan
- The Graduate School of Biomedical EngineeringUNSWSydneyNSW2052Australia
| | | | - Laura Poole‐Warren
- The Graduate School of Biomedical EngineeringUNSWSydneyNSW2052Australia
- Tyree Foundation Institute of Health EngineeringUNSWSydneyNSW2052Australia
| | | |
Collapse
|
3
|
Alex M, Khan KRB, Al-Othman A, Al-Sayah MH, Al Nashash H. MXene-Based Flexible Electrodes for Electrophysiological Monitoring. SENSORS (BASEL, SWITZERLAND) 2024; 24:3260. [PMID: 38894053 PMCID: PMC11174813 DOI: 10.3390/s24113260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024]
Abstract
The advancement of flexible electrodes triggered research on wearables and health monitoring applications. Metal-based bioelectrodes encounter low mechanical strength and skin discomfort at the electrode-skin interface. Thus, recent research has focused on the development of flexible surface electrodes with low electrochemical resistance and high conductivity. This study investigated the development of a novel, flexible, surface electrode based on a MXene/polydimethylsiloxane (PDMS)/glycerol composite. MXenes offer the benefit of featuring highly conductive transition metals with metallic properties, including a group of carbides, nitrides, and carbonitrides, while PDMS exhibits inherent biostability, flexibility, and biocompatibility. Among the various MXene-based electrode compositions prepared in this work, those composed of 15% and 20% MXene content were further evaluated for their potential in electrophysiological sensing applications. The samples underwent a range of characterization techniques, including electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), as well as mechanical and bio-signal sensing from the skin. The experimental findings indicated that the compositions demonstrated favorable bulk impedances of 280 and 111 Ω, along with conductivities of 0.462 and 1.533 mS/cm, respectively. Additionally, they displayed promising electrochemical stability, featuring charge storage densities of 0.665 mC/cm2 and 1.99 mC/cm2, respectively. By conducting mechanical tests, Young's moduli were determined to be 2.61 MPa and 2.18 MPa, respectively. The composite samples exhibited elongation of 139% and 144%, respectively. Thus, MXene-based bioelectrodes show promising potential for flexible and wearable electronics and bio-signal sensing applications.
Collapse
Affiliation(s)
- Meera Alex
- Biosciences and Bioengineering Graduate Program, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates; (M.A.); (K.R.B.K.)
| | - Kashif Rast Baz Khan
- Biosciences and Bioengineering Graduate Program, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates; (M.A.); (K.R.B.K.)
| | - Amani Al-Othman
- Department of Chemical and Biological Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Mohammad H. Al-Sayah
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Hasan Al Nashash
- Department of Electrical Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates;
| |
Collapse
|
4
|
Seiti M, Giuri A, Corcione CE, Ferraris E. Advancements in tailoring PEDOT: PSS properties for bioelectronic applications: A comprehensive review. BIOMATERIALS ADVANCES 2023; 154:213655. [PMID: 37866232 DOI: 10.1016/j.bioadv.2023.213655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/22/2023] [Accepted: 10/06/2023] [Indexed: 10/24/2023]
Abstract
In the field of bioelectronics, the demand for biocompatible, stable, and electroactive materials for functional biological interfaces, sensors, and stimulators, is drastically increasing. Conductive polymers (CPs) are synthetic materials, which are gaining increasing interest mainly due to their outstanding electrical, chemical, mechanical, and optical properties. Since its discovery in the late 1980s, the CP Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid) (PEDOT:PSS) has become extremely attractive, being considered as one of the most capable organic electrode materials for several bioelectronic applications in the field of tissue engineering and regenerative medicine. Main examples refer to thin, flexible films, electrodes, hydrogels, scaffolds, and biosensors. Within this context, the authors contend that PEDOT:PSS properties should be customized to encompass: i) biocompatibility, ii) conductivity, iii) stability in wet environment, iv) adhesion to the substrate, and, when necessary, v) (bio-)degradability. However, consolidating all these properties into a single functional solution is not always straightforward. Therefore, the objective of this review paper is to present various methods for acquiring and improving PEDOT:PSS properties, with the primary focus on ensuring its biocompatibility, and simultaneously addressing the other functional features. The last section highlights a collection of designated studies, with a particular emphasis on PEDOT:PSS/carbon filler composites due to their exceptional characteristics.
Collapse
Affiliation(s)
- Miriam Seiti
- Department of Mechanical Engineering, KU Leuven, KU Leuven Campus De Nayer, Jan De Nayerlaan 5, Sint-Katelijne-Waver 2860, Belgium
| | - Antonella Giuri
- CNR-NANOTEC-Istituto di Nanotecnologia, Polo di Nanotecnologia, c/o Campus Ecotekne, via Monteroni, I-73100 Lecce, Italy
| | | | - Eleonora Ferraris
- Department of Mechanical Engineering, KU Leuven, KU Leuven Campus De Nayer, Jan De Nayerlaan 5, Sint-Katelijne-Waver 2860, Belgium.
| |
Collapse
|
5
|
Yan M, Wang L, Wu Y, Liao X, Zhong C, Wang L, Lu Y. Conducting Polymer-Hydrogel Interpenetrating Networks for Improving the Electrode-Neural Interface. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41310-41323. [PMID: 37590473 DOI: 10.1021/acsami.3c07189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Implantable neural microelectrodes are recognized as a bridge for information exchange between inner organisms and outer devices. Combined with novel modulation technologies such as optogenetics, it offers a highly precise methodology for the dissection of brain functions. However, achieving chronically effective and stable microelectrodes to explore the electrophysiological characteristics of specific neurons in free-behaving animals continually poses great challenges. To resolve this, poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate)/poly(vinyl alcohol) (PEDOT/PSS/PVA) interpenetrating conducting polymer networks (ICPN) are fabricated via a hydrogel scaffold precoating and electrochemical polymerization process to improve the performance of neural microelectrodes. The ICPN films exhibit robust interfacial adhesion, a significantly lower electrochemical impedance, superior mechanical properties, and improved electrochemical stability compared to the pure poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate)(PEDOT/PSS) films, which may be attributed to the three-dimensional (3D) porous microstructure of the ICPN. Hippocampal neurons and rat pheochromocytoma cells (PC12 cells) adhesion on ICPN and neurite outgrowth are observed, indicating enhanced biocompatibility. Furthermore, alleviated tissue response at the electrode-neural tissue interface and improved recording signal quality are confirmed by histological and electrophysiological studies, respectively. Owing to these merits, optogenetic modulations and electrophysiological recordings are performed in vivo, and an anxiolytic effect of hippocampal glutamatergic neurons on behavior is shown. This study demonstrates the effectiveness and advantages of ICPN-modified neural implants for in vivo applications.
Collapse
Affiliation(s)
- Mengying Yan
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science, Shenzhen 518055, China
| | - Lulu Wang
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science, Shenzhen 518055, China
| | - Yiyong Wu
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science, Shenzhen 518055, China
| | - Xin Liao
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science, Shenzhen 518055, China
| | - Cheng Zhong
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science, Shenzhen 518055, China
| | - Liping Wang
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science, Shenzhen 518055, China
| | - Yi Lu
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science, Shenzhen 518055, China
| |
Collapse
|
6
|
Ziai Y, Zargarian SS, Rinoldi C, Nakielski P, Sola A, Lanzi M, Truong YB, Pierini F. Conducting polymer-based nanostructured materials for brain-machine interfaces. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1895. [PMID: 37141863 DOI: 10.1002/wnan.1895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/14/2023] [Accepted: 04/05/2023] [Indexed: 05/06/2023]
Abstract
As scientists discovered that raw neurological signals could translate into bioelectric information, brain-machine interfaces (BMI) for experimental and clinical studies have experienced massive growth. Developing suitable materials for bioelectronic devices to be used for real-time recording and data digitalizing has three important necessitates which should be covered. Biocompatibility, electrical conductivity, and having mechanical properties similar to soft brain tissue to decrease mechanical mismatch should be adopted for all materials. In this review, inorganic nanoparticles and intrinsically conducting polymers are discussed to impart electrical conductivity to systems, where soft materials such as hydrogels can offer reliable mechanical properties and a biocompatible substrate. Interpenetrating hydrogel networks offer more mechanical stability and provide a path for incorporating polymers with desired properties into one strong network. Promising fabrication methods, like electrospinning and additive manufacturing, allow scientists to customize designs for each application and reach the maximum potential for the system. In the near future, it is desired to fabricate biohybrid conducting polymer-based interfaces loaded with cells, giving the opportunity for simultaneous stimulation and regeneration. Developing multi-modal BMIs, Using artificial intelligence and machine learning to design advanced materials are among the future goals for this field. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease.
Collapse
Affiliation(s)
- Yasamin Ziai
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Seyed Shahrooz Zargarian
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Chiara Rinoldi
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Paweł Nakielski
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Antonella Sola
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Manufacturing Business Unit, Clayton, Victoria, Australia
| | - Massimiliano Lanzi
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Bologna, Italy
| | - Yen Bach Truong
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Manufacturing Business Unit, Clayton, Victoria, Australia
| | - Filippo Pierini
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
7
|
Ali AA, Al-Sayah MH, Al-Othman A, Al-Nashash H. A Flexible Conductive Electrode Using Boronic-Acid Modified Carbon Dots. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-6. [PMID: 38082587 DOI: 10.1109/embc40787.2023.10341162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Flexible electrodes are becoming a topic of interest for a range of applications including implantation. They can be used for neural signal recording and for electrical stimulation of atrophying muscles. Unlike the traditionally used metal electrodes that are harsh to the body's tissues, flexible electrodes conduct electricity while preserving the delicate tissues. Polydimethylsiloxane (PDMS), a non-conductive synthetic polymer characterized by its flexibility, low cost, biocompatibility, and durability during implantation, has been explored as a matrix for flexible electrodes. This study reports the synthesis of composite boronic acid-modified carbon dots (BA-CDs)/PDMS electrode materials. The performance of the composite electrode is evaluated electrochemically (for its conductivity and charge storage capacity) and mechanically (Young's modulus). Furthermore, the effect of increasing the PDMS crosslinking density on the electrode's performance is studied based on the hypothesis that a higher crosslinking will bring the BA-CDs closer together, thereby facilitating the movement of electrons. Results of this study showed that incorporating 10% BA-CDs dispersed with 16% glycerol in 74% PDMS with a higher crosslinking density resulted in a bulk impedance of 47.7 Ω and a conductivity of 2.68×10-3 S/cm, both of which surpassed that of the same composition with lower crosslinking. The synthesized flexible electrode material was capable of charge storage although the charge storage capacity (0.00365 mC/cm2) was lower than the safe limit for some tissue activation. Furthermore, the electrode maintained a modulus of elasticity (0.2322 MPa) that is compatible with biological soft tissues.Clinical Relevance- This study reports a conductive electrode that has a flexibility compatible with that of biological tissues for future purposes such as neural signal recording and tissue electrical stimulation (e.g. atrophying muscles). The reported BA-CD/PDMS electrode overcomes the limitations of the harsh metals previously used as implantable electrodes that harm the biological tissues due to their high rigidity.
Collapse
|
8
|
Yan M, Wang L, Wu Y, Wang L, Lu Y. Three-dimensional highly porous hydrogel scaffold for neural circuit dissection and modulation. Acta Biomater 2023; 157:252-262. [PMID: 36521677 DOI: 10.1016/j.actbio.2022.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Biomimetic brain structures and artificial neural networks have provided a simplified strategy for quantitatively investigating the complex structural and functional characteristics of highly interconnected neural networks. To achieve this, three-dimensional (3D) cell culture approaches have attracted much attention, which can mimic cell-cell interactions at the organism level and help better understand the function of specific neurons and neuronal networks than traditional two-dimensional cell culture methods. However, 3D scaffolds similar to the natural extracellular matrix to support the culturing, recording, and manipulation of neurons have long been an unresolved challenge. To resolve this, 3D hydrogel scaffolds can be fabricated via an innovative thermal treatment followed by an esterification process. A highly porous microstructure was formed within the bulk hydrogel scaffold, which showed a high porosity of 91% and a low Young's modulus of 6.11 kPa. Due to the merits of the fabricated hydrogel scaffolds, we constructed 3D neural networks and detected spontaneous action potentials in vitro. We successfully induced seizure-like waveforms in 3D cultured neurons and suppressed hyperactivated discharges by selectively activating γ-aminobutyric acid-ergic (GABAergic) interneurons. These results prove the advantages of our hydrogel scaffolds and demonstrate their application potential in the accurate dissection of neural circuits, which may help develop effective treatments for various neurological disorders. STATEMENT OF SIGNIFICANCE: While 3D cell culture approaches have attracted much attention and offer more advantages than two-dimensional cell culture methods, 3D scaffolds similar to the natural extracellular matrix to support the culturing, recording, and manipulation of neurons have long been an unresolved challenge. Herein, we developed a simplified and low-cost strategy for fabricating highly porous and cytocompatible hydrogel scaffolds for the construction of three-dimensional (3D) neural networks in vitro. The cultured 3D neural networks can mimic the in vivo connection among different neuron subgroups and help accurately dissect and manipulate the structure and function of specific neural circuits.
Collapse
Affiliation(s)
- Mengying Yan
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Lulu Wang
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Yiyong Wu
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Liping Wang
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China.
| | - Yi Lu
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China.
| |
Collapse
|
9
|
Self-Healing, Flexible and Smart 3D Hydrogel Electrolytes Based on Alginate/PEDOT:PSS for Supercapacitor Applications. Polymers (Basel) 2023; 15:polym15030571. [PMID: 36771872 PMCID: PMC9918896 DOI: 10.3390/polym15030571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Hydrogel electrolytes for energy storage devices have made great progress, yet they present a major challenge in the assembly of flexible supercapacitors with high ionic conductivity and self-healing properties. Herein, a smart self-healing hydrogel electrolyte based on alginate/poly (3,4-ethylenedioxythiophene):poly(styrenesulfonate) (alginate/PEDOT:PSS)(A/P:P) was prepared, wherein H2SO4 was employed as a polymeric initiator, as well as a source of ions. PEDOT:PSS is a semi-interpenetrating network (IPN) that has been used in recent studies to exhibit quick self-healing properties with the H₂SO₃ additive, which further improves its mechanical strength and self-healing performance. A moderate amount of PEDOT:PSS in the hydrogel (5 mL) was found to significantly improve the ionic conductivity compared to the pure hydrogel of alginate. Interestingly, the alginate/PEDOT:PSS composite hydrogel exhibited an excellent ability to self-heal and repair its original composition within 10 min of cutting. Furthermore, the graphite conductive substrate-based supercapacitor with the alginate/PEDOT:PSS hydrogel electrolyte provided a high specific capacitance of 356 F g-1 at 100 mV/s g-1. The results demonstrate that the A/P:P ratio with 5 mL PEDOT:PSS had a base sheet resistance of 0.9 Ω/square. This work provides a new strategy for designing flexible self-healing hydrogels for application in smart wearable electronics.
Collapse
|
10
|
Benny Mattam L, Bijoy A, Abraham Thadathil D, George L, Varghese A. Conducting Polymers: A Versatile Material for Biomedical Applications. ChemistrySelect 2022. [DOI: 10.1002/slct.202201765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Liya Benny Mattam
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road, Bengaluru Karnataka 560029 India
| | - Anusha Bijoy
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road, Bengaluru Karnataka 560029 India
| | - Ditto Abraham Thadathil
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road, Bengaluru Karnataka 560029 India
| | - Louis George
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road, Bengaluru Karnataka 560029 India
| | - Anitha Varghese
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road, Bengaluru Karnataka 560029 India
| |
Collapse
|
11
|
Influence of the Nature and Structure of Polyelectrolyte Cryogels on the Polymerization of (3,4-Ethylenedioxythiophene) and Spectroscopic Characterization of the Composites. Molecules 2022; 27:molecules27217576. [DOI: 10.3390/molecules27217576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
Abstract
Conductive hydrogels are polymeric materials that are promising for bioelectronic applications. In the present study, a complex based on sulfonic cryogels and poly(3,4-ethylenedioxythiophene) (PEDOT) was investigated as an example of a conductive hydrogel. Preparation of polyacrylate cryogels of various morphologies was carried out by cryotropic gelation of 3-sulfopropyl methacrylate and sulfobetaine methacrylate in the presence of functional comonomers (2-hydroxyethyl methacrylate and vinyl acetate). Polymerization of 3,4-ethylenedioxythiophene in the presence of several of the above cryogels occurred throughout the entire volume of each polyelectrolyte cryogel because of its porous structure. Structural features of cryogel@PEDOT complexes in relation to their electrochemical properties were investigated. It was shown that poly(3,4-ethylenedioxythiophene) of a linear conformation was formed in the presence of a cryogel based on sulfobetaine methacrylate, while minimum values of charge-transfer resistance were observed in those complexes, and electrochemical properties of the complexes did not depend on diffusion processes.
Collapse
|
12
|
Wang J, Li Q, Li K, Sun X, Wang Y, Zhuang T, Yan J, Wang H. Ultra-High Electrical Conductivity in Filler-Free Polymeric Hydrogels Toward Thermoelectrics and Electromagnetic Interference Shielding. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109904. [PMID: 35064696 DOI: 10.1002/adma.202109904] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Conducting hydrogels have attracted much attention for the emerging field of hydrogel bioelectronics, especially poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) (PEDOT:PSS) based hydrogels, because of their great biocompatibility and stability. However, the electrical conductivities of hydrogels are often lower than 1 S cm-1 which are not suitable for digital circuits or applications in bioelectronics. Introducing conductive inorganic fillers into the hydrogels can improve their electrical conductivities. However, it may lead to compromises in compliance, biocompatibility, deformability, biodegradability, etc. Herein, a series of highly conductive ionic liquid (IL) doped PEDOT:PSS hydrogels without any conductive fillers is reported. These hydrogels exhibit high conductivities up to ≈305 S cm-1 , which is ≈8 times higher than the record of polymeric hydrogels without conductive fillers in literature. The high electrical conductivity results in enhanced areal thermoelectric output power for hydrogel-based thermoelectric devices, and high specific electromagnetic interference (EMI) shielding efficiency which is about an order in magnitude higher than that of state-of-the-art conductive hydrogels in literature. Furthermore, these stretchable (strain >30%) hydrogels exhibit fast self-healing, and shape/size-tunable properties, which are desirable for hydrogel bioelectronics and wearable organic devices. The results indicate that these highly conductive hydrogels are promising in applications such as sensing, thermoelectrics, EMI shielding, etc.
Collapse
Affiliation(s)
- Jing Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Qing Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Kuncai Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Xu Sun
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Yizhuo Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Tiantian Zhuang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Junjie Yan
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710054, China
- School of energy and power engineering, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Hong Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710054, China
- School of energy and power engineering, Xi'an Jiaotong University, Xi'an, 710054, China
- Zhejiang YunFeng New Materials Technology Co., Ltd, No. 755 Hongji Street, Jinghua Zhejiang, 321015, China
| |
Collapse
|
13
|
Sun C, Cao Y, Huang J, Huang K, Lu Y, Zhong C. Low-cost and easy-fabrication lightweight drivable electrode array for multiple-regions electrophysiological recording in free-moving mice. J Neural Eng 2022; 19. [PMID: 34996053 DOI: 10.1088/1741-2552/ac494e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 01/07/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Extracellular electrophysiology has been widely applied to neural circuit dissections. However, long-term multiregional recording in free-moving mice remains a challenge. Low-cost and easy-fabrication of elaborate drivable electrodes is required for their prevalence. APPROACH A three-layer nested construct (OD ~1.80 mm, length ~10 mm, <0.1g) was recruited as a drivable component, which consisted of an ethylene-vinyl acetate copolymer (EVA) heat-shrinkable tube, non-closed loop ceramic bushing, and stainless ferrule with a bulge twining silver wire. The supporting and working components were equipped with drivable components to be assembled into a drivable microwire electrode array with a nested structure (drivable MEANS). Two drivable microwire electrode arrays were independently implanted for chronic recording in different brain areas at respective angles. An optic fiber was easily loaded into the drivable MEANS to achieve optogenetic modulation and electrophysiological recording simultaneously. MAIN RESULTS The drivable MEANS had lightweight (~ 0.37 g), small (~ 15 mm ×15 mm × 4 mm), and low cost (≤ $64.62). Two drivable MEANS were simultaneously implanted in mice, and high-quality electrophysiological recordings could be applied ≥ 5 months after implantation in freely behaving animals. Electrophysiological recordings and analysis of the lateral septum (LS) and lateral hypothalamus (LH) in food-seeking behavior demonstrated that our drivable MEANS can be used to dissect the function of neural circuits. An optical fiber-integrated drivable MEANS (~ 0.47 g) was used to stimulate and record LS neurons, which suggested that changes in working components can achieve more functions than electrophysiological recordings, such as optical stimulation, drug release, and calcium imaging. SIGNIFICANCE Drivable MEANS is an easily fabricated, lightweight drivable microwire electrode array for multiple-region electrophysiological recording in free-moving mice. Our design is likely to be a valuable platform for both current and prospective users, as well as for developers of multifunctional electrodes for free-moving mice.
Collapse
Affiliation(s)
- Chongyang Sun
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences, 1068 Xueyuan Boulevard, University Town of Shenzhen, Xili Nanshan, Shenzhen, Guangdong, 518055, CHINA
| | - Yi Cao
- University of Science and Technology of China, No.96, JinZhai Road Baohe District, Hefei, Anhui, 230026, CHINA
| | - Jianyu Huang
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences, 1068 Xueyuan Boulevard, University Town of Shenzhen, Xili Nanshan, Shenzhen, Guangdong, 518055, CHINA
| | - Kang Huang
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences, 1068 Xueyuan Boulevard, University Town of Shenzhen, Xili Nanshan, Shenzhen, Guangdong, 518055, CHINA
| | - Yi Lu
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences, 1068 Xueyuan Boulevard, University Town of Shenzhen, Xili Nanshan, Shenzhen, Guangdong, 518055, CHINA
| | - Cheng Zhong
- Chinese Academy of Sciences, 1068 Xueyuan Boulevard, University Town of Shenzhen, Xili Nanshan, Beijing, 100864, CHINA
| |
Collapse
|
14
|
Subdural neural interfaces for long-term electrical recording, optical microscopy and magnetic resonance imaging. Biomaterials 2021; 281:121352. [PMID: 34995902 DOI: 10.1016/j.biomaterials.2021.121352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 01/23/2023]
Abstract
Though commonly used, metal electrodes are incompatible with brain tissues, often leading to injury and failure to achieve long-term implantation. Here we report a subdural neural interface of hydrogel functioning as an ionic conductor, and elastomer as a dielectric. We demonstrate that it incurs a far less glial reaction and less cerebrovascular destruction than a metal electrode. Using a cat model, the hydrogel electrode was able to record electrical signals comparably in quality to a metal electrode. The hydrogel-elastomer neural interface also readily facilitated multimodal functions. Both the hydrogel and elastomer are transparent, enabling in vivo optical microscopy. For imaging, cerebral vessels and calcium signals were imaged using two-photon microscopy. The new electrode is compatible with magnetic resonance imaging and does not cause artifact images. Such a new multimodal neural interface could represent immediate opportunity for use in broad areas of application in neuroscience research and clinical neurology.
Collapse
|
15
|
Pitsalidis C, Pappa AM, Boys AJ, Fu Y, Moysidou CM, van Niekerk D, Saez J, Savva A, Iandolo D, Owens RM. Organic Bioelectronics for In Vitro Systems. Chem Rev 2021; 122:4700-4790. [PMID: 34910876 DOI: 10.1021/acs.chemrev.1c00539] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bioelectronics have made strides in improving clinical diagnostics and precision medicine. The potential of bioelectronics for bidirectional interfacing with biology through continuous, label-free monitoring on one side and precise control of biological activity on the other has extended their application scope to in vitro systems. The advent of microfluidics and the considerable advances in reliability and complexity of in vitro models promise to eventually significantly reduce or replace animal studies, currently the gold standard in drug discovery and toxicology testing. Bioelectronics are anticipated to play a major role in this transition offering a much needed technology to push forward the drug discovery paradigm. Organic electronic materials, notably conjugated polymers, having demonstrated technological maturity in fields such as solar cells and light emitting diodes given their outstanding characteristics and versatility in processing, are the obvious route forward for bioelectronics due to their biomimetic nature, among other merits. This review highlights the advances in conjugated polymers for interfacing with biological tissue in vitro, aiming ultimately to develop next generation in vitro systems. We showcase in vitro interfacing across multiple length scales, involving biological models of varying complexity, from cell components to complex 3D cell cultures. The state of the art, the possibilities, and the challenges of conjugated polymers toward clinical translation of in vitro systems are also discussed throughout.
Collapse
Affiliation(s)
- Charalampos Pitsalidis
- Department of Physics, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi 127788, UAE.,Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Anna-Maria Pappa
- Department of Biomedical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi 127788, UAE
| | - Alexander J Boys
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Ying Fu
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.,Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow G1 1RD, U.K
| | - Chrysanthi-Maria Moysidou
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Douglas van Niekerk
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Janire Saez
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.,Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Avenida Miguel de Unamuno, 3, 01006 Vitoria-Gasteiz, Spain.,Ikerbasque, Basque Foundation for Science, E-48011 Bilbao, Spain
| | - Achilleas Savva
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Donata Iandolo
- INSERM, U1059 Sainbiose, Université Jean Monnet, Mines Saint-Étienne, Université de Lyon, 42023 Saint-Étienne, France
| | - Róisín M Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| |
Collapse
|
16
|
Cao Y, Pan S, Yan M, Sun C, Huang J, Zhong C, Wang L, Yi L. Flexible and stretchable polymer optical fibers for chronic brain and vagus nerve optogenetic stimulations in free-behaving animals. BMC Biol 2021; 19:252. [PMID: 34819062 PMCID: PMC8611887 DOI: 10.1186/s12915-021-01187-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 11/08/2021] [Indexed: 12/20/2022] Open
Abstract
Background Although electrical stimulation of the peripheral and central nervous systems has attracted much attention owing to its potential therapeutic effects on neuropsychiatric diseases, its non-cell-type-specific activation characteristics may hinder its wide clinical application. Unlike electrical methodologies, optogenetics has more recently been applied as a cell-specific approach for precise modulation of neural functions in vivo, for instance on the vagus nerve. The commonly used implantable optical waveguides are silica optical fibers, which for brain optogenetic stimulation (BOS) are usually fixed on the skull bone. However, due to the huge mismatch of mechanical properties between the stiff optical implants and deformable vagal tissues, vagus nerve optogenetic stimulation (VNOS) in free-behaving animals continues to be a great challenge. Results To resolve this issue, we developed a simplified method for the fabrication of flexible and stretchable polymer optical fibers (POFs), which show significantly improved characteristics for in vivo optogenetic applications, specifically a low Young’s modulus, high stretchability, improved biocompatibility, and long-term stability. We implanted the POFs into the primary motor cortex of C57 mice after the expression of CaMKIIα-ChR2-mCherry detected frequency-dependent neuronal activity and the behavioral changes during light delivery. The viability of POFs as implantable waveguides for VNOS was verified by the increased firing rate of the fast-spiking GABAergic interneurons recorded in the left vagus nerve of VGAT-ChR2 transgenic mice. Furthermore, VNOS was carried out in free-moving rodents via chronically implanted POFs, and an inhibitory influence on the cardiac system and an anxiolytic effect on behaviors was shown. Conclusion Our results demonstrate the feasibility and advantages of the use of POFs in chronic optogenetic modulations in both of the central and peripheral nervous systems, providing new information for the development of novel therapeutic strategies for the treatment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Yi Cao
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.,Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Suwan Pan
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.,Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Mengying Yan
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Chongyang Sun
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Jianyu Huang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Cheng Zhong
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| | - Liping Wang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| | - Lu Yi
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| |
Collapse
|
17
|
Delbecq F, Kondo T, Sugai S, Bodelet M, Mathon A, Paris J, Sirkia L, Lefebvre C, Jeux V. A study for the production of a polysaccharide based hydrogel ink composites as binder for modification of carbon paper electrodes covered with PEDOT:PSS. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Spatially expandable fiber-based probes as a multifunctional deep brain interface. Nat Commun 2020; 11:6115. [PMID: 33257708 PMCID: PMC7704647 DOI: 10.1038/s41467-020-19946-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 10/29/2020] [Indexed: 11/28/2022] Open
Abstract
Understanding the cytoarchitecture and wiring of the brain requires improved methods to record and stimulate large groups of neurons with cellular specificity. This requires miniaturized neural interfaces that integrate into brain tissue without altering its properties. Existing neural interface technologies have been shown to provide high-resolution electrophysiological recording with high signal-to-noise ratio. However, with single implantation, the physical properties of these devices limit their access to one, small brain region. To overcome this limitation, we developed a platform that provides three-dimensional coverage of brain tissue through multisite multifunctional fiber-based neural probes guided in a helical scaffold. Chronic recordings from the spatially expandable fiber probes demonstrate the ability of these fiber probes capturing brain activities with a single-unit resolution for long observation times. Furthermore, using Thy1-ChR2-YFP mice we demonstrate the application of our probes in simultaneous recording and optical/chemical modulation of brain activities across distant regions. Similarly, varying electrographic brain activities from different brain regions were detected by our customizable probes in a mouse model of epilepsy, suggesting the potential of using these probes for the investigation of brain disorders such as epilepsy. Ultimately, this technique enables three-dimensional manipulation and mapping of brain activities across distant regions in the deep brain with minimal tissue damage, which can bring new insights for deciphering complex brain functions and dynamics in the near future. Existing neural interfaces are limited in accessing one, small brain region. Here, the authors introduce a scaffold with helix hollow channels, which direct multisite multifunctional fibre probes into the brain at different angles, allowing for simultaneous recording and stimulation across distant regions.
Collapse
|
19
|
Chen H, Wang L, Lu Y, Du X. Bioinspired microcone-array-based living biointerfaces: enhancing the anti-inflammatory effect and neuronal network formation. MICROSYSTEMS & NANOENGINEERING 2020; 6:58. [PMID: 34567669 PMCID: PMC8433467 DOI: 10.1038/s41378-020-0172-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/29/2020] [Accepted: 03/29/2020] [Indexed: 06/11/2023]
Abstract
Implantable neural interfaces and systems have attracted much attention due to their broad applications in treating diverse neuropsychiatric disorders. However, obtaining a long-term reliable implant-neural interface is extremely important but remains an urgent challenge due to the resulting acute inflammatory responses. Here, bioinspired microcone-array-based (MA) interfaces have been successfully designed, and their cytocompatibility with neurons and the inflammatory response have been explored. Compared with smooth control samples, MA structures cultured with neuronal cells result in much denser extending neurites, which behave similar to creepers, wrapping tightly around the microcones to form complex and interconnected neuronal networks. After further implantation in mouse brains for 6 weeks, the MA probes (MAPs) significantly reduced glial encapsulation and neuron loss around the implants, suggesting better neuron viability at the implant-neural interfaces than that of smooth probes. This bioinspired strategy for both enhanced glial resistance and neuron network formation via a specific structural design could be a platform technology that not only opens up avenues for next-generation artificial neural networks and brain-machine interfaces but also provides universal approaches to biomedical therapeutics.
Collapse
Grants
- This work was supported by National Key R&D Program of China (2017YFA0701303), National Natural Science Foundation of China (21404116, 31871080), the Youth Innovation Promotion Association of CAS, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, the Special Support Project for Outstanding Young Scholars of Guangdong Province (2015TQ01R292), Guangdong-Hong Kong Technology Cooperation Funding (2017A050506040), Shenzhen Science and Technology Innovation Committee (JCYJ20180507182051636, KQJSCX20180330170232019, JCYJ20150316144521974), and Shenzhen Peacock Plan (KQTD20170810160424889).
Collapse
Affiliation(s)
- Hongxu Chen
- Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518055 China
| | - Lulu Wang
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055 China
| | - Yi Lu
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055 China
| | - Xuemin Du
- Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518055 China
| |
Collapse
|
20
|
Walz AL, Liebl L, Schmitt K, Scharfer P, Schabel W. Commentary regarding: "Activity determination of FAD-dependent glucose dehydrogenase immobilized in PEDOT: PSS-PVA composite films for biosensor applications". Eng Life Sci 2020; 19:741-748. [PMID: 32624967 DOI: 10.1002/elsc.201900114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/03/2019] [Accepted: 08/14/2019] [Indexed: 11/09/2022] Open
Abstract
In the light of continuous improvement and optimization, recent experiments that the authors conducted give new insights into the applied evaluation method of Riegel et al. [1]: Thorough investigations of the previous results regarding the usage of the Lowry Assay showed discrepancies in the determination of the released amount of protein in the analysis solution. The accurate quantification of this parameter is crucial as it directly influences the calculation of the residual enzymatic activity. In concrete terms, this finding has a major impact on the presented and discussed results in the article "Activity determination of FAD-dependent glucose dehydrogenase immobilized in PEDOT: PSS-PVA composite films for biosensor applications" [1]. Thus, this commentary addresses the new insights concerning the applied evaluation method, explains necessary revisions and discusses new conclusions derived from the adjusted evaluation method.
Collapse
Affiliation(s)
- Anna-Lena Walz
- Institute of Thermal Process Engineering Thin Film Technology Karlsruhe Institute of Technology Karlsruhe Germany
| | - Lana Liebl
- Institute of Thermal Process Engineering Thin Film Technology Karlsruhe Institute of Technology Karlsruhe Germany
| | - Katrin Schmitt
- Institute of Thermal Process Engineering Thin Film Technology Karlsruhe Institute of Technology Karlsruhe Germany
| | - Philip Scharfer
- Institute of Thermal Process Engineering Thin Film Technology Karlsruhe Institute of Technology Karlsruhe Germany
| | - Wilhelm Schabel
- Institute of Thermal Process Engineering Thin Film Technology Karlsruhe Institute of Technology Karlsruhe Germany
| |
Collapse
|
21
|
Kim J, Jang JG, Kwak J, Hong JI, Kim SH. Enhanced Humid Reliability of Organic Thermoelectrics via Crosslinking with Glycerol. NANOMATERIALS 2019; 9:nano9111591. [PMID: 31717591 PMCID: PMC6915656 DOI: 10.3390/nano9111591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/02/2019] [Accepted: 11/07/2019] [Indexed: 11/16/2022]
Abstract
Poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) has shown significant achievements in organic thermoelectrics (TEs) as an alternative for inorganic counterparts. However, PEDOT:PSS films have limited practical applications because their performance is sensitive to humidity. Crosslinking additives are utilized to improve the reliability of PEDOT:PSS film through enhancing hydrophobicity; among these, polyethylene glycol (PEG) is a widely-used additive. However, ether groups in PEG induce water molecules in the film through the hydrogen bond, which deteriorates the TE reliability. Here, we enhance the TE reliability of the PEDOT:PSS film using glycerol as an additive through the crosslinking reaction between the hydroxyl group in glycerol and the sulfonic acid in PEDOT:PSS. The TE reliability (1/Power factor (PF)) of PEG solution-treated PEDOT:PSS film (PEG solution-treated film) was 57% of its initial absolute value (0 h), after 288 h (two weeks) in a humid environment (95% relative humidity, 27 °C temperature). On the other hand, the glycerol solution-treated PEDOT:PSS film (glycerol solution-treated film) exhibited superior TE reliability and preserved 75% of its initial 1/PF. Furthermore, glycerol vapor treatment enabled the film to have stronger TE humid reliability, maintaining 82% of its initial 1/PF, with the same condition. This enhancement is attributed to the increased hydrophobicity and lower oxygen content of the glycerol vapor-treated PEDOT:PSS film (glycerol vapor-treated film), which provides little change in the chemical composition of PEDOT:PSS.
Collapse
Affiliation(s)
- Jaeyun Kim
- School of Electrical and Computer Engineering, University of Seoul, Seoul 02504, Korea;
| | - Jae Gyu Jang
- Department of Chemistry, Seoul National University, Seoul 08826, Korea;
| | - Jeonghun Kwak
- Department of Electrical and Computer Engineering, Inter-university Semiconductor Research Center, Seoul National University, Seoul 08826, Korea
- Correspondence: (J.K.); (J.-I.H.); (S.H.K.); Tel.: +82-02-880-1782 (J.K.); +82-02-874-5902 (J.-I.H.); +82-063-850-6393 (S.H.K.)
| | - Jong-In Hong
- Department of Chemistry, Seoul National University, Seoul 08826, Korea;
- Correspondence: (J.K.); (J.-I.H.); (S.H.K.); Tel.: +82-02-880-1782 (J.K.); +82-02-874-5902 (J.-I.H.); +82-063-850-6393 (S.H.K.)
| | - Sung Hyun Kim
- Department of Carbon Convergence Engineering, Wonkwang Univeristy, Iksan 54538, Korea
- Correspondence: (J.K.); (J.-I.H.); (S.H.K.); Tel.: +82-02-880-1782 (J.K.); +82-02-874-5902 (J.-I.H.); +82-063-850-6393 (S.H.K.)
| |
Collapse
|
22
|
Tunali-Akbay T, Kahraman MV, Oktay B, İpekci H, Kayaman-Apohan N. Development of nanofiber based immunosorbent surface for the removal of fluoxetine from breast milk. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2018.1525539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Tuğba Tunali-Akbay
- Faculty of Dentistry, Department of Basic Medical Sciences, Marmara University, Istanbul, Turkey
| | - Memet Vezir Kahraman
- Faculty of Art and Science, Department of Chemistry, Marmara University, Istanbul, Turkey
| | - Burcu Oktay
- Faculty of Art and Science, Department of Chemistry, Marmara University, Istanbul, Turkey
| | - Hazal İpekci
- Faculty of Dentistry, Department of Basic Medical Sciences, Marmara University, Istanbul, Turkey
| | - Nilhan Kayaman-Apohan
- Faculty of Art and Science, Department of Chemistry, Marmara University, Istanbul, Turkey
| |
Collapse
|
23
|
3D culture of neural stem cells within conductive PEDOT layer-assembled chitosan/gelatin scaffolds for neural tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:890-901. [DOI: 10.1016/j.msec.2018.08.054] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 07/05/2018] [Accepted: 08/27/2018] [Indexed: 11/22/2022]
|
24
|
Wang L, Huang K, Zhong C, Wang L, Lu Y. Fabrication and modification of implantable optrode arrays for in vivo optogenetic applications. BIOPHYSICS REPORTS 2018; 4:82-93. [PMID: 29756008 PMCID: PMC5937899 DOI: 10.1007/s41048-018-0052-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 03/20/2018] [Indexed: 01/18/2023] Open
Abstract
Graphical Abstract ![]()
Abstract Recent advances in optogenetics have established a precisely timed and cell-specific methodology for understanding the functions of brain circuits and the mechanisms underlying neuropsychiatric disorders. However, the fabrication of optrodes, a key functional element in optogenetics, remains a great challenge. Here, we report reliable and efficient fabrication strategies for chronically implantable optrode arrays. To improve the performance of the fabricated optrode arrays, surfaces of the recording sites were modified using optimized electrochemical processes. We have also demonstrated the feasibility of using the fabricated optrode arrays to detect seizures in multiple brain regions and inhibit ictal propagation in vivo. Furthermore, the results of the histology study imply that the electrodeposition of composite conducting polymers notably alleviated the inflammatory response and improved neuronal survival at the implant/neural-tissue interface. In summary, we provide reliable and efficient strategies for the fabrication and modification of customized optrode arrays that can fulfill the requirements of in vivo optogenetic applications.
Collapse
Affiliation(s)
- Lulu Wang
- 1Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, CAS Center for Excellence in Brain Science and Intelligence Technology, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China.,Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, 518055 China
| | - Kang Huang
- 1Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, CAS Center for Excellence in Brain Science and Intelligence Technology, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China.,Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, 518055 China
| | - Cheng Zhong
- 1Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, CAS Center for Excellence in Brain Science and Intelligence Technology, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
| | - Liping Wang
- 1Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, CAS Center for Excellence in Brain Science and Intelligence Technology, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
| | - Yi Lu
- 1Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, CAS Center for Excellence in Brain Science and Intelligence Technology, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
| |
Collapse
|
25
|
Du ZJ, Bi GQ, Cui XT. Electrically Controlled Neurochemical Release from Dual-Layer Conducting Polymer Films for Precise Modulation of Neural Network Activity in Rat Barrel Cortex. ADVANCED FUNCTIONAL MATERIALS 2018; 28:1703988. [PMID: 30467460 PMCID: PMC6242295 DOI: 10.1002/adfm.201703988] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Implantable microelectrode arrays (MEAs) are important tools for investigating functional neural circuits and treating neurological diseases. Precise modulation of neural activity may be achieved by controlled delivery of neurochemicals directly from coatings on MEA electrode sites. In this study, a novel dual-layer conductive polymer/acid functionalized carbon nanotube (fCNT) microelectrode coating is developed to better facilitate the loading and controlled delivery of the neurochemical 6,7-dinitroquinoxaline-2,3-dione (DNQX). The base layer coating is consisted of poly(3,4-ethylenedioxythiophene/fCNT and the top layer is consisted of polypyrrole/fCNT/DNQX. The dual-layer coating is capable of both loading and electrically releasing DNQX and the release dynamic is characterized with fluorescence microscopy and mathematical modeling. In vivo DNQX release is demonstrated in rat somatosensory cortex. Sensory-evoked neural activity is immediately (<1s) and locally (<446 µm) suppressed by electrically triggered DNQX release. Furthermore, a single DNQX-loaded, dual-layer coating is capable of inducing effective neural inhibition for at least 26 times without observable degradation in efficacy. Incorporation of the novel drug releasing coating onto individual MEA electrodes offers many advantages over alternative methods by increasing spatial-temporal precision and improving drug selection flexibility without increasing the device's size.
Collapse
Affiliation(s)
- Zhanhong Jeff Du
- Department of Bioengineering, University of Pittsburgh, 5057 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Guo-Qiang Bi
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Brain Science and Intelligence, Technology and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, 5057 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| |
Collapse
|
26
|
Tang LJ, Wang MH, Tian HC, Kang XY, Hong W, Liu JQ. Progress in Research of Flexible MEMS Microelectrodes for Neural Interface. MICROMACHINES 2017; 8:E281. [PMID: 30400473 PMCID: PMC6190450 DOI: 10.3390/mi8090281] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/20/2017] [Accepted: 06/29/2017] [Indexed: 12/29/2022]
Abstract
With the rapid development of Micro-electro-mechanical Systems (MEMS) fabrication technologies, many microelectrodes with various structures and functions have been designed and fabricated for applications in biomedical research, diagnosis and treatment through electrical stimulation and electrophysiological signal recording. The flexible MEMS microelectrodes exhibit excellent characteristics in many aspects beyond stiff microelectrodes based on silicon or metal, including: lighter weight, smaller volume, better conforming to neural tissue and lower fabrication cost. In this paper, we reviewed the key technologies in flexible MEMS microelectrodes for neural interface in recent years, including: design and fabrication technology, flexible MEMS microelectrodes with fluidic channels and electrode⁻tissue interface modification technology for performance improvement. Furthermore, the future directions of flexible MEMS microelectrodes for neural interface were described, including transparent and stretchable microelectrodes integrated with multi-functional aspects and next-generation electrode⁻tissue interface modifications, which facilitated electrode efficacy and safety during implantation. Finally, we predict that the relationships between micro fabrication techniques, and biomedical engineering and nanotechnology represented by flexible MEMS microelectrodes for neural interface, will open a new gate to better understanding the neural system and brain diseases.
Collapse
Affiliation(s)
- Long-Jun Tang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication Laboratory, Shanghai Jiao Tong University, Shanghai 200240, China.
- Key Laboratory for Thin Film and Micro fabrication of Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China.
- Collaborative Innovation Center of IFSA, Department of Micro/Nano-Electronics, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Ming-Hao Wang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication Laboratory, Shanghai Jiao Tong University, Shanghai 200240, China.
- Key Laboratory for Thin Film and Micro fabrication of Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China.
- Collaborative Innovation Center of IFSA, Department of Micro/Nano-Electronics, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Hong-Chang Tian
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication Laboratory, Shanghai Jiao Tong University, Shanghai 200240, China.
- Key Laboratory for Thin Film and Micro fabrication of Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China.
- Collaborative Innovation Center of IFSA, Department of Micro/Nano-Electronics, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xiao-Yang Kang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication Laboratory, Shanghai Jiao Tong University, Shanghai 200240, China.
- Key Laboratory for Thin Film and Micro fabrication of Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China.
- Collaborative Innovation Center of IFSA, Department of Micro/Nano-Electronics, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Wen Hong
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication Laboratory, Shanghai Jiao Tong University, Shanghai 200240, China.
- Key Laboratory for Thin Film and Micro fabrication of Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China.
- Collaborative Innovation Center of IFSA, Department of Micro/Nano-Electronics, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jing-Quan Liu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication Laboratory, Shanghai Jiao Tong University, Shanghai 200240, China.
- Key Laboratory for Thin Film and Micro fabrication of Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China.
- Collaborative Innovation Center of IFSA, Department of Micro/Nano-Electronics, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
27
|
Zhao Z, Luan L, Wei X, Zhu H, Li X, Lin S, Siegel JJ, Chitwood RA, Xie C. Nanoelectronic Coating Enabled Versatile Multifunctional Neural Probes. NANO LETTERS 2017; 17:4588-4595. [PMID: 28682082 PMCID: PMC5869028 DOI: 10.1021/acs.nanolett.7b00956] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Brain function can be best studied by simultaneous measurements and modulation of the multifaceted signaling at the cellular scale. Extensive efforts have been made to develop multifunctional neural probes, typically involving highly specialized fabrication processes. Here, we report a novel multifunctional neural probe platform realized by applying ultrathin nanoelectronic coating (NEC) on the surfaces of conventional microscale devices such as optical fibers and micropipettes. We fabricated the NECs by planar photolithography techniques using a substrate-less and multilayer design, which host arrays of individually addressed electrodes with an overall thickness below 1 μm. Guided by an analytic model and taking advantage of the surface tension, we precisely aligned and coated the NEC devices on the surfaces of these conventional microprobes and enabled electrical recording capabilities on par with the state-of-the-art neural electrodes. We further demonstrated optogenetic stimulation and controlled drug infusion with simultaneous, spatially resolved neural recording in a rodent model. This study provides a low-cost, versatile approach to construct multifunctional neural probes that can be applied to both fundamental and translational neuroscience.
Collapse
Affiliation(s)
- Zhengtuo Zhao
- Department of Biomedical Engineering, the University of Texas at Austin
| | - Lan Luan
- Department of Physics, the University of Texas at Austin
| | - Xiaoling Wei
- Department of Biomedical Engineering, the University of Texas at Austin
| | - Hanlin Zhu
- Department of Biomedical Engineering, the University of Texas at Austin
| | - Xue Li
- Department of Biomedical Engineering, the University of Texas at Austin
| | - Shengqing Lin
- Department of Biomedical Engineering, the University of Texas at Austin
| | - Jennifer J. Siegel
- Center for Learning and Memory, Institute for Neuroscience, the University of Texas at Austin
| | - Raymond A. Chitwood
- Center for Learning and Memory, Institute for Neuroscience, the University of Texas at Austin
| | - Chong Xie
- Department of Biomedical Engineering, the University of Texas at Austin
- Correspondence to:
| |
Collapse
|
28
|
Bioactive interpenetrating polymer networks for improving the electrode/neural-tissue interface. Electrochem commun 2017. [DOI: 10.1016/j.elecom.2017.04.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
29
|
Electrodeposited Iridium Oxide on Platinum Nanocones for Improving Neural Stimulation Microelectrodes. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.03.213] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
30
|
Wang S, Sun C, Guan S, Li W, Xu J, Ge D, Zhuang M, Liu T, Ma X. Chitosan/gelatin porous scaffolds assembled with conductive poly(3,4-ethylenedioxythiophene) nanoparticles for neural tissue engineering. J Mater Chem B 2017; 5:4774-4788. [DOI: 10.1039/c7tb00608j] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An electrically conductive scaffold was prepared by assembling PEDOT on a chitosan/gelatin porous scaffold via in situ interfacial polymerization.
Collapse
Affiliation(s)
- Shuping Wang
- Dalian R&D Center for Stem Cell and Tissue Engineering
- Dalian University of Technology
- Dalian 116024
- People's Republic of China
| | - Changkai Sun
- Department of Biomedical Engineering
- Dalian University of Technology
- Dalian 116024
- People's Republic of China
| | - Shui Guan
- Dalian R&D Center for Stem Cell and Tissue Engineering
- Dalian University of Technology
- Dalian 116024
- People's Republic of China
| | - Wenfang Li
- Dalian R&D Center for Stem Cell and Tissue Engineering
- Dalian University of Technology
- Dalian 116024
- People's Republic of China
| | - Jianqiang Xu
- School of Life Science and Medicine
- Dalian University of Technology
- Panjin 124221
- People's Republic of China
| | - Dan Ge
- Dalian R&D Center for Stem Cell and Tissue Engineering
- Dalian University of Technology
- Dalian 116024
- People's Republic of China
| | - Meiling Zhuang
- Dalian R&D Center for Stem Cell and Tissue Engineering
- Dalian University of Technology
- Dalian 116024
- People's Republic of China
| | - Tianqing Liu
- Dalian R&D Center for Stem Cell and Tissue Engineering
- Dalian University of Technology
- Dalian 116024
- People's Republic of China
| | - Xuehu Ma
- Dalian R&D Center for Stem Cell and Tissue Engineering
- Dalian University of Technology
- Dalian 116024
- People's Republic of China
| |
Collapse
|
31
|
Hyaluronic acid doped-poly(3,4-ethylenedioxythiophene)/chitosan/gelatin (PEDOT-HA/Cs/Gel) porous conductive scaffold for nerve regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 71:308-316. [PMID: 27987712 DOI: 10.1016/j.msec.2016.10.029] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/14/2016] [Accepted: 10/16/2016] [Indexed: 12/23/2022]
Abstract
Conducting polymer, as a "smart" biomaterial, has been increasingly used to construct tissue engineered scaffold for nerve tissue regeneration. In this study, a novel porous conductive scaffold was prepared by incorporating conductive hyaluronic acid (HA) doped-poly(3,4-ethylenedioxythiophene) (PEDOT-HA) nanoparticles into a chitosan/gelatin (Cs/Gel) matrix. The physicochemical characteristics of Cs/Gel scaffold with 0-10wt% PEDOT-HA were analyzed and the results indicated that the incorporation of PEDOT-HA into scaffold increased the electrical and mechanical properties while decreasing the porosity and water absorption. Moreover, in vitro biodegradation of scaffold displayed a declining trend with the PEDOT-HA content increased. About the biocompatibility of conductive scaffold, neuron-like rat phaeochromocytoma (PC12) cells were cultured in scaffold to evaluate cell adhesion and growth. 8% PEDOT-HA/Cs/Gel scaffold had a higher cell adhesive efficiency and cell viability than the other conductive scaffolds. Furthermore, cells in the scaffold with 8wt% PEDOT-HA expressed higher synapse growth gene of GAP43 and SYP compared with Cs/Gel control group. These results suggest that 8%PEDOT-HA/Cs/Gel scaffold is an attractive cell culture conductive substrate which could support cell adhesion, survival, proliferation, and synapse growth for the application in nerve tissue regeneration.
Collapse
|
32
|
Riegel AL, Borzenkova N, Haas V, Scharfer P, Schabel W. Activity determination of FAD-dependent glucose dehydrogenase immobilized in PEDOT: PSS-PVA composite films for biosensor applications. Eng Life Sci 2016. [DOI: 10.1002/elsc.201600128] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Anna-Lena Riegel
- Institute of Thermal Process Engineering; Karlsruhe Institute of Technology; Karlsruhe Germany
| | - Natalia Borzenkova
- Institute of Thermal Process Engineering; Karlsruhe Institute of Technology; Karlsruhe Germany
| | - Verena Haas
- Institute of Thermal Process Engineering; Karlsruhe Institute of Technology; Karlsruhe Germany
| | - Philip Scharfer
- Institute of Thermal Process Engineering; Karlsruhe Institute of Technology; Karlsruhe Germany
| | - Wilhelm Schabel
- Institute of Thermal Process Engineering; Karlsruhe Institute of Technology; Karlsruhe Germany
| |
Collapse
|
33
|
Sui L, Peng B, Huang S, Wang Y, Ju L. Synthesis and bio-activities of poly (3,4-ethylenedioxythiophene) (PEDOT)/poly (styrene sulfonate) (PSS)/gelatin layer on indium tin oxide (ITO)-coated glass. JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATER. SCI. ED. 2016; 31:662-670. [DOI: 10.1007/s11595-016-1426-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
34
|
Khalili N, Naguib HE, Kwon RH. A constriction resistance model of conjugated polymer based piezoresistive sensors for electronic skin applications. SOFT MATTER 2016; 12:4180-4189. [PMID: 27035514 DOI: 10.1039/c6sm00204h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Human intervention can be replaced through the development of tools resulting from utilization of sensing devices possessing a wide range of applications including humanoid robots or remote and minimally invasive surgeries. Similar to the five human senses, sensors interface with their surroundings to stimulate a suitable response or action. The sense of touch which arises in human skin is among the most challenging senses to emulate due to its ultra high sensitivity. This has brought forth novel challenging issues to consider in the field of biomimetic robotics. In this work, using a multiphase reaction, a polypyrrole (PPy) based hydrogel is developed as a resistive type pressure sensor with an intrinsically elastic microstructure stemming from three dimensional hollow spheres. It is shown that the electrical conductivity of the fabricated PPy based piezoresistive sensors is enhanced as a result of adding conductive fillers and therefore, endowing the sensors with a higher sensitivity. A semi-analytical constriction resistance based model accounting for the real contact area between the PPy hydrogel sensors and the electrode along with the dependency of the contact resistance change on the applied load is developed. The model is then solved using a Monte Carlo technique and its corresponding sensitivity is obtained. Comparing the results with their experimental counterparts, the proposed modeling methodology offers a good tracking ability.
Collapse
Affiliation(s)
- N Khalili
- Department of Mechanical and Industrial Engineering, Institute of Biomaterials and Biomedical Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada.
| | | | | |
Collapse
|
35
|
Charkhkar H, Knaack GL, McHail DG, Mandal HS, Peixoto N, Rubinson JF, Dumas TC, Pancrazio JJ. Chronic intracortical neural recordings using microelectrode arrays coated with PEDOT-TFB. Acta Biomater 2016; 32:57-67. [PMID: 26689462 DOI: 10.1016/j.actbio.2015.12.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/22/2015] [Accepted: 12/11/2015] [Indexed: 11/27/2022]
Abstract
Microelectrode arrays have been extensively utilized to record extracellular neuronal activity for brain-machine interface applications. Modifying the microelectrodes with conductive polymers such as poly(3,4-ethylenedioxythiophene) (PEDOT) has been reported to be advantageous because it increases the effective surface area of the microelectrodes, thereby decreasing impedance and enhancing charge transfer capacity. However, the long term stability and integrity of such coatings for chronic recordings remains unclear. Previously, our group has demonstrated that use of the smaller counter ion tetrafluoroborate (TFB) during electrodeposition increased the stability of the PEDOT coatings in vitro compared to the commonly used counter ion poly(styrenesulfonate) (PSS). In the current work, we examined the long-term in vivo performance of PEDOT-TFB coated microelectrodes. To do so, we selectively modified half of the microelectrodes on NeuroNexus single shank probes with PEDOT-TFB while the other half of the microelectrodes were modified with gold as a control. The modified probes were then implanted into the primary motor cortex of rats. Single unit recordings were observed on both PEDOT-TFB and gold control microelectrodes for more than 12 weeks. Compared to the gold-coated microelectrodes, the PEDOT-TFB coated microelectrodes exhibited an overall significantly lower impedance and higher number of units per microelectrode specifically for the first four weeks. The majority of PEDOT-TFB microelectrodes with activity had an impedance magnitude lower than 400 kΩ at 1 kHz. Our equivalent circuit modeling of the impedance data suggests stability in the polymer-related parameters for the duration of the study. In addition, when comparing PEDOT-TFB microelectrodes with and without long-term activity, we observed a distinction in certain circuit parameters for these microelectrodes derived from equivalent circuit modeling prior to implantation. This observation may prove useful in qualifying PEDOT-TFB microelectrodes with a greater likelihood of registering long-term activity. Overall, our findings confirm that PEDOT-TFB is a chronically stable coating for microelectrodes to enable neural recording. STATEMENT OF SIGNIFICANCE Microelectrode arrays have been extensively utilized to record extracellular neuronal activity for brain-machine interface applications. Poly(3,4-ethylenedioxythiophene) (PEDOT) has gained interest because of its unique electrochemical characteristics and its excellent intrinsic electrical conductivity. However, the long-term stability of the PEDOT film, especially for chronic neural applications, is unclear. In this manuscript, we report for the first time the use of highly stable PEDOT doped with tetrafluoroborate (TFB) for long-term neural recordings. We show that PEDOT-TFB coated microelectrodes on average register more units compared to control gold microelectrodes for at least first four weeks post implantation. We collected the in vivo impedance data over a wide frequency spectrum and developed an equivalent circuit model which helped us determine certain parameters to distinguish between PEDOT-TFB microelectrodes with and without long-term activity. Our findings suggest that PEDOT-TFB is a chronically stable coating for neural recording microelectrodes. As such, PEDOT-TFB could facilitate chronic recordings with ultra-small and high-density neural arrays.
Collapse
|
36
|
Mawad D, Lauto A, Wallace GG. Conductive Polymer Hydrogels. POLYMERIC HYDROGELS AS SMART BIOMATERIALS 2016. [DOI: 10.1007/978-3-319-25322-0_2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Chen C, Kong X, Lee IS. Modification of surface/neuron interfaces for neural cell-type specific responses: a review. ACTA ACUST UNITED AC 2015; 11:014108. [PMID: 26694886 DOI: 10.1088/1748-6041/11/1/014108] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Surface/neuron interfaces have played an important role in neural repair including neural prostheses and tissue engineered scaffolds. This comprehensive literature review covers recent studies on the modification of surface/neuron interfaces. These interfaces are identified in cases both where the surfaces of substrates or scaffolds were in direct contact with cells and where the surfaces were modified to facilitate cell adhesion and controlling cell-type specific responses. Different sources of cells for neural repair are described, such as pheochromocytoma neuronal-like cell, neural stem cell (NSC), embryonic stem cell (ESC), mesenchymal stem cell (MSC) and induced pluripotent stem cell (iPS). Commonly modified methods are discussed including patterned surfaces at micro- or nano-scale, surface modification with conducting coatings, and functionalized surfaces with immobilized bioactive molecules. These approaches to control cell-type specific responses have enormous potential implications in neural repair.
Collapse
Affiliation(s)
- Cen Chen
- Bio-X Center, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | | | | |
Collapse
|
38
|
Wang K, Tang RY, Zhao XB, Li JJ, Lang YR, Jiang XX, Sun HJ, Lin QX, Wang CY. Covalent bonding of YIGSR and RGD to PEDOT/PSS/MWCNT-COOH composite material to improve the neural interface. NANOSCALE 2015; 7:18677-18685. [PMID: 26499788 DOI: 10.1039/c5nr05784a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The development of coating materials for neural interfaces has been a pursued to improve the electrical, mechanical and biological performances. For these goals, a bioactive coating was developed in this work featuring a poly(3,4-ethylenedioxythiophene) (PEDOT)/carbon nanotube (CNT) composite and covalently bonded YIGSR and RGD. Its biological effect and electrical characteristics were assessed in vivo on microwire arrays (MWA). The coated electrodes exhibited a significantly higher charge storage capacity (CSC) and lower electrochemical impedance at 1 kHz which are desired to improve the stimulating and recording performances, respectively. Acute neural recording experiments revealed that coated MWA possess a higher signal/noise ratio capturing spikes undetected by uncoated electrodes. Moreover, coated MWA possessed more active sites and single units, and the noise floor of coated electrodes was lower than that of uncoated electrodes. There is little information in the literature concerning the chronic performance of bioactively modified neural interfaces in vivo. Therefore in this work, chronic in vivo tests were conducted and the PEDOT/PSS/MWCNT-polypeptide coated arrays exhibited excellent performances with the highest mean maximal amplitude from day 4 to day 12 during which the acute response severely compromised the performance of the electrodes. In brief, we developed a simple method of covalently bonding YIGSR and RGD to a PEDOT/PSS/MWCNT-COOH composite improving both the biocompatibility and electrical performance of the neural interface. Our findings suggest that YIGSR and RGD modified PEDOT/PSS/MWCNT is a promising bioactivated composite coating for neural recording and stimulating.
Collapse
Affiliation(s)
- Kun Wang
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, No. 27, Taiping Road, Beijing, 100850, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Buzsáki G, Stark E, Berényi A, Khodagholy D, Kipke DR, Yoon E, Wise KD. Tools for probing local circuits: high-density silicon probes combined with optogenetics. Neuron 2015; 86:92-105. [PMID: 25856489 PMCID: PMC4392339 DOI: 10.1016/j.neuron.2015.01.028] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
To understand how function arises from the interactions between neurons, it is necessary to use methods that allow the monitoring of brain activity at the single-neuron, single-spike level and the targeted manipulation of the diverse neuron types selectively in a closed-loop manner. Large-scale recordings of neuronal spiking combined with optogenetic perturbation of identified individual neurons has emerged as a suitable method for such tasks in behaving animals. To fully exploit the potential power of these methods, multiple steps of technical innovation are needed. We highlight the current state of the art in electrophysiological recording methods, combined with optogenetics, and discuss directions for progress. In addition, we point to areas where rapid development is in progress and discuss topics where near-term improvements are possible and needed.
Collapse
Affiliation(s)
- György Buzsáki
- The Neuroscience Institute, New York University, School of Medicine, New York, NY 10016, USA; Center for Neural Science, New York University, School of Medicine, New York, NY 10016, USA.
| | - Eran Stark
- The Neuroscience Institute, New York University, School of Medicine, New York, NY 10016, USA
| | - Antal Berényi
- The Neuroscience Institute, New York University, School of Medicine, New York, NY 10016, USA; MTA-SZTE "Lendület" Oscillatory Neural Networks Research Group, University of Szeged, Department of Physiology, Szeged H-6720, Hungary
| | - Dion Khodagholy
- The Neuroscience Institute, New York University, School of Medicine, New York, NY 10016, USA
| | - Daryl R Kipke
- NeuroNexus Technologies, Inc., Ann Arbor, MI 48108, USA
| | - Euisik Yoon
- Center for Wireless Integrated Microsensing and Systems, The University of Michigan, Ann Arbor, MI 48109-2122, USA
| | - Kensall D Wise
- Center for Wireless Integrated Microsensing and Systems, The University of Michigan, Ann Arbor, MI 48109-2122, USA
| |
Collapse
|
40
|
Carr O, Gozzi G, Santos LF, Faria RM, Chinaglia DL. Analysis of the electrical and optical properties of PEDOT:PSS/PVA blends for low-cost and high-performance organic electronic and optoelectronic devices. ACTA ACUST UNITED AC 2015. [DOI: 10.1088/2053-1613/2/1/015002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
41
|
Soto-Sánchez C, Martínez-Navarrete G, Humphreys L, Puras G, Zarate J, Pedraz JL, Fernández E. Enduring high-efficiency in vivo transfection of neurons with non-viral magnetoparticles in the rat visual cortex for optogenetic applications. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:835-43. [PMID: 25680542 DOI: 10.1016/j.nano.2015.01.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 01/10/2015] [Accepted: 01/27/2015] [Indexed: 10/24/2022]
Abstract
UNLABELLED This work demonstrates the successful long-term transfection in vivo of a DNA plasmid vector in rat visual cortex neurons using the magnetofection technique. The transfection rates reached values of up to 97% of the neurons after 30days, comparable to those achieved by viral vectors. Immunohistochemical treatment with anti-EGFP antibodies enhanced the detection of the EYFP-channelrhodopsin expression throughout the dendritic trees and cell bodies. These results show that magnetic nanoparticles offer highly efficient and enduring in vivo high-rate transfection in identified neurons of an adult mammalian brain and suggest that the magnetotechnique facilitates the introduction of large functional genetic material like channelrhodopsin with safe non-viral vectors using minimally invasive approaches. FROM THE CLINICAL EDITOR Gene therapy may be one of the treatment modalities for neurological diseases in the future. The use of viral transfection remains a concern due to restrictions to the size limit of the genetic material able to be packed, as well as safety issues. In this work, the authors evaluated magnetoplexes as an alternative vehicle. The results showed very promising data in that these nanoparticles could offer high transfection efficiency.
Collapse
Affiliation(s)
- Cristina Soto-Sánchez
- Bioengineering Institute, Miguel Hernández University (UMH), Spain; Biomedical Research Networking center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain.
| | | | - Lawrence Humphreys
- Bioengineering Institute, Miguel Hernández University (UMH), Spain; Biomedical Research Networking center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain.
| | - Gustavo Puras
- Biomedical Research Networking center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain; NanoBioCel Group, University of País Vasco (UPV/EHU), Spain.
| | - Jon Zarate
- Biomedical Research Networking center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain; NanoBioCel Group, University of País Vasco (UPV/EHU), Spain.
| | - José Luis Pedraz
- Biomedical Research Networking center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain; NanoBioCel Group, University of País Vasco (UPV/EHU), Spain.
| | - Eduardo Fernández
- Bioengineering Institute, Miguel Hernández University (UMH), Spain; Biomedical Research Networking center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain.
| |
Collapse
|
42
|
Liu Z, Yu M, Lv J, Li Y, Yu Z. Dispersed, porous nanoislands landing on stretchable nanocrack gold films: maintenance of stretchability and controllable impedance. ACS APPLIED MATERIALS & INTERFACES 2014; 6:13487-13495. [PMID: 25090109 DOI: 10.1021/am502454t] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Stretchable electronic devices have great potential for serving as bioelectrical interfaces due to their better deformability and modulus match with biological organs. However, surface modification, which is usually applied to enhance the capability of sensing and stimulating, as well as biocompatibility, may cause problems since their stretchability highly depends on the surface structure. In this work, stretchable nanocrack gold (SNCG) electrodes were fabricated, which can be stretched by a maximum 120% uniaxial strain while maintaining their electrical conductivity. We found that the electrodes lost their stretchability after surface modification of an additional continuous platinum layer, which was found to selectively weld or fully cover the nanocracks, consequently eliminating its crack structure. To address this issue, we designed a complex structure of dispersed, porous nanoislands landing on the SNCG film, which was further demonstrated as capable of maintaining the stretchability of electrodes while allowing the reshaping of cracks. Moreover, stretchable microelectrode arrays were then developed with this complex structure. Animal experiments demonstrated their capability of conformally wrapping on a rat brain cortex and effectively monitoring an intracranial electroencephalogram under deformation. In addition, their impedance can be precisely controlled by modulating the dispersity, diameter, and aspect ratio of individual nanoislands. This complex structure has great potential for developing highly stretchable, multiplexing sensors, allowing stiff materials to land on a stretchable conducting surface with maintenance of stretchability and controllable functional area.
Collapse
Affiliation(s)
- Zhiyuan Liu
- Biomedical Microdevices Research Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , 1068 Xueyuan Avenue, Shenzhen 518055, China
| | | | | | | | | |
Collapse
|
43
|
Elastic, conductive, polymeric hydrogels and sponges. Sci Rep 2014; 4:5792. [PMID: 25052015 PMCID: PMC4107344 DOI: 10.1038/srep05792] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/20/2014] [Indexed: 12/23/2022] Open
Abstract
As a result of inherent rigidity of the conjugated macromolecular chains resulted from the delocalized π-electron system along the polymer backbone, it has been a huge challenge to make conducting polymer hydrogels elastic by far. Herein elastic and conductive polypyrrole hydrogels with only conducting polymer as the continuous phase have been simply synthesized in the indispensable conditions of 1) mixed solvent, 2) deficient oxidant, and 3) monthly secondary growth. The elastic mechanism and oxidative polymerization mechanism on the resulting PPy hydrogels have been discussed. The resulting hydrogels show some novel properties, e.g., shape memory elasticity, fast functionalization with various guest objects, and fast removal of organic infectants from aqueous solutions, all of which cannot be observed from traditional non-elastic conducting polymer counterparts. What's more, light-weight, elastic, and conductive organic sponges with excellent stress-sensing behavior have been successfully achieved via using the resulting polypyrrole hydrogels as precursors.
Collapse
|
44
|
Jorfi M, Voirin G, Foster EJ, Weder C. Physiologically responsive, mechanically adaptive polymer optical fibers for optogenetics. OPTICS LETTERS 2014; 39:2872-2875. [PMID: 24978225 DOI: 10.1364/ol.39.002872] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The capability to deliver light to specific locations within the brain using optogenetic tools has opened up new possibilities in the field of neural interfacing. In this context, optical fibers are commonly inserted into the brain to activate or mute neurons using photosensitive proteins. While chronic optogenetic stimulation studies are just beginning to emerge, knowledge gathered in connection with electrophysiological implants suggests that the mechanical mismatch of conventional optical fibers and the cortical tissue may be a significant contributor to neuroinflammatory response. Here, we present the design and fabrication of physiologically responsive, mechanically adaptive optical fibers made of poly(vinyl alcohol) (PVA) that may mitigate this problem. Produced by a one-step wet-spinning process, the fibers display a tensile storage modulus E' of ∼7000 MPa in the dry state at 25°C and can thus readily be inserted into cortical tissue. Exposure to water causes a drastic reduction of E' to ∼35 MPa on account of modest swelling with the water. The optical properties at 470 and 590 were comparable with losses of 0.7±0.04 dB/cm at 470 nm and 0.6±0.1 dB/cm at 590 nm in the dry state and 1.1±0.1 dB/cm at 470 nm and 0.9±0.3 dB/cm at 590 nm in the wet state. The dry end of a partially switched fiber with a length of 10 cm was coupled with a light-emitting diode with an output of 10.1 mW to deliver light with a power density of >500 mW/cm2 from the wet end, which is more than sufficient to stimulate neurons in vivo. Thus, even without a low-refractive index cladding, the physiologically responsive, mechanically adaptive optical fibers presented here appear to be a very useful new tool for future optogenetic studies.
Collapse
|
45
|
Fattahi P, Yang G, Kim G, Abidian MR. A review of organic and inorganic biomaterials for neural interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:1846-85. [PMID: 24677434 PMCID: PMC4373558 DOI: 10.1002/adma.201304496] [Citation(s) in RCA: 322] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/08/2013] [Indexed: 05/18/2023]
Abstract
Recent advances in nanotechnology have generated wide interest in applying nanomaterials for neural prostheses. An ideal neural interface should create seamless integration into the nervous system and performs reliably for long periods of time. As a result, many nanoscale materials not originally developed for neural interfaces become attractive candidates to detect neural signals and stimulate neurons. In this comprehensive review, an overview of state-of-the-art microelectrode technologies provided fi rst, with focus on the material properties of these microdevices. The advancements in electro active nanomaterials are then reviewed, including conducting polymers, carbon nanotubes, graphene, silicon nanowires, and hybrid organic-inorganic nanomaterials, for neural recording, stimulation, and growth. Finally, technical and scientific challenges are discussed regarding biocompatibility, mechanical mismatch, and electrical properties faced by these nanomaterials for the development of long-lasting functional neural interfaces.
Collapse
Affiliation(s)
- Pouria Fattahi
- Biomedical Engineering Department and Chemical Engineering Departments, Pennsylvania State University, University Park, PA, 16802, USA
| | - Guang Yang
- Biomedical Engineering Department, Pennsylvania State University, University Park, PA, 16802, USA
| | - Gloria Kim
- Biomedical Engineering Department, Pennsylvania State University, University Park, PA, 16802, USA
| | - Mohammad Reza Abidian
- Biomedical Engineering Department, Materials Science & Engineering Department, Chemical Engineering Department, Materials Research Institute, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
46
|
Vreeland RF, Laude ND, Lambert SM, Heien ML. Microwave-plasma dry-etch for fabrication of conducting polymer microelectrodes. Anal Chem 2014; 86:1385-90. [PMID: 24417474 DOI: 10.1021/ac403363a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
An inexpensive dry etch technology based on a low-pressure microwave plasma generated in a countertop microwave oven is characterized for the patterning of a conductive polymer microelectrode. The etch process is described, and the microwave-generated plasma is characterized by emission spectroscopy. The plasma is generated with an atmospheric mixture of mostly nitrogen and oxygen. A 10 μm wide band microelectrode composed of PEDOT:Tosylate, an optically transparent conductive polymer, is fabricated on a plastic substrate. Conductive polymer etch rates are approximately 280-300 nm/minute. A patterned microelectrode is characterized by atomic force microscopy. The horizontal distance of a 10-90% height of a plasma-etched 150 nm thick electrode was measured to be 360 ± 200 nm (n = 5). Electrodes are further characterized using steady-state cyclic voltammetry, and they have an electroactive area congruent with their geometric area. Finally, a complete device is assembled and used as a separation platform for biogenic amines. A microwave-etched 250 μm PEDOT:PSS electrode is employed for end-channel electrochemical detection on this microchip, where an electrophoretic separation of dopamine and catechol and a micellar electrokinetic chromatography separation of dopamine and serotonin are performed. Both mass and concentration LODs are comparable to other electrochemical detectors in an end-channel configuration. With the added advantages of easy processing, robustness, optical transparency, and low cost, we expect microwave-etched polymer films to be a viable alternative to traditional electrodes.
Collapse
Affiliation(s)
- Richard F Vreeland
- Department of Chemistry and Biochemistry, University of Arizona , 1306 East University Boulevard, Tucson, AZ 85721, United States
| | | | | | | |
Collapse
|
47
|
Multi-unit recording with iridium oxide modified stereotrodes in Drosophila melanogaster. J Neurosci Methods 2013; 222:218-29. [PMID: 24286699 DOI: 10.1016/j.jneumeth.2013.11.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 11/15/2013] [Accepted: 11/17/2013] [Indexed: 11/21/2022]
Abstract
BACKGROUND Drosophila is a very favorable animal model for the studies of neuroscience. However, it remains a great challenge to employ electrophysiological approaches in Drosophila to study the neuronal assembly dynamics in vivo, partially due to the small size of the Drosophila brain. Small and sensitive microelectrodes for multi-unit recordings are greatly desired. NEW METHOD We fabricated micro-scale stereotrodes for electrical recordings in Drosophila melanogaster. The stereotrodes were modified with iridium oxide (IrO2) under a highly controllable deposition procedure to improve their electrochemical properties. Electrical recordings were carried out using the IrO2 stereotrodes to detect spontaneous action potentials and LFPs in vivo. RESULTS The IrO2 electrodes exhibited significantly higher capacitance and lower impedance at 1 kHz. Electrical recording with the IrO2 stereotrodes in vivo demonstrated an average signal-to-noise ratio (SNR) of 7.3 and a significantly improved LFP sensitivity. 5 types of different neurons recorded were clearly separated. Electrophysiological responses to visual and odor stimulation were also detected, respectively. COMPARISON WITH EXISTING METHOD(S) The most widely used electrodes for electrical recording in Drosophila are glass microelectrode and sharpened tungsten microelectrode, which are typically used for single-unit recordings. Although tetrode technology has been used to record multi-neuronal activities from Drosophila, the fabricated IrO2 stereotrodes possess smaller geometry size but exhibited comparable recording signal-to noise ration and better sorting quality. CONCLUSIONS The IrO2 stereotrodes are capable to meet the requirements of multi-unit recording and spike sorting, which will be a useful tool for the electrophysiology-based researches especially in Drosophila and other small animals.
Collapse
|
48
|
Oh WK, Kwon OS, Jang J. Conducting Polymer Nanomaterials for Biomedical Applications: Cellular Interfacing and Biosensing. POLYM REV 2013. [DOI: 10.1080/15583724.2013.805771] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
49
|
In vitroandin vivoevaluation of poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate)/dopamine-coated electrodes for dopamine delivery. J Biomed Mater Res A 2013; 102:1681-96. [DOI: 10.1002/jbm.a.34837] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 06/04/2013] [Indexed: 11/07/2022]
|
50
|
Collazos-Castro JE, Hernández-Labrado GR, Polo JL, García-Rama C. N-Cadherin- and L1-functionalised conducting polymers for synergistic stimulation and guidance of neural cell growth. Biomaterials 2013; 34:3603-17. [PMID: 23422593 DOI: 10.1016/j.biomaterials.2013.01.097] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 01/26/2013] [Indexed: 12/22/2022]
Abstract
Conducting polymers are promising materials for advanced neuroprostheses and neural repair devices. However, these challenging technologies demand stable presentation of multiple biomolecules on the polymer surface and fabrication of scaffolds suitable for implantation. We electrosynthesised poly(3,4-ethylenedioxythiophene) doped with poly[(4-styrenesulfonic acid)-co-(maleic acid)] (PEDOT:PSS-co-MA) on gold-coated surfaces or carbon microfibres, functionalised the polymer by covalent immobilisation of anti-IgG antibodies and subsequent binding of N-Cadherin and L1 recombinant proteins, and used these materials as substrates for culturing cerebral cortex neurons. N-Cadherin and L1 were much more effective than polylysine in promoting axonal elongation and collateralisation on the polymer. However, N-Cadherin also induced cell migration and dendritic extension and branching, whereas L1 inhibited dendrites. Dual functionalisation with N-Cadherin and L1 produced synergistic effects on neuronal growth that could not be achieved with either of the proteins when used alone. PEDOT:PSS-co-MA electrosynthesised on carbon microfibres showed good electrochemical properties and, when biofunctionalised with N-Cadherin or L1, stimulated very long and guided axonal elongation. Finally, electrochemical impedance spectroscopy, cyclic voltammetry and chronoamperometry showed that the good electrical properties of PEDOT:PSS-co-MA were not degraded by covalent peptide attachment, indicating that this polymer is suitable for multiple biofunctionalisation of electroactive surfaces in neuroprosthetic and lesion-bridging applications.
Collapse
Affiliation(s)
- Jorge E Collazos-Castro
- Neural Repair Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Finca La Peraleda s/n, Toledo, Spain.
| | | | | | | |
Collapse
|