1
|
Tafere C, Siraj EA, Yayehrad AT, Workye M. Nanoparticle based oral delivery of vaccines: A promising solution for immunization challenges in developing nations; A comprehensive review. Int J Pharm 2025; 681:125848. [PMID: 40523548 DOI: 10.1016/j.ijpharm.2025.125848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 06/08/2025] [Accepted: 06/10/2025] [Indexed: 06/22/2025]
Abstract
Most pathogens enter the body through mucosal sites, yet conventional needle-based vaccines primarily induce systemic immunity rather than mucosal protection at the pathogen entry point. Additionally, fear of painful injections deters many individuals from getting vaccinated. Another significant challenge for vast immunization campaign is the cold chain distribution logistics and the requirement of suitably trained health care workers. As a result, needle-free oral vaccines are gaining much attention due to their non-invasiveness, less stress and pain and better safety profile. These vaccines are cost-effective compared to injectable vaccines, as they simplify self-administration, reducing the need for qualified healthcare workers. This makes them ideal for large-scale vaccination coverage and improved occupational safety by preventing blood-borne disease risks. This makes them suitable for populations with limited access to trained professionals. Moreover, oral immunization stimulates mucosal immunity, providing protection at the infection entry site. However, oral vaccines face significant challenges from the harsh gastrointestinal (GI) environment, as most current vaccines (e.g., recombinant subunit, mRNA, DNA) are vulnerable to enzymatic and acid degradation. Additionally, the low permeability of the mucosal barrier and inefficient antigen uptake by antigen-presenting cells further hinder adequate immune stimulation. Thus, there is a need for safe and novel delivery methods to address emerging diseases. Nanoparticle encapsulation has emerged as a promising solution, offering potential for overcoming limitations in conventional drug delivery. This review explores nanoparticle-based oral vaccine delivery, covering nanoparticle types, limitations of traditional methods, recent advancements, and future prospects.
Collapse
Affiliation(s)
- Chernet Tafere
- Department of Pharmacy, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia.
| | - Ebrahim Abdela Siraj
- Department of Pharmacy, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | | | - Mulualem Workye
- Department of Pharmacy, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| |
Collapse
|
2
|
Saleh M, El-Moghazy A, Elgohary AH, Saber WIA, Helmy YA. Revolutionizing Nanovaccines: A New Era of Immunization. Vaccines (Basel) 2025; 13:126. [PMID: 40006673 PMCID: PMC11860605 DOI: 10.3390/vaccines13020126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 02/27/2025] Open
Abstract
Infectious diseases continue to pose a significant global health threat. To combat these challenges, innovative vaccine technologies are urgently needed. Nanoparticles (NPs) have unique properties and have emerged as a promising platform for developing next-generation vaccines. Nanoparticles are revolutionizing the field of vaccine development, offering a new era of immunization. They allow the creation of more effective, stable, and easily deliverable vaccines. Various types of NPs, including lipid, polymeric, metal, and virus-like particles, can be employed to encapsulate and deliver vaccine components, such as mRNA or protein antigens. These NPs protect antigens from degradation, target them to specific immune cells, and enhance antigen presentation, leading to robust and durable immune responses. Additionally, NPs can simultaneously deliver multiple vaccine components, including antigens, and adjuvants, in a single formulation, simplifying vaccine production and administration. Nanovaccines offer a promising approach to combat food- and water-borne bacterial diseases, surpassing traditional formulations. Further research is needed to address the global burden of these infections. This review highlights the potential of NPs to revolutionize vaccine platforms. We explore their mechanisms of action, current applications, and emerging trends. The review discusses the limitations of nanovaccines, innovative solutions and the potential role of artificial intelligence in developing more effective and accessible nanovaccines to combat infectious diseases.
Collapse
Affiliation(s)
- Mohammed Saleh
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Ahmed El-Moghazy
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, USA
| | - Adel H. Elgohary
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - WesamEldin I. A. Saber
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Yosra A. Helmy
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
3
|
Zhang M, Wang C, Pan J, Cui H, Zhao X. Advancing novel veterinary vaccines: From comprehensive antigen and adjuvant design to preparation process optimization. Int Immunopharmacol 2025; 145:113784. [PMID: 39672026 DOI: 10.1016/j.intimp.2024.113784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/15/2024]
Abstract
Vaccination stands as the paramount and cost-effective strategy for the prevention and management of animal infectious diseases. With the advances in biological technology, materials science and industrial optimization, substantial progress has been made in the development of innovative veterinary vaccines. A majority of the novel vaccines under current investigation tend to stimulate multiple immune pathways and to achieve long-term resistance against infectious diseases, yet it remains imperative to concentrate research efforts on the efficient utilization of vaccines, mitigating toxic side effects, and ensuring safe production processes. This article presents an overview of research progress in veterinary vaccines, encompassing comprehensive antigen design, adjuvant formulation advancements, preparation process optimization, and rigorous immune efficacy evaluation. It summarizes cutting-edge vaccines derived from in vitro synthesis and in vivo application, emphasizing immunogenic components and immune response mechanisms. It also highlights novel biological adjuvants that enhance immune efficacy, diversify raw materials, and possess targeted functions, while comprehensively exploring advancements in production methodologies and compatible vaccine products. By establishing a foundation for the integrated use of these innovative veterinary vaccines, this work facilitates future interdisciplinary cooperation in their advancement, aiming to accelerate the achievement of herd immunity through concerted efforts.
Collapse
Affiliation(s)
- Meng Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chunxin Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Junqian Pan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haixin Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiang Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
4
|
Szachniewicz MM, Neustrup MA, van den Eeden SJF, van Meijgaarden KE, Franken KLMC, van Veen S, Koning RI, Limpens RWAL, Geluk A, Bouwstra JA, Ottenhoff THM. Evaluation of PLGA, lipid-PLGA hybrid nanoparticles, and cationic pH-sensitive liposomes as tuberculosis vaccine delivery systems in a Mycobacterium tuberculosis challenge mouse model - A comparison. Int J Pharm 2024; 666:124842. [PMID: 39424087 DOI: 10.1016/j.ijpharm.2024.124842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
Tuberculosis (TB) continues to pose a global threat for millennia, currently affecting over 2 billion people and causing 10.6 million new cases and 1.3 million deaths annually. The only existing vaccine, Mycobacterium Bovis Bacillus Calmette-Guérin (BCG), provides highly variable and inadequate protection in adults and adolescents. This study explores newly developed subunit tuberculosis vaccines that use a multistage protein fusion antigen Ag85b-ESAT6-Rv2034 (AER). The protection efficacy, as well as in vivo induced immune responses, were compared for five vaccines: BCG; AER-CpG/MPLA mix; poly(D,L-lactic-co-glycolic acid) (PLGA); lipid-PLGA hybrid nanoparticles (NPs); and cationic pH-sensitive liposomes (the latter three delivering AER together with CpG and MPLA). All vaccines, except the AER-adjuvant mix, induced protection in Mycobacterium tuberculosis (Mtb)-challenged C57/Bl6 mice as indicated by a significant reduction in bacterial burden in lungs and spleens of the animals. Four AER-based vaccines significantly increased the number of circulating multifunctional CD4+ and CD8+ T-cells producing IL-2, IFNγ, and TNFα, exhibiting a central memory phenotype. Furthermore, AER-based vaccines induced an increase in CD69+ B-cell counts as well as high antigen-specific antibody titers. Unexpectedly, none of the observed immune responses were associated with the bacterial burden outcome, such that the mechanism responsible for the observed vaccine-induced protection of these vaccines remains unclear. These findings suggest the existence of non-classical protective mechanisms for Mtb infection, which could, once identified, provide interesting targets for novel vaccines.
Collapse
Affiliation(s)
- Mikołaj M Szachniewicz
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), the Netherlands.
| | - Malene A Neustrup
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, the Netherlands
| | - Susan J F van den Eeden
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), the Netherlands
| | - Krista E van Meijgaarden
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), the Netherlands
| | - Kees L M C Franken
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), the Netherlands
| | - Suzanne van Veen
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), the Netherlands
| | - Roman I Koning
- Electron Microscopy Facility, Leiden University Medical Center (LUMC), the Netherlands
| | - Ronald W A L Limpens
- Electron Microscopy Facility, Leiden University Medical Center (LUMC), the Netherlands
| | - Annemieke Geluk
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), the Netherlands
| | - Joke A Bouwstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, the Netherlands
| | - Tom H M Ottenhoff
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), the Netherlands
| |
Collapse
|
5
|
Han J, Sheng T, Zhang Y, Cheng H, Gao J, Yu J, Gu Z. Bioresponsive Immunotherapeutic Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2209778. [PMID: 36639983 DOI: 10.1002/adma.202209778] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/31/2022] [Indexed: 06/17/2023]
Abstract
The human immune system is an interaction network of biological processes, and its dysfunction is closely associated with a wide array of diseases, such as cancer, infectious diseases, tissue damage, and autoimmune diseases. Manipulation of the immune response network in a desired and controlled fashion has been regarded as a promising strategy for maximizing immunotherapeutic efficacy and minimizing side effects. Integration of "smart" bioresponsive materials with immunoactive agents including small molecules, biomacromolecules, and cells can achieve on-demand release of agents at targeted sites to reduce overdose-related toxicity and alleviate off-target effects. This review highlights the design principles of bioresponsive immunotherapeutic materials and discusses the critical roles of controlled release of immunoactive agents from bioresponsive materials in recruiting, housing, and manipulating immune cells for evoking desired immune responses. Challenges and future directions from the perspective of clinical translation are also discussed.
Collapse
Affiliation(s)
- Jinpeng Han
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tao Sheng
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuqi Zhang
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Department of Burns and Wound Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Hao Cheng
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Jianqing Gao
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
| | - Jicheng Yu
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
- Department of General Surgery, Sir Run Run Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Zhen Gu
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
- Department of General Surgery, Sir Run Run Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
6
|
Qi W, Yu Y, Yang C, Wang X, Jiang Y, Zhang L, Yu Z. Nanospheres as the delivery vehicle: novel application of Toxoplasma gondii ribosomal protein S2 in PLGA and chitosan nanospheres against acute toxoplasmosis. Front Immunol 2024; 15:1475280. [PMID: 39416787 PMCID: PMC11480959 DOI: 10.3389/fimmu.2024.1475280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
Toxoplasma gondii (T. gondii) is a zoonotic disease that poses great harm to humans and animals. So far, no effective T. gondii vaccine has been developed to provide fully protection against such parasites. Recently, numerous researches have focused on the use of poly-lactic-co-glycolic acid (PLGA) and chitosan (CS) for the vaccines against T. gondii infections. In this study, we employed PLGA and CS as the vehicles for T. gondii ribosome protein (TgRPS2) delivery. TgRPS2-PLGA and TgRPS2-CS nanospheres were synthesized by double emulsion solvent evaporation and ionic gelation technique as the nano vaccines. Before immunization in animals, the release efficacy and toxicity of the synthesized nanospheres were evaluated in vitro. Then, ICR mice were immunized intramuscularly, and immune protections of the synthesized nanospheres were assessed. The results showed that TgRPS2-PLGA and TgRPS2-CS nanospheres could induce higher levels of IgG and cytokines, activate dendritic cells, and promote the expression of histocompatibility complexes. The splenic lymphocyte proliferation and the enhancement in the proportion of CD4+ and CD8+ T lymphocytes were also observed in immunized animals. In addition, two types of nanospheres could significantly inhabit the replications of T. gondii in cardiac muscles and spleen tissues. All these obtained results in this study demonstrated that the TgRPS2 protein delivered by PLGA or CS nanospheres provided satisfactory immunoprotective effects in resisting T. gondii, and such formulations illustrated potential as prospective preventive agents for toxoplasmosis.
Collapse
Affiliation(s)
- WeiYu Qi
- College of animal science and technology, Ningxia University, Yinchuan, Ningxia, China
| | - YouLi Yu
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Science, Yinchuan, China
| | - ChenChen Yang
- College of animal science and technology, Ningxia University, Yinchuan, Ningxia, China
| | - XiaoJuan Wang
- College of animal science and technology, Ningxia University, Yinchuan, Ningxia, China
| | - YuChen Jiang
- College of animal science and technology, Ningxia University, Yinchuan, Ningxia, China
| | - Li Zhang
- College of animal science and technology, Ningxia University, Yinchuan, Ningxia, China
| | - ZhengQing Yu
- College of animal science and technology, Ningxia University, Yinchuan, Ningxia, China
| |
Collapse
|
7
|
Ren M, Abdullah SW, Pei C, Guo H, Sun S. Use of virus-like particles and nanoparticle-based vaccines for combating picornavirus infections. Vet Res 2024; 55:128. [PMID: 39350170 PMCID: PMC11443892 DOI: 10.1186/s13567-024-01383-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/15/2024] [Indexed: 10/04/2024] Open
Abstract
Picornaviridae are non-enveloped ssRNA viruses that cause diseases such as poliomyelitis, hand-foot-and-mouth disease (HFMD), hepatitis A, encephalitis, myocarditis, and foot-and-mouth disease (FMD). Virus-like particles (VLPs) vaccines mainly comprise particles formed through the self-assembly of viral capsid proteins (for enveloped viruses, envelope proteins are also an option). They do not contain the viral genome. On the other hand, the nanoparticles vaccine (NPs) is mainly composed of self-assembling biological proteins or nanomaterials, with viral antigens displayed on the surface. The presentation of viral antigens on these particles in a repetitive array can elicit a strong immune response in animals. VLPs and NPs can be powerful platforms for multivalent antigen presentation. This review summarises the development of virus-like particle vaccines (VLPs) and nanoparticle vaccines (NPs) against picornaviruses. By detailing the progress made in the fight against various picornaviruses such as poliovirus (PV), foot-and-mouth disease virus (FMDV), enterovirus (EV), Senecavirus A (SVA), and encephalomyocarditis virus (EMCV), we in turn highlight the significant strides made in vaccine technology. These advancements include diverse construction methods, expression systems, elicited immune responses, and the use of various adjuvants. We see promising prospects for the continued development and optimisation of VLPs and NPs vaccines. Future research should focus on enhancing these vaccines' immunogenicity, stability, and delivery methods. Moreover, expanding our understanding of the interplay between these vaccines and the immune system will be crucial. We hope these insights will inspire and guide fellow researchers in the ongoing quest to combat picornavirus infections more effectively.
Collapse
Affiliation(s)
- Mei Ren
- State Key Laboratory for Animal Disease Control and Prevention, CollegeofVeterinaryMedicine, Lanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gembloux Agro-Biotech, University of Liege, Gembloux, Belgium
| | - Sahibzada Waheed Abdullah
- Livestock and dairy development department peshawar, Government of Khyber Pakhtunkhwa, Peshawar, Pakistan
| | - Chenchen Pei
- State Key Laboratory for Animal Disease Control and Prevention, CollegeofVeterinaryMedicine, Lanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, CollegeofVeterinaryMedicine, Lanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Shiqi Sun
- State Key Laboratory for Animal Disease Control and Prevention, CollegeofVeterinaryMedicine, Lanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou, 730000, China.
| |
Collapse
|
8
|
He J, Zhu T, Jiao L, Yu L, Peng S, Wang Z, Wang D, Liu H, Zhang S, Hu Y, Sun Y, Gao G, Cai T, Liu Z. Surface-Engineered Polygonatum Sibiricum Polysaccharide CaCO 3 Microparticles as Novel Vaccine Adjuvants to Enhance Immune Response. Mol Pharm 2024; 21:3936-3950. [PMID: 39017595 DOI: 10.1021/acs.molpharmaceut.4c00295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Micro- and nanoparticles delivery systems have been widely studied as vaccine adjuvants to enhance immunogenicity and sustain long-term immune responses. Polygonatum sibiricum polysaccharide (PSP) has been widely studied as an immunoregulator in improving immune responses. In this study, we synthesized and characterized cationic modified calcium carbonate (CaCO3) microparticles loaded with PSP (PEI-PSP-CaCO3, CTAB-PSP-CaCO3), studied the immune responses elicited by PEI-PSP-CaCO3 and CTAB-PSP-CaCO3 carrying ovalbumin (OVA). Our results demonstrated that PEI-PSP-CaCO3 significantly enhanced the secretion of IgG and cytokines (IL-4, IL-6, IFN-γ, and TNF-α) in vaccinated mice. Additionally, PEI-PSP-CaCO3 induced the activation of dendritic cells (DCs), T cells, and germinal center (GC) B cells in draining lymph nodes (dLNs). It also enhanced lymphocyte proliferation, increased the ratio of CD4+/CD8+ T cells, and elevated the frequency of CD3+ CD69+ T cells in spleen lymphocytes. Therefore, PEI-PSP-CaCO3 microparticles induced a stronger cellular and humoral immune response and could be potentially useful as a vaccine delivery and adjuvant system.
Collapse
Affiliation(s)
- Jin He
- Institution of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tianyu Zhu
- Institution of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lina Jiao
- Institution of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lin Yu
- Institution of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Song Peng
- Institution of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zheng Wang
- Institution of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Deyun Wang
- Institution of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Huina Liu
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315000, PR China
| | - Shun Zhang
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315000, PR China
| | - Yaoren Hu
- Department of Clinical Laboratory, Ningbo No.2 Hospital, Ningbo 315099, PR China
| | - Yuechao Sun
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315000, PR China
| | - Guosheng Gao
- Department of Clinical Laboratory, Ningbo No.2 Hospital, Ningbo 315099, PR China
| | - Ting Cai
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315000, PR China
| | - Zhenguang Liu
- Institution of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315000, PR China
| |
Collapse
|
9
|
Yu H, Chen G, Li L, Wei G, Li Y, Xiong S, Qi X. Spider minor ampullate silk protein nanoparticles: an effective protein delivery system capable of enhancing systemic immune responses. MedComm (Beijing) 2024; 5:e573. [PMID: 38882211 PMCID: PMC11179522 DOI: 10.1002/mco2.573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/17/2024] [Accepted: 04/05/2024] [Indexed: 06/18/2024] Open
Abstract
Spider silk proteins (spidroins) are particularly attractive due to their excellent biocompatibility. Spider can produce up to seven different types of spidroins, each with unique properties and functions. Spider minor ampullate silk protein (MiSp) might be particularly interesting for biomedical applications, as the constituent silk is mechanically strong and does not super-contract in water, attributed to its amino acid composition. In this study, we evaluate the potential of recombinant nanoparticles derived from Araneus ventricosus MiSp as a protein delivery carrier. The MiSp-based nanoparticles were able to serve as an effective delivery system, achieving nearly 100% efficiency in loading the model protein lysozyme, and displayed a sustained release profile at physiological pH. These nanoparticles could significantly improve the delivery efficacy of the model proteins through different administration routes. Furthermore, nanoparticles loaded with model protein antigen lysozyme after subcutaneous or intramuscular administration could enhance antigen-specific immune responses in mouse models, through a mechanism involving antigen-depot effects at the injection site, long-term antigen persistence, and efficient uptake by dendritic cells as well as internalization by lymph nodes. These findings highlight the transnational potential of MiSp-based nanoparticle system for protein drug and vaccine delivery.
Collapse
Affiliation(s)
- Hairui Yu
- The Jiangsu Key Laboratory of Infection and Immunity Institutes of Biology and Medical Sciences Soochow University Suzhou China
| | - Gefei Chen
- Department of Biosciences and Nutrition Karolinska Institutet Huddinge Sweden
| | - Linchao Li
- The Jiangsu Key Laboratory of Infection and Immunity Institutes of Biology and Medical Sciences Soochow University Suzhou China
| | - Guoqiang Wei
- The Jiangsu Key Laboratory of Infection and Immunity Institutes of Biology and Medical Sciences Soochow University Suzhou China
| | - Yanan Li
- Department of Neurosurgery Changhai Hospital Naval Medical University Shanghai China
| | - Sidong Xiong
- The Jiangsu Key Laboratory of Infection and Immunity Institutes of Biology and Medical Sciences Soochow University Suzhou China
| | - Xingmei Qi
- The Jiangsu Key Laboratory of Infection and Immunity Institutes of Biology and Medical Sciences Soochow University Suzhou China
| |
Collapse
|
10
|
Wu J, Wang X, Wang Y, Xun Z, Li S. Application of PLGA in Tumor Immunotherapy. Polymers (Basel) 2024; 16:1253. [PMID: 38732722 PMCID: PMC11085488 DOI: 10.3390/polym16091253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/24/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Biodegradable polymers have been extensively researched in the field of biomedicine. Polylactic-co-glycolic acid (PLGA), a biodegradable polymer material, has been widely used in drug delivery systems and has shown great potential in various medical fields, including vaccines, tissue engineering such as bone regeneration and wound healing, and 3D printing. Cancer, a group of diseases with high mortality rates worldwide, has recently garnered significant attention in the field of immune therapy research. In recent years, there has been growing interest in the delivery function of PLGA in tumor immunotherapy. In tumor immunotherapy, PLGA can serve as a carrier to load antigens on its surface, thereby enhancing the immune system's ability to attack tumor cells. Additionally, PLGA can be used to formulate tumor vaccines and immunoadjuvants, thereby enhancing the efficacy of tumor immunotherapy. PLGA nanoparticles (NPs) can also enhance the effectiveness of tumor immunotherapy by regulating the activity and differentiation of immune cells, and by improving the expression and presentation of tumor antigens. Furthermore, due to the diverse physical properties and surface modifications of PLGA, it has a wider range of potential applications in tumor immunotherapy through the loading of various types of drugs or other innovative substances. We aim to highlight the recent advances and challenges of plga in the field of oncology therapy to stimulate further research and development of innovative PLGA-based approaches, and more effective and personalized cancer therapies.
Collapse
Affiliation(s)
- Jiashuai Wu
- Innovation Institute, China Medical University, Shenyang 110122, China; (J.W.); (X.W.)
| | - Xiaopeng Wang
- Innovation Institute, China Medical University, Shenyang 110122, China; (J.W.); (X.W.)
| | - Yunduan Wang
- School of Intelligent Medicine, China Medical University, Shenyang 110122, China;
| | - Zhe Xun
- Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, Health Science Institute, China Medical University, Shenyang 110122, China
| | - Shuo Li
- Department of Biochemistry & Molecular Biology, School of Life Sciences, China Medical University, Shenyang 110122, China
| |
Collapse
|
11
|
Hartmeier PR, Ostrowski SM, Busch EE, Empey KM, Meng WS. Lymphatic distribution considerations for subunit vaccine design and development. Vaccine 2024; 42:2519-2529. [PMID: 38494411 DOI: 10.1016/j.vaccine.2024.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/30/2024] [Accepted: 03/13/2024] [Indexed: 03/19/2024]
Abstract
Subunit vaccines are an important platform for controlling current and emerging infectious diseases. The lymph nodes are the primary site generating the humoral response and delivery of antigens to these sites is critical to effective immunization. Indeed, the duration of antigen exposure within the lymph node is correlated with the antibody response. While current licensed vaccines are typically given through the intramuscular route, injecting vaccines subcutaneously allows for direct access to lymphatic vessels and therefore can enhance the transfer of antigen to the lymph nodes. However, protein subunit antigen uptake into the lymph nodes is inefficient, and subunit vaccines require adjuvants to stimulate the initial immune response. Therefore, formulation strategies have been developed to enhance the exposure of subunit proteins and adjuvants to the lymph nodes by increasing lymphatic uptake or prolonging the retention at the injection site. Given that lymph node exposure is a crucial consideration in vaccine design, in depth analyses of the pharmacokinetics of antigens and adjuvants should be the focus of future preclinical and clinical studies. This review will provide an overview of formulation strategies for targeting the lymphatics and prolonging antigen exposure and will discuss pharmacokinetic evaluations which can be applied toward vaccine development.
Collapse
Affiliation(s)
- Paul R Hartmeier
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA
| | - Sarah M Ostrowski
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, PA 15213, USA
| | - Emelia E Busch
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA
| | - Kerry M Empey
- Center for Clinical Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmacy and Therapeutics, School of Pharmacy, University of Pittsburgh, PA 15213, USA; Department of Immunology, School of Medicine University of Pittsburgh, PA 15213, USA
| | - Wilson S Meng
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA 15219, USA.
| |
Collapse
|
12
|
Freitas R, Ferreira E, Miranda A, Ferreira D, Relvas-Santos M, Castro F, Santos B, Gonçalves M, Quintas S, Peixoto A, Palmeira C, Silva AMN, Santos LL, Oliveira MJ, Sarmento B, Ferreira JA. Targeted and Self-Adjuvated Nanoglycovaccine Candidate for Cancer Immunotherapy. ACS NANO 2024; 18:10088-10103. [PMID: 38535625 DOI: 10.1021/acsnano.3c12487] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Advanced-stage solid primary tumors and metastases often express mucin 16 (MUC16), carrying immature glycans such as the Tn antigen, resulting in specific glycoproteoforms not found in healthy human tissues. This presents a valuable approach for designing targeted therapeutics, including cancer glycovaccines, which could potentially promote antigen recognition and foster the immune response to control disease spread and prevent relapse. In this study, we describe an adjuvant-free poly(lactic-co-glycolic acid) (PLGA)-based nanoglycoantigen delivery approach that outperforms conventional methods by eliminating the need for protein carriers while exhibiting targeted and adjuvant properties. To achieve this, we synthesized a library of MUC16-Tn glycoepitopes through single-pot enzymatic glycosylation, which were then stably engrafted onto the surface of PLGA nanoparticles, generating multivalent constructs that better represent cancer molecular heterogeneity. These glycoconstructs demonstrated affinity for Macrophage Galactose-type Lectin (MGL) receptor, known to be highly expressed by immature antigen-presenting cells, enabling precise targeting of immune cells. Moreover, the glycopeptide-grafted nanovaccine candidate displayed minimal cytotoxicity and induced the activation of dendritic cells in vitro, even in the absence of an adjuvant. In vivo, the formulated nanovaccine candidate was also nontoxic and elicited the production of IgG specifically targeting MUC16 and MUC16-Tn glycoproteoforms in cancer cells and tumors, offering potential for precise cancer targeting, including targeted immunotherapies.
Collapse
Affiliation(s)
- Rui Freitas
- Experimental Pathology and Therapeutics Group, Research Center of IPO-Porto (CI-IPOP), 4200-072 Porto, Portugal
- RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal
- ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- i3S - Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- INEB - Institute for Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
| | - Eduardo Ferreira
- Experimental Pathology and Therapeutics Group, Research Center of IPO-Porto (CI-IPOP), 4200-072 Porto, Portugal
- RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal
| | - Andreia Miranda
- Experimental Pathology and Therapeutics Group, Research Center of IPO-Porto (CI-IPOP), 4200-072 Porto, Portugal
- RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal
- ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- i3S - Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- INEB - Institute for Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
| | - Dylan Ferreira
- Experimental Pathology and Therapeutics Group, Research Center of IPO-Porto (CI-IPOP), 4200-072 Porto, Portugal
- RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal
- ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- i3S - Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- INEB - Institute for Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
| | - Marta Relvas-Santos
- Experimental Pathology and Therapeutics Group, Research Center of IPO-Porto (CI-IPOP), 4200-072 Porto, Portugal
- RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal
- ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- i3S - Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- INEB - Institute for Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
- REQUIMTE-LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Flávia Castro
- i3S - Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- INEB - Institute for Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
| | - Beatriz Santos
- Experimental Pathology and Therapeutics Group, Research Center of IPO-Porto (CI-IPOP), 4200-072 Porto, Portugal
- RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal
- ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Martina Gonçalves
- Experimental Pathology and Therapeutics Group, Research Center of IPO-Porto (CI-IPOP), 4200-072 Porto, Portugal
- RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal
- ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Sofia Quintas
- ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- i3S - Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- INEB - Institute for Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
| | - Andreia Peixoto
- Experimental Pathology and Therapeutics Group, Research Center of IPO-Porto (CI-IPOP), 4200-072 Porto, Portugal
- RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal
- i3S - Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- INEB - Institute for Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
| | - Carlos Palmeira
- Experimental Pathology and Therapeutics Group, Research Center of IPO-Porto (CI-IPOP), 4200-072 Porto, Portugal
- RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal
- Immunology Department, Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal
- Health School of University Fernando Pessoa, 4249-004 Porto, Portugal
| | - André M N Silva
- ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- REQUIMTE-LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- GlycoMatters Biotech, 4500-162 Espinho, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, Research Center of IPO-Porto (CI-IPOP), 4200-072 Porto, Portugal
- RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal
- GlycoMatters Biotech, 4500-162 Espinho, Portugal
- Department of Surgical Oncology, Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal
| | - Maria José Oliveira
- ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- i3S - Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- INEB - Institute for Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
| | - Bruno Sarmento
- i3S - Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- INEB - Institute for Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
- IUCS-CESPU, 4585-116 Gandra, Portugal
| | - José Alexandre Ferreira
- Experimental Pathology and Therapeutics Group, Research Center of IPO-Porto (CI-IPOP), 4200-072 Porto, Portugal
- RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal
- ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- GlycoMatters Biotech, 4500-162 Espinho, Portugal
| |
Collapse
|
13
|
Jäger E, Ilina O, Dölen Y, Valente M, van Dinther EA, Jäger A, Figdor CG, Verdoes M. pH and ROS Responsiveness of Polymersome Nanovaccines for Antigen and Adjuvant Codelivery: An In Vitro and In Vivo Comparison. Biomacromolecules 2024; 25:1749-1758. [PMID: 38236997 PMCID: PMC10934262 DOI: 10.1021/acs.biomac.3c01235] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 03/12/2024]
Abstract
The antitumor immunity can be enhanced through the synchronized codelivery of antigens and immunostimulatory adjuvants to antigen-presenting cells, particularly dendritic cells (DCs), using nanovaccines (NVs). To study the influence of intracellular vaccine cargo release kinetics on the T cell activating capacities of DCs, we compared stimuli-responsive to nonresponsive polymersome NVs. To do so, we employed "AND gate" multiresponsive (MR) amphiphilic block copolymers that decompose only in response to the combination of chemical cues present in the environment of the intracellular compartments in antigen cross-presenting DCs: low pH and high reactive oxygen species (ROS) levels. After being unmasked by ROS, pH-responsive side chains are exposed and can undergo a charge shift within a relevant pH window of the intracellular compartments in antigen cross-presenting DCs. NVs containing the model antigen Ovalbumin (OVA) and the iNKT cell activating adjuvant α-Galactosylceramide (α-Galcer) were fabricated using microfluidics self-assembly. The MR NVs outperformed the nonresponsive NV in vitro, inducing enhanced classical- and cross-presentation of the OVA by DCs, effectively activating CD8+, CD4+ T cells, and iNKT cells. Interestingly, in vivo, the nonresponsive NVs outperformed the responsive vaccines. These differences in polymersome vaccine performance are likely linked to the kinetics of cargo release, highlighting the crucial chemical requirements for successful cancer nanovaccines.
Collapse
Affiliation(s)
- Eliézer Jäger
- Institute
of Macromolecular Chemistry, Academy of
Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague, Czech Republic
- Department
of Medical BioSciences, Radboud University
Medical Center, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
| | - Olga Ilina
- Department
of Medical BioSciences, Radboud University
Medical Center, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
| | - Yusuf Dölen
- Department
of Medical BioSciences, Radboud University
Medical Center, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
| | - Michael Valente
- Department
of Medical BioSciences, Radboud University
Medical Center, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
| | - Eric A.W. van Dinther
- Department
of Medical BioSciences, Radboud University
Medical Center, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
| | - Alessandro Jäger
- Institute
of Macromolecular Chemistry, Academy of
Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague, Czech Republic
| | - Carl G. Figdor
- Department
of Medical BioSciences, Radboud University
Medical Center, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
- Institute
for Chemical Immunology, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
| | - Martijn Verdoes
- Department
of Medical BioSciences, Radboud University
Medical Center, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
- Institute
for Chemical Immunology, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
14
|
He J, Zhu T, Mao N, Cai G, Gu P, Song Z, Lu X, Yang Y, Wang D. Cistanche deserticola polysaccharide-functionalized dendritic fibrous nano-silica as oral vaccine adjuvant delivery enhancing both the mucosal and systemic immunity. Int J Biol Macromol 2024; 262:129982. [PMID: 38354941 DOI: 10.1016/j.ijbiomac.2024.129982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/24/2024] [Accepted: 02/03/2024] [Indexed: 02/16/2024]
Abstract
Oral vaccines are a safe and convenient alternative to injected vaccines and have great potential to prevent major infectious diseases. However, the harsh gastrointestinal (GI) environment, mucus barriers, low immunogenicity, and lack of effective and safe mucosal adjuvants are the major challenges for oral vaccine delivery. In recent years, nanoparticle-based strategies have become attractive for improving oral vaccine delivery. Here, the dendritic fibrous nano-silica (DFNS) grafted with Cistanche deserticola polysaccharide (CDP) nanoparticles (CDP-DFNS) were prepared and investigated how to impact the immune responses. CDP-DFNS facilitated the antigen uptake in mouse bone marrow-derived dendritic cells (BMDCs), and induce the activation of DCs in vitro. Furthermore, in vivo experiments, the result showed that the uptake efficiency by Peyer's patches (PPs) of CDP-DFNS/BSA was the best. And CDP-DFNS/BSA then significantly activated the DCs in lamina propria (LP), and T/B cells in PPs and mesenteric lymph nodes (MLNs). Moreover, the memory T cell responses in later period of vaccination was stronger than other groups. In addition, CDP-DFNS/BSA enhanced BSA-specific antibody IgG, IgA production, and SIgA secretion, was effective at inducing a strong mixed Th1/Th2 response and mucosal antibody responses. These results indicated that CDP-DFNS deserves further consideration as an oral vaccine adjuvant delivery system.
Collapse
Affiliation(s)
- Jin He
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tianyu Zhu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ningning Mao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Gaofeng Cai
- Collage of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Pengfei Gu
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Zuchen Song
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xuanqi Lu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yang Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Deyun Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
15
|
Sukkarun P, Kitiyodom S, Kamble MT, Bunnoy A, Boonanuntanasarn S, Yata T, Boonrungsiman S, Thompson KD, Rodkhum C, Pirarat N. Systemic and mucosal immune responses in red tilapia (Oreochromis sp.) following immersion vaccination with a chitosan polymer-based nanovaccine against Aeromonas veronii. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109383. [PMID: 38246266 DOI: 10.1016/j.fsi.2024.109383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
A mucoadhesive chitosan polymer-based nanoplatform has been increasingly recognized as an effective mucosal vaccine delivery system for fish. The present study aimed to investigate the effectiveness of immersion vaccination with a chitosan polymer-based nanovaccine to elicit an immune response in serum and mucus of red tilapia and evaluate its protective efficacy after immersion challenge with a heterogenous strain of Aeromonas veronii UDRT09. Six hundred red tilapia (22 ± 1.8 g) were randomly allocated into four experimental groups: control, empty-polymeric nanoparticle (PC), formalin-killed vaccine (FKV), and chitosan polymer-based nanovaccine (CS-NV) in triplicate. The specific IgM antibody levels and their bactericidal activity were assessed in serum and mucus for 28 days after immersion vaccination and followed by immersion challenge with A. veronii. The immersion vaccine was found to be safe for red tilapia, with no mortalities occurring during the vaccination procedure. The specific IgM antibody levels and bactericidal activity against A. veronii in both serum and mucus were significantly higher in red tilapia vaccinated with CS-NV compared to the FKV and control groups at all time points. Furthermore, the serum lysozyme activity, ACH50, and total Ig levels demonstrated a significant elevation in the groups vaccinated with CS-NV compared to the FKV and control groups. Importantly, the Relative Percentage Survival (RPS) value of the CS-NV group (71 %) was significantly higher than that of the FKV (15.12 %) and PC (2.33 %) groups, respectively. This indicates that the chitosan polymer-based nanovaccine platform is an effective delivery system for the immersion vaccination of tilapia.
Collapse
Affiliation(s)
- Pimwarang Sukkarun
- Center of Excellence in Wildlife, Exotic and Aquatic Animal Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand; Faculty of Veterinary Science, Rajamangala University of Technology Srivijaya, Nakhonsithammarat, 80240, Thailand
| | - Sirikorn Kitiyodom
- Center of Excellence in Wildlife, Exotic and Aquatic Animal Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Manoj Tukaram Kamble
- Center of Excellence in Wildlife, Exotic and Aquatic Animal Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Anurak Bunnoy
- Center of Excellence in Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand
| | - Surintorn Boonanuntanasarn
- School of Animal Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Teerapong Yata
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Suwimon Boonrungsiman
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Kim D Thompson
- Moredun Research Institute, Pentlands Science Park, Penicuik, EH26 0PZ, UK
| | - Channarong Rodkhum
- Center of Excellence in Fish Infectious Diseases (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Nopadon Pirarat
- Center of Excellence in Wildlife, Exotic and Aquatic Animal Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
16
|
Hurtado-Morillas C, Martínez-Rodrigo A, Orden JA, de Urbina-Fuentes L, Mas A, Domínguez-Bernal G. Enhancing Control of Leishmania infantum Infection: A Multi-Epitope Nanovaccine for Durable T-Cell Immunity. Animals (Basel) 2024; 14:605. [PMID: 38396573 PMCID: PMC10886062 DOI: 10.3390/ani14040605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/02/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Canine leishmaniosis (CanL) is a growing health problem for which vaccination is a crucial tool for the control of disease. The successful development of an effective vaccine against this disease relies on eliciting a robust and enduring T-cell immune response involving the activation of CD4+ Th1 and CD8+ T-cells. This study aimed to evaluate the immunogenicity and prophylactic efficacy of a novel nanovaccine comprising a multi-epitope peptide, known as HisDTC, encapsulated in PLGA nanoparticles against Leishmania infantum infection in the murine model. The encapsulation strategy was designed to enhance antigen loading and sustain release, ensuring prolonged exposure to the immune system. Our results showed that mice immunized with PLGA-encapsulated HisDTC exhibited a significant reduction in the parasite load in the liver and spleen over both short and long-term duration. This reduction was associated with a cellular immune profile marked by elevated levels of pro-inflammatory cytokines, such as IFN-γ, and the generation of memory T cells. In conclusion, the current study establishes that PLGA-encapsulated HisDTC can promote effective and long-lasting T-cell responses against L. infantum in the murine model. These findings underscore the potential utility of multi-epitope vaccines, in conjunction with appropriate delivery systems, as an alternative strategy for CanL control.
Collapse
Affiliation(s)
- Clara Hurtado-Morillas
- INMIVET, Animal Health Department, School of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (C.H.-M.)
| | - Abel Martínez-Rodrigo
- INMIVET, Animal Science Department, School of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), 28130 Madrid, Spain
| | - José A. Orden
- INMIVET, Animal Health Department, School of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (C.H.-M.)
| | - Laura de Urbina-Fuentes
- INMIVET, Animal Health Department, School of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (C.H.-M.)
| | - Alicia Mas
- INMIVET, Animal Health Department, School of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (C.H.-M.)
| | - Gustavo Domínguez-Bernal
- INMIVET, Animal Health Department, School of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (C.H.-M.)
| |
Collapse
|
17
|
Joshi D, Shah S, Chbib C, Uddin MN. Potential of DPD ((S)-4,5-dihydroxy-2,3-pentanedione) Analogs in Microparticulate Formulation as Vaccine Adjuvants. Pharmaceuticals (Basel) 2024; 17:184. [PMID: 38399399 PMCID: PMC10891675 DOI: 10.3390/ph17020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/22/2023] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
The molecule (S)-4,5-dihydroxy-2,3-pentanedione (DPD) is produced by many different species of bacteria and is involved in bacterial communication. DPD is the precursor of signal molecule autoinducer-2 (AI-2) and has high potential to be used as a vaccine adjuvant. Vaccine adjuvants are compounds that enhance the stability and immunogenicity of vaccine antigens, modulate efficacy, and increase the immune response to a particular antigen. Previously, the microparticulate form of (S)-DPD was found to have an adjuvant effect with the gonorrhea vaccine. In this study, we evaluated the immunogenicity and adjuvanticity of several synthetic analogs of the (S)-DPD molecule, including ent-DPD((R)-4,5-dihydroxy-2,3-pentanedione), n-butyl-DPD ((S)-1,2-dihydroxy-3,4-octanedione), isobutyl-DPD ((S)-1,2-dihydroxy-6-methyl-3,4-heptanedione), n-hexyl-DPD ((S)-1,2-dihydroxy-3,4-decanedione), and phenyl-DPD ((S)-3,4-dihydroxy-1-phenyl-1,2-butanedione), in microparticulate formulations. The microparticulate formulations of all analogs of (S)-DPD were found to be noncytotoxic toward dendritic cells. Among these analogs, ent-DPD, n-butyl-DPD, and isobutyl-DPD were found to be immunogenic toward antigens and showed adjuvant efficacy with microparticulate gonorrhea vaccines. It was observed that n-hexyl-DPD and phenyl-DPD did not show any adjuvant effect. This study shows that synthetic analogs of (S)-DPD molecules are capable of eliciting adjuvant effects with vaccines. A future in vivo evaluation will further confirm that these analogs are promising vaccine adjuvants.
Collapse
Affiliation(s)
- Devyani Joshi
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA; (D.J.); (S.S.)
| | - Sarthak Shah
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA; (D.J.); (S.S.)
| | - Christiane Chbib
- College of Pharmacy, Larkin University, 18301 N Miami Ave, Miami, FL 33169, USA;
| | - Mohammad N. Uddin
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA; (D.J.); (S.S.)
| |
Collapse
|
18
|
Puente AA, Ortega-Rivera OA, Wirth DM, Pokorski JK, Steinmetz NF. Melt Processing Virus-Like Particle-Based Vaccine Candidates into Biodegradable Polymer Implants. Methods Mol Biol 2024; 2720:221-245. [PMID: 37775669 DOI: 10.1007/978-1-0716-3469-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Melt processing is an emerging production method to efficiently encapsulate proteins into polymeric devices for sustained release. In the context of vaccines, melt processing is well-suited to develop vaccine delivery devices that are stable outside the cold chain and can generate protective immunity from a single dose. We have demonstrated the compatibility of bacteriophage Qβ virus-like particles (VLPs) with hot-melt extrusion (HME) and have leveraged this technology to develop a single-dose vaccine candidate for vaccination against human papillomavirus (HPV). Here, we detail the methods for chemically conjugating an HPV peptide epitope from the L2 minor capsid protein to Qβ VLPs to generate HPV-Qβ particles. We outline techniques used to characterize HPV-Qβ particles, and we elaborate on the process to encapsulate HPV-Qβ into biodegradable poly(lactic-co-glycolic acid) (PLGA) implants and discuss methods for the materials characterization of the HPV-Qβ/polymer melts. The methods described could be adapted to other disease targets, i.e., by conjugation of a different peptide epitope, or transferred to other VLP systems suited for conjugation, immune response, or stability during processing. Such VLPs are ideally suited for use in HME, a mature, scalable, continuous, and solvent-free process which can be adapted to mold devices, therefore allowing the processing of the melts into various geometries, such as subcutaneous implants, or self-administrable microneedle patches.
Collapse
Affiliation(s)
- Armando A Puente
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Oscar A Ortega-Rivera
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA
- Center for Nano-ImmunoEngineering, University of California San Diego, La Jolla, CA, USA
| | - David M Wirth
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA
| | - Jonathan K Pokorski
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA
- Center for Nano-ImmunoEngineering, University of California San Diego, La Jolla, CA, USA
- Institute for Materials Design and Delivery, University of California San Diego, La Jolla, CA, USA
| | - Nicole F Steinmetz
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA.
- Center for Nano-ImmunoEngineering, University of California San Diego, La Jolla, CA, USA.
- Institute for Materials Design and Delivery, University of California San Diego, La Jolla, CA, USA.
- Department of Radiology, University of California San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
19
|
Garg A, Agrawal R, Chopra H, Singh T, Chaudhary R, Tankara A. A Glance on Nanovaccine: A Potential Approach for Disease Prevention. Curr Pharm Biotechnol 2024; 25:1406-1418. [PMID: 37861010 DOI: 10.2174/0113892010254221231006100659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/03/2023] [Accepted: 08/18/2023] [Indexed: 10/21/2023]
Abstract
There are several vaccines available for preventing various bacterial and viral infections, but still, there are many challenges that require the development of noninvasive, more efficient, and active vaccines. The advancement in biotechnological tools has provided safer antigens, such as nucleic acids, proteins etc., but due to their lower immunogenic property, adjuvants of stronger immune response are required. Nanovaccines are effective vaccines when compared with conventional vaccines as they can induce both Humoral and cell-mediated immune responses and also provide longer immunogenic memory. The nanocarriers used in vaccines act as adjuvant. They provide site-specific delivery of antigens and can be used in conjugation with immunostimulatory molecules for enhancing adjuvant therapy. The nanovaccines avoid degrading cell pathways and provide effective absorption into blood vessels. The higher potential of nanovaccines to treat various diseases, such as acquired immuno deficiency syndrome, cancer, tuberculosis, malaria and many others, along with their immunological mechanisms and different types, have been discussed in the review.
Collapse
Affiliation(s)
- Akash Garg
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, NH-2, Mathura-Delhi Road, P.O Chhatikara, Mathura, 281001, Uttar Pradesh, India
| | - Rutvi Agrawal
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, NH-2, Mathura-Delhi Road, P.O Chhatikara, Mathura, 281001, Uttar Pradesh, India
| | - Himansu Chopra
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, NH-2, Mathura-Delhi Road, P.O Chhatikara, Mathura, 281001, Uttar Pradesh, India
| | - Talever Singh
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, NH-2, Mathura-Delhi Road, P.O Chhatikara, Mathura, 281001, Uttar Pradesh, India
| | - Ramkumar Chaudhary
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, NH-2, Mathura-Delhi Road, P.O Chhatikara, Mathura, 281001, Uttar Pradesh, India
| | - Abhishek Tankara
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, NH-2, Mathura-Delhi Road, P.O Chhatikara, Mathura, 281001, Uttar Pradesh, India
| |
Collapse
|
20
|
Gao X, Wang X, Li S, Saif Ur Rahman M, Xu S, Liu Y. Nanovaccines for Advancing Long-Lasting Immunity against Infectious Diseases. ACS NANO 2023; 17:24514-24538. [PMID: 38055649 DOI: 10.1021/acsnano.3c07741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Infectious diseases, particularly life-threatening pathogens such as small pox and influenza, have substantial implications on public health and global economies. Vaccination is a key approach to combat existing and emerging pathogens. Immunological memory is an essential characteristic used to evaluate vaccine efficacy and durability and the basis for the long-term effects of vaccines in protecting against future infections; however, optimizing the potency, improving the quality, and enhancing the durability of immune responses remains challenging and a focus for research involving investigation of nanovaccine technologies. In this review, we describe how nanovaccines can address the challenges for conventional vaccines in stimulating adaptive immune memory responses to protect against reinfection. We discuss protein and nonprotein nanoparticles as useful antigen platforms, including those with highly ordered and repetitive antigen array presentation to enhance immunogenicity through cross-linking with multiple B cell receptors, and with a focus on antigen properties. In addition, we describe how nanoadjuvants can improve immune responses by providing enhanced access to lymph nodes, lymphnode targeting, germinal center retention, and long-lasting immune response generation. Nanotechnology has the advantage to facilitate vaccine induction of long-lasting immunity against infectious diseases, now and in the future.
Collapse
Affiliation(s)
- Xinglong Gao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xinlian Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Shilin Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | | | - Shanshan Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, P.R. China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P.R. China
| |
Collapse
|
21
|
Chowdhury N, Kundu A. Nanotechnology Platform for Advancing Vaccine Development against the COVID-19 Virus. Diseases 2023; 11:177. [PMID: 38131983 PMCID: PMC10742622 DOI: 10.3390/diseases11040177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/25/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
The COVID-19 pandemic has had a profound impact on societies, public health, healthcare systems, and the world economy. With over 771 million people infected worldwide and a staggering death toll exceeding 6,960,783 as of 4 October 2023 (according to the World Health Organization), the urgency for a solution was paramount. Since the outbreak, the demand for immediate treatment for COVID-19 viral infection, as well as for effective vaccination against this virus, was soaring, which led scientists, pharmaceutical/biotech companies, government health agencies, etc., to think about a treatment strategy that could control and minimize this outbreak as soon as possible. Vaccination emerged as the most effective strategy to combat this infectious disease. For vaccination strategies, any conventional vaccine approach using attenuated live or inactivated/engineered virus, as well as other approaches, typically requires years of research and assessment. However, the urgency of the situation promoted a faster and more effective approach to vaccine development against COVID-19. The role of nanotechnology in designing, manufacturing, boosting, and delivering vaccines to the host to counter this virus was unquestionably valued and assessed. Several nanoformulations are discussed here in terms of their composition, physical properties, credibility, and applications in past vaccine development (as well as the possibility of using those used in previous applications for the generation of the COVID-19 vaccine). Controlling and eliminating the spread of the virus and preventing future recurrence requires a safe, tolerable, and effective vaccine strategy. In this review, we discuss the potential of nanoformulations as the basis for an effective vaccine strategy against COVID-19.
Collapse
Affiliation(s)
| | - Anup Kundu
- Department of Biology, Xavier University of Louisiana, New Orleans, LA 70125, USA;
| |
Collapse
|
22
|
Shahbazi S, Habibi M, Badmasti F, Sabzi S, Farokhi M, Asadi Karam MR. Design and fabrication of a vaccine candidate based on rOmpA from Klebsiella pneumoniae encapsulated in silk fibroin-sodium alginate nanoparticles against pneumonia infection. Int Immunopharmacol 2023; 125:111171. [PMID: 37948863 DOI: 10.1016/j.intimp.2023.111171] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/14/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
The present study describes the design and fabrication of a novel vaccine candidate based on the outer membrane protein A (rOmpA) from Klebsiella pneumoniae (K. pneumoniae) encapsulated in silk fibroin-sodium alginate nanoparticles (SF-SANPs) against K. pneumoniae-mediated pneumonia. The physicochemical properties, toxicity, release profile, and in vivo potency of SF-SANPs encapsulated with rOmpA were evaluated. The spherical nano vaccine was created with an average particle size of 160 nm and an encapsulation efficiency of 80 %. Antigen release from SF-SANPs was 40 % after 22 days release assay. The SF-SANPs showed a zeta potential of -24.8 mV and had no toxic effect on the L929 cells in vitro. It was found that SF-SANPs in the vaccine formulation promoted systemic and mucosal antibodies and also stimulated cytokine responses, inducing both humoral (Th2) and cellular (Th1) immune responses, with a Th1-polarized response. The vaccine candidate was effective in protecting the mice lung against experimental pneumonia and reducing inflammation. These findings suggest that the rOmpA-based vaccine encapsulated in SF-SANPs could be a promising strategy for preventing pneumonia caused by K. pneumoniae.
Collapse
Affiliation(s)
- Shahla Shahbazi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Mehri Habibi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Farzad Badmasti
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Samira Sabzi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran.
| | | |
Collapse
|
23
|
Li C, Han Y, Luo X, Qian C, Li Y, Su H, Du G. Immunomodulatory nano-preparations for rheumatoid arthritis. Drug Deliv 2023; 30:9-19. [PMID: 36482698 PMCID: PMC9744217 DOI: 10.1080/10717544.2022.2152136] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease (AD) caused by the aberrant attack of the immune system on its own joint tissues. Genetic and environmental factors are the main reasons of immune system impairment and high incidence of RA. Although there are medications on the market that lessen disease activity, there is no known cure for RA, and patients are at risk in varying degrees of systemic immunosuppression. By transporting (encapsulating or surface binding) RA-related self-antigens, nucleic acids, immunomodulators, or cytokines, tolerogenic nanoparticles-also known as immunomodulatory nano-preparations-have the potential to gently regulate local immune responses and ultimately induce antigen-specific immune tolerance. We review the recent advances in immunomodulatory nano-preparations for delivering self-antigen or self-antigen plus immunomodulator, simulating apoptotic cell avatars in vivo, acting as artificial antigen-presenting cells, and based on scaffolds and gels, to provide a reference for developing new immunotherapies for RA.
Collapse
Affiliation(s)
- Chenglong Li
- Department of Pharmacy, The People’s Hospital of Deyang City, Deyang, P.R. China,CONTACT Chenglong Li Department of Pharmacy, The People’s Hospital of Deyang City, Deyang618000, P.R. China
| | - Yangyun Han
- Department of Neurosurgery, The People’s Hospital of Deyang City, Deyang, P.R. China
| | - Xianjin Luo
- Pharmaceutical Biotechnology, Center for System-based Drug Research, Ludwig-Maximilians-Universität, Munich, Germany
| | - Can Qian
- Department of Pharmacy, The People’s Hospital of Deyang City, Deyang, P.R. China
| | - Yang Li
- Department of Pharmacy, The People’s Hospital of Deyang City, Deyang, P.R. China
| | - Huaiyu Su
- Department of Pharmacy, The People’s Hospital of Deyang City, Deyang, P.R. China,Huaiyu Su Department of Pharmacy, The People’s Hospital of Deyang City, Deyang 618000, P.R. China
| | - Guangshen Du
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, P.R. China,Guangshen Du Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
24
|
Mateus D, Sebastião AI, Frasco MF, Carrascal MA, Falcão A, Gomes CM, Neves B, Sales MGF, Cruz MT. Artificial Dendritic Cells: A New Era of Promising Antitumor Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303940. [PMID: 37469192 DOI: 10.1002/smll.202303940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/03/2023] [Indexed: 07/21/2023]
Abstract
The accelerated development of antitumor immunotherapies in recent years has brought immunomodulation into the spotlight. These include immunotherapeutic treatments with dendritic cell (DC)-based vaccines which can elicit tumor-specific immune responses and prolong survival. However, this personalized treatment has several drawbacks, including being costly, labor-intensive, and time consuming. This has sparked interest in producing artificial dendritic cells (aDCs) to open up the possibility of standardized "off-the-shelf" protocols and circumvent the cumbersome and expensive personalized medicine. aDCs take advantage of materials that can be designed and tailored for specific clinical applications. Here, an overview of the immunobiology underlying antigen presentation by DCs is provided in an attempt to select the key features to be mimicked and/or improved through the development of aDCs. The inherent properties of aDCs that greatly impact their performance in vivo and, consequently, the fate of the triggered immune response are also outlined.
Collapse
Affiliation(s)
- Daniela Mateus
- Faculty of Pharmacy of the University of Coimbra, Coimbra, 3000-548, Portugal
- Center for Neuroscience and Cell Biology-CNC, University of Coimbra, Coimbra, 3004-504, Portugal
- BioMark@UC/CEB - LABBELS Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Coimbra, 3030-790, Portugal
| | - Ana I Sebastião
- Faculty of Pharmacy of the University of Coimbra, Coimbra, 3000-548, Portugal
- Center for Neuroscience and Cell Biology-CNC, University of Coimbra, Coimbra, 3004-504, Portugal
| | - Manuela F Frasco
- BioMark@UC/CEB - LABBELS Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Coimbra, 3030-790, Portugal
| | | | - Amílcar Falcão
- Faculty of Pharmacy of the University of Coimbra, Coimbra, 3000-548, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research, CIBIT, University of Coimbra, Coimbra, 3000-548, Portugal
| | - Célia M Gomes
- Coimbra Institute for Clinical and Biomedical Research, iCBR, Faculty of Medicine, University of Coimbra, Coimbra, 3000-548, Portugal
- Center for Innovation in Biomedicine and Biotechnology, CIBB, University of Coimbra, Coimbra, 3000-548, Portugal
| | - Bruno Neves
- Department of Medical Sciences and Institute of Biomedicine, iBiMED, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Maria G F Sales
- BioMark@UC/CEB - LABBELS Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Coimbra, 3030-790, Portugal
| | - Maria T Cruz
- Faculty of Pharmacy of the University of Coimbra, Coimbra, 3000-548, Portugal
- Center for Neuroscience and Cell Biology-CNC, University of Coimbra, Coimbra, 3004-504, Portugal
| |
Collapse
|
25
|
Morgun E, Zhu J, Almunif S, Bobbala S, Aguilar MS, Wang J, Conner K, Cui Y, Cao L, Seshadri C, Scott EA, Wang CR. Vaccination with mycobacterial lipid loaded nanoparticle leads to lipid antigen persistence and memory differentiation of antigen-specific T cells. eLife 2023; 12:RP87431. [PMID: 37877801 PMCID: PMC10599656 DOI: 10.7554/elife.87431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) infection elicits both protein and lipid antigen-specific T cell responses. However, the incorporation of lipid antigens into subunit vaccine strategies and formulations has been underexplored, and the characteristics of vaccine-induced Mtb lipid-specific memory T cells have remained elusive. Mycolic acid (MA), a major lipid component of the Mtb cell wall, is presented by human CD1b molecules to unconventional T cell subsets. These MA-specific CD1b-restricted T cells have been detected in the blood and disease sites of Mtb-infected individuals, suggesting that MA is a promising lipid antigen for incorporation into multicomponent subunit vaccines. In this study, we utilized the enhanced stability of bicontinuous nanospheres (BCN) to efficiently encapsulate MA for in vivo delivery to MA-specific T cells, both alone and in combination with an immunodominant Mtb protein antigen (Ag85B). Pulmonary administration of MA-loaded BCN (MA-BCN) elicited MA-specific T cell responses in humanized CD1 transgenic mice. Simultaneous delivery of MA and Ag85B within BCN activated both MA- and Ag85B-specific T cells. Notably, pulmonary vaccination with MA-Ag85B-BCN resulted in the persistence of MA, but not Ag85B, within alveolar macrophages in the lung. Vaccination of MA-BCN through intravenous or subcutaneous route, or with attenuated Mtb likewise reproduced MA persistence. Moreover, MA-specific T cells in MA-BCN-vaccinated mice differentiated into a T follicular helper-like phenotype. Overall, the BCN platform allows for the dual encapsulation and in vivo activation of lipid and protein antigen-specific T cells and leads to persistent lipid depots that could offer long-lasting immune responses.
Collapse
Affiliation(s)
- Eva Morgun
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | - Jennifer Zhu
- Department of Biomedical Engineering, Northwestern UniversityEvanstonUnited States
| | - Sultan Almunif
- Department of Biomedical Engineering, Northwestern UniversityEvanstonUnited States
| | - Sharan Bobbala
- Department of Biomedical Engineering, Northwestern UniversityEvanstonUnited States
| | - Melissa S Aguilar
- Department of Medicine, University of Washington School of MedicineSeattleUnited States
| | - Junzhong Wang
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | - Kathleen Conner
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | - Yongyong Cui
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | - Liang Cao
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | - Chetan Seshadri
- Department of Medicine, University of Washington School of MedicineSeattleUnited States
| | - Evan A Scott
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | - Chyung-Ru Wang
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| |
Collapse
|
26
|
Rodrigues KA, Cottrell CA, Steichen JM, Groschel B, Abraham W, Suh H, Agarwal Y, Ni K, Chang JYH, Yousefpour P, Melo MB, Schief WR, Irvine DJ. Optimization of an alum-anchored clinical HIV vaccine candidate. NPJ Vaccines 2023; 8:117. [PMID: 37573422 PMCID: PMC10423202 DOI: 10.1038/s41541-023-00711-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/12/2023] [Indexed: 08/14/2023] Open
Abstract
In the ongoing effort to develop a vaccine against HIV, vaccine approaches that promote strong germinal center (GC) responses may be critical to enable the selection and affinity maturation of rare B cell clones capable of evolving to produce broadly neutralizing antibodies. We previously demonstrated an approach for enhancing GC responses and overall humoral immunity elicited by alum-adjuvanted protein immunization via the use of phosphoserine (pSer) peptide-tagged immunogens that stably anchor to alum particles via ligand exchange with the alum particle surface. Here, using a clinically relevant stabilized HIV Env trimer termed MD39, we systematically evaluated the impact of several parameters relevant to pSer tag composition and trimer immunogen design to optimize this approach, including phosphate valency, amino acid sequence of the trimer C-terminus used for pSer tag conjugation, and structure of the pSer tag. We also tested the impact of co-administering a potent saponin/monophosphoryl lipid A (MPLA) nanoparticle co-adjuvant with alum-bound trimers. We identified MD39 trimer sequences bearing an optimized positively-charged C-terminal amino acid sequence, which, when conjugated to a pSer tag with four phosphates and a polypeptide spacer, bound very tightly to alum particles while retaining a native Env-like antigenicity profile. This optimized pSer-trimer design elicited robust antigen-specific GC B cell and serum IgG responses in mice. Through this optimization, we present a favorable MD39-pSer immunogen construct for clinical translation.
Collapse
Affiliation(s)
- Kristen A Rodrigues
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Harvard-MIT Health Sciences and Technology Program, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Christopher A Cottrell
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jon M Steichen
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Bettina Groschel
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Wuhbet Abraham
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
| | - Heikyung Suh
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
| | - Yash Agarwal
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Kaiyuan Ni
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jason Y H Chang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
| | - Parisa Yousefpour
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Mariane B Melo
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - William R Schief
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA.
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA.
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA.
| |
Collapse
|
27
|
Hou Y, Chen M, Bian Y, Zheng X, Tong R, Sun X. Advanced subunit vaccine delivery technologies: From vaccine cascade obstacles to design strategies. Acta Pharm Sin B 2023; 13:3321-3338. [PMID: 37655334 PMCID: PMC10465871 DOI: 10.1016/j.apsb.2023.01.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/23/2022] [Accepted: 12/03/2022] [Indexed: 01/12/2023] Open
Abstract
Designing and manufacturing safe and effective vaccines is a crucial challenge for human health worldwide. Research on adjuvant-based subunit vaccines is increasingly being explored to meet clinical needs. Nevertheless, the adaptive immune responses of subunit vaccines are still unfavorable, which may partially be attributed to the immune cascade obstacles and unsatisfactory vaccine design. An extended understanding of the crosstalk between vaccine delivery strategies and immunological mechanisms could provide scientific insight to optimize antigen delivery and improve vaccination efficacy. In this review, we summarized the advanced subunit vaccine delivery technologies from the perspective of vaccine cascade obstacles after administration. The engineered subunit vaccines with lymph node and specific cell targeting ability, antigen cross-presentation, T cell activation properties, and tailorable antigen release patterns may achieve effective immune protection with high precision, efficiency, and stability. We hope this review can provide rational design principles and inspire the exploitation of future subunit vaccines.
Collapse
Affiliation(s)
- Yingying Hou
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Min Chen
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yuan Bian
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Xi Zheng
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Rongsheng Tong
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
28
|
Morgun E, Zhu J, Almunif S, Bobbala S, Aguilar MS, Wang J, Conner K, Cui Y, Cao L, Seshadri C, Scott EA, Wang CR. Vaccination with mycobacterial lipid loaded nanoparticle leads to lipid antigen persistence and memory differentiation of antigen-specific T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.07.531489. [PMID: 36945395 PMCID: PMC10028924 DOI: 10.1101/2023.03.07.531489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Mycobacterium tuberculosis (Mtb) infection elicits both protein and lipid antigen-specific T cell responses. However, the incorporation of lipid antigens into subunit vaccine strategies and formulations has been underexplored, and the characteristics of vaccine-induced Mtb lipid-specific memory T cells have remained elusive. Mycolic acid (MA), a major lipid component of the Mtb cell wall, is presented by human CD1b molecules to unconventional T cell subsets. These MA-specific CD1b-restricted T cells have been detected in the blood and disease sites of Mtb-infected individuals, suggesting that MA is a promising lipid antigen for incorporation into multicomponent subunit vaccines. In this study, we utilized the enhanced stability of bicontinuous nanospheres (BCN) to efficiently encapsulate MA for in vivo delivery to MA-specific T cells, both alone and in combination with an immunodominant Mtb protein antigen (Ag85B). Pulmonary administration of MA-loaded BCN (MA-BCN) elicited MA-specific T cell responses in humanized CD1 transgenic mice. Simultaneous delivery of MA and Ag85B within BCN activated both MA- and Ag85B-specific T cells. Notably, pulmonary vaccination with MA-Ag85B-BCN resulted in the persistence of MA, but not Ag85B, within alveolar macrophages in the lung. Vaccination of MA-BCN through intravenous or subcutaneous route, or with attenuated Mtb likewise reproduced MA persistence. Moreover, MA-specific T cells in MA-BCN-vaccinated mice differentiated into a T follicular helper-like phenotype. Overall, the BCN platform allows for the dual encapsulation and in vivo activation of lipid and protein antigen-specific T cells and leads to persistent lipid depots that could offer long-lasting immune responses.
Collapse
Affiliation(s)
- Eva Morgun
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jennifer Zhu
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Sultan Almunif
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Sharan Bobbala
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Melissa S. Aguilar
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Junzhong Wang
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kathleen Conner
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Yongyong Cui
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Liang Cao
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Chetan Seshadri
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Evan A. Scott
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Chyung-Ru Wang
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
29
|
Bricha S, Côté-Cyr M, Tremblay T, Nguyen PT, St-Louis P, Giguère D, Archambault D, Bourgault S. Synthetic Multicomponent Nanovaccines Based on the Molecular Co-assembly of β-Peptides Protect against Influenza A Virus. ACS Infect Dis 2023; 9:1232-1244. [PMID: 37200051 DOI: 10.1021/acsinfecdis.2c00610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Peptides with the ability to self-assemble into nanoparticles have emerged as an attractive strategy to design antigen delivery platforms for subunit vaccines. While toll-like receptor (TLR) agonists are promising immunostimulants, their use as soluble agents is limited by their rapid clearance and off-target inflammation. Herein, we harnessed molecular co-assembly to prepare multicomponent cross-β-sheet peptide nanofilaments exposing an antigenic epitope derived from the influenza A virus and a TLR agonist. The TLR7 agonist imiquimod and the TLR9 agonist CpG were respectively functionalized on the assemblies by means of an orthogonal pre- or post-assembly conjugation strategy. The nanofilaments were readily uptaken by dendritic cells, and the TLR agonists retained their activity. Multicomponent nanovaccines induced a robust epitope-specific immune response and completely protected immunized mice from a lethal influenza A virus inoculation. This versatile bottom-up approach is promising for the preparation of synthetic vaccines with customized magnitude and polarization of the immune responses.
Collapse
Affiliation(s)
- Salma Bricha
- Department of Chemistry, Université du Québec à Montréal, C.P.8888, Succursale Centre-Ville, Montréal H3C 3P8, Canada
- Department of Biological Sciences, Université du Québec à Montréal, C.P.8888, Succursale Centre-Ville, Montréal H3C 3P8, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), Québec H3C 3P8, Canada
- The Swine and Poultry Infectious Diseases Research Centre (CRIPA), Saint-Hyacinthe J2S 2M2, Canada
- The Center of Excellence in Research on Orphan Diseases─Fondation Courtois (CERMO-FC), Montréal H3C 3P8, Canada
| | - Mélanie Côté-Cyr
- Department of Chemistry, Université du Québec à Montréal, C.P.8888, Succursale Centre-Ville, Montréal H3C 3P8, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), Québec H3C 3P8, Canada
- The Swine and Poultry Infectious Diseases Research Centre (CRIPA), Saint-Hyacinthe J2S 2M2, Canada
- The Center of Excellence in Research on Orphan Diseases─Fondation Courtois (CERMO-FC), Montréal H3C 3P8, Canada
| | - Thomas Tremblay
- Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), Québec H3C 3P8, Canada
- Department of Chemistry, Université Laval, 1045 Av. De la Médecine, Québec City QC G1V 0A6, Canada
| | - Phuong Trang Nguyen
- Department of Chemistry, Université du Québec à Montréal, C.P.8888, Succursale Centre-Ville, Montréal H3C 3P8, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), Québec H3C 3P8, Canada
- The Swine and Poultry Infectious Diseases Research Centre (CRIPA), Saint-Hyacinthe J2S 2M2, Canada
- The Center of Excellence in Research on Orphan Diseases─Fondation Courtois (CERMO-FC), Montréal H3C 3P8, Canada
| | - Philippe St-Louis
- Department of Biological Sciences, Université du Québec à Montréal, C.P.8888, Succursale Centre-Ville, Montréal H3C 3P8, Canada
- The Swine and Poultry Infectious Diseases Research Centre (CRIPA), Saint-Hyacinthe J2S 2M2, Canada
- The Center of Excellence in Research on Orphan Diseases─Fondation Courtois (CERMO-FC), Montréal H3C 3P8, Canada
| | - Denis Giguère
- Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), Québec H3C 3P8, Canada
- Department of Chemistry, Université Laval, 1045 Av. De la Médecine, Québec City QC G1V 0A6, Canada
| | - Denis Archambault
- Department of Biological Sciences, Université du Québec à Montréal, C.P.8888, Succursale Centre-Ville, Montréal H3C 3P8, Canada
- The Swine and Poultry Infectious Diseases Research Centre (CRIPA), Saint-Hyacinthe J2S 2M2, Canada
- The Center of Excellence in Research on Orphan Diseases─Fondation Courtois (CERMO-FC), Montréal H3C 3P8, Canada
| | - Steve Bourgault
- Department of Chemistry, Université du Québec à Montréal, C.P.8888, Succursale Centre-Ville, Montréal H3C 3P8, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), Québec H3C 3P8, Canada
- The Swine and Poultry Infectious Diseases Research Centre (CRIPA), Saint-Hyacinthe J2S 2M2, Canada
- The Center of Excellence in Research on Orphan Diseases─Fondation Courtois (CERMO-FC), Montréal H3C 3P8, Canada
| |
Collapse
|
30
|
Niu J, Meng G. Roles and Mechanisms of NLRP3 in Influenza Viral Infection. Viruses 2023; 15:1339. [PMID: 37376638 DOI: 10.3390/v15061339] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Pathogenic viral infection represents a major challenge to human health. Due to the vast mucosal surface of respiratory tract exposed to the environment, host defense against influenza viruses has perpetually been a considerable challenge. Inflammasomes serve as vital components of the host innate immune system and play a crucial role in responding to viral infections. To cope with influenza viral infection, the host employs inflammasomes and symbiotic microbiota to confer effective protection at the mucosal surface in the lungs. This review article aims to summarize the current findings on the function of NACHT, LRR and PYD domains-containing protein 3 (NLRP3) in host response to influenza viral infection involving various mechanisms including the gut-lung crosstalk.
Collapse
Affiliation(s)
- Junling Niu
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology & Immunology, University of Chinese Academy of Sciences, 320 Yueyang Road, Life Science Research Building B-205, Shanghai 200031, China
| | - Guangxun Meng
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology & Immunology, University of Chinese Academy of Sciences, 320 Yueyang Road, Life Science Research Building B-205, Shanghai 200031, China
| |
Collapse
|
31
|
Menon I, Patil S, Bagwe P, Vijayanand S, Kale A, Braz Gomes K, Kang SM, D'Souza M. Dissolving Microneedles Loaded with Nanoparticle Formulation of Respiratory Syncytial Virus Fusion Protein Virus-like Particles (F-VLPs) Elicits Cellular and Humoral Immune Responses. Vaccines (Basel) 2023; 11:vaccines11040866. [PMID: 37112778 PMCID: PMC10144232 DOI: 10.3390/vaccines11040866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/25/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Respiratory syncytial virus (RSV) is one of the leading causes of bronchiolitis and pneumonia in children ages five years and below. Recent outbreaks of the virus have proven that RSV remains a severe burden on healthcare services. Thus, a vaccine for RSV is a need of the hour. Research on novel vaccine delivery systems for infectious diseases such as RSV can pave the road to more vaccine candidates. Among many novel vaccine delivery systems, a combined system with polymeric nanoparticles loaded in dissolving microneedles holds a lot of potential. In this study, the virus-like particles of the RSV fusion protein (F-VLP) were encapsulated in poly (D, L-lactide-co-glycolide) (PLGA) nanoparticles (NPs). These NPs were then loaded into dissolving microneedles (MNs) composed of hyaluronic acid and trehalose. To test the in vivo immunogenicity of the nanoparticle-loaded microneedles, Swiss Webster mice were immunized with the F-VLP NPs, both with and without adjuvant monophosphoryl lipid A (MPL) NPs loaded in the MN. The mice immunized with the F-VLP NP + MPL NP MN showed high immunoglobulin (IgG and IgG2a) levels both in the serum and lung homogenates. A subsequent analysis of lung homogenates post-RSV challenge revealed high IgA, indicating the generation of a mucosal immune response upon intradermal immunization. A flowcytometry analysis showed high CD8+ and CD4+ expression in the lymph nodes and spleens of the F-VLP NP + MPL NP MN-immunized mice. Thus, our vaccine elicited a robust humoral and cellular immune response in vivo. Therefore, PLGA nanoparticles loaded in dissolving microneedles could be a suitable novel delivery system for RSV vaccines.
Collapse
Affiliation(s)
- Ipshita Menon
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Smital Patil
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Priyal Bagwe
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Sharon Vijayanand
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Akanksha Kale
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Keegan Braz Gomes
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Sang Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Martin D'Souza
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| |
Collapse
|
32
|
He X, Chen X, Wang H, Du G, Sun X. Recent advances in respiratory immunization: A focus on COVID-19 vaccines. J Control Release 2023; 355:655-674. [PMID: 36787821 PMCID: PMC9937028 DOI: 10.1016/j.jconrel.2023.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023]
Abstract
The development of vaccines has always been an essential task worldwide since vaccines are regarded as powerful weapons in protecting the global population. Although the vast majority of currently authorized human vaccinations are administered intramuscularly or subcutaneously, exploring novel routes of immunization has been a prominent area of study in recent years. This is particularly relevant in the face of pandemic diseases, such as COVID-19, where respiratory immunization offers distinct advantages, such as inducing systemic and mucosal responses to prevent viral infections in both the upper and lower respiratory tracts and also leading to higher patient compliance. However, the development of respiratory vaccines confronts challenges due to the physiological barriers of the respiratory tract, with most of these vaccines still in the research and development stage. In this review, we detail the structure of the respiratory tract and the mechanisms of mucosal immunity, as well as the obstacles to respiratory vaccination. We also examine the considerations necessary in constructing a COVID-19 respiratory vaccine, including the dosage form of the vaccines, potential excipients and mucosal adjuvants, and delivery systems and devices for respiratory vaccines. Finally, we present a comprehensive overview of the COVID-19 respiratory vaccines currently under clinical investigation. We hope this review can provide valuable insights and inspiration for the future development of respiratory vaccinations.
Collapse
Affiliation(s)
- Xiyue He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaoyan Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Hairui Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Guangsheng Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
33
|
Hashemi Goradel N, Nemati M, Bakhshandeh A, Arashkia A, Negahdari B. Nanovaccines for cancer immunotherapy: Focusing on complex formation between adjuvant and antigen. Int Immunopharmacol 2023; 117:109887. [PMID: 36841155 DOI: 10.1016/j.intimp.2023.109887] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/29/2023] [Accepted: 02/10/2023] [Indexed: 02/27/2023]
Abstract
As an interesting cancer immunotherapy approach, cancer vaccines have been developed to deliver tumor antigens and adjuvants to antigen-presenting cells (APCs). Although the safety and easy production shifted the vaccine designing platforms toward the subunit vaccines, their efficacy is limited due to inefficient vaccine delivery. Nanotechnology-based vaccines, called nanovaccines, address the delivery limitations through co-delivery of antigens and adjuvants into lymphoid organs and APCs and their intracellular release, leading to cross-presentation of antigens and induction of potent anti-tumor immune responses. Although the nanovaccines, either as encapsulating agents or biomimetic nanoparticles, exert the desired anti-tumor activities, there is evidence that the mixing formulation to form nanocomplexes between antigens and adjuvants based on the electrostatic interactions provokes high levels of immune responses owing to Ags' availability and faster release. Here, we summarized the various platforms for developing cancer vaccines and the advantages of using delivery systems. The cancer nanovaccines, including nanoparticle-based and biomimetic-based nanovaccines, are discussed in detail. Finally, we focused on the nanocomplexes formation between antigens and adjuvants as promising cancer nanovaccine platforms.
Collapse
Affiliation(s)
- Nasser Hashemi Goradel
- Department of Medical Biotechnology, Maragheh University of Medical Sciences, Maragheh, Iran.
| | - Mahnaz Nemati
- Amir Oncology Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azam Bakhshandeh
- Department of Industrial Engineering and Management Systems, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Arash Arashkia
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
34
|
Farooq MA, Trevaskis NL. TPGS Decorated Liposomes as Multifunctional Nano-Delivery Systems. Pharm Res 2023; 40:245-263. [PMID: 36376604 PMCID: PMC9663195 DOI: 10.1007/s11095-022-03424-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/23/2022] [Indexed: 11/16/2022]
Abstract
Liposomes are sphere-shaped vesicles that can capture therapeutics either in the outer phospholipid bilayer or inner aqueous core. Liposomes, especially when surface-modified with functional materials, have been used to achieve many benefits in drug delivery, including improving drug solubility, oral bioavailability, pharmacokinetics, and delivery to disease target sites such as cancers. Among the functional materials used to modify the surface of liposomes, the FDA-approved non-ionic surfactant D-alpha-tocopheryl polyethylene glycol succinate (TPGS) is increasingly being applied due to its biocompatibility, lack of toxicity, applicability to various administration routes and ability to enhance solubilization, stability, penetration and overall pharmacokinetics. TPGS decorated liposomes are emerging as a promising drug delivery system for various diseases and are expected to enter the market in the coming years. In this review article, we focus on the multifunctional properties of TPGS-coated liposomes and their beneficial therapeutic applications, including for oral drug delivery, vaccine delivery, ocular administration, and the treatment of various cancers. We also suggest future directions to optimise the manufacture and performance of TPGS liposomes and, thus, the delivery and effect of encapsulated diagnostics and therapeutics.
Collapse
Affiliation(s)
- Muhammad Asim Farooq
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC, 3052, Australia
| | - Natalie L Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC, 3052, Australia.
| |
Collapse
|
35
|
pH-responsive Astragalus polysaccharide-loaded PLGA nanoparticles as an adjuvant system to improve immune responses. Int J Biol Macromol 2022; 222:1936-1947. [DOI: 10.1016/j.ijbiomac.2022.09.283] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022]
|
36
|
Parriott JE, Stewart JP, Smith DD, Curran SM, Bauer CD, Wyatt TA, Phillips JA, Lyden E, Thiele GM, Vetro JA. Surface Modification of Biodegradable Microparticles with the Novel Host-Derived Immunostimulant CPDI-02 Significantly Increases Short-Term and Long-Term Mucosal and Systemic Antibodies against Encapsulated Protein Antigen in Young Naïve Mice after Respiratory Immunization. Pharmaceutics 2022; 14:1843. [PMID: 36145590 PMCID: PMC9502690 DOI: 10.3390/pharmaceutics14091843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Generating long-lived mucosal and systemic antibodies through respiratory immunization with protective antigens encapsulated in nanoscale biodegradable particles could potentially decrease or eliminate the incidence of many infectious diseases, but requires the incorporation of a suitable mucosal immunostimulant. We previously found that respiratory immunization with a model protein antigen (LPS-free OVA) encapsulated in PLGA 50:50 nanoparticles (~380 nm diameter) surface-modified with complement peptide-derived immunostimulant 02 (CPDI-02; formerly EP67) through 2 kDa PEG linkers increases mucosal and systemic OVA-specific memory T-cells with long-lived surface phenotypes in young, naïve female C57BL/6 mice. Here, we determined if respiratory immunization with LPS-free OVA encapsulated in similar PLGA 50:50 microparticles (~1 μm diameter) surface-modified with CPDI-02 (CPDI-02-MP) increases long-term OVA-specific mucosal and systemic antibodies. We found that, compared to MP surface-modified with inactive, scrambled scCPDI-02 (scCPDI-02-MP), intranasal administration of CPDI-02-MP in 50 μL sterile PBS greatly increased titers of short-term (14 days post-immunization) and long-term (90 days post-immunization) antibodies against encapsulated LPS-free OVA in nasal lavage fluids, bronchoalveolar lavage fluids, and sera of young, naïve female C57BL/6 mice with minimal lung inflammation. Thus, surface modification of ~1 μm biodegradable microparticles with CPDI-02 is likely to increase long-term mucosal and systemic antibodies against encapsulated protein antigen after respiratory and possibly other routes of mucosal immunization.
Collapse
Affiliation(s)
- Jacob E. Parriott
- Department of Pharmaceutical Sciences, College of Pharmacy, 986020 University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jason P. Stewart
- Department of Pharmaceutical Sciences, College of Pharmacy, 986020 University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - D. David Smith
- Department of Biomedical Sciences, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Stephen M. Curran
- Department of Pharmaceutical Sciences, College of Pharmacy, 986020 University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Christopher D. Bauer
- Research Service, Department of Veterans Affairs Omaha-Western Iowa Health Care System, Omaha, NE 68105, USA
- Pulmonary, Critical Care and Sleep, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Environmental, Agricultural and Occupational Health, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Todd A. Wyatt
- Research Service, Department of Veterans Affairs Omaha-Western Iowa Health Care System, Omaha, NE 68105, USA
- Pulmonary, Critical Care and Sleep, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Environmental, Agricultural and Occupational Health, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Joy A. Phillips
- Donald P. Shiley BioScience Center, San Diego State University, San Diego, CA 92182, USA
| | - Elizabeth Lyden
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Geoffrey M. Thiele
- Research Service, Department of Veterans Affairs Omaha-Western Iowa Health Care System, Omaha, NE 68105, USA
- Department of Internal Medicine, Division of Rheumatology & Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Joseph A. Vetro
- Department of Pharmaceutical Sciences, College of Pharmacy, 986020 University of Nebraska Medical Center, Omaha, NE 68198, USA
- Center for Drug Delivery and Nanomedicine, 985830 University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
37
|
Ou BS, Saouaf OM, Baillet J, Appel EA. Sustained delivery approaches to improving adaptive immune responses. Adv Drug Deliv Rev 2022; 187:114401. [PMID: 35750115 DOI: 10.1016/j.addr.2022.114401] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022]
Abstract
The immune system is one of the most important, complex biological networks regulating and protecting human health. Its precise modulation can prevent deadly infections and fight cancer. Accordingly, prophylactic vaccines and cancer immunotherapies are some of the most powerful technologies to protect against potential dangers through training of the immune system. Upon immunization, activation and maturation of B and T cells of the adaptive immune system are necessary for development of proper humoral and cellular protection. Yet, the exquisite organization of the immune system requires spatiotemporal control over the exposure of immunomodulatory signals. For example, while the human immune system has evolved to develop immunity to natural pathogenic infections that often last for weeks, current prophylactic vaccination technologies only expose the immune system to immunomodulatory signals for hours to days. It has become clear that leveraging sustained release technologies to prolong immunogen and adjuvant exposure can increase the potency, durability, and quality of adaptive immune responses. Over the past several years, tremendous breakthroughs have been made in the design of novel biomaterials such as nanoparticles, microparticles, hydrogels, and microneedles that can precisely control and the presentation of immunomodulatory signals to the immune system. In this review, we discuss relevant sustained release strategies and their corresponding benefits to cellular and humoral responses.
Collapse
Affiliation(s)
- Ben S Ou
- Department of Bioengineering, Stanford University, Stanford 94305, USA
| | - Olivia M Saouaf
- Department of Materials Science & Engineering, Stanford University, Stanford 94305, USA
| | - Julie Baillet
- Department of Materials Science & Engineering, Stanford University, Stanford 94305, USA; University of Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac 33600, France
| | - Eric A Appel
- Department of Bioengineering, Stanford University, Stanford 94305, USA; Department of Materials Science & Engineering, Stanford University, Stanford 94305, USA; Department of Pediatrics (Endocrinology), Stanford University, Stanford 94305, USA; ChEM-H Institute, Stanford University, Stanford CA 94305, USA; Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
38
|
Menon I, Kang SM, D'Souza M. Nanoparticle formulation of the fusion protein virus like particles of respiratory syncytial virus stimulates enhanced in vitro antigen presentation and autophagy. Int J Pharm 2022; 623:121919. [PMID: 35714815 DOI: 10.1016/j.ijpharm.2022.121919] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/05/2022] [Accepted: 06/12/2022] [Indexed: 01/02/2023]
Abstract
Respiratory Syncytial Virus (RSV) is one of the leading causes of bronchiolitis and pneumonia in childrenunder one year globally. As a result, RSV poses a severe burden on healthcare services. Thus, a vaccine for RSV is a global need. Utilizing polymeric nanoparticles as a delivery system for vaccine antigen holds a lot of promise. In this study, the virus like particles of RSV fusion protein (F-VLP) was encapsulated in poly (D, L-lactide-co-glycolide) (PLGA) nanoparticles (NP). The F-VLP NP was formulated using a double emulsion solvent evaporation technique. The optimized NPs had a particle size of 525 ± 10.5 nm and an antigen encapsulation efficiency of 73% ± 10.5. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that the F-VLP was stable post formulation. The F-VLP NP showed a sustained release of the F-VLP antigen for up to a week. In vitro study revealed that the F-VLP NP were non-cytotoxic, and the cellular uptake of the NPs by dendritic cells was observed within 3 h. The F-VLP NP with adjuvant monophosphoryl lipid A (MPL) NP and without MPL NP showed enhanced expression of antigen presentation molecule major histocompatibility complex (MHC)-I and autophagosomes in dendritic cells. In summary, the sustained release of the antigen from the F-VLP NP and the particulate nature of the vaccine resulted in enhanced antigen presentation and induction of autophagy in antigen-presenting cells (APCs).
Collapse
Affiliation(s)
- Ipshita Menon
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, Mercer University, College of Pharmacy, Atlanta, GA 30341, USA
| | - Sang Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Martin D'Souza
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, Mercer University, College of Pharmacy, Atlanta, GA 30341, USA.
| |
Collapse
|
39
|
Feng C, Li Y, Ferdows BE, Patel DN, Ouyang J, Tang Z, Kong N, Chen E, Tao W. Emerging vaccine nanotechnology: From defense against infection to sniping cancer. Acta Pharm Sin B 2022; 12:2206-2223. [PMID: 35013704 PMCID: PMC8730377 DOI: 10.1016/j.apsb.2021.12.021] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/24/2021] [Accepted: 11/16/2021] [Indexed: 02/07/2023] Open
Abstract
Looking retrospectively at the development of humanity, vaccination is an unprecedented medical landmark that saves lives by harnessing the human immune system. During the ongoing coronavirus disease 2019 (COVID-19) pandemic, vaccination is still the most effective defense modality. The successful clinical application of the lipid nanoparticle-based Pfizer/BioNTech and Moderna mRNA COVID-19 vaccines highlights promising future of nanotechnology in vaccine development. Compared with conventional vaccines, nanovaccines are supposed to have advantages in lymph node accumulation, antigen assembly, and antigen presentation; they also have, unique pathogen biomimicry properties because of well-organized combination of multiple immune factors. Beyond infectious diseases, vaccine nanotechnology also exhibits considerable potential for cancer treatment. The ultimate goal of cancer vaccines is to fully mobilize the potency of the immune system as a living therapeutic to recognize tumor antigens and eliminate tumor cells, and nanotechnologies have the requisite properties to realize this goal. In this review, we summarize the recent advances in vaccine nanotechnology from infectious disease prevention to cancer immunotherapy and highlight the different types of materials, mechanisms, administration methods, as well as future perspectives.
Collapse
Affiliation(s)
- Chan Feng
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Yongjiang Li
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pharmacy, the Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Bijan Emiliano Ferdows
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dylan Neal Patel
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jiang Ouyang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Zhongmin Tang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Na Kong
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Enguo Chen
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Corresponding authors. Fax: +001 857 307 2337 (Wei Tao).
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Corresponding authors. Fax: +001 857 307 2337 (Wei Tao).
| |
Collapse
|
40
|
Chen H, Liu H, Liu L, Chen Y. Fabrication of subunit nanovaccines by physical interaction. SCIENCE CHINA. TECHNOLOGICAL SCIENCES 2022; 65:989-999. [PMID: 35432491 PMCID: PMC9004205 DOI: 10.1007/s11431-021-2011-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Vaccines can improve the quality of human life by preventing the burden of infectious diseases. Also, vaccination is becoming a powerful medication for preventing and treating tumors. Various vaccines have been developed based on the origin of the antigens. Herein, we focus on the subunit vaccines whose antigens are proteins or peptides. The advantage of subunit vaccines is safety for recipients; however, the immunogenicity of subunit antigens is relatively low. Nanoparticular delivery systems have been applied to improve the immunocompetence of subunit vaccines by targeting lymph nodes, and effectively present antigens to immune cells. Moreover, adding appropriate molecular adjuvants may strengthen the antigens to elicit immune response. In this perspective article, we first elucidate the characteristics of immunity induced by subunit nanovaccines and then summarize the strategies to fabricate subunit nanovaccines with delivering materials. Herein we highlight non-covalent interaction to fabricate nanoparticular subunit vaccines.
Collapse
Affiliation(s)
- HaoLin Chen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510275 China
| | - Hong Liu
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Jinan University, Zhuhai, 519000 China
| | - LiXin Liu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510275 China
| | - YongMing Chen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510275 China
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630 China
| |
Collapse
|
41
|
Garduño-González KA, Peña-Benavides SA, Araújo RG, Castillo-Zacarías C, Melchor-Martínez EM, Oyervides-Muñoz MA, Sosa-Hernández JE, Purton S, Iqbal HM, Parra-Saldívar R. Current challenges for modern vaccines and perspectives for novel treatment alternatives. J Drug Deliv Sci Technol 2022; 70:103222. [DOI: 10.1016/j.jddst.2022.103222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
42
|
Haghighat S, Siadat SD, Akhavan Sepahi A, Mahdavi M. Recombinant PBP2a/autolysin conjugate as PLGA-based nanovaccine induced humoral responses with opsonophagocytosis activity, and protection versus methicillin-resistant Staphylococcus aureus infection. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:442-450. [PMID: 35656080 PMCID: PMC9150805 DOI: 10.22038/ijbms.2022.59992.13303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 04/05/2022] [Indexed: 11/10/2022]
Abstract
Objectives Methicillin-resistant Staphylococcus aureus (MRSA) reasons extreme infections, can resist various conventional antimicrobial agents, and cause morbidity and mortality worldwide. Vaccination seems to help modulate MRSA infections. Nanovaccine is considered a novel strategy in vaccine technology. The primary purpose of the present study was to develop a conjugate vaccine based on recombinant PBP2a and MRSA autolysin formulated in PLGA as a nanoparticle capable of enhancing protective responses against MRSA in the murine model. Materials and Methods Recombinant PBP2a and autolysin have been expressed and purified by nickel-nitrilotriacetic acid (Ni-NTA) affinity column and characterized by SDS-PAGE and western blot. PLGA was bound to recombinant proteins by using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDAC) and adipic acid dihydrazide (ADH) as a linker and spacer, respectively. Conjugation of recombinant proteins to PLGA was confirmed by the AFM assay, zeta potential, and size distribution, and its efficacy was evaluated in mice. Total IgG, IgG1, IgG2a, IgG2b, and IgM titers were analyzed to assess immune responses. Lastly, the bioactivity of antibodies was tested by using the opsonophagocytosis assay. Results Mice immunized with the r-PBP2a-r-autolysin-PLGA nanovaccine led to increased levels of opsonic antibodies and IgG1, IgG2a, IgG2b, and IgM when compared with other experimental groups. Our results confirmed that vaccination with nanovaccine could reduce the mortality rate against the sub-lethal dose of MRSA challenge. Furthermore, the nanovaccine could eliminate MRSA from the kidney of infected mice. Conclusion This study may provide valuable insights into the protective power of the r-PBP2a-r-autolysin-PLGA conjugate vaccine against MRSA infection.
Collapse
Affiliation(s)
- Setareh Haghighat
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran,Corresponding author: Setareh Haghighat. Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran. ;
| | - Seyed Davar Siadat
- Department of Mycobacteriology & Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Abbas Akhavan Sepahi
- Department of Microbiology, Faculty of Basic Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mehdi Mahdavi
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education, Culture and Research(ACECR), Tehran, Iran,Recombinant Vaccine Research Center, Tehran University of Medical Sciences, Tehran, Iran,Immunotherapy Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
43
|
Chaikhumwang P, Madapong A, Saeng-Chuto K, Nilubol D, Tantituvanont A. Intranasal delivery of inactivated PRRSV loaded cationic nanoparticles coupled with enterotoxin subunit B induces PRRSV-specific immune responses in pigs. Sci Rep 2022; 12:3725. [PMID: 35260663 PMCID: PMC8904483 DOI: 10.1038/s41598-022-07680-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/08/2022] [Indexed: 12/18/2022] Open
Abstract
This study was conducted to evaluate the induction of systemic and mucosal immune responses and protective efficacy following the intranasal administration of inactivated porcine reproductive and respiratory syndrome virus (PRRSV) loaded in polylactic acid (PLA) nanoparticles coupled with heat-labile enterotoxin subunit B (LTB) and dimethyldioctadecylammonium bromide (DDA). Here, 42- to 3-week-old PRRSV-free pigs were randomly allocated into 7 groups of 6 pigs each. Two groups represented the negative (nonvaccinated pigs/nonchallenged pigs, NoVacNoChal) and challenge (nonvaccinated/challenged, NoVacChal) controls. The pigs in the other 5 groups, namely, PLA nanoparticles/challenged (blank NPs), LTB-DDA coupled with PLA nanoparticles/challenged (adjuvant-blank NPs), PLA nanoparticles-encapsulating inactivated PRRSV/challenged (KNPs), LTB-DDA coupled with PLA nanoparticles loaded with inactivated PRRSV/challenged pigs (adjuvant-KNPs) and inactivated PRRSV/challenged pigs (inactivated PRRSV), were intranasally vaccinated with previously described vaccines at 0, 7 and 14 days post-vaccination (DPV). Serum and nasal swab samples were collected weekly and assayed by ELISA to detect the presence of IgG and IgA, respectively. Viral neutralizing titer (VNT) in sera, IFN-γ-producing cells and IL-10 secretion in stimulated peripheral blood mononuclear cells (PBMCs) were also measured. The pigs were intranasally challenged with PRRSV-2 at 28 DPV and necropsied at 35 DPV, and then macro- and microscopic lung lesions were evaluated. The results demonstrated that following vaccination, adjuvant-KNP-vaccinated pigs had significantly higher levels of IFN-γ-producing cells, VNT and IgG in sera, and IgA in nasal swab samples and significantly lower IL-10 levels than the other vaccinated groups. Following challenge, the adjuvant-KNP-vaccinated pigs had significantly lower PRRSV RNA and macro- and microscopic lung lesions than the other vaccinated groups. In conclusion, the results of the study demonstrated that adjuvant-KNPs are effective in eliciting immune responses against PRRSV and protecting against PRRSV infections over KNPs and inactivated PRRSV and can be used as an adjuvant for intranasal PRRSV vaccines.
Collapse
Affiliation(s)
- Puwich Chaikhumwang
- Division of Pharmaceutical Sciences, Department of Pharmaceutical Care, Faculty of Pharmaceutical Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Adthakorn Madapong
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kepalee Saeng-Chuto
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Dachrit Nilubol
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Angkana Tantituvanont
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
44
|
Crosslinker-free Bovine Serum Albumin-loaded Chitosan/alginate Nanocomplex for pH-responsive Bursting Release of Oral-administered Protein. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-021-0243-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
45
|
Jafari A, Danesh Pouya F, Niknam Z, Abdollahpour-Alitappeh M, Rezaei-Tavirani M, Rasmi Y. Current advances and challenges in COVID-19 vaccine development: from conventional vaccines to next-generation vaccine platforms. Mol Biol Rep 2022; 49:4943-4957. [PMID: 35235159 PMCID: PMC8890022 DOI: 10.1007/s11033-022-07132-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/06/2022] [Indexed: 02/06/2023]
Abstract
The world is grappling with an unprecedented public health crisis COVID-19 pandemic caused by the novel coronavirus SARS-CoV-2. Due to the high transmission/mortality rates and socioeconomic impacts of the COVID-19, its control is crucial. In the absence of specific treatment, vaccines represent the most efficient way to control and stop the pandemic. Many companies around the world are currently making efforts to develop the vaccine to combat COVID-19. This review outlines key strategies for generating SARS-CoV-2 vaccine candidates, along with the mechanism of action, advantages, and potential limitations of each vaccine. The use of nanomaterials and nanotechnology for COVID-19 vaccines development will also be discussed.
Collapse
Affiliation(s)
- Ameneh Jafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.,Proteomics Research Center, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fahima Danesh Pouya
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Zahra Niknam
- Proteomics Research Center, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meghdad Abdollahpour-Alitappeh
- Cellular and Molecular Biology Research Center, Larestan University of Medical Sciences, Larestan, Iran.,Student Research Committee, Larestan University of Medical Sciences, Larestan, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Yousef Rasmi
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.,Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
46
|
Moreno-Lanceta A, Medrano-Bosch M, Edelman ER, Melgar-Lesmes P. Polymeric Nanoparticles for Targeted Drug and Gene Delivery Systems. NANOTECHNOLOGY IN THE LIFE SCIENCES 2022:561-608. [DOI: 10.1007/978-3-031-12658-1_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
47
|
Zare S, Kabiri M, Amini Y, Najafi A, Mohammadpour F, Ayati SH, Nikpoor AR, Tafaghodi M. Immunological Assessment of Chitosan or Trimethyl Chitosan-Coated PLGA Nanospheres Containing Fusion Antigen as the Novel Vaccine Candidates Against Tuberculosis. AAPS PharmSciTech 2021; 23:15. [PMID: 34893923 DOI: 10.1208/s12249-021-02146-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/19/2021] [Indexed: 01/02/2023] Open
Abstract
The crucial challenge in tuberculosis (TB) as a chronic infectious disease is to present a novel vaccine candidate that improves current vaccination and provides efficient protection in individuals. The present study aimed to evaluate the immune efficacy of multi-subunit vaccines containing chitosan (CHT)- or trimethyl chitosan (TMC)-coated PLGA nanospheres to stimulate cell-mediated and mucosal responses against Mycobacterium Tuberculosis (Mtb) in an animal model. The surface-modified PLGA nanoparticles (NPs) containing tri-fusion protein from three Mtb antigens were produced by the double emulsion technique. The subcutaneously or nasally administered PLGA vaccines in the absence or presence of BCG were assessed to compare the levels of mucosal IgA, IgG1, and IgG2a production as well as secretion of IFN-γ, IL-17, IL-4, and TGF-β cytokines. According to the release profile, the tri-fusion encapsulated in modified PLGA NPs demonstrated a biphasic release profile including initial burst release on the first day and sustained release within 18 days. All designed PLGA vaccines induced a shift of Th1/Th2 balance toward Th1-dominant response. Although immunized mice through subcutaneous injection elicited higher cell-mediated responses relative to the nasal vaccination, the intranasally administered groups stimulated robust mucosal IgA immunity. The modified PLGA NPs using TMC cationic polymer were more efficient to elevate Th1 and mucosal responses in comparison with the CHT-coated PLGA nanospheres. Our findings highlighted that the tri-fusion loaded in TMC-PLGA NPs may represent an efficient prophylactic vaccine and can be considered as a novel candidate against TB.
Collapse
|
48
|
Chavan YR, Tambe SM, Jain DD, Khairnar SV, Amin PD. Redefining the importance of polylactide-co-glycolide acid (PLGA) in drug delivery. ANNALES PHARMACEUTIQUES FRANÇAISES 2021; 80:603-616. [PMID: 34896382 DOI: 10.1016/j.pharma.2021.11.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/31/2021] [Accepted: 11/29/2021] [Indexed: 11/19/2022]
Abstract
The limitations of non-biodegradable polymers have paved the way for biodegradable polymers in the pharmaceutical and biomedical sciences over the years. Poly (lactic-co-glycolic acid) (PLGA), also known as 'Smart polymer', is one of the most successfully developed biodegradable polymers due to its favorable properties, such as biodegradability, biocompatibility, controllable drug release profile, and ability to alter surface with targeting agents for diagnosis and treatment. The release behavior of drugs from PLGA delivery devices is influenced by the physicochemical properties of PLGA. In this review, the current state of the art of PLGA, its synthesis, physicochemical properties, and degradation are discussed to enunciate the boundaries of future research in terms of its applicability with the optimized design in today's modern age. The fundamental objective of this review is to highlight the significance of PLGA as a polymer in the field of cancer, cardiovascular diseases, neurological disorders, dentistry, orthopedics, vaccine therapy, theranostics and lastly emerging epidemic diseases like COVID-19. Furthermore, the coverage of recent PLGA-based drug delivery systems including nanosystems, microsystems, scaffolds, hydrogels, etc. has been summarized. Overall, this review aims to disseminate the PLGA-driven revolution of the drug delivery arena in the pharmaceutical and biomedical industry and bridge the lacunae between material research, preclinical experimentation, and clinical reality.
Collapse
Affiliation(s)
- Y R Chavan
- Institute of Chemical Technology, Department of Pharmaceutical Science and Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India
| | - S M Tambe
- Institute of Chemical Technology, Department of Pharmaceutical Science and Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India
| | - D D Jain
- Institute of Chemical Technology, Department of Pharmaceutical Science and Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India
| | - S V Khairnar
- Institute of Chemical Technology, Department of Pharmaceutical Science and Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India
| | - P D Amin
- Institute of Chemical Technology, Department of Pharmaceutical Science and Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India.
| |
Collapse
|
49
|
Luzuriaga MA, Herbert FC, Brohlin OR, Gadhvi J, Howlett T, Shahrivarkevishahi A, Wijesundara YH, Venkitapathi S, Veera K, Ehrman R, Benjamin CE, Popal S, Burton MD, Ingersoll MA, De Nisco NJ, Gassensmith JJ. Metal-Organic Framework Encapsulated Whole-Cell Vaccines Enhance Humoral Immunity against Bacterial Infection. ACS NANO 2021; 15:17426-17438. [PMID: 34546723 DOI: 10.1021/acsnano.1c03092] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The increasing rate of resistance of bacterial infection against antibiotics requires next generation approaches to fight potential pandemic spread. The development of vaccines against pathogenic bacteria has been difficult owing, in part, to the genetic diversity of bacteria. Hence, there are many potential target antigens and little a priori knowledge of which antigen/s will elicit protective immunity. The painstaking process of selecting appropriate antigens could be avoided with whole-cell bacteria; however, whole-cell formulations typically fail to produce long-term and durable immune responses. These complications are one reason why no vaccine against any type of pathogenic E. coli has been successfully clinically translated. As a proof of principle, we demonstrate a method to enhance the immunogenicity of a model pathogenic E. coli strain by forming a slow releasing depot. The E. coli strain CFT073 was biomimetically mineralized within a metal-organic framework (MOF). This process encapsulates the bacteria within 30 min in water and at ambient temperatures. Vaccination with this formulation substantially enhances antibody production and results in significantly enhanced survival in a mouse model of bacteremia compared to standard inactivated formulations.
Collapse
|
50
|
Alotaibi BS, Buabeid M, Ibrahim NA, Kharaba ZJ, Ijaz M, Murtaza G. Recent strategies driving oral biologic administration. Expert Rev Vaccines 2021; 20:1587-1601. [PMID: 34612121 DOI: 10.1080/14760584.2021.1990044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION High patient compliance, noninvasiveness, and self-administration are the leading features of vaccine delivery through the oral route. The implementation of swift mass vaccination campaigns in pandemic outbreaks fascinates the use of oral vaccination. This approach can elicit both mucosal and systemic immune responses to protect against infection at the surface of the mucosa. AREA COVERED As pathogen entry and spread mainly occurs through the gastrointestinal tract (GIT) mucosal surfaces, oral vaccination may protect and limit disease spread. Oral vaccines target various potential mucosal inductive sites in the GIT, such as the oral cavity, gastric area, and small intestine. Orally delivered vaccines having subunit and nucleic acid pass through various GIT-associated risks, such as the biodegradation of biologics and their reduced absorption. This article presents a summarized review of the existing technologies and prospects for oral vaccination. EXPERT OPINION The intestinal mucosa focuses on current approaches, while future strategies target new mucosal sites, i.e. oral cavity and stomach. Recent developments in biologic delivery through the oral route and their potential use in future oral vaccination are mainly considered.
Collapse
Affiliation(s)
- Badriyah Shadid Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Manal Buabeid
- Department of Clinical Sciences, Ajman University, Ajman, 346, UAE.,Medical and Bio-allied Health Sciences Research Centre, Ajman University, Ajman, United Arab Emirates
| | - Nihal Abdalla Ibrahim
- Department of Clinical Sciences, Ajman University, Ajman, 346, UAE.,Medical and Bio-allied Health Sciences Research Centre, Ajman University, Ajman, United Arab Emirates
| | - Zelal Jaber Kharaba
- Department of Clinical Sciences, College of Pharmacy, Al-Ain University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Munazza Ijaz
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Ghulam Murtaza
- Department of Pharmacy, COMSATS University Islamabad, Lahore, 54000, Pakistan
| |
Collapse
|