1
|
Rodic T, Wölfel EM, Fiedler IAK, Cvetkovic D, Jähn-Rickert K, Sopta J, Nikolic S, Zivkovic V, Busse B, Djuric M, Milovanovic P. Bone quality analysis of the mandible in alcoholic liver cirrhosis: Anatomical, microstructural, and microhardness evaluation. Bone 2025; 192:117378. [PMID: 39708897 DOI: 10.1016/j.bone.2024.117378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/04/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
OBJECTIVES Alcoholic bone disease has been recognized in contemporary literature as a systemic effect of chronic ethanol consumption. However, evidence about the specific influence of alcoholic liver cirrhosis (ALC) on mandible bone quality is scarce. The aim of this study was to explore microstructural, compositional, cellular, and mechanical properties of the mandible in ALC individuals compared with a healthy control group. MATERIALS AND METHODS Mandible bone cores of mаle individuаls with ALC (n = 6; age: 70.8 ± 2.5 yeаrs) and age-matched healthy controls (n = 11; age: 71.5 ± 3.8 yeаrs) were obtаined postmortem during аutopsy from the edentulous аlveolаr bone in the mandibular first molаr region аnd the mаndibulаr аngulus region of each individual. Micro-computed tomogrаphy wаs used to аssess bone microstructure. Analyses based on quаntitаtive bаckscаttered electron microscopy included the characterization of osteon morphology, osteocyte lаcunаr properties, and bone mаtrix minerаlizаtion. Composition of bone minerаl аnd collаgen phаses was assessed by Rаmаn spectroscopy. Histomorphometry wаs used to determine cellulаr аnd tissue chаrаcteristics of bone specimens. Vickers microhardness test was used to evaluate cortical bone mechanical properties. RESULTS The ALC group showed higher closed cortical porosity (volume of pores thаt do not communicаte with the sаmple surfаce) (p = 0.003) and smaller lacunar area in the trabecular bone of the molar region (p = 0.002) compared with the Control group. The trabecular bone of the angulus region showed lower osteoclast number (p = 0.032) in the ALC group. There were higher carbonate content in the buccal cortex of the molar region (p = 0.008) and lower calcium content in the trabecular bone of the angulus region (p = 0.042) in the ALC group. The cortical bone showed inferior mechanical properties in the ALC cortical bony sites (p < 0.001), except for the buccal cortex of the molar region (p = 0.063). There was no significant difference in cortical thickness between the groups. CONCLUSIONS Bone quality is differentially altered in ALC in two bony sites and compartments of the mandible, which leads to impaired mechanical properties. CLINICAL RELEVANCE Altered mandible bone tissue characteristics in patients with ALC should be considered by dental medicine professionals prior to oral interventions in these patients. Knowledge about mandible bone quality alterations in ALC is valuable for determining diagnosis, treatment plan, indications for oral rehabilitation procedures, and follow-up procedures for this group of patients.
Collapse
Affiliation(s)
- Teodora Rodic
- Center of Bone Biology, Institute for Anatomy, Faculty of Medicine, Dr Subotica starijeg 4, 11000 Belgrade, Serbia
| | - Eva M Wölfel
- Department of Osteology and Biomechanics, University Medical Center Hamburg- Eppendorf, Lottestrasse 55, 22529 Hamburg, Germany
| | - Imke A K Fiedler
- Department of Osteology and Biomechanics, University Medical Center Hamburg- Eppendorf, Lottestrasse 55, 22529 Hamburg, Germany
| | - Danica Cvetkovic
- Center of Bone Biology, Institute for Anatomy, Faculty of Medicine, Dr Subotica starijeg 4, 11000 Belgrade, Serbia; Institute of Forensic Medicine, Faculty of Medicine, University of Belgrade, Deligradska 31/A, 11000 Belgrade, Serbia
| | - Katharina Jähn-Rickert
- Department of Osteology and Biomechanics, University Medical Center Hamburg- Eppendorf, Lottestrasse 55, 22529 Hamburg, Germany; Mildred Scheel Cancer Career Center Hamburg, University Cancer Center Hamburg, University Medical Center Hamburg- Eppendorf, Lottestrasse 55, 22529 Hamburg, Germany
| | - Jelena Sopta
- Institute of Pathology, Faculty of Medicine, University of Belgrade, Dr Subotica starijeg 1, 11000 Belgrade, Serbia
| | - Slobodan Nikolic
- Center of Bone Biology, Institute for Anatomy, Faculty of Medicine, Dr Subotica starijeg 4, 11000 Belgrade, Serbia; Institute of Forensic Medicine, Faculty of Medicine, University of Belgrade, Deligradska 31/A, 11000 Belgrade, Serbia
| | - Vladimir Zivkovic
- Center of Bone Biology, Institute for Anatomy, Faculty of Medicine, Dr Subotica starijeg 4, 11000 Belgrade, Serbia; Institute of Forensic Medicine, Faculty of Medicine, University of Belgrade, Deligradska 31/A, 11000 Belgrade, Serbia
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg- Eppendorf, Lottestrasse 55, 22529 Hamburg, Germany
| | - Marija Djuric
- Center of Bone Biology, Institute for Anatomy, Faculty of Medicine, Dr Subotica starijeg 4, 11000 Belgrade, Serbia
| | - Petar Milovanovic
- Center of Bone Biology, Institute for Anatomy, Faculty of Medicine, Dr Subotica starijeg 4, 11000 Belgrade, Serbia.
| |
Collapse
|
2
|
Krug J, Plumeyer C, Davydok A, Dragoun Kolibová S, Fischer N, Le-Phuoc XT, Rauner M, Sihota P, Schweizer M, Busse B, Fiedler IAK, Jähn-Rickert K. Bone-seeking tumor cells alter bone material quality parameters on the nanoscale in mice. BIOMATERIALS ADVANCES 2025; 167:214060. [PMID: 39486241 DOI: 10.1016/j.bioadv.2024.214060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/25/2024] [Accepted: 10/06/2024] [Indexed: 11/04/2024]
Abstract
Bone metastases related to breast and prostate cancer present with multiple challenges and skeletal related events like fragility fractures impair the quality of life of the patients significantly. To determine local alterations in bone material quality with bone metastasis, we subjected murine tibial specimens, generated after intratibial injections of either RM1 prostate cancer cells or EO771 breast cancer cells into male and female mice respectively, to high-resolution imaging modalities. Small and wide-angle X-ray scattering showed unaltered mineral characteristics in the more osteosclerotic prostate cancer model, while the quantification of calcium weight percentage via backscattered electron microscopy determined minor differences along the perilacunar bone matrix. Further analyses of mineral and collagen characteristics were performed using Raman spectroscopy and focused ion beam electron microscopy. Our study indicates that alterations in nanochannel properties occur due to the presence of bone seeking tumor cells with more prevalent nanopores in the perilacunar matrix.
Collapse
Affiliation(s)
- Johannes Krug
- Department of Osteology and Biomechanics, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany; Interdisciplinary Competence Center for Interface Research (ICCIR), Hamburg, Germany
| | - Christine Plumeyer
- Department of Osteology and Biomechanics, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany; Interdisciplinary Competence Center for Interface Research (ICCIR), Hamburg, Germany
| | - Anton Davydok
- Institute of Material Physics, Hereon Outstation at DESY, Helmholtz Zentrum Hereon, Hamburg, Germany
| | - Sofie Dragoun Kolibová
- Department of Osteology and Biomechanics, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany; Interdisciplinary Competence Center for Interface Research (ICCIR), Hamburg, Germany
| | - Nico Fischer
- Department of Osteology and Biomechanics, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany
| | - Xuan-Thanh Le-Phuoc
- Divisions of Endocrinology and Molecular Bone Biology, Department of Medicine III & University Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Martina Rauner
- Divisions of Endocrinology and Molecular Bone Biology, Department of Medicine III & University Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Praveer Sihota
- Department of Osteology and Biomechanics, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michaela Schweizer
- Core Facility of Morphology and Electron Microscopy, Center for Molecular Neurobiology, Hamburg, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany; Interdisciplinary Competence Center for Interface Research (ICCIR), Hamburg, Germany.
| | - Imke A K Fiedler
- Department of Osteology and Biomechanics, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany; Interdisciplinary Competence Center for Interface Research (ICCIR), Hamburg, Germany
| | - Katharina Jähn-Rickert
- Department of Osteology and Biomechanics, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany; Interdisciplinary Competence Center for Interface Research (ICCIR), Hamburg, Germany; Mildred Scheel Cancer Career Center Hamburg, University Cancer Center Hamburg, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
3
|
Moreno-Jiménez I, Heinig S, Heras U, Maichl DS, Strifler S, Leich E, Blouin S, Fratzl P, Fratzl-Zelman N, Jundt F, Cipitria A. 3D osteocyte lacunar morphometry of human bone biopsies with high resolution microCT: From monoclonal gammopathy to newly diagnosed multiple myeloma. Bone 2024; 189:117236. [PMID: 39151745 DOI: 10.1016/j.bone.2024.117236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/26/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Osteocytes are mechanosensitive, bone-embedded cells which are connected via dendrites in a lacuno-canalicular network and regulate bone resorption and formation balance. Alterations in osteocyte lacunar volume, shape and density have been identified in conditions of aging, osteoporosis and osteolytic bone metastasis, indicating patterns of impaired bone remodeling, osteolysis and disease progression. Osteolytic bone disease is a hallmark of the hematologic malignancy multiple myeloma (MM), in which monoclonal plasma cells in the bone marrow disrupt the bone homeostasis and induce excessive resorption at local and distant sites. Qualitative and quantitative changes in the 3D osteocyte lacunar morphometry have not yet been evaluated in MM, nor in the precursor conditions monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM). In this study, we characterized the osteocyte lacunar morphology in trabecular bone of the iliac crest at the ultrastructural level using high resolution microCT in human bone biopsy samples of three MGUS, two SMM and six newly diagnosed MM. In MGUS, SMM and MM we found a trend for lower lacunar density and a shift towards larger lacunae with disease progression (higher 50 % cutoff of the lacunar volume cumulative distribution) in the small osteocyte lacunae 20-900 μm3 range compared to control samples. In the larger lacunae 900-3000 μm3 range, we detected significantly higher lacunar density and microporosity in the MM group compared to the MGUS/SMM group. Regarding the shape distribution, the MGUS/SMM group showed a trend for flatter, more elongated and anisotropic osteocyte lacunae compared to the control group. Altogether, our findings suggest that osteocytes in human MM bone disease undergo changes in their lacunae density, volume and shape, which could be an indicator for osteolysis and disease progression. Future studies are needed to understand whether alterations of the lacunae architecture affect the mechanoresponsiveness of osteocytes, and ultimately bone adaptation and fracture resistance in MM and its precursors conditions.
Collapse
Affiliation(s)
- Inés Moreno-Jiménez
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, 14476 Potsdam, Germany.
| | - Sharen Heinig
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, 14476 Potsdam, Germany
| | - Unai Heras
- Group of Bioengineering in Regeneration and Cancer, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain; Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Daniela Simone Maichl
- Department of Internal Medicine II, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Susanne Strifler
- Department of Internal Medicine II, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Ellen Leich
- Institute of Pathology, University of Würzburg, 97080 Würzburg, Germany; Comprehensive Cancer Center Mainfranken, 97080 Würzburg, Germany
| | - Stéphane Blouin
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, Vienna, Austria
| | - Peter Fratzl
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, 14476 Potsdam, Germany
| | - Nadja Fratzl-Zelman
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, Vienna, Austria
| | - Franziska Jundt
- Department of Internal Medicine II, University Hospital Würzburg, 97080 Würzburg, Germany; Comprehensive Cancer Center Mainfranken, 97080 Würzburg, Germany.
| | - Amaia Cipitria
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, 14476 Potsdam, Germany; Group of Bioengineering in Regeneration and Cancer, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain; IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain.
| |
Collapse
|
4
|
Pivonka P, Calvo-Gallego JL, Schmidt S, Martínez-Reina J. Advances in mechanobiological pharmacokinetic-pharmacodynamic models of osteoporosis treatment - Pathways to optimise and exploit existing therapies. Bone 2024; 186:117140. [PMID: 38838799 DOI: 10.1016/j.bone.2024.117140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/17/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
Osteoporosis (OP) is a chronic progressive bone disease which is characterised by reduction of bone matrix volume and changes in the bone matrix properties which can ultimately lead to bone fracture. The two major forms of OP are related to aging and/or menopause. With the worldwide increase of the elderly population, particularly age-related OP poses a serious health issue which puts large pressure on health care systems. A major challenge for development of new drug treatments for OP and comparison of drug efficacy with existing treatments is due to current regulatory requirements which demand testing of drugs based on bone mineral density (BMD) in phase 2 trials and fracture risk in phase 3 trials. This requires large clinical trials to be conducted and to be run for long time periods, which is very costly. This, together with the fact that there are already many drugs available for treatment of OP, makes the development of new drugs inhibitive. Furthermore, an increased trend of the use of different sequential drug therapies has been observed in OP management, such as sequential anabolic-anticatabolic drug treatment or switching from one anticatabolic drug to another. Running clinical trials for concurrent and sequential therapies is neither feasible nor practical due to large number of combinatorial possibilities. In silico mechanobiological pharmacokinetic-pharmacodynamic (PK-PD) models of OP treatments allow predictions beyond BMD, i.e. bone microdamage and degree of mineralisation can also be monitored. This will help to inform clinical drug usage and development by identifying the most promising scenarios to be tested clinically (confirmatory trials rather than exploratory only trials), optimise trial design and identify subgroups of the population that show benefit-risk profiles (both good and bad) that are different from the average patient. In this review, we provide examples of the predictive capabilities of mechanobiological PK-PD models. These include simulation results of PMO treatment with denosumab, implications of denosumab drug holidays and coupling of bone remodelling models with calcium and phosphate systems models that allows to investigate the effects of co-morbidities such as hyperparathyroidism and chronic kidney disease together with calcium and vitamin D status on drug efficacy.
Collapse
Affiliation(s)
- Peter Pivonka
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, QLD 4000, Australia.
| | - José Luis Calvo-Gallego
- Departmento de Ingeniería Mecánica y Fabricación, Universidad de Sevilla, Seville 41092, Spain
| | - Stephan Schmidt
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL 32827, USA
| | - Javier Martínez-Reina
- Departmento de Ingeniería Mecánica y Fabricación, Universidad de Sevilla, Seville 41092, Spain
| |
Collapse
|
5
|
Cirovic A, Djuric M, Milovanovic P. Deficiency of protein C or protein S as a possible cause of osteoporosis. Endocrine 2024; 85:558-565. [PMID: 38483687 DOI: 10.1007/s12020-024-03774-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/07/2024] [Indexed: 08/16/2024]
Abstract
Proteins C and S are vitamin K-dependent anticoagulative factors that also exert a significant influence on bone quality. Clinical studies have linked the deficiency of proteins C and S to lower bone mineral density and the onset of femoral head osteonecrosis in children. Rare foundational studies analyzing this topic have demonstrated that activated protein C, upon binding to the endothelial protein C receptor expressed on the surface of osteoblasts, promotes osteoblast proliferation. It is also established that proteins C and S play crucial roles in proper collagen synthesis and in maintaining the number of osteoclasts and blood vessels. However, the association between protein C and/or S deficiency and the gradual onset of osteoporosis remains largely uninvestigated. Calculations based on data from peer-reviewed journals suggest that approximately one in every 10 individuals may develop osteoporosis due to congenital protein C or S deficiency. Moreover, when secondary causes of protein C and S deficiency are also considered, the proportion likely further increases. In this paper, we discuss the pathophysiological background of the potential relationship between protein C and S deficiency and the genesis of osteoporosis.
Collapse
Affiliation(s)
- Aleksandar Cirovic
- Center of Bone Biology, Institute of Anatomy, University of Belgrade - Faculty of Medicine, Dr Subotica 4/2, Belgrade, Serbia
| | - Marija Djuric
- Center of Bone Biology, Institute of Anatomy, University of Belgrade - Faculty of Medicine, Dr Subotica 4/2, Belgrade, Serbia
| | - Petar Milovanovic
- Center of Bone Biology, Institute of Anatomy, University of Belgrade - Faculty of Medicine, Dr Subotica 4/2, Belgrade, Serbia.
| |
Collapse
|
6
|
Bittner-Frank M, Reisinger AG, Andriotis OG, Pahr DH, Thurner PJ. Cortical and trabecular mechanical properties in the femoral neck vary differently with changes in bone mineral density. JBMR Plus 2024; 8:ziae049. [PMID: 38736661 PMCID: PMC11088358 DOI: 10.1093/jbmrpl/ziae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/29/2024] [Accepted: 03/24/2024] [Indexed: 05/14/2024] Open
Abstract
Graphical Abstract.
Collapse
Affiliation(s)
- Martin Bittner-Frank
- Division of Biomechanics, Karl Landsteiner University of Health Sciences, A-3500 Krems an der Donau, Austria
| | - Andreas G Reisinger
- Division of Biomechanics, Karl Landsteiner University of Health Sciences, A-3500 Krems an der Donau, Austria
| | - Orestis G Andriotis
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, A-1060 Vienna, Austria
| | - Dieter H Pahr
- Division of Biomechanics, Karl Landsteiner University of Health Sciences, A-3500 Krems an der Donau, Austria
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, A-1060 Vienna, Austria
| | - Philipp J Thurner
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, A-1060 Vienna, Austria
| |
Collapse
|
7
|
Delsmann J, Eissele J, Simon A, Alimy AR, von Kroge S, Mushumba H, Püschel K, Busse B, Ries C, Amling M, Beil FT, Rolvien T. Alterations in compositional and cellular properties of the subchondral bone are linked to cartilage degeneration in hip osteoarthritis. Osteoarthritis Cartilage 2024; 32:535-547. [PMID: 38403152 DOI: 10.1016/j.joca.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/21/2023] [Accepted: 01/22/2024] [Indexed: 02/27/2024]
Abstract
OBJECTIVE The subchondral bone is an emerging regulator of osteoarthritis (OA). However, knowledge of how specific subchondral alterations relate to cartilage degeneration remains incomplete. METHOD Femoral heads were obtained from 44 patients with primary OA during total hip arthroplasty and from 30 non-OA controls during autopsy. A multiscale assessment of the central subchondral bone region comprising histomorphometry, quantitative backscattered electron imaging, nanoindentation, and osteocyte lacunocanalicular network characterization was employed. RESULTS In hip OA, thickening of the subchondral bone coincided with a higher number of osteoblasts (controls: 3.7 ± 4.5 mm-1, OA: 16.4 ± 10.2 mm-1, age-adjusted mean difference 10.5 mm-1 [95% CI 4.7 to 16.4], p < 0.001) but a similar number of osteoclasts compared to controls (p = 0.150). Furthermore, higher matrix mineralization heterogeneity (CaWidth, controls: 2.8 ± 0.2 wt%, OA: 3.1 ± 0.3 wt%, age-adjusted mean difference 0.2 wt% [95% CI 0.1 to 0.4], p = 0.011) and lower tissue hardness (controls: 0.69 ± 0.06 GPa, OA: 0.67 ± 0.06 GPa, age-adjusted mean difference -0.05 GPa [95% CI -0.09 to -0.01], p = 0.032) were detected. While no evidence of altered osteocytic perilacunar/canalicular remodeling in terms of fewer osteocyte canaliculi was found in OA, specimens with advanced cartilage degeneration showed a higher number of osteocyte canaliculi and larger lacunocanalicular network area compared to those with low-grade cartilage degeneration. Multiple linear regression models indicated that several subchondral bone properties, especially osteoblast and osteocyte parameters, were closely related to cartilage degeneration (R2 adjusted = 0.561, p < 0.001). CONCLUSION Subchondral bone properties in OA are affected at the compositional, mechanical, and cellular levels. Based on their strong interaction with cartilage degeneration, targeting osteoblasts/osteocytes may be a promising therapeutic OA approach. DATA AND MATERIALS AVAILABILITY All data are available in the main text or the supplementary materials.
Collapse
Affiliation(s)
- Julian Delsmann
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julian Eissele
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander Simon
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Assil-Ramin Alimy
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simon von Kroge
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Herbert Mushumba
- Department of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Püschel
- Department of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Ries
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frank Timo Beil
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Rolvien
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
8
|
Rufus-Membere P, Anderson KB, Holloway-Kew KL, Harland JW, Diez-Perez A, Kotowicz MA, Pasco JA. The practicality of using bone impact microindentation in a population-based study of women: A Geelong-Osteoporosis Study. Bone Rep 2024; 20:101733. [PMID: 38357013 PMCID: PMC10864859 DOI: 10.1016/j.bonr.2023.101733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 12/14/2023] [Accepted: 12/30/2023] [Indexed: 02/16/2024] Open
Abstract
Impact microindentation (IMI) is a minimally invasive technique that allows the assessment of bone material strength index (BMSi) in vivo, by measuring the depth of a micron-sized, spherical tip into cortical bone that is then indexed to the depth of the tip into a reference material. In this study, we aimed to assess the practicality of its application in 99 women aged 42-84 yr from the Geelong Osteoporosis Study. Impact microindentation was performed in the mid-shaft of the right tibia using the OsteoProbe. Immediately following measurement, each participant was requested to rate on a Visual Analogue Scale [0-10] the level of discomfort anticipated and experienced, any initial reluctance towards the measurement and whether they were willing to repeat the measurement. Of 99 potential participants who attended this assessment phase, 55 underwent IMI measurement. Reasons for non-measurement in 44 women were existing skin conditions (n = 8, 18.2 %) and excessive soft tissue around mid-tibial region (n = 32, 72.2 %). An additional four (9.1 %) participants did not provide any reasons for declining. For 55 participants who had underwent IMI, the expectation for pain when briefed about the procedure was low (2.28 ± 2.39), as was pain experienced during the measurement (0.72 ± 1.58). Participants were not reluctant to undergo the measurement (0.83 ± 1.67), and all indicated a willingness to repeat the measurement. Results of this study showed that the IMI technique is well tolerated and accepted by women participating in the Geelong Osteoporosis Study, suggesting that the technique shows promise in a research or clinical setting.
Collapse
Affiliation(s)
- Pamela Rufus-Membere
- Deakin University, IMPACT- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
| | - Kara B. Anderson
- Deakin University, IMPACT- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
| | - Kara L. Holloway-Kew
- Deakin University, IMPACT- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
| | - Jacob W. Harland
- Deakin University, IMPACT- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
| | - Adolfo Diez-Perez
- Barcelona- Department of Internal Medicine, Hospital del Mar-IMIM, Autonomous University of Barcelona and CIBERFES, Instituto Carlos III, Spain
| | - Mark A. Kotowicz
- Deakin University, IMPACT- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
- Barwon Health, Geelong, Australia
- Department of Medicine-Western Health, The University of Melbourne, St. Albans, Australia
| | - Julie A. Pasco
- Deakin University, IMPACT- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
- Barwon Health, Geelong, Australia
- Department of Medicine-Western Health, The University of Melbourne, St. Albans, Australia
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
| |
Collapse
|
9
|
Park JW, Yoo JH, Lee YK, Park JS, Won YY. Treatment of Osteoporosis after Hip Fracture: Survey of the Korean Hip Society. Hip Pelvis 2024; 36:62-69. [PMID: 38420739 DOI: 10.5371/hp.2024.36.1.62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 03/02/2024] Open
Abstract
Purpose To assess current practice in the treatment of osteoporosis in patients who underwent treatment for hip fracture in South Korea. Materials and Methods A survey of 97 members of the Korean Hip Society, orthopedic hip surgeons who administer treatment for hip fractures in South Korea, was conducted. The survey was conducted for assessment of demographic data and perceptions regarding the management of osteoporosis in patients who have undergone treatment for hip fracture. Analysis of the data was performed using descriptive statistical methods. Results The majority of participants were between the age of 41 and 50 years, and 74% were practicing in tertiary hospitals. Testing for serum vitamin D levels (82%) was the most commonly performed laboratory test. Calcium and vitamin D were prescribed for more than 80% of patients by 47% and 52% of participants, respectively. Denosumab was the most commonly used first-line treatment option for osteoporosis in hip fracture patients. Bisphosphonate was most often perceived as the cause of atypical femoral fractures, and the most appropriate time for reoperation was postoperative 12 months. Teriparatide was most preferred after cessation of bisphosphonate and only prescribing calcium and vitamin D was most common in high-risk patients for prevention of atypical femoral fracture. Conclusion The results of this study that surveyed orthopedic hip surgeons showed that most participants followed the current strategy for management of osteoporosis. Because the end result of osteoporosis is a bone fracture, active involvement of orthopedic surgeons is important in treating this condition.
Collapse
Affiliation(s)
- Jung-Wee Park
- Department of Orthopedic Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Je-Hyun Yoo
- Department of Orthopedic Surgery, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Young-Kyun Lee
- Department of Orthopedic Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jong-Seok Park
- Department of Orthopedic Surgery, Soonchunhyang University Hospital Cheonan, Cheonan, Korea
| | - Ye-Yeon Won
- Department of Orthopedic Surgery, Ajou University College of Medicine, Suwon, Korea
| |
Collapse
|
10
|
Milovanovic P, Busse B. Micropetrosis: Osteocyte Lacunar Mineralization in Aging and Disease. Curr Osteoporos Rep 2023; 21:750-757. [PMID: 37917286 DOI: 10.1007/s11914-023-00832-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Abstract
PURPOSE OF REVIEW As the importance of osteocytes for bone mineral homeostasis is increasingly recognized, there is growing interest in osteocyte cell death as a relevant indicator in various physiological and pathological conditions. Micropetrosis is an established term used to describe osteocyte lacunae that are filled with minerals following osteocyte death. While the early reports of micropetrosis were purely descriptive, there is now an increasing body of literature showing quantitative data on micropetrosis in various conditions such as aging, osteoporosis, immobilization, and diabetes, and in osteoporosis treatment (denosumab and bisphosphonates). This review summarizes quantitative findings on micropetrosis, with a particular emphasis on the recent advances in the field. RECENT FINDINGS There is growing evidence that micropetrosis is more common in older, osteoporotic, and immobilized individuals, as well as in individuals with type 1 or type 2 diabetes. Denosumab and bisphosphonates seem to affect lacunar mineralization differently, where specifically bisphosphonates have been shown to prolong osteocyte viability and reduce micropetrosis. Despite continuous proceedings in the field of osteocyte-lacunar-network characteristics, more studies are necessary to further clarify the mechanisms of lacunar mineralization, the inter-site variability of micropetrosis accumulation, the relevance of micropetrosis in various diseases and conditions, and whether micropetrosis could be an indicator of bone fragility or a target for treatment.
Collapse
Affiliation(s)
- Petar Milovanovic
- Center of Bone Biology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Belgrade, Serbia.
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Interdisciplinary Competence Center for Interface Research (ICCIR), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
11
|
Demirtas A, Taylor EA, Gludovatz B, Ritchie RO, Donnelly E, Ural A. An integrated experimental-computational framework to assess the influence of microstructure and material properties on fracture toughness in clinical specimens of human femoral cortical bone. J Mech Behav Biomed Mater 2023; 145:106034. [PMID: 37494816 DOI: 10.1016/j.jmbbm.2023.106034] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 06/08/2023] [Accepted: 07/16/2023] [Indexed: 07/28/2023]
Abstract
Microstructural and compositional changes that occur due to aging, pathological conditions, or pharmacological treatments alter cortical bone fracture resistance. However, the relative importance of these changes to the fracture resistance of cortical bone has not been quantified in detail. In this technical note, we developed an integrated experimental-computational framework utilizing human femoral cortical bone biopsies to advance the understanding of how fracture resistance of cortical bone is modulated due to modifications in its microstructure and material properties. Four human biopsy samples from individuals with varying fragility fracture history and osteoporosis treatment status were converted to finite element models incorporating specimen-specific material properties and were analyzed using fracture mechanics-based modeling. The results showed that cement line density and osteonal volume had a significant effect on crack volume. The removal of cement lines substantially increased the crack volume in the osteons and interstitial bone, representing straight crack growth, compared to models with cement lines due to the lack of crack deflection in the models without cement lines. Crack volume in the osteons and interstitial bone increased when mean elastic modulus and ultimate strength increased and mean fracture toughness decreased. Crack volume in the osteons and interstitial bone was reduced when material property heterogeneity was incorporated in the models. Although both the microstructure and the heterogeneity of the material properties of the cortical bone independently increased the fracture toughness, the relative contribution of the microstructure was more significant. The integrated experimental-computational framework developed here can identify the most critical microscale features of cortical bone modulated by pathological processes or pharmacological treatments that drive changes in fracture resistance and improve our understanding of the relative influence of microstructure and material properties on fracture resistance of cortical bone.
Collapse
Affiliation(s)
- Ahmet Demirtas
- Department of Mechanical Engineering, Villanova University, Villanova, PA, USA
| | - Erik A Taylor
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Bernd Gludovatz
- School of Mechanical and Manufacturing Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Robert O Ritchie
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
| | - Eve Donnelly
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA; Musculoskeletal Integrity Program, Weill Cornell Medicine, Research Institute, Hospital for Special Surgery, New York City, NY, USA
| | - Ani Ural
- Department of Mechanical Engineering, Villanova University, Villanova, PA, USA.
| |
Collapse
|
12
|
Biguetti CC, Lakkasetter Chandrashekar B, Simionato GB, Momesso NR, Duarte MAH, Rodrigues DC, Matsumoto MA. Influence of age and gender on alveolar bone healing post tooth extraction in 129 Sv mice: a microtomographic, histological, and biochemical characterization. Clin Oral Investig 2023; 27:4605-4616. [PMID: 37261497 DOI: 10.1007/s00784-023-05087-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
OBJECTIVES To analyze the effect of biological sex and aging on craniofacial bone features in 129 Sv mice and their influence on dental socket healing post tooth extraction. MATERIALS AND METHODS A total of 52 129 Sv mice were used, of which 28 were young (3-4 months) and 24 were aged (17-18 months), equally distributed according to biological sex. After an upper right incisor extraction, mice specimens were collected at 7, 14, and 21-days post-surgery for microtomographic (microCT) and comprehensive histological analysis. Mandible, skull bones, and maxillae at 21 days were analyzed by microCT, while blood plasma samples were collected for the detection of key bone turnover markers (P1NP and CTX-1) by enzyme-linked immunosorbent (ELISA) assay. RESULTS Aged females depicted significantly decreased mineralized bone content in alveolar sockets in comparison to young females and aged males at day 7, and aged males at day 14. Mandible RCA and Ma.AR of aged females were also significantly decreased in comparison with young females. Histological evaluation revealed that all alveolar sockets healed at 21 days with inflammation resolution and deposition of new bone. Immunohistochemistry for TRAP revealed increased area density for osteoclasts in alveolar sockets of aged females when compared to young females at 21 days. While a significant increase in CTX-1 levels was detected in blood plasma of aged females when compared to young females, P1NP levels did not significantly change between young and older females. No significant changes were observed for males. CONCLUSIONS Age and gender can significantly affect craniofacial bones of 129 Sv mice, especially maxilla and mandible in females. Considering the altered bone resorption parameters and delayed alveolar bone healing in older females, careful deliberation is necessary during development of pre-clinical models for craniofacial research. CLINICAL RELEVANCE Aging can be a contributing factor to slower bone healing in craniofacial bones. However, there are no sufficient experimental studies that have addressed this phenomenon along with biological sex taken into consideration.
Collapse
Affiliation(s)
- Claudia Cristina Biguetti
- Department of Surgery and Biomechanics, School of Podiatric Medicine, University of Texas Rio Grande Valley, Harlingen, TX, USA.
- Department of Basic Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), São Paulo, Araçatuba, Brazil.
| | | | - Gustavo Baroni Simionato
- Department of Basic Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), São Paulo, Araçatuba, Brazil
| | - Nataira Regina Momesso
- Department of Basic Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), São Paulo, Araçatuba, Brazil
| | - Marco Antonio Hungaro Duarte
- Department of Dental Materials and Endodontics, School of Dentistry of Bauru, University of Sao Paulo (USP), Bauru, São Paulo, Brazil
| | | | - Mariza Akemi Matsumoto
- Department of Basic Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), São Paulo, Araçatuba, Brazil
| |
Collapse
|
13
|
Sang W, Ural A. Evaluating the Role of Canalicular Morphology and Perilacunar Region Properties on Local Mechanical Environment of Lacunar-Canalicular Network Using Finite Element Modeling. J Biomech Eng 2023; 145:1156059. [PMID: 36629002 DOI: 10.1115/1.4056655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/07/2023] [Indexed: 01/12/2023]
Abstract
Physiological and pathological processes such as aging, diseases, treatments, and lactation can alter lacunar-canalicular network (LCN) morphology and perilacunar region properties. These modifications can impact the mechanical environment of osteocytes which in turn can influence osteocyte mechanosensitivity and the remodeling process. In this study, we aim to evaluate how the modifications in the canalicular morphology, lacunar density, and the perilacunar region properties influence the local mechanical environment of LCN and the apparent bone properties using three-dimensional finite element (FE) modeling. The simulation results showed that a 50% reduction in perilacunar elastic modulus led to about 7% decrease in apparent elastic modulus of the bone. The increase in canalicular density, length, and diameter did not influence the strain amplification in the models but they increased the amount of highly strained bone around LCN. Change in lacunar density did not influence the strain amplification and the amount of highly strained regions on LCN surfaces. Reduction in perilacunar elastic modulus increased both the strain amplification and the volume of highly strained tissue around and on the surface of LCN. The FE models of LCN in this study can be utilized to quantify the influence of modifications in canalicular morphology, lacunar density, and perilacunar region properties on the apparent bone properties and the local mechanical environment of LCN. Although this is a numerical study with idealized models, it provides important information on how mechanical environment of osteocytes is influenced by the modifications in LCN morphology and perilacunar region properties due to physiological and pathological processes.
Collapse
Affiliation(s)
- Wen Sang
- Department of Mechanical Engineering, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085
| | - Ani Ural
- Department of Mechanical Engineering, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085
| |
Collapse
|
14
|
Al-Qudsy L, Hu YW, Xu H, Yang PF. Mineralized Collagen Fibrils: An Essential Component in Determining the Mechanical Behavior of Cortical Bone. ACS Biomater Sci Eng 2023; 9:2203-2219. [PMID: 37075172 DOI: 10.1021/acsbiomaterials.2c01377] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Bone comprises mechanically different materials in a specific hierarchical structure. Mineralized collagen fibrils (MCFs), represented by tropocollagen molecules and hydroxyapatite nanocrystals, are the fundamental unit of bone. The mechanical characterization of MCFs provides the unique adaptive mechanical competence to bone to withstand mechanical load. The structural and mechanical role of MCFs is critical in the deformation mechanisms of bone and the marvelous strength and toughness possessed by bone. However, the role of MCFs in the mechanical behavior of bone across multiple length scales is not fully understood. In the present study, we shed light upon the latest progress regarding bone deformation at multiple hierarchical levels and emphasize the role of MCFs during bone deformation. We propose the concept of hierarchical deformation of bone to describe the interconnected deformation process across multiple length scales of bone under mechanical loading. Furthermore, how the deterioration of bone caused by aging and diseases impairs the hierarchical deformation process of the cortical bone is discussed. The present work expects to provide insights on the characterization of MCFs in the mechanical properties of bone and lays the framework for the understanding of the multiscale deformation mechanics of bone.
Collapse
Affiliation(s)
- Luban Al-Qudsy
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
- Department of Medical Instrumentation Engineering Techniques, Electrical Engineering Technical College, Middle Technical University, 8998+QHJ Baghdad, Iraq
| | - Yi-Wei Hu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Huiyun Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Peng-Fei Yang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
15
|
Dragoun Kolibová S, Wölfel EM, Hemmatian H, Milovanovic P, Mushumba H, Wulff B, Neidhardt M, Püschel K, Failla AV, Vlug A, Schlaefer A, Ondruschka B, Amling M, Hofbauer LC, Rauner M, Busse B, Jähn-Rickert K. Osteocyte apoptosis and cellular micropetrosis signify skeletal aging in type 1 diabetes. Acta Biomater 2023; 162:254-265. [PMID: 36878337 DOI: 10.1016/j.actbio.2023.02.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/03/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023]
Abstract
Bone fragility is a profound complication of type 1 diabetes mellitus (T1DM), increasing patient morbidity. Within the mineralized bone matrix, osteocytes build a mechanosensitive network that orchestrates bone remodeling; thus, osteocyte viability is crucial for maintaining bone homeostasis. In human cortical bone specimens from individuals with T1DM, we found signs of accelerated osteocyte apoptosis and local mineralization of osteocyte lacunae (micropetrosis) compared with samples from age-matched controls. Such morphological changes were seen in the relatively young osteonal bone matrix on the periosteal side, and micropetrosis coincided with microdamage accumulation, implying that T1DM drives local skeletal aging and thereby impairs the biomechanical competence of the bone tissue. The consequent dysfunction of the osteocyte network hampers bone remodeling and decreases bone repair mechanisms, potentially contributing to the enhanced fracture risk seen in individuals with T1DM. STATEMENT OF SIGNIFICANCE: Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disease that causes hyperglycemia. Increased bone fragility is one of the complications associated with T1DM. Our latest study on T1DM-affected human cortical bone identified the viability of osteocytes, the primary bone cells, as a potentially critical factor in T1DM-bone disease. We linked T1DM with increased osteocyte apoptosis and local accumulation of mineralized lacunar spaces and microdamage. Such structural changes in bone tissue suggest that T1DM speeds up the adverse effects of aging, leading to the premature death of osteocytes and potentially contributing to diabetes-related bone fragility.
Collapse
Affiliation(s)
- Sofie Dragoun Kolibová
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Eva Maria Wölfel
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany; Interdisciplinary Competence Center for Interface Research, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Haniyeh Hemmatian
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Petar Milovanovic
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany; University of Belgrade, Faculty of Medicine, Center of Bone Biology, Institute of Anatomy, Belgrade, Serbia
| | - Herbert Mushumba
- University Medical Center Hamburg Eppendorf, Institute of Legal Medicine, Hamburg, Germany
| | - Birgit Wulff
- University Medical Center Hamburg Eppendorf, Institute of Legal Medicine, Hamburg, Germany
| | - Maximilian Neidhardt
- Institute of Medical Technology and Intelligent Systems, Hamburg University of Technology, Am-Schwarzenberg-Campus 3, Hamburg 21073, Germany; Interdisciplinary Competence Center for Interface Research, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Klaus Püschel
- University Medical Center Hamburg Eppendorf, Institute of Legal Medicine, Hamburg, Germany
| | - Antonio Virgilio Failla
- University Medical Center Hamburg Eppendorf, UKE microscopy Imaging facility, Hamburg, Germany
| | - Annegreet Vlug
- Leiden University Medical Center (LUMC), Centre for Bone Quality, Leiden, the Netherlands
| | - Alexander Schlaefer
- Institute of Medical Technology and Intelligent Systems, Hamburg University of Technology, Am-Schwarzenberg-Campus 3, Hamburg 21073, Germany; Interdisciplinary Competence Center for Interface Research, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Benjamin Ondruschka
- University Medical Center Hamburg Eppendorf, Institute of Legal Medicine, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Lorenz C Hofbauer
- Division of Endocrinology, Department of Medicine III, Technische Universität Dresden Medical Center, Diabetes, and Metabolic Bone Diseases, Dresden, Germany
| | - Martina Rauner
- Division of Endocrinology, Department of Medicine III, Technische Universität Dresden Medical Center, Diabetes, and Metabolic Bone Diseases, Dresden, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany; Interdisciplinary Competence Center for Interface Research, University Medical Center Hamburg Eppendorf, Hamburg, Germany.
| | - Katharina Jähn-Rickert
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany; Mildred Scheel Cancer Career Center Hamburg, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| |
Collapse
|
16
|
Xia N, Cai Y, Kan Q, Xiao J, Cui L, Zhou J, Xu W, Liu D. The role of microscopic properties on cortical bone strength of femoral neck. BMC Musculoskelet Disord 2023; 24:133. [PMID: 36803341 PMCID: PMC9940427 DOI: 10.1186/s12891-023-06248-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Femoral neck fractures are serious consequence of osteoporosis (OP), numbers of people are working on the micro-mechanisms of femoral neck fractures. This study aims to investigate the role and weight of microscopic properties on femoral neck maximum load (Lmax), funding the indicator which effects Lmax most. METHODS A total of 115 patients were recruited from January 2018 to December 2020. Femoral neck samples were collected during the total hip replacement surgery. Femoral neck Lmax, micro-structure, micro-mechanical properties, micro-chemical composition were all measured and analyzed. Multiple linear regression analyses were performed to identify significant factors that affected the femoral neck Lmax. RESULTS The Lmax, cortical bone mineral density (cBMD), cortical bone thickness (Ct. Th), elastic modulus, hardness and collagen cross-linking ratio were all significantly decreased, whereas other parameters were significantly increased during the progression of OP (P < 0.05). In micro-mechanical properties, elastic modulus has the strongest correlation with Lmax (P < 0.05). The cBMD has the strongest association with Lmax in micro-structure (P < 0.05). In micro-chemical composition, crystal size has the strongest correlation with Lmax (P < 0.05). Multiple linear regression analysis showed that elastic modulus was most strongly related to Lmax (β = 0.920, P = 0.000). CONCLUSIONS Compared with other parameters, elastic modulus has the greatest influence on Lmax. Evaluation of microscopic parameters on femoral neck cortical bone can clarify the effects of microscopic properties on Lmax, providing a theoretical basis for the femoral neck OP and fragility fractures.
Collapse
Affiliation(s)
- Ning Xia
- Department of Orthopedics, The General Hospital of Western Theater Command, Chengdu, 610083 China
| | - Yun Cai
- grid.443397.e0000 0004 0368 7493Department of Critical Care Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311 China
| | - Qianhua Kan
- grid.263901.f0000 0004 1791 7667School of Mechanics and Aerospace Engineering, Southwest Jiaotong University, Chengdu, 611756 China
| | - Jian Xiao
- Department of Endocrinology, The General Hospital of Western Theater Command, Chengdu, 610083 China
| | - Lin Cui
- Department of Orthopedics, The General Hospital of Western Theater Command, Chengdu, 610083 China
| | - Jiangjun Zhou
- Department of Orthopedic, The 908Th Hospital of Joint Logistic Support Force of PLA, Nanchang, 330001 China
| | - Wei Xu
- Trauma Center, The General Hospital of Western Theater Command, Chengdu, 610083, China.
| | - Da Liu
- Department of Orthopedics, The General Hospital of Western Theater Command, Chengdu, 610083, China.
| |
Collapse
|
17
|
Blouin S, Misof BM, Mähr M, Fratzl-Zelman N, Roschger P, Lueger S, Messmer P, Keplinger P, Rauch F, Glorieux FH, Berzlanovich A, Gruber GM, Brugger PC, Shane E, Recker RR, Zwerina J, Hartmann MA. Osteocyte lacunae in transiliac bone biopsy samples across life span. Acta Biomater 2023; 157:275-287. [PMID: 36549635 DOI: 10.1016/j.actbio.2022.11.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022]
Abstract
Osteocytes act as bone mechanosensors, regulators of osteoblast/osteoclast activity and mineral homeostasis, however, knowledge about their functional/morphological changes throughout life is limited. We used quantitative backscattered electron imaging (qBEI) to investigate osteocyte lacunae sections (OLS) as a 2D-surrogate characterizing the osteocytes. OLS characteristics, the density of mineralized osteocyte lacunae (i.e., micropetrotic osteocytes, md.OLS-Density in nb/mm2) and the average degree of mineralization (CaMean in weight% calcium) of cortex and spongiosa were analyzed in transiliac biopsy samples from healthy individuals under 30 (n=59) and over 30 years (n=50) (i.e., before and after the age of peak bone mass, respectively). We found several differences in OLS-characteristics: 1). Inter-individually between the age groups: OLS-Density and OLS-Porosity were reduced by about 20% in older individuals in spongiosa and in cortex versus younger probands (both, p < 0.001). 2). Intra-individually between bone compartments: OLS-Density was higher in the cortex, +18.4%, p < 0.001 for younger and +7.6%, p < 0.05 for older individuals. Strikingly, the most frequent OLS nearest-neighbor distance was about 30 µm in both age groups and at both bone sites revealing a preferential organization of osteocytes in clusters. OLS-Density was negatively correlated with CaMean in both spongiosa and cortex (both, p < 0.001). Few mineralized OLS were found in young individuals along with an increase of md.OLS-Density with age. In summary, this transiliac bone sample analysis of 200000 OLS from 109 healthy individuals throughout lifespan reveals several age-related differences in OLS characteristics. Moreover, our study provides reference data from healthy individuals for different ages to be used for diagnosis of bone abnormalities in diseases. STATEMENT OF SIGNIFICANCE: Osteocytes are bone cells embedded in lacunae within the mineralized bone matrix and have a key role in the bone metabolism and the mineral homeostasis. Not easily accessible, we used quantitative backscattered electron imaging to determine precisely number and shape descriptors of the osteocyte lacunae in 2D. We analyzed transiliac biopsy samples from 109 individuals with age distributed from 2 to 95 years. Compact cortical bone showed constantly higher lacunar density than cancellous bone but the lacunar density in both bone tissue decreased with age before the peak bone mass age at 30 years and stabilized or even increased after this age. This extensive study provides osteocyte lacunae reference data from healthy individuals usable for bone pathology diagnosis.
Collapse
Affiliation(s)
- Stéphane Blouin
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria & Vienna Bone and Growth Center, Vienna, Austria.
| | - Barbara M Misof
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria & Vienna Bone and Growth Center, Vienna, Austria
| | - Matthias Mähr
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria & Vienna Bone and Growth Center, Vienna, Austria
| | - Nadja Fratzl-Zelman
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria & Vienna Bone and Growth Center, Vienna, Austria
| | - Paul Roschger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria & Vienna Bone and Growth Center, Vienna, Austria
| | - Sonja Lueger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria & Vienna Bone and Growth Center, Vienna, Austria
| | - Phaedra Messmer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria & Vienna Bone and Growth Center, Vienna, Austria
| | - Petra Keplinger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria & Vienna Bone and Growth Center, Vienna, Austria
| | - Frank Rauch
- Shriners Hospital for Children and McGill University, Montreal, ON QC, H4A 0A9, Canada
| | - Francis H Glorieux
- Shriners Hospital for Children and McGill University, Montreal, ON QC, H4A 0A9, Canada
| | - Andrea Berzlanovich
- Unit of Forensic Gerontology, Center of Forensic Medicine, Medical University of Vienna, Vienna, Austria
| | - Gerlinde M Gruber
- Department of Anatomy and Biomechanics, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Peter C Brugger
- Center for Anatomy and Cell Biology, Department of Anatomy, Medical University of Vienna, Vienna, Austria
| | - Elizabeth Shane
- Department of Medicine, Division of Endocrinology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Robert R Recker
- Osteoporosis Research Center, Creighton University, Omaha, Nebraska, USA
| | - Jochen Zwerina
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria & Vienna Bone and Growth Center, Vienna, Austria
| | - Markus A Hartmann
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria & Vienna Bone and Growth Center, Vienna, Austria
| |
Collapse
|
18
|
Allahyari P, Silani M, Yaghoubi V, Milovanovic P, Schmidt FN, Busse B, Qwamizadeh M. On the fracture behavior of cortical bone microstructure: The effects of morphology and material characteristics of bone structural components. J Mech Behav Biomed Mater 2023; 137:105530. [PMID: 36334581 DOI: 10.1016/j.jmbbm.2022.105530] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/29/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
Bone encompasses a complex arrangement of materials at different length scales, which endows it with a range of mechanical, chemical, and biological capabilities. Changes in the microstructure and characteristics of the material, as well as the accumulation of microcracks, affect the bone fracture properties. In this study, two-dimensional finite element models of the microstructure of cortical bone were considered. The eXtended Finite Element Method (XFEM) developed by Abaqus software was used for the analysis of the microcrack propagation in the model as well as for local sensitivity analysis. The stress-strain behavior obtained for the different introduced models was substantially different, confirming the importance of bone tissue microstructure for its failure behavior. Considering the role of interfaces, the results highlighted the effect of cement lines on the crack deflection path and global fracture behavior of the bone microstructure. Furthermore, bone micromorphology and areal fraction of cortical bone tissue components such as osteons, cement lines, and pores affected the bone fracture behavior; specifically, pores altered the crack propagation path since increasing porosity reduced the maximum stress needed to start crack propagation. Therefore, cement line structure, mineralization, and areal fraction are important parameters in bone fracture. The parameter-wise sensitivity analysis demonstrated that areal fraction and strain energy release rate had the greatest and the lowest effect on ultimate strength, respectively. Furthermore, the component-wise sensitivity analysis revealed that for the areal fraction parameter, pores had the greatest effect on ultimate strength, whereas for the other parameters such as elastic modulus and strain energy release rate, cement lines had the most important effect on the ultimate strength. In conclusion, the finding of the current study can help to predict the fracture mechanisms in bone by taking the morphological and material properties of its microstructure into account.
Collapse
Affiliation(s)
- P Allahyari
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - M Silani
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - V Yaghoubi
- Structural Integrity & Composites, Faculty of Aerospace Engineering, Delft University of Technology, 2629 HS, Delft, Netherlands
| | - P Milovanovic
- Center of Bone Biology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - F N Schmidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529, Hamburg, Germany; Interdisciplinary Competence Center for Interface Research (ICCIR), University Medical Center Hamburg-Eppendorf, 22529, Hamburg, Germany
| | - B Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529, Hamburg, Germany; Interdisciplinary Competence Center for Interface Research (ICCIR), University Medical Center Hamburg-Eppendorf, 22529, Hamburg, Germany
| | - M Qwamizadeh
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529, Hamburg, Germany; Interdisciplinary Competence Center for Interface Research (ICCIR), University Medical Center Hamburg-Eppendorf, 22529, Hamburg, Germany.
| |
Collapse
|
19
|
Wölfel EM, Fiedler IAK, Dragoun Kolibova S, Krug J, Lin MC, Yazigi B, Siebels AK, Mushumba H, Wulff B, Ondruschka B, Püschel K, Glüer CC, Jähn-Rickert K, Busse B. Human tibial cortical bone with high porosity in type 2 diabetes mellitus is accompanied by distinctive bone material properties. Bone 2022; 165:116546. [PMID: 36113843 DOI: 10.1016/j.bone.2022.116546] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/23/2022]
Abstract
Diabetes mellitus is a metabolic disease affecting bone tissue at different length-scales. Higher fracture risk in diabetic patients is difficult to detect with common clinical fracture risk assessment due to normal or high bone mineral density in diabetic patients. The observed higher fracture risk despite normal to high areal bone mineral density in diabetic patients points towards impaired bone material quality. Here, we analyze tibial bone from individuals with type 2 diabetes mellitus using a multiscale-approach, which includes clinical and laboratory-based bone quality measures. Tibial cortical bone tissue from individuals with type 2 diabetes mellitus (T2DM) and age-matched healthy controls (n = 15 each) was analyzed with in situ impact indentation, dual energy X-ray absorptiometry (DXA), high resolution peripheral microcomputed tomography (HR-pQCT), micro-computed tomography (microCT), cyclic indentation, quantitative backscattered electron microscopy (qBEI), vibrational spectroscopy (Raman), nanoindentation, and fluorescence spectroscopy. With this approach, a high cortical porosity subgroup of individuals with T2DM was discriminated from two study groups: individuals with T2DM and individuals without T2DM, while both groups were associated with similar cortical porosity quantified by means of microCT. The high porosity T2DM group, but not the T2DM group, showed compromised bone quality expressed by altered cyclic indentation properties (transversal direction) in combination with a higher carbonate-to-amide I ratio in endocortical bone. In addition, in the T2DM group with high cortical porosity group, greater cortical pore diameter was identified with HR-pQCT and lower tissue mineral density using microCT, both compared to T2DM group. Micromechanical analyses of cross-sectioned osteons (longitudinal direction) with cyclic indentation, qBEI, and nanoindentation showed no differences between the three groups. High tibial cortical porosity in T2DM can be linked to locally altered bone material composition. As the tibia is an accessible skeletal site for fracture risk assessment in the clinics (CT, indentation), our findings may contribute to further understanding the site-specific structural and compositional factors forming the basis of bone quality in diabetes mellitus. Refined diagnostic strategies are needed for a comprehensive fracture risk assessment in diabetic bone disease.
Collapse
Affiliation(s)
- Eva M Wölfel
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Imke A K Fiedler
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany; Interdisciplinary Competence Center for Interface Research (ICCIR), University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Sofie Dragoun Kolibova
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Johannes Krug
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Mei-Chun Lin
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Bashar Yazigi
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Anna K Siebels
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Herbert Mushumba
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Birgit Wulff
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Benjamin Ondruschka
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Klaus Püschel
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Claus C Glüer
- Sektion Biomedizinische Bildgebung, Klinik für Radiologie und Neuroradiologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Christian-Albrechts-Universitat zu Kiel, MOIN CC, 24118 Kiel, Germany
| | - Katharina Jähn-Rickert
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany; Mildred Scheel Cancer Career Center Hamburg, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany; Interdisciplinary Competence Center for Interface Research (ICCIR), University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany.
| |
Collapse
|
20
|
Pei S, Zhou Y, Li Y, Azar T, Wang W, Kim DG, Liu XS. Instrumented nanoindentation in musculoskeletal research. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 176:38-51. [PMID: 35660010 DOI: 10.1016/j.pbiomolbio.2022.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/24/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Musculoskeletal tissues, such as bone, cartilage, and muscle, are natural composite materials that are constructed with a hierarchical structure ranging from the cell to tissue level. The component differences and structural complexity, together, require comprehensive multiscale mechanical characterization. In this review, we focus on nanoindentation testing, which is used for nanometer to sub-micrometer length scale mechanical characterization. In the following context, we will summarize studies of nanoindentation in musculoskeletal research, examine the critical factors that affect nanoindentation testing results, and briefly summarize other commonly used techniques that can be conjoined with nanoindentation for synchronized imaging and colocalized characterization.
Collapse
Affiliation(s)
- Shaopeng Pei
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Yilu Zhou
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Yihan Li
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Tala Azar
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Wenzheng Wang
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States; Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Do-Gyoon Kim
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, 43210, USA
| | - X Sherry Liu
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States.
| |
Collapse
|
21
|
Savic I, Farver C, Milovanovic P. Pathogenesis of Pulmonary Calcification and Homologies with Biomineralization in Other Tissues. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1496-1505. [PMID: 36030837 DOI: 10.1016/j.ajpath.2022.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/18/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Lungs often present tissue calcifications and even ossifications, both in the context of high or normal serum calcium levels. Precise mechanisms governing lung calcifications have not been explored. Herein, we emphasize recent advances about calcification processes in other tissues (especially vascular and bone calcifications) and discuss potential sources of calcium precipitates in the lungs, involvement of mineralization promoters and crystallization inhibitors, as well as specific cytokine milieu and cellular phenotypes characteristic for lung diseases, which may be involved in pulmonary calcifications. Further studies are necessary to demonstrate the exact mechanisms underlying calcifications in the lungs, document homologies in biomineralization processes between various tissues in physiological and pathologic conditions, and unravel any locally specific characteristics of mineralization processes that may be targeted to reduce or prevent functionally relevant lung calcifications without negatively affecting the skeleton.
Collapse
Affiliation(s)
- Ivana Savic
- Institute of Pathology, University of Belgrade Faculty of Medicine, Belgrade, Serbia
| | - Carol Farver
- Department of Pathology, Cleveland Clinic, Cleveland, Ohio
| | - Petar Milovanovic
- Laboratory of Bone Biology and Bioanthropology, Institute of Anatomy, University of Belgrade Faculty of Medicine, Belgrade, Serbia; Center of Bone Biology, University of Belgrade Faculty of Medicine, Belgrade, Serbia.
| |
Collapse
|
22
|
Wölfel EM, Schmidt FN, Vom Scheidt A, Siebels AK, Wulff B, Mushumba H, Ondruschka B, Püschel K, Scheijen J, Schalkwijk CG, Vettorazzi E, Jähn-Rickert K, Gludovatz B, Schaible E, Amling M, Rauner M, Hofbauer LC, Zimmermann EA, Busse B. Dimorphic Mechanisms of Fragility in Diabetes Mellitus: the Role of Reduced Collagen Fibril Deformation. J Bone Miner Res 2022; 37:2259-2276. [PMID: 36112316 DOI: 10.1002/jbmr.4706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 08/25/2022] [Accepted: 09/10/2022] [Indexed: 11/06/2022]
Abstract
Diabetes mellitus (DM) is an emerging metabolic disease, and the management of diabetic bone disease poses a serious challenge worldwide. Understanding the underlying mechanisms leading to high fracture risk in DM is hence of particular interest and urgently needed to allow for diagnosis and treatment optimization. In a case-control postmortem study, the whole 12th thoracic vertebra and cortical bone from the mid-diaphysis of the femur from male individuals with type 1 diabetes mellitus (T1DM) (n = 6; 61.3 ± 14.6 years), type 2 diabetes mellitus (T2DM) (n = 11; 74.3 ± 7.9 years), and nondiabetic controls (n = 18; 69.3 ± 11.5) were analyzed with clinical and ex situ imaging techniques to explore various bone quality indices. Cortical collagen fibril deformation was measured in a synchrotron setup to assess changes at the nanoscale during tensile testing until failure. In addition, matrix composition was analyzed including determination of cross-linking and non-crosslinking advanced glycation end-products like pentosidine and carboxymethyl-lysine. In T1DM, lower fibril deformation was accompanied by lower mineralization and more mature crystalline apatite. In T2DM, lower fibril deformation concurred with a lower elastic modulus and tendency to higher accumulation of non-crosslinking advanced glycation end-products. The observed lower collagen fibril deformation in diabetic bone may be linked to altered patterns mineral characteristics in T1DM and higher advanced glycation end-product accumulation in T2DM. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Eva M Wölfel
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Interdisciplinary Competence Center for Interface Research (ICCIR), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Felix N Schmidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annika Vom Scheidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Macroscopic and Clinical Anatomy, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Anna K Siebels
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Birgit Wulff
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Herbert Mushumba
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Benjamin Ondruschka
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Püschel
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jean Scheijen
- Department of Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM) School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Casper G Schalkwijk
- Department of Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM) School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Eik Vettorazzi
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Jähn-Rickert
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Mildred Scheel Cancer Career Center Hamburg, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bernd Gludovatz
- School of Mechanical and Manufacturing Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, Australia
| | - Eric Schaible
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Rauner
- Department of Medicine III, Technische Universität Dresden Medical Center, Dresden, Germany.,Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany.,Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III, Technische Universität Dresden Medical Center, Dresden, Germany.,Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany.,Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Elizabeth A Zimmermann
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Interdisciplinary Competence Center for Interface Research (ICCIR), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
23
|
Kaya S, Schurman CA, Dole NS, Evans DS, Alliston T. Prioritization of Genes Relevant to Bone Fragility Through the Unbiased Integration of Aging Mouse Bone Transcriptomics and Human GWAS Analyses. J Bone Miner Res 2022; 37:804-817. [PMID: 35094432 PMCID: PMC9018503 DOI: 10.1002/jbmr.4516] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 12/20/2021] [Accepted: 01/17/2022] [Indexed: 11/10/2022]
Abstract
Identifying new genetic determinants of bone mineral density (BMD) and fracture promises to yield improved diagnostics and therapies for bone fragility. However, prioritizing candidate genes from genome-wide screens can be challenging. To overcome this challenge, we prioritized mouse genes that are differentially expressed in aging mouse bone based on whether their human homolog is associated with human BMD and/or fracture. Unbiased RNA-seq analysis of young and old male C57BL/6 mouse cortical bone identified 1499, 1685, and 5525 differentially expressed genes (DEGs) in 1, 2, and 2.5-year-old bone, relative to 2-month-old bone, respectively. Gene-based scores for heel ultrasound bone mineral density (eBMD) and fracture were estimated using published genome-wide association studies (GWAS) results of these traits in the UK Biobank. Enrichment analysis showed that mouse bone DEG sets for all three age groups, relative to young bone, are significantly enriched for eBMD, but only the oldest two DEG sets are enriched for fracture. Using gene-based scores, this approach prioritizes among thousands of DEGs by a factor of 5- to 100-fold, yielding 10 and 21 genes significantly associated with fracture in the two oldest groups of mouse DEGs. Though these genes were not the most differentially expressed, they included Sost, Lrp5, and others with well-established functions in bone. Several others have, as yet, unknown roles in the skeleton. Therefore, this study accelerates identification of new genetic determinants of bone fragility by prioritizing a clinically relevant and experimentally tractable number of candidate genes for functional analysis. Finally, we provide a website (www.mouse2human.org) to enable other researchers to easily apply our strategy. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Serra Kaya
- Department of Orthopaedic Surgery, University of California, San Francisco, CA
| | - Charles A. Schurman
- Department of Orthopaedic Surgery, University of California, San Francisco, CA
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA
| | - Neha S. Dole
- Department of Orthopaedic Surgery, University of California, San Francisco, CA
| | - Daniel S. Evans
- California Pacific Medical Center Research Institute, San Francisco, CA
| | - Tamara Alliston
- Department of Orthopaedic Surgery, University of California, San Francisco, CA
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA
| |
Collapse
|
24
|
Little-Letsinger SE, Rubin J, Diekman B, Rubin CT, McGrath C, Pagnotti GM, Klett EL, Styner M. Exercise to Mend Aged-tissue Crosstalk in Bone Targeting Osteoporosis & Osteoarthritis. Semin Cell Dev Biol 2022; 123:22-35. [PMID: 34489173 PMCID: PMC8840966 DOI: 10.1016/j.semcdb.2021.08.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/16/2022]
Abstract
Aging induces alterations in bone structure and strength through a multitude of processes, exacerbating common aging- related diseases like osteoporosis and osteoarthritis. Cellular hallmarks of aging are examined, as related to bone and the marrow microenvironment, and ways in which these might contribute to a variety of age-related perturbations in osteoblasts, osteocytes, marrow adipocytes, chondrocytes, osteoclasts, and their respective progenitors. Cellular senescence, stem cell exhaustion, mitochondrial dysfunction, epigenetic and intracellular communication changes are central pathways and recognized as associated and potentially causal in aging. We focus on these in musculoskeletal system and highlight knowledge gaps in the literature regarding cellular and tissue crosstalk in bone, cartilage, and the bone marrow niche. While senolytics have been utilized to target aging pathways, here we propose non-pharmacologic, exercise-based interventions as prospective "senolytics" against aging effects on the skeleton. Increased bone mass and delayed onset or progression of osteoporosis and osteoarthritis are some of the recognized benefits of regular exercise across the lifespan. Further investigation is needed to delineate how cellular indicators of aging manifest in bone and the marrow niche and how altered cellular and tissue crosstalk impact disease progression, as well as consideration of exercise as a therapeutic modality, as a means to enhance discovery of bone-targeted therapies.
Collapse
Affiliation(s)
- SE Little-Letsinger
- Department of Medicine, Division of Endocrinology & Metabolism, University of North Carolina at Chapel Hill
| | - J Rubin
- Department of Medicine, Division of Endocrinology & Metabolism, University of North Carolina at Chapel Hill,North Carolina Diabetes Research Center (NCDRC), University of North Carolina at Chapel Hill,Department of Medicine, Thurston Arthritis Research Center (TARC), University of North Carolina at Chapel Hill
| | - B Diekman
- Department of Medicine, Thurston Arthritis Research Center (TARC), University of North Carolina at Chapel Hill,Joint Departments of Biomedical Engineering NC State & University of North Carolina at Chapel Hill
| | - CT Rubin
- Department of Biomedical Engineering, State University of New York at Stony Brook
| | - C McGrath
- Department of Medicine, Division of Endocrinology & Metabolism, University of North Carolina at Chapel Hill
| | - GM Pagnotti
- Dept of Endocrine, Neoplasia, and Hormonal Disorders, University Texas MD Anderson Cancer Center, Houston
| | - EL Klett
- Department of Medicine, Division of Endocrinology & Metabolism, University of North Carolina at Chapel Hill,Department of Nutrition, School of Public Health, University of North Carolina at Chapel Hill
| | - M Styner
- Department of Medicine, Division of Endocrinology & Metabolism, University of North Carolina at Chapel Hill,North Carolina Diabetes Research Center (NCDRC), University of North Carolina at Chapel Hill,Department of Medicine, Thurston Arthritis Research Center (TARC), University of North Carolina at Chapel Hill
| |
Collapse
|
25
|
Pulin M, Stockhausen KE, Masseck OA, Kubitschke M, Busse B, Wiegert JS, Oertner TG. Orthogonally-polarized excitation for improved two-photon and second-harmonic-generation microscopy, applied to neurotransmitter imaging with GPCR-based sensors. BIOMEDICAL OPTICS EXPRESS 2022; 13:777-790. [PMID: 35284188 PMCID: PMC8884218 DOI: 10.1364/boe.448760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Fluorescent proteins are excited by light that is polarized parallel to the dipole axis of the chromophore. In two-photon microscopy, polarized light is used for excitation. Here we reveal surprisingly strong polarization sensitivity in a class of genetically encoded, GPCR-based neurotransmitter sensors. In tubular structures such as dendrites, this effect led to a complete loss of membrane signal in dendrites running parallel to the polarization direction of the excitation beam. To reduce the sensitivity to dendritic orientation, we designed an optical device that generates interleaved pulse trains of orthogonal polarization. The passive device, which we inserted in the beam path of an existing two-photon microscope, removed the strong direction bias from fluorescence and second-harmonic (SHG) images. We conclude that for optical measurements of transmitter concentration with GPCR-based sensors, orthogonally polarized excitation is essential.
Collapse
Affiliation(s)
- Mauro Pulin
- Institute for Synaptic Physiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
- Research Group Synaptic Wiring and Information Processing, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Kilian E. Stockhausen
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Olivia A. Masseck
- Synthetic Biology, University of Bremen, Leobener Str. 5, 28359 Bremen, Germany
| | - Martin Kubitschke
- Synthetic Biology, University of Bremen, Leobener Str. 5, 28359 Bremen, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
- Interdisciplinary Competence Center for Interface Research (ICCIR), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - J. Simon Wiegert
- Research Group Synaptic Wiring and Information Processing, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Thomas G. Oertner
- Institute for Synaptic Physiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| |
Collapse
|
26
|
Sang W, Li Y, Guignon J, Liu XS, Ural A. Structural role of osteocyte lacunae on mechanical properties of bone matrix: A cohesive finite element study. J Mech Behav Biomed Mater 2022; 125:104943. [PMID: 34736032 PMCID: PMC8670554 DOI: 10.1016/j.jmbbm.2021.104943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/05/2021] [Accepted: 10/26/2021] [Indexed: 01/03/2023]
Abstract
Despite the extensive studies on biological function of osteocytes, there are limited studies that evaluated the structural role of osteocyte lacunae on local mechanical properties of the bone matrix. As a result, the goal of this study was to elucidate the independent contribution of osteocyte lacunae structure on mechanical properties and fracture behavior of the bone matrix uncoupled from its biological effects and bone tissue composition variation. This study combined cohesive finite element modeling with experimental data from a lactation rat model to evaluate the influence of osteocyte lacunar area porosity, density, size, axis ratio, and orientation on the elastic modulus, ultimate strength, and ultimate strain of the bone matrix as well as on local crack formation and propagation. It also performed a parametric study to isolate the influence of a single osteocyte lacunae structural property on the mechanical properties of the bone matrix. The experimental measurements demonstrated statistically significant differences in lacunar size between ovariectomized rats with lactation history and virgin groups (both ovariectomized and intact) and in axis ratio between rats with lactation history and virgins. There were no differences in mechanical properties between virgin and lactation groups as determined by the finite element simulations. However, there were statistically significant linear relationships between the physiological range of osteocyte lacunar area porosity, density, size, and orientation and the elastic modulus and ultimate strength of the bone matrix in virgin and lactation rats. The parametric study also revealed similar but stronger relationships between elastic modulus and ultimate strength and lacunar density, size, and orientation. The simulations also demonstrated that the osteocyte lacunae guided the crack propagation through local stress concentrations. In summary, this study enhanced the limited knowledge on the structural role of osteocyte lacunae on local mechanical properties of the bone matrix. These data are important in gaining a better understanding of the mechanical implications of the local modifications due to osteocytes in the bone matrix.
Collapse
Affiliation(s)
- Wen Sang
- Department of Mechanical Engineering, Villanova University, 800 Lancaster Avenue, Villanova, PA, USA
| | - Yihan Li
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 332A Stemmler Hall, 36th Street and Hamilton Walk, Philadelphia, PA, USA
| | - Jane Guignon
- Department of Mechanical Engineering, Villanova University, 800 Lancaster Avenue, Villanova, PA, USA
| | - X Sherry Liu
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 332A Stemmler Hall, 36th Street and Hamilton Walk, Philadelphia, PA, USA
| | - Ani Ural
- Department of Mechanical Engineering, Villanova University, 800 Lancaster Avenue, Villanova, PA, USA.
| |
Collapse
|
27
|
Cen H, Yao Y, Liu H, Jia S, Gong H. Multiscale mechanical responses of young and elderly human femurs: A finite element investigation. Bone 2021; 153:116125. [PMID: 34280582 DOI: 10.1016/j.bone.2021.116125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Bone remodeling in the elderly is no longer balanced. As a result, the morphologies and mechanical properties of bone at different scales will change. These changes would affect the mechanical responses of bone, which might exacerbate the imbalance of bone remodeling and even cause age-related bone diseases. METHODS Considering those changes, multiscale finite element (FE) models of bone in the young and the elderly were developed that included macroscale (proximal femur), mesoscale (cortical bone), microscale (Haversian system) and sub-microscale (osteocyte-lacuna-canaliculus-extracellular matrix system, OLCES). The stress and strain distributions at different scales and transmissions among different scales were investigated. RESULTS The stresses of the elderly at macroscale, mesoscale and microscale were higher than those in the young by 23.7%, 62.5% and 8.0%, respectively, and the stresses of the elderly and the young at sub-microscale were almost the same. The strain of the elderly at macroscale, mesoscale, microscale and sub-microscale were higher than those in the young by 48.6%, 56.8%, 11.9% and 25.1%, respectively. The stress and strain transmission rates (ησand ηε) from mesoscale to microscale were decreased by 1.8%, and 2.5% than those from macroscale to mesoscale in the elderly, respectively; but increased by 13.8%, and 4.7% in the young, respectively. ηε from microscale to sub-microscale in the elderly was higher than that in the young by 21.3%. CONCLUSIONS Degeneration of cortical bone mechanical property in the elderly causes increases in stress and strain at macroscale and mesoscale. The reduction of lacunar number in the elderly is not conducive to the mechanical transmission from mesoscale to microscale. The differences in stress and strain at microscale between the young and the elderly are smaller than those at macroscale or mesoscale. The strain stimulus sensed by osteocyte in the elderly is not weakened compared with that in the young.
Collapse
Affiliation(s)
- Haipeng Cen
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.
| | - Yan Yao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.
| | - Haibo Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.
| | - Shaowei Jia
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.
| | - He Gong
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.
| |
Collapse
|
28
|
Ural A. Biomechanical mechanisms of atypical femoral fracture. J Mech Behav Biomed Mater 2021; 124:104803. [PMID: 34479108 DOI: 10.1016/j.jmbbm.2021.104803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/12/2021] [Accepted: 08/26/2021] [Indexed: 11/26/2022]
Abstract
Antiresorptives such as bisphosphonates (BP) and denosumab are commonly used osteoporosis treatments that are effective in preventing osteoporotic fractures by suppressing bone turnover. Although these treatments reduce fracture risk, their long-term use has been associated with atypical femoral fracture (AFF), a rare potential side effect. Despite its rare occurrence, AFF has had a disproportionately significant adverse impact on society due to its severe outcomes such as loss of function and delayed healing. These severe outcomes have led to the decrease in the use and prescription of osteoporosis treatment drugs due to patient anxiety and clinician reluctance. This creates the risk for increasing osteoporotic fracture rates in the population. The existing information on the pathogenesis of AFF primarily relies on retrospective observational studies. However, these studies do not explain the underlying mechanisms that contribute to AFF, and therefore the mechanistic origins of AFF are still poorly understood. The purpose of this review is to outline the current state of knowledge of the mechanical mechanisms of AFF. The review focuses on three major potential mechanical mechanisms of AFF based on the current literature which are (1) macroscale femoral geometry which influences the stress/strain distribution in the femur under loading; (2) bone matrix composition, potentially altered by long-term remodeling suppression by BPs, which directly influences the material properties of bone and its mechanical behavior; and (3) microstructure, potentially altered by long-term remodeling suppression by BPs, which impacts fracture resistance through interaction with crack propagation. In addition, this review presents the critical knowledge gaps in understanding AFF and also discusses approaches to closing the knowledge gap in understanding the underlying mechanisms of AFF.
Collapse
Affiliation(s)
- Ani Ural
- Department of Mechanical Engineering, Villanova University, 800 Lancaster Avenue, Villanova, PA, 19085, USA.
| |
Collapse
|
29
|
Jähn-Rickert K, Zimmermann EA. Potential Role of Perilacunar Remodeling in the Progression of Osteoporosis and Implications on Age-Related Decline in Fracture Resistance of Bone. Curr Osteoporos Rep 2021; 19:391-402. [PMID: 34117624 DOI: 10.1007/s11914-021-00686-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/22/2021] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW We took an interdisciplinary view to examine the potential contribution of perilacunar/canalicular remodeling to declines in bone fracture resistance related to age or progression of osteoporosis. RECENT FINDINGS Perilacunar remodeling is most prominent as a result of lactation; recent advances further elucidate the molecular players involved and their effect on bone material properties. Of these, vitamin D and calcitonin could be active during aging or osteoporosis. Menopause-related hormonal changes or osteoporosis therapies affect bone material properties and mechanical behavior. However, investigations of lacunar size or osteocyte TRAP activity with age or osteoporosis do not provide clear evidence for or against perilacunar remodeling. While the occurrence and potential role of perilacunar remodeling in aging and osteoporosis progression are largely under-investigated, widespread changes in bone matrix composition in OVX models and following osteoporosis therapies imply osteocytic maintenance of bone matrix. Perilacunar remodeling-induced changes in bone porosity, bone matrix composition, and bone adaptation could have significant implications for bone fracture resistance.
Collapse
Affiliation(s)
- Katharina Jähn-Rickert
- Heisenberg Research Group, Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 55a, 22529, Hamburg, Germany.
- Mildred Scheel Cancer Career Center Hamburg, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Elizabeth A Zimmermann
- Faculty of Dentistry, McGill University, Strathcona Anatomy and Dentistry Building, 3640 Rue University, Montreal, Canada.
| |
Collapse
|
30
|
Lee YR, Findlay DM, Muratovic D, Kuliwaba JS. Greater heterogeneity of the bone mineralisation density distribution and low bone matrix mineralisation characterise tibial subchondral bone marrow lesions in knee osteoarthritis patients. Bone 2021; 149:115979. [PMID: 33915332 DOI: 10.1016/j.bone.2021.115979] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/06/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
Tibial subchondral bone marrow lesions (BMLs) identified by MRI have been recognised as potential disease predictors in knee osteoarthritis (KOA), and may associate with abnormal bone matrix mineralisation and reduced bone quality. However, these tissue-level changes of BMLs have not been extensively investigated. Thus, the aim of this study was to quantify the degree of subchondral bone matrix mineralisation (both plate and trabeculae) in relation to histomorphometric parameters of bone remodelling and osteocyte lacunae (OL) characteristics in the tibial plateau (TP) of KOA patients with and without BMLs (OA-BML and OA No-BML, respectively) in comparison to nonOA cadaveric controls (CTL). Osteochondral (cartilage-bone) tissue was sampled from the BML signal region within the medial compartment for each OA-BML TP, and from a corresponding medial region for OA No-BML and CTL TPs. The tissue samples were embedded in resin, and sections stained with Von-Kossa Haematoxylin and Eosin (H&E) for quantitation of static indices of bone remodelling. Resin blocks were then further polished, and carbon-coated for quantitative backscattered electron imaging (qBEI) to determine the bone mineralisation density distribution (BMDD), as well as OL characteristics. It was found that OA-BML contained higher osteoid volume per tissue volume (OV/TV; %) and per bone volume (OV/BV; %) in both subchondral plate and trabecular bone compared to OA No-BML and CTL. The BMDD of OA-BML in both subchondral plate and trabecular bone was shifted toward a lower degree of mineralisation. Typically, an increase in both the heterogeneity of mineralisation density (Ca Width; wt%Ca) and the percentage of lower calcium (Ca Low; % B.Ar) in trabecular bone with OA-BML versus CTL was observed. Further, unmineralised OL density (#/mm2) in subchondral plate was distinctly higher in OA-BML samples compared to CTL. The KOA patients with and without BMLs had significantly decreased density of mineralised OL (#/mm2) in trabecular bone compared to CTL. Taken together, these findings indicate that tibial BMLs in advanced KOA patients are characterised by significantly hypo-mineralised subchondral bone compared with CTL. These differences associated with evidence of increased bone remodelling in OA-BML, and may influence the mechanical properties of the subchondral bone, with implications for the overlying cartilage.
Collapse
Affiliation(s)
- Yea-Rin Lee
- Discipline of Orthopaedics and Trauma, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia; Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, South Australia, Australia.
| | - David M Findlay
- Discipline of Orthopaedics and Trauma, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia.
| | - Dzenita Muratovic
- Discipline of Orthopaedics and Trauma, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia.
| | - Julia S Kuliwaba
- Discipline of Orthopaedics and Trauma, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
31
|
Stapledon CJM, Stamenkov R, Cappai R, Clark JM, Bourke A, Bogdan Solomon L, Atkins GJ. Relationships between the Bone Expression of Alzheimer's Disease-Related Genes, Bone Remodelling Genes and Cortical Bone Structure in Neck of Femur Fracture. Calcif Tissue Int 2021; 108:610-621. [PMID: 33398413 DOI: 10.1007/s00223-020-00796-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 12/12/2020] [Indexed: 01/18/2023]
Abstract
Neck of femur (NOF) fracture is a prevalent fracture type amongst the ageing and osteoporotic populations, commonly requiring total hip replacement (THR) surgery. Increased fracture risk has also been associated with Alzheimer's disease (AD) in the aged. Here, we sought to identify possible relationships between the pathologies of osteoporosis and dementia by analysing bone expression of neurotropic or dementia-related genes in patients undergoing THR surgery for NOF fracture. Femoral bone samples from 66 NOF patients were examined for expression of the neurotropic genes amyloid precursor protein (APP), APP-like protein-2 (APLP2), Beta-Secretase Cleaving Enzyme-1 (BACE1) and nerve growth factor (NGF). Relationships were examined between the expression of these and of bone regulatory genes, systemic factors and bone structural parameters ascertained from plain radiographs. We found strong relative levels of expression and positive correlations between APP, APLP2, BACE1 and NGF levels in NOF bone. Significant correlations were found between APP, APLP2, BACE1 mRNA levels and bone remodelling genes TRAP, RANKL, and the RANKL:OPG mRNA ratio, indicative of potential functional relationships at the time of fracture. Analysis of the whole cohort, as well as non-dementia (n = 53) and dementia (n = 13) subgroups, revealed structural relationships between APP and APLP2 mRNA expression and lateral femoral cortical thickness. These findings suggest that osteoporosis and AD may share common molecular pathways of disease progression, perhaps explaining the common risk factors associated with these diseases. The observation of a potential pathologic role for AD-related genes in bone may also provide alternative treatment strategies for osteoporosis and fracture prevention.
Collapse
Affiliation(s)
- Catherine J M Stapledon
- Centre for Orthopaedic and Trauma Research, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Roumen Stamenkov
- Department of Orthopaedics and Trauma, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Roberto Cappai
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, VIC, Australia
| | - Jillian M Clark
- Centre for Orthopaedic and Trauma Research, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- South Australian Spinal Cord Injury Research Centre, Hampstead Rehabilitation Centre, Lightsview, SA, Australia
| | - Alice Bourke
- Department of Gerontology, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - L Bogdan Solomon
- Centre for Orthopaedic and Trauma Research, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Department of Orthopaedics and Trauma, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Gerald J Atkins
- Centre for Orthopaedic and Trauma Research, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.
- Department of Orthopaedics and Trauma, Royal Adelaide Hospital, Adelaide, SA, Australia.
| |
Collapse
|
32
|
Mähr M, Blouin S, Behanova M, Misof BM, Glorieux FH, Zwerina J, Rauch F, Hartmann MA, Fratzl-Zelman N. Increased Osteocyte Lacunae Density in the Hypermineralized Bone Matrix of Children with Osteogenesis Imperfecta Type I. Int J Mol Sci 2021; 22:ijms22094508. [PMID: 33925942 PMCID: PMC8123504 DOI: 10.3390/ijms22094508] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 12/23/2022] Open
Abstract
Osteocytes are terminally differentiated osteoblasts embedded within the bone matrix and key orchestrators of bone metabolism. However, they are generally not characterized by conventional bone histomorphometry because of their location and the limited resolution of light microscopy. OI is characterized by disturbed bone homeostasis, matrix abnormalities and elevated bone matrix mineralization density. To gain further insights into osteocyte characteristics and bone metabolism in OI, we evaluated 2D osteocyte lacunae sections (OLS) based on quantitative backscattered electron imaging in transiliac bone biopsy samples from children with OI type I (n = 19) and age-matched controls (n = 24). The OLS characteristics were related to previously obtained, re-visited histomorphometric parameters. Moreover, we present pediatric bone mineralization density distribution reference data in OI type I (n = 19) and controls (n = 50) obtained with a field emission scanning electron microscope. Compared to controls, OI has highly increased OLS density in cortical and trabecular bone (+50.66%, +61.73%; both p < 0.001), whereas OLS area is slightly decreased in trabecular bone (−10.28%; p = 0.015). Correlation analyses show a low to moderate, positive association of OLS density with surface-based bone formation parameters and negative association with indices of osteoblast function. In conclusion, hyperosteocytosis of the hypermineralized OI bone matrix associates with abnormal bone cell metabolism and might further impact the mechanical competence of the bone tissue.
Collapse
Affiliation(s)
- Matthias Mähr
- 1st Medical Department, Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, Hanusch Hospital, 1140 Vienna, Austria; (M.M.); (S.B.); (M.B.); (B.M.M.); (J.Z.); (M.A.H.)
| | - Stéphane Blouin
- 1st Medical Department, Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, Hanusch Hospital, 1140 Vienna, Austria; (M.M.); (S.B.); (M.B.); (B.M.M.); (J.Z.); (M.A.H.)
| | - Martina Behanova
- 1st Medical Department, Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, Hanusch Hospital, 1140 Vienna, Austria; (M.M.); (S.B.); (M.B.); (B.M.M.); (J.Z.); (M.A.H.)
| | - Barbara M. Misof
- 1st Medical Department, Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, Hanusch Hospital, 1140 Vienna, Austria; (M.M.); (S.B.); (M.B.); (B.M.M.); (J.Z.); (M.A.H.)
| | - Francis H. Glorieux
- Genetics Unit, Shriners Hospital for Children and McGill University, Montreal, ON H4A 0A9, Canada; (F.H.G.); (F.R.)
| | - Jochen Zwerina
- 1st Medical Department, Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, Hanusch Hospital, 1140 Vienna, Austria; (M.M.); (S.B.); (M.B.); (B.M.M.); (J.Z.); (M.A.H.)
| | - Frank Rauch
- Genetics Unit, Shriners Hospital for Children and McGill University, Montreal, ON H4A 0A9, Canada; (F.H.G.); (F.R.)
| | - Markus A. Hartmann
- 1st Medical Department, Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, Hanusch Hospital, 1140 Vienna, Austria; (M.M.); (S.B.); (M.B.); (B.M.M.); (J.Z.); (M.A.H.)
| | - Nadja Fratzl-Zelman
- 1st Medical Department, Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, Hanusch Hospital, 1140 Vienna, Austria; (M.M.); (S.B.); (M.B.); (B.M.M.); (J.Z.); (M.A.H.)
- Correspondence: ; Tel.: +43-5-9393-55770
| |
Collapse
|
33
|
De Falco P, Weinkamer R, Wagermaier W, Li C, Snow T, Terrill NJ, Gupta HS, Goyal P, Stoll M, Benner P, Fratzl P. Tomographic X-ray scattering based on invariant reconstruction: analysis of the 3D nanostructure of bovine bone. J Appl Crystallogr 2021; 54:486-497. [PMID: 33953654 PMCID: PMC8056764 DOI: 10.1107/s1600576721000881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/25/2021] [Indexed: 11/20/2022] Open
Abstract
Small-angle X-ray scattering (SAXS) is an effective characterization technique for multi-phase nanocomposites. The structural complexity and heterogeneity of biological materials require the development of new techniques for the 3D characterization of their hierarchical structures. Emerging SAXS tomographic methods allow reconstruction of the 3D scattering pattern in each voxel but are costly in terms of synchrotron measurement time and computer time. To address this problem, an approach has been developed based on the reconstruction of SAXS invariants to allow for fast 3D characterization of nanostructured inhomogeneous materials. SAXS invariants are scalars replacing the 3D scattering patterns in each voxel, thus simplifying the 6D reconstruction problem to several 3D ones. Standard procedures for tomographic reconstruction can be directly adapted for this problem. The procedure is demonstrated by determining the distribution of the nanometric bone mineral particle thickness (T parameter) throughout a macroscopic 3D volume of bovine cortical bone. The T parameter maps display spatial patterns of particle thickness in fibrolamellar bone units. Spatial correlation between the mineral nano-structure and microscopic features reveals that the mineral particles are particularly thin in the vicinity of vascular channels.
Collapse
Affiliation(s)
- Paolino De Falco
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Richard Weinkamer
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Wolfgang Wagermaier
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Chenghao Li
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Tim Snow
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Nicholas J. Terrill
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Himadri S. Gupta
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Pawan Goyal
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
| | - Martin Stoll
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
- Department of Mathematics, TU Chemnitz, Reichenhainer Strasse 41, 09126 Chemnitz, Germany
| | - Peter Benner
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
| | - Peter Fratzl
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
34
|
Bone quality analysis of jaw bones in individuals with type 2 diabetes mellitus-post mortem anatomical and microstructural evaluation. Clin Oral Investig 2021; 25:4377-4400. [PMID: 33694028 DOI: 10.1007/s00784-020-03751-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVES With the higher risk of dental implant failure with type 2 diabetes mellitus (T2DM), there is a need to characterize the jaw bones in those individuals. The aim of this post mortem study was to compare jaw bone quality of individuals with T2DM to healthy controls. MATERIAL AND METHODS Bone cores from the edentulous lower first molar region and the region of mandibular angle were collected from male individuals with T2DM (n = 10, 70.6 ± 4.5 years) and healthy controls (n = 11, 71.5 ± 3.8 years) during autopsy. Within the T2DM, a subgroup treated with oral antidiabetics (OAD) and one on insulin were identified. Bone quality assessment encompassed evaluation of bone microstructure, matrix composition, and cellular activity, using microcomputed tomography (micro-CT), quantitative backscattered electron imaging (qBEI), Raman spectroscopy, and bone histomorphometry. RESULTS In the mandibular angle, T2DM showed 51% lower porosity of the lingual cortex (p = 0.004) and 21% higher trabecular thickness (p = 0.008) compared to control. More highly mineralized bone packets were found in the buccal cortex of the mandibular angle in insulin-treated compared to OAD-treated T2DM group (p = 0.034). In the molar region, we found higher heterogeneity of trabecular calcium content in T2DM insulin compared to controls (p = 0.015) and T2DM OAD (p = 0.019). T2DM was associated with lower osteocyte lacunar size in the trabecular bone of the molar region (vs. control p = 0.03). CONCLUSIONS Alterations in microstructure, mineralization, and osteocyte morphology were determined in jaw bone of individuals with T2DM compared to controls. CLINICAL RELEVANCE Future studies will have to verify if the mild changes determined in this study will translate to potential contraindications for dental implant placements.
Collapse
|
35
|
Stockhausen KE, Qwamizadeh M, Wölfel EM, Hemmatian H, Fiedler IAK, Flenner S, Longo E, Amling M, Greving I, Ritchie RO, Schmidt FN, Busse B. Collagen Fiber Orientation Is Coupled with Specific Nano-Compositional Patterns in Dark and Bright Osteons Modulating Their Biomechanical Properties. ACS NANO 2021; 15:455-467. [PMID: 33404232 DOI: 10.1021/acsnano.0c04786] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bone continuously adapts to its mechanical environment by structural reorganization to maintain mechanical strength. As the adaptive capabilities of bone are portrayed in its nano- and microstructure, the existence of dark and bright osteons with contrasting preferential collagen fiber orientation (longitudinal and oblique-angled, respectively) points at a required tissue heterogeneity that contributes to the excellent fracture resistance mechanisms in bone. Dark and bright osteons provide an exceptional opportunity to deepen our understanding of how nanoscale tissue properties influence and guide fracture mechanisms at larger length scales. To this end, a comprehensive structural, compositional, and mechanical assessment is performed using circularly polarized light microscopy, synchrotron nanocomputed tomography, focused ion beam/scanning electron microscopy, quantitative backscattered electron imaging, Fourier transform infrared spectroscopy, and nanoindentation testing. To predict how the mechanical behavior of osteons is affected by shifts in collagen fiber orientation, finite element models are generated. Fundamental disparities between both osteon types are observed: dark osteons are characterized by a higher degree of mineralization along with a higher ratio of inorganic to organic matrix components that lead to higher stiffness and the ability to resist plastic deformation under compression. On the contrary, bright osteons contain a higher fraction of collagen and provide enhanced ductility and energy dissipation due to lower stiffness and hardness.
Collapse
Affiliation(s)
- Kilian E Stockhausen
- Department of Osteology and Biomechanics, University Medical Center, Lottestrasse 55a, 22529 Hamburg, Germany
| | - Mahan Qwamizadeh
- Department of Osteology and Biomechanics, University Medical Center, Lottestrasse 55a, 22529 Hamburg, Germany
| | - Eva M Wölfel
- Department of Osteology and Biomechanics, University Medical Center, Lottestrasse 55a, 22529 Hamburg, Germany
- Forum Medical Technology Health Hamburg (FMTHH), Butenfeld 34, 22529 Hamburg, Germany
- Interdisciplinary Competence Center for Interface Research (ICCIR), Martinistrasse 52, 20251 Hamburg, Germany
| | - Haniyeh Hemmatian
- Department of Osteology and Biomechanics, University Medical Center, Lottestrasse 55a, 22529 Hamburg, Germany
| | - Imke A K Fiedler
- Department of Osteology and Biomechanics, University Medical Center, Lottestrasse 55a, 22529 Hamburg, Germany
- Forum Medical Technology Health Hamburg (FMTHH), Butenfeld 34, 22529 Hamburg, Germany
| | - Silja Flenner
- Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| | - Elena Longo
- Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center, Lottestrasse 55a, 22529 Hamburg, Germany
| | - Imke Greving
- Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| | - Robert O Ritchie
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Felix N Schmidt
- Department of Osteology and Biomechanics, University Medical Center, Lottestrasse 55a, 22529 Hamburg, Germany
- Forum Medical Technology Health Hamburg (FMTHH), Butenfeld 34, 22529 Hamburg, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center, Lottestrasse 55a, 22529 Hamburg, Germany
- Interdisciplinary Competence Center for Interface Research (ICCIR), Martinistrasse 52, 20251 Hamburg, Germany
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| |
Collapse
|
36
|
Wölfel EM, Jähn-Rickert K, Schmidt FN, Wulff B, Mushumba H, Sroga GE, Püschel K, Milovanovic P, Amling M, Campbell GM, Vashishth D, Busse B. Individuals with type 2 diabetes mellitus show dimorphic and heterogeneous patterns of loss in femoral bone quality. Bone 2020; 140:115556. [PMID: 32730921 DOI: 10.1016/j.bone.2020.115556] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 01/01/2023]
Abstract
Type 2 diabetes mellitus (T2DM), a metabolic disease on the rise, is associated with substantial increase in bone fracture risk. Because individuals with T2DM have normal or high bone mineral density (BMD), osteodensitometric measurements of BMD do not predict fracture risk with T2DM. Here, we aim to identify the underlying mechanism of the diabetes-induced fracture risk using a high-resolution multi-scale analysis of human cortical bone with special emphasis on osseous cellular activity. Specifically, we show increased cortical porosity in a subgroup of T2DM individuals accompanied by changed mineralization patterns and glycoxidative damage to bone protein, caused by non-enzymatic glycation of bone by reducing sugar. Furthermore, the high porosity T2DM subgroup presents with higher regional mineralization heterogeneity and lower mineral maturity, whereas in the T2DM subgroup regional higher mineral-to-matrix ratio was observed. Both T2DM groups show significantly higher carboxymethyl-lysine accumulation. Our results show a dimorphic pattern of cortical bone reorganization in individuals afflicted with T2DM and hence provide new insight into the diabetic bone disease leading to increased fracture risk.
Collapse
Affiliation(s)
- Eva M Wölfel
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Jähn-Rickert
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Felix N Schmidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Birgit Wulff
- Department of Forensic Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Herbert Mushumba
- Department of Forensic Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Grazyna E Sroga
- Center for Biotechnology and Interdisciplinary Studies, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Klaus Püschel
- Department of Forensic Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Petar Milovanovic
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Laboratory for Anthropology and Skeletal Biology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Graeme M Campbell
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Deepak Vashishth
- Center for Biotechnology and Interdisciplinary Studies, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
37
|
Zimmermann EA, Fiedler IAK, Busse B. Breaking new ground in mineralized tissue: Assessing tissue quality in clinical and laboratory studies. J Mech Behav Biomed Mater 2020; 113:104138. [PMID: 33157423 DOI: 10.1016/j.jmbbm.2020.104138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 09/15/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023]
Abstract
Mineralized tissues, such as bone and teeth, have extraordinary mechanical properties of both strength and toughness. This mechanical behavior originates from deformation and fracture resistance mechanisms in their multi-scale structure. The term quality describes the matrix composition, multi-scale structure, remodeling dynamics, water content, and micro-damage accumulation in the tissue. Aging and disease result in changes in the tissue quality that may reduce strength and toughness and lead to elevated fracture risk. Therefore, the capability to measure the quality of mineralized tissues provides critical information on disease progression and mechanical integrity. Here, we provide an overview of clinical and laboratory-based techniques to assess the quality of mineralized tissues in health and disease. Current techniques used in clinical settings include radiography-based (radiographs, dual energy x-ray absorptiometry, EOS) and x-ray tomography-based methods (high resolution peripheral quantitative computed tomography, cone beam computed tomography). In the laboratory, tissue quality can be investigated in ex vivo samples with x-ray imaging (micro and nano-computed tomography, x-ray microscopy), electron microscopy (scanning/transmission electron imaging (SEM/STEM), backscattered scanning electron microscopy, Focused Ion Beam-SEM), light microscopy, spectroscopy (Raman spectroscopy and Fourier transform infrared spectroscopy) and assessment of mechanical behavior (mechanical testing, fracture mechanics and reference point indentation). It is important for clinicians and basic science researchers to be aware of the techniques available in different types of research. While x-ray imaging techniques translated to the clinic have provided exceptional advancements in patient care, the future challenge will be to incorporate high-resolution laboratory-based bone quality measurements into clinical settings to broaden the depth of information available to clinicians during diagnostics, treatment and management of mineralized tissue pathologies.
Collapse
Affiliation(s)
| | - Imke A K Fiedler
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
38
|
Taylor EA, Donnelly E. Raman and Fourier transform infrared imaging for characterization of bone material properties. Bone 2020; 139:115490. [PMID: 32569874 DOI: 10.1016/j.bone.2020.115490] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 12/12/2022]
Abstract
As the application of Raman spectroscopy to study bone has grown over the past decade, making it a peer technology to FTIR spectroscopy, it has become critical to understand their complimentary roles. Recent technological advancements have allowed these techniques to collect grids of spectra in a spatially resolved fashion to generate compositional images. The advantage of imaging with these techniques is that it allows the heterogenous bone tissue composition to be resolved and quantified. In this review we compare, for non-experts in the field of vibrational spectroscopy, the instrumentation and underlying physical principles of FTIR imaging (FTIRI) and Raman imaging. Additionally, we discuss the strengths and limitations of FTIR and Raman spectroscopy, address sample preparation, and discuss outcomes to provide researchers insight into which techniques are best suited for a given research question. We then briefly discuss previous applications of FTIRI and Raman imaging to characterize bone tissue composition and relationships of compositional outcomes with mechanical performance. Finally, we discuss emerging technical developments in FTIRI and Raman imaging which provide new opportunities to identify changes in bone tissue composition with disease, age, and drug treatment.
Collapse
Affiliation(s)
- Erik A Taylor
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States of America
| | - Eve Donnelly
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, United States of America; Research division, Hospital for Special Surgery, New York, NY, United States of America.
| |
Collapse
|
39
|
Rolvien T, Milovanovic P, Schmidt FN, von Kroge S, Wölfel EM, Krause M, Wulff B, Püschel K, Ritchie RO, Amling M, Busse B. Long-Term Immobilization in Elderly Females Causes a Specific Pattern of Cortical Bone and Osteocyte Deterioration Different From Postmenopausal Osteoporosis. J Bone Miner Res 2020; 35:1343-1351. [PMID: 31999373 DOI: 10.1002/jbmr.3970] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/23/2019] [Accepted: 01/19/2020] [Indexed: 12/11/2022]
Abstract
Immobilization as a result of long-term bed rest can lead to gradual bone loss. Because of their distribution throughout the bone matrix and remarkable interconnectivity, osteocytes represent the major mechanosensors in bone and translate mechanical into biochemical signals controlling bone remodeling. To test whether immobilization affects the characteristics of the osteocyte network in human cortical bone, femoral diaphyseal bone specimens were analyzed in immobilized female individuals and compared with age-matched postmenopausal individuals with primary osteoporosis. Premenopausal and postmenopausal healthy individuals served as control groups. Cortical porosity, osteocyte number and lacunar area, the frequency of hypermineralized lacunae, as well as cortical bone calcium content (CaMean) were assessed using bone histomorphometry and quantitative backscattered electron imaging (qBEI). Bone matrix properties were further analyzed by Fourier transform infrared spectroscopy (FTIR). In the immobilization group, cortical porosity was significantly higher, and qBEI revealed a trend toward higher matrix mineralization compared with osteoporotic individuals. Osteocyte density and canalicular density showed a declining rate from premenopausal toward healthy postmenopausal and osteoporotic individuals with peculiar reductions in the immobilization group, whereas the number of hypermineralized lacunae accumulated inversely. In conclusion, reduced osteocyte density and impaired connectivity during immobilization are associated with a specific bone loss pattern, reflecting a phenotype clearly distinguishable from postmenopausal osteoporosis. Immobilization periods may lead to a loss of survival signals for osteocytes, provoking bone loss that is even higher than in osteoporosis states, whereas osteocytic osteolysis remains absent. © 2020 The Authors. Journal of Bone and Mineral Research published by American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Tim Rolvien
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Petar Milovanovic
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Laboratory for Anthropology and Skeletal Biology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Felix N Schmidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simon von Kroge
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eva M Wölfel
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Krause
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Trauma, Hand, and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Birgit Wulff
- Department of Forensic Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Püschel
- Department of Forensic Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Robert O Ritchie
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
40
|
Wu T, Sun J, Tan L, Yan Q, Li L, Chen L, Liu X, Bin S. Enhanced osteogenesis and therapy of osteoporosis using simvastatin loaded hybrid system. Bioact Mater 2020; 5:348-357. [PMID: 32206736 PMCID: PMC7078127 DOI: 10.1016/j.bioactmat.2020.03.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/01/2020] [Accepted: 03/06/2020] [Indexed: 12/02/2022] Open
Abstract
Postmenopausal osteoporosis is a common chronic dynamic bone disorder, caused by estrogen deficiency. To address this issue, we constructed a controlled drug-release system composed of poly (N-isopropylacrylamide) brush modified mesoporous hydroxyapatite (MHA-SIM-P) loaded with simvastatin (SIM) using an ovariectomised (OVX) rat model. Quantitative alkaline phosphatase activity assay, alizarin red staining and RT-PCR were tested to evaluate the osteogenic ability in vitro. The results showed that the MHA-SIM-P nanoparticles significantly improved the osteogenic differentiation of OVX bone marrow stromal cells (BMSCs) in vitro. In osteoporotic animal model, the therapeutic efficiency for bone defect was evaluated by μCT analysis, tartrate-resistant acid phosphatase, haematoxylin and eosin staining, which showed improved bone formation and less osteoclastic response in OVX rats after surgery for 3 and 6 weeks. This polymer brush modified MHA system provided a sustained release system of hydrophobic SIM to inhibit osteoporosis together with MHA nanoparticle promoting the osteogenesis. Thus, this novel strategy exhibited great potential for promoting osteogenic ability and treating local osteoporotic defects.
Collapse
Affiliation(s)
- Tao Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, Department of Dental Implantology, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, PR China
| | - Jing Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, Department of Dental Implantology, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, PR China
| | - Lei Tan
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| | - Qi Yan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, Department of Dental Implantology, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, PR China
| | - Lei Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, Department of Dental Implantology, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, PR China
| | - Liangwen Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, Department of Dental Implantology, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, PR China
| | - Xiangmei Liu
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| | - Shi Bin
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, Department of Dental Implantology, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, PR China
| |
Collapse
|
41
|
Milovanovic P, Busse B. Phenomenon of osteocyte lacunar mineralization: indicator of former osteocyte death and a novel marker of impaired bone quality? Endocr Connect 2020; 9:R70-R80. [PMID: 32168472 PMCID: PMC7159263 DOI: 10.1530/ec-19-0531] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 03/13/2020] [Indexed: 11/09/2022]
Abstract
An increasing number of patients worldwide suffer from bone fractures that occur after low intensity trauma. Such fragility fractures are usually associated with advanced age and osteoporosis but also with long-term immobilization, corticosteroid therapy, diabetes mellitus, and other endocrine disorders. It is important to understand the skeletal origins of increased bone fragility in these conditions for preventive and therapeutic strategies to combat one of the most common health problems of the aged population. This review summarizes current knowledge pertaining to the phenomenon of micropetrosis (osteocyte lacunar mineralization). As an indicator of former osteocyte death, micropetrosis is more common in aged bone and osteoporotic bone. Considering that the number of mineralized osteocyte lacunae per bone area can distinguish healthy, untreated osteoporotic and bisphosphonate-treated osteoporotic patients, it could be regarded as a novel structural marker of impaired bone quality. Further research is needed to clarify the mechanism of lacunar mineralization and to explore whether it could be an additional target for preventing or treating bone fragility related to aging and various endocrine diseases.
Collapse
Affiliation(s)
- Petar Milovanovic
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Laboratory for Anthropology and Skeletal Biology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Correspondence should be addressed to B Busse:
| |
Collapse
|
42
|
Rabelo GD, Vom Scheidt A, Klebig F, Hemmatian H, Citak M, Amling M, Busse B, Jähn K. Multiscale bone quality analysis in osteoarthritic knee joints reveal a role of the mechanosensory osteocyte network in osteophytes. Sci Rep 2020; 10:673. [PMID: 31959806 PMCID: PMC6971279 DOI: 10.1038/s41598-019-57303-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 12/24/2019] [Indexed: 02/06/2023] Open
Abstract
Osteophytes - bony outgrowths on joint structures - are found in healthy individuals but are specifically present in late osteoarthritis (OA). Osteophyte development and function is not well understood, yet biomechanical stimuli are thought to be critical. Bone adapts to mechanical forces via the cellular network of osteocytes. The involvement of osteocytes in osteophyte formation and maturation has not been unravelled. Forty-three osteophytes from tibias of 23 OA patients (65 ± 9 years) were analysed. The trabecular bone structure of osteophytes presented with fewer trabeculae of lower bone mineral density compared to subchondral bone. We identified 40% early stage and 60% late stage osteophytes that significantly differed in their trabecular bone characteristics. Osteophyte bone revealed a higher number of osteocytes and a lower number of empty osteocyte lacunae per bone area than the subchondral bone. We found that OA osteophytes consist of younger bone material comprised of woven and lamellar bone with the capacity to develop into a late stage osteophyte potentially via the involvement of the osteocyte network. Our analysis of OA osteophytes implies a transition from woven to lamellar bone as in physiological bone growth within a pathological joint. Therefore, osteophyte development and growth present a valuable research subject when aiming to investigate the osteogenic signalling cascade.
Collapse
Affiliation(s)
- Gustavo Davi Rabelo
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annika Vom Scheidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Haniyeh Hemmatian
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Jähn
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
43
|
Jähn-Rickert K, Wölfel EM, Jobke B, Riedel C, Hellmich M, Werner M, McDonald MM, Busse B. Elevated Bone Hardness Under Denosumab Treatment, With Persisting Lower Osteocyte Viability During Discontinuation. Front Endocrinol (Lausanne) 2020; 11:250. [PMID: 32499755 PMCID: PMC7243474 DOI: 10.3389/fendo.2020.00250] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/06/2020] [Indexed: 12/14/2022] Open
Abstract
Denosumab is a potent osteoclast inhibitor targeted to prevent osteoporotic bone loss and thereby reduce fractures in the aging population. Recently, an elevated risk of rebound fractures following denosumab discontinuation was identified, unless patients were transitioned to an alternative antiresorptive medication. How denosumab affects the interaction of mechanosensitive osteocytes and bone quality remains unknown. We hypothesized that denosumab influences osteocyte function contributing to bone reorganization and increased fractures during discontinuation. Bone quality and osteocytes were assessed in archived iliac crest bone biopsies obtained from patients with high fracture occurrence from 2011 to 2016. Biopsies were obtained due to high fracture occurrence prior and during osteoporosis therapy from (i) patients with at least two semiannual subcutaneous injections of 60 mg denosumab, (ii) patients with rebound fractures during discontinuation, and (iii) patients of a treatment-naive group. In total, biopsies from 43 individuals were analyzed (mean age, 65.5 ± 12.1 years). Our results showed that during denosumab treatment, iliac cortical bone had a higher bone tissue hardness compared to treatment-naive bone (p = 0.0077) and a higher percentage of mineralized osteocyte lacunae (p = 0.0095). The density of empty osteocyte lacunae was higher with denosumab compared to treatment-naive (p = 0.014) and remained high in trabecular bone during discontinuation (p = 0.0071). We conclude that during denosumab treatment, increased bone hardness may contribute to improved fracture resistance. In biopsies from patients with high fracture occurrence, denosumab treatment reduced osteocyte viability, an effect that persisted during treatment discontinuation. High-resolution imaging of osteocyte viability indicates a role for osteocytes as a potential future mechanistic target to understand rebound bone loss and increased fractures with denosumab discontinuation.
Collapse
Affiliation(s)
- Katharina Jähn-Rickert
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eva M. Wölfel
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Jobke
- Telemedicine Clinic/Unilabs, Barcelona, Spain
| | - Christoph Riedel
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - Michelle M. McDonald
- Garvan Institute of Medical Research, Bone Microenvironment Group, Darlinghurst, NSW, Australia
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- *Correspondence: Björn Busse
| |
Collapse
|
44
|
Yorgan TA, Sari H, Rolvien T, Windhorst S, Failla AV, Kornak U, Oheim R, Amling M, Schinke T. Mice lacking plastin-3 display a specific defect of cortical bone acquisition. Bone 2020; 130:115062. [PMID: 31678489 DOI: 10.1016/j.bone.2019.115062] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/20/2022]
Abstract
Although inactivating mutations of PLS3, encoding the actin-bundling protein plastin-3, have been identified to cause X-linked osteoporosis, the cellular and molecular influence of PLS3 on bone remodeling is poorly defined. Moreover, although a previous study has demonstrated moderate osteopenia in 12 week-old Pls3-deficient mice based on μCT scanning, there is no reported analysis of such a model on the basis of undecalcified histology and bone-specific histomorphometry. To fill this knowledge gap we applied a deep phenotyping approach and studied Pls3-deficient mice at different ages. Surprisingly, we did not detect significant differences between wildtype and Pls3-deficient littermates with respect to trabecular bone mass, and the same was the case for all histomorphometric parameters determined at 12 weeks of age. Remarkably however, the cortical thickness in both, tibia and femur, was significantly reduced in Pls3-deficient mice in all age groups. We additionally studied the ex vivo behavior of Pls3-deficient primary osteoblasts, which displayed moderately impaired mineralization capacity. Of note, while most osteoblastogenesis markers were not differentially expressed between wildtype and Pls3-deficient cultures, the expression of Sfrp4 was significantly reduced in the latter, a potentially relevant finding, since Sfrp4 inactivation, in mice and humans, specifically causes cortical thinning. We finally addressed the question, if Pls3-deficiency would impair the osteoanabolic influence of parathyroid hormone (PTH). For this purpose we applied daily injection of PTH into wildtype and Pls3-deficient mice and found a similar response regardless of the genotype. Taken together, our data reveal that Pls3-deficiency in mice only recapitulates the cortical bone phenotype of individuals with X-linked osteoporosis by negatively affecting the early stage of cortical bone acquisition.
Collapse
Affiliation(s)
- Timur Alexander Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Hatice Sari
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tim Rolvien
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sabine Windhorst
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Antonio Virgilio Failla
- Microscopy Core Facility, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Uwe Kornak
- Institute of Medical Genetics and Human Genetics, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Ralf Oheim
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
45
|
Chen H, Zhang J, Wang Y, Cheuk KY, Hung ALH, Lam TP, Qiu Y, Feng JQ, Lee WYW, Cheng JCY. Abnormal lacuno-canalicular network and negative correlation between serum osteocalcin and Cobb angle indicate abnormal osteocyte function in adolescent idiopathic scoliosis. FASEB J 2019; 33:13882-13892. [PMID: 31626573 PMCID: PMC6894095 DOI: 10.1096/fj.201901227r] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/10/2019] [Indexed: 12/28/2022]
Abstract
Adolescent idiopathic scoliosis (AIS) is a prevalent spinal deformity occurring during peripubertal growth period that affects 1-4% of adolescents globally without clear etiopathogenetic mechanism. Low bone mineral density is an independent and significant prognostic factor for curve progression. Currently, the cause underlying low bone mass in AIS remains elusive. Osteocytes play an important role in bone metabolism and mineral homeostasis, but its role in AIS has not been studied. In the present study, iliac bone tissues were harvested from 21 patients with AIS (mean age of 14.3 ± 2.20 yr old) with a mean Cobb angle of 55.6 ± 10.61° and 13 non-AIS controls (mean age of 16.5 ± 4.79 yr old) intraoperatively. Acid-etched scanning electron microscopy (SEM) images of AIS demonstrated abnormal osteocytes that were more rounded and cobblestone-like in shape and were aligned in irregular clusters with shorter and disorganized canaliculi. Further quantitative analysis with FITC-Imaris technique showed a significant reduction in the canalicular number and length as well as an increase in lacunar volume and area in AIS. SEM with energy-dispersive X-ray spectroscopy analysis demonstrated a lower calcium-to-phosphorus ratio at the perilacunar/canalicular region. Moreover, microindentaion results revealed lower values of Vickers hardness and elastic modulus in AIS when compared with controls. In addition, in the parallel study of 99 AIS (27 with severe Cobb angle of 65.8 ± 14.1° and 72 with mild Cobb angle of 26.6 ± 9.1°) with different curve severity, the serum osteocalcin level was found to be significantly and negatively associated with the Cobb angle. In summary, the findings in this series of studies demonstrated the potential link of abnormal osteocyte lacuno-canalicular network structure and function to the observed abnormal bone mineralization in AIS, which may shed light on etiopathogenesis of AIS.-Chen, H., Zhang, J., Wang, Y., Cheuk, K.-Y., Hung, A. L. H., Lam, T.-P., Qiu, Y., Feng, J. Q., Lee, W. Y. W., Cheng, J. C. Y. Abnormal lacuno-canalicular network and negative correlation between serum osteocalcin and Cobb angle indicate abnormal osteocyte function in adolescent idiopathic scoliosis.
Collapse
Affiliation(s)
- Huanxiong Chen
- Department of Spine and Osteopathic Surgery, The
First Affiliated Hospital of Hainan Medical University, Hai-kou, China
- Department of Orthopaedics and Traumatology, S. H.
Ho Scoliosis Research Laboratory, The Chinese University of Hong Kong, Shatin, NT,
Hong Kong, China
- Joint Scoliosis Research Center of The Chinese
University of Hong Kong–Nanjing University, The Chinese University of Hong
Kong, Hong Kong, China
| | - Jiajun Zhang
- Department of Orthopaedics and Traumatology, S. H.
Ho Scoliosis Research Laboratory, The Chinese University of Hong Kong, Shatin, NT,
Hong Kong, China
- Joint Scoliosis Research Center of The Chinese
University of Hong Kong–Nanjing University, The Chinese University of Hong
Kong, Hong Kong, China
| | - Yujia Wang
- Department of Orthopaedics and Traumatology, S. H.
Ho Scoliosis Research Laboratory, The Chinese University of Hong Kong, Shatin, NT,
Hong Kong, China
- Joint Scoliosis Research Center of The Chinese
University of Hong Kong–Nanjing University, The Chinese University of Hong
Kong, Hong Kong, China
| | - Ka-Yee Cheuk
- Department of Orthopaedics and Traumatology, S. H.
Ho Scoliosis Research Laboratory, The Chinese University of Hong Kong, Shatin, NT,
Hong Kong, China
- Joint Scoliosis Research Center of The Chinese
University of Hong Kong–Nanjing University, The Chinese University of Hong
Kong, Hong Kong, China
| | - Alec L. H. Hung
- Department of Orthopaedics and Traumatology, S. H.
Ho Scoliosis Research Laboratory, The Chinese University of Hong Kong, Shatin, NT,
Hong Kong, China
- Joint Scoliosis Research Center of The Chinese
University of Hong Kong–Nanjing University, The Chinese University of Hong
Kong, Hong Kong, China
| | - Tsz-Ping Lam
- Department of Orthopaedics and Traumatology, S. H.
Ho Scoliosis Research Laboratory, The Chinese University of Hong Kong, Shatin, NT,
Hong Kong, China
- Joint Scoliosis Research Center of The Chinese
University of Hong Kong–Nanjing University, The Chinese University of Hong
Kong, Hong Kong, China
| | - Yong Qiu
- Joint Scoliosis Research Center of The Chinese
University of Hong Kong–Nanjing University, The Chinese University of Hong
Kong, Hong Kong, China
- Spine Surgery, Nanjing Drum Tower Hospital,
Nanjing University, Nanjing, China
| | - Jian Q. Feng
- Department of Biomedical Sciences, Texas
A&M College of Dentistry, Dallas, Texas, USA
| | - Wayne Y. W. Lee
- Department of Orthopaedics and Traumatology, S. H.
Ho Scoliosis Research Laboratory, The Chinese University of Hong Kong, Shatin, NT,
Hong Kong, China
- Joint Scoliosis Research Center of The Chinese
University of Hong Kong–Nanjing University, The Chinese University of Hong
Kong, Hong Kong, China
| | - Jack C. Y. Cheng
- Department of Orthopaedics and Traumatology, S. H.
Ho Scoliosis Research Laboratory, The Chinese University of Hong Kong, Shatin, NT,
Hong Kong, China
- Joint Scoliosis Research Center of The Chinese
University of Hong Kong–Nanjing University, The Chinese University of Hong
Kong, Hong Kong, China
| |
Collapse
|
46
|
Wittig NK, Laugesen M, Birkbak ME, Bach-Gansmo FL, Pacureanu A, Bruns S, Wendelboe MH, Brüel A, Sørensen HO, Thomsen JS, Birkedal H. Canalicular Junctions in the Osteocyte Lacuno-Canalicular Network of Cortical Bone. ACS NANO 2019; 13:6421-6430. [PMID: 31095362 DOI: 10.1021/acsnano.8b08478] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The osteocyte lacuno-canalicular network (LCN) is essential for bone remodeling because osteocytes regulate cell recruitment. This has been proposed to occur through liquid-flow-induced shear forces in the canaliculi. Models of the LCN have thus far assumed that it contains canaliculi connecting the osteocyte lacunae. However, here, we reveal that enlarged spaces occur at places where several canaliculi cross; we name these spaces canalicular junctions. We characterize them in detail within mice cortical bone using synchrotron nanotomography at two length scales, with 50 and 130 nm voxel size, and show that canalicular junctions occur at a density similar to that of osteocyte lacunae and that canalicular junctions tend to cluster. Through confocal laser scanning microscopy, we show that canalicular junctions are widespread as we have observed them in cortical bone from several species, even though the number density of the canalicular junctions was not universal. Fluid flow simulations of a simple model system with and without a canalicular junction clearly show that liquid mass transport and flow velocities are altered by the presence of canalicular junctions. We suggest that these canalicular junctions may play an important role in osteocyte communication and possibly also in canalicular fluid flow. Therefore, we believe that they constitute an important component in the bone osteocyte network.
Collapse
Affiliation(s)
| | | | | | | | | | - Stefan Bruns
- Department of Chemistry, University of Copenhagen , 2100 Copenhagen Ø , Denmark
| | | | | | | | | | | |
Collapse
|
47
|
Schmidt FN, Zimmermann EA, Walsh F, Plumeyer C, Schaible E, Fiedler IAK, Milovanovic P, Rößle M, Amling M, Blanchet C, Gludovatz B, Ritchie RO, Busse B. On the Origins of Fracture Toughness in Advanced Teleosts: How the Swordfish Sword's Bone Structure and Composition Allow for Slashing under Water to Kill or Stun Prey. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900287. [PMID: 31380168 PMCID: PMC6662059 DOI: 10.1002/advs.201900287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/21/2019] [Indexed: 05/05/2023]
Abstract
The osseous sword of a swordfish (Xiphias gladius) is specialized to incapacitate prey with stunning blows. Considering the sword's growth and maturation pattern, aging from the sword's base to the tip, while missing a mechanosensitive osteocytic network, an in-depth understanding of its mechanical properties and bone quality is lacking. Microstructural, compositional, and nanomechanical characteristics of the bone along the sword are investigated to reveal structural mechanisms accounting for its exceptional mechanical competence. The degree of mineralization, homogeneity, and particle size increase from the base toward the tip, reflecting aging along its length. Fracture experiments reveal that crack-growth toughness vastly decreases at the highly and homogeneously mineralized tip, suggesting the importance of aging effects. Initiation toughness, however, is unchanged suggesting that aging effects on this hierarchical level are counteracted by constant mineral/fibril interaction. In conclusion, the sword of the swordfish provides an excellent model reflecting base-to-tip-wise aging of bone, as indicated by increasing mineralization and decreasing crack-growth toughness toward the tip. The hierarchical, structural, and compositional changes along the sword reflect peculiar prerequisites needed for resisting high mechanical loads. Further studies on advanced teleosts bone tissue may help to unravel structure-function relationships of heavily loaded skeletons lacking mechanosensing cells.
Collapse
Affiliation(s)
- Felix N. Schmidt
- Department of Osteology and BiomechanicsUniversity Medical Center Hamburg‐EppendorfLottestrasse 55A22529HamburgGermany
| | - Elizabeth A. Zimmermann
- Department of Osteology and BiomechanicsUniversity Medical Center Hamburg‐EppendorfLottestrasse 55A22529HamburgGermany
| | - Flynn Walsh
- Materials Sciences DivisionLawrence Berkeley National LaboratoryDepartment of Materials Science and EngineeringUniversity of CaliforniaBerkeleyCA94720USA
| | - Christine Plumeyer
- Department of Osteology and BiomechanicsUniversity Medical Center Hamburg‐EppendorfLottestrasse 55A22529HamburgGermany
| | - Eric Schaible
- Advanced Light SourceLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Imke A. K. Fiedler
- Department of Osteology and BiomechanicsUniversity Medical Center Hamburg‐EppendorfLottestrasse 55A22529HamburgGermany
| | - Petar Milovanovic
- Department of Osteology and BiomechanicsUniversity Medical Center Hamburg‐EppendorfLottestrasse 55A22529HamburgGermany
| | - Manfred Rößle
- European Molecular Biology LaboratoryHamburg OutstationHamburg22607Germany
| | - Michael Amling
- Department of Osteology and BiomechanicsUniversity Medical Center Hamburg‐EppendorfLottestrasse 55A22529HamburgGermany
| | - Clément Blanchet
- European Molecular Biology LaboratoryHamburg OutstationHamburg22607Germany
| | - Bernd Gludovatz
- School of Mechanical and Manufacturing EngineeringUNSW SydneyNSW2052Australia
| | - Robert O. Ritchie
- Materials Sciences DivisionLawrence Berkeley National LaboratoryDepartment of Materials Science and EngineeringUniversity of CaliforniaBerkeleyCA94720USA
| | - Björn Busse
- Department of Osteology and BiomechanicsUniversity Medical Center Hamburg‐EppendorfLottestrasse 55A22529HamburgGermany
- Forum Medical Technology Health Hamburg (FMTHH)Hamburg22529Germany
| |
Collapse
|
48
|
Milovanovic P, Busse B. Inter-site Variability of the Human Osteocyte Lacunar Network: Implications for Bone Quality. Curr Osteoporos Rep 2019; 17:105-115. [PMID: 30980284 DOI: 10.1007/s11914-019-00508-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW This article provides a review on the variability of the osteocyte lacunar network in the human skeleton. It highlights characteristics of the osteocyte lacunar network in relation to different skeletal sites and fracture susceptibility. RECENT FINDINGS Application of 2D analyses (quantitative backscattered electron microscopy, histology, confocal laser scanning microscopy) and 3D reconstructions (microcomputed tomography and synchrotron radiation microcomputed tomography) provides extended high-resolution information on osteocyte lacunar properties in individuals of various age (fetal, children's growth, elderly), sex, and disease states with increased fracture risk. Recent findings on the distribution of osteocytes in the human skeleton are reviewed. Quantitative data highlighting the variability of the osteocyte lacunar network is presented with special emphasis on site specificity and maintenance of bone health. The causes and consequences of heterogeneous distribution of osteocyte lacunae both within specific regions of interest and on the skeletal level are reviewed and linked to differential bone quality factors and fracture susceptibility.
Collapse
Affiliation(s)
- Petar Milovanovic
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 55A, 22529, Hamburg, Germany
- Laboratory for Anthropology and Skeletal Biology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 55A, 22529, Hamburg, Germany.
- Forum Medical Technology Health Hamburg (FMTHH), Heisenberg Research Group of Biomedical Sciences, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
49
|
Sherk VD, Rosen CJ. Senescent and apoptotic osteocytes and aging: Exercise to the rescue? Bone 2019; 121:255-258. [PMID: 30735796 PMCID: PMC6459182 DOI: 10.1016/j.bone.2019.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 12/11/2022]
Abstract
Osteocytes are the most prevalent cell in the skeleton and are the master regulator of bone remodeling. Despite the understanding that osteocytes have a multiyear lifespan, and some factors induce apoptosis in osteocytes, much less is understood about the induction and consequences of osteocyte senescence. Filling these gaps in knowledge will provide novel approaches to slowing age-related bone loss and preventing fragility fractures. The purpose of this review is to examine the roles of senescence and apoptosis in osteocytes in age-related bone loss. Based on evidence that exercise can prevent senescence in skeletal muscle, we provide a novel hypothesis by which exercise can prolong skeletal health.
Collapse
Affiliation(s)
- Vanessa D Sherk
- Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America.
| | - Clifford J Rosen
- Tufts University School of Medicine, Maine Medical Center Research Institute Scarborough, ME, United States of America
| |
Collapse
|
50
|
Fourier Transform Infrared Spectroscopy of Bone Tissue: Bone Quality Assessment in Preclinical and Clinical Applications of Osteoporosis and Fragility Fracture. Clin Rev Bone Miner Metab 2019. [DOI: 10.1007/s12018-018-9255-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|