1
|
Vratarić M, Teofilović A, Milutinović DV, Veličković N, Vučićević L, Đmura G, Djordjevic A. Changes in lipid metabolism in the visceral rather than the subcutaneous adipose tissue depot attenuate metabolic disturbances in obesity-resistant mice fed a high-fat diet. J Nutr Biochem 2025; 141:109912. [PMID: 40174754 DOI: 10.1016/j.jnutbio.2025.109912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 03/12/2025] [Accepted: 03/27/2025] [Indexed: 04/04/2025]
Abstract
Obesity is characterized by an enlargement of white adipose tissue caused by caloric excess. The depot-specific adaptation of white adipose tissue in individuals resistant to obesity despite a high-calorie diet is crucial for understanding the pathogenesis of obesity and related metabolic disorders. Our aim was to characterize the metabolic and morphological state of obesity resistance and to investigate depot-specific changes in signaling pathways in epididymal visceral (eVAT) and inguinal subcutaneous (iSAT) white adipose tissue of C57BL/6J male mice on a high-fat diet (60 kcal% fats). After 14 weeks, the mice were categorized as obese (at least 30% higher body mass compared to the control group) or obesity-resistant (weight gain below 30%). Biochemical and morphological parameters, as well as histology, and signaling pathways involved in lipid metabolism, inflammation, and insulin sensitivity were investigated in eVAT and iSAT. The results showed unaltered body, total VAT and iSAT mass in obesity-resistant mice despite increased caloric intake. Leptin levels and glucose homeostasis were improved in these animals compared to the obese mice. In both eVAT and iSAT of the obesity-resistant mice, adipocyte size and lipolytic capacity were retained at control levels, while compared to the obese mice, preserved capacity for adipogenesis, improved local insulin sensitivity and the absence of inflammation were observed only in the eVAT. In conclusion, metabolic adaptation of eVAT rather than iSAT may have a substantial impact on the maintenance of the obesity-resistant phenotype with fewer metabolic complications, which could contribute to the improvement of existing obesity therapies.
Collapse
Affiliation(s)
- Miloš Vratarić
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ana Teofilović
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| | - Danijela Vojnović Milutinović
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Nataša Veličković
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ljubica Vučićević
- Department of Neurophysiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Goran Đmura
- Animal Facility, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ana Djordjevic
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
2
|
Chelmu Voda C, Stefanopol IA, Gurau G, Hîncu MA, Popa GV, Mateescu OG, Baroiu L, Mehedinti MC. Update on the Study of Angiogenesis in Surgical Wounds in Patients with Childhood Obesity. Biomedicines 2025; 13:375. [PMID: 40002788 PMCID: PMC11852480 DOI: 10.3390/biomedicines13020375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/17/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Angiogenesis, the formation of new blood vessels from pre-existing ones, plays a pivotal role in wound healing, particularly in surgical contexts. Methods and results: However, this process can be significantly impaired in patients with childhood obesity, resulting in delayed healing and additional complications. The biological process of wound healing is complex, involving angiogenesis, cell proliferation, inflammation, and tissue remodeling. This review aims to explore recent advancements in research on angiogenesis in surgical wounds in patients with childhood obesity, with a focus on growth factors, inflammation, microcirculation, and innovative therapeutic strategies. Conclusions: It highlights therapeutic approaches such as the administration of growth factors and the application of biomaterials to enhance angiogenesis.
Collapse
Affiliation(s)
- Cristina Chelmu Voda
- School for Doctoral Studies in Biomedical Sciences, “Dunarea de Jos” University, 800008 Galați, Romania; (C.C.V.)
- Department of Morphology and Functional Sciences, “Dunarea de Jos” University, 800008 Galați, Romania
| | - Ioana Anca Stefanopol
- Clinical Surgical Department, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, 800008 Galați, Romania
- Department of Pediatric Surgery, Sf. Ioan Clinical Emergency Pediatric Hospital, 800487 Galați, Romania
| | - Gabriela Gurau
- Department of Morphology and Functional Sciences, “Dunarea de Jos” University, 800008 Galați, Romania
| | - Maria Andrada Hîncu
- School for Doctoral Studies in Biomedical Sciences, “Dunarea de Jos” University, 800008 Galați, Romania; (C.C.V.)
| | - Gabriel Valeriu Popa
- Department of Morphology and Functional Sciences, “Dunarea de Jos” University, 800008 Galați, Romania
| | - Olivia Garofita Mateescu
- Department of Morphology and Functional Sciences, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania;
| | - Liliana Baroiu
- Clinical Medical Department, “Dunarea de Jos” University, 800008 Galați, Romania
- Department of Infectious Diseases, Sf. Cuvioasa Parascheva Clinical Hospital of Infectious Diseases, 800179 Galați, Romania
| | | |
Collapse
|
3
|
Huang Z, Yu X, Jiang Z, Tang G, Gao S, Xiang Y, Luo Y, Ye B, Li Y, Song P, Xin Y, Du M, Zhao J, Wang B. Neonatal vitamin A but not retinoic acid administration increases intramuscular adipocyte number in sheep by promoting vascularization. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 19:215-225. [PMID: 39635420 PMCID: PMC11615889 DOI: 10.1016/j.aninu.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/22/2024] [Accepted: 08/09/2024] [Indexed: 12/07/2024]
Abstract
This study investigated whether vitamin A (VA) administration during the neonatal stage could increase the number of intramuscular adipocytes in Hu sheep by promoting vascularity. A total of 56 newborn male Hu sheep were divided into four groups and received intramuscular injections of either 0, 7500 IU retinoic acid (RA), 7500 IU VA, or a combination of 7500 IU VA and 5 mg SU5416 (an angiogenic inhibitor), at 1, 7, 14, and 21 days of age. At 15 days of age, 6 sheep from each group were randomly selected and sacrificed for intramuscular adipogenic capacity analysis. The remaining 8 sheep in each group were raised until they were 8 months old. VA-treated sheep exhibited an increase in preadipocytes, elevated expression of adipogenic genes (CCAAT enhancer binding protein alpha [CEBPA] and CCAAT enhancer binding protein beta [CEBPB]) and angiogenic genes (vascular endothelial growth factor A [VEGFA]), and stromal vascular fraction cells in the longissimus dorsi (LD) muscle with enhanced adipogenic capacity (P < 0.05). These effects were entirely negated by SU5416. Upon slaughter, VA increased final weight, carcass weight, and average daily gain (P < 0.05) but did not affect feed intake at 21 to 32 weeks (P = 0.824). VA increased the number of intramuscular adipocytes in the LD and semitendinosus (ST) muscle (P < 0.05) without changing the adipocyte number of the omentum, perirenal and subcutaneous fats (P > 0.05). VA injections also increased intramuscular triglyceride (TG) content (P = 0.016) without changing the omentum fat weight or subcutaneous fat thickness (P > 0.05), but it did increase the perirenal fat weight (P = 0.011). Consistently, SU5416 mitigated the effects of VA on intramuscular TG content and adipocyte count, correlating with a decrease in vascularity. In contrast, RA injections didn't affect the intramuscular fat (P = 0.744) but reduced the TG content of the omentum and perirenal fat (P < 0.05). In conclusion, intramuscular injections of VA but not RA at the neonatal stage improved the growth performance of Hu sheep, increasing the number of intramuscular adipocytes and marbling by promoting angiogenesis.
Collapse
Affiliation(s)
- Zhongzuo Huang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaoxiao Yu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zongyou Jiang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Gaojian Tang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shaoqi Gao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yifan Xiang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yicheng Luo
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Boping Ye
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yating Li
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Pengkang Song
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Yu Xin
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Min Du
- Laboratory of Nutrigenomics and Growth Biology, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Junxing Zhao
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Bo Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
4
|
Carvalho LM, Carvalho BG, Souza LL, da Mota JC, Ribeiro AA, Nicoletti CF. Obesity as an aggravating factor of systemic lupus erythematosus disease: What we already know and what we must explore. A rapid scoping review. Nutrition 2024; 128:112559. [PMID: 39244807 DOI: 10.1016/j.nut.2024.112559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that can affect various organs and systems. Symptoms of SLE can vary widely from person to person and over time, including fatigue, joint pain, skin rashes, fever, and inflammation of multiple organs. The association between SLE and excess body weight has been the subject of study, with evidence suggesting that overweight and obesity can worsen the disease´s clinical presentation. Obesity is linked to a state of low-grade chronic inflammation, which can exacerbate the inflammation present in SLE. Additionally, obesity may negatively impact treatment response, disease progression, and patient prognosis. Patients with SLE and obesity may face additional challenges in managing the disease, such as increased symptom severity, higher risk of cardiovascular and renal complications, and a reduced response to conventional treatments. Obesity can also influence the quality of life of patients with SLE, making a holistic approach that considers the individual's nutritional status essential. Therefore, understanding the relationship between obesity and SLE is crucial for optimizing treatment, improving clinical outcomes, and enhancing patients' quality of life. Further research is needed to elucidate the underlying pathophysiological mechanisms, develop more precise and personalized management strategies, and identify biomarkers that can predict disease prognosis and treatment response.
Collapse
Affiliation(s)
- Lucas M Carvalho
- Applied Physiology and Nutrition Research Group - School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil; Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Beatriz G Carvalho
- Applied Physiology and Nutrition Research Group - School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil; Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Leticia L Souza
- Applied Physiology and Nutrition Research Group - School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil; Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Jhulia Cnl da Mota
- Applied Physiology and Nutrition Research Group - School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil; Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Amanda A Ribeiro
- Applied Physiology and Nutrition Research Group - School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil; Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Carolina F Nicoletti
- Applied Physiology and Nutrition Research Group - School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil; Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil; Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, Brazil.
| |
Collapse
|
5
|
Li Y, Li X, Han Z, Yang R, Zhou W, Peng Y, He J, Liu S. Population structure and selective signature analysis of local sheep breeds in Xinjiang, China based on high-density SNP chip. Sci Rep 2024; 14:28133. [PMID: 39548146 PMCID: PMC11568293 DOI: 10.1038/s41598-024-76573-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024] Open
Abstract
The frigid and droughty climate of Xinjiang in China has given rise to unique indigenous sheep breeds with robust adaptability and resistance. To investigate the genetic mechanism of adaptability of Xinjiang sheep to the local extreme environment, we conducted population genetic structure analyses for three native Xinjiang sheep breeds: Altay sheep (ALT), Bashbay Sheep (BSBC), and Duolang sheep (DLC), as well as two foreign sheep breeds: Suffolk and Dorset, using the Ovine Infinium HD SNP BeadChip(680 K). Our findings revealed distinct genetic and evolutionary histories between Xinjiang and foreign sheep breeds. Principal Component Analysis (PCA) and phylogenetic tree effectively differentiate these five sheep breeds based on their geographical origins, and the domestication level of Xinjiang sheep is comparatively lower than that of foreign sheep breeds. Furthermore, by utilizing three selective signature methods, namely Fixation Index (Fst), Cross Population Extended Haplotype Homozygosity Test (XP-EHH), and Nucleotide Diversity (π), we have successfully identified 22 potential candidate genes. Among these genes, there are TBXT, PDGFD, and VEGFA, which are closely related to tail type and lipid metabolism; VIL1, SLC11A1, and ZBTB46, which are associated with immune function; and candidate genes such as BNC1, HDAC1, and BMP5, which impact sheep reproductive traits. This study establishes a foundation for conserving and utilizing local sheep germplasm resources in Xinjiang and provides molecular insights into the genetic mechanisms governing sheep adaptation to extreme cold and arid environments.
Collapse
Affiliation(s)
- Yanhao Li
- College of Animal Science and Technology, Tarim University, Alar, 843300, Xinjiang, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar, 843300, xinjiang, China
| | - Xiaopeng Li
- College of Animal Science and Technology, Tarim University, Alar, 843300, Xinjiang, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar, 843300, xinjiang, China
| | - Zhipeng Han
- College of Animal Science and Technology, Tarim University, Alar, 843300, Xinjiang, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar, 843300, xinjiang, China
| | - Ruizhi Yang
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar, 843300, xinjiang, China
- College of Life Science and Technology, Tarim University, Alar, 843300, Xinjiang, China
| | - Wen Zhou
- College of Animal Science and Technology, Tarim University, Alar, 843300, Xinjiang, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar, 843300, xinjiang, China
| | - Yuwei Peng
- College of Animal Science and Technology, Tarim University, Alar, 843300, Xinjiang, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar, 843300, xinjiang, China
| | - Jianzhong He
- College of Animal Science and Technology, Tarim University, Alar, 843300, Xinjiang, China.
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar, 843300, xinjiang, China.
| | - Shudong Liu
- College of Animal Science and Technology, Tarim University, Alar, 843300, Xinjiang, China.
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar, 843300, xinjiang, China.
| |
Collapse
|
6
|
Stone C, Harris DD, Broadwin M, Sabe SA, Bellam K, Kanuparthy M, Abid MR, Sellke FW. Sodium-Glucose Cotransporter-2 Inhibition Normalizes Metabolic Derangements in the Ischemic Myocardium. J Surg Res 2024; 303:600-612. [PMID: 39437599 DOI: 10.1016/j.jss.2024.09.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/30/2024] [Accepted: 09/01/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION Sodium-glucose cotransporter-2 inhibitors (SGLT2i) have shown efficacy in the context of heart failure but have not been well-studied in ischemic heart disease. We employed a large animal model of chronic coronary artery disease and metabolic syndrome (MS) to investigate the hemodynamic and metabolic consequences of SGLT2i administration. METHODS Thirty-eight Yorkshire swine were divided into two groups, with half (n = 21) receiving a high fat diet to induce MS, and the other half fed a standard diet (n = 17). All animals underwent thoracotomy for ameroid constrictor placement over the left circumflex coronary artery. Treatment with SGLT2i was then initiated, generating four groups: regular diet placebo (CON, n = 9), regular diet canagliflozin (n = 8), high-fat control (n = 11), and high-fat canagliflozin (n = 10). After 5 wks, all animals underwent terminal myocardial harvest with pressure-volume loop acquisition, perfusion studies, and tissue resection for molecular analysis. RESULTS SGLT2i improved multiple measures of myocardial performance, including a nearly 1.5-fold increase in both cardiac output and ejection fraction; these changes were associated with augmented capillary density and a twofold increase perfusion to the ischemic myocardium. These augmentations were blunted; however, in the presence of MS, and associated with modulated myocardial expression of multiple major metabolic enzymes. CONCLUSIONS SGLT2i significantly improved cardiac function in our large animal model of coronary artery disease, with metabolic modulation of the myocardial tissue serving as a candidate account of these changes. The blunting seen with MS underscores the dependence of clinical translatability on faithful representation of the biochemical environment of human disease.
Collapse
Affiliation(s)
- Christopher Stone
- Division of Cardiothoracic Surgery, Department of Surgery, The Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Dwight D Harris
- Division of Cardiothoracic Surgery, Department of Surgery, The Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Mark Broadwin
- Division of Cardiothoracic Surgery, Department of Surgery, The Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Sharif A Sabe
- Division of Cardiothoracic Surgery, Department of Surgery, The Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Krishna Bellam
- Division of Cardiothoracic Surgery, Department of Surgery, The Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Meghamsh Kanuparthy
- Division of Cardiothoracic Surgery, Department of Surgery, The Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - M Ruhul Abid
- Division of Cardiothoracic Surgery, Department of Surgery, The Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Frank W Sellke
- Division of Cardiothoracic Surgery, Department of Surgery, The Warren Alpert Medical School of Brown University, Providence, Rhode Island.
| |
Collapse
|
7
|
Shih YY, Kao CW, Jhong YR, Chen YA, Chen YW. Synergistic effects of fibrin-enriched adipose decellularized extracellular matrix (AdECM) and microfluidic model on vascularization. RSC Adv 2024; 14:34143-34155. [PMID: 39469019 PMCID: PMC11513771 DOI: 10.1039/d4ra05573j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024] Open
Abstract
Vasculature is essential for maintaining the cellular function and balance of organs and tumors. As a key component of the tumor microenvironment (TME), it significantly influences tumor characteristics. Angiogenesis, heavily influenced by the extracellular matrix (ECM), which acts as a structural scaffold and growth factor reservoir, is regulated by various factors. Notably, adipose tissues and adipose-derived stromal cells contribute angiogenic and anti-apoptotic factors that promote angiogenesis. Sustained vasculature is essential for tissue engineering and ex vivo disease modeling. Lack of shear stress from fluid flow leads to vascular instability and regression. Microfluidic models replicate three-dimensional (3D) cultures from original tissues, encapsulate microenvironmental factors, and maintain consistent fluid flow. In our study, we established decellularized adipose ECM (AdECM) derived from bovine sources and engineered a 3D-printed microfluidic device. We observed significant increases in both the length and diameter of vascular networks after coculturing HUVECs and HDFs in a fibrin gel containing 0.5% AdECM. Additionally, gene expression related to ECM remodeling and angiogenesis was significantly enhanced in vasculature cultivated in fibrin gel containing 0.5% AdECM compared to that in fibrin gel alone. The enhanced vasculogenesis was further amplified and sustained by the 3D microfluidic device placed on a rocker during extended cultivation, primarily through the activation of the PI3K and JAK-mediated pathways. Our ex vivo model with vascularized colon tumoroids revealed that integrating AdECM within a microfluidic device correlates with increased tumoroid growth. Therefore, our study underscores the synergistic impact of AdECM and microfluidic device in promoting and sustaining vasculature. This synergy may have significant implications for tissue regeneration and ex vivo disease modeling, facilitating drug testing and efficacy evaluation.
Collapse
Affiliation(s)
- Yu-Yin Shih
- Research & Development Center for x-Dimensional Extracellular Vesicles, China Medical University Hospital Taichung 404332 Taiwan
| | - Chun-Wei Kao
- Research & Development Center for x-Dimensional Extracellular Vesicles, China Medical University Hospital Taichung 404332 Taiwan
| | - Yi-Rong Jhong
- Research & Development Center for x-Dimensional Extracellular Vesicles, China Medical University Hospital Taichung 404332 Taiwan
| | - Yi-An Chen
- Research & Development Center for x-Dimensional Extracellular Vesicles, China Medical University Hospital Taichung 404332 Taiwan
| | - Yi-Wen Chen
- Research & Development Center for x-Dimensional Extracellular Vesicles, China Medical University Hospital Taichung 404332 Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University Taichung 41354 Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University Taichung 406040 Taiwan
| |
Collapse
|
8
|
Guo Q, Li N, Shi H, Gan Y, Wang W, Jia J, Zhou Y. Aerobic Exercise Prevents High-Fat-Diet-Induced Adipose Tissue Dysfunction in Male Mice. Nutrients 2024; 16:3451. [PMID: 39458447 PMCID: PMC11510691 DOI: 10.3390/nu16203451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/26/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES This study aimed to assess the effect of aerobic exercise on capillary density and vascular smooth muscle cell (VSMC) phenotype in the visceral and subcutaneous adipose tissue of high-fat-diet (HFD) mice in order to understand the mechanisms underlying improvements in insulin resistance (IR) and chronic inflammation in adipose tissue (AT). METHODS Male C57BL/6J mice were divided into HFD and normal diet groups for 12 weeks and then further split into sedentary and aerobic exercise subgroups for an additional 8 weeks. Various parameters including body weight, fat weight, blood glucose, lipid profile, insulin levels, glucose tolerance, and inflammatory cytokines were evaluated. RESULTS Aerobic exercise reduced HFD-induced weight gain, IR, and improved lipid profiles. HFD had a minimal effect on inflammatory cytokines except in visceral adipose tissue (VAT). IR was associated with capillary density in subcutaneous adipose tissue (SAT) and VSMC phenotype in VAT. Aerobic exercise promoted anti-inflammatory responses in VAT, correlating with VSMC phenotype in this tissue. CONCLUSIONS Aerobic exercise can alleviate HFD-induced IR and inflammation through the modulation of VSMC phenotype in AT.
Collapse
Affiliation(s)
- Qiaofeng Guo
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| | - Nan Li
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| | - Haiyan Shi
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| | - Yanming Gan
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| | - Weiqing Wang
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| | - Jiajie Jia
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| | - Yue Zhou
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China
| |
Collapse
|
9
|
Gu J, Jin J, Ren X, Zhang X, Li J, Wang X, Zhang S, Yin X, Zhang Q, Wang Z. Single-Cell Landscape and a Macrophage Subset Enhancing Brown Adipocyte Function in Diabetes. Diabetes Metab J 2024; 48:885-900. [PMID: 38853519 PMCID: PMC11449828 DOI: 10.4093/dmj.2023.0278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/07/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGRUOUND Metabolic dysregulation is a hallmark of type 2 diabetes mellitus (T2DM), in which the abnormalities in brown adipose tissue (BAT) play important roles. However, the cellular composition and function of BAT as well as its pathological significance in diabetes remain incompletely understood. Our objective is to delineate the single-cell landscape of BAT-derived stromal vascular fraction (SVF) and their characteristic alterations in T2DM rats. METHODS T2DM was induced in rats by intraperitoneal injection of low-dose streptozotocin and high-fat diet feeding. Single-cell mRNA sequencing was then performed on BAT samples and compared to normal rats to characterize changes in T2DM rats. Subsequently, the importance of key cell subsets in T2DM was elucidated using various functional studies. RESULTS Almost all cell types in the BAT-derived SVF of T2DM rats exhibited enhanced inflammatory responses, increased angiogenesis, and disordered glucose and lipid metabolism. The multidirectional differentiation potential of adipose tissue-derived stem cells was also reduced. Moreover, macrophages played a pivotal role in intercellular crosstalk of BAT-derived SVF. A novel Rarres2+macrophage subset promoted the differentiation and metabolic function of brown adipocytes via adipose-immune crosstalk. CONCLUSION BAT SVF exhibited strong heterogeneity in cellular composition and function and contributed to T2DM as a significant inflammation source, in which a novel macrophage subset was identified that can promote brown adipocyte function.
Collapse
Affiliation(s)
- Junfei Gu
- Department of Endocrinology & Geriatrics, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Geriatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Endocrinology, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Jiajia Jin
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission, Shandong University, Jinan, China
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoyu Ren
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission, Shandong University, Jinan, China
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xinjie Zhang
- Department of Biology, University College London, London, UK
| | - Jiaxuan Li
- Department of Endocrinology & Geriatrics, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Geriatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission, Shandong University, Jinan, China
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaowei Wang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission, Shandong University, Jinan, China
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Shucui Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission, Shandong University, Jinan, China
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xianlun Yin
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission, Shandong University, Jinan, China
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Qunye Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission, Shandong University, Jinan, China
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Zhe Wang
- Department of Endocrinology & Geriatrics, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Geriatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
10
|
Pathak A, Jain NK, Jain K. Dendrimer-mediated targeting of angiogenic biomarkers: therapeutic intervention against cancer. Expert Opin Drug Deliv 2024; 21:1235-1250. [PMID: 39161976 DOI: 10.1080/17425247.2024.2394631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
INTRODUCTION Development of novel vascular networks is a fundamental requirement for tumor growth and progression. In the last decade, biomarkers and underlying molecular pathways of angiogenesis have been intensely investigated to disrupt the initiation and progression of tumor angiogenesis. However, the clinical applications of anti-angiogenic agents are constrained due to toxic side effects, acquired drug resistance, and unavailability of validated biomarkers. AREA COVERED This review discusses the development of dendrimeric nanocarriers that could be a promising domain to explore for the eradication of current challenges associated with angiogenesis-based cancer therapy. Novel drug-delivery approaches with subtle readouts and better understanding of molecular mechanisms have revealed that dendrimers comprise innate anti-angiogenic activity and incorporation of anti-angiogenic agents or gene-silencing RNA could lead to synergistic anti-angiogenic and anticancer effects with reduced side effects. EXPERT OPINION Dendrimer-mediated targeting of angiogenic biomarkers has efficiently led to the vascular normalization, and rational linking of dendrimers with anti-angiogenic agent or siRNA or both might be a potential area to eradicate the current challenges of angiogenesis-based cancer therapy. However, drawbacks associated with the dendrimers-mediated targeting of angiogenic biomarkers, such as poor stability or small expression of these biomarkers on the normal cells, limit their application at market scale.
Collapse
Affiliation(s)
- Anchal Pathak
- Drug Delivery and Nanomedicine Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, India
| | - Narendra Kumar Jain
- Department of Pharmaceutical Sciences, Dr. H. S. Gour Central University, Sagar, India
| | - Keerti Jain
- Drug Delivery and Nanomedicine Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, India
| |
Collapse
|
11
|
Savulescu-Fiedler I, Mihalcea R, Dragosloveanu S, Scheau C, Baz RO, Caruntu A, Scheau AE, Caruntu C, Benea SN. The Interplay between Obesity and Inflammation. Life (Basel) 2024; 14:856. [PMID: 39063610 PMCID: PMC11277997 DOI: 10.3390/life14070856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Obesity is an important condition affecting the quality of life of numerous patients and increasing their associated risk for multiple diseases, including tumors and immune-mediated disorders. Inflammation appears to play a major role in the development of obesity and represents a central point for the activity of cellular and humoral components in the adipose tissue. Macrophages play a key role as the main cellular component of the adipose tissue regulating the chronic inflammation and modulating the secretion and differentiation of various pro- and anti-inflammatory cytokines. Inflammation also involves a series of signaling pathways that might represent the focus for new therapies and interventions. Weight loss is essential in decreasing cardiometabolic risks and the degree of associated inflammation; however, the latter can persist for long after the excess weight is lost, and can involve changes in macrophage phenotypes that can ensure the metabolic adjustment. A clear understanding of the pathophysiological processes in the adipose tissue and the interplay between obesity and chronic inflammation can lead to a better understanding of the development of comorbidities and may ensure future targets for the treatment of obesity.
Collapse
Affiliation(s)
- Ilinca Savulescu-Fiedler
- Department of Internal Medicine, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Razvan Mihalcea
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Serban Dragosloveanu
- Department of Orthopaedics, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
- Department of Orthopaedics and Traumatology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania (C.C.)
- Department of Radiology and Medical Imaging, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 030167 Bucharest, Romania
| | - Radu Octavian Baz
- Clinical Laboratory of Radiology and Medical Imaging, “Sf. Apostol Andrei” County Emergency Hospital, 900591 Constanta, Romania
- Department of Radiology and Medical Imaging, Faculty of Medicine, “Ovidius” University, 900527 Constanta, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania (C.C.)
- Department of Dermatology, “Prof. N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Serban Nicolae Benea
- Department of Infectious Diseases, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- “Prof. Dr. Matei Balș” National Institute for Infectious Diseases, 021105 Bucharest, Romania
| |
Collapse
|
12
|
Xu M, He Y, Li Y, Liu K, Zhang Y, Su T, Yao Y, Jin X, Zhang X, Lu F. Combined Use of Autologous Sustained-Release Scaffold of Adipokines and Acellular Adipose Matrix to Construct Vascularized Adipose Tissue. Plast Reconstr Surg 2024; 153:348e-360e. [PMID: 37171265 DOI: 10.1097/prs.0000000000010649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
BACKGROUND Adipose tissue engineering plays a key role in the reconstruction of soft-tissue defects. The acellular adipose matrix (AAM) is a promising biomaterial for the construction of engineered adipose tissue. However, AAM lacks sufficient adipoinduction potency because of the abundant loss of matrix-bound adipokines during decellularization. METHODS An adipose-derived extracellular matrix collagen scaffold, "adipose collagen fragment" (ACF), was prepared using a novel mechanical method that provides sustained release of adipokines. Here, the authors used label-free proteomics methods to detect the protein components in AAM and ACF. In vivo, ACF was incorporated into AAM or acellular dermal matrix and implanted into nude mice to evaluate adipogenesis. Neoadipocytes, neovessels, and corresponding gene expression were evaluated. The effects of ACF on adipogenic differentiation of human adipose-derived stem cells and tube formation by human umbilical vein endothelial cells were tested in vitro. RESULTS Proteomics analysis showed that ACF contains diverse adipogenic and angiogenic proteins. ACF can release diverse adipokines and induce highly vascularized, mature adipose tissue in AAM, and even in nonadipogenic acellular dermal matrix. Higher expression of adipogenic markers peroxisome proliferator-activated receptor gamma and CCAAT/enhancer-binding protein alpha and greater numbers of tubule structures were observed in ACF-treated groups in vitro. CONCLUSION The combination of ACF and AAM could serve as a novel and promising strategy to construct mature, vascularized adipose tissue for soft-tissue reconstruction. CLINICAL RELEVANCE STATEMENT The combined use of AAM and ACF has been proven to induce a highly vascularized, mature, engineered adipose tissue in the nude mouse model, which may serve as a promising strategy for soft-tissue reconstruction.
Collapse
Affiliation(s)
- Mimi Xu
- From the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| | - Yunfan He
- From the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| | - Yibao Li
- From the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| | - Kaiyang Liu
- From the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| | - Yuchen Zhang
- From the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| | - Ting Su
- From the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| | - Yao Yao
- From the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| | - Xiaoxuan Jin
- From the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| | - Xiangdong Zhang
- From the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| | - Feng Lu
- From the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| |
Collapse
|
13
|
Pathak A, Pal AK, Roy S, Nandave M, Jain K. Role of Angiogenesis and Its Biomarkers in Development of Targeted Tumor Therapies. Stem Cells Int 2024; 2024:9077926. [PMID: 38213742 PMCID: PMC10783989 DOI: 10.1155/2024/9077926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/21/2023] [Accepted: 12/04/2023] [Indexed: 01/13/2024] Open
Abstract
Angiogenesis plays a significant role in the human body, from wound healing to tumor progression. "Angiogenic switch" indicates a time-restricted event where the imbalance between pro- and antiangiogenic factors results in the transition from prevascular hyperplasia to outgrowing vascularized tumor, which eventually leads to the malignant cancer progression. In the last decade, molecular players, i.e., angiogenic biomarkers and underlying molecular pathways involved in tumorigenesis, have been intensely investigated. Disrupting the initiation and halting the progression of angiogenesis by targeting these biomarkers and molecular pathways has been considered as a potential treatment approach for tumor angiogenesis. This review discusses the currently known biomarkers and available antiangiogenic therapies in cancer, i.e., monoclonal antibodies, aptamers, small molecular inhibitors, miRNAs, siRNAs, angiostatin, endostatin, and melatonin analogues, either approved by the U.S. Food and Drug Administration or currently under clinical and preclinical investigations.
Collapse
Affiliation(s)
- Anchal Pathak
- Drug Delivery and Nanomedicine Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, India
| | - Ajay Kumar Pal
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Subhadeep Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India
| | - Mukesh Nandave
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Keerti Jain
- Drug Delivery and Nanomedicine Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, India
| |
Collapse
|
14
|
Saha A, Kolonin MG, DiGiovanni J. Obesity and prostate cancer - microenvironmental roles of adipose tissue. Nat Rev Urol 2023; 20:579-596. [PMID: 37198266 DOI: 10.1038/s41585-023-00764-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2023] [Indexed: 05/19/2023]
Abstract
Obesity is known to have important roles in driving prostate cancer aggressiveness and increased mortality. Multiple mechanisms have been postulated for these clinical observations, including effects of diet and lifestyle, systemic changes in energy balance and hormonal regulation and activation of signalling by growth factors and cytokines and other components of the immune system. Over the past decade, research on obesity has shifted towards investigating the role of peri-prostatic white adipose tissue as an important source of locally produced factors that stimulate prostate cancer progression. Cells that comprise white adipose tissue, the adipocytes and their progenitor adipose stromal cells (ASCs), which proliferate to accommodate white adipose tissue expansion in obesity, have been identified as important drivers of obesity-associated cancer progression. Accumulating evidence suggests that adipocytes are a source of lipids that are used by adjacent prostate cancer cells. However, results of preclinical studies indicate that ASCs promote tumour growth by remodelling extracellular matrix and supporting neovascularization, contributing to the recruitment of immunosuppressive cells, and inducing epithelial-mesenchymal transition through paracrine signalling. Because epithelial-mesenchymal transition is associated with cancer chemotherapy resistance and metastasis, ASCs are considered to be potential targets of therapies that could be developed to suppress cancer aggressiveness in patients with obesity.
Collapse
Affiliation(s)
- Achinto Saha
- Division of Pharmacology and Toxicology and Dell Paediatric Research Institute, The University of Texas at Austin, Austin, TX, USA
- Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, TX, USA
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Mikhail G Kolonin
- The Brown Foundation Institute of Molecular Medicine for the Prevention of Disease, The University of Texas Health Sciences Center at Houston, Houston, Texas, USA.
| | - John DiGiovanni
- Division of Pharmacology and Toxicology and Dell Paediatric Research Institute, The University of Texas at Austin, Austin, TX, USA.
- Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, TX, USA.
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
15
|
Velazquez C, Herrero Y, Bianchi MS, Cohen DJ, Cuasnicu P, Prost K, Marinoni R, Pascuali N, Parborell F, Abramovich D. Beneficial effects of metformin on mice female fertility after a high-fat diet intake. Mol Cell Endocrinol 2023; 575:111995. [PMID: 37364632 DOI: 10.1016/j.mce.2023.111995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/08/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023]
Abstract
Female fertility is highly dependent on energy balance. High fat diet (HFD) intake entails a risk of infertility and ovulatory disorders. Considering the increase in the prevalence of overweight and obesity over the last decades, it is crucial to understand the mechanisms involved in overweight-associated infertility. In this study, we evaluated the reproductive performance of female mice fed with a HFD and the effects of metformin administration on ovarian function in these mice. We hypothesized that one of the mechanisms involved in subfertility due to a HFD intake is the alteration of ovarian blood vessel formation. We found that mice fed with HFD had altered estrous cycles and steroidogenesis, increased ovarian fibrosis, fewer pups per litter and require more time to achieve pregnancy. HFD-fed mice also presented dysregulated ovarian angiogenesis and an increase in nuclear DNA damage in ovarian cells. Ovulation rates were lower in these animals, as evidenced both in natural mating and after ovulation induction with gonadotropins. Metformin ameliorated ovarian angiogenesis, improved steroidogenesis, fibrosis, and ovulation, decreased the time to pregnancy and increased litter sizes in HFD-fed mice. We conclude that ovarian angiogenesis is one of the mechanisms detrimentally affected by HFD intake. Since metformin could improve ovarian microvasculature, it may be an interesting strategy to study in women to shed light on new targets for patients with metabolic disturbances.
Collapse
Affiliation(s)
- Candela Velazquez
- Instituto de Biología y Medicina Experimental, IByME-CONICET, Vuelta de Obligado 2490, C1428ADL Ciudad Autónoma de Buenos Aires, Argentina
| | - Yamila Herrero
- Instituto de Biología y Medicina Experimental, IByME-CONICET, Vuelta de Obligado 2490, C1428ADL Ciudad Autónoma de Buenos Aires, Argentina
| | - María Silvia Bianchi
- Instituto de Biología y Medicina Experimental, IByME-CONICET, Vuelta de Obligado 2490, C1428ADL Ciudad Autónoma de Buenos Aires, Argentina
| | - Débora Juana Cohen
- Instituto de Biología y Medicina Experimental, IByME-CONICET, Vuelta de Obligado 2490, C1428ADL Ciudad Autónoma de Buenos Aires, Argentina
| | - Patricia Cuasnicu
- Instituto de Biología y Medicina Experimental, IByME-CONICET, Vuelta de Obligado 2490, C1428ADL Ciudad Autónoma de Buenos Aires, Argentina
| | - Katherine Prost
- Hospital Interzonal General de Agudos Pedro Fiorito, sector de Endocrinología, Av. Manuel Belgrano 827, B1870 Avellaneda, Provincia de Buenos Aires, Argentina
| | - Rocío Marinoni
- Instituto de Biología y Medicina Experimental, IByME-CONICET, Vuelta de Obligado 2490, C1428ADL Ciudad Autónoma de Buenos Aires, Argentina
| | - Natalia Pascuali
- Instituto de Biología y Medicina Experimental, IByME-CONICET, Vuelta de Obligado 2490, C1428ADL Ciudad Autónoma de Buenos Aires, Argentina; Department of Pathology, College of Medicine, University of Illinois at Chicago (UIC), Chicago, IL, United States
| | - Fernanda Parborell
- Instituto de Biología y Medicina Experimental, IByME-CONICET, Vuelta de Obligado 2490, C1428ADL Ciudad Autónoma de Buenos Aires, Argentina
| | - Dalhia Abramovich
- Instituto de Biología y Medicina Experimental, IByME-CONICET, Vuelta de Obligado 2490, C1428ADL Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
16
|
Xu G, Zhao Z, Wysham WZ, Roque DR, Fang Z, Sun W, Yin Y, Deng B, Shen X, Zhou C, Bae-Jump V. Orlistat exerts anti-obesity and anti-tumorigenic effects in a transgenic mouse model of endometrial cancer. Front Oncol 2023; 13:1219923. [PMID: 37601677 PMCID: PMC10436609 DOI: 10.3389/fonc.2023.1219923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction Among all cancers, endometrial cancer is most strongly associated with obesity, with more than 65% of endometrial cancers attributable to obesity and being overweight. Fatty acid synthase (FAS), a key lipogenic enzyme, is expressed in endometrial cancer tumors and is associated with a worse prognosis for this disease. Orlistat, an FAS inhibitor, is an FDA-approved weight loss medication that has demonstrated anti-tumor activity in a variety of preclinical cancer models. Methods In this study, the Lkb1fl/flp53fl/fl mouse model of endometroid endometrial cancer was exposed to three diet interventions, including a high fat diet (obese), a low fat diet (lean) and switch from a high fat to a low fat diet, and then exposed to orlistat or placebo. Results The mice fed a high-fat diet had significantly increased body weight and tumor weight compared to mice fed a low-fat diet. Switching from a high-fat diet to a low fat diet led to a reduction in mouse weight and suppressed tumor growth, as compared to both the high fat diet and low fat diet groups. Orlistat effectively decreased body weight in obese mice and inhibited tumor growth in obese, lean, and the high fat diet switch to low fat diet mouse groups through induction of apoptosis. Orlistat also showed anti-proliferative activity in nine of 11 primary cultures of human endometrial cancer. Discussion Our findings provide strong evidence that dietary intervention and orlistat have anti-tumor activity in vivo and supports further investigation of orlistat in combination with dietary interventions for the prevention and treatment of endometrial cancer.
Collapse
Affiliation(s)
- Guangxu Xu
- Department of Gynecology, Fengxian Hospital, Southern Medical University, Shanghai, China
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ziyi Zhao
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, China
| | - Weiya Z. Wysham
- Division of Gynecologic Oncology, Legacy Medical Group, Portland, OR, United States
| | - Dario R. Roque
- Division of Gynecologic Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Ziwei Fang
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, China
| | - Wenchuan Sun
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Yajie Yin
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Boer Deng
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, China
| | - Xiaochang Shen
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, China
| | - Chunxiao Zhou
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Victoria Bae-Jump
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
17
|
Pourdashti S, Faridi N, Monem-Homaie F, Yaghooti SH, Soroush A, Bathaie SZ. The size of human subcutaneous adipocytes, but not adiposity, is associated with inflammation, endoplasmic reticulum stress, and insulin resistance markers. Mol Biol Rep 2023; 50:5755-5765. [PMID: 37219669 PMCID: PMC10289932 DOI: 10.1007/s11033-023-08460-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/13/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND The fat storage capacity of the adipose tissue prevents ectopic lipid deposition, which is one of the risk factors for metabolic abnormalities in obesity. This capacity depends upon the adipogenic gene expression and blood supply provision for tissue expansion through angiogenesis. Here, we studied hyperplasia/hypertrophy of subcutaneous white adipose tissue (scWAT) concerning adipogenic gene expression, angiogenic status, and metabolic parameters in non-obese and different classes of obese individuals. METHODS The scWAT samples were collected from 80 individuals. The anthropometric parameters, adipose tissue cell size, serum biochemistry, ER stress-induced XBP1 splicing, PPARγ2, SFRP1, WNT10B, and VEGFA gene expression levels were studied. In addition, the CD31 level was investigated by Western blotting. RESULTS The obese individuals had greater waist circumferences and higher serum TG, TC, insulin, and HOMA-IR than the non-obese group. However, the largest adipocyte size, increased TNFα, insulin, and HOMA-IR, and the highest expression level of sXBP1, WNT10B, and VEGFA were observed in Class I obese individuals. It means that inflammation, insulin resistance, and ER stress accompany hypertrophic scWAT adipocytes with limited adipose tissue expansion ability. Furthermore, the Class II + III obese individuals showed high PPARγ2 expression and CD31 levels. There is adipogenesis through hyperplasia in this group. The SFRP1 expression was not significantly different in the studied groups. CONCLUSION The results suggest that the capability of adipogenesis with inadequate angiogenesis is related to the metabolic status, inflammation, and ER function. Therefore, therapeutic strategies that support both angiogenesis and adipogenesis can effectively prevent the complications of obesity.
Collapse
Affiliation(s)
- Sara Pourdashti
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University (TMU), P.O. Box: 14155-331, Tehran, Iran
| | - Nassim Faridi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University (TMU), P.O. Box: 14155-331, Tehran, Iran
| | - Forouzandeh Monem-Homaie
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University (TMU), P.O. Box: 14155-331, Tehran, Iran
| | - S Hamid Yaghooti
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University (TMU), P.O. Box: 14155-331, Tehran, Iran
| | - Ahmadreza Soroush
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular- Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - S Zahra Bathaie
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University (TMU), P.O. Box: 14155-331, Tehran, Iran.
- UCLA-DOE Institute, University of California, Los Angeles (UCLA), CA, USA.
| |
Collapse
|
18
|
Song S, Ha AW, Kim W. Quercetin inhibits body weight gain and adipogenesis via matrix metalloproteinases in mice fed a high-fat diet. Nutr Res Pract 2023; 17:438-450. [PMID: 37266112 PMCID: PMC10232201 DOI: 10.4162/nrp.2023.17.3.438] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/26/2022] [Accepted: 11/04/2022] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND/OBJECTIVES Limited studies reported that quercetin inhibited adipogenesis and neovascularization by inhibiting matrix metalloproteinases (MMPs) activity, but such mechanisms have not been elucidated in animal experiments. In this study, we investigated the inhibitory effects of quercetin on weight gain and adipose tissue growth through the regulation of mRNA expressions of adipogenic transcription factors and MMPs in mice fed a high-fat diet (HFD). MATERIALS/METHODS Five-wk-old C57BL/6J mice were fed a normal diet (ND), HFD, HFD containing 0.05% of quercetin (HFQ0.05), or HFD containing 0.15% of quercetin (HFQ0.15) for 16 wks. Glycerol-3-phosphate dehydrogenase (GPDH) activity was measured using a commercial kit. The mRNA expressions of transcription factors related to adipocyte differentiation were determined by real-time polymerase chain reaction (PCR). The mRNA expressions of MMPs and concentrations of MMPs were measured by real-time PCR and enzyme-linked immunosorbent assay kit, respectively. RESULTS Quercetin intake reduced body weight gain and epididymal adipose tissue weights (P < 0.05). GPDH activity was higher in the HFD group than in the ND group but lower in the quercetin groups (P < 0.05). The mRNA expressions of CCAAT/enhancer binding protein β (C/EBPβ), C/EBPα, peroxisome proliferator-activated receptor γ, and fatty acid-binding protein 4 were lower in the quercetin groups than in the HFD group (P < 0.05). Similarly, the mRNA expression and concentrations of MMP-2 and MMP-9 were significantly lower in the quercetin groups than in the HFD group (P < 0.05). CONCLUSION The study confirms that quercetin suppresses body weight gain and adipogenesis by inhibiting transcription factors related to adipocyte differentiation and MMPs (MMP-2 and MMP-9), in mice fed a HFD.
Collapse
Affiliation(s)
- SeungMin Song
- Department of Food Science and Nutrition, Dankook University, Chungnam 31116, Korea
| | - Ae Wha Ha
- Department of Food Science and Nutrition, Dankook University, Chungnam 31116, Korea
| | - WooKyoung Kim
- Department of Food Science and Nutrition, Dankook University, Chungnam 31116, Korea
| |
Collapse
|
19
|
Zhang R, Yao K, Chen S, Pan X, Wu F, Gao P. Liraglutide promotes angiogenesis in adipose tissue via suppression of adipocyte-derived IL-6. Biochem Biophys Res Commun 2023; 651:8-19. [PMID: 36774663 DOI: 10.1016/j.bbrc.2023.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/02/2023] [Indexed: 02/05/2023]
Abstract
Accumulating evidence suggests that Liraglutide is a favorable treatment for obese people. Obesity induces cellular senescence and accumulated senescent adipocytes in adipose tissue. However, the role of Liraglutide in adipose tissue (AT) senescence and the underlying mechanisms remain obscure. In this study, we found that HFD induces adipocyte senescence and impaired angiogenesis in AT. The deleterious effects provoked unhealthy adipose tissue remodeling and metabolic disturbance. In contrast, treatment of Liraglutide promoted weight reduction, alleviated adipose tissue senescence, and improved angiogenesis in AT. Notably, we demonstrated that Liraglutide promotes angiogenesis in AT dependent on adipocyte-derived IL-6. These findings revealed distinctive roles of Liraglutide in the regulation of adipocyte senescence and provide a therapeutic potential to obesity-associated metabolic disorders.
Collapse
Affiliation(s)
- Run Zhang
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension, Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kangli Yao
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siyuan Chen
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxi Pan
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension, Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Fang Wu
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Clinical Research Center for Aging and Medicine, Shanghai, China.
| | - Pingjin Gao
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension, Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Furuta K, Tang X, Islam S, Tapia A, Chen ZB, Ibrahim SH. Endotheliopathy in the metabolic syndrome: Mechanisms and clinical implications. Pharmacol Ther 2023; 244:108372. [PMID: 36894027 PMCID: PMC10084912 DOI: 10.1016/j.pharmthera.2023.108372] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023]
Abstract
The increasing prevalence of the metabolic syndrome (MetS) is a threat to global public health due to its lethal complications. Nonalcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the MetS characterized by hepatic steatosis, which is potentially progressive to the inflammatory and fibrotic nonalcoholic steatohepatitis (NASH). The adipose tissue (AT) is also a major metabolic organ responsible for the regulation of whole-body energy homeostasis, and thereby highly involved in the pathogenesis of the MetS. Recent studies suggest that endothelial cells (ECs) in the liver and AT are not just inert conduits but also crucial mediators in various biological processes via the interaction with other cell types in the microenvironment both under physiological and pathological conditions. Herein, we highlight the current knowledge of the role of the specialized liver sinusoidal endothelial cells (LSECs) in NAFLD pathophysiology. Next, we discuss the processes through which AT EC dysfunction leads to MetS progression, with a focus on inflammation and angiogenesis in the AT as well as on endothelial-to-mesenchymal transition of AT-ECs. In addition, we touch upon the function of ECs residing in other metabolic organs including the pancreatic islet and the gut, the dysregulation of which may also contribute to the MetS. Finally, we highlight potential EC-based therapeutic targets for human MetS, and NASH based on recent achievements in basic and clinical research and discuss how to approach unsolved problems in the field.
Collapse
Affiliation(s)
- Kunimaro Furuta
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA; Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Xiaofang Tang
- Department of Diabetes Complications & Metabolism, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Shahidul Islam
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Alonso Tapia
- Department of Diabetes Complications & Metabolism, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Zhen Bouman Chen
- Department of Diabetes Complications & Metabolism, City of Hope Comprehensive Cancer Center, Duarte, CA, USA.
| | - Samar H Ibrahim
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA; Division of Pediatric Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
21
|
Lee SG, Chae J, Woo SM, Seo SU, Kim HJ, Kim SY, Schlaepfer DD, Kim IS, Park HS, Kwon TK, Nam JO. TGFBI remodels adipose metabolism by regulating the Notch-1 signaling pathway. Exp Mol Med 2023; 55:520-531. [PMID: 36854775 PMCID: PMC10073093 DOI: 10.1038/s12276-023-00947-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 12/17/2022] [Accepted: 01/17/2023] [Indexed: 03/02/2023] Open
Abstract
Extracellular matrix proteins are associated with metabolically healthy adipose tissue and regulate inflammation, fibrosis, angiogenesis, and subsequent metabolic deterioration. In this study, we demonstrated that transforming growth factor-beta (TGFBI), an extracellular matrix (ECM) component, plays an important role in adipose metabolism and browning during high-fat diet-induced obesity. TGFBI KO mice were resistant to adipose tissue hypertrophy, liver steatosis, and insulin resistance. Furthermore, adipose tissue from TGFBI KO mice contained a large population of CD11b+ and CD206+ M2 macrophages, which possibly control adipokine secretion through paracrine mechanisms. Mechanistically, we showed that inhibiting TGFBI-stimulated release of adipsin by Notch-1-dependent signaling resulted in adipocyte browning. TGFBI was physiologically bound to Notch-1 and stimulated its activation in adipocytes. Our findings revealed a novel protective effect of TGFBI deficiency in obesity that is realized via the activation of the Notch-1 signaling pathway.
Collapse
Affiliation(s)
- Seul Gi Lee
- Department of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea
- Department of Immunology, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea
| | - Jongbeom Chae
- Department of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Seon Min Woo
- Department of Immunology, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea
| | - Seung Un Seo
- Department of Immunology, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea
| | - Ha-Jeong Kim
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Sang-Yeob Kim
- ASAN Institute for Life Sciences, ASAN Medical Center, Seoul, 05505, Republic of Korea
| | - David D Schlaepfer
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, 92093, USA
| | - In-San Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
- Center for Theragnosis, Biomedical Research Institute, Korea Institute Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hee-Sae Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea.
- Center for Forensic Pharmaceutical Science, Keimyung University, Daegu, 42601, Republic of Korea.
| | - Ju-Ock Nam
- Department of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea.
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
22
|
Vliora M, Ravelli C, Grillo E, Corsini M, Flouris AD, Mitola S. The impact of adipokines on vascular networks in adipose tissue. Cytokine Growth Factor Rev 2023; 69:61-72. [PMID: 35953434 DOI: 10.1016/j.cytogfr.2022.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 02/07/2023]
Abstract
Adipose tissue (AT) is a highly active and plastic endocrine organ. It secretes numerous soluble molecules known as adipokines, which act locally to AT control the remodel and homeostasis or exert pleiotropic functions in different peripheral organs. Aberrant production or loss of certain adipokines contributes to AT dysfunction associated with metabolic disorders, including obesity. The AT plasticity is strictly related to tissue vascularization. Angiogenesis supports the AT expansion, while regression of blood vessels is associated with AT hypoxia, which in turn mediates tissue inflammation, fibrosis and metabolic dysfunction. Several adipokines can regulate endothelial cell functions and are endowed with either pro- or anti-angiogenic properties. Here we address the role of adipokines in the regulation of angiogenesis. A better understanding of the link between adipokines and angiogenesis will open the way for novel therapeutic approaches to treat obesity and metabolic diseases.
Collapse
Affiliation(s)
- Maria Vliora
- FAME Laboratory, Department of Exercise Science, University of Thessaly, Trikala, Greece; Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, Brescia, Italy
| | - Cosetta Ravelli
- Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, Brescia, Italy
| | - Elisabetta Grillo
- Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, Brescia, Italy
| | - Michela Corsini
- Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, Brescia, Italy
| | - Andreas D Flouris
- FAME Laboratory, Department of Exercise Science, University of Thessaly, Trikala, Greece
| | - Stefania Mitola
- Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, Brescia, Italy.
| |
Collapse
|
23
|
Abdollahi M, Kato M, Lanting L, Tunduguru R, Wang M, Wang Y, Fueger PT, Wang Q, Huang W, Natarajan R. miR-379 mediates insulin resistance and obesity through impaired angiogenesis and adipogenesis regulated by ER stress. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 30:115-130. [PMID: 36250205 PMCID: PMC9535382 DOI: 10.1016/j.omtn.2022.09.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/15/2022] [Indexed: 01/29/2023]
Abstract
We investigated the role of microRNA (miR-379) in the pathogenesis of obesity, adipose tissue dysfunction, and insulin resistance (IR). We used miR-379 knockout (miR-379KO) mice to test whether loss of miR-379 affects high-fat diet (HFD)-induced obesity and IR via dysregulation of key miR-379 targets in adipose tissue. Increases in body weight, hyperinsulinemia, and IR in wild-type (WT)-HFD mice were significantly attenuated in miR-379KO-HFD mice with some sex differences. Relative to control chow-fed mice, in WT-HFD mice, expression of miR-379 and C/EBP homologous protein (Chop) (pro-endoplasmic reticulum [ER] stress) and inflammation in perigonadal white adipose tissue (gWAT) were increased, whereas adipogenic genes and miR-379 target genes (Vegfb and Edem3) were decreased. These changes, as well as key parameters of brown adipose tissue dysfunction (including mitochondrial defects), were significantly attenuated in miR-379KO-HFD mice. WAT from obese human subjects with and without type 2 diabetes showed increased miR-379 and decreased miR-379 target genes. In cultured 3T3L1 pre-adipocytes, miR-379 inhibitors increased miR-379 targets and adipogenic genes. These data suggest that miR-379 plays an important role in HFD-induced obesity through increased adipose inflammation, mitochondrial dysfunction, and ER stress as well as impaired adipogenesis and angiogenesis. miR-379 inhibitors may be developed as novel therapies for obesity and associated complications.
Collapse
Affiliation(s)
- Maryam Abdollahi
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Mitsuo Kato
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Linda Lanting
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Ragadeepthi Tunduguru
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Mei Wang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Yangmeng Wang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Patrick T. Fueger
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
- Comprehensive Metabolic Phenotyping Core, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Qiong Wang
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
24
|
Dong L, Wang H, Chen K, Li Y. Roles of hydroxyeicosatetraenoic acids in diabetes (HETEs and diabetes). Biomed Pharmacother 2022; 156:113981. [DOI: 10.1016/j.biopha.2022.113981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
|
25
|
Su Y, Wang W, Xiao Q, Tang L, Wang T, Xie M, Su Y. Macrophage membrane-camouflaged lipoprotein nanoparticles for effective obesity treatment based on a sustainable self-reinforcement strategy. Acta Biomater 2022; 152:519-531. [DOI: 10.1016/j.actbio.2022.08.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/14/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2022]
|
26
|
Seo KH, Gyu Lee H, Young Eor J, Jin Jeon H, Yokoyama W, Kim H. Effects of kefir lactic acid bacteria-derived postbiotic components on high fat diet-induced gut microbiota and obesity. Food Res Int 2022; 157:111445. [PMID: 35761685 DOI: 10.1016/j.foodres.2022.111445] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 11/25/2022]
Abstract
Cellular components, surface layer protein (SLP) and exopolysaccharides (EPS) of postbiotic lactic bacteria (PLAB) can rehabilitate high-fat diet-induced dysbiosis and obese characteristic gut microbiome. However, it is not clear whether and how PLAB components affect gut microbiota and specifically adipocyte gene expression. Furthermore, SLP and EPS of PLAB in combination with polyphenolics of prebiotic wine grape seed flour (GSF) may have greater benefit on high-fat diet (HFD)-induced obesity and gut microbiota imbalance. To investigate interactions, C57BL/6 mice were fed a HFD and orally administered saline (CON), 250 mg/Kg EPS, or 120 mg/Kg SLP or saline with fed 2% GSF (GSF) or combination (42 mg/Kg EPS + 20 mg/Kg SLP + 0.5% GSF; ALL). There were significant reductions of HFD-induced body weight gain, adipose weight, serum triglyceride, and insulin resistance by the SLP and ALL diets compared to CON, with the most profound effect by ALL. ALL significantly affected the distribution of intestinal bacterial genus and species particularly those involved in production of short chain fatty acid (SCFA) and anti-obesogenic action. Microarray analysis from adipose tissue showed that ALL significantly affected expression of genes related to fatty acid biosynthesis, autophagy, inflammatory response, immune response, brown adipose tissue development and response to lipoteichoic acid and peptidoglycan (p < 0.05). Interestingly, expression of Akp13 (A-kinase anchoring protein 13) gene, which is related to body mass index and immune response, was negatively associated with the abundance of obesogenic and SCFAs producing gut bacteria. These data suggest that a combination of postbiotic kefir LAB cellular components and prebiotic GSF establishes a healthy intestinal microbiota that in part was associated with the prevention of obesity and obesity-related diseases.
Collapse
Affiliation(s)
- Kun-Ho Seo
- Center for One Health, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Hyeon Gyu Lee
- Department of Food and Nutrition, Hanyang University, Seoul, South Korea
| | - Ju Young Eor
- Department of Food and Nutrition, Hanyang University, Seoul, South Korea
| | - Hye Jin Jeon
- Department of Food and Nutrition, Hanyang University, Seoul, South Korea
| | | | - Hyunsook Kim
- Department of Food and Nutrition, Hanyang University, Seoul, South Korea.
| |
Collapse
|
27
|
Obesity: The Fat Tissue Disease Version of Cancer. Cells 2022; 11:cells11121872. [PMID: 35741001 PMCID: PMC9221301 DOI: 10.3390/cells11121872] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 02/06/2023] Open
Abstract
Obesity is a disease with high potential for fatality. It perfectly fits the disease definition, as cancer does. This is because it damages body structure and functions, both mechanically and biologically, and alters physical, mental, and social health. In addition, it shares many common morbid characteristics with the most feared disease, cancer. For example, it is influenced by a sophisticated interaction between a person’s genetics, the environment, and an increasing number of other backgrounds. Furthermore, it displays abnormal cell growth and proliferation events, only limited to white fat, resulting in adipose tissue taking up an increasing amount of space within the body. This occurs through fat “metastases” and via altered signaling that further aggravates the pathology of obesity by inducing ubiquitous dishomeostasis. These metastases can be made graver by angiogenesis, which might boost diseased tissue growth. More common features with cancer include its progressive escalation through different levels of severity and its possibility of re-onset after recovery. Despite all these similarities with cancer, obesity is substantially less agitating for most people. Thus, the ideas proposed herein could have utility to sensitize the public opinion about the hard reality of obesity. This is increasingly needed, as the obesity pandemic has waged a fierce war against our bodies and society in general, while there is still doubt about whether it is a real disease or not. Hence, raising public consciousness to properly face health issues is crucial to improving our health instead of gaining weight unhealthily. It is obviously illogical to fight cancer extremely seriously on the one hand and to consider dying with obesity as self-inflicted on the other. In fact, obesity merits a top position among the most lethal diseases besides cancer.
Collapse
|
28
|
Mantri Y, Tsujimoto J, Donovan B, Fernandes CC, Garimella PS, Penny WF, Anderson CA, Jokerst JV. Photoacoustic monitoring of angiogenesis predicts response to therapy in healing wounds. Wound Repair Regen 2022; 30:258-267. [PMID: 34985822 PMCID: PMC8897271 DOI: 10.1111/wrr.12992] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/03/2021] [Accepted: 12/24/2021] [Indexed: 12/13/2022]
Abstract
Chronic wounds are a major health problem that cause the medical infrastructure billions of dollars every year. Chronic wounds are often difficult to heal and cause significant discomfort. Although wound specialists have numerous therapeutic modalities at their disposal, tools that could three dimensional-map wound bed physiology and guide therapy do not exist. Visual cues are the current standard but are limited to surface assessment; clinicians rely on experience to predict response to therapy. Photoacoustic (PA) ultrasound (US) is a non-invasive, hybrid imaging modality that can solve these major limitations. PA relies on the contrast generated by haemoglobin in blood which allows it to map local angiogenesis, tissue perfusion and oxygen saturation-all critical parameters for wound healing. This work evaluates the use of PA-US to monitor angiogenesis and stratify patients responding versus not-responding to therapy. We imaged 19 patients with 22 wounds once a week for at least 3 weeks. Our findings suggest that PA imaging directly visualises angiogenesis. Patients responding to therapy showed clear signs of angiogenesis and an increased rate of PA increase (p = 0.002). These responders had a significant and negative correlation between PA intensity and wound size. Hypertension was correlated to impaired angiogenesis in non-responsive patients. The rate of PA increase and hence the rate of angiogenesis was able to predict healing times within 30 days from the start of monitoring (power = 88%, alpha = 0.05). This early response detection system could help inform management and treatment strategies while improving outcomes and reducing costs.
Collapse
Affiliation(s)
- Yash Mantri
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Jason Tsujimoto
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Brian Donovan
- Department of Chemical Engineering, University of California San Diego, La Jolla, CA, USA
| | | | - Pranav S. Garimella
- Division of Nephrology – Hypertension, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - William F. Penny
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Caesar A. Anderson
- Department of Emergency Medicine, Hyperbaric and Wound Healing Center, University of California San Diego, Encinitas, CA, USA
| | - Jesse V. Jokerst
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
- Materials Science Program, University of California San Diego, La Jolla, CA, USA
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
29
|
Pan X, Chen S, Chen X, Ren Q, Yue L, Niu S, Li Z, Zhu R, Chen X, Jia Z, Zhen R, Ban J. UTP14A, DKC1, DDX10, PinX1, and ESF1 Modulate Cardiac Angiogenesis Leading to Obesity-Induced Cardiac Injury. J Diabetes Res 2022; 2022:2923291. [PMID: 35734237 PMCID: PMC9208995 DOI: 10.1155/2022/2923291] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/28/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND This study is aimed at exploring the key genes and the possible mechanism of heart damage caused by obesity. METHODS We analyzed the GSE98226 dataset. Firstly, differentially expressed genes (DEGs) were identified in heart tissues of obese and normal mice. Then, we analyzed DEGs using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Thirdly, we constructed a protein-protein interaction (PPI) network and key modules and searched hub genes. Finally, we observed the pathological changes associated with obesity through histopathology. RESULTS A total of 763 DEGs were discovered, including 629 upregulated and 134 downregulated genes. GO enrichment analysis showed that these DEGs were mainly related to the regulation of transcription, DNA-templated, nucleic acid binding, and metal ion binding. KEGG pathway analysis revealed that the DEGs were enriched in long-term depression, gap junction, and sphingolipid signaling pathways. Finally, we identified UTP14A, DKC1, DDX10, PinX1, and ESF1 as the hub genes. Histopathologic analysis showed that obesity increased the number of collagen fibers and decreased the number of microvessels and proliferation of the endothelium and increased endothelial cell damage which further leads to dysfunction of cardiac microcirculation. CONCLUSION UTP14A, DKC1, DDX10, PinX1, and ESF1 have been identified as hub genes in obesity-induced pathological changes in the heart and may be involved in obesity-induced cardiac injury by affecting cardiac microcirculatory function.
Collapse
Affiliation(s)
- Xiaoyu Pan
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
| | - Shuchun Chen
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
| | - Xing Chen
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
| | - Qingjuan Ren
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
| | - Lin Yue
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
| | - Shu Niu
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
| | - Zelin Li
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
| | - Ruiyi Zhu
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
| | - Xiaoyi Chen
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
| | - Zhuoya Jia
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
| | - Ruoxi Zhen
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
| | - Jiangli Ban
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
| |
Collapse
|
30
|
Weinzierl A, Harder Y, Schmauss D, Ampofo E, Menger MD, Laschke MW. Improved Vascularization and Survival of White Compared to Brown Adipose Tissue Grafts in the Dorsal Skinfold Chamber. Biomedicines 2021; 10:biomedicines10010023. [PMID: 35052704 PMCID: PMC8772698 DOI: 10.3390/biomedicines10010023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022] Open
Abstract
Fat grafting is a frequently applied procedure in plastic surgery for volume reconstruction. Moreover, the transplantation of white adipose tissue (WAT) and brown adipose tissue (BAT) increasingly gains interest in preclinical research for the treatment of obesity-related metabolic defects. Therefore, we herein directly compared the vascularization capacity and survival of WAT and BAT grafts. For this purpose, size-matched grafts isolated from the inguinal WAT pad and the interscapular BAT depot of C57BL/6N donor mice were syngeneically transplanted into the dorsal skinfold chamber of recipient animals. The vascularization and survival of the grafts were analyzed by means of intravital fluorescence microscopy, histology, and immunohistochemistry over an observation period of 14 days. WAT grafts showed an identical microvascular architecture and functional microvessel density as native WAT. In contrast, BAT grafts developed an erratic microvasculature with a significantly lower functional microvessel density when compared to native BAT. Accordingly, they also contained a markedly lower number of CD31-positive microvessels, which was associated with a massive loss of perilipin-positive adipocytes. These findings indicate that in contrast to WAT grafts, BAT grafts exhibit an impaired vascularization capacity and survival, which may be due to their higher metabolic demand. Hence, future studies should focus on the establishment of strategies to improve the engraftment of transplanted BAT.
Collapse
Affiliation(s)
- Andrea Weinzierl
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany; (E.A.); (M.D.M.); (M.W.L.)
- Correspondence:
| | - Yves Harder
- Department of Plastic, Reconstructive and Aesthetic Surgery, Ospedale Regionale di Lugano, Ente Ospedaliero Cantonale (EOC), 6900 Lugano, Switzerland; (Y.H.); (D.S.)
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Daniel Schmauss
- Department of Plastic, Reconstructive and Aesthetic Surgery, Ospedale Regionale di Lugano, Ente Ospedaliero Cantonale (EOC), 6900 Lugano, Switzerland; (Y.H.); (D.S.)
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Emmanuel Ampofo
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany; (E.A.); (M.D.M.); (M.W.L.)
| | - Michael D. Menger
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany; (E.A.); (M.D.M.); (M.W.L.)
| | - Matthias W. Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany; (E.A.); (M.D.M.); (M.W.L.)
| |
Collapse
|
31
|
Oh KK, Adnan M, Cho DH. Elucidating Drug-Like Compounds and Potential Mechanisms of Corn Silk ( Stigma Maydis) against Obesity: A Network Pharmacology Study. Curr Issues Mol Biol 2021; 43:1906-1936. [PMID: 34889899 PMCID: PMC8929052 DOI: 10.3390/cimb43030133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
Corn silk (Stigma Maydis) has been utilized as an important herb against obesity by Chinese, Korean, and Native Americans, but its phytochemicals and mechanisms(s) against obesity have not been deciphered completely. This study aimed to identify promising bioactive constituents and mechanism of action(s) of corn silk (CS) against obesity via network pharmacology. The compounds from CS were identified using Gas Chromatography Mass Spectrometry (GC-MS) and were confirmed ultimately by Lipinski's rule via SwissADME. The relationships of the compound-targets or obesity-related targets were confirmed by public bioinformatics. The signaling pathways related to obesity, protein-protein interaction (PPI), and signaling pathways-targets-bioactives (STB) were constructed, visualized, and analyzed by RPackage. Lastly, Molecular Docking Test (MDT) was performed to validate affinity between ligand(s) and protein(s) on key signaling pathway(s). We identified a total of 36 compounds from CS via GC-MS, all accepted by Lipinski's rule. The number of 36 compounds linked to 154 targets, 85 among 154 targets related directly to obesity-targets (3028 targets). Of the final 85 targets, we showed that the PPI network (79 edges, 357 edges), 12 signaling pathways on a bubble chart, and STB network (67 edges, 239 edges) are considered as therapeutic components. The MDT confirmed that two key activators (β-Amyrone, β-Stigmasterol) bound most stably to PPARA, PPARD, PPARG, FABP3, FABP4, and NR1H3 on the PPAR signaling pathway, also, three key inhibitors (Neotocopherol, Xanthosine, and β-Amyrone) bound most tightly to AKT1, IL6, FGF2, and PHLPP1 on the PI3K-Akt signaling pathway. Overall, we provided promising key signaling pathways, targets, and bioactives of CS against obesity, suggesting crucial pharmacological evidence for further clinical testing.
Collapse
Affiliation(s)
| | | | - Dong-Ha Cho
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea; (K.-K.O.); (M.A.)
| |
Collapse
|
32
|
Moringa Oleifera Seed Extract Concomitantly Supplemented with Chemotherapy Worsens Tumor Progression in Mice with Triple Negative Breast Cancer and Obesity. Nutrients 2021; 13:nu13092923. [PMID: 34578801 PMCID: PMC8472177 DOI: 10.3390/nu13092923] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 12/26/2022] Open
Abstract
Triple negative breast cancer (TNBC) is an aggressive and highly metastatic breast cancer subtype with limited treatment options. Obesity and insulin resistance are associated with a worse prognosis in those with TNBC. Moringa oleifera (moringa) is a tropical edible plant used for both food and medicinal purposes and found to have anti-obesity and anti-cancer effects in vitro and in preclinical models. The anti-cancer effects of moringa seed extract alone and in combination with chemotherapy were evaluated in immunocompromised female mice with diet-induced obesity bearing MDA-MB-231-derived xenograft tumors. Moringa supplementation protected against high-fat diet- and chemotherapy-induced increases in fasting glucose and improved insulin sensitivity. Moringa supplementation alone did not attenuate tumor growth relative to chemotherapy alone, and in combination worsened tumor progression. Moringa supplementation alone reduced angiogenesis, but this effect was abrogated in combination with chemotherapy. Moringa supplementation may be an effective strategy to improve metabolic health in mice with obesity and TNBC and reduce angiogenesis in tumors, but may have a negative interaction when used as a concurrent complementary therapy. Caution should be taken when considering the consumption of moringa seed extracts while receiving chemotherapy for breast cancer treatment. Further investigations of alternative timings of moringa therapy are warranted.
Collapse
|
33
|
Chaaban I, Hafez H, AlZaim I, Tannous C, Ragab H, Hazzaa A, Ketat S, Ghoneim A, Katary M, Abd-Alhaseeb MM, Zouein FA, Albohy A, Amer AN, El-Yazbi AF, Belal ASF. Transforming iodoquinol into broad spectrum anti-tumor leads: Repurposing to modulate redox homeostasis. Bioorg Chem 2021; 113:105035. [PMID: 34091287 DOI: 10.1016/j.bioorg.2021.105035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/23/2021] [Accepted: 05/27/2021] [Indexed: 12/14/2022]
Abstract
We managed to repurpose the old drug iodoquinol to a series of novel anticancer 7-iodo-quinoline-5,8-diones. Twelve compounds were identified as inhibitors of moderate to high potency on an inhouse MCF-7 cell line, of which 2 compounds (5 and 6) were capable of reducing NAD level in MCF-7 cells in concentrations equivalent to half of their IC50s, potentially due to NAD(P)H quinone oxidoreductase (NQO1) inhibition. The same 2 compounds (5 and 6) were capable of reducing p53 expression and increasing reactive oxygen species levels, which further supports the NQO-1 inhibitory activity. Furthermore, 4 compounds (compounds 5-7 and 10) were qualified by the Development Therapeutic Program (DTP) division of the National Cancer Institute (NCI) for full panel five-dose in vitro assay to determine their GI50 on the 60 cell lines. All five compounds showed broad spectrum sub-micromolar to single digit micromolar GI50 against a wide range of cell lines. Cell cycle analysis and dual staining assays with annexin V-FITC/propidium iodide on MCF-7 cells confirmed the capability of the most active compound (compound 5) to induce cell cycle arrest at Pre-G1 and G2/M phases as well as apoptosis. Both cell cycle arrest and apoptosis were affirmed at the molecular level by the ability of compound 5 to enhance the expression levels of caspase-3 and Bax together with suppressing that of CDK1 and Bcl-2. Additionally, an anti-angiogenic effect was evident with compound 5 as supported by the decreased expression of VEGF. Interesting binding modes within NQO-1 active site had been identified and confirmed by both molecular docking and dymanic experiments.
Collapse
Affiliation(s)
- Ibrahim Chaaban
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Haidy Hafez
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Ibrahim AlZaim
- Department of Pharmacology and Toxicology, Faculty of Medicine and Medical Centre, American University of Beirut, Beirut, Lebanon
| | - Cynthia Tannous
- Department of Pharmacology and Toxicology, Faculty of Medicine and Medical Centre, American University of Beirut, Beirut, Lebanon
| | - Hanan Ragab
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Aly Hazzaa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Salma Ketat
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour 22516, Egypt
| | - Asser Ghoneim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour 22516, Egypt
| | - Mohamed Katary
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour 22516, Egypt
| | - Mohammad M Abd-Alhaseeb
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour 22516, Egypt
| | - Fouad A Zouein
- Department of Pharmacology and Toxicology, Faculty of Medicine and Medical Centre, American University of Beirut, Beirut, Lebanon
| | - Amgad Albohy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The British University in Egypt (BUE), El-Sherouk City, Suez Desert Road, Cairo 11837, Egypt
| | - Ahmed Noby Amer
- Microbiology Department, Faculty of Pharmacy, Pharos University, Alexandria, Egypt
| | - Ahmed F El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine and Medical Centre, American University of Beirut, Beirut, Lebanon; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.
| | - Ahmed S F Belal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.
| |
Collapse
|
34
|
Pathak MP, Patowary P, Goyary D, Das A, Chattopadhyay P. β-caryophyllene ameliorated obesity-associated airway hyperresponsiveness through some non-conventional targets. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 89:153610. [PMID: 34175589 DOI: 10.1016/j.phymed.2021.153610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/10/2021] [Accepted: 05/18/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Obesity worsens airway hyperresponsiveness (AHR) in asthmatic subjects by up-regulating macrophage polarization that leads to excessive secretion of pro-inflammatory adipokines from white adipose tissue followed by generation of oxidative stress in the respiratory system. Treatment through conventional signaling pathways proved to be inadequate in obese asthmatics, so a therapeutical approach through a non-conventional pathway may prove to be effective. PURPOSE This study aimed to investigate the efficacy of a FDA-approved food additive, β-caryophyllene (BCP) in obesity-associated AHR. METHOD A repertoire of protein expression, cytokine and adiponectin estimation, oxidative stress assays, histopathology, and fluorescence immune-histochemistry were performed to assess the efficacy of BCP in C57BL/6 mice model of obesity-associated AHR. Additionally, human adipocyte was utilized to study the effect of BCP on macrophage polarization in Boyden chamber cell culture inserts. RESULTS Obesity-associated AHR is ameliorated by administration of BCP by inhibition of the macrophage polarization by activation of AMPKα, Nrf2/HO-1 and AdipoR1 and AdipoR2 signaling pathway, up-regulation of adiponectin, GLP-1, IFN-γ, SOD, catalase and down-regulation of NF-κB, leptin, IL-4, TNF, and IL-1β. Browning of eWAT by induction of thermogenesis and activation of melanocortin pathway also contributed to the amelioration of obesity-associated AHR. We conclude that BCP ameliorated the obesity-associated AHR via inhibition of macrophage polarization, activation of AMPKα, Nrf2/HO-1, and up-regulation of AdipoR1 and AdipoR2 expression and down-regulation of NFκB expression in lung of animal. CONCLUSION Being an FDA-approved food additive, BCP may prove to be a safe and potential agent against obesity-associated AHR.
Collapse
Affiliation(s)
- Manash Pratim Pathak
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, 784001, India; Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, 786004, India
| | - Pompy Patowary
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, 784001, India; Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, 786004, India
| | - Danswrang Goyary
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, 784001, India
| | - Aparoop Das
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, 786004, India
| | | |
Collapse
|
35
|
Norooznezhad AH, Mansouri K. Endothelial cell dysfunction, coagulation, and angiogenesis in coronavirus disease 2019 (COVID-19). Microvasc Res 2021; 137:104188. [PMID: 34022205 PMCID: PMC8135191 DOI: 10.1016/j.mvr.2021.104188] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/08/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022]
Abstract
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been led to a pandemic emergency. So far, different pathological pathways for SARS-CoV-2 infection have been introduced in which the excess release of pro-inflammatory cytokines (such as interleukin 1 β [IL-1β], IL-6, and tumor necrosis factor α [TNFα]) has earned most of the attentions. However, recent studies have identified new pathways with at least the same level of importance as cytokine storm in which endothelial cell (EC) dysfunction is one of them. In COVID-19, two main pathologic phenomena have been seen as a result of EC dysfunction: hyper-coagulation state and pathologic angiogenesis. The EC dysfunction-induced hypercoagulation state seems to be caused by alteration in the levels of different factors such as plasminogen activator inhibitor 1 (PAI-1), von Willebrand factor (vWF) antigen, soluble thrombomodulin, and tissue factor pathway inhibitor (TFPI). As data have shown, these thromboembolic events are associated with severity of disease severity or even death in COVID-19 patients. Other than thromboembolic events, pathologic angiogenesis is among the recent findings. Furthermore, over-expression/higher levels of different proangiogenic factors such as vascular endothelial growth factor (VEGF), hypoxia-inducible factor 1 α (HIF-1α), IL-6, TNF receptor super family 1A and 12, and angiotensin-converting enzyme 2 (ACE2) have been found in the lung biopsies/sera of both survived and non-survived COVID-19 patients. Also, there are some hypotheses regarding the role of nitric oxide in EC dysfunction and acute respiratory distress syndrome (ARDS) in SARS-CoV-2 infection. It has been demonstrated that different pathways involved in inflammation are generally common with EC dysfunction and angiogenesis. Altogether, considering the common possible upstream pathways in cytokine storm, pathologic angiogenesis, and EC dysfunction, it seems that targeting these molecules (such as nuclear factor κB) could be more effective in the management of patients with COVID-19.
Collapse
Affiliation(s)
- Amir Hossein Norooznezhad
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Kamran Mansouri
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
36
|
Biteli P, Barbalho SM, Detregiachi CRP, Dos Santos Haber JF, Chagas EFB. Dyslipidemia influences the effect of physical exercise on inflammatory markers on obese women in post-menopause: A randomized clinical trial. Exp Gerontol 2021; 150:111355. [PMID: 33865923 DOI: 10.1016/j.exger.2021.111355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023]
Abstract
The hormonal modifications observed in post-menopausal are related to increased adiposity and alteration in the lipid profile besides physical and psychological changes. Physical exercises may attenuate these conditions and have been associated with low-grade inflammatory status, reducing the risk of cardiovascular diseases. This study aimed to evaluate the influence of dyslipidemia on the effect of physical exercise on inflammatory markers IL6, IL10, and TNF-α in obese post-menopausal women. A randomized clinical trial was carried out in seventy women divided into four groups: exercise without dyslipidemia (EG/n = 11); exercise with dyslipidemia (EGD = 24); control with dyslipidemia (CGD/n = 22); and control without dyslipidemia (CG/n = 13). The serum values of IL-6, IL-10, and TNF-α were measured before and after the intervention period, and the exercise program lasted 20 weeks, in three weekly sessions of 75 min each, with aerobic and strength exercises. The comparison of means was performed using the ANOVA test, repeated measures to analyze the interaction between the group and intervention time. There were a significant reduction in IL-6 values and an increase in IL-10/IL-6 and IL-10/TNF-α ratios only in the EG group. For serum TNF-α values, the EG and EGD groups showed significant reductions. The groups that practiced exercises did not present significant variation in the levels of IL-10. However, the CGD and GC groups showed a significant reduction in IL-10 after the intervention period.
Collapse
Affiliation(s)
- Piero Biteli
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, UNIMAR, Marília, SP, Brazil
| | - Sandra Maria Barbalho
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, UNIMAR, Marília, SP, Brazil; School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília, São Paulo, Brazil; School of Food and Technology of Marilia (FATEC), Marilia, SP, Brazil.
| | | | | | | |
Collapse
|
37
|
Inflammatory and endothelial dysfunction indices among Egyptian females with obesity classes I-III. Biosci Rep 2021; 40:226342. [PMID: 32893859 PMCID: PMC7507597 DOI: 10.1042/bsr20192910] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 08/05/2020] [Accepted: 08/19/2020] [Indexed: 12/23/2022] Open
Abstract
Background: Obesity is an alarming threat to health in Egypt. More than one in three Egyptians is obese, the highest rate in the world. We aimed to delineate the variability of inflammation and endothelial dysfunction markers among Egyptian females with different obesity classes. Methods: Out of 130 females, 70 were categorized into three obesity groups: Class I, body mass index (BMI) 30–34.9 kg/m2; Class II, BMI 35–39.9 kg/m2 and Class III BMI ≥ 40 kg/m2, besides 60 control subjects. Anthropometric measurements were recorded and serum levels of tumor necrosis factor-α (TNF-α), C-reactive protein (CRP), interleukin (IL) 6 (IL-6), IL-12, soluble intercellular adhesion molecule 1 (sICAM-1) and soluble vascular adhesion molecule 1 (sVCAM-1) were assessed among participants. Results: In all three classes of obesity, significant increase (P <0.05) in BMI, waist-hip ratio, fat mass and body fat mass % were noted. CRP and sVCAM-1 levels were increased among the three obesity groups. TNF-α levels were increased in class II and III obesity groups. IL-6 and IL-12 levels were elevated in class I and class III groups. While, ICAM-1 levels were increased in class III obesity group. Conclusion: Based on individuals’ BMI, serum levels of TNF-α, CRP, IL-6, IL-12, sVCAM-1 and sICAM-1 are differentially altered with the progression of obesity. We strongly support the hypothesis that, as the obesity rate is still mounting, a subclinical inflammatory reaction has a role in pathogenesis of obesity and emphasize the elevation of endothelial dysfunction in individuals with obesity.
Collapse
|
38
|
Liu X, Zhang J, Nie D, Zeng K, Hu H, Tie J, Sun L, Peng L, Liu X, Wang J. Comparative Transcriptomic Analysis to Identify the Important Coding and Non-coding RNAs Involved in the Pathogenesis of Pterygium. Front Genet 2021; 12:646550. [PMID: 33790949 PMCID: PMC8005612 DOI: 10.3389/fgene.2021.646550] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/22/2021] [Indexed: 12/31/2022] Open
Abstract
Pterygium is a common ocular surface disease characterized by abnormal fibrovascular proliferation and invasion, similar to tumorigenesis. The formation of tumors is related to a change in the expression of various RNAs; however, whether they are involved in the formation and development of pterygium remains unclear. In this study, transcriptome analysis of messenger RNAs (mRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) of paired pterygium and normal conjunctiva was performed to explore key genes regulating the development of pterygium. In total, 579 mRNAs, 275 lncRNAs, and 21 circRNAs were differentially expressed (DE) in pterygium compared with paired conjunctival tissues. Functional enrichment analysis indicated that DE RNAs were associated with extracellular matrix organization, blood vessel morphogenesis, and focal adhesion. Furthermore, through protein-protein interaction network and mRNA-lncRNA co-expression network analysis, key mRNAs including FN1, VCAM1, and MMP2, and key lncRNAs including MIR4435-2HG and LINC00968 were screened and might be involved in the pathogenesis of pterygium. In addition, several circRNAs including hsa_circ_0007482 and hsa_circ_001730 were considered to be involved in the pterygium development. This study provides a scientific basis for elucidating the pathogenesis of pterygium and will be beneficial for the development of preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Xin Liu
- Shenzhen Eye Hospital, Shenzhen Key Laboratory of Ophthalmology, Affiliated Shenzhen Eye Hospital of Jinan University, Shenzhen, China
| | - Jing Zhang
- Shenzhen Eye Hospital, Shenzhen Key Laboratory of Ophthalmology, Affiliated Shenzhen Eye Hospital of Jinan University, Shenzhen, China
| | - Danyao Nie
- Shenzhen Eye Hospital, Shenzhen Key Laboratory of Ophthalmology, Affiliated Shenzhen Eye Hospital of Jinan University, Shenzhen, China
| | - Kun Zeng
- Shenzhen Eye Hospital, Shenzhen Key Laboratory of Ophthalmology, Affiliated Shenzhen Eye Hospital of Jinan University, Shenzhen, China
| | - Huiling Hu
- Shenzhen Eye Hospital, Shenzhen Key Laboratory of Ophthalmology, Affiliated Shenzhen Eye Hospital of Jinan University, Shenzhen, China
| | - Jinjun Tie
- Department of Ophthalmology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Liangnan Sun
- Shenzhen Eye Hospital, Shenzhen Key Laboratory of Ophthalmology, Affiliated Shenzhen Eye Hospital of Jinan University, Shenzhen, China
| | - Ling Peng
- Shenzhen Eye Hospital, Shenzhen Key Laboratory of Ophthalmology, Affiliated Shenzhen Eye Hospital of Jinan University, Shenzhen, China
| | - Xinhua Liu
- Shenzhen Eye Hospital, Shenzhen Key Laboratory of Ophthalmology, Affiliated Shenzhen Eye Hospital of Jinan University, Shenzhen, China
| | - Jiantao Wang
- Shenzhen Eye Hospital, Shenzhen Key Laboratory of Ophthalmology, Affiliated Shenzhen Eye Hospital of Jinan University, Shenzhen, China
| |
Collapse
|
39
|
Herold J, Kalucka J. Angiogenesis in Adipose Tissue: The Interplay Between Adipose and Endothelial Cells. Front Physiol 2021; 11:624903. [PMID: 33633579 PMCID: PMC7900516 DOI: 10.3389/fphys.2020.624903] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity is a worldwide health problem, and as its prevalence increases, so does the burden of obesity-associated co-morbidities like type 2 diabetes or cardiovascular diseases (CVDs). Adipose tissue (AT) is an endocrine organ embedded in a dense vascular network. AT regulates the production of hormones, angiogenic factors, and cytokines. During the development of obesity, AT expands through the increase in fat cell size (hypertrophy) and/or fat cell number (hyperplasia). The plasticity and expansion of AT is related to its angiogenic capacities. Angiogenesis is a tightly orchestrated process, which involves endothelial cell (EC) proliferation, migration, invasion, and new tube formation. The expansion of AT is accelerated by hypoxia, inflammation, and structural remodeling of blood vessels. The paracrine signaling regulates the functional link between ECs and adipocytes. Adipocytes can secrete both pro-angiogenic molecules, e.g., tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), or vascular endothelial growth factor (VEGF), and anti-angiogenic factors, e.g., serpins. If the pro-angiogenic molecules dominate, the angiogenesis is dysregulated and the endothelium becomes dysfunctional. However, if anti-angiogenic molecules are overexpressed relative to the angiogenic regulators, the angiogenesis is repressed, and AT becomes hypoxic. Furthermore, in the presence of chronic nutritional excess, endothelium loses its primary function and contributes to the inflammation and fibrosis of AT, which increases the risk for CVDs. This review discusses the current understanding of ECs function in AT, the cross-talk between adipose and ECs, and how obesity can lead to its dysfunction. Understanding the interplay of angiogenesis with AT can be an approach to therapy obesity and obesity-related diseases such as CVDs.
Collapse
Affiliation(s)
| | - Joanna Kalucka
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus, Denmark
| |
Collapse
|
40
|
Fang Y, Kaszuba T, Imoukhuede PI. Systems Biology Will Direct Vascular-Targeted Therapy for Obesity. Front Physiol 2020; 11:831. [PMID: 32760294 PMCID: PMC7373796 DOI: 10.3389/fphys.2020.00831] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Healthy adipose tissue expansion and metabolism during weight gain require coordinated angiogenesis and lymphangiogenesis. These vascular growth processes rely on the vascular endothelial growth factor (VEGF) family of ligands and receptors (VEGFRs). Several studies have shown that controlling vascular growth by regulating VEGF:VEGFR signaling can be beneficial for treating obesity; however, dysregulated angiogenesis and lymphangiogenesis are associated with several chronic tissue inflammation symptoms, including hypoxia, immune cell accumulation, and fibrosis, leading to obesity-related metabolic disorders. An ideal obesity treatment should minimize adipose tissue expansion and the advent of adverse metabolic consequences, which could be achieved by normalizing VEGF:VEGFR signaling. Toward this goal, a systematic investigation of the interdependency of vascular and metabolic systems in obesity and tools to predict personalized treatment ranges are necessary to improve patient outcomes through vascular-targeted therapies. Systems biology can identify the critical VEGF:VEGFR signaling mechanisms that can be targeted to regress adipose tissue expansion and can predict the metabolic consequences of different vascular-targeted approaches. Establishing a predictive, biologically faithful platform requires appropriate computational models and quantitative tissue-specific data. Here, we discuss the involvement of VEGF:VEGFR signaling in angiogenesis, lymphangiogenesis, adipogenesis, and macrophage specification – key mechanisms that regulate adipose tissue expansion and metabolism. We then provide useful computational approaches for simulating these mechanisms, and detail quantitative techniques for acquiring tissue-specific parameters. Systems biology, through computational models and quantitative data, will enable an accurate representation of obese adipose tissue that can be used to direct the development of vascular-targeted therapies for obesity and associated metabolic disorders.
Collapse
Affiliation(s)
- Yingye Fang
- Imoukhuede Systems Biology Laboratory, Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Tomasz Kaszuba
- Imoukhuede Systems Biology Laboratory, Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - P I Imoukhuede
- Imoukhuede Systems Biology Laboratory, Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
41
|
Ouyang J, Isnard S, Lin J, Fombuena B, Peng X, Chen Y, Routy JP. GDF-15 as a Weight Watcher for Diabetic and Non-Diabetic People Treated With Metformin. Front Endocrinol (Lausanne) 2020; 11:581839. [PMID: 33312159 PMCID: PMC7708317 DOI: 10.3389/fendo.2020.581839] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022] Open
Abstract
Weight gain and obesity are global health concerns contributing to morbidity with increased risks of cardiovascular disease, diabetes, liver steatohepatitis and cancer. Pharmacological therapies or bariatric surgery are often required for those who fail to adhere to diet and lifestyle modifications. Metformin, a widely used antidiabetic agent, seems to have a health benefit beyond its anti-hyperglycemic properties, with few side effects. Emerging evidence shows weight loss to be associated with metformin in both diabetic and non-diabetic individuals. Recently, the growth differentiation factor 15 (GDF-15), a member of the transforming growth factor beta superfamily, has been identified as a key mediator of metformin-induced weight loss. Metformin increases the secretion of GDF-15, which binds exclusively to glial cell-derived neurotrophic factor family receptor alpha-like (GFRAL). This gut-brain cytokine works as a prominent player in reducing food intake and body weight in health and disease, like anorexia nervosa and cancer. Herein, we critically review advances in the understanding of the weight-reducing effects of metformin via the GDF-15 pathway.
Collapse
Affiliation(s)
- Jing Ouyang
- Chongqing Public Health Medical Center, Chongqing, China
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada
| | - Stéphane Isnard
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada
- CIHR Canadian HIV Trials Network, Vancouver, BC, Canada
| | - John Lin
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada
| | - Brandon Fombuena
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
| | - Xiaorong Peng
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yaokai Chen
- Chongqing Public Health Medical Center, Chongqing, China
- *Correspondence: Jean-Pierre Routy, ; Yaokai Chen,
| | - Jean-Pierre Routy
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada
- Division of Hematology, McGill University Health Centre, Montréal, QC, Canada
- *Correspondence: Jean-Pierre Routy, ; Yaokai Chen,
| |
Collapse
|