1
|
Liu J, Zhang Y, Huang J, Yang L, Yang Y, Deng G, Hu D, Yan C. Fe oxides nano-modified pumice enhances hydrogenotrophic methanogenesis in anaerobic digestion: Performance and mechanism of microbial community. J Environ Sci (China) 2025; 154:114-127. [PMID: 40049860 DOI: 10.1016/j.jes.2024.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/01/2024] [Accepted: 08/04/2024] [Indexed: 05/13/2025]
Abstract
Anaerobic digestion (AD), as an eco-friendly biological process, shows potential for the decomposition of leachate produced by waste incineration power plants. In this study, the effects of Fe oxides nano-modified pumice (FNP) were investigated on the fresh leachate AD process. Firstly, a simple hydrothermal method was used to prepare FNP, then introduced into the UASB reactor to evaluate its AD efficiency. Results showed that the inclusion of FNP could shorten the lag phase by 10 days compared to the control group. Furthermore, cumulative methane production in the FNP group was enhanced by 20.11%. Mechanistic studies suggested that hydrogenotrophic methanogenesis in the FNP group was more pronounced due to the influence of key enzymes (i.e., dehydrogenase and coenzyme F420). Microbial community analysis demonstrated that FNP could enhance the abundance of Methanosarcina, Proteobacteria, Sytrophomonas, and Limnobacter, which might elevate enzyme activity involved in methane production. These findings suggest that FNP might mediate interspecies electron transfer among these microorganisms, which is essential for efficient leachate treatment.
Collapse
Affiliation(s)
- Jiaqi Liu
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China
| | - Yong Zhang
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China; Pollution Control and Resource Utilization in Industrial Parks Joint Laboratory of Anhui Province, Hefei 230601, China.
| | - Jian Huang
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China; Pollution Control and Resource Utilization in Industrial Parks Joint Laboratory of Anhui Province, Hefei 230601, China
| | - Lili Yang
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China
| | - Yuzhou Yang
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China
| | - Guohao Deng
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China
| | - Dingcheng Hu
- CSCEC AECOM Consultants Co., Ltd., Lanzhou 730000, China
| | - Chuanchuan Yan
- CSCEC AECOM Consultants Co., Ltd., Lanzhou 730000, China
| |
Collapse
|
2
|
Xiao Y, Yang H, Jiang X, Wang W, Deng L. Mitigation of ammonia and volatile fatty acids inhibition in dry anaerobic digestion of chicken manure by biochar prepared at varying pyrolysis temperatures. BIORESOURCE TECHNOLOGY 2025; 428:132465. [PMID: 40158863 DOI: 10.1016/j.biortech.2025.132465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/27/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
This study examined the impact of various types of biochar on dry anaerobic digestion of chicken manure under the combined stress of ammonia and volatile fatty acids (VFAs). Total ammonia nitrogen (TAN) concentration at 9069 mg/L and total VFAs (TVFA) concentration at 33646 mg-HAc/L decreased the biogas production potential of chicken manure by approximately 50 %. The introduction of biochar prepared at 800 °C (BC800) enhanced the maximum biogas production rate of the inhibited anaerobic digestion mixture by 121.3 % and reduced the anaerobic digestion period by 38.6 %. The superior electrical conductivity, high specific capacitance value, large pore volume, and large specific surface area of BC800 significantly improved its performance in facilitating dry anaerobic digestion. BC800 enriched Bathyarchaeia and Methanosaeta, fostering the breakdown of propionic acid and bolstering acetoclastic methanogenesis. This study provides valuable experience for dry anaerobic digestion of chicken manure in future applications.
Collapse
Affiliation(s)
- Youqian Xiao
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Hongnan Yang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Xinru Jiang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Wenguo Wang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Liangwei Deng
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, China.
| |
Collapse
|
3
|
Zheng X, Wang Y, Jiang Y, Mao W, Li M, Guan Y. Enhanced and sustainable advanced nitrogen removal in mixotrophic systems using pyrite and solid carbon source. ENVIRONMENTAL RESEARCH 2025; 275:121379. [PMID: 40081648 DOI: 10.1016/j.envres.2025.121379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Utilizing widespread minerals/solid wastes as electron donors for denitrification is conducive to sustainable wastewater treatment. The current denitrification technologies based on single pyrite/solid carbon sources have problems of limited removal efficiency or unstable carbon release. In this study, two continuous biofilters, pyrite-corncob mixotrophic system (RPCM) and pyrite-polybutylene succinate mixotrophic system (RPPM), were conducted and operated steadily for a long period (>326 d). The mixotrophic systems achieved advanced removal of NO3--N (18 mg L-1) and a small amount of NH4+-N (2.5 mg L-1), with stabilized effluent TIN less than 2 mg L-1 at HRT of 4 h. Additionally, the systems demonstrated several distinct advantages, including no additional alkalinity requirement and a low risk of secondary contamination. RPCM could achieve advanced nitrogen removal at a higher nitrogen loading rate (93.6 mg L-1 d-1) but demanded periodic replenishment of corncob. In contrast, the organic matter release and nitrogen removal performance of RPPM exhibited stability throughout the operation. The increased abundance of functional microorganisms related to C, N, S, and Fe metabolism was essential for advanced nitrogen removal through synergistic effects. This study will provide implications for developing novel wastewater treatment processes emphasizing both nitrogen removal and waste valorization.
Collapse
Affiliation(s)
- Xiaona Zheng
- Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Yanfei Wang
- Nanjing Historical City Protection & Construction (Group) Co., Ltd., Nanjing, 210000, PR China
| | - Yanbo Jiang
- Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, 100084, PR China; Nanning Engineering Technology Research Center for Water Safety, Guangxi Beitou Environmental Protection &Water Group Co., Ltd., Nanning, 530022, PR China
| | - Wei Mao
- Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Minlong Li
- Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Yuntao Guan
- Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
4
|
Zhang M, Han Y, Zeng Y, Wang T, Wang Z, Wu Y, Li N, Lobo FL, Wang X. Understanding the microbial processes on carbon brushes that accelerate methanogenesis of long-chain fatty acids in anaerobic digestion. WATER RESEARCH 2025; 273:123084. [PMID: 39756223 DOI: 10.1016/j.watres.2024.123084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/27/2024] [Accepted: 12/31/2024] [Indexed: 01/07/2025]
Abstract
Lipids offer high energy recovery potential during anaerobic digestion (AD), but their hydrolysis generates long-chain fatty acids (LCFAs), which are difficult to biodegrade. The introduction of microbial electrolysis cells has been widely recognized as a promising strategy to enhance AD. However, it is still under debate whether the electrical circuit needs to be connected, as certain electrodes with large specific surface areas have been reported to enhance direct interspecies electron transfer (DIET) without requiring an external power supply. Here we confirmed that the carbon brush anode pre-acclimated with electroactive bacteria (EAB) was able to accelerate LCFA methanation. Although the applied potential achieved a rapid methane production, the coupling of homoacetogenesis and electrogenesis consumed part of the bioelectrohydrogen, reducing the maximum methane production rate by 5-13 %. In the AD system with only carbon brushes added, the dominant methanogens shifted from Methanosarcina in solution to Methanothrix on brushes. Pre-enriching EAB further established a composite mechanism, with DIET driven by Syntrophomonas, Geobacter and Methanothrix as the primary pathway, and interspecies hydrogen transfer mediated by Methanospirillum as a complementary process, collectively optimizing LCFA methanation. Genetic regulation underlying microbial tolerance to high LCFA concentrations was then elucidated, underscoring the critical role of combining immobilized electrodes and pre-acclimated EAB in adapting to LCFA stress and improving lipid-rich wastewater treatment.
Collapse
Affiliation(s)
- Mou Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science & Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Yilian Han
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science & Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Yuanyuan Zeng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science & Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Tuo Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science & Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Ziyuan Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science & Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Yuhang Wu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science & Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Nan Li
- School of Environmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Fernanda Leite Lobo
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, CE 60020-181, Brazil
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science & Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China.
| |
Collapse
|
5
|
Yuan T, Qiao X, Zhang W, Xu Q. Effect of zero-valent iron particle size on alleviating acid stress in anaerobic digestion of food waste. ENVIRONMENTAL RESEARCH 2025; 269:120886. [PMID: 39828188 DOI: 10.1016/j.envres.2025.120886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/01/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
This work evaluated the effect of zero-valent iron (ZVI) particle size (150 μm-100 nm) on the performance of food waste anaerobic digestion (AD) under various acid stress conditions. The results indicated that ZVI significantly improved the AD performance, ensuring successful CH4 production even under high acid stress. However, the extent of this promoting effect was highly dependent on the particle size. Nano-scale ZVI (nZVI) demonstrated superior performance in the AD process in terms of CH4 yield and CH4 production rate compared to micro-scale ZVI (mZVI). Specifically, the CH4 yield in the nZVI reactor was 8.24-8.68% higher than that in the mZVI reactor. This improvement was attributed to nZVI's more effective up-regulatory effect on hydrolase activity, as the activities of protease and α-amylase in nZVI reactors were 44.55%-48.54% and 14.65%-77.52% higher, respectively, than those in mZVI reactors. Furthermore, the methanogenic lag phase and maximum CH4 production rate in the nZVI reactor were 41.64%-49.69% shorter and 9.71-37.69% higher than those in the mZVI reactor, respectively. This can be attributed to nZVI's enhanced promoting effect on the activity of coenzyme 420, Syntrophomonas and Methanosarcina, thereby accelerating the CH4 production.
Collapse
Affiliation(s)
- Tugui Yuan
- Leibniz-Institute for Agricultural Engineering Potsdam-Bornim, Max-Eyth-Allee 100, 14469, Potsdam, Germany; Beijing University of Civil Engineering and Architecture, 100044, Beijing, China.
| | - Xuejiao Qiao
- School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, 518055, Shenzhen, China
| | - Wenxiang Zhang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458, Guangzhou, China.
| | - Qiyong Xu
- School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, 518055, Shenzhen, China
| |
Collapse
|
6
|
Li C, Bao R, Sun Y, Quan J, Angelidaki I, Yuan Z. Microbial dynamics and CO consumption enhancement via co-digestion with carbohydrate-rich synthetic wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 968:178887. [PMID: 39983491 DOI: 10.1016/j.scitotenv.2025.178887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/14/2025] [Accepted: 02/16/2025] [Indexed: 02/23/2025]
Abstract
Due to the toxicity and low mass transfer of CO, its efficient conversion is crucial for syngas biomethanation. In the present study, anaerobic co-digestion of CO and carbohydrate-rich synthetic wastewater was conducted to facilitate the CO conversion performance, followed by microbial analysis with and without methanogenic activity inhibition (namely, digestion and acidification systems). The results indicated that glucose addition in co-digestion system dramatically enhanced CO consumption. The maximum consumption rate (μ-max) of CO increased by about 65 % with adding glucose. However, CO presented partial inhibition on methanogenic activity without declining methane yield. Microbial analysis showed that microbial diversity increased in co-digestion systems. Hydrogenotrophic methanogens from Methanobrevibacter became dominant in all individual and co-digested systems. Methanogenic activity inhibited community proved the bacteria mainly mediated CO conversion, and glucose addition promoted the growth of acetogenic bacteria from Firmicutes, relating to the enhancement in CO consumption. Species from Synergistota worked as the main syntrophic oxidizers, along with Defluviitoga, Syntrophomonas, and Syntrophaceticus, assisting methane production by hydrogenotrophic methanogens. The outcomes in the present study supply an efficient strategy for synergetic treatment of syngas (CO-rich gas) and organic waste/wastewater for energy recovery.
Collapse
Affiliation(s)
- Chunxing Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Lishui Institute of Ecology and Environment, Nanjing University, Nanjing 211200, China
| | - Ruihan Bao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yan Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jiawei Quan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Irini Angelidaki
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Zengwei Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Lishui Institute of Ecology and Environment, Nanjing University, Nanjing 211200, China.
| |
Collapse
|
7
|
Dar RA, Tsui TH, Zhang L, Smoliński A, Tong YW, Mohamed Rasmey AH, Liu R. Recent achievements in magnetic-field-assisted anaerobic digestion for bioenergy production. RENEWABLE AND SUSTAINABLE ENERGY REVIEWS 2025; 207:114902. [DOI: 10.1016/j.rser.2024.114902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
8
|
Chen S, Kong Z, Qiu L, Wang H, Yan Q. Effects of different quorum sensing signal molecules on alleviation of ammonia inhibition during biomethanation. ENVIRONMENTAL RESEARCH 2025; 264:120295. [PMID: 39505134 DOI: 10.1016/j.envres.2024.120295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/08/2024]
Abstract
Anaerobic digestion (AD) is a promising technology for achieving both organic wastes treatment and energy recovery. However, challenges such as ammonia inhibition still remain. Quorum sensing (QS) system is relevant with the regulation of microbial community behaviors by releasing and sensing signal molecules, which could improve methane production during AD process. Therefore, the current study explored the effects of different quorum sensing signal molecules on alleviation of ammonia inhibition. The results showed that both secretion of N-butyryl-DL-homoserine lactone (C4-HSL) and N-(β-ketocaproyl)-DL-homoserine lactone (3OC6-HSL) could be inhibited by high ammonia stress while stimulation of N-hexanoyl-L-homoserine lactone (C6-HSL) and N-octanoyl-DL-homoserine lactone (C8-HSL) secretion might be triggered by ammonia toxicity. Moreover, the alleviation of ammonia inhibition could be achieved by both introducing 3OC6-HSL (0.5 μM) and combination of 3OC6-HSL (0.1 μM) and biochar (4 g/L). Exogenous 3OC6-HSL could regulate microbial social behaviors and enhance the secretion of extracellular polymeric substances (EPS) to promote anaerobic digestion. In addition, the mitigation of ammonia inhibition through exogenous 3OC6-HSL and biochar were confirmed by microbial community changes (Methanobacterium, Propionicicella and Petrimonas). Critical enzymes involved in both acidification and methanogenic steps were enhanced after adding the combination of 3OC6-HSL and biochar. The combination of low levels of 3OC6-HSL and biochar could promote both direct interspecies electron transfer (DIET) process and communication between different anaerobic microorganisms to mitigate ammonia inhibition. The current study will provide primary insights for conquering ammonia inhibition during biomethanation.
Collapse
Affiliation(s)
- Siyi Chen
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Ziang Kong
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Liwei Qiu
- Changzhou Cheff Environmental Protection Technology Co., Ltd, Changzhou, 213164, China
| | - Han Wang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi, 214122, China.
| | - Qun Yan
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi, 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou, 215011, China
| |
Collapse
|
9
|
Ye J, Liu X, Khalid M, Li X, Romantschuk M, Bian Y, Li C, Zhang J, Zhao C, Wu J, Hua Y, Chen W, Hui N. The simultaneous addition of chitosan and peat enhanced the removals of antibiotics resistance genes during biogas residues composting. ENVIRONMENTAL RESEARCH 2024; 263:120109. [PMID: 39369780 DOI: 10.1016/j.envres.2024.120109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Direct reuse of biogas residue (BR) has the potential to contribute to the dissemination of antibiotic resistance genes (ARGs). Although high-temperature composting has been demonstrated as an effective method for the harmless treatment of organic waste, there is few researches on the fate of ARGs in high-temperature composting of BR. This research examined the impact of adding 5% chitosan and 15% peat on physicochemical characteristics, microbial communities, and removal of ARGs during BR-straw composting in 12 Biolan 220L composters for 48 days. Our results showed that the simultaneous addition of chitosan and peat extended the high-temperature period, and increased the highest temperature to 74 °C and germination index. These effects could be attributed to the presence of thermophilic cellulose-decomposing genera (Thermomyces and Thermobifida). Although the microbial communities differed compositionally among temperature stages, their dissimilarity drastically reduced at final stage, indicating that the impact of different treatments on microbial community composition decreases at the end of composting. Peat had a greater impact on aerobic genera capable of cellulose degradation at thermophilic stage than chitosan. Surprisingly, despite the total copy number of ARGs significantly decreased during composting, especially in the treatment with both chitosan and peat, intl1 gene abundance significantly increased 2 logs at thermophilic stage and maintained high level in the final compost, suggesting there is still a potential risk of transmission and proliferation of ARGs. Our work shed some lights on the development of waste resource utilization and emerging contaminants removal technology.
Collapse
Affiliation(s)
- Jieqi Ye
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China; Shanghai Pudong Development (Group) CO., Ltd., Zhangyang Road 699, 200122, Shanghai, China.
| | - Xinxin Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., 200240, Shanghai, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., 200240, Shanghai, China.
| | - Muhammad Khalid
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China.
| | - Xiaoxiao Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China.
| | - Martin Romantschuk
- Faculty of Biological and Environmental Science, University of Helsinki, Niemenkatu 73, 15240, Lahti, Finland.
| | - Yucheng Bian
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China.
| | - Chi Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China.
| | - Junren Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China.
| | - Chang Zhao
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China.
| | - Jian Wu
- Shanghai Pudong Development (Group) CO., Ltd., Zhangyang Road 699, 200122, Shanghai, China.
| | - Yinfeng Hua
- Shanghai Pudong Development (Group) CO., Ltd., Zhangyang Road 699, 200122, Shanghai, China.
| | - Weihua Chen
- Shanghai Pudong Development (Group) CO., Ltd., Zhangyang Road 699, 200122, Shanghai, China.
| | - Nan Hui
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China; Faculty of Biological and Environmental Science, University of Helsinki, Niemenkatu 73, 15240, Lahti, Finland; Yunnan Dali Research Institute, Shanghai Jiao Tong University, Dali, China.
| |
Collapse
|
10
|
Afzal I, Kuznetsova A, Foght J, Ulrich A, Siddique T. Crystalline iron oxide mineral (magnetite) accelerates methane production from petroleum hydrocarbon biodegradation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125065. [PMID: 39366444 DOI: 10.1016/j.envpol.2024.125065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/17/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Methane (CH4) emissions are a factor in climate change; in addition, CH4 production may affect reclamation of fluid fine tailings (FFT) in tailings ponds, and end-pit lakes (EPLs). In laboratory cultures, we investigated the effect of crystalline iron mineral (magnetite) on CH4 production from the biodegradation of hydrocarbons added to FFT collected from methanogenically more and less active sites in a demonstration EPL. Magnetite enhanced CH4 production from both sites, having a greater effect in more active FFT, where it increased the CH4 production rate as much as 48% (from 6.67 μmol d-1 to 9.87 μmol d-1) compared to FFT without magnetite. Correspondingly, magnetite hastened biodegradation of hydrocarbons (monoaromatics, n-alkanes and iso-alkanes), with a pronounced effect on o-xylene, ethylbenzene, m/p-xylenes, n-octane, n-nonane, and 2-methyloctane, where biodegradation rates increased by 46, 117, 11, 45, 28 and 37%, respectively, compared to FFT without magnetite. Little FeII was produced, suggesting that magnetite is not being used as an electron acceptor but rather functions as a conduit for electron transfer. Thus, magnetite may be a suitable amendment to enhance bioremediation of anaerobic environments contaminated with hydrocarbons. Importantly, our observations imply that magnetite may increase CH4 emissions from terrestrial ecosystems, thus affecting carbon budget estimations.
Collapse
Affiliation(s)
- Iram Afzal
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2G7, Canada
| | - Alsu Kuznetsova
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2G7, Canada
| | - Julia Foght
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Ania Ulrich
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Tariq Siddique
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2G7, Canada.
| |
Collapse
|
11
|
Wang Y, Fu Q, Yang F, Li X, Ma X, Xu Y, Liu X, Wang D. Mechanistic insights into Fe 3O 4-mediated inhibition of H 2S gas production in sludge anaerobic digestion. WATER RESEARCH 2024; 267:122464. [PMID: 39303578 DOI: 10.1016/j.watres.2024.122464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
The addition of iron-based conductive materials has been extensively validated as a highly effective approach to augment methane generation from anaerobic digestion (AD) process. In this work, it was additionally discovered that Fe3O4 notably suppressed the production of hazardous H2S gas during sludge AD. As the addition of Fe3O4 increased from 0 to 20 g/L, the accumulative H2S yields decreased by 89.2 % while the content of element sulfur and acid volatile sulfide (AVS) respectively increased by 55.0 % and 30.4 %. Mechanism analyses showed that the added Fe3O4 facilitated sludge conductive capacity, and boosted the efficiency of extracellular electron transfer, which accelerated the bioprocess of sulfide oxidation. Although Fe3O4 can chemically oxidize sulfide to elemental sulfur, microbial oxidation plays a major role in reducing H2S accumulation. Moreover, the released iron ions reacted with soluble sulfide, which promoted the chemical equilibrium of sulfide species from H2S to metal sulfide. Microbial analysis showed that some SRBs (i.e., Desulfomicrobium and Defluviicoccus) and SOB (i.e., Sulfuritalea) changed into keystone taxa (i.e., connectors and module hubs) in the reactor with Fe3O4 addition, showing that the functions of sulfate reduction and sulfur oxidation may play important roles in Fe3O4-present system. Fe3O4 presence also increased the content of functional genes encoding sulfide quinone reductase and flavocytochrome c sulfidedehydrogenase (e.g., Sqr and Fcc) that could oxidize sulfide to sulfur. The impact of other iron-based conductive material (i.e., zero-valent iron) was also verified, and the results showed that it could also significantly reduce H2S production. These findings provide new insights into the effect of iron-based conductive materials on anaerobic process, especially sulfur conversion.
Collapse
Affiliation(s)
- Yan Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Qizi Fu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
| | - Fan Yang
- RIOH High Science and Technology Group, Beijing 100088, PR China
| | - Xuemei Li
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xingyu Ma
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Yunhao Xu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xuran Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
| |
Collapse
|
12
|
Song Y, Zhang Z, Liu Y, Peng F, Feng Y. Enhancement of anaerobic treatment of antibiotic pharmaceutical wastewater through the development of iron-based and carbon-based materials: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135514. [PMID: 39243542 DOI: 10.1016/j.jhazmat.2024.135514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/23/2024] [Accepted: 08/12/2024] [Indexed: 09/09/2024]
Abstract
The extensive use of antibiotics has created an urgent need to address antibiotic wastewater treatment, posing significant challenges for environmental protection and public health. Recent advances in the efficacy and mechanisms of conductive materials (CMs) for enhancing the anaerobic biological treatment of antibiotic pharmaceutical wastewater are reviewed. For the first time, the focus is on the various application forms of iron-based and carbon-based CMs in strengthening the anaerobic methanogenic system. This includes the use of single CMs such as zero-valent iron (ZVI), magnetite, biochar (BC), activated carbon (AC), and graphene (GP), as well as iron-based and carbon-based composite CMs with diverse structures. These structures include mixed, surface-loaded, and core-shell combinations, reflecting the development of CMs. Iron-based and carbon-based CMs promote the rapid removal of antibiotics through adsorption and enhanced biodegradation. They also mitigate the inhibitory effects of toxic pollutants on microbial activity and reduce the expression of antibiotic resistance genes (ARGs). Additionally, as effective electron carriers, these CMs enrich microorganisms with direct interspecies electron transfer (DIET) functions, accelerate interspecies electron transfer, and facilitate the conversion of organic matter into methane. Finally, this review proposes the use of advanced molecular detection technologies to clarify microbial ecology and metabolic mechanisms, along with microscopic characterization techniques for the modification of CMs. These methods can provide more direct evidence to analyze the mechanisms underlying the cooperative anaerobic treatment of refractory organic wastewater by CMs and microorganisms.
Collapse
Affiliation(s)
- Yanfang Song
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No.73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Zhaohan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No.73, Huanghe Road, Nangang District, Harbin 150090, China.
| | - Yanbo Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No.73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Fangyue Peng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No.73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No.73, Huanghe Road, Nangang District, Harbin 150090, China.
| |
Collapse
|
13
|
Guo P, Wang T, Wang J, Niu J, Peng C, Shan J, Zhang Y, Huang H, Chen J. Role of polylactic acid microplastics during anaerobic co-digestion of cow manure and Chinese cabbage waste enhanced by nanobubble. CHEMOSPHERE 2024; 367:143639. [PMID: 39490760 DOI: 10.1016/j.chemosphere.2024.143639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
With the increasing use of plastic products globally, environmental pollution by plastic waste is becoming increasingly problematic. This study investigated the impacts of two types of polylactic acid microplastics, clear microplastics and aluminised film microplastics, on methane yield, microbial community, and volatile fatty acid accumulation during anaerobic co-digestion of cow manure and Chinese cabbage waste under different temperature conditions. The influence of the addition of air nanobubbles on microplastic degradation in the anaerobic digestion system we also examined. The results revealed that under thermophilic conditions, clear and aluminised film microplastics increased the methane yield, with the latter resulting in greater improvement. Conversely, under mesophilic conditions, the presence of microplastics reduced the methane yield, but the addition of air-nanobubble partially mitigated this effect. Microplastics also affected the microbial community, with specific species showing correlations with methane yield. Methanothermobacter, which is linked to lactic acid conversion, was positively correlated with methane yield, whereas Methanomassiliicoccus levels increased in the presence of microplastics, particularly in the inhibited state of the digester. These results suggest that, under thermophilic conditions, microplastics may increase the cumulative methane yield by facilitating the degradation of lactic acid monomers. Furthermore, the aluminised film on microplastics could serve as an electrically conductive material during anaerobic digestion, potentially increasing the methane yield.
Collapse
Affiliation(s)
- Peilin Guo
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Tianfeng Wang
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China.
| | - Jie Wang
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Jiazi Niu
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Cheng Peng
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Jiabei Shan
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Yu Zhang
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Haizhou Huang
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Jixiang Chen
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| |
Collapse
|
14
|
Wang J, Xu L, Wang Y, He C, Mei H, Xuan L, Wang Y, Dong F, Wang W. Rapid start-up and excellent performance of anaerobic membrane bioreactor for treating poly (butylene adipate-co-terephthalate) wastewater by using one-step feeding mode. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122544. [PMID: 39316878 DOI: 10.1016/j.jenvman.2024.122544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/05/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
The traditional anaerobic treatment process for highly concentrated, toxic, and acidic poly (butylene adipate-co-terephthalate) (PBAT) wastewater faces challenges. In contrast, the anaerobic membrane bioreactor (AnMBR) offers the advantage of robust performance, but the influence of start-up modes has not been explored. This study investigated the impact of one-step and stepwise startup (gradual dilution of wastewater) strategies in AnMBR treating PBAT wastewater. The results indicated that the one-step startup group achieved COD removal efficiency of 91.2% ± 2.7% and methane conversion rate of 234.7 ± 8.5 mLCH4/gCOD, which were 21.7% and 81.8 mL CH4/gCOD respectively higher than those achieved by the stepwise start-up group. Furthermore, the one-step startup led to the reduction of startup time by 10 days and the decrease in the average membrane fouling cycle by 6.6 days. Compared to the stepwise start-up group, the one-step startup group exhibited a lower abundance of Bacteroidota (11.3%), and a higher abundance of Proteobacteria (27.1%), Chloroflexi (10.5%), and Actinobacteria (11.8%). The one-step startup strategy facilitated the rapid development of a toxicity-tolerant hydrogenotrophic methanogenic pathway. Consequently, the one-step startup method provided a promising approach for the rapid start-up and excellent performance of AnMBR in PBAT wastewater treatment.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Luyao Xu
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yan Wang
- Anhui Provincial Key Laboratory of Industrial Wastewater and Environmental Treatment, East China Engineering Science and Technology Co., Ltd., Hefei, 230022, China
| | - Chunhua He
- Department of Municipal Engineering, School of Environment and Energy Engineering, Anhui JianZhu University, Hefei, 230009, China
| | - Hong Mei
- Anhui Provincial Key Laboratory of Industrial Wastewater and Environmental Treatment, East China Engineering Science and Technology Co., Ltd., Hefei, 230022, China
| | - Liang Xuan
- Anhui Provincial Key Laboratory of Industrial Wastewater and Environmental Treatment, East China Engineering Science and Technology Co., Ltd., Hefei, 230022, China
| | - Yuwei Wang
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Fang Dong
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Wei Wang
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
15
|
Xu P, Liu H, Liu C, Zhu G. Syntrophic methane production from volatile fatty acids: Focus on interspecies electron transfer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174410. [PMID: 38960157 DOI: 10.1016/j.scitotenv.2024.174410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Methane is a renewable biomass energy source produced via anaerobic digestion (AD). Interspecies electron transfer (IET) between methanogens and syntrophic bacteria is crucial for mitigating energy barriers in this process. Understanding IET is essential for enhancing the efficiency of syntrophic methanogenesis in anaerobic digestion. Interspecies electron transfer mechanisms include interspecies H2/formate transfer, direct interspecies electron transfer (DIET), and electron-shuttle-mediated transfer. This review summarizes the mechanisms, developments, and research gaps in IET pathways. Interspecies H2/formate transfer requires strict control of low H2 partial pressure and involves complex enzymatic reactions. In contrast, DIET enhances the electron transfer efficiency and process stability. Conductive materials and key microorganisms can be modulated to stimulate the DIET. Electron shuttles (ES) allow microorganisms to interact with extracellular electron acceptors without direct contact; however, their efficiency depends on various factors. Future studies should elucidate the key functional groups, metabolic pathways, and regulatory mechanisms of IET to guide the optimization of AD processes for efficient renewable energy production.
Collapse
Affiliation(s)
- Panhui Xu
- School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Haichen Liu
- Shanghai Investigation, Design & Research Institute Co., Ltd., 200080, China
| | - Chong Liu
- The 101 Research Institute, Ministry of Civil Affairs of the People's Republic of China, Beijing 100070, China.
| | - Gefu Zhu
- School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| |
Collapse
|
16
|
Xu H, Wang M, Hei S, Qi X, Zhang X, Liang P, Fu W, Pan B, Huang X. Neglected role of iron redox cycle in direct interspecies electron transfer in anaerobic methanogenesis: Inspired from biogeochemical processes. WATER RESEARCH 2024; 262:122125. [PMID: 39053210 DOI: 10.1016/j.watres.2024.122125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/15/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
Anaerobic digestion is an indispensable technical option towards green and low-carbon wastewater treatment, with interspecies electron transfer (IET) playing a key role in its efficiency and operational stability. The exogenous semiconductive iron oxides have been proven to effectively enhance IET, while the cognition of the physicochemical-biochemical coupling stimulatory mechanism was circumscribed and remains to be elucidated. In this study, semiconductive iron oxides, α-Fe2O3, γ-Fe2O3, α-FeOOH, and γ-FeOOH were found to significantly enhance syntrophic methanogenesis by 76.39, 72.40, 37.33, and 32.64% through redirecting the dominant IET pathway from classical interspecies hydrogen transfer to robust direct interspecies electron transfer (DIET). Their alternative roles as electron shuttles potentially substituting for c-type cytochromes were conjectured to establish an electron transport matrix associated with conductive pili. Distinguished from the conventional electron conductor mechanism of conductive Fe3O4, semiconductive iron oxides facilitated DIET intrinsically through the capacitive Fe(III/II) redox cycles coupled with secondary mineralization. The growth of Aminobacterium, Sedimentibacter, and Methanothrix was enriched and the gene copy numbers of Geobacteraceae 16S ribosomal ribonucleic acid were selectively flourished by 2.0-∼4.5- fold to establish a favorable microflora for DIET pathway. Metabolic pathways of syntrophic acetogenesis from propionate/butyrate and CO2 reduction methanogenesis were correspondingly promoted. The above findings provide new insights into the underlying mechanism of iron minerals enhancing the DIET-oriented pathway and offer paradigms for redox-mediated energy harvesting biological wastewater treatment.
Collapse
Affiliation(s)
- Hui Xu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China; State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Mingwei Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Shengqiang Hei
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Xiang Qi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Xiaoyuan Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Wanyi Fu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
17
|
Sharma D, Mahajan R, Baghel V, Bansal S, Ahuja V, Goel G. Simultaneous Production of Biogas and Electricity from Anaerobic Digestion of Pine Needles: Sustainable Energy and Waste Management. BIOTECH 2024; 13:35. [PMID: 39311337 PMCID: PMC11417778 DOI: 10.3390/biotech13030035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/26/2024] Open
Abstract
Power scarcity and pollution can be overcome with the use of green energy forms like ethanol, biogas, electricity, hydrogen, etc., especially energy produced from renewable and industrial feedstocks. In hilly areas, pine needles are the most abundant biomass that has a low possibility of valorization due to high lignin content. On the other hand, anaerobic digestion (AD) of lignin and animal waste has low biogas yield due to poor conductivity. This study focuses on the simultaneous production of biogas and electricity through the co-digestion of cow dung and pine needles. The digester was initially established and stabilized in the lab to ensure a continuous supply of inoculum throughout the experiment. The optimization process involved the determination of an ideal cow dung-to-water ratio and selecting the appropriate conductive material that can enhance the energy generation from the feedstock. Afterward, both batch and continuous anaerobic digestion experiments were conducted. The results revealed that the addition of powdered graphite (5 mM), activated charcoal (15 mM), and biochar (25 mM) exhibited maximum voltage of 0.71 ± 0.013 V, 0.56 ± 0.013 V, and 0.49 ± 0.011 V on the 30th, 25th and 20th day of AD, respectively. The batch experiment showed that 5 mM graphite powder enhanced electron transfer in the AD process and generated a voltage of 0.77 ± 0.014 V on the 30th day, indicating an increase of ~1.5-fold as compared to the control (0.56 ± 0.019 V). The results from the continuous AD process showed that the digester with cow dung, pine needle, and a conductive material in combination exhibited the maximum voltage of 0.76 ± 0.012 V on the 21st day of AD, while the digester with cow dung only exhibited a maximum voltage of 0.62 ± 0.015 V on the 22nd day of AD, representing a 1.3-fold increase over the control. Furthermore, the current work used discarded plastic items and electrodes from spent batteries to emphasize waste management and aid in attaining sustainable energy and development goals.
Collapse
Affiliation(s)
- Deepak Sharma
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology Waknaghat, Solan 173234, Himachal Pradesh, India; (D.S.); (R.M.); (S.B.)
- Department of Biotechnology, Chandigarh College of Technology, Chandigarh Group of Colleges Landran, Mohali 140307, Punjab, India
| | - Rishi Mahajan
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology Waknaghat, Solan 173234, Himachal Pradesh, India; (D.S.); (R.M.); (S.B.)
- Department of Microbiology, Chaudhary Sarvan Kumar Krishi Vishwavidyalaya, Palampur, Kangra 176061, Himachal Pradesh, India
| | - Vikas Baghel
- Department of Electronics and Communication Engineering, Jaypee University of Information Technology Waknaghat, Solan 173234, Himachal Pradesh, India;
| | - Saurabh Bansal
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology Waknaghat, Solan 173234, Himachal Pradesh, India; (D.S.); (R.M.); (S.B.)
| | - Vishal Ahuja
- University Institute of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India
- University Centre for Research and Development, Chandigarh University, Mohali 140413, Punjab, India
| | - Gunjan Goel
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology Waknaghat, Solan 173234, Himachal Pradesh, India; (D.S.); (R.M.); (S.B.)
- Department of Microbiology, Central University of Haryana, Mahendragarh 123031, Haryana, India
| |
Collapse
|
18
|
Khemkhao M, Domrongpokkaphan V, Nuchdang S, Phalakornkule C. Chemical and biological effects of zero-valent iron (ZVI) concentration on in-situ production of H 2 from ZVI and bioconversion of CO 2 into CH 4 under anaerobic conditions. ENVIRONMENTAL RESEARCH 2024; 256:119230. [PMID: 38810832 DOI: 10.1016/j.envres.2024.119230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/18/2024] [Accepted: 05/24/2024] [Indexed: 05/31/2024]
Abstract
The conversion of carbon dioxide (CO2) to methane (CH4) is a strategy for sequestering CO2. Zero-valent iron (ZVI) has been proposed as an alternative electron donor for the CO2 reduction to CH4. In this study, the effects of ZVI concentrations on the abiotic production of H2 (without the action of microorganisms) in the first part and on the biological conversion of CO2 to CH4 using ZVI as a direct electron donor in the second part were examined. In the abiotic H2 production, the increase in the ZVI concentration from 16 to 32, 64, and 96 g/L was found to have positive effects on both the amounts of H2 generated and the rates of H2 production because the extent of ZVI oxidation positively correlates with increasing surface area. Nevertheless, the increase in ZVI concentration from 96 to 224 g/L did not benefit the H2 production because the ZVI dissolution was suppressed by the increasing aqueous pH above 10. In the bioconversion of CO2 to CH4 using ZVI as an electron donor, the main methanogenesis pathway occurred via hydrogenotrophic methanogenesis at pH 8.7-9.5 driven by the genus Methanobacterium of the class Methanobacteria. At ZVI concentrations of 64 g/L and above, the production of volatile fatty acid (VFA) became clear. Acetate was the main VFA, indicating the induction of homoacetogenesis at ZVI concentrations of 64 g/L and above. In addition, the presence of propionate as the second major VFA suggests the production of propionate from CO2 and acetate under conditions with high H2 partial pressure. The results indicated that the pathway for ZVI/CO2 conversion to CH4 was competitive between hydrogenotrophic methanogenesis and homoacetogenesis.
Collapse
Affiliation(s)
- Maneerat Khemkhao
- Rattanakosin College for Sustainable Energy and Environment, Rajamangala University of Technology Rattanakosin, Nakhon Pathom, 73170, Thailand; Microbial Informatics and Industrial Product of Microbe Research Center, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand.
| | - Vichai Domrongpokkaphan
- Microbial Informatics and Industrial Product of Microbe Research Center, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand; Department of Agro-Industrial, Food and Environmental Technology, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand
| | - Sasikarn Nuchdang
- Research and Development Division, Thailand Institute of Nuclear Technology, Pathumthani, Thailand
| | - Chantaraporn Phalakornkule
- Department of Chemical Engineering, Faculty of Engineering, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand; Research Center for Circular Products and Energy, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand
| |
Collapse
|
19
|
Pei S, Fan X, Qiu C, Liu N, Li F, Li J, Qi L, Wang S. Effect of biochar addition on the anaerobic digestion of food waste: microbial community structure and methanogenic pathways. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:894-907. [PMID: 39141040 DOI: 10.2166/wst.2024.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/20/2024] [Indexed: 08/15/2024]
Abstract
This study assessed the effects of the addition of biochar prepared at 700 °C with different dosages on the anaerobic digestion of food waste. The biochar addition at a concentration of 10.0 g/L increased the cumulative methane yield by 128%, and daily methane production was also significantly promoted. The addition of biochar derived from poplar sawdust significantly increased the relative abundance of dominant bacteria for anaerobic digestion by 85.54-2530% and promoted the degradation of refractory organic matter and the transfer of materials between the hydrolysis and acid production stages. Further analysis has demonstrated that Bathyarchaeia and hydrogenotrophic methanogens were enriched by the biochar addition. Meanwhile, the relative abundances of functional genes, including C5-branched dibasic acid metabolism, and pyruvate metabolism, were increased by 11.38-26.27%. The relative abundances of genes related to major amino acid metabolism, including histidine metabolism, lysine biosynthesis, and phenylalanine, tyrosine, and tryptophan biosynthesis, were increased by 11.96-15.71%. Furthermore, the relative abundances of genes involved in major replication and repair were increased by 14.76-22.76%, and the major folding, sorting, degradation, and translation were increased by 14.47-19.95%, respectively. The relative abundances of genes related to major membrane transport and cell motility were increased by 10.02 and 83.09%, respectively.
Collapse
Affiliation(s)
- Siyao Pei
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Xiaodan Fan
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aqueous Science and Technology, Tianjin 300384, China
| | - Chunsheng Qiu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aqueous Science and Technology, Tianjin 300384, China
| | - Nannan Liu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aqueous Science and Technology, Tianjin 300384, China E-mail:
| | - Fei Li
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Jiakang Li
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Li Qi
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aqueous Science and Technology, Tianjin 300384, China
| | - Shaopo Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aqueous Science and Technology, Tianjin 300384, China
| |
Collapse
|
20
|
Xie H, Wang Y, Chen Y, Hu Y, Adeleke R, Obi L, Wang Y, Cao W, Lin JG, Zhang Y. Carbon flow, energy metabolic intensity and metagenomic characteristics of a Fe (III)-enhanced anerobic digestion system during treating swine wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173431. [PMID: 38782283 DOI: 10.1016/j.scitotenv.2024.173431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
Deep treatment and bioenergy recovery of swine wastewater (SW) are beneficial for constructing a low-carbon footprint and resource-recycling society. In this study, Fe (III) addition from 0 to 600 mg/L significantly increased the methane (CH4) content of the recovered biogas from 61.4 ± 2.0 to 89.3 ± 2.0 % during SW treatment in an anaerobic membrane digestion system. The specific methane yields (SMY) also increased significantly from 0.20 ± 0.05 to 0.29 ± 0.02 L/g COD. Fe (III) and its bio-transformed products which participated in establishing direct interspecific electron transfer (DIET), upregulated the abundance of e-pili and Nicotinamide adenine dinucleotide (NADH), enriched electroactive bacteria. The increase in cellular adenosine triphosphate (cATP) from 6583 to 14,518 ng/gVSS and electron transport system (ETS) from 1468 to 1968 mg/(g·h) promoted the intensity of energy flow and electron flow during anaerobic digestion of SW. Moreover, Fe (III) promoted the hydrolysis and acidification of organic matters, and strengthened the acetoacetic methanogenesis pathway. This study established an approach for harvesting high quality bioenergy from SW and revealed the effects and mechanisms from the view of carbon flow, energy metabolic intensity and metagenomics.
Collapse
Affiliation(s)
- Hongyu Xie
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Yuzheng Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Yuqi Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Yong Hu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Rasheed Adeleke
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Linda Obi
- University of South Africa, Department of Environmental Sciences, Pretoria, South Africa
| | - Yuanpeng Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen 361005, China
| | - Wenzhi Cao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Jih-Gaw Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian 361102, China; National Yang Ming Chiao Tung University, Taiwan
| | - Yanlong Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control (CPPC), College of Environment & Ecology, Xiamen University, Xiamen, Fujian 361102, China; Fujian Institute for Sustainable Oceans, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
21
|
Li B, Tang Y, Xiao X, Tang X, Luo D, Liu Y, Zhang Y, Zhang L. Enhanced anaerobic digestion of waste-activated sludge by thermal-alkali pretreatment: a pilot-scale study. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:303-313. [PMID: 39007321 DOI: 10.2166/wst.2024.210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/31/2024] [Indexed: 07/16/2024]
Abstract
The composition of waste-activated sludge (WAS) is complex, containing a large amount of harmful substances, which pose a threat to the environment and human health. The reduction and resource utilization of sludge has become a development demand in sludge treatment and disposal. Based on the technical bottlenecks in the practical application of direct anaerobic digestion technology, this study adopted two different thermal and thermal-alkali hydrolysis technologies to pretreat sludge. A pilot-scale experiment was conducted to investigate the experimental conditions, parameters, and effects of two hydrolysis technologies. This study showed that the optimal hydrolysis temperature was 70 °C, the hydrolysis effect and pH can reach equilibrium with the hydrolysis retention time was 4-8 h, and the optimal alkali concentration range was 0.0125-0.015 kg NaOH/kg dry-sludge. Thermal-alkali combination treatment greatly improved the performance of methane production, the addition of NaOH increased methane yield by 31.2% than that of 70 °C thermal hydrolysis. The average energy consumption is 75 kWh/m3 80% water-content sludge during the experiment. This study provides a better pretreatment strategy for exploring efficient anaerobic digestion treatment technologies suitable for southern characteristic sewage sludge.
Collapse
Affiliation(s)
- Biqing Li
- Guangzhou Sewage Purification Co., Ltd, Guangzhou 510655, China; These authors contributed equally to this work
| | - Yao Tang
- School of Mathematics and Information, Guangzhou University, Guangzhou 510006, China; These authors contributed equally to this work
| | - Xiannian Xiao
- Guangzhou Sewage Purification Co., Ltd, Guangzhou 510655, China; These authors contributed equally to this work
| | - Xia Tang
- Guangzhou Sewage Purification Co., Ltd, Guangzhou 510655, China; These authors contributed equally to this work
| | - Dan Luo
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Yuxin Liu
- Guangzhou Sewage Purification Co., Ltd, Guangzhou 510655, China
| | - Yahui Zhang
- Guangzhou Sewage Purification Co., Ltd, Guangzhou 510655, China
| | - Liguo Zhang
- School of Environment, South China Normal University, Guangzhou 510006, China E-mail:
| |
Collapse
|
22
|
Sriwichai N, Sangcharoen R, Saithong T, Simpson D, Goryanin I, Boonapatcharoen N, Kalapanulak S, Panichnumsin P. Optimization of microbial fuel cell performance application to high sulfide industrial wastewater treatment by modulating microbial function. PLoS One 2024; 19:e0305673. [PMID: 38889113 PMCID: PMC11185453 DOI: 10.1371/journal.pone.0305673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
Microbial fuel cells (MFCs) are innovative eco-friendly technologies that advance a circular economy by enabling the conversion of both organic and inorganic substances in wastewater to electricity. While conceptually promising, there are lingering questions regarding the performance and stability of MFCs in real industrial settings. To address this research gap, we investigated the influence of specific operational settings, regarding the hydraulic retention time (HRT) and organic loading rate (OLR) on the performance of MFCs used for treating sulfide-rich wastewater from a canned pineapple factory. Experiments were performed at varying hydraulic retention times (2 days and 4 days) during both low and high seasonal production. Through optimization, we achieved a current density generation of 47±15 mA/m2, a COD removal efficiency of 91±9%, and a sulfide removal efficiency of 86±10%. Microbiome analysis revealed improved MFC performance when there was a substantial presence of electrogenic bacteria, sulfide-oxidizing bacteria, and methanotrophs, alongside a reduced abundance of sulfate-reducing bacteria and methanogens. In conclusion, we recommend the following operational guidelines for applying MFCs in industrial wastewater treatment: (i) Careful selection of the microbial inoculum, as this step significantly influences the composition of the MFC microbial community and its overall performance. (ii) Initiating MFC operation with an appropriate OLR is essential. This helps in establishing an effective and adaptable microbial community within the MFCs, which can be beneficial when facing variations in OLR due to seasonal production changes. (iii) Identifying and maintaining MFC-supporting microbes, including those identified in this study, should be a priority. Keeping these microbes as an integral part of the system's microbial composition throughout the operation enhances and stabilizes MFC performance.
Collapse
Affiliation(s)
- Nattawet Sriwichai
- Center for Agricultural Systems Biology, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi (Bang Khun Thian), Bangkok, Thailand
| | - Rutrawee Sangcharoen
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi (Bang Khun Thian), Bangkok, Thailand
| | - Treenut Saithong
- Center for Agricultural Systems Biology, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi (Bang Khun Thian), Bangkok, Thailand
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi (Bang Khun Thian), Bangkok, Thailand
| | - David Simpson
- Biological Systems Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Igor Goryanin
- Biological Systems Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Nimaradee Boonapatcharoen
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi (Bang Khun Thian), Bangkok, Thailand
| | - Saowalak Kalapanulak
- Center for Agricultural Systems Biology, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi (Bang Khun Thian), Bangkok, Thailand
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi (Bang Khun Thian), Bangkok, Thailand
| | - Pornpan Panichnumsin
- Excellent Center of Waste Utilization and Management, National Center for Genetic Engineering and Biotechnology, National Sciences and Technology Development Agency at King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| |
Collapse
|
23
|
Zhu Y, Guo M, Qi X, Li M, Guo M, Jia X. Enhanced degradation and methane production of food waste anaerobic digestate using an integrated system of anaerobic digestion and microbial electrolysis cells for long-term operation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:39637-39649. [PMID: 38829499 DOI: 10.1007/s11356-024-33525-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/27/2024] [Indexed: 06/05/2024]
Abstract
The integrated system of anaerobic digestion and microbial electrolysis cells (AD-MEC) was a novel approach to enhance the degradation of food waste anaerobic digestate and recover methane. Through long-term operation, the start-up method, organic loading, and methane production mechanism of the digestate have been investigated. At an organic loading rate of 4000 mg/L, AD-MEC increased methane production by 3-4 times and soluble chemical oxygen demand (SCOD) removal by 20.3% compared with anaerobic digestion (AD). The abundance of bacteria Fastidiosipila and Geobacter, which participated in the acid degradation and direct electron transfer in the AD-MEC, increased dramatically compared to that in the AD. The dominant methanogenic archaea in the AD-MEC and AD were Methanobacterium (44.4-56.3%) and Methanocalculus (70.05%), respectively. Geobacter and Methanobacterium were dominant in the AD-MEC by direct electron transfer of organic matter into synthetic methane intermediates. AD-MEC showed a perfect SCOD removal efficiency of the digestate, while methane as clean energy was obtained. Therefore, AD-MEC was a promising technology for deep energy transformation from digestate.
Collapse
Affiliation(s)
- Yusen Zhu
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Meixin Guo
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Xuejiao Qi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Mingxiao Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Meng Guo
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Xuan Jia
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
24
|
Besteman MS, Doloman A, Sousa DZ. Transcriptomic evidence for an energetically advantageous relationship between Syntrophomonas wolfei and Methanothrix soehngenii. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13276. [PMID: 38733087 PMCID: PMC11087674 DOI: 10.1111/1758-2229.13276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/06/2024] [Indexed: 05/13/2024]
Abstract
Syntrophic interactions are key in anaerobic food chains, facilitating the conversion of complex organic matter into methane. A typical example involves acetogenic bacteria converting fatty acids (e.g., butyrate and propionate), a process thermodynamically reliant on H2 consumption by microorganisms such as methanogens. While most studies focus on H2-interspecies transfer between these groups, knowledge on acetate cross-feeding in anaerobic systems is lacking. This study investigated butyrate oxidation by co-cultures of Syntrophomonas wolfei and Methanospirillum hungatei, both with and without the addition of the acetate scavenger Methanothrix soehngenii. Growth and gene expression patterns of S. wolfei and M. hungatei were followed in the two conditions. Although butyrate consumption rates remained constant, genes in the butyrate degradation pathway of S. wolfei were less expressed in the presence of M. soehngenii, including genes involved in reverse electron transport. Higher expression of a type IV-pili operon in S. wolfei hints to the potential for direct interspecies electron transfer between S. wolfei and M. soehngenii and an energetically advantageous relationship between the two microorganisms. Overall, the presence of the acetate scavenger M. soehngenii positively influenced the energy metabolism of S. wolfei and highlighted the relevance of including acetate scavengers when investigating syntrophic fatty acid degradation.
Collapse
Affiliation(s)
- Maaike S. Besteman
- Laboratory of MicrobiologyWageningen University & ResearchWageningenThe Netherlands
| | - Anna Doloman
- Laboratory of MicrobiologyWageningen University & ResearchWageningenThe Netherlands
| | - Diana Z. Sousa
- Laboratory of MicrobiologyWageningen University & ResearchWageningenThe Netherlands
- Centre for Living TechnologiesEWUU AllianceUtrechtThe Netherlands
| |
Collapse
|
25
|
Liu Y, Ye X, Chen K, Wu X, Jiao L, Zhang H, Zhu F, Xi Y. Effect of nanobubble water on medium chain carboxylic acids production in anaerobic digestion of cow manure. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 184:37-51. [PMID: 38795539 DOI: 10.1016/j.wasman.2024.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/30/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
Nanobubble water promotes the degradation of difficult-to-degrade organic matter, improves the activity of electron transfer systems during anaerobic digestion, and optimizes the composition of anaerobic microbial communities. Therefore, this study proposes the use of nanobubble water to improve the yield of medium chain carboxylic acids produced from cow manure by chain elongation. The experiment was divided into two stages: the first stage involved the acidification of cow manure to produce volatile acidic fatty acids as electron acceptors, and the second phase involved the addition of lactic acid as an electron donor for the chain elongation. Three experimental groups were established, and air, H2, and N2 nanobubble water were added in the second stage. Equal amounts of deionized water were added in the control group. The results showed that nanobubble water supplemented with air significantly increased the caproic acid concentration to 15.10 g/L, which was 55.03 % greater than that of the control group. The relative abundances of Bacillus and Caproiciproducens, which are involved in chain elongation, and Syntrophomonas, which is involved in electron transfer, increased. The unique ability of air nanobubble water supplemented to break down the cellulose matrix resulted in further decomposition of the recalcitrant material in cow manure. This effect subsequently increased the number of microorganisms associated with lignocellulose degradation, increasing carbohydrate metabolism and ATP-binding cassette transporter protein activity and enhancing fatty acid cycling pathways during chain elongation. Ultimately, this approach enabled the efficient production of medium chain carboxylic acids.
Collapse
Affiliation(s)
- Yang Liu
- Jiangsu Academy of Agriculture Sciences, Nanjing 210014, China; Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, 210014 Nanjing, China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical, Nanjing Tech University, Nanjing 210009, China
| | - Xiaomei Ye
- Jiangsu Academy of Agriculture Sciences, Nanjing 210014, China; Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, 210014 Nanjing, China
| | - Kequan Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical, Nanjing Tech University, Nanjing 210009, China
| | - Xiayuan Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical, Nanjing Tech University, Nanjing 210009, China
| | - Lihua Jiao
- Jiangsu Academy of Agriculture Sciences, Nanjing 210014, China; Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, 210014 Nanjing, China
| | - Hongyu Zhang
- Jiangsu Academy of Agriculture Sciences, Nanjing 210014, China; Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, 210014 Nanjing, China
| | - Fei Zhu
- Jiangsu Academy of Agriculture Sciences, Nanjing 210014, China; Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, 210014 Nanjing, China
| | - Yonglan Xi
- Jiangsu Academy of Agriculture Sciences, Nanjing 210014, China; Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, 210014 Nanjing, China; Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, Praha-Suchdol 16500, Czech Republic.
| |
Collapse
|
26
|
Chen L, Zhang X, Zhu J, Fan H, Qin Z, Li J, Xie H, Zhu H. Peroxydisulfate activation and versatility of defective Fe 3O 4@MOF-808 for enhanced carbon and phosphorus recovery from sludge anaerobic fermentation. WATER RESEARCH 2024; 254:121401. [PMID: 38447378 DOI: 10.1016/j.watres.2024.121401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/16/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
Although being viewed as a promising technology for reclamation of carbon and phosphorus from excess sludge, anaerobic fermentation (AF) grapples with issues such as a low yield of volatile fatty acids (VFAs) and high phosphorus recovery costs. In this study, we synthesized Fe3O4@MOF-808 (FeM) with abundant defects and employed it to simultaneously enhance VFAs and phosphorus recovery during sludge anaerobic fermentation. Through pre-oxidization of sludge catalyzed by FeM-induced peroxydisulfate, the soluble organic matter increased by 2.54 times, thus providing ample substrate for VFAs production. Subsequent AF revealed a remarkable 732.73 % increase in VFAs and a 1592.95 % increase in phosphate. Factors contributing to the high VFAs yield include the non-biological catalysis of unsaturated Zr active sites in defective FeM, enhancing protein hydrolysis, and the inhibition of methanogenesis due to electron competition arising from the transformation between Fe(III) and Fe(II) under Zr influence. Remarkably, FeM exhibited an adsorption capacity of up to 92.64 % for dissolved phosphate through ligand exchange and electrostatic attractions. Furthermore, FeM demonstrated magnetic separation capability from the fermentation broth, coupled with excellent stability and reusability in both catalysis and adsorption processes.
Collapse
Affiliation(s)
- Long Chen
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Xiangyue Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Jianming Zhu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Helin Fan
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Zimu Qin
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Jun Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd, Y2, 2nd Floor, Building 2, Xixi Legu Creative Pioneering Park, No. 712 Wen'er West Road, Xihu District, Hangzhou City, Zhejiang Province 310003, PR China
| | - Hongtao Zhu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
27
|
Welz PJ, De Jonge N, Lilly M, Kaira W, Mpofu AB. Integrated biological system for remediation and valorization of tannery wastewater: Focus on microbial communities responsible for methanogenesis and sulfidogenesis. BIORESOURCE TECHNOLOGY 2024; 395:130411. [PMID: 38309670 DOI: 10.1016/j.biortech.2024.130411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Microbial communities in hybrid linear flow channel reactors and anaerobic sequencing batch reactors operated in series for remediation and beneficiation of tannery wastewater were assessed. Despite concurrent sulfidogenesis, more intensive pre-treatment in hybrid linear flow channel reactors reduced methanogenic inhibition usually associated with anaerobic digestion of tannery effluent and promoted efficiency (max 321 mLCH4/gCODconsumed, 59% biogas CH4). Nitrification and biological sulfate reduction were key metabolic pathways involved in overall and sulfate reducing bacterial community selection, respectively, during pre-treatment. Taxonomic selection could be explained by the proteinaceous and saline character of tannery effluent, with dominant genera being protein and/or amino acid degrading, halotolerant and/or ammonia tolerant. Complete oxidizers dominated the sulfidogenic populations during pre-treatment, while aceticlastic genera dominated the methanogenic populations during anaerobic digestion. With more intensive pre-treatment, the system shows promise for remediation and recovery of biogas and sulfur from tannery wastewater in support of a bio-circular economy.
Collapse
Affiliation(s)
- P J Welz
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Symphony way, Bellville, Cape Town 7535, South Africa.
| | - N De Jonge
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers vej 7H, Aalborg DK-9220, Denmark.
| | - M Lilly
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Symphony way, Bellville, Cape Town 7535, South Africa.
| | - W Kaira
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Symphony way, Bellville, Cape Town 7535, South Africa
| | - A B Mpofu
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Symphony way, Bellville, Cape Town 7535, South Africa; Department of Chemical Engineering, Cape Peninsula University of Technology, Symphony way, Bellville, Cape Town 7535, South Africa.
| |
Collapse
|
28
|
Yusuf HH, Pan X, Ye ZL, Cai G, Appels L, Cai J, Lv Z, Li Y, Ning J. Revolutionizing sanitation: Valorizing fecal slags through co-digesting food waste at high-solid content and dosing metallic nanomaterials for anaerobic digestion stability. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120177. [PMID: 38278113 DOI: 10.1016/j.jenvman.2024.120177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/07/2023] [Accepted: 01/20/2024] [Indexed: 01/28/2024]
Abstract
To achieve the UN Sustainable Development Goals (SDGs) and the China Toilet Revolution on a global scale, it is crucial to implement a decentralized sanitation management system in developing countries. Fecal slags (FS) generated from septic tanks of toilets pose a challenge for remote villages. This study sought to resourcefully utilize FS through co-digesting with food waste (FW) under high-solid anaerobic co-digestion (HSAD). Besides, two metallic nanomaterials, nano-zerovalent iron (nZVI) and magnetite (Fe3O4), were employed to demonstrate the practical improvement of HSAD. The results showed that nZVI-dosed digesters produced the highest cumulative methane of 295.72 mL/gVS, 371.36 mL/gVS, 360.53 mL/gVS and 296.64 mL/gVS in 10%, 15%, 20% and 25% TS content, respectively, which was 1.15, 1.22, 1.16, 1.12 times higher than Fe3O4 dosed digesters. This increment could be ascribed to the simultaneous production of H2 from Fe2+ release from nZVI and the enrichment of homoacetogen. Changes in carbon degradation and methanogenic pathways, which facilitated stability under high TS contents, were observed. At low solid digestion (10% TS), Syntrophomonas cooperated with Methanosarcina and Methanobacterium to metabolize butyrate and propionate. However, due to the buildup of total ammonia nitrogen and volatile fatty acids, acetoclastic methanogens were inhibited in the high-solid digesters (15%, 20% and 25% TS). Consequently, a more resilient and highly tolerant Syntrophaceticus, alongside hydrogenotrophic methanogens such as Methanoculleus and Methanobrevibacter, maintained stability in the harsh environment.
Collapse
Affiliation(s)
- Hamza Hassan Yusuf
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaofang Pan
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhi-Long Ye
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Digital Technology for Territorial Space Analysis and Simulation, Fuzhou 350108, China.
| | - Guanjing Cai
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Lise Appels
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, Jan Pieter De Nayerlaan 5, B-2860 Sint-Katelijne-Waver, Belgium
| | - Jiasheng Cai
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zunjing Lv
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanlin Li
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Ning
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, Jan Pieter De Nayerlaan 5, B-2860 Sint-Katelijne-Waver, Belgium
| |
Collapse
|
29
|
Hu F, Fu N, Wei Q, Liu S, Hu Y, Zhang S, Wang X, Peng X, Dai H, Wei Y. Effect of alkali pretreatment time on kitchen waste anaerobic digestion performance enhanced by alkali pretreatment combined with bentonite: performance enhancement, microbial community structure, and functional gene analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:7167-7178. [PMID: 38157170 DOI: 10.1007/s11356-023-31646-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/17/2023] [Indexed: 01/03/2024]
Abstract
Kitchen waste was mainly composed of carbohydrates, lipids, and proteins. Anaerobic digestion (AD) of kitchen waste usually occurred acidification and further deteriorated. In our previous study, alkali pretreatment combined with bentonite (AP/Be) treatment was proved to enhance high solid AD of kitchen waste. However, effects of AP time on AP/Be were not yet studied. This study investigated the effects of AP time on AP/Be treatment on enhancing high solid AD. The results showed that compared with the control group, the cumulative methane production rate could be increased by 3.30 times (149.7 mL CH4/g VS) and the volatile solids (VS) reduction rate increased by 63.36%. Microbial community analysis showed that the relative abundance of Methanosarcina and Methanosaeta were increased from 6.49 and 7.83% to 47.14 and 16.39% respectively. Predictive functional analysis showed that AP/Be treatment increased the abundance of energy production and conversion, coenzyme transport, and metabolism. This study revealed the potential mechanism of AP/Be enhanced kitchen waste AD performance and AP/Be was a potential strategy to strengthen AD.
Collapse
Affiliation(s)
- Fengping Hu
- School of Civil Engineering and Architecture, East China JiaoTong University, Nanchang, 330013, China
| | - Ningxin Fu
- School of Civil Engineering and Architecture, East China JiaoTong University, Nanchang, 330013, China
| | - Qun Wei
- School of Civil Engineering and Architecture, East China JiaoTong University, Nanchang, 330013, China
| | - Susu Liu
- School of Civil Engineering and Architecture, East China JiaoTong University, Nanchang, 330013, China.
- Jiangxi Province Zhonggantou Survey and Design Co., Ltd, Nanchang, 330000, China.
| | - Yuying Hu
- School of Civil Engineering and Architecture, East China JiaoTong University, Nanchang, 330013, China
| | - Shihao Zhang
- School of Civil Engineering and Architecture, East China JiaoTong University, Nanchang, 330013, China
| | - Xin Wang
- School of Civil Engineering and Architecture, East China JiaoTong University, Nanchang, 330013, China
| | - Xiaoming Peng
- School of Civil Engineering and Architecture, East China JiaoTong University, Nanchang, 330013, China
| | - Hongling Dai
- School of Civil Engineering and Architecture, East China JiaoTong University, Nanchang, 330013, China
| | - Yang Wei
- School of Civil Engineering and Architecture, East China JiaoTong University, Nanchang, 330013, China
| |
Collapse
|
30
|
Yuan S, Zhong Q, Zhang H, Zhu W, Wang W, Li M, Tang X, Zhang S. The enrichment of more functional microbes induced by the increasing hydraulic retention time accounts for the increment of autotrophic denitrification performance. ENVIRONMENTAL RESEARCH 2023; 236:116848. [PMID: 37558114 DOI: 10.1016/j.envres.2023.116848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/27/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023]
Abstract
With pyrite (FeS2) and polycaprolactone (PCL) as electron donors, three denitrification systems, namely FeS2-based autotrophic denitrification (PAD) system, PCL-supported heterotrophic denitrification (PHD) system and split-mixotrophic denitrification (PPMD) system, were constructed and operated under varying hydraulic retention times (HRT, 1-48 h). Compared with PAD or PHD, the PPMD system could achieve higher removals of NO3--N and PO43--P, and the effluent SO42- concentration was greatly reduced to 7.28 mg/L. Similarly, the abundance of the dominant genera involved in the PAD (Thiobacillus, Sulfurimonas, and Ferritrophicum, etc.) or PHD (Syntrophomonas, Desulfomicrobium, and Desulfovibrio, etc.) process all increased in the PPMD system. Gene prediction completed by PICRUSt2 showed that the abundance of the functional genes involved in denitrification and sulfur oxidation all increased with the increase of HRT. This also accounted for the increased contribution of autotrophic denitrification to total nitrogen removal in the PPMD system. In addition, the analysis of metabolic pathways disclosed the specific conversion mechanisms of nitrogen and sulfur inside the reactor.
Collapse
Affiliation(s)
- Sicheng Yuan
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Qingbo Zhong
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Hongjun Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Wentao Zhu
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Weibo Wang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, PR China
| | - Meng Li
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Xinhua Tang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Shiyang Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China.
| |
Collapse
|
31
|
Alimohammadi M, Demirer GN. Petroleum coke supplementation for enhanced biogas production and phosphate removal under mesophilic conditions. Biotechnol Prog 2023; 39:e3385. [PMID: 37642144 DOI: 10.1002/btpr.3385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023]
Abstract
The use of carbon-based conductive materials has been shown to lead to an increase in biogas and methane yields during anaerobic digestion (AD). The effect of these additives on AD using synthetic substrates has been extensively studied, yet their significance for wastewater sludge digestion has not been adequately investigated. Therefore, the aim of this research was to optimize the concentration of petroleum coke (PC) that is a waste by-product of oil refineries, for the anaerobic digestion of wastewater sludge and investigation of phosphate removal in the AD process in the mesophilic temperature range. According to the results of the experiments, supplementing reactors with PC could significantly improve biogas and methane production. Supplementation of reactors with 1.5 g/L PC led to 23.40 ± 0.26% and 42.55 ± 3.97% increase in biogas production and methane generation, respectively. Moreover, the average volatile solids (VS), phosphate, and chemical oxygen demand (COD) removals were 43.43 ± 0.73, 46.74 ± 0.77%, and 60.40 ± 0.38%, respectively.
Collapse
Affiliation(s)
- Mahsa Alimohammadi
- School of Engineering and Technology, Central Michigan University, Mount Pleasant, Michigan, USA
| | - Goksel N Demirer
- School of Engineering and Technology, Central Michigan University, Mount Pleasant, Michigan, USA
- Institute for Great Lakes Research, Central Michigan University, Mount Pleasant, Michigan, USA
| |
Collapse
|
32
|
Wu M, Yang ZH, Jiang TB, Zhang WW, Wang ZW, Hou QX. Enhancing sludge methanogenesis with changed micro-environment of anaerobic microorganisms by Fenton iron mud. CHEMOSPHERE 2023; 341:139884. [PMID: 37648172 DOI: 10.1016/j.chemosphere.2023.139884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/14/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023]
Abstract
Conductive materials have been demonstrated to enhance sludge methanogenesis, but few researches have concentrated on the interaction among conductive materials, microorganisms and their immediate living environment. In this study, Fenton iron mud with a high abundance of Fe(III) was recycled and applied in anaerobic reactors to promote anaerobic digestion (AD) process. The results show that the primary content of extracellular polymeric substances (EPS) such as polysaccharides and proteins increased significantly, possibly promoting microbial aggregation. Furthermore, with the increment of redox mediators including humic substances in EPS and Fe(III) introduced by Fenton iron mud, the direct interspecies electron transfer (DIET) between methanogens and interacting bacteria could be accelerated, which enhanced the rate of methanogenesis in anaerobic digestion (35.21 ± 4.53% increase compared to the control). The further analysis of the anaerobic microbial community confirmed the fact that Fenton iron mud enriched functional microorganisms, such as the abundance of CO2-reducing (e.g. Chloroflexi) and Fe(III)-reducing bacteria (e.g., Tepidimicrobium), thereby expediting the electron transfer reaction in the AD process via microbial DIET and dissimilatory iron reduction (DIR). This work will make it possible for using the recycled hazardous material - Fenton iron mud to improve the performance of anaerobic granular sludge during methanogenesis.
Collapse
Affiliation(s)
- Ming Wu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Zhen-Hu Yang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Tong-Bao Jiang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Wen-Wen Zhang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Zhi-Wei Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Qing-Xi Hou
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin, 300457, China.
| |
Collapse
|
33
|
Khomyakova MA, Merkel AY, Slobodkin AI, Sorokin DY. Phenotypic and genomic characterization of the first alkaliphilic aceticlastic methanogens and proposal of a novel genus Methanocrinis gen.nov. within the family Methanotrichaceae. Front Microbiol 2023; 14:1233691. [PMID: 37886072 PMCID: PMC10598746 DOI: 10.3389/fmicb.2023.1233691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/12/2023] [Indexed: 10/28/2023] Open
Abstract
Highly purified cultures of alkaliphilic aceticlastic methanogens were collected for the first time using methanogenic enrichments with acetate from a soda lake and a terrestrial mud volcano. The cells of two strains were non-motile rods forming filaments. The mud volcano strain M04Ac was alkalitolerant, with the pH range for growth from 7.5 to 10.0 (optimum at 9.0), while the soda lake strain Mx was an obligate alkaliphile growing in the pH range 7.7-10.2 (optimum 9.3-9.5) in the presence of optimally 0.2-0.3 M total Na+. Genomes of both strains encoded all enzymes required for aceticlastic methanogenesis and different mechanisms of (halo)alkaline adaptations, including ectoine biosynthesis, which is the first evidence for the formation of this osmoprotectant in archaea. According to 16S rRNA gene phylogeny, the strains possessed 98.3-98.9% sequence identity and belonged to the obligately aceticlastic genus Methanothrix with M. harundinaceae as the most closely related species. However, a more advanced phylogenomic reconstruction based on 122 conserved single-copy archaeal protein-coding marker genes clearly indicated a polyphyletic origin of the species included in the genus Methanothrix. We propose to reclassify Methanothrix harrundinacea (type strain 8AcT) into a new genus, Methanocrinis gen. nov., with the type species Methanocrinis harrundinaceus comb. nov. We also propose under SeqCode the complete genome sequences of strain MxTs (GCA_029167045.1) and strain M04AcTs (GCA_029167205.1) as nomenclatural types of Methanocrinis natronophilus sp. nov. and Methanocrinis alkalitolerans sp. nov., respectively, which represent other species of the novel genus. This work demonstrates that the low energy aceticlastic methanogenesis may function at extreme conditions present in (halo)alkaline habitats.
Collapse
Affiliation(s)
- Maria A. Khomyakova
- Winogradsky Institute of Microbiology, FRC Biotechnology Russian Academy of Sciences, Moscow, Russia
| | - Alexander Y. Merkel
- Winogradsky Institute of Microbiology, FRC Biotechnology Russian Academy of Sciences, Moscow, Russia
| | - Alexander I. Slobodkin
- Winogradsky Institute of Microbiology, FRC Biotechnology Russian Academy of Sciences, Moscow, Russia
| | - Dimitry Y. Sorokin
- Winogradsky Institute of Microbiology, FRC Biotechnology Russian Academy of Sciences, Moscow, Russia
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
34
|
Yuan T, Shi X, Xu Q. Enhancing methane production from food waste with iron-carbon micro-electrolysis in a two-stage process. BIORESOURCE TECHNOLOGY 2023; 385:129474. [PMID: 37429555 DOI: 10.1016/j.biortech.2023.129474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
A two-stage process, consisting of a leach-bed reactor (LBR) and an up-flow anaerobic sludge blanket reactor (UASB), has been commonly adopted to improve food waste anaerobic digestion. However, its application is limited due to low hydrolysis and methanogenesis efficiencies. This study proposed a strategy of incorporating iron-carbon micro-electrolysis (ICME) into the UASB and recirculating its effluent to the LBR to improve the two-stage process efficiency. Results showed that the integration of the ICME with the UASB significantly increased the CH4 yield by 168.29%. The improvement of the food waste hydrolysis in the LBR mainly contributed to the enhanced CH4 yield (approximately 94.5%). The enrichment of hydrolytic-acidogenic bacterial activity, facilitated by the Fe2+ generated through ICME, might be the primary cause of the improved food waste hydrolysis. Moreover, ICME enriched the growth of hydrogenotrophic methanogens and stimulated the hydrogenotrophic methanogenesis pathway in the UASB, contributing partially to the enhanced CH4 yield.
Collapse
Affiliation(s)
- Tugui Yuan
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, Nanshan District, Shenzhen 518055, China; Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Xiaoyu Shi
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, Nanshan District, Shenzhen 518055, China
| | - Qiyong Xu
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, Nanshan District, Shenzhen 518055, China.
| |
Collapse
|
35
|
Hu Y, Wang X, Zhang S, Liu S, Hu T, Wang X, Wang C, Wu J, Xu L, Xu G, Hu F. Microbial response behavior to powdered activated carbon in high-solids anaerobic digestion of kitchen waste: Metabolism and functional prediction analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 337:117756. [PMID: 36934497 DOI: 10.1016/j.jenvman.2023.117756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Anaerobic digestion (AD) can not only treat organic waste, but also recycle energy. However, high-solids AD of kitchen waste usually failed due to excessive acidification. In this study, the effect of activated carbon (AC) on kitchen waste AD performance was investigated under high-solids conditions (total solids contents = 15%). The results showed that efficiencies of acidogenesis and methanogenesis were promoted in presence of moderate concentration (50 g/L > AC >5 g/L), but high concentration (AC >70 g/L) weakened AD performance. Moreover, AC addition enhanced the methane production rate from 66.0 mL/g VS to 231.50 mL/g VS, i.e., up to 250.7%. High-throughput sequencing results demonstrated that the abundance of electroactive DMER64 increased from less than 1%-29.7% (20 g/L AC). As AC gradually increased,aceticlastic methanogenesis changed to hydrogenotrophic pathway. Predicted functional analysis indicated that AC can enhance abundances of energy and inorganic ion metabolism, resulting in high methane production.
Collapse
Affiliation(s)
- Yuying Hu
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, China.
| | - Xiaofan Wang
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, China
| | - Shihao Zhang
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, China
| | - Susu Liu
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, China
| | - Tengfang Hu
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, China
| | - Xin Wang
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, China
| | - Chuqiao Wang
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, China
| | - Jing Wu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Li Xu
- JiangXi Water Science Detecting and Researching Co., Ltd., Jingdezhen, 333000, China
| | - Gaoping Xu
- JiangXi Water Science Detecting and Researching Co., Ltd., Jingdezhen, 333000, China
| | - Fengping Hu
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
36
|
Tang CC, Zhang BC, Yao XY, Zhou AJ, Liu W, Ren YX, Li Z, Wang A, He ZW. Insights into response mechanism of anaerobic digestion of waste activated sludge to particle sizes of zeolite. BIORESOURCE TECHNOLOGY 2023:129348. [PMID: 37336456 DOI: 10.1016/j.biortech.2023.129348] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Anaerobic digestion has been proved as one promising strategy to simultaneously achieve resource recovery and environmental pollution control for biosolid treatment, and adding exogenous materials is a potential alternative to promote the above process. This study investigated response mechanisms of anaerobic digestion of waste activated sludge (WAS) to particle sizes of zeolite. Results showed that the methane production reached 186.75 ± 7.62 mL/g volatile suspended solids (VSS) with zeolite of the particle size of 0.2-0.5 mm and the additive dosage of 0.1 g/g VSS, which increased by 22% compared to that in control. Mechanism study revealed that zeolite could improve hydrolysis, acidification, and methanogenesis stages. Rapid consumption rates of soluble polysaccharides and proteins were observed, correspondingly, the accumulation of SCFAs were enhanced, and the compositions of SCFAs were optimized. Moreover, the activities of F420 increased by 28% with zeolite, and the syntrophic metabolism between bacteria and methanogens were promoted.
Collapse
Affiliation(s)
- Cong-Cong Tang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Bao-Cai Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xing-Ye Yao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ai-Juan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Wenzong Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Yong-Xiang Ren
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhihua Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Zhang-Wei He
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
37
|
Yan Y, Zhang J, Tian L, Yan X, Du L, Leininger A, Zhang M, Li N, Ren ZJ, Wang X. DIET-like mutualism of Geobacter and methanogens at specific electrode potential boosts production of both methane and hydrogen from propionate. WATER RESEARCH 2023; 235:119911. [PMID: 36989806 DOI: 10.1016/j.watres.2023.119911] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/27/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Direct interspecies electron transfer (DIET) has been demonstrated to be an efficient type of mutualism in methanogenesis. However, few studies have reported its presence in mixed microbial communities and its trigger mechanism in the natural environment and engineered systems. Here, we reported DIET-like mutualism of Geobacter and methanogens in the planktonic microbiome for the first time in anaerobic electrochemical digestion (AED) fed with propionate, potentially triggered by excessive cathodic hydrogen (56 times higher than the lowest) under the electrochemical condition. In contrast with model prediction without DIET, the highest current density and hydrogen and methane production were concurrently observed at -0.2 V where an abundance of Geobacter (49%) and extracellular electron transfer genes were identified in the planktonic microbiome via metagenomic analysis. Metagenomic assembly genomes annotated to Geobacter anodireducens were identified alongside two methanogens, Methanothrix harundinacea and Methanosarcina mazei, which were previously identified to participate in DIET. This discovery revealed that DIET-like mutualism could be triggered without external conductive materials, highlighting its potentially ubiquitous presence. Such mutualism simultaneously boosted methane and hydrogen production, thereby demonstrating the potential of AED in engineering applications.
Collapse
Affiliation(s)
- Yuqing Yan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Environmental Remediation and Pollution Control / College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China; Deptartment of Civil and Environmental Engineering, Princeton University, 41 Olden St. Princeton, NJ 08540, USA; Andlinger Center for Energy and the Environment, Princeton University, 41 Olden St. Princeton, NJ 08540, USA
| | - Jiayao Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Environmental Remediation and Pollution Control / College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Lili Tian
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Environmental Remediation and Pollution Control / College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xuejun Yan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Environmental Remediation and Pollution Control / College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Lin Du
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Environmental Remediation and Pollution Control / College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Aaron Leininger
- Deptartment of Civil and Environmental Engineering, Princeton University, 41 Olden St. Princeton, NJ 08540, USA; Andlinger Center for Energy and the Environment, Princeton University, 41 Olden St. Princeton, NJ 08540, USA
| | - Mou Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Environmental Remediation and Pollution Control / College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Nan Li
- School of Environmental Science and Engineering, Tianjin University, No. 35 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Zhiyong Jason Ren
- Deptartment of Civil and Environmental Engineering, Princeton University, 41 Olden St. Princeton, NJ 08540, USA; Andlinger Center for Energy and the Environment, Princeton University, 41 Olden St. Princeton, NJ 08540, USA.
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Environmental Remediation and Pollution Control / College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China.
| |
Collapse
|
38
|
Xu L, Li L, Lu W, Gu Y, Zhuang H, He Q, Zhu L. The modified properties of sludge-based biochar with ferric sulfate and its effectiveness in promoting carbon release from particulate organic matter in rural household wastewater. ENVIRONMENTAL RESEARCH 2023; 231:116109. [PMID: 37178751 DOI: 10.1016/j.envres.2023.116109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/28/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
The scarcity of carbon sources presents a significant challenge for the bio-treatment of rural domestic wastewater (RDW). This paper presented an innovative approach to address this issue by investigating the supplementary carbon source through in-situ degradation of particulate organic matter (POM) facilitated by ferric sulfate modified sludge-based biochar (SBC). To prepare SBC, five different contents of ferric sulfate (0%, 10%, 20%, 25%, and 33.3%) were added to sewage sludge. The results revealed that the pore and surface of SBC were enhanced, providing active sites and functional groups to accelerate the biodegradation of protein and polysaccharide. During the 8-day hydrolysis period, the concentration of soluble chemical oxidation demand (SCOD) increased and peaked (1087-1156 mg L-1) on the fourth day. The C/N ratio increased from 3.50 (control) to 5.39 (25% ferric sulfate). POM was degraded the five dominant phyla, which were Actinobacteriota, Firmicutes, Synergistota, Proteobacteria, and Bacteroidetes. Although the relative abundance of dominant phyla changed, the metabolic pathway remained unchanged. The leachate of SBC (<20% ferric sulfate) was beneficial for microbes, but an excessive amount of ferric sulfate (33.3% ferric sulfate) could have inhibition effects on bacteria. In conclusion, ferric sulfate modified SBC holds the potential for the carbon degradation of POM in RDW, and further improvements should be made in future studies.
Collapse
Affiliation(s)
- Linji Xu
- Faculty of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Lin Li
- Faculty of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Wei Lu
- Sanfeng Industry of Chongqing Iron and Steal Group Co., Ltd., Chongqing, 401258, China
| | - Yilu Gu
- Faculty of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Huichuan Zhuang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Qiang He
- Faculty of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Lei Zhu
- Jiangsu Yihuan Group Co., Ltd., Yixing, Jiangsu, 214206, China.
| |
Collapse
|
39
|
Li R, Lu H, Fu Z, Wang X, Li Q, Zhou J. Effect of riboflavin and carbon black co-modified fillers coupled with alkaline pretreatment on anaerobic digestion of waste activated sludge. ENVIRONMENTAL RESEARCH 2023; 224:115531. [PMID: 36822537 DOI: 10.1016/j.envres.2023.115531] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/29/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Additional various carbon and free riboflavin could improve anaerobic digestion of waste activated sludge (WAS). However, these substances were not reused. In this study, a reusable riboflavin and carbon black (RCB) co-modified filler was developed and combined with alkaline pretreatment for enhancing the production of volatile fatty acids (VFAs) and methane during anaerobic digestion of WAS. The results showed that RCB-modified fillers exhibited a promoting effect on the reduction of alkali-pretreated WAS. The amounts of the accumulated VFAs mainly containing acetate and the produced methane rose with the increased concentration of immobilized riboflavin (0-0.75 g/L) in the presence of 4 g/L carbon black. When the alkaline pretreatment time of WAS increased from 3 d to 8 d, the amount of methane production increased from 22.8% to 63.9% in the presence of 0.75 g/L riboflavin and 4 g/L carbon black compared with that without RCB-modified fillers. Moreover, 0.75 g/L riboflavin and 4 g/L carbon black had a synergetic effect on promoting methane production via broadening extracellular electron transfer pathways. During this process, microbial dehydrogenase activity, electron transport system activity and coenzyme F420 were enhanced. Microbial community analysis showed that RCB-modified filler addition promoted the enrichment of Syntrophomonas and Pseudomonas involved in direct interspecies electron transfer (DIET). These results indicated that DIET establishment was accelerated. Meanwhile, the populations of acetic acid-producing bacteria including Rikenellaceae_RC9_gut_group and Proteiniphilum, aceticlastic and acid-tolerant methanogenic archaea including Methanosarcina and Methanosaeta, RumEn_M2 were increased. These results indicate that RCB-modified fillers coupled with alkaline pretreatment is an effective method to promote the production of methane during anaerobic digestion of WAS.
Collapse
Affiliation(s)
- Ruobing Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Hong Lu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Ze Fu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Xiaolei Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Qiansheng Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
40
|
Effect of Addition of Zero-Valent Iron (Fe) and Magnetite (Fe3O4) on Methane Yield and Microbial Consortium in Anaerobic Digestion of Food Wastewater. Processes (Basel) 2023. [DOI: 10.3390/pr11030759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
Direct interspecies electron transfer (DIET), which does not involve mediation by electron carriers, is realized by the addition of conductive materials to an anaerobic digester, which then activates syntrophism between acetogenic and methanogenic microorganisms. This study aimed to investigate the effect of the addition of two conductive materials, zero-valent iron (ZVI) and magnetite, on the methane production and microbial consortium via DIET in the anaerobic digestion of food wastewater. The operation of a batch reactor for food wastewater without the addition of the conductive materials yielded a biochemical methane potential (Bu), maximum methane production rate (Rm), and lag phase time (λ) of 0.380 Nm3 kg−1-VSadded, 15.73 mL day−1, and 0.541 days, respectively. Upon the addition of 1.5% ZVI, Bu and Rm increased significantly to 0.434 Nm3 kg−1-VSadded and 19.63 mL day−1, respectively, and λ was shortened to 0.065 days. Simultaneously, Methanomicrobiales increased from 26.60% to 46.90% and Methanosarcinales decreased from 14.20% to 1.50% as the ZVI input increased from 0% to 1.50%. Magnetite, at an input concentration of 1.00%, significantly increased the Bu and Rm to 0.431 Nm3 kg−1-VSadded and 18.44 mL day−1, respectively. However, although magnetite improves the efficiency of methanogenesis via DIET, the effect thereof on the methanogen community remains unclear.
Collapse
|
41
|
The Effects of Nanoparticles- Zerovalent Iron on Sustainable Biomethane Production through Co-Digestion of Olive Mill Wastewater and Chicken Manure. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The impacts of nanoparticles-zerovalent iron (NP-ZVI) on anaerobic co-digestion (AcoD) were assessed. The production of biogas and methane (CH4), as well as the removal efficiency of volatile solids (VS) and contaminants were investigated in the AcoD of chicken manure (CM) and olive mill wastewater (OMWW) with the addition of NP-ZVI at different concentrations (10–50 mg/g VS) and different sizes resulting from various mixing volume ratios (MVR) of NaBH4:FeSO4.7H2O. The results show that NP-ZVI ≤ 30 mg/g VS at MVR-2:1, MVR-4:1, and MVR-6:1 improves the AcoD. In contrast to 40–50 mg/g VS of NP-ZVI, which caused an inhibitory impact in all of the AcoD stages, as well as a decrease in the contaminant’s removal efficiency, the concentration of 10–30 mg NP-ZVI/g VS at MVR-4:1 achieved a maximum improvement of CH4 by 21.09%, 20.32%, and 22.87%, respectively, and improved the biogas by 48.14%, 55.0%, and 80.09%, respectively, vs. the 0 additives. Supplementing AcoD with NP-ZVI at a concentration of 30 mg/g VS at MVR-4:1 resulted in maximum enhancement of the contaminant removal efficiency, with a total oxygen demand (TCOD) of up to 73.99%, turbidity up to 79.07%, color up to 53.41%, total solid (TS) up to 59.57%, and volatile solid (VS) up to 74.42%. It also improved the hydrolysis and acidification percentages by up to 86.67% and 51.3%, respectively.
Collapse
|
42
|
Tan Q, Xia S, Xu W, Jian Y. Rapid Start-Up Characteristics of Anammox under Different Inoculation Conditions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2979. [PMID: 36833675 PMCID: PMC9957404 DOI: 10.3390/ijerph20042979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/08/2023] [Accepted: 01/14/2023] [Indexed: 06/18/2023]
Abstract
The long multiplication time and extremely demanding enrichment environment requirements of Anammox bacteria (AAOB) have led to difficult reactor start-ups and hindered its practical dissemination. Few feasibility studies have been reported on the recovery of AAOB activity initiation after inlet substrate disconnection caused by an unfavorable condition, and few factors, such as indicators of the recovery process, have been explored. Therefore, in this experiment, two modified expanded granular sludge bed reactors (EGSB) were inoculated with 1.5 L anaerobic granular sludge (AGS) + 1 L Anammox sludge (AMS) (R1) and 2.5 L anaerobic granular sludge (AGS) (R2), respectively. After a long-term (140 days) starvation shock at a high temperature (38 °C), the bacteria population activity recovery experiments were conducted. After 160 days, both reactors were successfully started up, and the total nitrogen removal rates exceeded 87%. Due to the experimental period, the total nitrogen removal rate of R2 was slightly higher than that of R1 in the final stage. However, it is undeniable that R2 had a relatively long activity delay during startup, while R1 had no significant activity delay during startup. The sludge obtained from R1 had a higher specific anammox activity (SAA). Analysis of the extracellular polymer substances (EPS) results showed that the extracellular polymer content in R1 was higher than that in R2 throughout the recovery process, indicating that R1 had higher sludge stability and denitrification performance. Scanning electron microscopy (SEM) analysis showed that more extracellular filamentous bacteria could be seen in the R1 reactor with better morphology of Anammox bacteria. In contrast, the R2 reactor had fewer extracellular hyphae and micropores as a percentage and higher filamentous bacteria content. The results of microbial 16SrDNA analysis showed that R1 used AAOB as inoculum to initiate Anammox, and the reactor was enriched with Anammox bacteria earlier and in much greater abundance than R2. The experimental results indicated that inoculating mixed anaerobic granular sludge and Anammox sludge to initiate an anammox reactor was more effective.
Collapse
Affiliation(s)
- Qiong Tan
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Suhui Xia
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China
| | - Wenlai Xu
- Key Laboratory of Environmental and Applied Microbiology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yue Jian
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| |
Collapse
|
43
|
Wu L, Jin T, Chen H, Shen Z, Zhou Y. Conductive materials as fantastic toolkits to stimulate direct interspecies electron transfer in anaerobic digestion: new insights into methanogenesis contribution, characterization technology, and downstream treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116732. [PMID: 36402020 DOI: 10.1016/j.jenvman.2022.116732] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/29/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Direct interspecies electron transfer (DIET) stimulated by conductive materials (CMs) enables intercellular metabolic coupling that can address the unfavorable thermodynamical dilemma inherent in anaerobic digestion (AD). Although the DIET mechanism and stimulation have been extensively summarized, the methanogenesis contribution, characterization techniques, and downstream processes of CMs-led DIET in AD are surprisingly under-reviewed. Therefore, this review aimed to address these gaps. First, the contribution of CMs-led DIET to methanogenesis was re-evaluated by comparing the effect of various factors, including volatile fatty acids, free ammonia, and functional enzymes. It was revealed that AD systems are usually intricate and cannot allow the methanogenesis stimulation to be singularly attributed to the establishment of DIET. Additionally, considerable attention has been attached to the characterization of DIET occurrence, involving species identification, gene expression, electrical properties, cellular features, and syntrophic metabolism, suggesting the significance of accurate characterization methods for identifying the syntrophic metabolism interactions. Moreover, the type of CMs has a significant impact on AD downstream processes involving biogas purity, sludge dewaterability, and biosolids management. Finally, the central bottleneck consists in building a mathematical model of DIET to explain the mechanism of DIET in a deeper level from kinetics and thermodynamics.
Collapse
Affiliation(s)
- Linjun Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing 100012, PR China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Tao Jin
- China Construction Eco-environmental Group CO.,LTD, Beijing 100037, PR China
| | - Hong Chen
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Zhiqiang Shen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing 100012, PR China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Yuexi Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing 100012, PR China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| |
Collapse
|
44
|
Shao Y, He Q, Fu Y, Liu Y. Construction of the comprehensive evaluation system of waterbody pollution degree and the response of sedimentary microbial community. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120837. [PMID: 36493934 DOI: 10.1016/j.envpol.2022.120837] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/06/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
This study proposed and established a comprehensive evaluation system for the pollution degree of the waterbody by taking overlying water and sediment as a whole. By dividing different sampling points into three gradients according to the pollution degree, the changes in sedimentary microbes under various pollution gradients were compared. The results showed that microbial diversity, abundance and specific OTUs decreased significantly with the increase in pollution degree. Meanwhile, Firmicutes, Bacteroidota and Caldiseriota increased in the severely polluted group, while Chloroflexi and Acidobacteriota decreased. Spearman correlation analysis and co-occurrence network revealed that COD, pH in overlying water, and Mn, Fe in sediments were the most significant pollution degree evaluation indicators affecting sedimentary microorganisms, which drove the sedimentary microbial communities dominated by Proteobacteria and Firmicutes. FAPROTAX functional prediction indicated that increased pollution levels led to the weakening of functional genes related to nitrogen metabolism and sulfur metabolism and the increase of functional genes related to carbon metabolism in sediment microorganisms. This study not only provided new insights into waterbody pollution evaluation but also verified the feasibility of this evaluation method by the response of sedimentary microbial communities to different pollution degrees.
Collapse
Affiliation(s)
- Yitong Shao
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Qi He
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Yongsheng Fu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Yiqing Liu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China.
| |
Collapse
|
45
|
Guo Z, Jalalah M, Alsareii SA, Harraz FA, Thakur N, Salama ES. Biochar addition augmented the microbial community and aided the digestion of high-loading slaughterhouse waste: Active enzymes of bacteria and archaea. CHEMOSPHERE 2022; 309:136535. [PMID: 36150484 DOI: 10.1016/j.chemosphere.2022.136535] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
The biogas production (BP), volatile fatty acids (VFAs), microbial communities, and microbes' active enzymes were studied upon the addition of biochar (0-1.5%) at 6% and 8% slaughterhouse waste (SHW) loadings. The 0.5% biochar enhanced BP by 1.5- and 1.6-folds in 6% and 8% SHW-loaded reactors, respectively. Increasing the biochar up to 1.5% caused a reduction in BP at 6% SHW. However, the BP from 8% of SHW was enhanced by 1.4-folds at 1.5% biochar. The VFAs production in all 0.5% biochar amended reactors was highly significant compared to control (p-value < 0.05). The biochar addition increased the bacterial and archaeal diversity at both 6% and 8% SHW loadings. The highest number of OTUs at 0.5% biochar were 567 and 525 in 6% and 8% SHW, respectively. Biochar prompted the Clostridium abundance and increased the lyases and transaminases involved in the degradation of lipids and protein, respectively. Biochar addition improved the Methanosaeta and Methanosphaera abundance in which the major enzymes were reductase and hydrogenase. The archaeal enzymes showed mixed acetoclastic and hydrogenotrophic methanogenesis.
Collapse
Affiliation(s)
- Zhaodi Guo
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China
| | - Mohammed Jalalah
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran, 11001, Saudi Arabia; Department of Electrical Engineering, College of Engineering, Najran University, Najran, Saudi Arabia
| | - Saeed A Alsareii
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran, 11001, Saudi Arabia; Department of Surgery, College of Medicine, Najran University, Najran, Saudi Arabia
| | - Farid A Harraz
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran, 11001, Saudi Arabia; Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Saudi Arabia
| | - Nandini Thakur
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China; MOE, Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China.
| |
Collapse
|
46
|
Yin J, Li J, Qiu X, Zhou Y, Wang M, Feng H, Li Y, Chen X, Chen T. Effect of magnetite particle size on propionate degradation in the propionate-based anaerobic system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157592. [PMID: 35901882 DOI: 10.1016/j.scitotenv.2022.157592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
The size effect of magnetite (Fe3O4) on the degradation of propionate (PA) in the PA-based anaerobic system was investigated. The sequential bench-scale experiments were conducted. Results showed that the effects of different sized magnetite particles on PA degradation varied, and reaction cycles also played a role in substrate removal/degradation. With the increase of reaction cycle, nano-magnetite promoted PA degradation and CH4 production, which caused faster PA degradation rate (0.997 g/L·d) than the control group (CK) without magnetite (0.834 g/L·d), whereas the groups with micron- and millimeter-sized magnetite had slower PA degradation rates (0.746 and 0.636 g/L·d) than CK group. The particle size or surface characteristics of the magnetite may become the main factor determining the PA degradation rate. Furthermore, the analysis of PA conversion and volatile fatty acids (VFAs) distribution showed the C6-dismutation pathway, which converses PA to butyrate, enhanced by the introduction of magnetite. Microbial community analysis showed that PA was degraded mainly by methyl-malonyl-CoA (MMC) pathway. The relative abundance of Syntrophobacter that catalyze MMC pathway in the group with nano-magnetite were much higher after three reaction cycles at 39 %, as compared to micro-magnetite at 28 %, and millimeter-sized magnetite at 27 %, which contributed to faster degradation of PA. Functional enzyme-encoding genes for the four methanogenesis pathways were identified with reference to KEGG database entries. The methanogenesis pathway using acetate was the most abundant pathway in all groups. The observations have important implications for enhancing the PA removal in PA-inhibited anaerobic digester.
Collapse
Affiliation(s)
- Jun Yin
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Junrou Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Xiaopeng Qiu
- Huadong Engineering Corporation Limited of Power China, Hangzhou 311122, PR China
| | - Yuyang Zhou
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Meizhen Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Huajun Feng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Yangyang Li
- Jiaxing Green Energy Environmental Protection Technology Co., Ltd., Jiaxing 314015, PR China
| | - Xin Chen
- Jiaxing Green Energy Environmental Protection Technology Co., Ltd., Jiaxing 314015, PR China
| | - Ting Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310018, PR China.
| |
Collapse
|
47
|
Wang L, Lei Z, Yang X, Zhang C, Liu C, Shimizu K, Zhang Z, Yuan T. Fe 3O 4 enhanced efficiency of volatile fatty acids production in anaerobic fermentation of food waste at high loading. BIORESOURCE TECHNOLOGY 2022; 364:128097. [PMID: 36229010 DOI: 10.1016/j.biortech.2022.128097] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
High treatment capacity for food waste (FW) is required due to the huge amount generated worldwide. Conversion of FW to volatile fatty acids (VFAs) via anaerobic fermentation is a promising technology; however, inhibition of VFAs production could easily occur at high loadings. In this study, Fe3O4 was used to enhance VFAs production in anaerobic fermentation of FW at high loading, and the mechanisms involved were revealed at microbial levels. Results showed that Fe3O4 significantly enhanced VFAs yield and VFAs productivity of microbes by 160% at high loading (substrate to inoculum (S/I) ratio of 3). The enhancement effect of Fe3O4 was mainly due to the accelerated hydrolysis of particulate/soluble organics, the enriched hydrolytic and acidogenic bacteria, and the reduced relative abundance of Lactobacillus. This study provides a new approach for the high-efficient treatment of FW at high loadings, while the performance and economic benefit should be further studied for practical application.
Collapse
Affiliation(s)
- Lanting Wang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhongfang Lei
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Xiaojing Yang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Chi Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Chang Liu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Kazuya Shimizu
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhenya Zhang
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Tian Yuan
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
48
|
Li J, Lei Y, Pu X, Liu Y, Mei Z, Tang Y. Improving biomethane fermentation through trace elements-driven microbial changes: Different effects of Fe0 combined with Co/Ni. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Xu Q, Luo L, Li D, Johnravindar D, Varjani S, Wong JWC, Zhao J. Hydrochar prepared from digestate improves anaerobic co-digestion of food waste and sewage sludge: Performance, mechanisms, and implication. BIORESOURCE TECHNOLOGY 2022; 362:127765. [PMID: 35985463 DOI: 10.1016/j.biortech.2022.127765] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
This work reported a new waste functionalization and utilization method, which use digestate to prepare hydrochar to improve methane production from food waste (FW) and sewage sludge (SS). Experimental results presented that 10 g/L hydrochar obtained the cumulative methane production of 133.11 ± 1.18 mL/g volatile solids added, 26.99 % higher than that without hydrochar addition. By monitoring the conversion of model metabolic intermediates, 10 g/L hydrochar was determined to favor hydrolysis, acidogenesis and methonogenesis bio-processes involved in methane production, thus improving the degradation of solubilized organics and consumption of short-chain fatty acids (SCFAs) during the co-digestion. Microbial investigation revealed that 10 g/L hydrochar enriched the microbes relevant to methane production (e.g., Methanosaeta and Syntrophomonas), but reduced the abundances of hydrolysis- and acidogenesis-related microbes (e.g., Acinetobacter). This hydrochar-based preparation and utilization strategy might offer a novel paradigm for waste-control-waste, bringing economic and environmental benefits.
Collapse
Affiliation(s)
- Qiuxiang Xu
- Institute of Bioresource and Agriculture, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region
| | - Liwen Luo
- Institute of Bioresource and Agriculture, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region
| | - Dongyi Li
- Institute of Bioresource and Agriculture, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region
| | - Davidraj Johnravindar
- Institute of Bioresource and Agriculture, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382010, India
| | - Jonathan W C Wong
- Institute of Bioresource and Agriculture, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region
| | - Jun Zhao
- Institute of Bioresource and Agriculture, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region.
| |
Collapse
|
50
|
Khan SZ, Zaidi AA, Naseer MN, AlMohamadi H. Nanomaterials for biogas augmentation towards renewable and sustainable energy production: A critical review. Front Bioeng Biotechnol 2022; 10:868454. [PMID: 36118570 PMCID: PMC9478561 DOI: 10.3389/fbioe.2022.868454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 07/26/2022] [Indexed: 11/22/2022] Open
Abstract
Nanotechnology is considered one of the most significant advancements in science and technology over the last few decades. However, the contemporary use of nanomaterials in bioenergy production is very deficient. This study evaluates the application of nanomaterials for biogas production from different kinds of waste. A state-of-the-art comprehensive review is carried out to elaborate on the deployment of different categories of nano-additives (metal oxides, zero-valent metals, various compounds, carbon-based nanomaterials, nano-composites, and nano-ash) in several kinds of biodegradable waste, including cattle manure, wastewater sludge, municipal solid waste, lake sediments, and sanitary landfills. This study discusses the pros and cons of nano-additives on biogas production from the anaerobic digestion process. Several all-inclusive tables are presented to appraise the literature on different nanomaterials used for biogas production from biomass. Future perspectives to increase biogas production via nano-additives are presented, and the conclusion is drawn on the productivity of biogas based on various nanomaterials. A qualitative review of relevant literature published in the last 50 years is conducted using the bibliometric technique for the first time in literature. About 14,000 research articles are included in this analysis, indexed on the Web of Science. The analysis revealed that the last decade (2010–20) was the golden era for biogas literature, as 84.4% of total publications were published in this timeline. Moreover, it was observed that nanomaterials had revolutionized the field of anaerobic digestion, methane production, and waste activated sludge; and are currently the central pivot of the research community. The toxicity of nanomaterials adversely affects anaerobic bacteria; therefore, using bioactive nanomaterials is emerging as the best alternative. Conducting optimization studies by varying substrate and nanomaterials’ size, concentration and shape is still a field. Furthermore, collecting and disposing nanomaterials at the end of the anaerobic process is a critical environmental challenge to technology implementation that needs to be addressed before the nanomaterials assisted anaerobic process could pave its path to the large-scale industrial sector.
Collapse
Affiliation(s)
- Sohaib Z. Khan
- Department of Mechanical Engineering, Faculty of Engineering, Islamic University of Madina, Madinah, Saudi Arabia
- *Correspondence: Sohaib Z. Khan,
| | - Asad A. Zaidi
- Department of Mechanical Engineering, Faculty of Engineering Science and Technology, Hamdard University, Karachi, Pakistan
| | - Muhammad Nihal Naseer
- Department of Engineering Sciences, PN Engineering College, National University of Sciences and Technology, Karachi, Pakistan
| | - Hamad AlMohamadi
- Department of Chemical Engineering, Faculty of Engineering, Islamic University of Madinah, Madinah, Saudi Arabia
| |
Collapse
|