1
|
Du X, Zhu C, Chi Z. Optimizing calcium and magnesium in seawater medium with high bicarbonate concentration for efficient growth and self-flocculation harvesting of Chlorella sp. BIORESOURCE TECHNOLOGY 2025; 430:132569. [PMID: 40268095 DOI: 10.1016/j.biortech.2025.132569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 04/11/2025] [Accepted: 04/20/2025] [Indexed: 04/25/2025]
Abstract
Microalgae cultivation using high bicarbonate concentration in seawater medium triggers CaCO3 precipitation due to pH elevation, contaminating the photobioreactor and reduce biomass productivity. It is necessary to control Ca2+ and Mg2+ concentration in appropriate range to allow microalgae rapid growth without precipitation, followed by effective self-flocculation for harvesting. This study optimized this concentration range as 0.5-1.0 mmol L-1 for Ca2+ and 2.5-5.0 mmol L-1 for Mg2+. With this concentration, subsequent pH adjustment to 11 induced > 90 % self-flocculation efficiency. Also, outdoor cultivation in floating photobioreactors utilized treated seawater with optimized Ca2+ and Mg2+ concentration achieved productivity of 9.36 g m-2 day-1, which is 112 % higher than untreated seawater (4.42 g m-2 day-1). The optimized process reached the goal of higher biomass productivity without precipitation and efficient harvesting. On the other hand, microalgae-induced precipitation may serve as potential carbon sink, contributing to ocean-negative carbon emissions.
Collapse
Affiliation(s)
- Xiang Du
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Chenba Zhu
- Carbon Neutral Innovation Research Center, Xiamen University, Xiamen 361005, China; Global Ocean Negative Carbon Emissions (ONCE) Program, Research Center for Ocean Negative Carbon Emissions, Xiamen, Fujian 361000, China.
| | - Zhanyou Chi
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
2
|
Wang R, Wang X, Zhu T. Research progress and application of carbon sequestration in industrial flue gas by microalgae: A review. J Environ Sci (China) 2025; 152:14-28. [PMID: 39617540 DOI: 10.1016/j.jes.2024.04.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 12/10/2024]
Abstract
Global warming caused by the emission of CO2 in industrial flue gas has attracted more and more attention. Therefore, to fix CO2 with high efficiency and environmentally friendly had become the hot research field. Compared with the traditional coal-fired power plant flue gas emission reduction technology, carbon fixation and emission reduction by microalgae is considered as a promising technology due to the advantages of simple process equipment, convenient operation and environmental protection. When the flue gas is treated by microalgae carbon fixation and emission reduction technology, microalgae cells can fix CO2 in the flue gas through photosynthesis, and simultaneously absorb NOx and SOx as nitrogen and sulfur sources required for growth. Meanwhile, they can also absorb mercury, selenium, arsenic, cadmium, lead and other heavy metal ions in the flue gas to obtain microalgae biomass. The obtained microalgae biomass can be further transformed into high value-added products, which has broad development prospects. This paper reviews the mechanisms and pathways of CO2 sequestration, the mechanism and impacts of microalgal emission reduction of flue gas pollutants, and the applications of carbon sequestration in industrial flue gas by microalgae. Finally, this paper provides some guidelines and prospects for the research and application of green emission reduction technology for industrial flue gas.
Collapse
Affiliation(s)
- Rui Wang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory of Green and High-value Utilization of Salt Lake Resources, Chinese Academy of Sciences, Xining 810008, China
| | - Xue Wang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China; State Key Laboratory of Petroleum Molecular & Process Engineering, Beijing 100083, China
| | - Tingyu Zhu
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
3
|
Barman P, Ansari FA, Verma AK, Chabukdhara M. Harvesting of microalgae using Saccharum officinarum bagasse: characterization, process optimization, and evaluation of harvesting potential. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-36507-z. [PMID: 40374980 DOI: 10.1007/s11356-025-36507-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 05/05/2025] [Indexed: 05/18/2025]
Abstract
In microalgae downstream processing, biomass harvesting is a key step that requires a huge amount of energy. Microalgae harvesting can directly influence the microalgal biomass industry for its wide applications. In the present work, sugarcane bagasse (SB) was investigated as a plant waste-derived flocculant for harvesting microalgae. The SB with 40mg/L exhibited harvesting efficiency (HE) of 93.6% and 89.48% at pH 7.5 and 9.5, respectively. SB showed a negative surface charge, indicating that the flocculation mechanism in the present study is not primarily through charge neutralization. Elemental analysis of harvested biomass showed the presence of 27.07% of carbon, 6.83% of hydrogen, and 5.86% of nitrogen. Overall, results indicate the possible utility of SB as low-cost eco-friendly plant-based waste material for mixed microalgae harvesting. FTIR (Fourier-transform infrared), Zeta potential, SEM (scanning electron microscope), and EDX (energy-dispersive X-ray) analysis were performed to assess the characteristics of SB and mechanism of harvesting. The FTIR spectrum analysis of SB revealed the presence of multiple functional groups indicating their possible role in flocculation by bridging mechanisms. The SB has promising potential to be used at a demonstration scale for microalgae harvesting for various applications.
Collapse
Affiliation(s)
- Pooja Barman
- Department of Environmental Biology and Wildlife Sciences, Cotton University, Guwahati, Assam, 781001, India
| | - Faiz Ahmad Ansari
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, 4000, South Africa
| | | | - Mayuri Chabukdhara
- Department of Environmental Biology and Wildlife Sciences, Cotton University, Guwahati, Assam, 781001, India.
| |
Collapse
|
4
|
Xiao H, Chen H, Zhang Q, Jiang Q, Duan X, Jin L, Sun XW, Li F, Liu M. Microalgal density assessment based on quantum-dot light-emitting diodes and intelligent image edge detection. BIORESOURCE TECHNOLOGY 2025; 431:132623. [PMID: 40328351 DOI: 10.1016/j.biortech.2025.132623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/12/2025] [Accepted: 05/02/2025] [Indexed: 05/08/2025]
Abstract
This study proposes an approach involving image capture, recognition, and processing using quantum dots for light conversion, which emit blue, green, orange, and red light. Microalgae species of Nannochloropsis sp. and Chaetoceros sp. are selected for observation. In addition to color differences and brightness distribution, an optimized composite detecting indicator (OCDI) is introduced, which combines six conventional edge detection indicators with adjustable weight coefficients. The performance obtained with the quantum-dot illumination system is compared with results obtained under non-specific lighting conditions by evaluating image edge characteristics, average brightness, color differences, and light intensity measurements. When evaluating OCDI under different colors, the proposed method achieves an accuracy (η) of 0.99 and a coefficient of determination (R2) of 0.99, as compared to conventional manual counting method. The proposed microalgal density assessment method, characterized by high accuracy, flexibility, and environmental friendliness, demonstrates potential applicability in smart marine agriculture and digital marine monitoring.
Collapse
Affiliation(s)
- Hua Xiao
- School of Electronic and Information Engineering, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Haiyun Chen
- School of Electronic and Information Engineering, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Qiaoyang Zhang
- School of Mathematics and Computer Science, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Qiannan Jiang
- School of Electronic and Information Engineering, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Xijian Duan
- Institute of Nanoscience & Applications, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Lei Jin
- Institute of Nanoscience & Applications, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Xiao Wei Sun
- Institute of Nanoscience & Applications, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Feng Li
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Mingxin Liu
- School of Electronic and Information Engineering, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
5
|
Ben Ammar FE, Hkiri AE, Zaafouri K, Saidane Bchir F, Hamdi M. Enhanced growth of Chlorella sorokiniana on ash-enriched treated wastewater for large-scale lipid and chlorophyll a production using a hybrid raceway photobioreactor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-36440-1. [PMID: 40316823 DOI: 10.1007/s11356-025-36440-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/20/2025] [Indexed: 05/04/2025]
Abstract
Nutrient concentration in microalgal cultivation media greatly influences microalgal growth and macromolecules production. In the present study, treated urban wastewater was used as a medium for Chlorella sorokiniana, incorporating mineral components and ashes in batch culture. The aim was to assess the combined effect of nutrients on microalgal growth, Chlorophyll a content, and lipid production using customized experimental design and response surface methodology. Another objective was to evaluate response improvement after using hybrid raceway photobioreactor HRPBR. The results showed that the highest microalgal biomass growth as well as the highest Chlorophyll a and lipid concentrations was obtained using 2015 mg. L-1of NaNO3 and 2086.76 mg. L-1 of NaHCO3 with a mineral solution concentration of 120 mg. L-1. After the HRPBR cultivation, Chlorophyll a content increased from 40.26 to 65.04 mg. L-1 and the lipid content rose from 37 to 40% and then to 68% under starvation conditions. In these circumstances, the FA profile of Chlorella sorokiniana became in line with the requirements of the European biodiesel standard. Thus, the low-cost nutrient sources for culture medium formulation can be used to culture C. sorokiniana as an efficient strain for sustainable and cost-effective biofuel production.
Collapse
Affiliation(s)
- Fatma Ezzahraâ Ben Ammar
- Laboratory of Microbial Ecology and Technology, LETMi-INSAT, The National Institute of Applied Sciences and Technology INSAT, University of Carthage, 2 Boulevard Mohamed El Béji-Caïd Essebsi, BP 676, 1080, Tunis, Tunisia.
| | - Alaa Eddine Hkiri
- Laboratory of Microbial Ecology and Technology, LETMi-INSAT, The National Institute of Applied Sciences and Technology INSAT, University of Carthage, 2 Boulevard Mohamed El Béji-Caïd Essebsi, BP 676, 1080, Tunis, Tunisia
| | - Kaouther Zaafouri
- Laboratory of Microbial Ecology and Technology, LETMi-INSAT, The National Institute of Applied Sciences and Technology INSAT, University of Carthage, 2 Boulevard Mohamed El Béji-Caïd Essebsi, BP 676, 1080, Tunis, Tunisia
| | - Faten Saidane Bchir
- Laboratory of Microbial Ecology and Technology, LETMi-INSAT, The National Institute of Applied Sciences and Technology INSAT, University of Carthage, 2 Boulevard Mohamed El Béji-Caïd Essebsi, BP 676, 1080, Tunis, Tunisia
| | - Moktar Hamdi
- Laboratory of Microbial Ecology and Technology, LETMi-INSAT, The National Institute of Applied Sciences and Technology INSAT, University of Carthage, 2 Boulevard Mohamed El Béji-Caïd Essebsi, BP 676, 1080, Tunis, Tunisia
| |
Collapse
|
6
|
Haider MN, O'Higgins L, O'Shea R, Archer L, Wall DM, Verma N, Rodero MDR, Mehmood MA, Murphy JD, Bose A. Selecting optimal algal strains for robust photosynthetic upgrading of biogas under temperate oceanic climates. Biotechnol Adv 2025; 82:108581. [PMID: 40258525 DOI: 10.1016/j.biotechadv.2025.108581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/20/2025] [Accepted: 04/14/2025] [Indexed: 04/23/2025]
Abstract
Biogas generated from anaerobic digestion can be upgraded to biomethane by photosynthetic biogas upgrading, using CO2 as a bioresource for algal (cyanobacteria and microalgae) cultivation. This allows the upgrading technology to offer economic and environmental benefits to conventional physiochemical upgrading techniques (which can be energy-intensive and costly) by co-generating biomethane with high-value biomass. However, a critical challenge in implementing this technology in temperate oceanic climatic conditions (as found in Japan, and the northwest coasts of Europe and of North America, with average temperatures ranging between 5 and 20 °C) is the selection of algal strains that must be capable of sustained growth under lower ambient temperatures. Accordingly, this paper investigated the selection of algae that met seven key criteria: optimal growth at high pH (9-11); at alkalinity of 1.5-2.5 g inorganic carbon per litre; operation at low temperature (5-20 °C); tolerance to high CO2 concentrations (above 20 %); capability for mixotrophic cultivation; ability to accumulate high-value metabolites such as photosynthetic pigments and bioactive fatty acids; and ease of harvesting. Of the twenty-six algal species assessed and ranked using a Pugh Matrix, Anabaena sp. and Phormidium sp. were assessed as the most favourable species, followed by Oscillatoria sp., Spirulina subsalsa, and Leptolyngbya sp. Adaptive laboratory evolution together with manipulation of abiotic factors could be effectively utilised to increase the efficiency and economic feasibility of the use of the selected strain in a photosynthetic biogas upgrading system, through improvement of growth and yield of high-value compounds.
Collapse
Affiliation(s)
- Muhammad Nabeel Haider
- MaREI Centre for energy, climate and marine, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland; School of Engineering and Architecture, University College Cork, Ireland
| | - Linda O'Higgins
- MaREI Centre for energy, climate and marine, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland
| | - Richard O'Shea
- MaREI Centre for energy, climate and marine, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland; School of Engineering and Architecture, University College Cork, Ireland
| | - Lorraine Archer
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - David M Wall
- MaREI Centre for energy, climate and marine, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland; School of Engineering and Architecture, University College Cork, Ireland
| | - Nikita Verma
- MaREI Centre for energy, climate and marine, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland; School of Engineering and Architecture, University College Cork, Ireland
| | - María Del Rosario Rodero
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain
| | - Muhammad Aamer Mehmood
- Bioenergy Research Center, Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Jerry D Murphy
- MaREI Centre for energy, climate and marine, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland; School of Engineering and Architecture, University College Cork, Ireland
| | - Archishman Bose
- MaREI Centre for energy, climate and marine, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland; School of Engineering and Architecture, University College Cork, Ireland.
| |
Collapse
|
7
|
Wang R, Wang Z, Zhang M, Zhong D, Zhou M. Application of photosensitive microalgae in targeted tumor therapy. Adv Drug Deliv Rev 2025; 219:115519. [PMID: 39955076 DOI: 10.1016/j.addr.2025.115519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/02/2025] [Accepted: 01/18/2025] [Indexed: 02/17/2025]
Abstract
Microalgae present a novel and multifaceted approach to cancer therapy by modulating the tumor-associated microbiome (TAM) and the tumor microenvironment (TME). Through their ability to restore gut microbiota balance, reduce inflammation, and enhance immune responses, microalgae contribute to improved cancer treatment outcomes. As photosynthetic microorganisms, microalgae exhibit inherent anti-tumor, antioxidant, and immune-regulating properties, making them valuable in photodynamic therapy and tumor imaging due to their capacity to generate reactive oxygen species. Additionally, microalgae serve as effective drug delivery vehicles, leveraging their biocompatibility and unique structural properties to target the TME more precisely. Microalgae-based microrobots further expand their therapeutic potential by autonomously navigating complex biological environments, offering a promising future for precision-targeted cancer treatments. We position microalgae as a multifunctional agent capable of modulating TAM, offering novel strategies to enhance TME and improve the efficacy of cancer therapies.
Collapse
Affiliation(s)
- Ruoxi Wang
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310029, China; Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China; Zhejiang University-Ordos City Etuoke Banner Joint Research Center, Haining 314400, China
| | - Zhouyue Wang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
| | - Min Zhang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
| | - Danni Zhong
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
| | - Min Zhou
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310029, China; Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China; Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China; Zhejiang University-Ordos City Etuoke Banner Joint Research Center, Haining 314400, China.
| |
Collapse
|
8
|
Khan MSJ, Alkhadher SAA, Sidek LM, Kamal T, Asiri AM, Khan SB, Zawawi MH, Basri H, Ahmed AN. Metal nanoparticles entrapment in chitosan-carbon black composite hydrogel towards sustainable environmental solutions. Int J Biol Macromol 2025; 296:139717. [PMID: 39798750 DOI: 10.1016/j.ijbiomac.2025.139717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
A catalytic system has been developed, utilizing metal nanoparticles confined within a chitosan‑carbon black composite hydrogel (M-CH/CB), aimed at improving ease of use and recovery in catalytic processes. The M-CH/CBs were characterized by XPS, XRD, SEM, and EDX, the M-CH/CB system demonstrated exceptional catalytic activity in producing hydrogen gas (H2) from water and methanol, and in reducing several hazardous materials including 2-nitrophenol (2-NP), 4-nitrophenol (4-NP), 2,6-dinitrophenol (2,6-DNP), acridine orange (ArO), methyl orange (MO), congo red (CR), methylene blue (MB), and potassium ferricyanide (PFC). Among the tested nanocatalysts, CH/CB showed the highest efficiency for H₂ production, while Fe0-CH/CB excelled in contaminant reduction (7.0 min). In addition to the synthesis and characterization of the catalytic system, various factors, such as NaBH₄ amount, catalyst quantity, pollutant concentration, and reaction temperature were optimized to maximize its overall efficacy and efficiency. Fe0-CH/CB achieved the best reaction rate of 0.850 min-1 for 4-NP reduction, while CH/CB had a hydrogen generation rate (HGR) of 3500 ml.g-1.min-1. The Fe0-CH/CB was able to achieve the 4-NP reduction percentage of >95 % over 5 times during the recyclability tests. However, a slight decrease in reduction time was observed as the reaction rate dropped to 0.716 min-1 after 5 cycles, but the catalyst remained effective, underscoring its practical potential for environmental remediation, water treatment, and sustainable energy production.
Collapse
Affiliation(s)
| | | | - Lariyah Mohd Sidek
- Institute of Energy Infrastructure (IEI), Universiti Tenaga Nasional (UNITEN), 43000, Selangor, Malaysia; Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional (UNITEN), 43000, Selangor, Malaysia
| | - Tahseen Kamal
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Abdullah M Asiri
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Sher Bahadar Khan
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Mohd Hafiz Zawawi
- Institute of Energy Infrastructure (IEI), Universiti Tenaga Nasional (UNITEN), 43000, Selangor, Malaysia; Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional (UNITEN), 43000, Selangor, Malaysia
| | - Hidayah Basri
- Institute of Energy Infrastructure (IEI), Universiti Tenaga Nasional (UNITEN), 43000, Selangor, Malaysia
| | - Ali Najah Ahmed
- Department of Engineering, School of Engineering and Technology, Sunway University, Bandar Sunway, Petaling Jaya, 47500, Malaysia
| |
Collapse
|
9
|
Jha P, Ghosh S, Panja A, Kumar V, Singh AK, Prasad R. Microalgae and biogas: a boon to energy sector. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:7411-7431. [PMID: 37608163 DOI: 10.1007/s11356-023-29135-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 07/30/2023] [Indexed: 08/24/2023]
Abstract
The global energy generation market immensely depends on fossil fuels which balances our survival on this planet. Energy can be called as the "master element" for our daily needs, starting from household power supply, agricultural purpose, automobile and transportation, industrial workload to economic and research domains. Fuel switching initiatives are being adapted by environmentalist and scientists to bring a novel sustainable source of energy. An environment and renewable alternative to fossil fuels are a must. Over the years, the world has shifted toward generating green fuels immensely. One such potential alternative to fossil fuels are biogases. Being versatile and renewable in nature, it has drawn immense attention globally. Despite having such potentials there exist some major drawbacks which mainly deal with the starting material. One such source for biogases can be microalgae. Microalgae based biogas production can produce huge amount of energy and that has been implemented by many foreign countries and their companies. Despite being in use in many countries, there are issues which needs to be addressed which will overall improve the biogas potential from microalgae even more. This review mainly focuses on generation of biogas from microalgae as a feedstock which are very economical and sustainable in its nature, presenting improvement strategies which can be impended to boost the over biogas sector globally.
Collapse
Affiliation(s)
- Priyanka Jha
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- Department of Research Facilitation, Division of Research and Development, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Snigdha Ghosh
- Amity Institute of Biotechnology, Amity University, Major Arterial Road, New Town, Kolkata, West Bengal, 700135, India
| | - Avirup Panja
- Amity Institute of Biotechnology, Amity University, Major Arterial Road, New Town, Kolkata, West Bengal, 700135, India
| | - Vijay Kumar
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- Plant Biotechnology Lab, Division of Research and Development, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Akhilesh Kumar Singh
- Department of Biotechnology, Mahatma Gandhi Central University, Belisarai, Motihari, Bihar, 845401, India
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Belisarai, Motihari, Bihar, 845401, India.
| |
Collapse
|
10
|
Dutta S, Kataki S, Banerjee I, Pohrmen CB, Jaiswal KK, Jaiswal AK. Microalgal biorefineries in sustainable biofuel production and other high-value products. N Biotechnol 2025:S1871-6784(25)00023-8. [PMID: 40023220 DOI: 10.1016/j.nbt.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 02/11/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Microalgae has been emerging as a promising solution against the backdrop of the global need for sustainable, eco-friendly alternatives. This review article analyses the use of photosynthetic microalgae as an important resource for sustainable biofuel and high value bioproduct production, emphasizing the potential of self-sustaining microalgae biorefineries. A closed-loop, integrated multi-product producing microalgal biorefinery approach could significantly reduce the indicated negative environmental and energy impact from standalone microalgal biofuel generation. The economic feasibility of these biorefineries is linked to their recovery rate, improved by integrating various unit operations as well as multiple product dimensions under optimal conditions, enhancing resource recovery, process efficiency, and profitability. This approach ensures profitability and ubiquitous implementation of microalgal biorefineries, offering a sustainable solution to market demands. In conclusion, making microalgae biorefineries a major player in sustainable bioeconomy underscores the necessity of interdisciplinary research to surmount current challenges and completely realize their advantages.
Collapse
Affiliation(s)
- Swapnamoy Dutta
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN, 37996, USA
| | - Sampriti Kataki
- Biodegradation Technology Division, Defence Research Laboratory, DRDO, Tezpur, 784001, Assam, India
| | - Ishita Banerjee
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Cheryl Bernice Pohrmen
- Bioprocess Engineering Laboratory, Department of Green Energy Technology, Pondicherry University, Puducherry, 605014, India
| | - Krishna Kumar Jaiswal
- Bioprocess Engineering Laboratory, Department of Green Energy Technology, Pondicherry University, Puducherry, 605014, India.
| | - Amit K Jaiswal
- Centre for Sustainable Packaging and Bioproducts (CSPB), School of Food Science and Environmental Health, Faculty of Sciences and Health, Technological University Dublin - City Campus, Central Quad, Grangegorman, Dublin, D07 ADY7, Ireland.
| |
Collapse
|
11
|
El-Sheekh MM, El-Kassas HY, Ali SS. Microalgae-based bioremediation of refractory pollutants: an approach towards environmental sustainability. Microb Cell Fact 2025; 24:19. [PMID: 39810167 PMCID: PMC11734528 DOI: 10.1186/s12934-024-02638-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 12/26/2024] [Indexed: 01/16/2025] Open
Abstract
Extensive anthropogenic activity has led to the accumulation of organic and inorganic contaminants in diverse ecosystems, which presents significant challenges for the environment and its inhabitants. Utilizing microalgae as a bioremediation tool can present a potential solution to these challenges. Microalgae have gained significant attention as a promising biotechnological solution for detoxifying environmental pollutants. This is due to their advantages, such as rapid growth rate, cost-effectiveness, high oil-rich biomass production, and ease of implementation. Moreover, microalgae-based remediation is more environmentally sustainable for not generating additional waste sludge, capturing atmospheric CO2, and being efficient for nutrient recycling and sustainable algal biomass production for biofuels and high-value-added products generation. Hence, microalgae can achieve sustainability's three main pillars (environmental, economic, and social). Microalgal biomass can mediate contaminated wastewater effectively through accumulation, adsorption, and metabolism. These mechanisms enable the microalgae to reduce the concentration of heavy metals and organic contaminants to levels that are considered non-toxic. However, several factors, such as microalgal strain, cultivation technique, and the type of pollutants, limit the understanding of the microalgal removal mechanism and efficiency. Furthermore, adopting novel technological advancements (e.g., nanotechnology) may serve as a viable approach to address the challenge of refractory pollutants and bioremediation process sustainability. Therefore, this review discusses the mechanism and the ability of different microalgal species to mitigate persistent refractory pollutants, such as industrial effluents, dyes, pesticides, and pharmaceuticals. Also, this review paper provided insight into the production of nanomaterials, nanoparticles, and nanoparticle-based biosensors from microalgae and the immobilization of microalgae on nanomaterials to enhance bioremediation process efficiency. This review may open a new avenue for future advancing research regarding a sustainable biodegradation process of refractory pollutants.
Collapse
Affiliation(s)
- Mostafa M El-Sheekh
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Hala Y El-Kassas
- National Institute of Oceanography and Fisheries, NIOF, Alexandria, 21556, Egypt
| | - Sameh S Ali
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
12
|
Huang KX, Vadiveloo A, Zhou JL, Zhong H, Gao F. Construction and transcriptomic analysis of salinity-induced lipid-rich flocculent microalgae. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123982. [PMID: 39752947 DOI: 10.1016/j.jenvman.2024.123982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/12/2024] [Accepted: 12/28/2024] [Indexed: 01/15/2025]
Abstract
The lack of cost-effective nutrient sources and harvesting methods is currently a major obstacle to the production of sustainable biofuels from microalgae. In this study, Chlorella pyrenoidosa was cultured with saline wastewater in a stirred photobioreactor, and lipid-rich flocculent microalgae particles were successfully constructed. As the influent salinity of the photobioreactor increased from 0% to 3%, the particle size and sedimentation rate of flocculent microalgae particles gradually increased, and the lipid accumulation of microalgae also increased gradually. Transcriptome analysis showed that the number of differentially expressed genes (DEGs) in microalgae increased as the salinity of wastewater increased from 1% to 3%, and the number of up-expressed genes was greater than that of down-expressed genes in microalgae at different salinity levels. The enrichment analysis of DEGs showed that the up-expressed genes under salt stress mainly involved in fatty acid biosynthesis and other metabolic processes, which initially revealed the mechanism of the lipid accumulation of microalgal particles in saline wastewater. In addition, the expression and functions of genes involved in lipid and EPS synthesis pathway in microalgae were analyzed, and the key genes involved in salinity affecting lipid and EPS synthesis in microalgae were preliminarily identified. The results could provide novel insight for genetic engineering to regulate the construction of lipid-rich flocculent microalgae particles.
Collapse
Affiliation(s)
- Kai-Xuan Huang
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China; Ningbo Institute of Digital Twin, Eastern Institute of Technology, Ningbo, China
| | - Ashiwin Vadiveloo
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth, 6150, Australia
| | - Jin-Long Zhou
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China
| | - Hua Zhong
- Ningbo Institute of Digital Twin, Eastern Institute of Technology, Ningbo, China.
| | - Feng Gao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China; National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China.
| |
Collapse
|
13
|
Nguyen DT, Johir MAH, Mahlia TMI, Silitonga AS, Zhang X, Liu Q, Nghiem LD. Microalgae-derived biolubricants: Challenges and opportunities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176759. [PMID: 39393688 DOI: 10.1016/j.scitotenv.2024.176759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/24/2024] [Accepted: 10/04/2024] [Indexed: 10/13/2024]
Abstract
Lubricants are indispensable in the modern economy for controlling friction and wear across many industries. Traditional lubricants are derived from petroleum crude and can cause significant ecological impact if released into the environment. Microalgae have emerged as a potential alternative to petroleum crude for producing renewable and environmentally friendly biolubricants. This review systematically assesses recent developments in microalgal-based biolubricant production, including tribological performance, microalgae selection, cultivation, harvesting, lipid and polysaccharide extraction and conversion to biolubricants, and market development. Compared to petroleum-based lubricants in terms of tribological properties, biolubricants are compatible with most emerging applications, such as electric vehicles and wind turbines. Nevertheless, they are less thermally and chemically stable, thus, may not be suitable for some traditional applications such as internal combustion engines. Literature data corroborated in this study reveals an urgent need for further research to scale up microalgae production and lower the cost of biomass harvesting. While technologies for converting microalgae-derived lipids to biolubricants appear to be well established, additional work is necessary to also utilize polysaccharides as another key ingredient for producing biolubricants, especially for low-temperature applications. Extraction methods are well established but further research is also needed to reduce the ecological impact, especially to utilize green solvents and reduce solvent consumption. Additionally, future research should delve into the use of nanoparticles as effective additives to obtain microalgae-based biolubricants with superior properties. Finally, it is essential to standardize the labeling system of biolubricants to establish a global market.
Collapse
Affiliation(s)
- Duong T Nguyen
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Md Abu Hasan Johir
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - T M Indra Mahlia
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - A S Silitonga
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Xiaolei Zhang
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia; School of Environmental & Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai 200444, China
| | - Qiang Liu
- School of Environmental & Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai 200444, China
| | - Long D Nghiem
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia.
| |
Collapse
|
14
|
Bora A, Thondi Rajan AS, Ponnuchamy K, Muthusamy G, Alagarsamy A. Microalgae to bioenergy production: Recent advances, influencing parameters, utilization of wastewater - A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174230. [PMID: 38942321 DOI: 10.1016/j.scitotenv.2024.174230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/12/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
Fossil fuel limitations and their influence on climate change through atmospheric greenhouse gas emissions have made the excessive use of fossil fuels widely recognized as unsustainable. The high lipid content, carbon-neutral nature and potential as a biofuel source have made microalgae a subject of global study. Microalgae are a promising supply of biomass for third-generation biofuels production since they are renewable. They have the potential to produce significant amounts of biofuel and are considered a sustainable alternative to non-renewable energy sources. Microalgae are currently incapable to synthesize algal biofuel on an extensive basis in a sustainable manner, despite their significance in the global production of biofuels. Wastewater contains nutrients (both organic and inorganic) which is essential for the development of microalgae. Microalgae and wastewater can be combined to remediate waste effectively. Wastewater of various kinds such as industrial, agricultural, domestic, and municipal can be used as a substrate for microalgal growth. This process helps reduce carbon dioxide emissions and makes the production of biofuels more cost-effective. This critical review provides a detailed analysis of the utilization of wastewater as a growth medium for microalgal - biofuel production. The review also highlights potential future strategies to improve the commercial production of biofuels from microalgae.
Collapse
Affiliation(s)
- Abhispa Bora
- Bioenergy and Bioremediation Laboratory, Department of Microbiology, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Angelin Swetha Thondi Rajan
- Bioenergy and Bioremediation Laboratory, Department of Microbiology, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Kumar Ponnuchamy
- Department of Animal Health and Management, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Govarthanan Muthusamy
- Department of Environmental Engineering, Kyungpook National University, 41566 Daegu, Republic of Korea
| | - Arun Alagarsamy
- Bioenergy and Bioremediation Laboratory, Department of Microbiology, Alagappa University, Karaikudi 630003, Tamil Nadu, India.
| |
Collapse
|
15
|
Singh P, Mohanty SS, Mohanty K. Comprehensive assessment of microalgal-based treatment processes for dairy wastewater. Front Bioeng Biotechnol 2024; 12:1425933. [PMID: 39165401 PMCID: PMC11333367 DOI: 10.3389/fbioe.2024.1425933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/11/2024] [Indexed: 08/22/2024] Open
Abstract
The dairy industry is becoming one of the biggest sectors within the global food industry, and these industries use almost 34% of the water. The amount of water used is governed by the production process and the technologies employed in the plants. Consequently, the dairy industries generate almost 0.2-10 L of wastewater per liter of processed milk, which must be treated before being discharged into water bodies. The cultivation of microalgae in a mixotrophic regime using dairy wastewater enhances biomass growth, productivity, and the accumulation of value-added product. The generated biomass can be converted into biofuels, thus limiting the dependence on petroleum-based crude oil. To fulfill the algal biorefinery model, it is important to utilize every waste stream in a cascade loop. Additionally, the harvested water generated from algal biomass production can be recycled for further microalgal growth. Economic and sustainable wastewater management, along with proper reclamation of nutrients from dairy wastewater, is a promising approach to mitigate the problem of water scarcity. A bibliometric study revealing limited work on dairy wastewater treatment using microalgae for biofuel production. And, limited work is reported on the pretreatment of dairy wastewater via physicochemical methods before microalgal-based treatment. There are still significant gaps remains in large-scale cultivation processes. It is also crucial to discover robust strains that are highly compatible with the specific concentration of contaminants, as this will lead to increased yields and productivity for the targeted bio-product. Finally, research on reutilization of culture media in photobioreactor is necessary to augument the productivity of the entire process. Therefore, the incorporation of the microalgal biorefinery with the wastewater treatment concept has great potential for promoting ecological sustainability.
Collapse
Affiliation(s)
- Pooja Singh
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Satya Sundar Mohanty
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Kaustubha Mohanty
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, India
| |
Collapse
|
16
|
Guo ZC, Cui MH, Yang CX, Dai HL, Yang TY, Zhai LZ, Chen Y, Liu WZ, Wang AJ. Electrical stress and acid orange 7 synergistically clear the blockage of electron flow in the methanogenesis of low-strength wastewater. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 20:100410. [PMID: 38572083 PMCID: PMC10987894 DOI: 10.1016/j.ese.2024.100410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 04/05/2024]
Abstract
Energy recovery from low-strength wastewater through anaerobic methanogenesis is constrained by limited substrate availability. The development of efficient methanogenic communities is critical but challenging. Here we develop a strategy to acclimate methanogenic communities using conductive carrier (CC), electrical stress (ES), and Acid Orange 7 (AO7) in a modified biofilter. The synergistic integration of CC, ES, and AO7 precipitated a remarkable 72-fold surge in methane production rate compared to the baseline. This increase was attributed to an altered methanogenic community function, independent of the continuous presence of AO7 and ES. AO7 acted as an external electron acceptor, accelerating acetogenesis from fermentation intermediates, restructuring the bacterial community, and enriching electroactive bacteria (EAB). Meanwhile, CC and ES orchestrated the assembly of the archaeal community and promoted electrotrophic methanogens, enhancing acetotrophic methanogenesis electron flow via a mechanism distinct from direct electrochemical interactions. The collective application of CC, ES, and AO7 effectively mitigated electron flow impediments in low-strength wastewater methanogenesis, achieving an additional 34% electron recovery from the substrate. This study proposes a new method of amending anaerobic digestion systems with conductive materials to advance wastewater treatment, sustainability, and energy self-sufficiency.
Collapse
Affiliation(s)
- Ze-Chong Guo
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Min-Hua Cui
- Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Chun-Xue Yang
- School of Geography and Tourism, Harbin University, Harbin, 150001, China
| | - Hong-Liang Dai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Tong-Yi Yang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Lin-Zhi Zhai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Yong Chen
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wen-Zong Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| |
Collapse
|
17
|
Sakthivel S, Muthusamy K, Thangarajan AP, Thiruvengadam M, Venkidasamy B. Nano-based biofuel production from low-cost lignocellulose biomass: environmental sustainability and economic approach. Bioprocess Biosyst Eng 2024; 47:971-990. [PMID: 38554183 DOI: 10.1007/s00449-024-03005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 03/14/2024] [Indexed: 04/01/2024]
Abstract
The use of nanomaterials in biofuel production from lignocellulosic biomass offers a promising approach to simultaneously address environmental sustainability and economic viability. This review provides an overview of the environmental and economic implications of integrating nanotechnology into biofuel production from low-cost lignocellulosic biomass. In this review, we highlight the potential benefits and challenges of nano-based biofuel production. Nanomaterials provide opportunities to improve feedstock pretreatment, enzymatic hydrolysis, fermentation, and catalysis, resulting in enhanced process efficiency, lower energy consumption, and reduced environmental impact. Conducting life cycle assessments is crucial for evaluating the overall environmental footprint of biofuel production. An economic perspective that focuses on the cost implications of utilizing nanomaterials in biofuel production is also discussed. A comprehensive understanding of both environmental and economic dimensions is essential to fully harness the potential of nanomaterials in biofuel production from lignocellulosic biomass and to move towards sustainable future energy.
Collapse
Affiliation(s)
- Selvakumar Sakthivel
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, Tamil Nadu, India
- Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Rajakkamangalam, 629502, Tamil Nadu, India
| | - Kanthimathi Muthusamy
- Sri Paramakalyani Centre of Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627412, Tamil Nadu, India
| | | | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Science, Konkuk University, Seoul, 05029, Republic of Korea
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, India
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, Tamil Nadu, India.
| |
Collapse
|
18
|
Sousa S, Carvalho AP, Gomes AM. Factors impacting the microbial production of eicosapentaenoic acid. Appl Microbiol Biotechnol 2024; 108:368. [PMID: 38860989 PMCID: PMC11166839 DOI: 10.1007/s00253-024-13209-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/12/2024]
Abstract
The increasing applications for eicosapentaenoic acid (EPA) and the potential shortfall in supply due to sustainability and contamination issues related with its conventional sources (i.e., fish oils; seafood) led to an extensive search for alternative and sustainable sources, as well as production processes. The present mini-review covers all the steps involved in the production of EPA from microorganisms, with a deeper focus on microalgae. From production systems to downstream processing, the most important achievements within each area are briefly highlighted. Comparative tables of methodologies are also provided, as well as additional references of recent reviews, so that readers may deepen their knowledge in the different issues addressed. KEY POINTS: • Microorganisms are more sustainable alternative sources of EPA than fish. • Due to the costly separation from DHA, species that produce only EPA are preferable. • EPA production can be optimised using non-genetic and genetic tailoring engineering.
Collapse
Affiliation(s)
- Sérgio Sousa
- CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Ana P Carvalho
- CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal.
| | - Ana M Gomes
- CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| |
Collapse
|
19
|
Kariyawasam T, Helvig C, Petkovich M, Vriens B. Pharmaceutical removal from wastewater by introducing cytochrome P450s into microalgae. Microb Biotechnol 2024; 17:e14515. [PMID: 38925623 PMCID: PMC11197475 DOI: 10.1111/1751-7915.14515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Pharmaceuticals are of increasing environmental concern as they emerge and accumulate in surface- and groundwater systems around the world, endangering the overall health of aquatic ecosystems. Municipal wastewater discharge is a significant vector for pharmaceuticals and their metabolites to enter surface waters as humans incompletely absorb prescription drugs and excrete up to 50% into wastewater, which are subsequently incompletely removed during wastewater treatment. Microalgae present a promising target for improving wastewater treatment due to their ability to remove some pollutants efficiently. However, their inherent metabolic pathways limit their capacity to degrade more recalcitrant organic compounds such as pharmaceuticals. The human liver employs enzymes to break down and absorb drugs, and these enzymes are extensively researched during drug development, meaning the cytochrome P450 enzymes responsible for metabolizing each approved drug are well studied. Thus, unlocking or increasing cytochrome P450 expression in endogenous wastewater microalgae could be a cost-effective strategy to reduce pharmaceutical loads in effluents. Here, we discuss the challenges and opportunities associated with introducing cytochrome P450 enzymes into microalgae. We anticipate that cytochrome P450-engineered microalgae can serve as a new drug removal method and a sustainable solution that can upgrade wastewater treatment facilities to function as "mega livers".
Collapse
Affiliation(s)
- Thamali Kariyawasam
- Department of Geological Sciences and EngineeringQueen's UniversityKingstonOntarioCanada
- Beaty Water Research CenterQueen's UniversityKingstonOntarioCanada
| | - Christian Helvig
- Department of Biomedical EngineeringQueen's UniversityKingstonOntarioCanada
| | - Martin Petkovich
- Department of Biomedical EngineeringQueen's UniversityKingstonOntarioCanada
| | - Bas Vriens
- Department of Geological Sciences and EngineeringQueen's UniversityKingstonOntarioCanada
- Beaty Water Research CenterQueen's UniversityKingstonOntarioCanada
| |
Collapse
|
20
|
Sumathi Y, Dong CD, Singhania RR, Chen CW, Gurunathan B, Patel AK. Advancements in Nano-Enhanced microalgae bioprocessing. BIORESOURCE TECHNOLOGY 2024; 401:130749. [PMID: 38679239 DOI: 10.1016/j.biortech.2024.130749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Microalgae are promising sources of valuable compounds: carotenoids, polyunsaturated fatty acids, lipids, etc. To overcome the feasibility challenge due to low yield and attain commercial potential, researchers merge technologies to enhance algal bioprocess. In this context, nanomaterials are attractive for enhancing microalgal bioprocessing, from cultivation to downstream extraction. Nanomaterials enhance biomass and product yields (mainly lipid and carotenoids) through improved nutrient uptake and stress tolerance during cultivation. They also provide mechanistic insights from recent studies. They also revolutionize harvesting via nano-induced sedimentation, flocculation, and flotation. Downstream processing benefits from nanomaterials, improving extraction and purification. Special attention is given to cost-effective extraction, showcasing nanomaterial integration, and providing a comparative account. The review also profiles nanomaterial types, including metallic nanoparticles, magnetic nanomaterials, carbon-based nanomaterials, silica nanoparticles, polymers, and functionalized nanomaterials. Challenges and future trends are discussed, emphasizing nanomaterials' role in advancing sustainable and efficient microalgal bioprocessing, unlocking their potential for bio-based industries.
Collapse
Affiliation(s)
- Yamini Sumathi
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Reeta Rani Singhania
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Baskar Gurunathan
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai 600119, India
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India.
| |
Collapse
|
21
|
Rasweefali MK, Sabu S, Sreedevi OK, Rahman MKR, Shabeeba TK, Anoop KK, Sasidharan A, Sunooj KV. Influence of chitosan properties and operating parameters on the flocculation efficiency and harvesting of microalgae (Scenedesmus sp.). Int J Biol Macromol 2024; 272:132894. [PMID: 38844285 DOI: 10.1016/j.ijbiomac.2024.132894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/20/2024] [Accepted: 06/02/2024] [Indexed: 06/16/2024]
Abstract
Physicochemical and structural characteristics of chitosan prepared from Deep-sea shrimp (DCs), including degree of deacetylation (DD), molecular weight (Mw), viscosity, crystallinity index (CrI) and surface morphology were compared with a commercial chitosan (CCs). The DCs had a higher DD of 81.33 ± 0.40 %, whereas the CCs had a lower DD of 74.62 ± 0.64 %. Additionally, the DCs exhibited a lower Mw of 192.47 ± 2.5 kDa and viscosity of 646.00 ± 4.00 cP compared to the CCs, which had a Mw of 202.44 ± 0.28 kDa and viscosity of 689.67 ± 5.91 cP. This study investigated the influence of chitosan properties, particularly DD and Mw on the harvesting of Scenedesmus sp. along with the chitosan dosage, pH of the culture medium, mixing speed and time. Under optimal operating conditions, the microalgae removal efficiency of the DCs reached a significantly higher level (94.71 ± 0.20 %) compared to that of CCs (88.25 ± 0.41 %). Chitosan with a higher DD and low Mw demonstrated superior flocculation efficiency. The results highlight the significance of DD and Mw of chitosan and its influence on the flocculation of microalgae, providing valuable insights for optimizing the harvesting process with the non-toxic and natural flocculent, chitosan.
Collapse
Affiliation(s)
- M K Rasweefali
- School of Industrial Fisheries, Cochin University of Science and Technology, Lakeside Campus, Cochin, Kerala 682 016, India.
| | - S Sabu
- School of Industrial Fisheries, Cochin University of Science and Technology, Lakeside Campus, Cochin, Kerala 682 016, India.
| | - O K Sreedevi
- School of Industrial Fisheries, Cochin University of Science and Technology, Lakeside Campus, Cochin, Kerala 682 016, India
| | - M K Raseel Rahman
- Department of Physics, Ansar Women's College, Thrissur, Kerala 680519, India
| | - T K Shabeeba
- Department of Mathematics, Indian Institute of Technology Hyderabad, Telangana 502285, India
| | - K K Anoop
- Department of Physics, Cochin University of Science and Technology, Cochin, Kerala 682 022, India
| | - A Sasidharan
- Department of Fish Processing Technology, Kerala University of Fisheries and Ocean Studies, Cochin, Kerala 682 506, India
| | - K V Sunooj
- Department of Food Science and Technology, Pondicherry University, Puducherry 605014, India
| |
Collapse
|
22
|
Dhandwal A, Bashir O, Malik T, Salve RV, Dash KK, Amin T, Shams R, Wani AW, Shah YA. Sustainable microalgal biomass as a potential functional food and its applications in food industry: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33431-6. [PMID: 38710849 DOI: 10.1007/s11356-024-33431-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/18/2024] [Indexed: 05/08/2024]
Abstract
Microalgae (MA) are the most abundant seaweeds with high nutritional properties. They are accepted as potential biocatalysts for the bioremediation of wastewater. They are widely used in food, feed, and biofuel industries and can potentially be food for future generations. MA-based purification of wastewater technology could be a universal alternative solution for the recovery of resources from wastewater for low-cost biomass feedstock for industry. They provide a wide range of functional components, viz. omega-3 fatty acids, along with a plenteous number of pigments such as ß-carotene, astaxanthin, lutein, phycocyanin, and chlorophyll, which are used extensively as food additives and nutraceuticals. Further, proteins, lipids, vitamins, and carbohydrates are described as nutritional characteristics in MA. They are investigated as single-cell protein, thickening/stabilizing agents, and pigment sources in the food industry. The review emphasizes the production and extraction of nutritional and functional components of algal biomass and the role of microalgal polysaccharides in digestion and nutritional absorption in the gastrointestinal tract. Further, the use of MA in the food industry was also investigated along with their potential therapeutic applications.
Collapse
Affiliation(s)
- Akhil Dhandwal
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Omar Bashir
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Tanu Malik
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Rahul Vinayak Salve
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Kshirod Kumar Dash
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, West Bengal, India.
| | - Tawheed Amin
- Division of Food Science and Technology, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Rafeeya Shams
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Ab Waheed Wani
- Department of Horticulture, Lovely Professional University, Phagwara, Punjab, India
| | - Yasir Abbas Shah
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| |
Collapse
|
23
|
Al-Hammadi M, Güngörmüşler M. New insights into Chlorella vulgaris applications. Biotechnol Bioeng 2024; 121:1486-1502. [PMID: 38343183 DOI: 10.1002/bit.28666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/18/2023] [Accepted: 01/18/2024] [Indexed: 04/14/2024]
Abstract
Environmental pollution is a big challenge that has been faced by humans in contemporary life. In this context, fossil fuel, cement production, and plastic waste pose a direct threat to the environment and biodiversity. One of the prominent solutions is the use of renewable sources, and different organisms to valorize wastes into green energy and bioplastics such as polylactic acid. Chlorella vulgaris, a microalgae, is a promising candidate to resolve these issues due to its ease of cultivation, fast growth, carbon dioxide uptake, and oxygen production during its growth on wastewater along with biofuels, and other productions. Thus, in this article, we focused on the potential of Chlorella vulgaris to be used in wastewater treatment, biohydrogen, biocement, biopolymer, food additives, and preservation, biodiesel which is seen to be the most promising for industrial scale, and related biorefineries with the most recent applications with a brief review of Chlorella and polylactic acid market size to realize the technical/nontechnical reasons behind the cost and obstacles that hinder the industrial production for the mentioned applications. We believe that our findings are important for those who are interested in scientific/financial research about microalgae.
Collapse
Affiliation(s)
- Mohammed Al-Hammadi
- Division of Bioengineering, Graduate School, Izmir University of Economics, Izmir, Türkiye
| | - Mine Güngörmüşler
- Department of Genetics and Bioengineering, Faculty of Engineering, Izmir University of Economics, Izmir, Türkiye
| |
Collapse
|
24
|
Soudagar MEM, Kiong TS, Jathar L, Nik Ghazali NN, Ramesh S, Awasarmol U, Ong HC. Perspectives on cultivation and harvesting technologies of microalgae, towards environmental sustainability and life cycle analysis. CHEMOSPHERE 2024; 353:141540. [PMID: 38423144 DOI: 10.1016/j.chemosphere.2024.141540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/18/2023] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
The development of algae is seen as a potential and ecologically sound approach to address the increasing demands in multiple sectors. However, successful implementation of processes is highly dependent on effective growing and harvesting methods. The present study provides a complete examination of contemporary techniques employed in the production and harvesting of algae, with a particular emphasis on their sustainability. The review begins by examining several culture strategies, encompassing open ponds, closed photobioreactors, and raceway ponds. The analysis of each method is conducted in a systematic manner, with a particular focus on highlighting their advantages, limitations, and potential for expansion. This approach ensures that the conversation is in line with the objectives of sustainability. Moreover, this study explores essential elements of algae harvesting, including the processes of cell separation, dewatering, and biomass extraction. Traditional methods such as centrifugation, filtration, and sedimentation are examined in conjunction with novel, environmentally concerned strategies including flocculation, electro-coagulation, and membrane filtration. It evaluates the impacts on the environment that are caused by the cultivation process, including the usage of water and land, the use of energy, the production of carbon dioxide, and the runoff of nutrients. Furthermore, this study presents a thorough examination of the current body of research pertaining to Life Cycle Analysis (LCA) studies, presenting a perspective that emphasizes sustainability in the context of algae harvesting systems. In conclusion, the analysis ends up with an examination ahead at potential areas for future study in the cultivation and harvesting of algae. This review is an essential guide for scientists, policymakers, and industry experts associated with the advancement and implementation of algae-based technologies.
Collapse
Affiliation(s)
- Manzoore Elahi M Soudagar
- Institute of Sustainable Energy (ISE), Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor, Malaysia; Department of Mechanical Engineering, Graphic Era (Deemed to be University), Dehradun, Uttarakhand - 248002, India; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah, 64001, Iraq.
| | - Tiong Sieh Kiong
- Institute of Sustainable Energy (ISE), Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor, Malaysia.
| | - Laxmikant Jathar
- Department of Mechanical Engineering, Army Institute of Technology, Pune, 411015, India.
| | - Nik Nazri Nik Ghazali
- Department of Mechanical Engineering, Faculty of Engineering, University Malaya, 50603 Kuala Lumpur, Malaysia.
| | - S Ramesh
- Institute of Sustainable Energy (ISE), Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor, Malaysia; Department of Mechanical Engineering, Faculty of Engineering, University Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Umesh Awasarmol
- Department of Mechanical Engineering, Army Institute of Technology, Pune, 411015, India.
| | - Hwai Chyuan Ong
- Department of Engineering, School of Engineering and Technology, Sunway University, Jalan Universiti, Bandar Sunway, 47500, Selangor, Malaysia.
| |
Collapse
|
25
|
Ayub HMU, Nizami M, Qyyum MA, Iqbal N, Al-Muhtaseb AH, Hasan M. Sustainable hydrogen production via microalgae: Technological advancements, economic indicators, environmental aspects, challenges, and policy implications. ENVIRONMENTAL RESEARCH 2024; 244:117815. [PMID: 38048865 DOI: 10.1016/j.envres.2023.117815] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023]
Abstract
Hydrogen has emerged as an alternative energy source to meet the increasing global energy demand, depleting fossil fuels and environmental issues resulting from fossil fuel consumption. Microalgae-based biomass is gaining attention as a potential source of hydrogen production due to its green energy carrier properties, high energy content, and carbon-free combustion. This review examines the hydrogen production process from microalgae, including the microalgae cultivation technological process for biomass production, and the three main routes of biomass-to-hydrogen production: thermochemical conversion, photo biological conversion, and electrochemical conversion. The current progress of technological options in the three main routes is presented, with the various strains of microalgae and operating conditions of the processes. Furthermore, the economic and environmental perspectives of biomass-to-hydrogen from microalgae are evaluated, and critical operational parameters are used to assess the feasibility of scaling up biohydrogen production for commercial industrial-scale applications. The key finding is the thermochemical conversion process is the most feasible process for biohydrogen production, compared to the pyrolysis process. In the photobiological and electrochemical process, pure hydrogen can be achieved, but further process development is required to enhance the production yield. In addition, the high production cost is the main challenge in biohydrogen production. The cost of biohydrogen production for direct bio photolysis it cost around $7.24 kg-1; for indirect bio photolysis it costs around $7.54 kg-1 and for fermentation, it costs around $7.61 kg-1. Therefore, comprehensive studies and efforts are required to make biohydrogen production from microalgae applications more economical in the future.
Collapse
Affiliation(s)
| | - Muhammad Nizami
- Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Depok, 16424, Indonesia
| | - Muhammad Abdul Qyyum
- Department of Petroleum and Chemical Engineering, College of Engineering, Sultan Qaboos University, Muscat, Oman.
| | - Noman Iqbal
- Department of Mechanical, Robotics, and Energy Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Ala'a H Al-Muhtaseb
- Department of Petroleum and Chemical Engineering, College of Engineering, Sultan Qaboos University, Muscat, Oman
| | - Mudassir Hasan
- Department of Chemical Engineering, King Khalid University, Abha, Kingdom of Saudi Arabia
| |
Collapse
|
26
|
Saleem MH, Mfarrej MFB, Khan KA, Alharthy SA. Emerging trends in wastewater treatment: Addressing microorganic pollutants and environmental impacts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169755. [PMID: 38176566 DOI: 10.1016/j.scitotenv.2023.169755] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
This review focuses on the challenges and advances associated with the treatment and management of microorganic pollutants, encompassing pesticides, industrial chemicals, and persistent organic pollutants (POPs) in the environment. The translocation of these contaminants across multiple media, particularly through atmospheric transport, emphasizes their pervasive nature and the subsequent ecological risks. The urgency to develop cost-effective remediation strategies for emerging organic contaminants is paramount. As such, wastewater-based epidemiology and the increasing concern over estrogenicity are explored. By incorporating conventional and innovative wastewater treatment techniques, this article highlights the integration of environmental management strategies, analytical methodologies, and the importance of renewable energy in waste treatment. The primary objective is to provide a comprehensive perspective on the current scenario, imminent threats, and future directions in mitigating the effects of these pollutants on the environment. Furthermore, the review underscores the need for international collaboration in developing standardized guidelines and policies for monitoring and controlling these microorganic pollutants. It advocates for increased investment in research and development of advanced materials and technologies that can efficiently remove or neutralize these contaminants, thereby safeguarding environmental health and promoting sustainable practice.
Collapse
Affiliation(s)
- Muhammad Hamzah Saleem
- Office of Academic Research, Office of VP for Research & Graduate Studies, Qatar University, Doha 2713, Qatar.
| | - Manar Fawzi Bani Mfarrej
- Department of Life and Environmental Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates.
| | - Khalid Ali Khan
- Applied College, Center of Bee Research and its Products, Unit of Bee Research and Honey Production, and Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia.
| | - Saif A Alharthy
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia; Toxicology and Forensic Sciences Unit, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
27
|
Guzmán-Olivos F, Hernández-Saravia LP, Nelson R, Perez MDLA, Villalobos F. Nanocatalysis MoS 2/rGO: An Efficient Electrocatalyst for the Hydrogen Evolution Reaction. Molecules 2024; 29:523. [PMID: 38276600 PMCID: PMC10819749 DOI: 10.3390/molecules29020523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
In this study, a systematic investigation of MoS2 nanostructure growth on a SiO2 substrate was conducted using a two-stage process. Initially, a thin layer of Mo was grown through sputtering, followed by a sulfurization process employing the CVD technique. This two-stage process enables the control of diverse nanostructure formations of both MoS2 and MoO3 on SiO2 substrates, as well as the formation of bulk-like grain structures. Subsequently, the addition of reduced graphene oxide (rGO) was examined, resulting in MoS2/rGO(n), where graphene is uniformly deposited on the surface, exposing a higher number of active sites at the edges and consequently enhancing electroactivity in the HER. The influence of the synthesis time on the treated MoS2 and also MoS2/rGO(n) samples is evident in their excellent electrocatalytic performance with a low overpotential.
Collapse
Affiliation(s)
- Fernando Guzmán-Olivos
- Departamento de Física, Facultad de Ciencias, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta 1270709, Chile; (M.d.l.A.P.); (F.V.)
| | | | - Ronald Nelson
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta 1270709, Chile;
| | - Maria de los Angeles Perez
- Departamento de Física, Facultad de Ciencias, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta 1270709, Chile; (M.d.l.A.P.); (F.V.)
| | - Francisco Villalobos
- Departamento de Física, Facultad de Ciencias, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta 1270709, Chile; (M.d.l.A.P.); (F.V.)
| |
Collapse
|
28
|
Mugnai S, Derossi N, Hendlin Y. Algae communication, conspecific and interspecific: the concepts of phycosphere and algal-bacteria consortia in a photobioreactor (PBR). PLANT SIGNALING & BEHAVIOR 2023; 18:2148371. [PMID: 36934349 PMCID: PMC10026891 DOI: 10.1080/15592324.2022.2148371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/12/2022] [Accepted: 11/12/2022] [Indexed: 06/18/2023]
Abstract
Microalgae in the wild often form consortia with other species promoting their own health and resource foraging opportunities. The recent application of microalgae cultivation and deployment in commercial photobioreactors (PBR) so far has focussed on single species of algae, resulting in multi-species consortia being largely unexplored. Reviewing the current status of PBR ecological habitat, this article argues in favor of further investigation into algal communication with conspecifics and interspecifics, including other strains of microalgae and bacteria. These mutualistic species form the 'phycosphere': the microenvironment surrounding microalgal cells, potentiating the production of certain metabolites through biochemical interaction with cohabitating microorganisms. A better understanding of the phycosphere could lead to novel PBR configurations, capable of incorporating algal-microbial consortia, potentially proving more effective than single-species algal systems.
Collapse
Affiliation(s)
| | | | - Yogi Hendlin
- Erasmus School of Philosophy, Erasmus University, Rotterdam, Netherlands
| |
Collapse
|
29
|
Qin J, Kurt E, LBassi T, Sa L, Xie D. Biotechnological production of omega-3 fatty acids: current status and future perspectives. Front Microbiol 2023; 14:1280296. [PMID: 38029217 PMCID: PMC10662050 DOI: 10.3389/fmicb.2023.1280296] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Omega-3 fatty acids, including alpha-linolenic acids (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), have shown major health benefits, but the human body's inability to synthesize them has led to the necessity of dietary intake of the products. The omega-3 fatty acid market has grown significantly, with a global market from an estimated USD 2.10 billion in 2020 to a predicted nearly USD 3.61 billion in 2028. However, obtaining a sufficient supply of high-quality and stable omega-3 fatty acids can be challenging. Currently, fish oil serves as the primary source of omega-3 fatty acids in the market, but it has several drawbacks, including high cost, inconsistent product quality, and major uncertainties in its sustainability and ecological impact. Other significant sources of omega-3 fatty acids include plants and microalgae fermentation, but they face similar challenges in reducing manufacturing costs and improving product quality and sustainability. With the advances in synthetic biology, biotechnological production of omega-3 fatty acids via engineered microbial cell factories still offers the best solution to provide a more stable, sustainable, and affordable source of omega-3 fatty acids by overcoming the major issues associated with conventional sources. This review summarizes the current status, key challenges, and future perspectives for the biotechnological production of major omega-3 fatty acids.
Collapse
Affiliation(s)
| | | | | | | | - Dongming Xie
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, United States
| |
Collapse
|
30
|
Liu Z, Hao N, Hou Y, Wang Q, Liu Q, Yan S, Chen F, Zhao L. Technologies for harvesting the microalgae for industrial applications: Current trends and perspectives. BIORESOURCE TECHNOLOGY 2023; 387:129631. [PMID: 37544545 DOI: 10.1016/j.biortech.2023.129631] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Microalgae are emerging as a promising source for augmenting the supply of essential products to meet global demands in an environmentally sustainable manner. Despite the potential benefits of microalgae in industry, the high energy consumption for harvesting remains a significant obstacle. This review offers a comprehensive overview of microalgae harvesting technologies and their industrial applications, with particular emphasis on the latest advances in flocculation techniques. These cutting-edge methods have been applied to biodiesel production, food and nutraceutical processing, and wastewater treatment. Large-scale harvesting is still severely impeded by the high cost despite progress has been made in laboratory studies. In the future, cost-effective microalgal harvesting will rely on efficient resource utilization, including the use of waste materials and the reuse of media and flocculants. Additionally, precise regulation of biological metabolism will be necessary to overcome algal species-related limitations through the development of extracellular polymeric substance-induced flocculation technology.
Collapse
Affiliation(s)
- Zhiyong Liu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Nahui Hao
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yuyong Hou
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Qing Wang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Qingling Liu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Suihao Yan
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Fangjian Chen
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Lei Zhao
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, China.
| |
Collapse
|
31
|
Vickram S, Manikandan S, Deena SR, Mundike J, Subbaiya R, Karmegam N, Jones S, Kumar Yadav K, Chang SW, Ravindran B, Kumar Awasthi M. Advanced biofuel production, policy and technological implementation of nano-additives for sustainable environmental management - A critical review. BIORESOURCE TECHNOLOGY 2023; 387:129660. [PMID: 37573978 DOI: 10.1016/j.biortech.2023.129660] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
This review article critically evaluates the significance of adopting advanced biofuel production techniques that employ lignocellulosic materials, waste biomass, and cutting-edge technology, to achieve sustainable environmental stewardship. Through the analysis of conducted research and development initiatives, the study highlights the potential of these techniques in addressing the challenges of feedstock supply and environmental impact and implementation policies that have historically plagued the conventional biofuel industry. The integration of state-of-the-art technologies, such as nanotechnology, pre-treatments and enzymatic processes, has shown considerable promise in enhancing the productivity, quality, and environmental performance of biofuel production. These developments have improved conversion methods, feedstock efficiency, and reduced environmental impacts. They aid in creating a greener and sustainable future by encouraging the adoption of sustainable feedstocks, mitigating greenhouse gas emissions, and accelerating the shift to cleaner energy sources. To realize the full potential of these techniques, continued collaboration between academia, industry representatives, and policymakers remains essential.
Collapse
Affiliation(s)
- Sundaram Vickram
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602 105. Tamil Nadu, India
| | - S Manikandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602 105. Tamil Nadu, India
| | - S R Deena
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602 105. Tamil Nadu, India
| | - Jhonnah Mundike
- Department of Environmental Engineering, School of Mines & Mineral Sciences, The Copperbelt University, Riverside Jambo Drive, PO Box 21692, Kitwe, Zambia
| | - R Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692, Kitwe, Zambia
| | - N Karmegam
- PG and Research Department of Botany, Government Arts College (Autonomous), Salem 636007, Tamil Nadu, India
| | - Sumathi Jones
- Department of Pharmacology and Therapeutics, Sree Balaji Dental College and Hospital, BIHER, Chennai, India
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal 462044, India; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah, 64001, Iraq
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University Yeongtong-Gu, Suwon, Gyeonggi-Do 16227, Republic of Korea
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University Yeongtong-Gu, Suwon, Gyeonggi-Do 16227, Republic of Korea; Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
32
|
Selvam A, Aggarwal T, Mukherjee M, Verma YK. Humans and robots: Friends of the future? A bird's eye view of biomanufacturing industry 5.0. Biotechnol Adv 2023; 68:108237. [PMID: 37604228 DOI: 10.1016/j.biotechadv.2023.108237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/15/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
The evolution of industries have introduced versatile technologies, motivating limitless possibilities of tackling pivotal global predicaments in the arenas of medicine, environment, defence, and national security. In this direction, ardently emerges the new era of Industry 5.0 through the eyes of biomanufacturing, which integrates the most advanced systems 21st century has to offer by means of integrating artificial systems to mimic and nativize the natural milieu to substitute the deficits of nature, thence leading to a new meta world. Albeit, it questions the natural order of the living world, which necessitates certain paramount stipulations to be addressed for a successful expansion of biomanufacturing Industry 5.0. Can humans live in synergism with artificial beings? How can humans establish dominance of hierarchy with artificial counterparts? This perspective provides a bird's eye view on the plausible direction of a new meta world inquisitively. For this purpose, we propose the influence of internet of things (IoT) via new generation interfacial systems, such as, human-machine interface (HMI) and brain-computer interface (BCI) in the domain of tissue engineering and regenerative medicine, which can be extended to target modern warfare and smart healthcare.
Collapse
Affiliation(s)
- Abhyavartin Selvam
- Amity Institute of Nanotechnology, Amity University Noida, Uttar Pradesh 201303, India
| | - Tanishka Aggarwal
- Department of Biotechnology, School of Chemical and Life Sciences (SCLS) Jamia Hamdard, New Delhi 110062, India
| | - Monalisa Mukherjee
- Amity Institute of Click Chemistry Research and Studies, Amity University Noida, Uttar Pradesh 201303, India
| | - Yogesh Kumar Verma
- Stem Cell & Tissue Engineering Research Group, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organisation, New Delhi 110054, India.
| |
Collapse
|
33
|
Chaos-Hernández D, Reynel-Ávila HE, Bonilla-Petriciolet A, Villalobos-Delgado FJ. Extraction methods of algae oils for the production of third generation biofuels - A review. CHEMOSPHERE 2023; 341:139856. [PMID: 37598949 DOI: 10.1016/j.chemosphere.2023.139856] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/19/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
Microalgae are the main source of third-generation biofuels because they have a lipid content of 20-70%, can be abundantly produced and do not compete in the food market besides other benefits. Biofuel production from microalgae is a promising option to contribute for the resolution of the eminent crisis of fossil energy and environmental pollution specially in the transporting sector. The choice of lipid extraction method is of relevance and associated to the algae morphology (i.e., rigid cells). Therefore, it is essential to develop suitable extraction technologies for economically viable and environment-friendly lipid recovery processes with the aim of achieving a commercial production of biofuels from this biomass. This review presents an exhaustive analysis and discussion of different methods and processes of lipid extraction from microalgae for the subsequent conversion to biodiesel. Physical methods based on the use of supercritical fluids, ultrasound and microwaves were reviewed. Chemical methods using solvents with different polarities, aside from mechanical techniques such as mechanical pressure and enzymatic methods, were also analyzed. The advantages, drawbacks, challenges and future prospects of lipid extraction methods from microalgae have been summarized to provide a wide panorama of this relevant topic for the production of economic and sustainable energy worldwide.
Collapse
Affiliation(s)
- D Chaos-Hernández
- Instituto Tecnológico de Aguascalientes, Av. Adolfo López Mateos #1801, Aguascalientes, Ags., C.P. 20256, Mexico
| | - H E Reynel-Ávila
- Instituto Tecnológico de Aguascalientes, Av. Adolfo López Mateos #1801, Aguascalientes, Ags., C.P. 20256, Mexico; CONACYT, Av. Insurgentes 1582 Sur, Ciudad de México, 03940, Aguascalientes, Ags, Mexico.
| | - A Bonilla-Petriciolet
- Instituto Tecnológico de Aguascalientes, Av. Adolfo López Mateos #1801, Aguascalientes, Ags., C.P. 20256, Mexico
| | - F J Villalobos-Delgado
- Instituto Tecnológico de Aguascalientes, Av. Adolfo López Mateos #1801, Aguascalientes, Ags., C.P. 20256, Mexico
| |
Collapse
|
34
|
Tarbajova V, Kolackova M, Chaloupsky P, Dobesova M, Capal P, Pilat Z, Samek O, Zemanek P, Svec P, Sterbova DS, Vaculovicova M, Richtera L, Pérez-de-Mora A, Adam V, Huska D. Physiological and transcriptome profiling of Chlorella sorokiniana: A study on azo dye wastewater decolorization. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132450. [PMID: 37708651 DOI: 10.1016/j.jhazmat.2023.132450] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/02/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023]
Abstract
Over decades, synthetic dyes have become increasingly dominated by azo dyes posing a significant environmental risk due to their toxicity. Microalgae-based systems may offer an alternative for treatment of azo dye effluents to conventional physical-chemical methods. Here, microalgae were tested to decolorize industrial azo dye wastewater (ADW). Chlorella sorokiniana showed the highest decolorization efficiency in a preliminary screening test. Subsequently, the optimization of the experimental design resulted in 70% decolorization in a photobioreactor. Tolerance of this strain was evidenced using multiple approaches (growth and chlorophyll content assays, scanning electron microscopy (SEM), and antioxidant level measurements). Raman microspectroscopy was employed for the quantification of ADW-specific compounds accumulated by the microalgal biomass. Finally, RNA-seq revealed the transcriptome profile of C. sorokiniana exposed to ADW for 72 h. Activated DNA repair and primary metabolism provided sufficient energy for microalgal growth to overcome the adverse toxic conditions. Furthermore, several transporter genes, oxidoreductases-, and glycosyltransferases-encoding genes were upregulated to effectively sequestrate and detoxify the ADW. This work demonstrates the potential utilization of C. sorokiniana as a tolerant strain for industrial wastewater treatment, emphasizing the regulation of its molecular mechanisms to cope with unfavorable growth conditions.
Collapse
Affiliation(s)
- Vladimira Tarbajova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Martina Kolackova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Pavel Chaloupsky
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Marketa Dobesova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Petr Capal
- Institute of Experimental Botany, Centre of the Region Hana for Biotechnological and Agricultural Research, Slechtitelu 241/27, 783 71 Olomouc, Czech Republic
| | - Zdenek Pilat
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Kralovopolska 147, 612 64 Brno, Czech Republic
| | - Ota Samek
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Kralovopolska 147, 612 64 Brno, Czech Republic
| | - Pavel Zemanek
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Kralovopolska 147, 612 64 Brno, Czech Republic
| | - Pavel Svec
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Dagmar Skopalova Sterbova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Marketa Vaculovicova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Lukas Richtera
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Alfredo Pérez-de-Mora
- Department of Soil and Groundwater, TAUW GmbH, Landsbergerstr. 404, 81241 Munich, Germany
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Dalibor Huska
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic.
| |
Collapse
|
35
|
Leong WH, Rawindran H, Ameen F, Alam MM, Chai YH, Ho YC, Lam MK, Lim JW, Tong WY, Bashir MJK, Ravindran B, Alsufi NA. Advancements of microalgal upstream technologies: Bioengineering and application aspects in the paradigm of circular bioeconomy. CHEMOSPHERE 2023; 339:139699. [PMID: 37532206 DOI: 10.1016/j.chemosphere.2023.139699] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/24/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
Sustainable energy transition has brought the attention towards microalgae utilization as potential feedstock due to its tremendous capabilities over its predecessors for generating more energy with reduced carbon footprint. However, the commercialization of microalgae feedstock remains debatable due to the various factors and considerations taken into scaling-up the conventional microalgal upstream processes. This review provides a state-of-the-art assessment over the recent developments of available and existing microalgal upstream cultivation systems catered for maximum biomass production. The key growth parameters and main cultivation modes necessary for optimized microalgal growth conditions along with the fundamental aspects were also reviewed and evaluated comprehensively. In addition, the advancements and strategies towards potential scale-up of the microalgal cultivation technologies were highlighted to provide insights for further development into the upstream processes aimed at sustainable circular bioeconomy.
Collapse
Affiliation(s)
- Wai Hong Leong
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia; Algal Bio Co. Ltd, Todai-Kashiwa Venture Plaza, 5-4-19 Kashiwanoha, Kashiwa, Chiba, 277-0082, Japan.
| | - Hemamalini Rawindran
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammad Mahtab Alam
- Department of Basic Medical Sciences, College of Applied Medical Science, King Khalid University, Abha, 61421, Saudi Arabia
| | - Yee Ho Chai
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Yeek Chia Ho
- Centre for Urban Resource Sustainability, Institute of Self-Sustainable Building, Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Man Kee Lam
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India.
| | - Woei-Yenn Tong
- Universiti Kuala Lumpur, Institute of Medical Science Technology, A1-1, Jalan TKS 1, Taman Kajang Sentral, 43000, Kajang, Selangor, Malaysia
| | - Mohammed J K Bashir
- Department of Environmental Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900, Kampar, Perak, Malaysia
| | - Balasubramani Ravindran
- Department of Environmental Energy & Engineering, Kyonggi University, Suwon-si, Gyeonggi-do, 16227, South Korea
| | - Nizar Abdallah Alsufi
- Department of Management Information System and Production Management, College of Business & Economics, Qassim University, P.O. BOX 6666, Buraydah, 51452, Saudi Arabia
| |
Collapse
|
36
|
Mou Y, Liu N, Su K, Li X, Lu T, Yu Z, Song M. The growth and lipid accumulation of Scenedesmus quadricauda under nitrogen starvation stress during xylose mixotrophic/heterotrophic cultivation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:98934-98946. [PMID: 36502485 DOI: 10.1007/s11356-022-24579-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
In order to conquer the block of high cost and low yields which limit to realize the commercialization of microalgal biodiesel, the mixotrophic and heterotrophic cultivation of Scenedesmus quadricauda FACHB-1297 fed on xylose was separately studied employing six forms of media: phosphorus sufficient, phosphorus restricted, and phosphorus starvation were combined with nitrogen sufficient and nitrogen starvation conditions. The maximum lipid content (about 41% of dry weight) was obtained on the 5th day (heterotrophic cultivation) and 8th day (mixotrophic cultivation) under the nitrogen starved and phosphorus sufficient (N0&P) conditions, which was about twofold in comparison to the final lipid content on the sufficient nitrogen condition (control). Under mixotrophic and heterotrophic modes, the highest lipid production was achieved in the N0&P trial, with the value of 274.96 mg/L and 193.77 mg/L, respectively. Xylose utilization rate of 30-96% under heterotrophic modes was apparently higher than that of 20-50% in mixotrophic modes. In contrast, phosphorus uptake rate of 100% under mixotrophic cultivation was significantly more than that of 60-90% in heterotrophic cultivation. Furthermore, under the condition of heterotrophic cultivation using xylose as a carbon source, the phosphorus had a positive impact on microalgae cell synthesis and the lipid content enhanced with the augmentation in phosphorus concentrations. We suggested that sufficient phosphorus should be supplied for obtaining higher microalgal lipid production in the lack of nitrogen under xylose heterotrophic/mixotrophic condition. This was a highly effective way to obtain efficient microalgae lipid production.
Collapse
Affiliation(s)
- Yiwen Mou
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China
| | - Na Liu
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China
| | - Kunyang Su
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China
| | - Xue Li
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China
| | - Tianxiang Lu
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China
| | - Ze Yu
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| | - Mingming Song
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China.
| |
Collapse
|
37
|
Novoveská L, Nielsen SL, Eroldoğan OT, Haznedaroglu BZ, Rinkevich B, Fazi S, Robbens J, Vasquez M, Einarsson H. Overview and Challenges of Large-Scale Cultivation of Photosynthetic Microalgae and Cyanobacteria. Mar Drugs 2023; 21:445. [PMID: 37623726 PMCID: PMC10455696 DOI: 10.3390/md21080445] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
Microalgae and cyanobacteria are diverse groups of organisms with great potential to benefit societies across the world. These organisms are currently used in food, feed, pharmaceutical and cosmetic industries. In addition, a variety of novel compounds are being isolated. Commercial production of photosynthetic microalgae and cyanobacteria requires cultivation on a large scale with high throughput. However, scaling up production from lab-based systems to large-scale systems is a complex and potentially costly endeavor. In this review, we summarise all aspects of large-scale cultivation, including aims of cultivation, species selection, types of cultivation (ponds, photobioreactors, and biofilms), water and nutrient sources, temperature, light and mixing, monitoring, contamination, harvesting strategies, and potential environmental risks. Importantly, we also present practical recommendations and discuss challenges of profitable large-scale systems associated with economical design, effective operation and maintenance, automation, and shortage of experienced phycologists.
Collapse
Affiliation(s)
| | | | - Orhan Tufan Eroldoğan
- Department of Aquaculture, Faculty of Fisheries, Cukurova University, 01330 Adana, Türkiye
| | | | | | - Stefano Fazi
- Water Research Institute, National Research Council of Italy (IRSA-CNR), 00015 Roma, Italy
| | - Johan Robbens
- Flanders Research Institute for Agriculture, Fisheries and Food, 9820 Merelbeke, Belgium
| | - Marlen Vasquez
- Department of Chemical Engineering, Cyprus University of Technology, Limassol 3036, Cyprus
| | - Hjörleifur Einarsson
- Faculty of Natural Resource Sciences, University of Akureyri, 600 Akureyri, Iceland
| |
Collapse
|
38
|
Liao Y, Fatehi P, Liao B. Surface properties of membrane materials and their role in cell adhesion and biofilm formation of microalgae. BIOFOULING 2023; 39:879-895. [PMID: 37965865 DOI: 10.1080/08927014.2023.2280005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/28/2023] [Indexed: 11/16/2023]
Abstract
In this study, the effects of surface properties of membrane materials on microalgae cell adhesion and biofilm formation were investigated using Chlorella vulgaris and five different types of membrane materials under hydrodynamic conditions. The results suggest that the contact angle (hydrophobicity), surface free energy, and free energy of cohesion of membrane materials alone could not sufficiently elucidate the selectivity of microalgae cell adhesion and biofilm formation on membrane materials surfaces, and membrane surface roughness played a dominant role in controlling biofilm formation rate, under tested hydrodynamic conditions. A lower level of biofilm EPS production was generally associated with a larger amount of biofilm formation. The zeta potential of membrane materials could enhance initial microalgae cell adhesion and biofilm formation through salt bridging or charge neutralization mechanisms.
Collapse
Affiliation(s)
- Yichen Liao
- Department of Chemical Engineering, Lakehead University, Thunder Bay, Ontario, Canada
| | - Pedram Fatehi
- Department of Chemical Engineering, Lakehead University, Thunder Bay, Ontario, Canada
| | - Baoqiang Liao
- Department of Chemical Engineering, Lakehead University, Thunder Bay, Ontario, Canada
| |
Collapse
|
39
|
Akhtar K, Khan MSJ, Bakhsh EM, Kamal T, Asiri AM, Khan SB. Chitosan hydrogel anchored phthalocyanine supported metal nanoparticles: Bifunctional catalysts for pollutants reduction and hydrogen production. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121524. [PMID: 37003583 DOI: 10.1016/j.envpol.2023.121524] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/24/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Metal nanoparticles possess high catalytic activity in various organic transformation reactions. A catalyst must be recovered and re-used effectively and economically to lower the overall reaction cost. The recovery of a catalyst remains a challenge due to their extreme small size. In this research work, catalytic metal nanoparticles were synthesized on Zn-phthalocyanine (ZnPc) and chitosan hydrogel (CH) composite which acts as catalyst support. The ZnPc-CH support facilitate the easy recovery of the loaded metal nanoparticles. Metal nanoparticles (M0) based on Cu0, Ag0, Ni0, Co0 and Fe0 were decorated inside and on ZnPc-CH hydrogel surface. The developed M0@ZnPc-CH were utilized for the enhanced selective reduction of toxins and hydrogen production by methanolysis and hydrolysis of NaBH4. Effective catalytic reduction and hydrogen generation was successfully achieved with Co0@ZnPc-CH and ZnPc-CH. Under optimized conditions, Co0@ZnPc-CH showed complete reduction of 4-nitrophenol (4-NP) in 8.0 min with the fast 4-NP reduction kinetics (K = 0.611 min-1). Among the developed catalysts, ZnPc-CH showed fast H2 generation with high H2 generation rate (HGR = 4100 mLg-1min-1) under optimized conditions. Metal leaching from Co0@ZnPc-CH was negligible during recycling of the catalyst, suggesting that it could be implemented to 4-NP treatment from real water samples. Similarly, ZnPc-CH could produce same quantity of H2 throughout 4 continuous cycles of durability testing without any deactivation and leaching and ZnPc-CH showed high stability, indicating the effectiveness of the catalyst to be applied for H2 production on large scale.
Collapse
Affiliation(s)
- Kalsoom Akhtar
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Mohammad Sherjeel Javed Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia; Department of Chemistry, Bacha Khan University, Charsadda, P.O. Box 24420, KP, Pakistan
| | - Esraa M Bakhsh
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Tahseen Kamal
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia; Center of Excellence for Advanced Materials, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Abdullah M Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia; Center of Excellence for Advanced Materials, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Sher Bahadar Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.
| |
Collapse
|
40
|
Fathy WA, AbdElgawad H, Essawy EA, Tawfik E, Abdelhameed MS, Hammouda O, Korany SM, Elsayed KNM. Glycine differentially improved the growth and biochemical composition of Synechocystis sp. PAK13 and Chlorella variabilis DT025. Front Bioeng Biotechnol 2023; 11:1161911. [PMID: 37324419 PMCID: PMC10267400 DOI: 10.3389/fbioe.2023.1161911] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023] Open
Abstract
The potential of microalgae to produce valuable compounds has garnered considerable attention. However, there are various challenges that hinder their large-scale industrial utilization, such as high production costs and the complexities associated with achieving optimal growth conditions. Therefore, we investigated the effects of glycine at different concentrations on the growth and bioactive compounds production of Synechocystis sp. PAK13 and Chlorella variabilis cultivated under nitrogen availability. Glycine supplementation resulted in increased biomass and bioactive primary metabolites accumulation in both species. Sugar production, particularly glucose content, significantly improved in Synechocystis at 3.33 mM glycine (1.4 mg/g). This led to enhanced organic acid, particularly malic acid, and amino acids production. Glycine stress also influenced the concentration of indole-3-acetic acid, which was significantly higher in both species compared to the control. Furthermore, fatty acids content increased by 2.5-fold in Synechocystis and by 1.36-fold in Chlorella. Overall, the exogenous application of glycine is a cheap, safe, and effective approach to enhancing sustainable microalgal biomass and bioproducts production.
Collapse
Affiliation(s)
- Wael A. Fathy
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Hamada AbdElgawad
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerpen, Belgium
| | - Ehab A. Essawy
- Biochemistry Division, Chemistry Department, Faculty of Science, Helwan University, Helwan, Egypt
| | - Eman Tawfik
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan, Egypt
| | - Mohamed S. Abdelhameed
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Ola Hammouda
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Shereen Magdy Korany
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Khaled N. M. Elsayed
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
41
|
Farfan-Cabrera LI, Rojo-Valerio A, Calderon-Najera JDD, Coronado-Apodaca KG, Iqbal HM, Parra-Saldivar R, Franco-Morgado M, Elias-Zuñiga A. Microalgae Oil-Based Metal Working Fluids for Sustainable Minimum Quantity Lubrication (MQL) Operations—A Perspective. LUBRICANTS 2023; 11:215. [DOI: 10.3390/lubricants11050215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
This article presents a perspective on the potential use of microalgae oils in the production of metal working fluids (MWFs) used for minimum quantity lubrication (MQL) operations. The generalities of MQL operations and requirements of MWFs, and current advances in the development of the most promising microalgae oils with high contents of saturated, monounsaturated, and polyunsaturated fatty acids were reviewed and discussed. The analysis of data, discussions, and conclusions of numerous studies published recently and combined with the experience of the multidisciplinary team of authors strongly suggest that microalgae oils do indeed have great potential as sustainable and eco-friendly base oils for producing semi-synthetic MWFs, soluble oils and straight cutting fluids for MQL operations. Additionally, gaps and challenges focused on the use of agro-industry wastewater in microalgae production, green harvesting and oil extraction methods, and replacement of toxic additives in MWFs by green nanoparticles and biopolymers were identified and highlighted for achieving massive microalgae oil-based MWFs production and truly green machining processes.
Collapse
Affiliation(s)
- Leonardo I. Farfan-Cabrera
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico
| | - Alejandro Rojo-Valerio
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico
| | - Juan de Dios Calderon-Najera
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico
| | - Karina G. Coronado-Apodaca
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico
| | - Hafiz M.N. Iqbal
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico
| | - Roberto Parra-Saldivar
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico
| | - Mariana Franco-Morgado
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico
- Tecnologico de Monterrey, The Institute for Obesity Research, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico
| | - Alex Elias-Zuñiga
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico
| |
Collapse
|
42
|
Peng H, Huang Y, Xia A, Zhu X, Zhu X, Liao Q. Revealing mechanism and influence of microalgae cells' periodical auto-agglomeration induced by high concentration of carbon dioxide. BIORESOURCE TECHNOLOGY 2023; 382:129120. [PMID: 37141996 DOI: 10.1016/j.biortech.2023.129120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
The efficient cultivation of microalgae using CO2 from flue gas can be a win-win situation for both environmental protection and energy accessibility. In general, 10-20% of CO2 in flue gas would decrease pH and inhibit microalgae growth. However, Chlorella sorokiniana MB-1 under 15% CO2 showed a periodical auto-agglomeration, which promoted microalgae growth on the contrary in this study. The maximum biomass concentration of 3.27 g L-1 was higher than that cultivated with an optimal CO2 concentration. The pH decreased to 6.04 after the mixed gas with 15% CO2 (v/v) was bubbled into medium for 0.5 hours, which resulted in auto-agglomeration to protect microalgae from acidification and keep a high specific growth rate of 0.03 h-1. Then the pH recovered to 7 during stabilization phase, auto-agglomeration ratio was up to 100% because of lamellar extracellular polymeric substances. Therefore, the interesting periodical agglomeration both enhanced growth and simplified harvesting.
Collapse
Affiliation(s)
- Hongyan Peng
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Yun Huang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Ao Xia
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Xianqing Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
43
|
Huang KX, Vadiveloo A, Zhou JL, Yang L, Chen DZ, Gao F. Integrated culture and harvest systems for improved microalgal biomass production and wastewater treatment. BIORESOURCE TECHNOLOGY 2023; 376:128941. [PMID: 36948428 DOI: 10.1016/j.biortech.2023.128941] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 06/18/2023]
Abstract
Microalgae cultivation in wastewater has received much attention as an environmentally sustainable approach. However, commercial application of this technique is challenging due to the low biomass output and high harvesting costs. Recently, integrated culture and harvest systems including microalgae biofilm, membrane photobioreactor, microalgae-fungi co-culture, microalgae-activated sludge co-culture, and microalgae auto-flocculation have been explored for efficiently coupling microalgal biomass production with wastewater purification. In such systems, the cultivation of microalgae and the separation of algal cells from wastewater are performed in the same reactor, enabling microalgae grown in the cultivation system to reach higher concentration, thus greatly improving the efficiency of biomass production and wastewater purification. Additionally, the design of such innovative systems also allows for microalgae cells to be harvested more efficiently. This review summarizes the mechanisms, characteristics, applications, and development trends of the various integrated systems and discusses their potential for broad applications, which worth further research.
Collapse
Affiliation(s)
- Kai-Xuan Huang
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; National Engineering Research Center for Marine Aquaculture, Zhoushan 316000, China
| | - Ashiwin Vadiveloo
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth 6150, Australia
| | - Jin-Long Zhou
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316000, China
| | - Lei Yang
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316000, China
| | - Dong-Zhi Chen
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316000, China
| | - Feng Gao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316000, China.
| |
Collapse
|
44
|
Maroušek J, Maroušková A, Gavurová B, Tuček D, Strunecký O. Competitive algae biodiesel depends on advances in mass algae cultivation. BIORESOURCE TECHNOLOGY 2023; 374:128802. [PMID: 36858122 DOI: 10.1016/j.biortech.2023.128802] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
The aim of this review was to study why, despite large investments in research and development, algae biodiesel is still not price competitive with fossil fuels. Microalgal production was confirmed to be a critical cost item (84 up to 93 %) for biodiesel regardless of the production technology. Techno-economic assessment revealed the main cost drivers during mass cultivation. It is argued that a breakthrough in the cultivation efficiency of microalgae is identified as a necessary condition for achieving price-competitive microalgal biodiesel. The key bottlenecks were identified as follows: (1) light and O2 concentration management; (2) overnight respiratory loss of oil. It is concluded that most of the research on microalgae biodiesel yields economically over-optimistic presumptions because it has been based on laboratory scale experiments with a low level of interdisciplinary overlap.
Collapse
Affiliation(s)
- Josef Maroušek
- Institute of Technology and Business in České Budějovice, Faculty of Technology, Okružní 517/10, České Budějovice 370 01, Czech Republic; University of South Bohemia in České Budějovice, Faculty of Agriculture, Studentská 1668, České Budějovice 370 05, Czech Republic.
| | - Anna Maroušková
- Institute of Technology and Business in České Budějovice, Faculty of Technology, Okružní 517/10, České Budějovice 370 01, Czech Republic
| | - Beata Gavurová
- Technical University of Kosice, Faculty of Mining, Ecology, Process Control and Geotechnologies, Letna 9, Košice 042 00, Slovakia
| | - David Tuček
- Tomas Bata University in Zlín, Faculty of Management and Economics, Mostní 5139, Zlín 760 01, Czech Republic
| | - Otakar Strunecký
- Institute of Technology and Business in České Budějovice, Faculty of Technology, Okružní 517/10, České Budějovice 370 01, Czech Republic; University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, Na Sádkách 1780, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
45
|
Han M, Zhang C, Ho SH. Immobilized microalgal system: An achievable idea for upgrading current microalgal wastewater treatment. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 14:100227. [PMID: 36560958 PMCID: PMC9763361 DOI: 10.1016/j.ese.2022.100227] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 05/26/2023]
Abstract
Efficient wastewater treatment accompanied by sustainable "nutrients/pollutants waste-wastewater-resources/energy nexus" management is acting as a prominent and urgent global issue since severe pollution has occurred increasingly. Diverting wastes from wastewater into the value-added microalgal-biomass stream is a promising goal using biological wastewater treatment technologies. This review proposed an idea of upgrading the current microalgal wastewater treatment by using immobilized microalgal system. Firstly, a systematic analysis of microalgal immobilization technology is displayed through an in-depth discussion on why using immobilized microalgae for wastewater treatment. Subsequently, the main technical approaches employed for microalgal immobilization and pollutant removal mechanisms by immobilized microalgae are summarized. Furthermore, from high-tech technologies to promote large-scale production and application potentials in diverse wastewater and bioreactors to downstream applications lead upgradation closer, the feasibility of upgrading existing microalgal wastewater treatment into immobilized microalgal systems is thoroughly discussed. Eventually, several research directions are proposed toward the future immobilized microalgal system for microalgal wastewater treatment upgrading. Together, it appears that using immobilization for further upgrading the microalgae-based wastewater treatment can be recognized as an achievable alternative to make microalgal wastewater treatment more realistic. The information and perspectives provided in this review also offer a feasible reference for upgrading conventional microalgae-based wastewater treatment.
Collapse
|
46
|
Hussin AA, Hidayah Ahmad NA, Mohd Asri NF, Nik Malek NAN, Mohd Amin MF, Kamaroddin MF. Cultivation of Arthrospira platensis and harvesting using edible fungi isolated from mould soybean cake. BIORESOURCE TECHNOLOGY 2023; 373:128743. [PMID: 36791974 DOI: 10.1016/j.biortech.2023.128743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
In this study, the cultivation and harvesting of Arthrospira platensis biomass were proposed via simple, safe, and efficient techniques for direct consumption. Cultivation of microalgae in a covered macrobubble column under outdoor conditions resulted in significant differences (p < 0.05) with a maximum dry cell weight (Xm) of 0.959 ± 0.046 g/L. Notably, outdoor cultures resulted in approximately twofold biomass compared to indoor cultures. This outcome shows that the developed outdoor setup integrated with solar panels while utilising Malaysia's weather and atmospheric air as carbon sources is viable. Meanwhile, for harvesting, the screening showed that the fungus isolated from mould soybean cake (tempeh) starter indicated the highest harvesting efficiency, which was then further identified as Rhizopus microsporus, microscopically and molecularly. Overall, the economical and portable setup of outdoor cultivation coupled with safe harvesting via locally isolated fungus from tempeh as a bioflocculant would provide sustainability to produce A. platensis biomass.
Collapse
Affiliation(s)
- Aimi Alina Hussin
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.
| | - Nur Amira Hidayah Ahmad
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.
| | - Nur Fakhira Mohd Asri
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.
| | - Nik Ahmad Nizam Nik Malek
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.
| | | | - M Farizal Kamaroddin
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.
| |
Collapse
|
47
|
Alaedini AH, Tourani HK, Saidi M. A review of waste-to-hydrogen conversion technologies for solid oxide fuel cell (SOFC) applications: Aspect of gasification process and catalyst development. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 329:117077. [PMID: 36565498 DOI: 10.1016/j.jenvman.2022.117077] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/12/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
In the twenty-first century, there has been an increase in energy demand and waste production, due to the rising population of the world. One good approach for satisfying the energy demand and overcoming the waste management issues is to convert waste to energy. Additionally, using waste biomass as the feedstock of waste-to-energy (WtE) conversion methods makes them renewable and green and also helps the environmental challenges and reduces the emission of greenhouse gases (GHGs). Gasification is a thermochemical WtE route, which can produce hydrogen-rich gaseous biofuel called synthetic gas (syngas), from wastes. In this paper, different aspects of gasification process are reviewed with greater focus on catalyst usage. Syngas processing steps, which increase the quality and H2 content of the syngas to form bio-hydrogen, are discussed. Solid oxide fuel cell (SOFC) technology is one of the most promising techniques of renewable energy production due to their environmental cleanness characteristics and high efficiencies. Thus, one of the best ways to exploit the energy content of the bio-hydrogen product of gasification is to employ it in a SOFC. Therefore, waste biomass gasification process can be integrated with SOFCs to build high efficiency systems for production of clean and renewable energy from waste, which are called integrated gasification fuel cell (IGFC) systems. These systems provide the opportunity of further upgrading of syngas inside the SOFC. In this paper, we are going to briefly discuss fuel cell technology (especially SOFCs) and review SOFC applications from the aspect of integration with gasification process (IGFC system). Finally, the impacts and issues of gasification process and SOFC technology are considered.
Collapse
Affiliation(s)
- Amir Hossein Alaedini
- School of Chemistry, College of Science, University of Tehran, 14155-6455, Tehran, Iran
| | | | - Majid Saidi
- School of Chemistry, College of Science, University of Tehran, 14155-6455, Tehran, Iran.
| |
Collapse
|
48
|
Mutual supply of carbon and nitrogen sources in the co-culture of aerial microalgae and nitrogen-fixing bacteria. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
49
|
Ji CC, Chen KY, Deng SK, Wang JX, Hu YX, Xu XH, Cheng LH. Fouling evolution of extracellular polymeric substances in forward osmosis based microalgae dewatering. WATER RESEARCH 2023; 229:119395. [PMID: 36463677 DOI: 10.1016/j.watres.2022.119395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/01/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
Membrane fouling was still a challenge for the potential application of forward osmosis (FO) in algae dewatering. In this study, the fouling behaviors of Chlorella vulgaris and Scenedesmus obliquus were compared in the FO membrane filtration process, and the roles of their soluble-extracellular polymeric substances (sEPS) and bound-EPS (bEPS) in fouling performance were investigated. The results showed that fouling behaviors could be divided into two stages including a quickly dropped and later a stable process. The bEPS of both species presented the highest flux decline (about 40.0%) by comparison with their sEPS, cells and broth. This performance was consistent with the largest dissolved organic carbon losses in feed solutions, and the highest interfacial free energy analyzed by the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory. The chemical characterizations of algal foulants further showed that the severe fouling performance was also consistent with a proper ratio of carbohydrates and proteins contents in the cake layer, as well as the higher low molecular weight (LMW) components. Compared with the bEPS, the sEPS was crucial for the membrane fouling of S. obliquus, and an evolution of the membrane fouling structure was found in both species at the later filtration stage. This work clearly revealed the fundamental mechanism of FO membrane fouling caused by real microalgal suspension, and it will improve our understanding of the evolutionary fouling performances of algal EPS.
Collapse
Affiliation(s)
- Cheng-Cheng Ji
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, PR China; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Ke-Yu Chen
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Shao-Kang Deng
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Jian-Xiao Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Yun-Xia Hu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Xin-Hua Xu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Li-Hua Cheng
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, PR China; MOE Engineering Research Center of Membrane & Water Treatment Technology, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
50
|
Gu D, Xiao Q, Zhao Y, Yu X. A low-cost technique for biodiesel production in Ankistrodesmus sp. EHY by using harvested microalgal effluent. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159461. [PMID: 36257437 DOI: 10.1016/j.scitotenv.2022.159461] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
The present study aims to use Ankistrodesmus sp. EHY to develop a viable and economic lipid production strategy using recycling of harvested microalgal effluent. In comparison to the control, the highest lipid content (52.4 %) and productivity (250.72 mg L-1 d-1) were achieved when 40 % recycled medium was used. Consistent with the trend of lipid accumulation, the six key lipogenetic genes were upregulated, as well as reactive oxygen species (ROS), glutathione (GSH) and genes encoding antioxidant enzymes during cultivation in recycled medium. Moreover, the consumption of dissolved organic carbon (DOC) and the increased humic acid (HA) in the recycled medium might also be associated with lipid biosynthesis. The biodiesel parameters of alga biomass-derived lipids were fitted to the standard of commercial biodiesel. In conclusion, this study offers an economically viable strategy for microalgal biofuel production and wastewater treatment using recycling of harvested microalgal effluent.
Collapse
Affiliation(s)
- Dan Gu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Qiu Xiao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yongteng Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Xuya Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|