1
|
Fang J, Wang D, Wilkin R, Su C. Realistic and field scale applications of biochar for water remediation: A literature review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 385:125524. [PMID: 40334406 DOI: 10.1016/j.jenvman.2025.125524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/11/2025] [Accepted: 04/21/2025] [Indexed: 05/09/2025]
Abstract
Biochar has received increasing attention in recent years as a potentially cost-competitive adsorbent for removing various contaminants from surface water and groundwater. However, most published studies have been conducted in the laboratory on a bench scale. Laboratory conditions do not necessarily reflect the complex, heterogeneous, and dynamic field conditions of actual contaminated surface water and groundwater environments. There is a lack of comprehensive literature review regarding the performance of biochar for contaminant removal, especially under realistic field conditions and at field scale. Here, we evaluated 31 studies on realistic applications of biochar for water remediation by searching the keywords: pilot scale, field scale, and mesocosm scale combined with biochar and water remediation. Biochar was found to be incorporated into a variety of water remediation technologies for treating both inorganic and organic contaminants, such as nutrients, heavy metals, pesticides, and pharmaceuticals in polluted waters and wastewaters. Also, biochar showed the potential to be effective on a field scale or in realistic remediation technologies, although it is not always as effective as other sorbents, such as activated carbon (AC). This is partially because AC has better physicochemical characteristics such as higher surface area and more micropores. Effectiveness for contaminant removal varies according to the targeted contaminants, the type and dosage of biochar used, and the treatment technology incorporating biochar. Finally, knowledge gaps and future research areas are identified. For example, more field scale studies are needed to test the effectiveness of biochar as an adsorbent under realistic conditions to pinpoint specific characteristics suitable for target contaminants. Physicochemical characteristics of the biochar can also change over time during the treatment process due to weathering, which may negatively affect the treatment performance. The effects of scaling up production on biochar quality should therefore also be further investigated, as physicochemical characteristics can be affected by varying the synthesis conditions. Regeneration and disposal of spent biochar is another active research area to determine the overall treatment costs.
Collapse
Affiliation(s)
- June Fang
- Oak Ridge Institute for Science and Education Fellow at the U.S. Environmental Protection Agency, 919 Kerr Research Drive, Ada, OK, 74820, USA.
| | - Dengjun Wang
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA.
| | - Richard Wilkin
- Groundwater Characterization and Remediation Division, Center for Environmental Solutions and Emergency Response, Office of Research and Development, United States Environmental Protection Agency, 919 Kerr Research Drive, Ada, OK, 74820, USA.
| | - Chunming Su
- Groundwater Characterization and Remediation Division, Center for Environmental Solutions and Emergency Response, Office of Research and Development, United States Environmental Protection Agency, 919 Kerr Research Drive, Ada, OK, 74820, USA.
| |
Collapse
|
2
|
Seth D, Athparia M, Singh A, Rathore D, Venkatramanan V, Channashettar V, Prasad S, Maddirala S, Sevda S, Kataki R. Sustainable environmental practices of tea waste-a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:7449-7467. [PMID: 37991614 DOI: 10.1007/s11356-023-30848-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 10/30/2023] [Indexed: 11/23/2023]
Abstract
Tea, the major beverage worldwide, is one of the oldest commercial commodities traded from ancient times. Apart from many of its advantages, including health, socio-economic, climatic, and agro-ecological values, FAO has recognized that the tea value chain covering its growth in the field, processing and marketing, and finally, the hot cup at the user's hand needs to be made sustainable during all these stages. Tea generates a lot of waste in different forms in different stages of its growth and processing, and these wastes, if not managed properly, may cause environmental pollution. A planned utilization of these wastes as feedstocks for various processes can generate more income, create rural livelihood opportunities, help grow tea environmentally sustainable, avoid GHG emissions, and make a real contribution to SDGs. Thermochemical and biological conversion of tea wastes generates value-added products. This review provides an overview on the impacts of the tea wastes on the environment, tea waste valorization processes, and applications of value-added products. The application of value-added products for energy generation, wastewater treatment, soil conditioners, adsorbents, biofertilizers, food additives, dietary supplements, animal feed bioactive chemicals, dye, colourant, and phytochemicals has been reviewed. Further, the challenges in sustainable utilization of tea wastes and opportunities for commercial exploitation of value-added products from tea wastes have been reviewed.
Collapse
Affiliation(s)
- Dibyakanta Seth
- Department of Food Process Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
| | - Mondita Athparia
- Department of Energy, Tezpur University, Tezpur, 784028, Assam, India
| | - Anoop Singh
- Department of Scientific and Industrial Research (DSIR), Ministry of Science and Technology, Government of India, Technology Bhawan, New Mehrauli Road, New Delhi, 110016, India
| | - Dheeraj Rathore
- School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar, 382030, Gujarat, India
| | - Veluswamy Venkatramanan
- Department of Environmental Studies, Indira Gandhi National Open University, New Delhi, 110068, India
| | - Veeranna Channashettar
- Environmental and Industrial Biotechnology Division, The Energy and Resources Institute, Lodhi Road, New Delhi, 110003, India
| | - Shiv Prasad
- Division of Environment Science, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Shivani Maddirala
- Environmental Bioprocess Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal, 506004, Telangana, India
| | - Surajbhan Sevda
- Environmental Bioprocess Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal, 506004, Telangana, India
| | - Rupam Kataki
- Department of Energy, Tezpur University, Tezpur, 784028, Assam, India.
| |
Collapse
|
3
|
Chaka B, Osano AM, Wesley ON, Forbes PBC. Preparation and Application of Cow Dung Biochar Adsorbent in Removal of Pesticide Residues and Polycyclic Aromatic Hydrocarbons (PAHs) From Water. CHEMISTRY AFRICA 2025; 8:687-705. [DOI: 10.1007/s42250-025-01186-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/02/2025] [Indexed: 03/02/2025]
|
4
|
Panghal V, Singh A, Hooda V, Arora D, Bhateria R, Kumar S. Recent progress, challenges, and future prospects in constructed wetlands employing biochar as a substrate: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:1139-1166. [PMID: 39739227 DOI: 10.1007/s11356-024-35846-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 12/21/2024] [Indexed: 01/02/2025]
Abstract
Constructed wetlands (CWs) are a cost-effective, efficient, and long-term wastewater treatment solution in various countries. The efficacy and performance of constructed wetlands are greatly influenced by the substrate. Recently, biochar as a substrate, along with sand and gravel in constructed wetlands, has gained importance due to its various physical, chemical, and biological properties. This review presents a detailed study of biochar as a substrate in CWs and the mechanism involved in efficiency enhancement in pollutant removal. Different methods for producing biochar using various types of biomasses are also addressed. The effect of biochar in removing pollutants like biological oxygen demand (BOD), chemical oxygen demand (COD), nitrogen, heavy metals, and non-conventional pollutants (microcystin, phenanthrene, antibiotics, etc.) are also discussed. Furthermore, post-harvest utilization of constructed wetland macrophytic biomass via bioenergy production, biochar formation, and biosorbent formation is explained. Various challenges and future prospects in biochar-amended constructed wetlands are also discussed. Biochar proved to be an effective substrate in the removal of pollutants and proved to be a promising technique for wastewater treatment, especially for developing countries where the cost of treatment is a constraint. Biochar is an effective substrate; further modification in biochar with the right plant combination for different wastewater needs to be explored in the future. Future researchers in the field of constructed wetlands will benefit from this review during the utilization of biochar in constructed wetlands and optimization of biochar characteristics, viz., quantity, size, preparation method, and other biochar modifications.
Collapse
Affiliation(s)
- Vishal Panghal
- Department of Environmental Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Asha Singh
- Department of Environmental Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Vishwajit Hooda
- Department of Environmental Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Dinesh Arora
- Department of Environmental Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Rachna Bhateria
- Department of Environmental Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Sunil Kumar
- Department of Environmental Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
5
|
Wang K, Xu J, Guo H, Min Z, Wei Q, Chen P, Sleutel S. Reuse of straw in the form of hydrochar: Balancing the carbon budget and rice production under different irrigation management. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 189:77-87. [PMID: 39180805 DOI: 10.1016/j.wasman.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/27/2024] [Accepted: 08/11/2024] [Indexed: 08/27/2024]
Abstract
Hydrochar is proposed as a climate-friendly organic fertilizer, but its potential impact on greenhouse gas (GHG) emissions in paddy cultivation is not fully understood. This two-year study compared the impact of exogenous organic carbon (EOC) application (rice straw and hydrochar) on GHG emissions, the net ecosystem carbon budget (NECB), net global warming potential (net GWP), and GHG emission intensity (GHGI) in a rice pot experiment using either flooding irrigation (FI) or controlled irrigation (CI). Compared with FI, CI increased ecosystem respiration by 23 - 44 % and N2O emissions by 85 - 137 % but decreased CH4 emissions by 30 - 58 % (p < 0.05). Since CH4 contributed more to net GWP than N2O, CI reduced net GWP by 16 - 220 %. EOC amendment increased crop yield by 5 - 9 % (p < 0.05). Compared with CK, hydrochar application increased initial GHG emission, net GWP and GHGI in the first year, while in the second year, there was no significant difference in net GWP and GHGI between CI-hydrochar and CK. Compared with straw addition, hydrochar amendment reduced net GWP and GHGI by 20 - 66 % and 21 - 66 %; and exhibited a lower net CO2 emission when considering the energy input during the hydrochar production. These findings suggest that integrated CI-hydrochar practices would be a sustainable and eco-friendly way for organic waste management in rice production as it holds potential to enhance the NECB and SOC sequestration of rice production, while also offsetting the extra carbon emissions from organic inputs.
Collapse
Affiliation(s)
- Kechun Wang
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China; Jiangsu Province Engineering Research Center for Agricultural Soil - Water Efficient Utilization Carbon Sequestration and Emission Reduction, Hohai University, Nanjing 210098, China; Department of Environment, Ghent University, Ghent 9000, Belgium
| | - Junzeng Xu
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China; Jiangsu Province Engineering Research Center for Agricultural Soil - Water Efficient Utilization Carbon Sequestration and Emission Reduction, Hohai University, Nanjing 210098, China.
| | - Hang Guo
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China; Jiangsu Province Engineering Research Center for Agricultural Soil - Water Efficient Utilization Carbon Sequestration and Emission Reduction, Hohai University, Nanjing 210098, China
| | - Zhihui Min
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China; Jiangsu Province Engineering Research Center for Agricultural Soil - Water Efficient Utilization Carbon Sequestration and Emission Reduction, Hohai University, Nanjing 210098, China
| | - Qi Wei
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China; Jiangsu Province Engineering Research Center for Agricultural Soil - Water Efficient Utilization Carbon Sequestration and Emission Reduction, Hohai University, Nanjing 210098, China
| | - Peng Chen
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China; Jiangsu Province Engineering Research Center for Agricultural Soil - Water Efficient Utilization Carbon Sequestration and Emission Reduction, Hohai University, Nanjing 210098, China
| | - Steven Sleutel
- Department of Environment, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
6
|
Abban-Baidoo E, Manka'abusi D, Apuri L, Marschner B, Frimpong KA. Biochar addition influences C and N dynamics during biochar co-composting and the nutrient content of the biochar co-compost. Sci Rep 2024; 14:23781. [PMID: 39390006 PMCID: PMC11466957 DOI: 10.1038/s41598-024-67884-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/17/2024] [Indexed: 10/12/2024] Open
Abstract
This study investigated the effects of corn cob biochar (CCB) and rice husk biochar (RHB) additions (at 0%, 5%, and 10% w/w) on nitrogen and carbon dynamics during co-composting with poultry litter, rice straw, and domestic bio-waste. The study further assessed the temperature, moisture, pH, and nutrient contents of the mature biochar co-composts, and their potential phytotoxicity effects on amaranth, cucumber, cowpea, and tomato. Biochar additions decreased NH4+-N and NO3- contents, but bacteria and fungi populations increased during the composting process. The mature biochar co-composts showed higher pH (9.0-9.7), and increased total carbon (24.7-37.6%), nitrogen (1.8-2.4%), phosphorus (6.5-8.1 g kg-1), potassium (26.8-42.5 g kg-1), calcium (25.1-49.5 g kg-1), and magnesium (4.8-7.2 g kg-1) contents compared to the compost without biochar. Germination indices (GI) recorded in all the plants tested with the different composts were greater than 60%. Regardless of the biochar additions, all composts treatments showed no or very minimal phytotoxic effects on cucumber, amaranth and cowpea seeds. We conclude that rice husk and corn cob biochar co-composts are nutrient-rich and safe soil amendment for crop production.
Collapse
Affiliation(s)
- Emmanuel Abban-Baidoo
- Department of Soil Science, School of Agriculture, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Delphine Manka'abusi
- Department of Soil Science and Soil Ecology, Institute of Geography, Ruhr-Universität Bochum, Bochum, Germany
| | - Lenin Apuri
- Department of Soil Science, School of Agriculture, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Bernd Marschner
- Department of Soil Science and Soil Ecology, Institute of Geography, Ruhr-Universität Bochum, Bochum, Germany
| | - Kwame Agyei Frimpong
- Department of Soil Science, School of Agriculture, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana.
| |
Collapse
|
7
|
Mancuso G, Habchi S, Maraldi M, Valenti F, El Bari H. Comprehensive review of technologies for separate digestate treatment and agricultural valorisation within circular and green economy. BIORESOURCE TECHNOLOGY 2024; 409:131252. [PMID: 39127359 DOI: 10.1016/j.biortech.2024.131252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Anaerobic digestion (AD) has the potential to catalyse the shift from a linear to a circular economy. However, effective treatment and management of both solid (DSF) and liquid (DLF) digestate fraction treatment and management require adopting sustainable technologies to recover valuable by-products like energy, biofuels, biochar, and nutrients. This study reviews state-of-the-art advanced technologies for DSF and DLF treatment and valorisation, using life cycle assessment (LCA) and techno-economic analysis (TEA) in integrated digestate management (IDM). Key findings highlight these technologies' potential in mitigating environmental impacts from digestate management, but there's a need to improve process efficiency, especially at larger scales. Future research should prioritize cost-effective and eco-friendly IDM technologies. This review emphasizes how LCA and TEA can guide decision-making and promote sustainable agricultural practices. Ultimately, sustainable IDM technologies can boost resource recovery and advance circular economy principles, enhancing the environmental and economic sustainability of AD processes.
Collapse
Affiliation(s)
- Giuseppe Mancuso
- Alma Mater Studiorum - University of Bologna, Department of Agricultural and Food Sciences, viale Giuseppe Fanin 50, Bologna 40127, Italy
| | - Sanae Habchi
- Laboratory of Electronic Systems, Information Processing, Mechanics and Energetics, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Mirko Maraldi
- Alma Mater Studiorum - University of Bologna, Department of Agricultural and Food Sciences, viale Giuseppe Fanin 50, Bologna 40127, Italy
| | - Francesca Valenti
- Alma Mater Studiorum - University of Bologna, Department of Agricultural and Food Sciences, viale Giuseppe Fanin 50, Bologna 40127, Italy.
| | - Hassan El Bari
- Laboratory of Electronic Systems, Information Processing, Mechanics and Energetics, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| |
Collapse
|
8
|
Jiang Z, He C, Gao F, Shi Q, Chen Y, Yu H, Zhou Z, Wang R. Molecular characteristics of organic matter derived from sulfonated biochar. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1641-1650. [PMID: 39132952 DOI: 10.1039/d4em00233d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Sulfonated biochar (SBC), as a functional carbon-based material, has attracted widespread attention due to its excellent adsorption properties. The composition of biochar-derived organic matter (B-DOM) is a key factor influencing the migration and transformation of soil elements and pollutants. However, molecular characteristics of sulfonated biochar-derived organic matter (SBC-DOM) are still unclear. In this study, the molecular composition of derived organic matter (DOM) from SBC prepared via one-step carbonization-sulfonation techniques was investigated by Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) and then compared with those of DOMs from rice husk (RH), pyrochar (PYC), and hydrochar (HYC). The results show that the CHOS- and CHONS-containing formulae are predominant in SBC-DOM, accounting for 85% of the total molecular formula number, while DOMs from RH, PYC, and HYC are dominated by CHO-containing formulae. Compared to PYC-DOM and HYC-DOM, SBC-DOM has more unsaturated aliphatic compounds, which make it more labile and easily biodegraded. Additionally, SBC-DOM has higher O/C, (N + O)/C ratios and sulfur-containing compounds. These findings provide a theoretical basis for further research on the application of sulfonated biochar in soil improvement and remediation.
Collapse
Affiliation(s)
- Zhengfeng Jiang
- Petrochemical Research Institute, PetroChina Company Limited, Beijing 100195, China
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China.
- National Elite Institute of Engineering, CNPC, Beijing 100096, China
| | - Chen He
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China.
| | - Fei Gao
- Petrochemical Research Institute, PetroChina Company Limited, Beijing 100195, China
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China.
| | - Yang Chen
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Haimeng Yu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China.
| | - Zhimao Zhou
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Ruoxin Wang
- Petrochemical Research Institute, PetroChina Company Limited, Beijing 100195, China
| |
Collapse
|
9
|
Lee YE, Jeong Y, Kim IT, Ahn KH, Jung JH. Enhancing the potential application of food-waste biochar as a sustainable bio-solid fuel: Analysis of post-treatment and combustion behavior. CHEMOSPHERE 2024; 364:143216. [PMID: 39218262 DOI: 10.1016/j.chemosphere.2024.143216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/13/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Food-waste biochar holds significant potential as a bio-solid fuel for achieving carbon neutrality; however, its high content of sodium (Na), potassium (K), calcium (Ca), chlorine (Cl), and nitrogen, inhibits its potential use. This study explored the effects of post-treatment with ascorbic, acetic, citric, and iminodiacetic acids on the properties of food-waste biochar and volatile ionic substances to establish a foundation for assessing both the environmental impact and practical use of food waste. Post-treatment with organic acids achieved 92% Cl-removal efficiency and induced deformation of the functional groups of food-waste biochar surfaces, leading to the re-adsorption of alkali and alkaline earth metals. This re-adsorption of alkali metal ions showed a distinct correlation with NOx mitigation. The amount of re-adsorbed Na and K varied based on the types of organic acids, resulting in different NOx emission reduction effects. Iminodiacetic acid was particularly effective in alleviating Ca and PO4 volatilization, whereas citric acid exhibited the highest Ca elution performance, and the Ca-contained leachate is a potential source of CO2 storage through indirect mineral carbonation. Acetic acid is the most feasible alternative, considering both economic and environmental aspects. The findings suggest that the post-treatment of food-waste biochar effectively mitigates air pollutants during combustion and is beneficial for sustainable biosolid fuel production and bio-waste management.
Collapse
Affiliation(s)
- Ye-Eun Lee
- Department of Environmental Research, Korea Institute of Civil Engineering and Building Technology, Goyang- Daero 283, Ilsanseo-gu Goyang-si, Gyeonggi-do, 10223, Republic of Korea.
| | - Yoonah Jeong
- Department of Environmental Research, Korea Institute of Civil Engineering and Building Technology, Goyang- Daero 283, Ilsanseo-gu Goyang-si, Gyeonggi-do, 10223, Republic of Korea
| | - I-Tae Kim
- Department of Environmental Research, Korea Institute of Civil Engineering and Building Technology, Goyang- Daero 283, Ilsanseo-gu Goyang-si, Gyeonggi-do, 10223, Republic of Korea.
| | - Kwang-Ho Ahn
- Department of Environmental Research, Korea Institute of Civil Engineering and Building Technology, Goyang- Daero 283, Ilsanseo-gu Goyang-si, Gyeonggi-do, 10223, Republic of Korea
| | - Jin-Hong Jung
- Department of Environmental Research, Korea Institute of Civil Engineering and Building Technology, Goyang- Daero 283, Ilsanseo-gu Goyang-si, Gyeonggi-do, 10223, Republic of Korea
| |
Collapse
|
10
|
Sivaranjanee R, Senthil Kumar P, Chitra B, Rangasamy G. A critical review on biochar for the removal of toxic pollutants from water environment. CHEMOSPHERE 2024; 360:142382. [PMID: 38768788 DOI: 10.1016/j.chemosphere.2024.142382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 04/30/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
As an effort to tackle some of the most pressing ecological issues we are currently experiencing, there has been an increasing interest in employing biomass-derived char products in various disciplines. Thermal combustion of biomass results in biochar production, which is a remarkably rich source of carbon. Not only does the biochar obtained by the thermochemical breakdown of biomass lower the quantity of carbon released into the environment, but it also serves as an eco-friendly substitute for activated carbon (AC) and further carbon-containing products. An overview of using biochar to remove toxic pollutants is the main subject of this article. Several techniques for producing biochar have been explored. The most popular processes for producing biochar are hydrothermal carbonization, gasification and pyrolysis. Carbonaceous materials, alkali, acid and steam are all capable of altering biochar. Depending on the environmental domains of applications, several modification techniques are chosen. The current findings on characterization and potential applications of biochar are compiled in this survey. Comprehensive discussion is given on the fundamentals regarding the formation of biochar. Process variables influencing the yield of biochar have been summarized. Several biochars' adsorption capabilities for expulsion pollutants under various operating circumstances are compiled. In the domain of developing biochar, a few suggestions for future study have been given.
Collapse
Affiliation(s)
- R Sivaranjanee
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India
| | - P Senthil Kumar
- Centre for Pollution Control and Environmental Engineering, School of Engineering and Technology, Pondicherry University, Kalapet, Puducherry, 605014, India.
| | - B Chitra
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India
| | - Gayathri Rangasamy
- Department of Civil Engineering, Faculty of Engineering, Karpagam Academy of Higher Education, Pollachi Main Road, Eachanari Post, Coimbatore, 641021, Tamil Nadu, India; Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| |
Collapse
|
11
|
Sousa NFC, Santos MPF, Barbosa RP, Bonomo RCF, Veloso CM, Souza Júnior EC. Pepsin immobilization on activated carbon and functionalized with glutaraldehyde and genipin for the synthesis of antioxidant peptides of goat casein. Food Res Int 2024; 186:114161. [PMID: 38729685 DOI: 10.1016/j.foodres.2024.114161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/05/2024] [Accepted: 02/17/2024] [Indexed: 05/12/2024]
Abstract
In this article, the synthesis of antioxidant peptides in the enzymatic hydrolysis of caprine casein was analyzed at three different time points (60 min, 90 min, and 120 min) using immobilized pepsin on activated and modified carbon (AC, ACF, ACG 50, ACG 100). The immobilization assays revealed a reduction in the biocatalysts' activity compared to the free enzyme. Among the modified ones, ACG 50 exhibited greater activity and better efficiency for reuse cycles, with superior values after 60 min and 90 min. Peptide synthesis was observed under all studied conditions. Analyses (DPPH, β-carotene/linoleic acid, FRAP) confirmed the antioxidant potential of the peptides generated by the immobilized enzyme. However, the immobilized enzyme in ACG 50 and ACG 100, combined with longer hydrolysis times, allowed the formation of peptides with an antioxidant capacity greater than or equivalent to those generated by the free enzyme, despite reduced enzymatic activity.
Collapse
Affiliation(s)
- Núbina F C Sousa
- Process Engineering Laboratory, State University of Southwest Bahia, BR 415, km 04, s/n, Itapetinga, Bahia 45700-000, Brazil
| | - Mateus P F Santos
- Process Engineering Laboratory, State University of Southwest Bahia, BR 415, km 04, s/n, Itapetinga, Bahia 45700-000, Brazil
| | - Raiza P Barbosa
- Process Engineering Laboratory, State University of Southwest Bahia, BR 415, km 04, s/n, Itapetinga, Bahia 45700-000, Brazil
| | - Renata C F Bonomo
- Process Engineering Laboratory, State University of Southwest Bahia, BR 415, km 04, s/n, Itapetinga, Bahia 45700-000, Brazil.
| | - Cristiane M Veloso
- Process Engineering Laboratory, State University of Southwest Bahia, BR 415, km 04, s/n, Itapetinga, Bahia 45700-000, Brazil
| | - Evaldo C Souza Júnior
- Process Engineering Laboratory, State University of Southwest Bahia, BR 415, km 04, s/n, Itapetinga, Bahia 45700-000, Brazil.
| |
Collapse
|
12
|
Liu S, Wang A, Liu Y, Zhou W, Wen H, Zhang H, Sun K, Li S, Zhou J, Wang Y, Jiang J, Li B. Catalytically Active Carbon for Oxygen Reduction Reaction in Energy Conversion: Recent Advances and Future Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308040. [PMID: 38581142 PMCID: PMC11165562 DOI: 10.1002/advs.202308040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/25/2024] [Indexed: 04/08/2024]
Abstract
The shortage and unevenness of fossil energy sources are affecting the development and progress of human civilization. The technology of efficiently converting material resources into energy for utilization and storage is attracting the attention of researchers. Environmentally friendly biomass materials are a treasure to drive the development of new-generation energy sources. Electrochemical theory is used to efficiently convert the chemical energy of chemical substances into electrical energy. In recent years, significant progress has been made in the development of green and economical electrocatalysts for oxygen reduction reaction (ORR). Although many reviews have been reported around the application of biomass-derived catalytically active carbon (CAC) catalysts in ORR, these reviews have only selected a single/partial topic (including synthesis and preparation of catalysts from different sources, structural optimization, or performance enhancement methods based on CAC catalysts, and application of biomass-derived CACs) for discussion. There is no review that systematically addresses the latest progress in the synthesis, performance enhancement, and applications related to biomass-derived CAC-based oxygen reduction electrocatalysts synchronously. This review fills the gap by providing a timely and comprehensive review and summary from the following sections: the exposition of the basic catalytic principles of ORR, the summary of the chemical composition and structural properties of various types of biomass, the analysis of traditional and the latest popular biomass-derived CAC synthesis methods and optimization strategies, and the summary of the practical applications of biomass-derived CAC-based oxidative reduction electrocatalysts. This review provides a comprehensive summary of the latest advances to provide research directions and design ideas for the development of catalyst synthesis/optimization and contributes to the industrialization of biomass-derived CAC electrocatalysis and electric energy storage.
Collapse
Affiliation(s)
- Shuling Liu
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
| | - Ao Wang
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
| | - Yanyan Liu
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
- College of ScienceHenan Agricultural University95 Wenhua RoadZhengzhou450002P. R. China
| | - Wenshu Zhou
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
| | - Hao Wen
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
| | - Huanhuan Zhang
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
| | - Kang Sun
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
| | - Shuqi Li
- College of ScienceHenan Agricultural University95 Wenhua RoadZhengzhou450002P. R. China
| | - Jingjing Zhou
- College of ScienceHenan Agricultural University95 Wenhua RoadZhengzhou450002P. R. China
| | - Yongfeng Wang
- Center for Carbon‐based Electronics and Key Laboratory for the Physics and Chemistry of NanodevicesSchool of ElectronicsPeking UniversityBeijing100871P. R. China
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
| | - Baojun Li
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
| |
Collapse
|
13
|
Kravchenko E, Dela Cruz TL, Chen XW, Wong MH. Ecological consequences of biochar and hydrochar amendments in soil: assessing environmental impacts and influences. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:42614-42639. [PMID: 38900405 DOI: 10.1007/s11356-024-33807-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
Anthropogenic activities have caused irreversible consequences on our planet, including climate change and environmental pollution. Nevertheless, reducing greenhouse gas (GHG) emissions and capturing carbon can mitigate global warming. Biochar and hydrochar are increasingly used for soil remediation due to their stable adsorption qualities. As soil amendments, these materials improve soil quality and reduce water loss, prevent cracking and shrinkage, and interact with microbial communities, resulting in a promising treatment method for reducing gas emissions from the top layer of soil. However, during long-term studies, contradictory results were found, suggesting that higher biochar application rates led to higher soil CO2 effluxes, biodiversity loss, an increase in invasive species, and changes in nutrient cycling. Hydrochar, generated through hydrothermal carbonization, might be less stable when introduced into the soil, which could lead to heightened GHG emissions due to quicker carbon breakdown and increased microbial activity. On the other hand, biochar, created via pyrolysis, demonstrates stability and can beneficially impact GHG emissions. Biochar could be the preferred red option for carbon sequestration purposes, while hydrochar might be more advantageous for use as a gas adsorbent. This review paper highlights the ecological impact of long-term applications of biochar and hydrochar in soil. In general, using these materials as soil amendments helps establish a sustainable pool of organic carbon, decreasing atmospheric GHG concentration and mitigating the impacts of climate change.
Collapse
Affiliation(s)
- Ekaterina Kravchenko
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Soil Health Laboratory, Southern Federal University, Rostov-On-Don, Russia
| | - Trishia Liezl Dela Cruz
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Xun Wen Chen
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Ming Hung Wong
- Soil Health Laboratory, Southern Federal University, Rostov-On-Don, Russia.
- Consortium On Health, Environment, Education, and Research (CHEER), The Education University of Hong Kong, Tai Po, Hong Kong, China.
| |
Collapse
|
14
|
Karim AA, Martínez-Cartas ML, Cuevas-Aranda M. Industrial Two-Phase Olive Pomace Slurry-Derived Hydrochar Fuel for Energy Applications. Polymers (Basel) 2024; 16:1529. [PMID: 38891474 PMCID: PMC11175087 DOI: 10.3390/polym16111529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
The present study aims to resolve the existing research gaps on olive pomace (OP) hydrochars application as a fuel by evaluating its molecular structures (FTIR and solid NMR analysis), identifying influential characteristics (Pearson correlation analysis), process optimization (response surface methodology), slagging-fouling risks (empirical indices), and combustion performance (TG-DSC analysis). The response surfaces plot for hydrothermal carbonization (HTC) of OP slurry performed in a pressure reactor under varied temperatures (180-250 °C) and residence times (2-30 min) revealed 250 °C for 30 min to be optimal conditions for producing hydrochar fuel with a higher heating value (32.20 MJ·Kg-1) and energy densification ratio (1.40). However, in terms of process efficiency and cost-effectiveness, the optimal HTC conditions for producing the hydrochar with the highest energy yield of 87.9% were 202.7 °C and 2.0 min. The molecular structure of hydrochar was mainly comprised of aromatic rings with methyl groups, alpha-C atoms of esters, and ether bond linkages of lignin fractions. The slagging and fouling risks of hydrochars were comparatively lower than those of raw OP, as indicated by low slagging and fouling indices. The Pearson correlation analysis emphasized that the enrichment of acid-insoluble lignin and extractive contents, carbon densification, and reduced ash content were the main pivotal factors for hydrochar to exhibit better biofuel characteristics for energy applications.
Collapse
Affiliation(s)
- Adnan Asad Karim
- Department of Chemical, Environmental and Materials Engineering, Science & Technology Campus (Linares), University of Jaén, Avda. de la Universidad s/n, 23700 Linares, Spain;
- University Institute of Research on Olive and Olive Oils (INUO), University of Jaén, Campus de las Lagunillas s/n, 23071 Jaén, Spain
| | - Mᵃ Lourdes Martínez-Cartas
- Department of Chemical, Environmental and Materials Engineering, Science & Technology Campus (Linares), University of Jaén, Avda. de la Universidad s/n, 23700 Linares, Spain;
- University Institute of Research on Olive and Olive Oils (INUO), University of Jaén, Campus de las Lagunillas s/n, 23071 Jaén, Spain
| | - Manuel Cuevas-Aranda
- Department of Chemical, Environmental and Materials Engineering, Science & Technology Campus (Linares), University of Jaén, Avda. de la Universidad s/n, 23700 Linares, Spain;
- University Institute of Research on Olive and Olive Oils (INUO), University of Jaén, Campus de las Lagunillas s/n, 23071 Jaén, Spain
| |
Collapse
|
15
|
Yu S, He J, Zhang Z, Sun Z, Xie M, Xu Y, Bie X, Li Q, Zhang Y, Sevilla M, Titirici MM, Zhou H. Towards Negative Emissions: Hydrothermal Carbonization of Biomass for Sustainable Carbon Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307412. [PMID: 38251820 DOI: 10.1002/adma.202307412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/02/2024] [Indexed: 01/23/2024]
Abstract
The contemporary production of carbon materials heavily relies on fossil fuels, contributing significantly to the greenhouse effect. Biomass is a carbon-neutral resource whose organic carbon is formed from atmospheric CO2. Employing biomass as a precursor for synthetic carbon materials can fix atmospheric CO2 into solid materials, achieving negative carbon emissions. Hydrothermal carbonization (HTC) presents an attractive method for converting biomass into carbon materials, by which biomass can be transformed into materials with favorable properties in a distinct hydrothermal environment, and these carbon materials have made extensive progress in many fields. However, the HTC of biomass is a complex and interdisciplinary problem, involving simultaneously the physical properties of the underlying biomass and sub/supercritical water, the chemical mechanisms of hydrothermal synthesis, diverse applications of resulting carbon materials, and the sustainability of the entire technological routes. This review starts with the analysis of biomass composition and distinctive characteristics of the hydrothermal environment. Then, the factors influencing the HTC of biomass, the reaction mechanism, and the properties of resulting carbon materials are discussed in depth, especially the different formation mechanisms of primary and secondary hydrochars. Furthermore, the application and sustainability of biomass-derived carbon materials are summarized, and some insights into future directions are provided.
Collapse
Affiliation(s)
- Shijie Yu
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Jiangkai He
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Zhien Zhang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Zhuohua Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P.R. China
| | - Mengyin Xie
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Yongqing Xu
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Xuan Bie
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Qinghai Li
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Yanguo Zhang
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Marta Sevilla
- Instituto de Ciencia y Tecnología del Carbono (INCAR), CSIC, Francisco Pintado Fe 26, Oviedo, 33011, Spain
| | | | - Hui Zhou
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, P.R. China
| |
Collapse
|
16
|
Nidheesh PV, Kumar M, Venkateshwaran G, Ambika S, Bhaskar S, Vinay, Ghosh P. Conversion of locally available materials to biochar and activated carbon for drinking water treatment. CHEMOSPHERE 2024; 353:141566. [PMID: 38428536 DOI: 10.1016/j.chemosphere.2024.141566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/16/2023] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
For environmental sustainability and to achieve sustainable development goals (SDGs), drinking water treatment must be done at a reasonable cost with minimal environmental impact. Therefore, treating contaminated drinking water requires materials and approaches that are inexpensive, produced locally, and effortlessly. Hence, locally available materials and their derivatives, such as biochar (BC) and activated carbon (AC) were investigated thoroughly. Several researchers and their findings show that the application of locally accessible materials and their derivatives are capable of the adsorptive removal of organic and inorganic contaminants from drinking water. The application of locally available materials such as lignocellulosic materials/waste and its thermo-chemically derived products, including BC and AC were found effective in the treatment of contaminated drinking water. Thus, this review aims to thoroughly examine the latest developments in the use of locally accessible feedstocks for tailoring BC and AC, as well as their features and applications in the treatment of drinking water. We attempted to explain facts related to the potential mechanisms of BC and AC, such as complexation, co-precipitation, electrostatic interaction, and ion exchange to treat water, thereby achieving a risk-free remediation approach to polluted water. Additionally, this research offers guidance on creating efficient household treatment units based on the health risks associated with customized adsorbents and cost-benefit analyses. Lastly, this review work discusses the current obstacles for using locally accessible materials and their thermo-chemically produced by-products to purify drinking water, as well as the necessity for technological interventions.
Collapse
Affiliation(s)
- P V Nidheesh
- Environmental Impact and Sustainability Division, CSIR - National Environmental Engineering Research Institute, Nagpur, Maharashtra, India.
| | - Manish Kumar
- Amity Institute of Environmental Sciences, Amity University, Noida, India
| | - G Venkateshwaran
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, India
| | - S Ambika
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, India
| | - S Bhaskar
- Department of Civil Engineering, National Institute of Technology, Calicut, NIT Campus, P.O 673 601, Kozhikode, India
| | - Vinay
- Environmental Risk Assessment and Management (EnRAM) Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, 110016, India; Industrial Pollution Control-IV Division, Central Pollution Control Board (CPCB), Ministry of Environment, Forest and Climate Change (MoEF&CC), Parivesh Bhawan, East Arjun Nagar, Delhi, 110032, India
| | - Pooja Ghosh
- Environmental Risk Assessment and Management (EnRAM) Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| |
Collapse
|
17
|
Niedzbała N, Lorenc-Grabowska E, Rutkowski P, Chęcmanowski J, Szymczycha-Madeja A, Wełna M, Michalak I. Potential use of Ulva intestinalis-derived biochar adsorbing phosphate ions in the cultivation of winter wheat Tristicum aestivum. BIORESOUR BIOPROCESS 2024; 11:27. [PMID: 38647581 PMCID: PMC10992812 DOI: 10.1186/s40643-024-00741-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 02/04/2024] [Indexed: 04/25/2024] Open
Abstract
In this work, the properties of biochar produced from green macroalga Ulva intestinalis by pyrolysis were studied at temperatures of 300, 500, and 700 °C. This biochar was characterized in terms of multielemental composition, BET surface area, total pore volume, and biosorption properties toward phosphate ions. Biochar produced at 700 °C-25 m2/g had the highest surface area. The kinetics and isotherms of sorption processes of phosphate ions as sorbate by these sorbents were investigated. Modified biochar was able to remove 84.3% of phosphate ions from wastewater, whereas non-modified biochar-only 40.6%. Hence, biochar enriched with phosphate ions can serve as a valuable soil amendment. Pot experiments performed on winter wheat (Triticum aestivum) with a 3% addition of dry Ulva intestinalis, pristine biochar, and Mg-modified biochar enriched with phosphate ions showed that these amendments stimulated plant growth (length and fresh weight of plants) as well as enlarging the chlorophyll content in leaves. Our results indicate that the production of biochar (pristine and Mg-impregnated) is a sustainable option to valorize the biomass of seaweeds, and to recycle phosphorus from wastewater.
Collapse
Affiliation(s)
- Natalia Niedzbała
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland.
| | - Ewa Lorenc-Grabowska
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Piotr Rutkowski
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Jacek Chęcmanowski
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Anna Szymczycha-Madeja
- Department of Analytical Chemistry and Chemical Metallurgy, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Maja Wełna
- Department of Analytical Chemistry and Chemical Metallurgy, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Izabela Michalak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| |
Collapse
|
18
|
Duarah P, Haldar D, Singhania RR, Dong CD, Patel AK, Purkait MK. Sustainable management of tea wastes: resource recovery and conversion techniques. Crit Rev Biotechnol 2024; 44:255-274. [PMID: 36658718 DOI: 10.1080/07388551.2022.2157701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/30/2022] [Accepted: 11/26/2022] [Indexed: 01/21/2023]
Abstract
As the demand for tea (Camellia sinensis) has grown across the world, the amount of biomass waste that has been produced during the harvesting process has also increased. Tea consumption was estimated at about 6.3 million tonnes in 2020 and is anticipated to reach 7.4 million tonnes by 2025. The generation of tea waste (TW) after use has also increased concurrently with rising tea consumption. TW includes clipped stems, wasted tea leaves, and buds. Many TW-derived products have proven benefits in various applications, including energy generation, energy storage, wastewater treatment, and pharmaceuticals. TW is widely used in environmental and energy-related applications. Energy recovery from low- and medium-calorific value fuels may be accomplished in a highly efficient manner using pyrolysis, anaerobic digestion, and gasification. TW-made biochar and activated carbon are also promising adsorbents for use in environmental applications. Another area where TW shows promise is in the synthesis of phytochemicals. This review offers an overview of the conversion procedures for TW into value-added products. Further, the improvements in their applications for energy generation, energy storage, removal of different contaminants, and extraction of phytochemicals have been reviewed. A comprehensive assessment of the sustainable use of TWs as environmentally acceptable renewable resources is compiled in this review.
Collapse
Affiliation(s)
- Prangan Duarah
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Dibyajyoti Haldar
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
- Centre for Energy and Environmental Sustainability, Lucknow, India
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
- Centre for Energy and Environmental Sustainability, Lucknow, India
| | - Mihir Kumar Purkait
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam, India
| |
Collapse
|
19
|
Wang X, Kong Q, Cheng Y, Xie C, Yuan Y, Zheng H, Yu X, Yao H, Quan Y, You X, Zhang C, Li Y. Cattle manure hydrochar posed a higher efficiency in elevating tomato productivity and decreasing greenhouse gas emissions than plant straw hydrochar in a coastal soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168749. [PMID: 38007120 DOI: 10.1016/j.scitotenv.2023.168749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/14/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023]
Abstract
Rehabilitation of degraded soil health using high-performance and sustainable measures are urgently required for restoring soil primary productivity and mitigating greenhouse gas (GHG) emission of coastal ecosystems. However, the effect of livestock manure derived hydrochar on GHG emission and plant productivity in the coastal salt-affected soils, one of blue carbon (C) ecosystems, was poorly understood. Therefore, a cattle manure hydrochar (CHC) produced at 220 °C was prepared to explore its effects and mechanisms on CH4 and N2O emissions and tomato growth and fruit quality in a coastal soil in comparison with corresponding hydrochars derived from plant straws, i.e., sesbania straw hydrochars (SHC) and reed straw hydrochars (RHC) using a 63-day soil column experiment. The results showed that CHC posed a greater efficiency in reducing the global warming potential (GWP, 54.6 % (36.7 g/m2) vs. 45.5-45.6 % (22.2-30.6 g/m2)) than those of RHC and SHC. For the plant growth, three hydrochars at 3 % (w/w) significantly increased dry biomass of tomato shoot and fruit by 12.4-49.5 % and 48.6-165 %, respectively. Moreover, CHC showed the highest promotion effect on shoot and fruit dry biomass of tomato, followed by SHC ≈ RHC. Application of SHC, CHC and RHC significantly elevated the tomato sweetness compared with CK, with the order of CHC (54.4 %) > RHC (35.6 %) > SHC (22.1 %). Structural equation models revealed that CHC-depressed denitrification and methanogen mainly contributed to decreased GHG emissions. Increased soil phosphorus availability due to labile phosphorus supply from CHC dominantly accounted for elevated tomato growth and fruit production. Comparably, SHC-altered soil properties (e.g., decreased pH and increased total carbon content) determined variations of GHG emission and tomato growth. The findings provide the high-performance strategies to enhance soil primary productivity and mitigate GHG emissions in the blue C ecosystems.
Collapse
Affiliation(s)
- Xiao Wang
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China
| | - Qingxian Kong
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yadong Cheng
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China
| | - Chenghao Xie
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yuan Yuan
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China
| | - Hao Zheng
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Sanya Oceanographic Institution, Ministry of Education Key Laboratory of Marine Environment and Ecology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China; Marine Ecology and Environmental Science Laboratory, Qingdao National Laboratory of Marine Science and Technology, Qingdao 266071, China
| | - Xueyang Yu
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China
| | - Hui Yao
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China
| | - Yue Quan
- Department of Geography and Marine Sciences, Yanbian University, Hunchun, Jilin 133000, China
| | - Xiangwei You
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China.
| | - Chengsheng Zhang
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China
| | - Yiqiang Li
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China.
| |
Collapse
|
20
|
Fu Z, Zhao J, Guan D, Wang Y, Xie J, Zhang H, Sun Y, Zhu J, Guo L. A comprehensive review on the preparation of biochar from digestate sources and its application in environmental pollution remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168822. [PMID: 38043821 DOI: 10.1016/j.scitotenv.2023.168822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/05/2023]
Abstract
The preparation of biochar from digestate is one of the effective ways to achieve the safe disposal and resource utilization of digestate. Nevertheless, up to now, a comprehensive review encompassing the factors influencing anaerobic digestate-derived biochar production and its applications is scarce in the literature. Therefore, to fill this gap, the present work first outlined the research hotspots of digestate in the last decade using bibliometric statistical analysis with the help of VOSviewer. Then, the characteristics of the different sources of digestate were summarized. Furthermore, the influencing factors of biochar preparation from digestate and the modification methods of digestate-derived biochar and associated mechanisms were analyzed. Notably, a comprehensive synthesis of anaerobic digestate-derived biochar applications is provided, encompassing enhanced anaerobic digestion, heavy metal remediation, aerobic composting, antibiotic/antibiotic resistance gene removal, and phosphorus recovery from digestate liquor. The economic and environmental impacts of digestate-derived biochar were also analyzed. Finally, the development prospect and challenges of using biochar from digestate to combat environmental pollution are foreseen. The aim is to not only address digestate management challenges at the source but also offer a novel path for the resourceful utilization of digestate.
Collapse
Affiliation(s)
- Zhou Fu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Jianwei Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China.
| | - Dezheng Guan
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Yuxin Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Jingliang Xie
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Huawei Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Yingjie Sun
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China.
| | - Jiangwei Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Liang Guo
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
21
|
Nadarajah K, Rodriguez-Narvaez OM, Ramirez J, Bandala ER, Goonetilleke A. Lab-scale engineered hydrochar production and techno-economic scaling-up analysis. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 174:568-574. [PMID: 38141374 DOI: 10.1016/j.wasman.2023.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/16/2023] [Accepted: 12/11/2023] [Indexed: 12/25/2023]
Abstract
Despite the extensive use of engineered hydrochar (EHC) for contaminants adsorption in water, little is known about the scaling-up of EHC production which has kept the technology at a low readiness level (TRL). Full-scale EHC production was simulated to help bridge this knowledge gap. A systematic analysis was performed where EHC was produced from rice straw using hydrothermal carbonization (HTC) at 200 °C with iron addition. A techno-economic evaluation model was employed to simulate the production process and to estimate energy requirements, configuration, and cost scenarios for the HTC process. The minimum selling price (MSP) analysis of the engineered hydrochar was found to be almost half compared to the market price for other similar sorbents ($ 76/t vs. $136/t) suggesting that EHC production is feasible for scaling up. Finally, as a trial, the resulting material was tested for its efficacy in the adsorption of an anionic organic contaminant (e.g., Congo Red, C32H22N6Na2O6S2) in water to identify its potential for water treatment. Experimental results showed that EHC adsorbed > 95% CR suggesting significant adsorption capability and feasibility for production scale-up.
Collapse
Affiliation(s)
- Kannan Nadarajah
- Department of Agricultural Engineering, Faculty of Agriculture, University of Jaffna, Sri Lanka
| | - Oscar M Rodriguez-Narvaez
- CIATEC, A.C., Dirección de investigación y soluciones tecnológicas, Omega 201, Col. Industrial Delta, León, Guanajuato C.P. 37545, Mexico.
| | - Jerome Ramirez
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, 2 George St, Brisbane City, Queensland 4000, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, 2 George St, Brisbane City, Queensland 4000, Australia
| | - Erick R Bandala
- Division of Hydrologic Sciences, Desert Research Institute, 755 E. Flamingo Road, Las Vegas NV89119-7363, USA
| | - Ashantha Goonetilleke
- School of Civil and Environmental Engineering, Queensland University of Technology, GPO Box 2344, Brisbane 4001, Queensland, Australia
| |
Collapse
|
22
|
Chandrasekar R, Deen MA, Narayanasamy S. Performance analysis of hydrochar derived from catalytic hydrothermal carbonization in the multicomponent emerging contaminant systems: Selectivity and modeling studies. BIORESOURCE TECHNOLOGY 2024; 393:130018. [PMID: 37989419 DOI: 10.1016/j.biortech.2023.130018] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/05/2023] [Accepted: 11/10/2023] [Indexed: 11/23/2023]
Abstract
In this work, as an alternative to pyrochar, catalytic hydrothermal carbonization has been employed to synthesize hydrochar to eliminate emerging contaminants in multicomponent systems. The hydrochar has been synthesized using a single step catalytic hydrothermal carbonization at low temperature (200 °C) without any secondary activation with high specific surface area and very good adsorption efficiency for the removal of emerging contaminants. The synthesized hydrochar (HC200) was characterized using various analytical techniques and found to have porous structure with 114.84 m2.g-1 of specific surface area and also contained various oxygen-containing functionalities. The maximum adsorption efficiencies of 92.4 %, 85.4 %, and 82 % were obtained for ibuprofen, sulfamethoxazole, and bisphenol A, respectively. Humic acid, a naturally occurring organic compound had a negligible effect on the adsorption of the selected contaminants. The hydrochar's selectivity towards the emerging contaminants in binary and ternary multicomponent systems was in the order of ibuprofen > sulfamethoxazole > bisphenol A.
Collapse
Affiliation(s)
- Ragavan Chandrasekar
- Biochemical and Environmental Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Mohammed Askkar Deen
- Biochemical and Environmental Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Selvaraju Narayanasamy
- Biochemical and Environmental Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| |
Collapse
|
23
|
Zhou W, Li M, Liu Y. Revealing the generation of reactive oxygen species in hydrochar and pyrochar: Insight into rational regulation of free radicals and catalytic mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119876. [PMID: 38157577 DOI: 10.1016/j.jenvman.2023.119876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/28/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
The removal of organic pollutants by biochar has been extensively studied. However, the differences in the removal mechanisms of contaminants by biochar obtained from different preparation techniques have not been thoroughly elucidated. In this study, the catalytic performances of hydrochar (HC) and pyrochar (PC) were compared in the dark and light. Owing to more persistent free radicals (PFRs), greater defects and stronger charge transfer ability on the surface, PC could produce a certain concentration of superoxide radicals (•O2-) even in the dark, making its degradation efficiency for benzoic acid (BA) 11% higher than that of HC. On the contrary, when the light was turned on, HC rather than PC can generate a higher amount of hydroxyl radical (•OH), resulting in an 11% higher degradation efficiency of BA compared to PC. The improvement of catalytic performance in HC originated from its oxygen-containing functional groups (OFGs), which was beneficial for its effective production of singlet oxygen (1O2) and ·OH under light exposure. For PC, its photocatalytic activity depended mainly on the formation of 1O2 induced by the triplet of DOM (dissolved organic matter), but the lack of oxidative ·OH in its system leads to a lower degradation efficiency than that of HC. To prove the universal applicability of this rule for biochar materials, HC and PC materials obtained from soybean residue were also prepared for degrading BA. This work is devoted to an in-depth exploration of the catalytic activation mechanism of biochar obtained by different technological methods, and can create conditions for the generation of more dominant reactive oxygen species (ROS) on biochar, thus providing the guidance for environmental remediation.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Mengke Li
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Yun Liu
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|
24
|
Girimonte A, Stefani A, Mucci C, Giovanardi R, Marchetti A, Innocenti M, Fontanesi C. Electrochemical Performance of Metal-Free Carbon-Based Catalysts from Different Hydrothermal Carbonization Treatments for Oxygen Reduction Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:173. [PMID: 38251138 PMCID: PMC10820196 DOI: 10.3390/nano14020173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
This research investigates the difference between products obtained through two hydrothermal carbonization treatments. Our aim is to synthesize metal-free, carbon-based catalysts for the oxygen reduction reaction (ORR) to serve as efficient and cost-effective alternatives to platinum-based catalysts. Catalysts synthesized using the traditional hydrothermal approach exhibit a higher electrocatalytic activity for ORR in alkaline media, despite their more energy-intensive production process. The superior performance is attributed to differences in the particle morphology and the chemical composition of the particle surfaces. The presence of functional groups on the surfaces of catalysts obtained via a traditional approach significantly enhances ORR activity by facilitating deprotonation reactions in an alkaline environment. Our research aims to provide a reference for future investigations, shifting the focus to the fine-tuning of surface chemical compositions and morphologies of metal-free catalysts to enhance ORR activity.
Collapse
Affiliation(s)
- Aldo Girimonte
- Department of Engineering, DIEF, University of Modena and Reggio Emilia, via Vivarelli 10, 41125 Modena, Italy; (A.G.); (C.M.); (R.G.)
| | - Andrea Stefani
- Department of Physics, FIM, University of Modena and Reggio Emilia, via Campi 213, 41125 Modena, Italy;
| | - Clara Mucci
- Department of Engineering, DIEF, University of Modena and Reggio Emilia, via Vivarelli 10, 41125 Modena, Italy; (A.G.); (C.M.); (R.G.)
| | - Roberto Giovanardi
- Department of Engineering, DIEF, University of Modena and Reggio Emilia, via Vivarelli 10, 41125 Modena, Italy; (A.G.); (C.M.); (R.G.)
| | - Andrea Marchetti
- Department of Chemical and Geological Science, DSCG, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy;
| | - Massimo Innocenti
- Department of Chemistry, “Ugo Schiff”, University of Firenze, via della Lastruccia 3, 50019 Sesto Fiorentino, Italy;
- National Interuniversity Consortium of Materials Science and Technology (INSTM), via G. Giusti 9, 50121 Firenze, Italy
| | - Claudio Fontanesi
- Department of Engineering, DIEF, University of Modena and Reggio Emilia, via Vivarelli 10, 41125 Modena, Italy; (A.G.); (C.M.); (R.G.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), via G. Giusti 9, 50121 Firenze, Italy
| |
Collapse
|
25
|
Park C, Kim EJ. Comparison of microalgal hydrochar and pyrochar: production, physicochemical properties, and environmental application. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:2521-2532. [PMID: 38066271 DOI: 10.1007/s11356-023-31317-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/28/2023] [Indexed: 01/18/2024]
Abstract
Microalgal biomass has been considered the third-generation biofuel production feedstock, but microalgae-derived biochar still needs to be thoroughly understood. This study aims to evaluate the production and physicochemical properties of microalgae-derived hydrochar produced by hydrothermal carbonization (HTC) process by comparison with pyrochar produced by dry thermal carbonization (DTC) process for environmental applications. Microalgal biochar was produced with commercially available Chlorella vulgaris microalgae using HTC and DTC processes under various temperature conditions. Pyrochar presented higher pH, ash contents, porosity, and surface area than hydrochar. Hydrochar gave more oxygen-containing functional groups on the surface and higher lead adsorption than pyrochar, making the microalgal hydrochar applicable in soil amendment and various environmental remediations. HTC could be an economically feasible thermochemical process for microalgal biochar production. It can produce hydrochar with high production yield from wet microalgae at low temperatures without a drying process.
Collapse
Affiliation(s)
- Chaerin Park
- Department of Environmental Engineering, Mokpo National University, 1666 Yongsan-Ro, Cheongye-Myeon, Muan-Gun, Jeollanam-Do, 58554, Republic of Korea
| | - Eun Jung Kim
- Department of Environmental Engineering, Mokpo National University, 1666 Yongsan-Ro, Cheongye-Myeon, Muan-Gun, Jeollanam-Do, 58554, Republic of Korea.
| |
Collapse
|
26
|
Wu S, Wang Q, Fang M, Wu D, Cui D, Pan S, Bai J, Xu F, Wang Z. Hydrothermal carbonization of food waste for sustainable biofuel production: Advancements, challenges, and future prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165327. [PMID: 37419347 DOI: 10.1016/j.scitotenv.2023.165327] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/20/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
With the improvement of living standards, food waste (FW) has become one of the most important organic solid wastes worldwide. Owing to the high moisture content of FW, hydrothermal carbonization (HTC) technology that can directly utilize the moisture in FW as the reaction medium, is widely used. Under mild reaction conditions and short treatment cycle, this technology can effectively and stably convert high-moisture FW into environmentally friendly hydrochar fuel. In view of the importance of this topic, this study comprehensively reviews the research progress of HTC of FW for biofuel synthesis, and critically summarizes the process parameters, carbonization mechanism, and clean applications. Physicochemical properties and micromorphological evolution of hydrochar, hydrothermal chemical reactions of each model component, and potential risks of hydrochar as a fuel are highlighted. Furthermore, carbonization mechanism of the HTC treatment process of FW and the granulation mechanism of hydrochar are systematically reviewed. Finally, potential risks and knowledge gaps in the synthesis of hydrochar from FW are presented and new coupling technologies are pointed out, highlighting the challenges and prospects of this study.
Collapse
Affiliation(s)
- Shuang Wu
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin 132012, Jilin, PR China; School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, Jilin, PR China
| | - Qing Wang
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin 132012, Jilin, PR China; School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, Jilin, PR China.
| | - Minghui Fang
- School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, Jilin, PR China
| | - Dongyang Wu
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin 132012, Jilin, PR China; School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, Jilin, PR China
| | - Da Cui
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin 132012, Jilin, PR China; School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, Jilin, PR China
| | - Shuo Pan
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin 132012, Jilin, PR China; School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, Jilin, PR China
| | - Jingru Bai
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin 132012, Jilin, PR China; School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, Jilin, PR China
| | - Faxing Xu
- Jilin Dongfei Solid Waste Research Institute, Jilin 132200, Jilin, PR China; Jilin Feite Environmental Protection Co., Ltd, Jilin 132200, Jilin, PR China
| | - Zhenye Wang
- Jilin Dongfei Solid Waste Research Institute, Jilin 132200, Jilin, PR China; Jilin Feite Environmental Protection Co., Ltd, Jilin 132200, Jilin, PR China
| |
Collapse
|
27
|
Manikandan S, Vickram S, Subbaiya R, Karmegam N, Woong Chang S, Ravindran B, Kumar Awasthi M. Comprehensive review on recent production trends and applications of biochar for greener environment. BIORESOURCE TECHNOLOGY 2023; 388:129725. [PMID: 37683709 DOI: 10.1016/j.biortech.2023.129725] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/21/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
The suitability of biochar as a supplement for environmental restoration varies significantly based on the type of feedstocks used and the parameters of the pyrolysis process. This study comprehensively examines several aspects of biochar's potential benefits, its capacity to enhance crop yields, improve nutrient availability, support the co-composting, water restoration and enhance overall usage efficiency. The supporting mechanistic evidence for these claims is also evaluated. Additionally, the analysis identifies various gaps in research and proposes potential directions for further exploration to enhance the understanding of biochar application. As a mutually advantageous approach, the integration of biochar into agricultural contexts not only contributes to environmental restoration but also advances ecological sustainability. The in-depth review underscores the diverse suitability of biochar as a supplement for environmental restoration, contingent upon the specific feedstock sources and pyrolysis conditions used. However, concerns have been raised regarding potential impacts on human health within agricultural sectors.
Collapse
Affiliation(s)
- Sivasubramanian Manikandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602 105. Tamil Nadu, India
| | - Sundaram Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602 105. Tamil Nadu, India
| | - Ramasamy Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692 Kitwe, Zambia
| | - Natchimuthu Karmegam
- PG and Research Department of Botany, Government Arts College (Autonomous), Salem 636 007, Tamil Nadu, India
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University Yeongtong-Gu, Suwon, Gyeonggi-Do 16227, Republic of Korea
| | - Balasubramani Ravindran
- Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602105, Tamil Nadu, India; Department of Environmental Energy and Engineering, Kyonggi University Yeongtong-Gu, Suwon, Gyeonggi-Do 16227, Republic of Korea
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
28
|
Godvin Sharmila V, Kumar Tyagi V, Varjani S, Rajesh Banu J. A review on the lignocellulosic derived biochar-based catalyst in wastewater remediation: Advanced treatment technologies and machine learning tools. BIORESOURCE TECHNOLOGY 2023; 387:129587. [PMID: 37549718 DOI: 10.1016/j.biortech.2023.129587] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023]
Abstract
Wastewater disposal in the ecosystem affects aquatic and human life, which necessitates the removal of the contaminants. Eliminating wastewater contaminants using biochar produced through the thermal decomposition of lignocellulosic biomass (LCB) is sustainable. Due to its high specific surface area, porous structure, oxygen functional groups, and low cost, biochar has emerged as an alternate contender in catalysis. Various innovative advanced technologies were combined with biochar for effective wastewater treatment. This review examines the use of LCB for the synthesis of biochar along with its activation methods. It also elaborates on using advanced biochar-based technologies in wastewater treatment and the mechanism for forming oxidizing species. The research also highlights the use of machine learning in pollutant removal and identifies the obstacles of biochar-based catalysts in both real-time and cutting-edge technologies. Probable and restrictions for further exploration are discussed.
Collapse
Affiliation(s)
- V Godvin Sharmila
- Department of Civil Engineering, Mar Ephraem College of Engineering and Technology, Marthandam 629171, Tamil Nadu, India
| | - Vinay Kumar Tyagi
- Environmental Hydrology Division, National Institute of Hydrology, Roorkee 247667, India
| | - Sunita Varjani
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun 248 007, Uttarakhand, India
| | - J Rajesh Banu
- Department of Biotechnology, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu 610005, India.
| |
Collapse
|
29
|
Wu G, Tham PE, Chew KW, Munawaroh HSH, Tan IS, Wan-Mohtar WAAQI, Sriariyanun M, Show PL. Net zero emission in circular bioeconomy from microalgae biochar production: A renewed possibility. BIORESOURCE TECHNOLOGY 2023; 388:129748. [PMID: 37714493 DOI: 10.1016/j.biortech.2023.129748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/09/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023]
Abstract
The rapid expansion of industrialization and continuous population growth have caused a steady increase in energy consumption. Despite using renewable energy, such as bioethanol, to replace fossil fuels had been strongly promoted, however the outcomes were underwhelming, resulting in excessive greenhouse gases (GHG) emissions. Microalgal biochar, as a carbon-rich material produced from the pyrolysis of biomass, provides a promising solution for achieving net zero emission. By utilizing microalgal biochar, these GHG emissions can be captured and stored efficiently. It also enhances soil fertility, improves water retention, and conduct bioremediation in agriculture and environmental remediation field. Moreover, incorporating microalgal biochar into a zero-waste biorefinery could boost the employ of biomass feedstocks effectively to produce valuable bioproducts while minimizing waste. This contributes to sustainability and aligns with the concepts of a circular bioeconomy. In addition, some challenges like commercialization and standardization will be addressed in the future.
Collapse
Affiliation(s)
- Guowei Wu
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Malaysia
| | - Pei En Tham
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Malaysia
| | - Kit Wayne Chew
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Heli Siti Halimatul Munawaroh
- Study Program of Chemistry, Faculty of Mathematics and Science Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudi 229, Bandung 40154, Indonesia
| | - Inn Shi Tan
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, Miri, Sarawak 98009, Malaysia
| | - Wan Abd Al Qadr Imad Wan-Mohtar
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Malinee Sriariyanun
- Biorefinery and Process Automation Engineering Center, Department of Chemical and Process Engineering, The Sirindhorn International Thai-German Graduate School of Engineering, King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Malaysia; Department of Chemical Engineering, Khalifa University, Shakhbout Bin Sultan St - Zone 1, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
30
|
Zhu H, An Q, Syafika Mohd Nasir A, Babin A, Lucero Saucedo S, Vallenas A, Li L, Baldwin SA, Lau A, Bi X. Emerging applications of biochar: A review on techno-environmental-economic aspects. BIORESOURCE TECHNOLOGY 2023; 388:129745. [PMID: 37690489 DOI: 10.1016/j.biortech.2023.129745] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/15/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023]
Abstract
Biomass fast pyrolysis produces bio-oil and biochar achieving circular economy. This review explored the emerging applications of biochar. Biochar possesses the unique properties for removing emerging contaminants and for mine remediation, owing to its negative charge surface, high specific surface area, large pore size distribution and surface functional groups. Additionally, biochar could adsorb impurities such as CO2, moisture, and H2S to upgrade the biogas. Customizing pyrolysis treatments, optimizing the feedstock and pyrolysis operating conditions enhance biochar production and improve its surface properties for the emerging applications. Life cycle assessment and techno-economic assessment indicated the benefits of replacing conventional activated carbon with biochar.
Collapse
Affiliation(s)
- Hui Zhu
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Qing An
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Thermal and Environmental Engineering Institute, Mechanical Engineering College, Tongji University, Shanghai 201800, China
| | - Amirah Syafika Mohd Nasir
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Alexandre Babin
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Sofia Lucero Saucedo
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Amzy Vallenas
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Loretta Li
- Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Susan Anne Baldwin
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Anthony Lau
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Xiaotao Bi
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
31
|
Mishra A, Goel D, Shankar S. Bisphenol A contamination in aquatic environments: a review of sources, environmental concerns, and microbial remediation. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1352. [PMID: 37861868 DOI: 10.1007/s10661-023-11977-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023]
Abstract
The production of polycarbonate, a high-performance transparent plastic, employs bisphenol A, which is a prominent endocrine-disrupting compound. Polycarbonates are frequently used in the manufacturing of food, bottles, storage containers for newborns, and beverage packaging materials. Global production of BPA in 2022 was estimated to be in the region of 10 million tonnes. About 65-70% of all bisphenol A is used to make polycarbonate plastics. Bisphenol A leaches from improperly disposed plastic items and enters the environment through wastewater from plastic-producing industries, contaminating, sediments, surface water, and ground water. The concentration BPA in industrial and domestic wastewater ranges from 16 to 1465 ng/L while in surface water it has been detected 170-3113 ng/L. Wastewater treatment can be highly effective at removing BPA, giving reductions of 91-98%. Regardless, the remaining 2-9% of BPA will continue through to the environment, with low levels of BPA commonly observed in surface water and sediment in the USA and Europe. The health effects of BPA have been the subject of prolonged public and scientific debate, with PubMed listing more than 17,000 scientific papers as of 2023. Bisphenol A poses environmental and health hazards in aquatic systems, affecting ecosystems and human health. While several studies have revealed its presence in aqueous streams, environmentally sound technologies should be explored for its removal from the contaminated environment. Concern is mostly related to its estrogen-like activity, although it can interact with other receptor systems as an endocrine-disrupting chemical. Present review article encompasses the updated information on sources, environmental concerns, and sustainable remediation techniques for bisphenol A removal from aquatic ecosystems, discussing gaps, constraints, and future research requirements.
Collapse
Affiliation(s)
- Anuradha Mishra
- Department of Applied Chemistry, School of Vocational Studies and Applied Sciences (SoVSAS), Gautam Buddha University (GBU), Govt. of Uttar Pradesh, Greater Noida, Uttar Pradesh, 201 312, India
| | - Divya Goel
- Department of Environmental Science, School of Vocational Studies and Applied Sciences (SoVSAS), Gautam Buddha University (GBU), Govt. of Uttar Pradesh, Greater Noida, Uttar Pradesh, 201 312, India
| | - Shiv Shankar
- Department of Environmental Science, School of Vocational Studies and Applied Sciences (SoVSAS), Gautam Buddha University (GBU), Govt. of Uttar Pradesh, Greater Noida, Uttar Pradesh, 201 312, India.
| |
Collapse
|
32
|
Pecchi M, Baratieri M, Maag AR, Goldfarb JL. Uncovering the transition between hydrothermal carbonization and liquefaction via secondary char extraction: A case study using food waste. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 168:281-289. [PMID: 37329834 DOI: 10.1016/j.wasman.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/20/2023] [Accepted: 06/07/2023] [Indexed: 06/19/2023]
Abstract
Despite the ability to perform both processes in the same reactor, hydrothermal carbonization (HTC) and hydrothermal liquefaction (HTL) are considered two distinct processes differentiated by their reaction temperatures. As temperatures increase from the less severe HTC range into the HTL regime, the product distribution progressively favors an organic bio-oil phase relative to solid hydrochar. Solvents are commonly used to extract bio-oil from the solid residues produced during HTL, and to separate the amorphous secondary char from the coal-like primary char of HTC hydrochars. This suggests secondary char is a HTL biocrude precursor. Lipid-rich food waste was hydrothermally processed between 190 and 340 °C, spanning HTC to HTL conditions. Higher temperatures produce more gas, less liquid, and similar amounts of a progressively less oxygenated hydrochars, suggesting a gradual transition from HTC to HTL. However, analyses of ethanol-separated primary chars and secondary chars tell a different story. While the primary char is progressively more carbonized with temperature, the secondary char composition sharply changes at 250 °C. That is, lipid hydrolysis begins around 220 °C, but proceeds rather completely at 250 °C and above. A lower HTL temperature reduces the energy cost of the hydrothermal process, yet enables full lipid hydrolysis into long chain fatty acids while minimizing recondensation and repolymerization of fatty acids onto the primary char and their subsequent amidation. This maximizes the conversion of lipid-rich feedstocks into liquid fuel precursors with up to 70 % energy recovery.
Collapse
Affiliation(s)
- Matteo Pecchi
- Department of Biological & Environmental Engineering, Cornell University, USA; Faculty of Science and Technology, Free University of Bolzano, Italy
| | - Marco Baratieri
- Faculty of Science and Technology, Free University of Bolzano, Italy
| | - Alex R Maag
- Department of Biological & Environmental Engineering, Cornell University, USA; Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Jillian L Goldfarb
- Department of Biological & Environmental Engineering, Cornell University, USA.
| |
Collapse
|
33
|
Licursi D, Antonetti C, Di Fidio N, Fulignati S, Benito P, Puccini M, Vitolo S, Raspolli Galletti AM. Conversion of the hydrochar recovered after levulinic acid production into activated carbon adsorbents. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 168:235-245. [PMID: 37320891 DOI: 10.1016/j.wasman.2023.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 05/22/2023] [Accepted: 06/09/2023] [Indexed: 06/17/2023]
Abstract
Levulinic acid production by acid-catalyzed hydrothermal conversion of (ligno)cellulosic biomass generates significant amounts of carbonaceous hydrochar, which is currently considered a final waste. In this work, the hydrochar recovered after the levulinic acid production, was subjected to cascade pyrolysis and chemical activation treatments (by H3PO4 or KOH), to synthesize activated carbons. The pyrolysis post-treatment was already effective in improving the surface properties of the raw hydrochar (Specific Surface Area: 388 m2/g, VP: 0.22 cm3/g, VMESO: 0.07 cm3/g, VMICRO: 0.14 cm3/g), by removing volatile compounds. KOH activation resulted as the most appropriate for further improving the surface properties of the pyrolyzed hydrochar, showing the best surface properties (Specific Surface Area: 1421 m2/g, VP: 0.63 cm3/g, VMESO: 0.10 cm3/g, VMICRO: 0.52 cm3/g), which synergistically makes it a promising system towards adsorption of CO2 (∼90 mg/g) and methylene blue (∼248 mg/g). In addition, promising surface properties can be achieved after direct chemical activation of the raw hazelnut shells, preferably by H3PO4 (Specific Surface Area: 1918 m2/g, VP: 1.34 cm3/g, VMESO: 0.82 cm3/g, VMICRO: 0.50 cm3/g), but this choice is not the smartest, as it does not allow the valorization of the cellulose fraction to levulinic acid. Our approach paves the way for possible uses of these hydrochars originating from the levulinic acid chain for new environmental applications, thus smartly closing the biorefinery loop of the hazelnut shells.
Collapse
Affiliation(s)
- Domenico Licursi
- Dipartimento di Chimica e Chimica Industriale - Università di Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy; Consorzio Interuniversitario Reattività Chimica e Catalisi (CIRCC), Via Celso Ulpiani 27, 70126 Bari, Italy.
| | - Claudia Antonetti
- Dipartimento di Chimica e Chimica Industriale - Università di Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy; Consorzio Interuniversitario Reattività Chimica e Catalisi (CIRCC), Via Celso Ulpiani 27, 70126 Bari, Italy
| | - Nicola Di Fidio
- Dipartimento di Chimica e Chimica Industriale - Università di Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy; Consorzio Interuniversitario Reattività Chimica e Catalisi (CIRCC), Via Celso Ulpiani 27, 70126 Bari, Italy
| | - Sara Fulignati
- Dipartimento di Chimica e Chimica Industriale - Università di Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy; Consorzio Interuniversitario Reattività Chimica e Catalisi (CIRCC), Via Celso Ulpiani 27, 70126 Bari, Italy
| | - Patricia Benito
- Dipartimento di Chimica Industriale "Toso Montanari", Alma Mater Studiorum - Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Monica Puccini
- Dipartimento di Ingegneria Civile e Industriale - Università di Pisa, Largo Lucio Lazzarino, 56122 Pisa, Italy
| | - Sandra Vitolo
- Dipartimento di Ingegneria Civile e Industriale - Università di Pisa, Largo Lucio Lazzarino, 56122 Pisa, Italy
| | - Anna Maria Raspolli Galletti
- Dipartimento di Chimica e Chimica Industriale - Università di Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy; Consorzio Interuniversitario Reattività Chimica e Catalisi (CIRCC), Via Celso Ulpiani 27, 70126 Bari, Italy
| |
Collapse
|
34
|
Xu Q, Yang G, Liu X, Wong JWC, Zhao J. Hydrochar mediated anaerobic digestion of bio-wastes: Advances, mechanisms and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163829. [PMID: 37121315 DOI: 10.1016/j.scitotenv.2023.163829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/05/2023]
Abstract
Bio-wastes treatment and disposal has become a challenge because of their increasing output. Given the abundant organic matter in bio-wastes, its related resource treatment methods have received more and more attention. As a promising strategy, anaerobic digestion (AD) has been widely used in the treatment of bio-wastes, during which not only methane as energy can be recovered but also their reduction can be achieved. However, AD process is generally disturbed by some internal factors (e.g., low hydrolysis efficiency and accumulated ammonia) and external factors (e.g., input pollutants), resulting in unstable AD operation performance. Recently, hydrochar was wildly found to improve AD performance when added to AD systems. This review comprehensively summarizes the research progress on the performance of hydrochar-mediated AD, such as increased methane yield, improved operation efficiency and digestate dewatering, and reduced heavy metals in digestate. Subsequently, the underlying mechanisms of hydrochar promoting AD were systematically elucidated and discussed, including regulation of electron transfer (ET) mode, microbial community structure, bio-processes involved in AD, and reaction conditions. Moreover, the effects of properties of hydrochar (e.g., feedstock, hydrothermal carbonization (HTC) temperature, HTC time, modification and dosage) on the improvement of AD performance are systematically concluded. Finally, the relevant knowledge gaps and opportunities to be studied are presented to improve the progress and application of the hydrochar-mediated AD technology. This review aims to offer some references and directions for the hydrochar-mediated AD technology in improving bio-wastes resource recovery.
Collapse
Affiliation(s)
- Qiuxiang Xu
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, China; College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China
| | - Guojing Yang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China
| | - Xuran Liu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Jonathan W C Wong
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Jun Zhao
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
35
|
Ji R, Zhou Y, Cai J, Chu K, Zeng Y, Cheng H. Release characteristics of hydrochar-derived dissolved organic matter: Effects of hydrothermal temperature and environmental conditions. CHEMOSPHERE 2023; 321:138138. [PMID: 36791817 DOI: 10.1016/j.chemosphere.2023.138138] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/10/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Much research has been done on the preparation and application of hydrochars, but research on the release characteristics of hydrochar-derived dissolved organic matter (HDOM) is very limited; clarifying the release characteristics of HDOM is important for understanding and adjusting the environmental behaviour of hydrochar. Herein, the potential release of HDOM from rice straw-derived hydrochars prepared at different hydrothermal temperatures was investigated under various potential environmental conditions for the first time. The total release quantity and humification degree of HDOM decreased with increasing hydrothermal temperature. The critical dividing line for various hydrothermal reactions, decomposition and polymerization, was in the range of 240 °C-260 °C. Alkaline condition increased the HDOM release amount (up to 299 mg g-1), molecular weight (as high as 423 Da) and molecular diversity (8857 compounds) from rice straw-derived hydrochars. The unique substances of HDOM released under alkaline condition were mainly distributed in lipids-like substances, CRAM/lignins-like substances, aromatic structures, and tannins-like substances, while few unique substances were found under acidic condition. Additionally, CRAM/lignins-like substances were the most abundant in all HDOM samples, reaching 82%, which were relatively stable and could achieve carbon sequestration in different environments. The findings provided a new insight on understanding the potential environment behaviors of hydrochar.
Collapse
Affiliation(s)
- Rongting Ji
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, PR China
| | - Yue Zhou
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, PR China; Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Jinbang Cai
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, PR China
| | - Kejian Chu
- College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Yuan Zeng
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, PR China.
| | - Hu Cheng
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, PR China.
| |
Collapse
|
36
|
Potential of hydrochar/pyrochar derived from sawdust of oriental plane tree for stimulating methanization by mitigating propionic acid inhibition in mesophilic anaerobic digestion of swine manure. Heliyon 2023; 9:e13984. [PMID: 36925554 PMCID: PMC10011200 DOI: 10.1016/j.heliyon.2023.e13984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
VFAs accumulation in anaerobic digestion systems can lead to disturbance of the acid base balance, which has brought major challenges for methane production. Meanwhile, less research explored the potential of biochar derived from wood wastes of oriental plane tree (Platanus orientalis L.) for stimulating methanization in mesophilic anaerobic digestion. In this study, the effects of pyrochar and hydrochar derived from sawdust of oriental plane tree on mesophilic anaerobic digestion of swine manure were compared for the first time. Fourier infrared transform analysis indicated that more functional groups existed on the surface of hydrochar, whereas higher ash content and BET specific surface area were found in pyrochar. The maximum methane production rate during anaerobic digestion was observed in the pyrochar treatment, which increased by 59.5% compared with the control without biochar. Although stimulative effects on dissolved organic carbon and volatile fatty acids production were both observed in the pyrochar and hydrochar treatments, the pyrochar treatment was much easier to trigger multipath methanogenesis and direct interspecific electron transport and subdue propionic acid accumulation compared to the hydrochar treatment. Moreover, redundancy analysis indicated that the variations in acetic acid and dissolved organic carbon were mostly associated with microbial succession. These results suggest that pyrochar has better promoting effects than HC in terms of methane generation and propionic acid inhibition alleviation owing to its special porous structures, functional groups (e.g., C=O, C-O and O-H), and physicochemical properties. These excellent properties play a greater role in recruiting functional archaea and bacteria to regulate the levels of volatile fatty acids and dissolved organic carbon to enhance the methane yield of anaerobic digestion. This study provides novel and valuable information for further engineering applications of pyrochar and hydrochar derived from sawdust of oriental plane tree in energy production and environmental waste treatment.
Collapse
|
37
|
Singh R, Kumar R, Sarangi PK, Kovalev AA, Vivekanand V. Effect of physical and thermal pretreatment of lignocellulosic biomass on biohydrogen production by thermochemical route: A critical review. BIORESOURCE TECHNOLOGY 2023; 369:128458. [PMID: 36503099 DOI: 10.1016/j.biortech.2022.128458] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Energy demands and immense environmental degradation have extorted for production of low-carbon and carbon-neutral fuels. Abundantly available lignocellulosic biomass is second-generation feedstock which has potential to produce biofuels. Among all biofuels, biohydrogen is carbon neutral and sustainable biofuel which can be produced by thermochemical conversion routes mainly gasification. However, there are still numerous unsolved challenges related to physicochemical properties of lignocellulosic biomass. To tackle these issues, physical, chemical and thermal pretreatment methods can be employed to improve these properties and further strengthen usability of biomass for biohydrogen production. Pelletization, torrefaction and hydrothermal carbonization pretreatment have shown significant results for treating biomass and biohydrogen enhancement. This study reviews physical and thermal pretreatment and its effect on biohydrogen yield. Framework of techno-economic analysis of processes is provided for examining feasibility of required pretreatments. This sustainable approach will help to reduce emissions and promote concept of bioenergy with carbon capture and storage.
Collapse
Affiliation(s)
- Rickwinder Singh
- Centre for Energy and Environment, Malaviya National Institute of Technology Jaipur, Jaipur 302017, Rajasthan, India
| | - Rajesh Kumar
- Chitkara University Institute of Engineering and Technology, Chitkara University, 140401 Punjab, India
| | - Prakash Kumar Sarangi
- College of Agriculture, Central Agricultural University, Imphal 795004, Manipur, India
| | - Andrey A Kovalev
- Federal State Budgetary Scientific Institution "Federal Scientific Agroengineering Center VIM", 1st Institutskiy Proezd, 5, 109428 Moscow, Russia
| | - Vivekanand Vivekanand
- Centre for Energy and Environment, Malaviya National Institute of Technology Jaipur, Jaipur 302017, Rajasthan, India.
| |
Collapse
|
38
|
Martins-Vieira JC, Lachos-Perez D, Draszewski CP, Celante D, Castilhos F. Sugar, Hydrochar and Bio-oil Production by Sequential Hydrothermal Processing of Corn Cob. J Supercrit Fluids 2023. [DOI: 10.1016/j.supflu.2023.105838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
39
|
Rashid MS, Liu G, Yousaf B, Hamid Y, Rehman A, Arif M, Ahmed R, Ashraf A, Song Y. A critical review on biochar-assisted free radicals mediated redox reactions influencing transformation of potentially toxic metals: Occurrence, formation, and environmental applications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120335. [PMID: 36202269 DOI: 10.1016/j.envpol.2022.120335] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Potentially toxic metals have become a viable threat to the ecosystem due to their carcinogenic nature. Biochar has gained substantial interest due to its redox-mediated processes and redox-active metals. Biochar has the capacity to directly adsorb the pollutants from contaminated environments through several mechanisms such as coprecipitation, complexation, ion exchange, and electrostatic interaction. Biochar's electron-mediating potential may be influenced by the cyclic transition of surface moieties and conjugated carbon structures. Thus, pyrolysis configuration, biomass material, retention time, oxygen flow, and heating time also affect biochar's redox properties. Generally, reactive oxygen species (ROS) exist as free radicals (FRs) in radical and non-radical forms, i.e., hydroxyl radical, superoxide, nitric oxide, hydrogen peroxide, and singlet oxygen. Heavy metals are involved in the production of FRs during redox-mediated reactions, which may contribute to ROS formation. This review aims to critically evaluate the redox-mediated characteristics of biochar produced from various biomass feedstocks under different pyrolysis conditions. In addition, we assessed the impact of biochar-assisted FRs redox-mediated processes on heavy metal immobilization and mobility. We also revealed new insights into the function of FRs in biochar and its potential uses for environment-friendly remediation and reducing the dependency on fossil-based materials, utilizing local residual biomass as a raw material in terms of sustainability.
Collapse
Affiliation(s)
- Muhammad Saqib Rashid
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Guijian Liu
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi, 710075, China.
| | - Balal Yousaf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi, 710075, China
| | - Yasir Hamid
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Abdul Rehman
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Muhammad Arif
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China; Department of Soil and Environmental Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, 60000, Pakistan
| | - Rafay Ahmed
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Aniqa Ashraf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Yu Song
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China; School of Civil Engineering and Architecture, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, PR China
| |
Collapse
|
40
|
Hoang AT, Goldfarb JL, Foley AM, Lichtfouse E, Kumar M, Xiao L, Ahmed SF, Said Z, Luque R, Bui VG, Nguyen XP. Production of biochar from crop residues and its application for anaerobic digestion. BIORESOURCE TECHNOLOGY 2022; 363:127970. [PMID: 36122843 DOI: 10.1016/j.biortech.2022.127970] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/08/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
Anaerobic digestion (AD) is a viable and cost-effective method for converting organic waste into usable renewable energy. The efficiency of organic waste digestion, nonetheless, is limited due to inhibition and instability. Accordingly, biochar is an effective method for improving the efficiency of AD by adsorbing inhibitors, promoting biogas generation and methane concentration, maintaining process stability, colonizing microorganisms selectively, and mitigating the inhibition of volatile fatty acids and ammonia. This paper reviews the features of crop waste-derived biochar and its application in AD systems. Four critical roles of biochar in AD systems were identified: maintaining pH stability, promoting hydrolysis, enhancing the direct interspecies electron transfer pathway, and supporting microbial development. This work also highlights that the interaction between biochar dose, amount of organic component in the substrate, and inoculum-to-substrate ratio should be the focus of future research before deploying commercial applications.
Collapse
Affiliation(s)
- Anh Tuan Hoang
- Institute of Engineering, HUTECH University, Ho Chi Minh City, Vietnam.
| | - Jillian L Goldfarb
- Cornell University Department of Biological and Environmental Engineering, Ithaca, NY, United States of America
| | - Aoife M Foley
- School of Mechanical and Aerospace Engineering, Queen's University Belfast, Ashby Building, Belfast BT9 5AH, United Kingdom; Civil, Structural and Environmental Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Eric Lichtfouse
- Aix-Marseille Univ, CNRS, IRD, INRAE, CEREGE, Avenue Louis Philibert, Aix en Provence 13100, France
| | - Manish Kumar
- Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun 248 007, India
| | - Leilei Xiao
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Shams Forruque Ahmed
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - Zafar Said
- Department of Sustainable and Renewable Energy Engineering, University of Sharjah, P. O. Box 27272, Sharjah, United Arab Emirates; U.S.-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Rafael Luque
- Departamento de Química Orgánica, Universidad de Cordoba, Campus de Rabanales, Edificio Marie Curie, Ctra. Nnal. IV-A, Km. 396, E-14014 Cordoba, Spain; Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russian Federation
| | - Van Ga Bui
- University of Science and Technology, The University of Da Nang, Da Nang, Viet Nam
| | - Xuan Phuong Nguyen
- PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh City, Vietnam
| |
Collapse
|
41
|
Khairy G, Hesham A, Jahin H, El-Korashy S, Mahmoud Awad Y. Green Synthesis of a novel eco-friendly hydrochar from Pomegranate peels loaded with iron nanoparticles for the removal of copper ions and methylene blue from aqueous solutions. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
42
|
Microwave-assisted hydrothermal preparation of magnetic hydrochar for the removal of organophosphorus insecticides from aqueous solutions. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
Medeiros DCCDS, Chelme-Ayala P, Benally C, Al-Anzi BS, Gamal El-Din M. Review on carbon-based adsorbents from organic feedstocks for removal of organic contaminants from oil and gas industry process water: Production, adsorption performance and research gaps. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115739. [PMID: 35932737 DOI: 10.1016/j.jenvman.2022.115739] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/01/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Large amounts of process water with considerable concentrations of recalcitrant organic contaminants, such as polycyclic aromatic hydrocarbon (PAHs), phenolic compounds (PCs), and benzene, toluene, ethylbenzene, and xylene (BTEX), are generated by several segments of oil and gas industries. These segments include refineries, hydraulic fracturing (HF), and produced waters from the extraction of shale gas (SGPW), coalbed methane (CBMPW) and oil sands (OSPW). In fact, the concentration of PCs and PAHs in process water from refinery can reach 855 and 742 mg L-1, respectively. SGPW can contain BTEX at concentrations as high as 778 mg L-1. Adsorption can effectively target those organic compounds for the remediation of the process water by applying carbon-based adsorbents generated from organic feedstocks. Such organic feedstocks usually come from organic waste materials that would otherwise be conventionally disposed of. The objective of this review paper is to cover the scientific progress in the studies of carbon-based adsorbents from organic feedstocks that were successfully applied for the removal of organic contaminants PAHs, PCs, and BTEX. The contributions of this review paper include the important aspects of (i) production and characterization of carbon-based adsorbents to enhance the efficiency of organic contaminant adsorption, (ii) adsorption properties and mechanisms associated with the engineered adsorbent and expected for certain pollutants, and (iii) research gaps in the field, which could be a guidance for future studies. In terms of production and characterization of materials, standalone pyrolysis or hybrid procedures (pyrolysis associated with chemical activation methods) are the most applied techniques, yielding high surface area and other surface properties that are crucial to the adsorption of organic contaminants. The adsorption of organic compounds on carbonaceous materials performed well at wide range of pH and temperatures and this is desirable considering the pH of process waters. The mechanisms are frequently pore filling, hydrogen bonding, π-π, hydrophobic and electrostatic interactions, and same precursor material can present more than one adsorption mechanism, which can be beneficial to target more than one organic contaminant. Research gaps include the evaluation of engineered adsorbents in terms of competitive adsorption, application of adsorbents in oil and gas industry process water, adsorbent regeneration and reuse studies, and pilot or full-scale applications.
Collapse
Affiliation(s)
| | - Pamela Chelme-Ayala
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Chelsea Benally
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Bader S Al-Anzi
- Department of Environmental Technology Management, Kuwait University, P.O. Box 5969, Safat, 13060, Kuwait; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada.
| |
Collapse
|
44
|
Xiao Y, Ding L, Yang Y, Areeprasert C, Gao Y, Chen X, Wang F. Iron valence state evolution and hydrochar properties under hydrothermal carbonization of dyeing sludge. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 152:94-101. [PMID: 35998440 DOI: 10.1016/j.wasman.2022.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/17/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Iron (Fe) migration mechanisms and hydrochar properties in dyeing sludge hydrothermal carbonization (HTC) are important topics in wastewater treatment. HTC treatment of sludge produces wastewater containing Fe so it is necessary to study the migration behavior of Fe during HTC treatment. This study investigated the basic properties and Fe migration behavior of hydrochar during HTC treatment supplemented with nitric acid (HNO3). The results showed that the carbonization degree and yield of hydrochar treated with the HNO3 solution (HHC) were much lower than those of hydrochar treated with ultrapure water (WHC). The variation of total Fe (TF) concentration indicated that the decomposition of organic material and dissolution of minerals in the aqueous release of Fe during the liquid phase, led to much lower TF concentrations compared to the original dyeing sludge. Fe release was further enhanced with the addition of HNO3 and increase of temperature, rendering a much lower TF concentration of the HHC compared to the WHC. The variations of Fe3+ and Fe2+ concentrations indicated that the HTC-treated hydrochar contained more Fe2+, caused by Fe3+ reduction with hydroxyl methyl-furfural and glucose in the liquid and subsequent Fe2+/Fe3+ transferral to the solid hydrochar phase. X-ray diffraction (XRD) showed that the main Fe content in WHC was FeO(OH), while HHC contained mainly Fe(SO4)(OH)•2H2O and Fe3O4. XPS and XRF showed that Fe could more easily enter the internal pores of the hydrochar instead of being deposited on the surface. This study provided more insights on Fe migration behavior during HTC treatment.
Collapse
Affiliation(s)
- Yao Xiao
- Institute of Clean Coal Technology, East China University of Science and Technology, 200237 Shanghai, PR China
| | - Lu Ding
- Institute of Clean Coal Technology, East China University of Science and Technology, 200237 Shanghai, PR China.
| | - Yu Yang
- Jiangsu Huineng Environmental Technology Co., Ltd, PR China
| | - Chinnathan Areeprasert
- Department of Mechanical Engineering, Faculty of Engineering, Kasetsart University, 50 Ngam Wong Wan Rd., Lat Yao, Chatuchak, Bangkok 10900, Thailand
| | - Yunfei Gao
- Institute of Clean Coal Technology, East China University of Science and Technology, 200237 Shanghai, PR China
| | - Xueli Chen
- Institute of Clean Coal Technology, East China University of Science and Technology, 200237 Shanghai, PR China
| | - Fuchen Wang
- Institute of Clean Coal Technology, East China University of Science and Technology, 200237 Shanghai, PR China.
| |
Collapse
|
45
|
Bhakta AK, Fiorenza R, Jlassi K, Mekhalif Z, Ali AMA, Chehimi MM. The emerging role of biochar in the carbon materials family for hydrogen production. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
46
|
Debnath B, Haldar D, Purkait MK. Environmental remediation by tea waste and its derivative products: A review on present status and technological advancements. CHEMOSPHERE 2022; 300:134480. [PMID: 35395270 DOI: 10.1016/j.chemosphere.2022.134480] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/16/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
The rising consumption of the popular non-alcoholic beverage tea and its derivative products caused massive growth in worldwide tea production in the last decade, leading to the generation of huge quantities of waste tea residues every year. Most of these wastes are usually burnt or disposed in landfills without proper treatment which results in serious environmental issues by polluting water, air and soil. In the recent times, 'waste to wealth' is a fast-growing concept for environment friendly sustainable development. Utilization of the large amount of tea wastes for the production of low-cost adsorbents to reduce the expenses of water and wastewater treatment can be a sustainable way of management of these wastes which at the same time will improve circular economy also. This review endeavours to evaluate the potential of both raw and modified tea wastes towards the adsorption of pollutants from wastewater. The production of various adsorptive materials such as biochar, activated carbon, nanocomposites, hydrogels, nanoparticles from tea wastes are summarized. The advancements in their applications for the removal of different emerging contaminants from wastewater as well as potable water, air and soil are exhaustively reviewed. The outcome of the present review reveals that tea waste and its derivatives are appropriate candidates to be used as adsorbents that show tremendous effectiveness in cleaning the environment. This article will provide the readers with an in-depth knowledge on the sustainable utilization of tea waste as adsorbent materials and will assist them to explore this abundant cheap waste biomass for environmental remediation.
Collapse
Affiliation(s)
- Banhisikha Debnath
- Centre for the Environment, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Dibyajyoti Haldar
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, 641114, India.
| | - Mihir Kumar Purkait
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| |
Collapse
|
47
|
Wang Y, Akbarzadeh A, Chong L, Du J, Tahir N, Awasthi MK. Catalytic pyrolysis of lignocellulosic biomass for bio-oil production: A review. CHEMOSPHERE 2022; 297:134181. [PMID: 35248592 DOI: 10.1016/j.chemosphere.2022.134181] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 02/19/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Catalytic pyrolysis has been widely explored for bio-oil production from lignocellulosic biomass owing to its high feasibility and large-scale production potential. The aim of this review was to summarize recent findings on bio-oil production through catalytic pyrolysis using lignocellulosic biomass as feedstock. Lignocellulosic biomass, structural components and fundamentals of biomass catalytic pyrolysis were explored and summarized. The current status of bio-oil yield and quality from catalytic fast pyrolysis was reviewed and presented in the current review. The potential effects of pyrolysis process parameters, including catalysts, pyrolysis conditions, reactor types and reaction modes on bio-oil production are also presented. Techno-economic analysis of full-scale commercialization of bio-oil production through the catalytic pyrolysis pathway was reviewed. Further, limitations associated with current practices and future prospects of catalytic pyrolysis for production of high-quality bio-oils were summarized. This review summarizes the process of bio-oil production from catalytic pyrolysis and provides a general scientific reference for further studies.
Collapse
Affiliation(s)
- Yi Wang
- MOA Key Laboratory of New Materials and Facilities for Rural Renewable Energy, Henan Agricultural University, Zhengzhou, 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Zhengzhou, 450002, China
| | - Abdolhamid Akbarzadeh
- Department of Bioresource Engineering, McGill University, Montreal, QC, H9X 3V9, Canada
| | - Li Chong
- Biomass Energy Engineering Research Centre, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jinyu Du
- School of Energy and Power Engineering, Henan University of Animal Husbandry and Economy, Henan Province, Zhengzhou, 450011, China
| | - Nadeem Tahir
- MOA Key Laboratory of New Materials and Facilities for Rural Renewable Energy, Henan Agricultural University, Zhengzhou, 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Zhengzhou, 450002, China.
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3#, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
48
|
Jiang F, Cao D, Hu S, Wang Y, Zhang Y, Huang X, Zhao H, Wu C, Li J, Ding Y, Liu K. High-pressure carbon dioxide-hydrothermal enhance yield and methylene blue adsorption performance of banana pseudo-stem activated carbon. BIORESOURCE TECHNOLOGY 2022; 354:127137. [PMID: 35405217 DOI: 10.1016/j.biortech.2022.127137] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/02/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
In order to reduce environmental risks and fungus disease spread of banana waste, the high-pressure CO2-hydrothermal treatment was developed to produce hydrochar as a precursor of activated carbon from banana pseudo-stem(BP). SEM, BET, XRD, Raman and FTIR was used to investigate the influence mechanism of the high-pressure CO2-hydrothermal pretreatment on the yield and methylene blue(MB) adsorption capacities of the activated carbon. The results show that although the adsorption capacities of BP after high-pressure CO2-hydrothermal pretreatment(BPx) is decrease due to decrease of oxygen-containing functional group and flatter spatial structure, that of BPx after KOH activation(BPx-A) significantly increase and is higher than that of BP by direct KOH activation(BP-A). Because BP-A presents honeycomb porous microstructures and has a higher mesoporous structure(138-472 m2/g), plentiful active sites and rich the abundant influential adsorption group of MB adsorption. In addition, compared to BP-A(0.68%), the total yield of BPx-A(2.42-9.11%) is 356-1340%.
Collapse
Affiliation(s)
- Fenghao Jiang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Daofan Cao
- Birmingham Centre for Energy Storage(BCES) & School of Chemical Engineering, University of Birmingham, United Kingdom B15 2TT, UK
| | - Shunxuan Hu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yue Wang
- School of Innovation and Entrepreneurship, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yan Zhang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaohe Huang
- Department of Thermal Engineering, School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hang Zhao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Changning Wu
- School of Innovation and Entrepreneurship, Southern University of Science and Technology, Shenzhen 518055, China; Clean Energy Institute, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
| | - Junguo Li
- School of Innovation and Entrepreneurship, Southern University of Science and Technology, Shenzhen 518055, China; Clean Energy Institute, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Yulong Ding
- Birmingham Centre for Energy Storage(BCES) & School of Chemical Engineering, University of Birmingham, United Kingdom B15 2TT, UK
| | - Ke Liu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China; School of Innovation and Entrepreneurship, Southern University of Science and Technology, Shenzhen 518055, China; Clean Energy Institute, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
49
|
Harisankar S, Vishnu Mohan R, Choudhary V, Vinu R. Effect of water quality on the yield and quality of the products from hydrothermal liquefaction and carbonization of rice straw. BIORESOURCE TECHNOLOGY 2022; 351:127031. [PMID: 35314308 DOI: 10.1016/j.biortech.2022.127031] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/13/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
The need for fresh water limits the application and scale-up of hydrothermal technologies to convert waste biomass to energy and chemicals. In an effort to demonstrate the use of wastewater for sustainable process development, this work is focused on hydrothermal liquefaction (HTL) (350 °C, 18 MPa, 30 min) and carbonization (HTC) (200 °C, 7 MPa, 4 h) of rice straw with water from various sources (milli-Q water, tap water, seawater, recycled wastewater and industrial wastewater). The bio-crude yield from HTL was maximum (36.4 wt%) with industrial wastewater, while the yield of hydrochar from HTC was maximum (74.5 wt%) with seawater. The ions like K+, PO43- and NH4+ accumulated in the aqueous phase from rice straw. The hydrochars from HTL experiments contained significantly higher amount of ash compared to that from HTC experiments. Cyclopentenones and phenols were the major constituents of the bio-crude, whose HHV was 26.3 MJ/kg using seawater.
Collapse
Affiliation(s)
- S Harisankar
- Department of Chemical Engineering and National Centre for Combustion Research and Development, Indian Institute of Technology Madras, 600036, India
| | - R Vishnu Mohan
- Department of Chemical Engineering and National Centre for Combustion Research and Development, Indian Institute of Technology Madras, 600036, India
| | - Vaishali Choudhary
- Department of Civil Engineering, Indian Institute of Technology Madras, 600036, India
| | - R Vinu
- Department of Chemical Engineering and National Centre for Combustion Research and Development, Indian Institute of Technology Madras, 600036, India.
| |
Collapse
|
50
|
Pecchi M, Baratieri M, Goldfarb JL, Maag AR. Effect of solvent and feedstock selection on primary and secondary chars produced via hydrothermal carbonization of food wastes. BIORESOURCE TECHNOLOGY 2022; 348:126799. [PMID: 35122980 DOI: 10.1016/j.biortech.2022.126799] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Hydrothermal carbonization is a thermochemical process that converts wet waste biomass into hydrochar, a renewable solid fuel that comprises a coal-like primary phase and an oily secondary phase. The varying oxidation rates of these phases may result in an inefficient energy recovery when combusting the hydrochar, as secondary char is more reactive. Brewer's spent grain, dairy cheese whey and food waste were hydrothermally carbonized at 250 °C. The hydrochars were extracted using six solvents to evaluate the hydrochar partitioning between primary and secondary char phases. Feedstock nature and solvent selection impact the amount and composition of these phases detected. For lipid-rich feedstocks, ethanol extracts up to 50 wt% secondary char enriched in liquid fuel precursors from a solid primary char with enhanced coal-like characteristics. For substrates rich in carbohydrates, proteins, and lignocellulose, less secondary char is produced. Acetone and dichloromethane remove the oily secondary char and maximize primary char yield.
Collapse
Affiliation(s)
- Matteo Pecchi
- Department of Biological & Environmental Engineering, College of Agriculture and Life Sciences, Cornell University, USA; Faculty of Science and Technology, Free University of Bolzano, Italy
| | - Marco Baratieri
- Faculty of Science and Technology, Free University of Bolzano, Italy
| | - Jillian L Goldfarb
- Department of Biological & Environmental Engineering, College of Agriculture and Life Sciences, Cornell University, USA.
| | - Alex R Maag
- Department of Biological & Environmental Engineering, College of Agriculture and Life Sciences, Cornell University, USA
| |
Collapse
|