1
|
Al-Humaidi JY, Albedair LA, Maliwal D, Zaki MEA, Al-Hussain SA, Pissurlenkar R, Mukhrish YE, Abolibda TZ, Gomha SM. Synthesis and Molecular Docking of Curcumin-Derived Pyrazole-Thiazole Hybrids as Potent α-Glucosidase Inhibitors. Chem Biodivers 2025; 22:e202401766. [PMID: 39440719 DOI: 10.1002/cbdv.202401766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/06/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
α-Glucosidase inhibitors are critical for diabetes management, with pyrazoles and thiazoles emerging as effective options. This research highlights curcumin-based pyrazole-thiazole hybrids as potential inhibitors, synthesizing derivatives and evaluating their inhibitory capabilities. The study involved the synthesis of novel compounds using hydrazonoyl halides, confirmed through elemental and spectral analyses. The synthesized derivatives exhibited significant α-glucosidase inhibition, with IC50 values ranging from 3.37±0.25 to 16.35±0.37 μM. Among them, compound 7e demonstrated the strongest inhibition at 3.37±0.25 μM, outperforming the standard drug acarbose (IC50=5.36±0.31 μM). In silico assessments and molecular docking using AutoDock Vina revealed strong interactions, particularly with compounds 7b, 7e, 7f, and 7g, indicating their potential as stable and effective inhibitors. The results suggest that the synthesized pyrazole-thiazole hybrids hold promise as novel therapeutic agents for diabetes, warranting further exploration of their substituent effects for optimized inhibitor design.
Collapse
Affiliation(s)
- Jehan Y Al-Humaidi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. BOX 84428, Riyadh, 11671, Saudi Arabia
| | - Lamia A Albedair
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. BOX 84428, Riyadh, 11671, Saudi Arabia
| | - Deepika Maliwal
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Magdi E A Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Sami A Al-Hussain
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Raghuvir Pissurlenkar
- Department of Pharmaceutical Chemistry, Goa College of Pharmacy, Panaji Goa, 403001, India
| | - Yousef E Mukhrish
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P.O. Box. 114, Jazan, 45142, Kingdom of Saudi Arabia
| | - Tariq Z Abolibda
- Chemistry Department, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia
| | - Sobhi M Gomha
- Chemistry Department, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia
| |
Collapse
|
2
|
Gendron T, Lanfranchi DA, Wenzel NI, Kessedjian H, Jannack B, Maes L, Cojean S, Müller TJJ, Loiseau PM, Davioud-Charvet E. Chemoselective Synthesis and Anti-Kinetoplastidal Properties of 2,6-Diaryl-4 H-tetrahydro-thiopyran-4-one S-Oxides: Their Interplay in a Cascade of Redox Reactions from Diarylideneacetones. Molecules 2024; 29:1620. [PMID: 38611899 PMCID: PMC11013284 DOI: 10.3390/molecules29071620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/26/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
2,6-Diaryl-4H-tetrahydro-thiopyran-4-ones and corresponding sulfoxide and sulfone derivatives were designed to lower the major toxicity of their parent anti-kinetoplatidal diarylideneacetones through a prodrug effect. Novel diastereoselective methodologies were developed and generalized from diarylideneacetones and 2,6-diaryl-4H-tetrahydro-thiopyran-4-ones to allow the introduction of a wide substitution profile and to prepare the related S-oxides. The in vitro biological activity and selectivity of diarylideneacetones, 2,6-diaryl-4H-tetrahydro-thiopyran-4-ones, and their S-sulfoxide and sulfone metabolites were evaluated against Trypanosoma brucei brucei, Trypanosoma cruzi, and various Leishmania species in comparison with their cytotoxicity against human fibroblasts hMRC-5. The data revealed that the sulfides, sulfoxides, and sulfones, in which the Michael acceptor sites are temporarily masked, are less toxic against mammal cells while the anti-trypanosomal potency was maintained against T. b. brucei, T. cruzi, L. infantum, and L. donovani, thus confirming the validity of the prodrug strategy. The mechanism of action is proposed to be due to the involvement of diarylideneacetones in cascades of redox reactions involving the trypanothione system. After Michael addition of the dithiol to the double bonds, resulting in an elongated polymer, the latter-upon S-oxidation, followed by syn-eliminations-fragments, under continuous release of reactive oxygen species and sulfenic/sulfonic species, causing the death of the trypanosomal parasites in the micromolar or submicromolar range with high selectivity indexes.
Collapse
Affiliation(s)
- Thibault Gendron
- UMR7042 Université de Strasbourg–CNRS–UHA, Laboratoire d’Innovation Moléculaire et Applications (LIMA), Team Bio(IN)organic and Medicinal Chemistry, European School of Chemistry, Polymers and Materials (ECPM), 25 Rue Becquerel, F-67087 Strasbourg, France; (T.G.); (D.A.L.); (H.K.)
| | - Don Antoine Lanfranchi
- UMR7042 Université de Strasbourg–CNRS–UHA, Laboratoire d’Innovation Moléculaire et Applications (LIMA), Team Bio(IN)organic and Medicinal Chemistry, European School of Chemistry, Polymers and Materials (ECPM), 25 Rue Becquerel, F-67087 Strasbourg, France; (T.G.); (D.A.L.); (H.K.)
| | - Nicole I. Wenzel
- Bioorganic & Medicinal Chemistry Laboratory, Biochemie-Zentrum, Heidelberg University, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany; (N.I.W.)
| | - Hripsimée Kessedjian
- UMR7042 Université de Strasbourg–CNRS–UHA, Laboratoire d’Innovation Moléculaire et Applications (LIMA), Team Bio(IN)organic and Medicinal Chemistry, European School of Chemistry, Polymers and Materials (ECPM), 25 Rue Becquerel, F-67087 Strasbourg, France; (T.G.); (D.A.L.); (H.K.)
| | - Beate Jannack
- Bioorganic & Medicinal Chemistry Laboratory, Biochemie-Zentrum, Heidelberg University, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany; (N.I.W.)
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium;
| | - Sandrine Cojean
- Antiparasitic Chemotherapy, Faculty of Pharmacy, BioCIS, UMR 8076 Université Paris-Saclay-CNRS 17, Rue des Sciences, F-91400 Orsay, France; (S.C.); (P.M.L.)
| | - Thomas J. J. Müller
- Institut für Organische Chemie und Makromolekulare Chemie, Mathematisch-Naturwissenschaftliche FakultätFakultät, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany;
| | - Philippe M. Loiseau
- Antiparasitic Chemotherapy, Faculty of Pharmacy, BioCIS, UMR 8076 Université Paris-Saclay-CNRS 17, Rue des Sciences, F-91400 Orsay, France; (S.C.); (P.M.L.)
| | - Elisabeth Davioud-Charvet
- UMR7042 Université de Strasbourg–CNRS–UHA, Laboratoire d’Innovation Moléculaire et Applications (LIMA), Team Bio(IN)organic and Medicinal Chemistry, European School of Chemistry, Polymers and Materials (ECPM), 25 Rue Becquerel, F-67087 Strasbourg, France; (T.G.); (D.A.L.); (H.K.)
| |
Collapse
|
3
|
de Munnik M, Lithgow J, Brewitz L, Christensen KE, Bates RH, Rodriguez-Miquel B, Schofield CJ. αβ,α'β'-Diepoxyketones are mechanism-based inhibitors of nucleophilic cysteine enzymes. Chem Commun (Camb) 2023; 59:12859-12862. [PMID: 37815791 PMCID: PMC10601815 DOI: 10.1039/d3cc02932h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/30/2023] [Indexed: 10/11/2023]
Abstract
Epoxides are an established class of electrophilic alkylating agents that react with nucleophilic protein residues. We report αβ,α'β'-diepoxyketones (DEKs) as a new type of mechanism-based inhibitors of nucleophilic cysteine enzymes. Studies with the L,D-transpeptidase LdtMt2 from Mycobacterium tuberculosis and the main protease from SARS-CoV-2 (Mpro) reveal that following epoxide ring opening by a nucleophilic cysteine, further reactions can occur, leading to irreversible alkylation.
Collapse
Affiliation(s)
- Mariska de Munnik
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute of Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Jasper Lithgow
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute of Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Lennart Brewitz
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute of Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Kirsten E Christensen
- Chemical Crystallography, Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Robert H Bates
- Tres Cantos Medicines Development Campus, GlaxoSmithKline, Calle Severo Ochoa 2, Tres Cantos, Madrid, Spain
| | - Beatriz Rodriguez-Miquel
- Tres Cantos Medicines Development Campus, GlaxoSmithKline, Calle Severo Ochoa 2, Tres Cantos, Madrid, Spain
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute of Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
4
|
Cao W, Yu P, Yang S, Li Z, Zhang Q, Liu Z, Li H. Discovery of Novel Mono-Carbonyl Curcumin Derivatives as Potential Anti-Hepatoma Agents. Molecules 2023; 28:6796. [PMID: 37836639 PMCID: PMC10574324 DOI: 10.3390/molecules28196796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
Curcumin possesses a wide spectrum of liver cancer inhibition effects, yet it has chemical instability and poor metabolic properties as a drug candidate. To alleviate these problems, a series of new mono-carbonyl curcumin derivatives G1-G7 were designed, synthesized, and evaluated by in vitro and in vivo studies. Compound G2 was found to be the most potent derivative (IC50 = 15.39 μM) compared to curcumin (IC50 = 40.56 μM) by anti-proliferation assay. Subsequently, molecular docking, wound healing, transwell, JC-1 staining, and Western blotting experiments were performed, and it was found that compound G2 could suppress cell migration and induce cell apoptosis by inhibiting the phosphorylation of AKT and affecting the expression of apoptosis-related proteins. Moreover, the HepG2 cell xenograft model and H&E staining results confirmed that compound G2 was more effective than curcumin in inhibiting tumor growth. Hence, G2 is a promising leading compound with the potential to be developed as a chemotherapy agent for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Weiya Cao
- College of Public Health, Anhui University of Science and Technology, Hefei 230000, China;
- College of Medicine, Anhui University of Science and Technology, Huainan 232001, China; (Z.L.); (Q.Z.); (Z.L.); (H.L.)
| | - Pan Yu
- College of Public Health, Anhui University of Science and Technology, Hefei 230000, China;
- College of Medicine, Anhui University of Science and Technology, Huainan 232001, China; (Z.L.); (Q.Z.); (Z.L.); (H.L.)
| | - Shilong Yang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China;
| | - Zheyu Li
- College of Medicine, Anhui University of Science and Technology, Huainan 232001, China; (Z.L.); (Q.Z.); (Z.L.); (H.L.)
| | - Qixuan Zhang
- College of Medicine, Anhui University of Science and Technology, Huainan 232001, China; (Z.L.); (Q.Z.); (Z.L.); (H.L.)
| | - Zengge Liu
- College of Medicine, Anhui University of Science and Technology, Huainan 232001, China; (Z.L.); (Q.Z.); (Z.L.); (H.L.)
| | - Hongzhuo Li
- College of Medicine, Anhui University of Science and Technology, Huainan 232001, China; (Z.L.); (Q.Z.); (Z.L.); (H.L.)
| |
Collapse
|
5
|
Tossetta G, Fantone S, Marzioni D, Mazzucchelli R. Role of Natural and Synthetic Compounds in Modulating NRF2/KEAP1 Signaling Pathway in Prostate Cancer. Cancers (Basel) 2023; 15:cancers15113037. [PMID: 37296999 DOI: 10.3390/cancers15113037] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
Prostate cancer is the second most common cancer in men worldwide. Prostate cancer can be treated by surgery or active surveillance when early diagnosed but, when diagnosed at an advanced or metastatic stage, radiation therapy or androgen-deprivation therapy is needed to reduce cancer progression. However, both of these therapies can cause prostate cancer resistance to treatment. Several studies demonstrated that oxidative stress is involved in cancer occurrence, development, progression and treatment resistance. The nuclear factor erythroid 2-related factor 2 (NRF2)/KEAP1 (Kelch-Like ECH-Associated Protein 1) pathway plays an important role in protecting cells against oxidative damage. Reactive oxygen species (ROS) levels and NRF2 activation can determine cell fate. In particular, toxic levels of ROS lead physiological cell death and cell tumor suppression, while lower ROS levels are associated with carcinogenesis and cancer progression. On the contrary, a high level of NRF2 promotes cell survival related to cancer progression activating an adaptive antioxidant response. In this review, we analyzed the current literature regarding the role of natural and synthetic compounds in modulating NRF2/KEAP1 signaling pathway in prostate cancer.
Collapse
Affiliation(s)
- Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Sonia Fantone
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Roberta Mazzucchelli
- Department of Biomedical Sciences and Public Health, Section of Pathological Anatomy, Università Politecnica delle Marche, 60126 Ancona, Italy
| |
Collapse
|
6
|
Palabindela R, Guda R, Ramesh G, Bodapati R, Nukala SK, Myadaraveni P, Ravi G, Kasula M. Curcumin based Pyrazole-thiazole Hybrids as Antiproliferative Agents: Synthesis, Pharmacokinetic, Photophysical Properties, and Docking Studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Zarei E, Tarighat-Esfanjani A, Mahmoodpoor A, Karimi A. The Effect of Nanocurcumin Supplementation on Protein C, Partial Thromboplastin Time, Transforming Growth Factor-β1, and Simplified Acute Physiology Score II in Patients With Systemic Inflammatory Response Syndrome: A Randomized Clinical Trial. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221112818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Systemic inflammatory response syndrome (SIRS) is a general inflammation that involves many patients’ organs in intensive care units and significantly affects the risk of morbidity and mortality. This study aimed to investigate the effect of nanocurcumin on protein C, partial thromboplastin time (PTT), transforming growth factor-β1 (TGF-β1), and simplified acute physiology score II (SAPS II) in patients with SIRS. In this randomized, clinical trial, 40 SIRS-positive patients were randomly assigned to the intervention group who received 160 mg/day of nanocurcumin and the control group that received routine treatment for 10 days. Before, the 5th and 10th days of the study, the SAPS II questionnaire was completed, and protein C, PTT, and TGF-β1 levels were measured. At the end of the study, the PTT levels in the intervention and control groups increased and decreased, respectively. However, the significant increase of protein C levels was shown only in the intervention group. SAPS II scores were also decreased significantly only in the intervention group. There was no significant difference in serum levels of TGF-β1 in both groups. According to the results of this study, supplementation with nanocurcumin can decrease the SAPS II and improve the coagulation status in patients with SIRS.
Collapse
Affiliation(s)
- Elham Zarei
- Student Research Committee, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Tarighat-Esfanjani
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ata Mahmoodpoor
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arash Karimi
- Student Research Committee, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Design, Synthesis, and Antitumor Evaluation of Novel Mono-Carbonyl Curcumin Analogs in Hepatocellular Carcinoma Cell. Pharmaceuticals (Basel) 2022; 15:ph15080950. [PMID: 36015097 PMCID: PMC9413278 DOI: 10.3390/ph15080950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 02/05/2023] Open
Abstract
Curcumin is a polyphenolic natural product that has promising anticancer properties. However, its clinical utility is limited by its chemical instability and poor metabolic properties. In this paper, a series of new curcumin analogs were synthesized and found to be potent antiproliferative agents against the HepG2 cell line by MTT assay. In general, Group B with single ketone and group C with chalcone were markedly more cytotoxic than group A with diketone. Compound B5 was found as the most potent analog (IC50 = 11.33 μM) compared to curcumin (IC50 = 32.83 μM) and the mechanism of its cytotoxicity was investigated. The result of the wound healing assay indicated B5 strong potential to suppress HepG2 cell migration in a dose- and time-dependent manner. Subsequent assays (including JC-1 staining, Bcl-2, and caspase 3 protein levels by Western blotting) confirmed that B5 exposure induced apoptosis in HepG2 cells. Curcumin-induced comprehensive transcriptomes profile, Western blotting, molecular docking, and molecular dynamics analysis showed that the mechanism may relate to the regulation of cellular metabolic process and the expression of AKT protein. Taken together, we could conclude that curcumin and its analogs induced HepG2 cell proliferation, migration, and apoptosis via AKT signaling pathway and the mitochondrial death pathway. This study could lay the foundation for optimizing curcumin and provide valuable information for finding novel anti-HCC drugs.
Collapse
|
9
|
Pacheco BS, Da Silva CC, Da Rosa BN, Mariotti KC, Nicolodi C, Poletti T, Segatto NV, Collares T, Seixas FK, Paniz O, Carreño NLV, Pereira CMP. Monofunctional curcumin analogues: evaluation of green and safe developers of latent fingerprints. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01556-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Mullins CA, Gannaban RB, Khan MS, Shah H, Siddik MAB, Hegde VK, Reddy PH, Shin AC. Neural Underpinnings of Obesity: The Role of Oxidative Stress and Inflammation in the Brain. Antioxidants (Basel) 2020; 9:antiox9101018. [PMID: 33092099 PMCID: PMC7589608 DOI: 10.3390/antiox9101018] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 02/06/2023] Open
Abstract
Obesity prevalence is increasing at an unprecedented rate throughout the world, and is a strong risk factor for metabolic, cardiovascular, and neurological/neurodegenerative disorders. While low-grade systemic inflammation triggered primarily by adipose tissue dysfunction is closely linked to obesity, inflammation is also observed in the brain or the central nervous system (CNS). Considering that the hypothalamus, a classical homeostatic center, and other higher cortical areas (e.g. prefrontal cortex, dorsal striatum, hippocampus, etc.) also actively participate in regulating energy homeostasis by engaging in inhibitory control, reward calculation, and memory retrieval, understanding the role of CNS oxidative stress and inflammation in obesity and their underlying mechanisms would greatly help develop novel therapeutic interventions to correct obesity and related comorbidities. Here we review accumulating evidence for the association between ER stress and mitochondrial dysfunction, the main culprits responsible for oxidative stress and inflammation in various brain regions, and energy imbalance that leads to the development of obesity. Potential beneficial effects of natural antioxidant and anti-inflammatory compounds on CNS health and obesity are also discussed.
Collapse
Affiliation(s)
- Caitlyn A. Mullins
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; (C.A.M.); (R.B.G.); (H.S.)
| | - Ritchel B. Gannaban
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; (C.A.M.); (R.B.G.); (H.S.)
| | - Md Shahjalal Khan
- Obesity and Metabolic Health Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; (M.S.K.); (M.A.B.S.); (V.K.H.)
| | - Harsh Shah
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; (C.A.M.); (R.B.G.); (H.S.)
| | - Md Abu B. Siddik
- Obesity and Metabolic Health Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; (M.S.K.); (M.A.B.S.); (V.K.H.)
| | - Vijay K. Hegde
- Obesity and Metabolic Health Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; (M.S.K.); (M.A.B.S.); (V.K.H.)
| | - P. Hemachandra Reddy
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79409, USA;
| | - Andrew C. Shin
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; (C.A.M.); (R.B.G.); (H.S.)
- Correspondence: ; Tel.: +1-806-834-1713
| |
Collapse
|
11
|
Muhammad S, Javed MN, Ali FI, Bari A, Hashmi IA. Supramolecular polymeric aggregation behavior and its impact on catalytic properties of imidazolium based hydrophilic ionic liquids. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Bates RW, Ko W, Barát V. The endo-aza-Michael addition in the synthesis of piperidines and pyrrolidines. Org Biomol Chem 2020; 18:810-829. [DOI: 10.1039/c9ob02388g] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Intramolecular endo-aza-Michael additions are categorised in various ways.
Collapse
Affiliation(s)
- Roderick W. Bates
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore 637371
| | - Weiting Ko
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore 637371
| | - Viktor Barát
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore 637371
| |
Collapse
|
13
|
Mohd Faudzi SM, Abdullah MA, Abdull Manap MR, Ismail AZ, Rullah K, Mohd Aluwi MFF, Mazila Ramli AN, Abas F, Lajis NH. Inhibition of nitric oxide and prostaglandin E 2 production by pyrrolylated-chalcones: Synthesis, biological activity, crystal structure analysis, and molecular docking studies. Bioorg Chem 2019; 94:103376. [PMID: 31677861 DOI: 10.1016/j.bioorg.2019.103376] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/07/2019] [Accepted: 10/19/2019] [Indexed: 02/01/2023]
Abstract
In search of potent anti-inflammatory agents, twenty-four chalcone derivatives including seven new compounds (13 - 17, 21 and 23) containing pyrrole moiety were designed, synthesized, and assessed for their nitric oxide (NO) and prostaglandin E2 (PGE2) suppression ability on IFN-γ/LPS-induced RAW 264.7 macrophage cells. Results showed that none of the synthesized compounds were PAINS-associated molecules, with 3-(2,5-dimethoxyphenyl)-1-(1H-pyrrol-2-yl)-prop-2-en-1-one (compound 16) exhibiting remarkable inhibition activity towards PGE2 and NO production with IC50 values of 0.5 ± 1.5 µM and 12.1 ± 1.5 µM, respectively. Physicochemical and ADMET studies showed that majority of the compounds obey to Lipinski's rule of five (RO5) having high blood brain barrier (BBB) penetration, human intestinal absorption (HIA), P- glycoprotein (PgP) inhibition and plasma binding protein (PPB) inhibition. The obtained atomic coordinates for the single-crystal XRD of 16 were then applied in a molecular docking simulation, and compound 16 was found to participate in a number of important binding interactions in the binding sites of ERK and mPGES-1. Based on these results, we have observed the potential of compound 16 as a new hit anti-inflammatory agent, and these findings could serve as a basis for further studies on its mechanism of action.
Collapse
Affiliation(s)
- Siti Munirah Mohd Faudzi
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Maryam Aisyah Abdullah
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohd Rashidi Abdull Manap
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Ahmad Zaidi Ismail
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Kamal Rullah
- Department of Pharmaceutical Chemistry, Kuliyyah of Pharmacy, International Islamic University Malaysia, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia
| | - Mohd Fadhlizil Fasihi Mohd Aluwi
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang, Kuantan 26300, Pahang, Malaysia
| | - Aizi Nor Mazila Ramli
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang, Kuantan 26300, Pahang, Malaysia
| | - Faridah Abas
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Nordin H Lajis
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
14
|
Tomeh MA, Hadianamrei R, Zhao X. A Review of Curcumin and Its Derivatives as Anticancer Agents. Int J Mol Sci 2019; 20:1033. [PMID: 30818786 PMCID: PMC6429287 DOI: 10.3390/ijms20051033] [Citation(s) in RCA: 516] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 02/16/2019] [Accepted: 02/21/2019] [Indexed: 12/30/2022] Open
Abstract
Cancer is the second leading cause of death in the world and one of the major public health problems. Despite the great advances in cancer therapy, the incidence and mortality rates of cancer remain high. Therefore, the quest for more efficient and less toxic cancer treatment strategies is still at the forefront of current research. Curcumin, the active ingredient of the Curcuma longa plant, has received great attention over the past two decades as an antioxidant, anti-inflammatory, and anticancer agent. In this review, a summary of the medicinal chemistry and pharmacology of curcumin and its derivatives in regard to anticancer activity, their main mechanisms of action, and cellular targets has been provided based on the literature data from the experimental and clinical evaluation of curcumin in cancer cell lines, animal models, and human subjects. In addition, the recent advances in the drug delivery systems for curcumin delivery to cancer cells have been highlighted.
Collapse
Affiliation(s)
- Mhd Anas Tomeh
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK.
| | - Roja Hadianamrei
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK.
| | - Xiubo Zhao
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK.
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
15
|
Qi X, Lai M, Zhu M, Peng J, Ying J, Wu X. 1‐Arylvinyl formats: A New CO Source and Ketone Source in Carbonylative Synthesis of Chalcone Derivatives. ChemCatChem 2019. [DOI: 10.1002/cctc.201900011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xinxin Qi
- Department of ChemistryZhejiang Sci-Tech University Xiasha Campus Hangzhou 310018 P. R. China
| | - Ming Lai
- Department of ChemistryZhejiang Sci-Tech University Xiasha Campus Hangzhou 310018 P. R. China
| | - Min‐Jie Zhu
- Department of ChemistryZhejiang Sci-Tech University Xiasha Campus Hangzhou 310018 P. R. China
| | - Jin‐Bao Peng
- Department of ChemistryZhejiang Sci-Tech University Xiasha Campus Hangzhou 310018 P. R. China
| | - Jun Ying
- Department of ChemistryZhejiang Sci-Tech University Xiasha Campus Hangzhou 310018 P. R. China
| | - Xiao‐Feng Wu
- Department of ChemistryZhejiang Sci-Tech University Xiasha Campus Hangzhou 310018 P. R. China
- Leibniz-Institut für Katalyse e.V.Universität Rostock Albert-Einstein-Strasse 29a 18059 Rostock Germany
| |
Collapse
|
16
|
Xie X, Yu J, Zhao Z, Zheng Z, Xie M, Wang X, Han Z, Li G. Fabrication and drug release properties of curcumin-loaded silk fibroin nanofibrous membranes. ADSORPT SCI TECHNOL 2018. [DOI: 10.1177/0263617418820416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
| | | | | | | | | | | | - Zhifen Han
- Shanghai University of Traditional Chinese Medicine, China
| | | |
Collapse
|
17
|
Carapina da Silva C, Pacheco BS, das Neves RN, Dié Alves MS, Sena-Lopes Â, Moura S, Borsuk S, de Pereira CMP. Antiparasitic activity of synthetic curcumin monocarbonyl analogues against Trichomonas vaginalis. Biomed Pharmacother 2018; 111:367-377. [PMID: 30594049 DOI: 10.1016/j.biopha.2018.12.058] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 11/25/2018] [Accepted: 12/14/2018] [Indexed: 12/14/2022] Open
Abstract
Trichomoniasis is a parasitic infection caused by Trichomonas vaginalis and it is considered to be the most common non-viral sexually transmitted infection in the world. Since the 1960s, nitroimidazoles such as metronidazole are the drugs of choice for the treatment of trichomoniasis, but many adverse effects and allergic reactions may result from their use. Reports of metronidazole-resistant infections also highlight the importance for the search of new anti-T. vaginalis agents. Considering this, herein we report the anti-T. vaginalis evaluation of 21 synthetic monocarbonyl analogues of curcumin, which itself has been reported to possess antiparasitic potential. From the in vitro analysis of the synthetic molecules, untreated trophozoites, and metronidazole at 100 μM, it was observed that three curcumin analogues (3a, 3e, and 5e) exhibited anti-T. vaginalis activity comparable to metronidazole (no significant statistical difference). Optimal antiparasitic concentrations were determined to be 80 μM and 90 μM for propanone derivatives 3a and 3e, respectively, and 200 μM for cyclohexanone derivative 5e. Kinetic growth curves showed that, after 24 h, the trophozoites were completely inhibited. At the tested concentrations, natural curcumin did not significantly inhibit the growth of trophozoites, therefore demonstrating that the designed synthetic molecules not only have better chemical stability, but also higher anti-T. vaginalis potential. Cytotoxicity analysis, performed on VERO cells, demonstrated low, moderate and high cytotoxic effects for analogues 3e, 5e and 3a, respectively. This study suggests that these analogues possess chemical features of interest to be further explored as alternatives for the treatment of trichomoniasis.
Collapse
Affiliation(s)
- Caroline Carapina da Silva
- Laboratory of Lipidomics and Bioorganic, Bioforensics Research Group, Federal University of Pelotas, RS, 96010-900, Brazil.
| | - Bruna Silveira Pacheco
- Laboratory of Lipidomics and Bioorganic, Bioforensics Research Group, Federal University of Pelotas, RS, 96010-900, Brazil
| | | | - Mirna Samara Dié Alves
- Laboratory of Infecto-parasitic Biotechnology, Federal University of Pelotas, RS, 96010-900, Brazil
| | - Ângela Sena-Lopes
- Laboratory of Infecto-parasitic Biotechnology, Federal University of Pelotas, RS, 96010-900, Brazil
| | - Sidnei Moura
- Laboratory of Biotechnology of Natural and Synthetic Products, Biotechnology Institute, University of Caxias do Sul, RS, 95020260, Brazil
| | - Sibele Borsuk
- Laboratory of Infecto-parasitic Biotechnology, Federal University of Pelotas, RS, 96010-900, Brazil
| | | |
Collapse
|
18
|
Newly designed pyridine and piperidine based Ionic Liquids: Aggregation behavior in ESI-MS and catalytic activity in C C bond formation reactions. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.09.083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Bahrami A, Atkin SL, Majeed M, Sahebkar A. Effects of curcumin on hypoxia-inducible factor as a new therapeutic target. Pharmacol Res 2018; 137:159-169. [PMID: 30315965 DOI: 10.1016/j.phrs.2018.10.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/07/2018] [Accepted: 10/09/2018] [Indexed: 12/20/2022]
Abstract
Hypoxia-inducible factor-1 (HIF-1) is a transcription factor that consists of two subunits, the HIF-1α and HIF-1β (ARNT). Under hypoxic conditions, HIF-1 is an adaptive system that regulates the transcription of multiple genes associated with growth, angiogenesis, proliferation, glucose transport, metabolism, pH regulation and cell death. However, aberrant HIF-1 activation contributes to the pathophysiology of several human diseases such as cancer, ischemic cardiovascular disorders, and pulmonary and kidney diseases. A growing body of evidence indicates that curcumin, a natural bioactive compound of turmeric root, significantly targets both HIF-1 subunits, but is more potent against HIF-1α. In this review, we have summarized the knowledge about the pharmacological effects of curcumin on HIF-1 and the related molecular mechanisms that may be effective candidates for the development of multi-targeted therapy for several human diseases.
Collapse
Affiliation(s)
- Afsane Bahrami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | | | | | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
20
|
Ramya PS, Guntuku L, Angapelly S, Digwal CS, Lakshmi UJ, Sigalapalli DK, Babu BN, Naidu V, Kamal A. Synthesis and biological evaluation of curcumin inspired imidazo[1,2-a]pyridine analogues as tubulin polymerization inhibitors. Eur J Med Chem 2018; 143:216-231. [DOI: 10.1016/j.ejmech.2017.11.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/03/2017] [Accepted: 11/03/2017] [Indexed: 02/07/2023]
|
21
|
Maluleka MM, Mphahlele MJ. Crystal structure of (1E,4E)-1,5-bis(4-chlorophenyl)penta-1,4-dien-3-one, C17H12Cl2O. Z KRIST-NEW CRYST ST 2017. [DOI: 10.1515/ncrs-2017-0212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractC17H12Cl2O, monoclinic, P21/c, a = 17.2845(14) Å, b = 14.2007(11) Å, c = 5.8795(5) Å, β = 99.088(3)°, V = 1425.0(2) Å3, Z = 4, Rgt(F) = 0.0567, wRref(F2) = 0.1395, T = 263 K.
Collapse
Affiliation(s)
- Marole M. Maluleka
- Department of Chemistry, College of Science Engineering and Technology, University of South Africa, Private Bag X06, Florida 1710, South Africa
| | - Malose J. Mphahlele
- Department of Chemistry, College of Science Engineering and Technology, University of South Africa, Private Bag X06, Florida 1710, South Africa
| |
Collapse
|
22
|
Deck LM, Hunsaker LA, Vander Jagt TA, Whalen LJ, Royer RE, Vander Jagt DL. Activation of anti-oxidant Nrf2 signaling by enone analogues of curcumin. Eur J Med Chem 2017; 143:854-865. [PMID: 29223100 DOI: 10.1016/j.ejmech.2017.11.048] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/31/2017] [Accepted: 11/18/2017] [Indexed: 12/24/2022]
Abstract
Inflammation and oxidative stress are common in many chronic diseases. Targeting signaling pathways that contribute to these conditions may have therapeutic potential. The transcription factor Nrf2 is a major regulator of phase II detoxification and anti-oxidant genes as well as anti-inflammatory and neuroprotective genes. Nrf2 is widespread in the CNS and is recognized as an important regulator of brain inflammation. The natural product curcumin exhibits numerous biological activities including ability to induce the expression of Nrf2-dependent phase II and anti-oxidant enzymes. Curcumin has been examined in a number of clinical studies with limited success, mainly owing to limited bioavailability and rapid metabolism. Enone analogues of curcumin were examined with an Nrf2 reporter assay to identify Nrf2 activators. Analogues were separated into groups with a 7-carbon dienone spacer, as found in curcumin; a 5-carbon enone spacer with and without a ring; and a 3-carbon enone spacer. Activators of Nrf2 were found in all three groups, many of which were more active than curcumin. Dose-response studies demonstrated that a range of substituents on the aromatic rings of these enones influenced not only the sensitivity to activation, reflected in EC50 values, but also the extent of activation, which suggests that multiple mechanisms are involved in the activation of Nrf2 by these analogues.
Collapse
Affiliation(s)
- Lorraine M Deck
- Department of Chemistry and Chemical Biology, University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| | - Lucy A Hunsaker
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, MSC08 4670, Fitz Hall, Room 249, 1 University of New Mexico, Albuquerque, NM 87131, USA
| | - Thomas A Vander Jagt
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, MSC08 4670, Fitz Hall, Room 249, 1 University of New Mexico, Albuquerque, NM 87131, USA
| | - Lisa J Whalen
- Department of Chemistry and Chemical Biology, University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, NM 87131, USA
| | - Robert E Royer
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, MSC08 4670, Fitz Hall, Room 249, 1 University of New Mexico, Albuquerque, NM 87131, USA
| | - David L Vander Jagt
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, MSC08 4670, Fitz Hall, Room 249, 1 University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
23
|
Imran M, Nadeem M, Saeed F, Imran A, Khan MR, Khan MA, Ahmed S, Rauf A. Immunomodulatory perspectives of potential biological spices with special reference to cancer and diabetes. FOOD AGR IMMUNOL 2017; 28:543-572. [DOI: 10.1080/09540105.2016.1259293] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Muhammad Imran
- Department of Diet and Nutritional Sciences, Imperial College of Business Studies, Lahore, Pakistan
| | - Muhammad Nadeem
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari, Pakistan
| | - Farhan Saeed
- Institute of Home & Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ali Imran
- Institute of Home & Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Moazzam Rafiq Khan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Asif Khan
- University of Agriculture Faisalabad, Sub-campus, Burewala/Vehari, Pakistan
| | - Sheraz Ahmed
- Department of Food Science and Technology, University College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Ambar, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
24
|
An overview of structure-activity relationship studies of curcumin analogs as antioxidant and anti-inflammatory agents. Future Med Chem 2017; 9:605-626. [PMID: 28394628 DOI: 10.4155/fmc-2016-0223] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Curcumin, extracted mainly from Curcuma longa rhizomes, has been reported to possess potent anti-inflammatory and anti-oxidant activities. Although safe at higher doses and exhibiting multiple biological activities, curcumin still has the problem of poor bioavailability which has been an attractive area of research over the last few years. A number of efforts have been made by modifying structural features of curcumin. This review highlights the structurally modified and more stable newly synthesized curcumin analogs that have been screened against antioxidant and anti-inflammatory activities. Also the structure-activity relationship to gain insight into future guidelines for scheming new compounds has been discussed, and further these analogs being more stable may serve as promising agents for use in different pathological conditions.
Collapse
|
25
|
Novel Palladium(II) Complexes that Influence Prominin-1/CD133 Expression and Stem Cell Factor Release in Tumor Cells. Molecules 2017; 22:molecules22040561. [PMID: 28358339 PMCID: PMC6154565 DOI: 10.3390/molecules22040561] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/19/2017] [Accepted: 03/23/2017] [Indexed: 01/18/2023] Open
Abstract
New Pd(II) complexes of 1,7-bis(2-methoxyphenyl)hepta-1,6-diene-3,5-dione were synthesized and structurally characterized. The complexes were tested in vitro on human colon and hepatic carcinoma cell lines, normal hepatic cells and hematopoietic progenitor cells. Biological tests proved that Pd(II) complexes 1 and 2 (containing a curcumin derivative) exhibit a strong in vitro antitumor effect against the cells derived from human colorectal carcinoma and the hepatic metastasis of a colorectal carcinoma. Complex 1 has an outstanding inhibitory effect against BRAF-mutant colon carcinoma and hepatocarcinoma cell growth; 1 and 2 are both more active than the free ligand and have the capacity to trigger early apoptotic processes. By flow cytometric measurements, an important decrease of prominin-1 (CD133) molecule expression on tumor cells membrane was identified in cell populations subjected to 1 and 2. Quantitative immune enzymatic assay proved restrictions in stem cell factor (SCF) release by treated tumor cells. Although less cytotoxic, the free ligand inhibits the surface marker CD133 expression in hepatocarcinoma cells, and in HT-29 colon carcinoma. The new synthesized Pd(II) complexes 1 and 2 exhibit an important potential through their selective cytotoxic activity and by targeting the stem-like tumor cell populations, which leads to the tumor growth arrest and prevention of metastasis.
Collapse
|
26
|
Kljun J, Turel I. β-Diketones as Scaffolds for Anticancer Drug Design - From Organic Building Blocks to Natural Products and Metallodrug Components. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201601314] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jakob Kljun
- Faculty of Chemistry and Chemical Technology; University of Ljubljana; Večna pot 113 1000 Ljubljana Slovenia
| | - Iztok Turel
- Faculty of Chemistry and Chemical Technology; University of Ljubljana; Večna pot 113 1000 Ljubljana Slovenia
| |
Collapse
|
27
|
Anticancer Curcumin: Natural Analogues and Structure-Activity Relationship. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2017. [DOI: 10.1016/b978-0-444-63929-5.00010-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
28
|
Pathak S, Regmi S, Gupta B, Poudel BK, Pham TT, Kim JR, Park PH, Yong CS, Kim JO, Bae YK, Kim SK, Jeong JH. Hybrid Congregation of Islet Single Cells and Curcumin-Loaded Polymeric Microspheres as an Interventional Strategy to Overcome Apoptosis Associated with Pancreatic Islets Transplantation. ACS APPLIED MATERIALS & INTERFACES 2016; 8:25702-25713. [PMID: 27666317 DOI: 10.1021/acsami.6b07897] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Hypoxic or near-anoxic conditions that occur in the core of transplanted islets induce necrosis and apoptosis during the early stages after transplantation, primarily due to loss of vascularization during the isolation process. Moreover, secretion of various cytokines from pancreatic islets is detrimental to the viability of islet cells in vitro. In this study, we aimed to protect pancreatic islet cells against apoptosis by establishing a method for in situ delivery of curcumin to the pancreatic islets. Self-assembled heterospheroids composed of pancreatic islet cells and curcumin-loaded polymeric microspheres were prepared by the three-dimensional cell culture technique. Release of curcumin in the microenvironment of pancreatic islets promoted survival of the islets. In hypoxic culture conditions, which mimic the in vivo conditions after transplantation, viability of the islets was significantly improved, as indicated by a decreased expression of pro-apoptotic protein and an increased expression of anti-apoptotic protein. Additionally, oxidative stress-induced cell death was suppressed. Thus, unlike co-transplantation of pancreatic islets and free microspheres, which provided a wide distribution of microspheres throughout the transplanted area, the heterospheroid transplantation resulted in colocalization of pancreatic islet cells and microspheres, thereby exerting beneficial effects on the cells.
Collapse
Affiliation(s)
- Shiva Pathak
- College of Pharmacy, Yeungnam University , Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Shobha Regmi
- College of Pharmacy, Yeungnam University , Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Biki Gupta
- College of Pharmacy, Yeungnam University , Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Bijay K Poudel
- College of Pharmacy, Yeungnam University , Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Tung Thanh Pham
- College of Pharmacy, Yeungnam University , Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Jae-Ryong Kim
- Department of Biochemistry and Molecular Biology and Smart-Aging Convergence Research Center, College of Medicine, Yeungnam University , Daegu 42415, Republic of Korea
| | - Pil-Hoon Park
- College of Pharmacy, Yeungnam University , Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University , Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University , Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Young Kyung Bae
- Department of Pathology, Yeungnam University College of Medicine , Daegu 42415, Republic of Korea
| | - Sang Kyoon Kim
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF) , Daegu 41061, Republic of Korea
| | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University , Gyeongsan, Gyeongbuk 38541, Republic of Korea
| |
Collapse
|
29
|
Hampannavar GA, Karpoormath R, Palkar MB, Shaikh MS. An appraisal on recent medicinal perspective of curcumin degradant: Dehydrozingerone (DZG). Bioorg Med Chem 2016; 24:501-20. [PMID: 26796952 DOI: 10.1016/j.bmc.2015.12.049] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/23/2015] [Accepted: 12/31/2015] [Indexed: 11/19/2022]
Abstract
Natural products serve as a key source for the design, discovery and development of potentially novel drug like candidates for life threatening diseases. Curcumin is one such medicinally important molecule reported for an array of biological activities. However, it has major drawbacks of very poor bioavailability and solubility. Alternatively, structural analogs and degradants of curcumin have been investigated, which have emerged as promising scaffolds with diverse biological activities. Dehydrozingerone (DZG) also known as feruloylmethane, is one such recognized degradant which is a half structural analog of curcumin. It exists as a natural phenolic compound obtained from rhizomes of Zingiber officinale, which has attracted much attention of medicinal chemists. DZG is known to have a broad range of biological activities like antioxidant, anticancer, anti-inflammatory, anti-depressant, anti-malarial, antifungal, anti-platelet and many others. DZG has also been studied in resolving issues pertaining to curcumin since it shares many structural similarities with curcumin. Considering this, in the present review we have put forward an effort to revise and systematically discuss the research involving DZG with its biological diversity. From literature, it is quite clear that DZG and its structural analogs have exhibited significant potential in facilitating design and development of novel medicinally active lead compounds with improved metabolic and pharmacokinetic profiles.
Collapse
Affiliation(s)
- Girish A Hampannavar
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa.
| | - Mahesh B Palkar
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa; Department of Pharmaceutical Chemistry, K.L.E. University College of Pharmacy, Vidyanagar, Hubballi 580031, Karnataka, India
| | - Mahamadhanif S Shaikh
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| |
Collapse
|
30
|
Rashid K, Sil PC. Curcumin enhances recovery of pancreatic islets from cellular stress induced inflammation and apoptosis in diabetic rats. Toxicol Appl Pharmacol 2015; 282:297-310. [PMID: 25541178 DOI: 10.1016/j.taap.2014.12.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 12/08/2014] [Accepted: 12/12/2014] [Indexed: 12/30/2022]
Abstract
The phytochemical, curcumin, has been reported to play many beneficial roles. However, under diabetic conditions, the detail mechanism of its beneficial action in the glucose homeostasis regulatory organ, pancreas, is poorly understood. The present study has been designed and carried out to explore the role of curcumin in the pancreatic tissue of STZ induced and cellular stress mediated diabetes in eight weeks old male Wistar rats. Diabetes was induced with a single intraperitoneal dose of STZ (65 mg/kg body weight). Post to diabetes induction, animals were treated with curcumin at a dose of 100 mg/kg body weight for eight weeks. Underlying molecular and cellular mechanism was determined using various biochemical assays, DNA fragmentation, FACS, histology, immunoblotting and ELISA. Treatment with curcumin reduced blood glucose level, increased plasma insulin and mitigated oxidative stress related markers. In vivo and in vitro experimental results revealed increased levels of proinflammatory cytokines (TNF-α, IL1-β and IFN-γ), reduced level of cellular defense proteins (Nrf-2 and HO-1) and glucose transporter (GLUT-2) along with enhanced levels of signaling molecules of ER stress dependent and independent apoptosis (cleaved Caspase-12/9/8/3) in STZ administered group. Treatment with curcumin ameliorated all the adverse changes and helps the organ back to its normal physiology. Results suggest that curcumin protects pancreatic beta-cells by attenuating inflammatory responses, and inhibiting ER/mitochondrial dependent and independent pathways of apoptosis and crosstalk between them. This uniqueness and absence of any detectable adverse effect proposes the possibility of using this molecule as an effective protector in the cellular stress mediated diabetes mellitus.
Collapse
Affiliation(s)
- Kahkashan Rashid
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India.
| |
Collapse
|
31
|
Guo T, Jiang Q, Yu L, Yu Z. Synthesis of chalcones via domino dehydrochlorination/Pd(OAc)2-catalyzed Heck reaction. CHINESE JOURNAL OF CATALYSIS 2015. [DOI: 10.1016/s1872-2067(14)60247-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
32
|
Shetty D, Kim YJ, Shim H, Snyder JP. Eliminating the heart from the curcumin molecule: monocarbonyl curcumin mimics (MACs). Molecules 2014; 20:249-92. [PMID: 25547726 PMCID: PMC4312668 DOI: 10.3390/molecules20010249] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 12/10/2014] [Indexed: 12/17/2022] Open
Abstract
Curcumin is a natural product with several thousand years of heritage. Its traditional Asian application to human ailments has been subjected in recent decades to worldwide pharmacological, biochemical and clinical investigations. Curcumin’s Achilles heel lies in its poor aqueous solubility and rapid degradation at pH ~ 7.4. Researchers have sought to unlock curcumin’s assets by chemical manipulation. One class of molecules under scrutiny are the monocarbonyl analogs of curcumin (MACs). A thousand plus such agents have been created and tested primarily against cancer and inflammation. The outcome is clear. In vitro, MACs furnish a 10–20 fold potency gain vs. curcumin for numerous cancer cell lines and cellular proteins. Similarly, MACs have successfully demonstrated better pharmacokinetic (PK) profiles in mice and greater tumor regression in cancer xenografts in vivo than curcumin. The compounds reveal limited toxicity as measured by murine weight gain and histopathological assessment. To our knowledge, MAC members have not yet been monitored in larger animals or humans. However, Phase 1 clinical trials are certainly on the horizon. The present review focuses on the large and evolving body of work in cancer and inflammation, but also covers MAC structural diversity and early discovery for treatment of bacteria, tuberculosis, Alzheimer’s disease and malaria.
Collapse
Affiliation(s)
- Dinesh Shetty
- Center for Self-assembly and Complexity, Institute for Basic Science, Pohang 790-784, Korea.
| | - Yong Joon Kim
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA.
| | - Hyunsuk Shim
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA 30322, USA.
| | - James P Snyder
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
33
|
Xu D, Hu L, Su C, Xia X, Zhang P, Fu J, Wang W, Xu D, Du H, Hu Q, Song E, Song Y. Tetrachloro-p-benzoquinone induces hepatic oxidative damage and inflammatory response, but not apoptosis in mouse: The prevention of curcumin. Toxicol Appl Pharmacol 2014; 280:305-13. [DOI: 10.1016/j.taap.2014.08.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/05/2014] [Accepted: 08/01/2014] [Indexed: 01/01/2023]
|
34
|
Lee KH, Abas F, Mohamed Alitheen NB, Shaari K, Lajis NH, Israf DA, Syahida A. Chemopreventive effects of a curcumin-like diarylpentanoid [2,6-bis(2,5-dimethoxybenzylidene)cyclohexanone] in cellular targets of rheumatoid arthritis in vitro. Int J Rheum Dis 2014; 18:616-27. [PMID: 24832356 DOI: 10.1111/1756-185x.12341] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
AIM Synovial fibroblast has emerged as a potential cellular target in progressive joint destruction in rheumatoid arthritis development. In this study, BDMC33 (2,6-bis[2,5-dimethoxybenzylidene]cyclohexanone), a curcumin analogue with enhanced anti-inflammatory activity has been synthesized and the potency of BDMC33 on molecular and cellular basis of synovial fibroblasts (SF) were evaluated in vitro. METHODS Synovial fibroblast cells (HIG-82) were cultured in vitro and induced by phorbol-12-myristate acetate (PMA) to stimulate the expression of matrix metalloproteinase (MMPs) and pro-inflammatory cytokines. The protective effects of BDMC33 were evaluated toward MMP activities, pro-inflammatory cytokine expression and nuclear factor kappa-B (NF-κB) activation by using various bioassay methods, including zymography, Western blotting, reverse transcription polymerase chain reaction, immunofluorescense microscopy and electrophoretic mobility shift assay. RESULTS The results showed that BDMC33 significantly inhibited the pro-gelatinase B (pro-MMP-9) and collagenase activities via suppression of MMP-1 in activated SF. In addition, BDMC33 strongly suppressed MMP-3 gene expression as well as inhibited COX-2 and IL-6 pro-inflammatory gene expression. We also demonstrated that BDMC33 abolished the p65 NF-κB nuclear translocation and NF-κB DNA binding activity in PMA-stimulated SF. CONCLUSIONS BDMC33 represents an effective chemopreventive agent and could be used as a promising lead compound for further development of rheumatoid arthritis therapeutic intervention.
Collapse
Affiliation(s)
- Ka-Heng Lee
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Kuala Lumpur, Selangor, Malaysia
| | - Faridah Abas
- Institute of Bioscience, Universiti Putra Malaysia, Kuala Lumpur, Selangor, Malaysia.,Faculty of Food Science and Technology, Universiti Putra Malaysia, Kuala Lumpur, Selangor, Malaysia
| | | | - Khozirah Shaari
- Institute of Bioscience, Universiti Putra Malaysia, Kuala Lumpur, Selangor, Malaysia.,Faculty of Science, Universiti Putra Malaysia, Kuala Lumpur, Selangor, Malaysia
| | - Nordin Haji Lajis
- Institute of Bioscience, Universiti Putra Malaysia, Kuala Lumpur, Selangor, Malaysia.,Faculty of Science, Universiti Putra Malaysia, Kuala Lumpur, Selangor, Malaysia
| | - Daud Ahmad Israf
- Institute of Bioscience, Universiti Putra Malaysia, Kuala Lumpur, Selangor, Malaysia.,Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Kuala Lumpur, Selangor, Malaysia
| | - Ahmad Syahida
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Kuala Lumpur, Selangor, Malaysia.,Institute of Bioscience, Universiti Putra Malaysia, Kuala Lumpur, Selangor, Malaysia
| |
Collapse
|
35
|
Cyriac J, Paulose J, George M, Ramesh M, Srinivas R, Giblin D, Gross ML. The role of methoxy group in the Nazarov cyclization of 1,5-bis-(2-methoxyphenyl)-1,4-pentadien-3-one in the gas phase and condensed phase. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:398-409. [PMID: 24415061 PMCID: PMC3930160 DOI: 10.1007/s13361-013-0785-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/17/2013] [Accepted: 11/18/2013] [Indexed: 06/03/2023]
Abstract
ESI-protonated 1,5-bis-(2-methoxyphenyl)-1,4-pentadien-3-one (1) undergoes a gas-phase Nazarov cyclization and dissociates via expulsions of ketene and anisole. The dissociations of the [M + D](+) ions are accompanied by limited HD scrambling that supports the proposed cyclization. Solution cyclization of 1 was effected to yield the cyclic ketone, 2,3-bis-(2-methoxyphenyl)-cyclopent-2-ene-1-one, (2) on a time scale that is significantly shorter than the time for cyclization of dibenzalacetone. The dissociation characteristics of the ESI-generated [M + H](+) ion of the synthetic cyclic ketone closely resemble those of 1, suggesting that gas-phase and solution cyclization products are the same. Additional mechanistic studies by density functional theory (DFT) methods of the gas-phase reaction reveals that the initial cyclization is followed by two sequential 1,2-aryl migrations that account for the observed structure of the cyclic product in the gas phase and solution. Furthermore, the DFT calculations show that the methoxy group serves as a catalyst for the proton migrations necessary for both cyclization and fragmentation after aryl migration. An isomer formed by moving the 2-methoxy to the 4-position requires relatively higher collision energy for the elimination of anisole, as is consistent with DFT calculations. Replacement of the 2-methoxy group with an OH shows that the cyclization followed by aryl migration and elimination of phenol occurs from the [M + H](+) ion at low energy similar to that for 1.
Collapse
Affiliation(s)
- June Cyriac
- Department of Chemistry, Sacred Heart College, Thevara, Cochin, Kerala, India
| | - Justin Paulose
- Department of Chemistry, Sacred Heart College, Thevara, Cochin, Kerala, India
| | - Mathai George
- Department of Chemistry, Sacred Heart College, Thevara, Cochin, Kerala, India
| | - Marupaka Ramesh
- National Center for Mass Spectrometry, IICT, Hyderabad, India
| | | | - Daryl Giblin
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
36
|
Bairwa K, Grover J, Kania M, Jachak SM. Recent developments in chemistry and biology of curcumin analogues. RSC Adv 2014. [DOI: 10.1039/c4ra00227j] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
37
|
Pal A, Sung B, Bhanu Prasad BA, Schuber PT, Prasad S, Aggarwal BB, Bornmann WG. Curcumin glucuronides: assessing the proliferative activity against human cell lines. Bioorg Med Chem 2014; 22:435-9. [PMID: 24280069 PMCID: PMC4128398 DOI: 10.1016/j.bmc.2013.11.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 10/28/2013] [Accepted: 11/05/2013] [Indexed: 01/06/2023]
Abstract
A gram scale synthesis of the glucuronide metabolites of curcumin were completed in four steps. The newly synthesized curcumin glucuronide compounds 2 and 3 along with curcumin 1 were tested and their anti-proliferative effects against KBM-5, Jurkat cell, U266, and A549 cell lines were reported. Biological data revealed that as much as 1 μM curcumin 1 exhibited anticancer activity and almost 100% cell kill was noted at 10 μM on two out of four cell lines; while curcumin mono-glucuronide 2 as well as di-glucuronide 3 displayed no suppression of cell proliferation.
Collapse
Affiliation(s)
- Ashutosh Pal
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Bokyung Sung
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Basvoju A Bhanu Prasad
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Paul T Schuber
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Sahdeo Prasad
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Bharat B Aggarwal
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - William G Bornmann
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
38
|
Abdel Aziz MT, El-Asmar MF, Rezq AM, Mahfouz SM, Wassef MA, Fouad HH, Ahmed HH, Taha FM. The effect of a novel curcumin derivative on pancreatic islet regeneration in experimental type-1 diabetes in rats (long term study). Diabetol Metab Syndr 2013; 5:75. [PMID: 24279645 PMCID: PMC4176754 DOI: 10.1186/1758-5996-5-75] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 11/07/2013] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Several studies highlight curcumin's benefit as a hypoglycemic agent, however; a limited number of reports present the importance of curcumin in improvement of pancreatic islets in diabetes. The aim of the present study is to evaluate the antidiabetic effect of a novel curcumin derivative and its effect on pancreatic islet regeneration in type I diabetes-induced by STZ. MATERIALS AND METHODS Rats were divided into diabetic rats and diabetic rats treated orally with the novel curcumin derivative (NCD) for 40 days. Fasting blood samples were withdrawn periodically from all rats to estimate plasma glucose, insulin and C-peptide for 10 months. Histopathology was performed to allow the assessment of pancreatic islet morphology. Insulin and CD105 were detected immunohistochemically. RESULTS In diabetic rats, the plasma glucose, insulin and C-peptide levels remained within the diabetic range for about 4 months, after which a gradual decrease in glucose and increase in insulin and C-peptide was observed, which reached almost normal levels after 10 months. NCD treated diabetic rats showed significantly lowered plasma glucose and increased plasma insulin and C-peptide levels. This was followed by a further significant decrease in plasma glucose and increase in plasma insulin and C-peptide after two months from oral administration of the NCD. The plasma insulin and C-peptide continued to increase for ten months reaching levels significantly higher than the basal level. Histopathological examination of diabetic rat pancreas revealed absence of islets of Langerhans, minimal adipose tissue infiltration and localized lymphocytic infiltrates. However, after 6 months of induction of diabetes, rat pancreas showed the appearance of small well formed islets and positive insulin cells but no CD105 positive cells. NCD treated rats showed the appearance of primitive cell collections, large insulin positive cells and CD105 positive cells in the adipose tissue infiltrating the pancreatic tissues. This was followed by the gradual appearance of insulin positive cells in the islets while, CD 105 positive cells remained in the adipose tissue. After 5 and 10 months from the onset of diabetes, rat pancreas showed, well developed larger sized islets with disappearance of primitive cell collections and CD 105 positive cells. Also, insulin positive islets of variable size with disappearance of insulin positive cells in adipose tissue were detected. CONCLUSION The NCD possesses antidiabetic actions and enhanced pancreatic islets regeneration.
Collapse
Affiliation(s)
- Mohamed T Abdel Aziz
- Unit of Biochemistry and Molecular Biology, the Medical Biochemistry Department, Faculty of Medicine, Cairo University, Kasr El Aini, Cairo, Egypt
| | - Mohamed F El-Asmar
- Medical Biochemistry Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ameen M Rezq
- Unit of Biochemistry and Molecular Biology, the Medical Biochemistry Department, Faculty of Medicine, Cairo University, Kasr El Aini, Cairo, Egypt
| | - Soheir M Mahfouz
- Pathology Department Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed A Wassef
- Unit of Biochemistry and Molecular Biology, the Medical Biochemistry Department, Faculty of Medicine, Cairo University, Kasr El Aini, Cairo, Egypt
| | - Hanan H Fouad
- Unit of Biochemistry and Molecular Biology, the Medical Biochemistry Department, Faculty of Medicine, Cairo University, Kasr El Aini, Cairo, Egypt
| | - Hanan H Ahmed
- Unit of Biochemistry and Molecular Biology, the Medical Biochemistry Department, Faculty of Medicine, Cairo University, Kasr El Aini, Cairo, Egypt
| | - Fatma M Taha
- Unit of Biochemistry and Molecular Biology, the Medical Biochemistry Department, Faculty of Medicine, Cairo University, Kasr El Aini, Cairo, Egypt
| |
Collapse
|
39
|
Li Y, Zou X, Cao K, Xu J, Yue T, Dai F, Zhou B, Lu W, Feng Z, Liu J. Curcumin analog 1, 5-bis (2-trifluoromethylphenyl)-1, 4-pentadien-3-one exhibits enhanced ability on Nrf2 activation and protection against acrolein-induced ARPE-19 cell toxicity. Toxicol Appl Pharmacol 2013; 272:726-35. [DOI: 10.1016/j.taap.2013.07.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 07/24/2013] [Accepted: 07/26/2013] [Indexed: 12/20/2022]
|
40
|
|
41
|
Nagaraju GP, Aliya S, Zafar SF, Basha R, Diaz R, El-Rayes BF. The impact of curcumin on breast cancer. Integr Biol (Camb) 2012; 4:996-1007. [DOI: 10.1039/c2ib20088k] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Ganji Purnachandra Nagaraju
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA-30322, USA. Tel: +404-778-3558
| | - Sheik Aliya
- Department of Biotechnology, Jawaharlal Nehru Technological University, Hyderabad, AP - 500 085, India
| | - Syed F. Zafar
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA-30322, USA. Tel: +404-778-3558
| | - Riyaz Basha
- Cancer Research Institute, MD Anderson Cancer Center Orlando, Orlando, FL-32827, USA
| | - Roberto Diaz
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, GA-30322, USA
| | - Bassel F. El-Rayes
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA-30322, USA. Tel: +404-778-3558
| |
Collapse
|
42
|
Shi Q, Wada K, Ohkoshi E, Lin L, Huang R, Morris-Natschke SL, Goto M, Lee KH. Antitumor agents 290. Design, synthesis, and biological evaluation of new LNCaP and PC-3 cytotoxic curcumin analogs conjugated with anti-androgens. Bioorg Med Chem 2012; 20:4020-31. [PMID: 22672984 PMCID: PMC3376200 DOI: 10.1016/j.bmc.2012.05.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 05/01/2012] [Accepted: 05/08/2012] [Indexed: 11/25/2022]
Abstract
In our continuing study of curcumin analogs as potential anti-prostate cancer drug candidates, 15 new curcumin analogs were designed, synthesized and evaluated for cytotoxicity against two human prostate cancer cell lines, androgen-dependent LNCaP and androgen-independent PC-3. Twelve analogs (5-12, 15, 16, 19, and 20) are conjugates of curcumin (1) or methyl curcumin (2) with a flutamide- or bicalutamide-like moiety. Two compounds (22 and 23) are C4-mono- and difluoro-substituted analogs of dimethyl curcumin (DMC, 21). Among the newly synthesized conjugates compound 15, a conjugate of 2 with a partial bicalutamide moiety, was more potent than bicalutamide alone and essentially equipotent with 1 and 2 against both prostate tumor cell lines with IC(50) values of 41.8 μM (for LNCaP) and 39.1 μM (for PC-3). A cell morphology study revealed that the cytotoxicity of curcumin analogs or curcumin-anti-androgen conjugates detected from both prostate cancer cell lines might be due to the suppression of pseudopodia formation. A molecular intrinsic fluorescence experiment showed that 1 accumulated mainly in the nuclei, while conjugate 6 was distributed in the cytosol. At the tested conditions, anti-androgens suppressed pseudopodia formation in PC-3 cells, but not in LNCaP cells. The evidence suggests that distinguishable target proteins are involved, resulting in the different outcomes toward pseudopodia suppression.
Collapse
Affiliation(s)
- Qian Shi
- Natural Products Research Laboratories, UNC Eshelmen School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7568, USA
- AndroScience Corporation, 11175 Flintkote Ave., Suite F, San Diego, CA 92121, USA
| | - Koji Wada
- Natural Products Research Laboratories, UNC Eshelmen School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7568, USA
| | - Emika Ohkoshi
- Natural Products Research Laboratories, UNC Eshelmen School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7568, USA
| | - Li Lin
- Natural Products Research Laboratories, UNC Eshelmen School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7568, USA
| | - Rong Huang
- Natural Products Research Laboratories, UNC Eshelmen School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7568, USA
| | - Susan L. Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelmen School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7568, USA
| | - Masuo Goto
- Cell and Developmental Biology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7090, USA
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelmen School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7568, USA
- Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung, Taiwan
| |
Collapse
|
43
|
Wei X, Du ZY, Zheng X, Cui XX, Conney AH, Zhang K. Synthesis and evaluation of curcumin-related compounds for anticancer activity. Eur J Med Chem 2012; 53:235-45. [DOI: 10.1016/j.ejmech.2012.04.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 03/29/2012] [Accepted: 04/04/2012] [Indexed: 12/20/2022]
|
44
|
Amiri R, Padyab P, Chalabian F, Rajabi NA. Ph 3P Catalyzed One-Pot Synthesis of Heterocyclic Derivatives of Biological Active Curcumin. J Heterocycl Chem 2012. [DOI: 10.1002/jhet.808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rahebeh Amiri
- Chemistry Department; Islamic Azad University; Central Tehran Branch Tehran Iran
| | - Parnia Padyab
- Chemistry Department; Islamic Azad University; Central Tehran Branch Tehran Iran
| | - Firoozeh Chalabian
- Biology Department; Islamic Azad University; North Tehran Branch Tehran Iran
| | - Nasir Ahmad Rajabi
- Chemistry Department; Islamic Azad University; Central Tehran Branch Tehran Iran
| |
Collapse
|
45
|
Fajardo AM, MacKenzie DA, Ji M, Deck LM, Vander Jagt DL, Thompson TA, Bisoffi M. The curcumin analog ca27 down-regulates androgen receptor through an oxidative stress mediated mechanism in human prostate cancer cells. Prostate 2012; 72:612-25. [PMID: 21796654 PMCID: PMC3309160 DOI: 10.1002/pros.21464] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 06/29/2011] [Indexed: 12/11/2022]
Abstract
BACKGROUND The androgen receptor (AR) plays a critical role in prostate cancer development and progression. Therefore, the inhibition of AR function is an established therapeutic intervention. Since the expression of the AR is retained and often increased in progressive disease, AR protein down-regulation is a promising therapeutic approach against prostate cancer. We show here that the curcumin analog 27 (ca27) down-regulates AR expression in several prostate cancer cell lines. METHODS ca27 at low micromolar concentrations was tested for its effect on AR expression, AR activation, and induction of oxidative stress in human LNCaP, C4-2, and LAPC-4 prostate cancer cells. RESULTS ca27 induced the down-regulation of AR protein expression in LNCaP, C4-2, and LAPC-4 cells within 12 hr. Further, ca27 led to the rapid induction of reactive oxygen species (ROS). To further support this finding, ca27 treatment led to the activation of the cellular redox sensor NF-E2-related factor 2 (Nrf2) and the induction of the Nrf2-regulated genes NAD(P)H quinone oxidoreductase 1 and aldoketoreductase 1C1. We show that ROS production preceded AR protein loss and that ca27-mediated down-regulation of the AR was attenuated by the antioxidant, N-acetyl cysteine. CONCLUSIONS ca27 induces ROS and mediates AR protein down-regulation through an oxidative stress mechanism of action. Our results suggest that ca27 represents a novel agent for the elucidation of mechanisms of AR down-regulation, which could lead to effective new anti-androgenic strategies for the treatment of advanced prostate cancer.
Collapse
Affiliation(s)
- Alexandra M. Fajardo
- Departmentof Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
- Departmentof Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Debra A. MacKenzie
- Departmentof Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Ming Ji
- Departmentof Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Lorraine M. Deck
- Departmentof Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico
| | - David L. Vander Jagt
- Departmentof Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Todd A. Thompson
- Departmentof Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
- Universityof New Mexico Cancer Center, Albuquerque, New Mexico
| | - Marco Bisoffi
- Departmentof Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
- Universityof New Mexico Cancer Center, Albuquerque, New Mexico
| |
Collapse
|
46
|
Peng F, Tao Q, Wu X, Dou H, Spencer S, Mang C, Xu L, Sun L, Zhao Y, Li H, Zeng S, Liu G, Hao X. Cytotoxic, cytoprotective and antioxidant effects of isolated phenolic compounds from fresh ginger. Fitoterapia 2012; 83:568-85. [PMID: 22248534 DOI: 10.1016/j.fitote.2011.12.028] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/29/2011] [Accepted: 12/30/2011] [Indexed: 01/25/2023]
Abstract
Twenty-nine phenolic compounds were isolated from the root bark of fresh (Yunnan) ginger and their structures fully characterized. Selected compounds were divided into structural categories and twelve compounds subjected to in-vitro assays including DPPH radical scavenging, xanthine-oxidase inhibition, monoamine oxidase inhibition, rat-brain homogenate lipid peroxidation, and rat pheochromocytoma PC12 cell and primary liver cell viability to determine their antioxidant and cytoprotective properties. Isolated compounds were also tested against nine human tumor cell lines to characterize anticancer potency. Several diarylheptanoids and epoxidic diarylheptanoids were effective DPPH radical scavengers and moderately effective at inhibiting xanthine oxidase. An enone-dione analog of 6-shogaol (compound 2) was isolated and identified to be most effective at protecting PC12 cells from H₂O₂-induced damage. Almost all tested compounds inhibited lipid peroxidation. Three compounds, 6-shogaol, 10-gingerol and an enone-diarylheptanoid analog of curcumin (compound 6) were identified to be cytotoxic in cell lines tested, with KB and HL60 cells most susceptible to 6-shogaol and the curcumin analog with IC₅₀<10 μM. QSAR analysis revealed cytotoxicity was related to compound lipophilicity and chemical reactivity. In conclusion, we observed distinct compounds in fresh ginger to have biological activities relevant in diseases associated with reactive oxygen species.
Collapse
Affiliation(s)
- Fang Peng
- Key Laboratory of Yunnan Insect Drug R&D, College of Pharmaceutical Sciences of Dali University, Wanhua Road, Dali 671000, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Cao B, Wang Y, Ding K, Neamati N, Long YQ. Synthesis of the pyridinyl analogues of dibenzylideneacetone (pyr-dba) via an improved Claisen-Schmidt condensation, displaying diverse biological activities as curcumin analogues. Org Biomol Chem 2011; 10:1239-45. [PMID: 22179573 DOI: 10.1039/c1ob06773g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
An efficient and easy procedure to synthesize the pyridinyl analogues of dibenzylideneacetone (pyr-dba) was developed by the condensation of substituted nicotinaldehyde and acetone in the presence of K(2)CO(3) in toluene-EtOH-H(2)O solvent system. Structurally diverse pyr-dba, including quinolinyl dba, can be prepared conveniently in moderate to excellent yields under mild conditions with this method. The resulting pyr-dba functioned as the enone analogs of curcumin and efficiently inhibited the activation of NF-κB and the growth of colorectal carcinoma HCT116 p53+/+ cells as well as the HIV-1 IN-LEDGF/p75 interaction.
Collapse
Affiliation(s)
- Bin Cao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | | | | | | | | |
Collapse
|
48
|
Ruan BF, Lu X, Li TT, Tang JF, Wei Y, Wang XL, Zheng SL, Yao RS, Zhu HL. Synthesis, biological evaluation and molecular docking studies of resveratrol derivatives possessing curcumin moiety as potent antitubulin agents. Bioorg Med Chem 2011; 20:1113-21. [PMID: 22189271 DOI: 10.1016/j.bmc.2011.11.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 11/08/2011] [Accepted: 11/09/2011] [Indexed: 01/22/2023]
Abstract
A series of resveratrol derivatives possessing curcumin moiety were synthesized and evaluated for their antiproliferative activity against three cancer cell lines including murine melanoma B16-F10, human hepatoma HepG2 and human lung carcinoma A549. Among them, compound C5 displayed the most potent in vitro antiproliferative activity against B16-F10 with IC(50) value of 0.71 μg/mL. Compound C5 also exhibited good tubulin polymerization inhibitory activity with IC(50) value of 1.45 μg/mL. Furthermore, docking simulation was carried out to position C5 into the tubulin-colchicine binding site to determine the probable binding mode.
Collapse
Affiliation(s)
- Ban-Feng Ruan
- School of Medical Engineering, Hefei University of Technology, Hefei 230009, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
A curcumin derivative, 2,6-bis(2,5-dimethoxybenzylidene)-cyclohexanone (BDMC33) attenuates prostaglandin E2 synthesis via selective suppression of cyclooxygenase-2 in IFN-γ/LPS-stimulated macrophages. Molecules 2011; 16:9728-38. [PMID: 22113581 PMCID: PMC6264440 DOI: 10.3390/molecules16119728] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 10/27/2011] [Accepted: 10/28/2011] [Indexed: 12/29/2022] Open
Abstract
Our preliminary screening had shown that the curcumin derivative [2,6-bis(2,5-dimethoxybenzylidene)cyclohexanone] or BDMC33 exhibited improved anti-inflammatory activity by inhibiting nitric oxide synthesis in activated macrophage cells. In this study, we further investigated the anti-inflammatory properties of BDMC33 on PGE2 synthesis and cyclooxygenase (COX) expression in IFN-γ/LPS-stimulated macrophages. We found that BDMC33 significantly inhibited PGE2 synthesis in a concentration-dependent manner albeit at a low inhibition level with an IC50 value of 47.33 ± 1.00 µM. Interestingly, the PGE2 inhibitory activity of BDMC33 is not attributed to inhibition of the COX enzyme activities, but rather BDMC33 selectively down-regulated the expression of COX-2. In addition, BDMC33 modulates the COX expression by sustaining the constitutively COX-1 expression in IFN-γ/LPS-treated macrophage cells. Collectively, the experimental data suggest an immunodulatory action of BDMC33 on PGE2 synthesis and COX expression, making it a possible treatment for inflammatory disorders with minimal gastrointestinal-related side effects.
Collapse
|
50
|
El-Agamy DS, Shebl AM, Said SA. Prevention and treatment of Schistosoma mansoni-induced liver fibrosis in mice. Inflammopharmacology 2011; 19:307-16. [DOI: 10.1007/s10787-011-0092-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 08/24/2011] [Indexed: 12/21/2022]
|