1
|
Gaikwad SY, More A, Seniya C, Verma K, Chandane-Tak M, Nema V, Kumar S, Mukherjee A. Synergistic inhibition of HIV-1 by Nelfinavir and Epigallocatechin Gallate: A novel nanoemulsion-based therapeutic approach. Virology 2025; 603:110391. [PMID: 39787774 DOI: 10.1016/j.virol.2025.110391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/13/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
The integration of nanotechnology into antiretroviral drug delivery systems presents a promising avenue to address challenges posed by long-term antiretroviral therapies (ARTs), including poor bioavailability, drug-induced toxicity, and resistance. These limitations impact the therapeutic effectiveness and quality of life for individuals living with HIV. Nanodrug delivery systems, particularly nanoemulsions, have demonstrated potential in improving drug solubility, enhancing bioavailability, and minimizing systemic toxicity. Moreover, nanodrug platforms can target viral reservoirs, potentially reducing the emergence of drug-resistant strains-a significant challenge in anti-HIV treatment. This study evaluates the biological efficacy of a rosemary oil-based nanoemulsion loaded with Nelfinavir (NFV) and Epigallocatechin Gallate (EGCG), which demonstrated HIV-1 suppression at sub-CC₅₀ concentrations across two distinct cellular systems. The synergistic interaction between NFV and EGCG was confirmed through cellular assays, enzymatic studies, and molecular interaction analysis. In vitro experiments revealed that the NE-NFV-EGCG nanoemulsion exhibited enhanced HIV-1 inhibitory activity compared to pure NFV, highlighting a promising therapeutic synergy. The findings suggest that EGCG could be a valuable adjunct in NFV-based regimens for HIV management. Molecular interaction studies further confirmed the nanoemulsion's inhibitory potential against the HIV-1 protease enzyme. This study marks a significant advancement in HIV-1 treatment by documenting, for the first time, the synergistic inhibitory activity of NFV and EGCG. The novel nanoformulation offers improved oral bioavailability, minimal side effects, and enhanced therapeutic outcomes. Future studies are needed to optimize the formulation for clinical applications, including sustained drug release and drug transport mechanisms.
Collapse
Affiliation(s)
- Shraddha Y Gaikwad
- Division of Virology, ICMR-National Institute of Translational and AIDS Research Institute, Pune, India
| | - Ashwini More
- Division of Virology, ICMR-National Institute of Translational and AIDS Research Institute, Pune, India
| | - Chandrabhan Seniya
- Department of Biotechnology and Chemical Engineering, Manipal University Jaipur, India
| | - Kunal Verma
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology (MIET), NH-58, Delhi-Roorkee Highway, Meerut, India
| | - Madhuri Chandane-Tak
- Division of Virology, ICMR-National Institute of Translational and AIDS Research Institute, Pune, India
| | - Vijay Nema
- Division of Molecular Biology, ICMR-National Institute of Translational and AIDS Research Institute, Pune, India; AcSIR - Academy of Scientific & Innovative Research, Ghaziabad, India
| | - Shobhit Kumar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology (MIET), NH-58, Delhi-Roorkee Highway, Meerut, India.
| | - Anupam Mukherjee
- Division of Virology, ICMR-National Institute of Translational and AIDS Research Institute, Pune, India; AcSIR - Academy of Scientific & Innovative Research, Ghaziabad, India.
| |
Collapse
|
2
|
Yilmaz O, Onder A. The Role of Epigallocatechin Gallate (EGCG) in Treatment and Management of Sexually Transmitted Viral Infections. Infect Disord Drug Targets 2025; 25:e18715265319110. [PMID: 39482915 DOI: 10.2174/0118715265319110240916061200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/29/2024] [Accepted: 08/22/2024] [Indexed: 11/03/2024]
Abstract
Tea is obtained from the young leaves and shoots of the evergreen perennial plant Camellia sinensis (L.) Kuntze, the most popular and frequently consumed product using a natural beverage worldwide. Some kinds of tea products, such as green tea, black tea, and oolong tea, have assorted flavors depending on the manufacturing techniques. Green tea has been studied for many years for its important beneficial effects, including anticancer, antiobesity, anti-diabetes, anti-inflammatory, neuroprotective, and cardiovascular effects. These effects are primarily associated with tea polyphenols, and regular consumption has been reported to decrease the incidence of some chronic diseases. Current studies support that green tea catechins play an important role in healing and improving the pathology of many diseases. Epigallocatechin-3-gallate (EGCG) is the most a highly found polyphenol in the leaves and is of great interest for its protective role in the prevention of diseases. Therefore, this review presents the efficacy and possible mechanisms of EGCG against sexually transmitted viruses. Moreover, EGCG and its derivatives are recognized as safe bioactive phytochemicals for external and internal use in preventing and treating viral STIs and other concurrent infections. Multidisciplinary studies are essential to discover cheaper, safer, and more effective treatments using EGCG and its derivatives to improve the toxicity and formulations of viral STI medications.
Collapse
Affiliation(s)
- Ozge Yilmaz
- Department of Pharmacognosy, Faculty of Pharmacy, Ankara University, 06100, Ankara, Türkiye
| | - Alev Onder
- Department of Pharmacognosy, Faculty of Pharmacy, Ankara University, 06100, Ankara, Türkiye
| |
Collapse
|
3
|
Chen J, Chen L, Zhang X, Yao W, Xue Z. Exploring causal associations of antioxidants from supplements and diet with attention deficit/hyperactivity disorder in European populations: a Mendelian randomization analysis. Front Nutr 2024; 11:1415793. [PMID: 39381354 PMCID: PMC11459460 DOI: 10.3389/fnut.2024.1415793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/10/2024] [Indexed: 10/10/2024] Open
Abstract
Background Antioxidants from both supplements and diet have been suggested to potentially reduce oxidative stress in individuals with ADHD. However, there is a lack of studies utilizing the Mendelian randomization (MR) method to explore the relationship between dietary and supplemental antioxidants with ADHD. Methods This study employed two-sample mendelian randomization. Various specific antioxidant dietary supplements (such as coffee, green tea, herbal tea, standard tea, and red wine intake per week), along with diet-derived circulating antioxidants including Vitamin C (ascorbate), Vitamin E (α-tocopherol), Vitamin E (γ-tocopherol), carotene, Vitamin A (retinol), zinc, and selenium (N = 2,603-428,860), were linked to independent single nucleotide polymorphisms (SNPs). Data on ADHD was gathered from six sources, comprising 246,888 participants. The primary analytical method utilized was inverse variance weighting (IVW), with sensitivity analysis conducted to assess the robustness of the main findings. Results In different diagnostic periods for ADHD, we found that only green tea intake among the antioxidants was significantly associated with a reduced risk of ADHD in males (OR: 0.977, CI: 0.963-0.990, p < 0.001, FDR = 0.065), with no evidence of pleiotropy or heterogeneity observed in the results. Additionally, a nominal causal association was found between green tea intake and childhood ADHD (OR: 0.989, 95% CI: 0.979-0.998, p = 0.023, FDR = 0.843). No causal relationships were detected between the intake of other antioxidant-rich diets and ADHD. Conclusion Our study found a significant inverse association between green tea intake and male ADHD, suggesting that higher green tea consumption may reduce ADHD risk in males. Further research is needed to explore optimal doses and underlying mechanisms.
Collapse
Affiliation(s)
- Jing Chen
- Department of Pediatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lifei Chen
- Department of Pediatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinguang Zhang
- Department of Pediatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenbo Yao
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zheng Xue
- Department of Pediatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
Gaikwad SY, Tyagi S, Seniya C, More A, Chandane-Tak M, Kumar S, Mukherjee A. A nanoemulsified formulation of dolutegravir and epigallocatechin gallate inhibits HIV-1 replication in cellular models. FEBS Lett 2024; 598:1919-1936. [PMID: 38789398 DOI: 10.1002/1873-3468.14936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024]
Abstract
Nanotechnology offers promising avenues for enhancing drug delivery systems, particularly in HIV-1 treatment. This study investigates a nanoemulsified formulation combining epigallocatechin gallate (EGCG) with dolutegravir (DTG) for managing HIV-1 infection. The combinatorial interaction between EGCG and DTG was explored through cellular, enzymatic, and molecular studies. In vitro assays demonstrated the potential of a dual drug-loaded nanoemulsion, NE-DTG-EGCG, in inhibiting HIV-1 replication, with EGCG serving as a supplementary treatment containing DTG. In silico molecular interaction studies highlighted EGCG's multifaceted inhibitory potential against HIV-1 integrase and reverse transcriptase enzymes. Further investigations are needed to validate the formulation's efficacy across diverse contexts. Overall, by integrating nanotechnology into drug delivery systems, this study represents a significant advancement in managing HIV-1 infection.
Collapse
Affiliation(s)
- Shraddha Y Gaikwad
- Division of Virology, ICMR-National AIDS Research Institute, Pune, India
| | - Shivani Tyagi
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, India
| | - Chandrabhan Seniya
- School of Biosciences, Engineering and Technology, VIT Bhopal University, India
| | - Ashwini More
- Division of Virology, ICMR-National AIDS Research Institute, Pune, India
| | | | - Shobhit Kumar
- School of Biosciences, Engineering and Technology, VIT Bhopal University, India
| | - Anupam Mukherjee
- Division of Virology, ICMR-National AIDS Research Institute, Pune, India
| |
Collapse
|
5
|
Rani A, Saini V, Patra P, Prashar T, Pandey RK, Mishra A, Jha HC. Epigallocatechin Gallate: A Multifaceted Molecule for Neurological Disorders and Neurotropic Viral Infections. ACS Chem Neurosci 2023; 14:2968-2980. [PMID: 37590965 DOI: 10.1021/acschemneuro.3c00368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023] Open
Abstract
Epigallocatechin-3-gallate (EGCG), a polyphenolic moiety found in green tea extracts, exhibits pleiotropic bioactivities to combat many diseases including neurological ailments. These neurological diseases include Alzheimer's disease, multiple sclerosis, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. For instance, in the case of Alzheimer's disease, the formation of a β-sheet in the region of the 10th-21st amino acids was significantly reduced in EGCG-induced oligomeric samples of Aβ40. Its interference induces the formation of Aβ structures with an increase in intercenter-of-mass distances, reduction in interchain/intrachain contacts, reduction in β-sheet propensity, and increase in α-helix. Besides, numerous neurotropic viruses are known to instigate or aggravate neurological ailments. It exerts an effect on the oxidative damage caused in neurodegenerative disorders by acting on GSK3-β, PI3K/Akt, and downstream signaling pathways via caspase-3 and cytochrome-c. EGCG also diminishes these viral-mediated effects, such as EGCG delayed HSV-1 infection by blocking the entry for virions, inhibitory effects on NS3/4A protease or NS5B polymerase of HCV and potent inhibitor of ZIKV NS2B-NS3pro/NS3 serine protease (NS3-SP). It showed a reduction in the neurotoxic properties of HIV-gp120 and Tat in the presence of IFN-γ. EGCG also involves numerous viral-mediated inflammatory cascades, such as JAK/STAT. Nonetheless, it also inhibits the Epstein-Barr virus replication protein (Zta and Rta). Moreover, it also impedes certain viruses (influenza A and B strains) by hijacking the endosomal and lysosomal compartments. Therefore, the current article aims to describe the importance of EGCG in numerous neurological diseases and its inhibitory effect against neurotropic viruses.
Collapse
Affiliation(s)
- Annu Rani
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, 453552, Indore India
| | - Vaishali Saini
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, 453552, Indore India
| | - Priyanka Patra
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, 453552, Indore India
| | - Tanish Prashar
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu India
| | - Rajan Kumar Pandey
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Karwar, 342030, Jodhpur India
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, 453552, Indore India
| |
Collapse
|
6
|
Chen Y, Liu Z, Gong Y. Neuron-immunity communication: mechanism of neuroprotective effects in EGCG. Crit Rev Food Sci Nutr 2023; 64:9333-9352. [PMID: 37216484 DOI: 10.1080/10408398.2023.2212069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Epigallocatechin gallate (EGCG), a naturally occurring active ingredient unique to tea, has been shown to have neuroprotective potential. There is growing evidence of its potential advantages in the prevention and treatment of neuroinflammation, neurodegenerative diseases, and neurological damage. Neuroimmune communication is an important physiological mechanism in neurological diseases, including immune cell activation and response, cytokine delivery. EGCG shows great neuroprotective potential by modulating signals related to autoimmune response and improving communication between the nervous system and the immune system, effectively reducing the inflammatory state and neurological function. During neuroimmune communication, EGCG promotes the secretion of neurotrophic factors into the repair of damaged neurons, improves intestinal microenvironmental homeostasis, and ameliorates pathological phenotypes through molecular and cellular mechanisms related to the brain-gut axis. Here, we discuss the molecular and cellular mechanisms of inflammatory signaling exchange involving neuroimmune communication. We further emphasize that the neuroprotective role of EGCG is dependent on the modulatory role between immunity and neurology in neurologically related diseases.
Collapse
Affiliation(s)
- Ying Chen
- Key Laboratory of Tea Science of Ministry of Educatioxn, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Educatioxn, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, China
| | - Yushun Gong
- Key Laboratory of Tea Science of Ministry of Educatioxn, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha, China
| |
Collapse
|
7
|
Kooshki L, Zarneshan SN, Fakhri S, Moradi SZ, Echeverria J. The pivotal role of JAK/STAT and IRS/PI3K signaling pathways in neurodegenerative diseases: Mechanistic approaches to polyphenols and alkaloids. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 112:154686. [PMID: 36804755 DOI: 10.1016/j.phymed.2023.154686] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/10/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Neurodegenerative diseases (NDDs) are characterized by progressive neuronal dysfunctionality which results in disability and human life-threatening events. In recent decades, NDDs are on the rise. Besides, conventional drugs have not shown potential effectiveness to attenuate the complications of NDDs. So, exploring novel therapeutic agents is an urgent need to combat such disorders. Accordingly, growing evidence indicates that polyphenols and alkaloids are promising natural candidates, possessing several beneficial pharmacological effects against diseases. Considering the complex pathophysiological mechanisms behind NDDs, Janus kinase (JAK), insulin receptor substrate (IRS), phosphoinositide 3-kinase (PI3K), and signal transducer and activator of transcription (STAT) seem to play critical roles during neurodegeneration/neuroregeneration. In this line, modulation of the JAK/STAT and IRS/PI3K signaling pathways and their interconnected mediators by polyphenols/alkaloids could play pivotal roles in combating NDDs, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), stroke, aging, multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), depression and other neurological disorders. PURPOSE Thus, the present study aimed to investigate the neuroprotective roles of polyphenols/alkaloids as multi-target natural products against NDDs which are critically passing through the modulation of the JAK/STAT and IRS/PI3K signaling pathways. STUDY DESIGN AND METHODS A systematic and comprehensive review was performed to highlight the modulatory roles of polyphenols and alkaloids on the JAK/STAT and IRS/PI3K signaling pathways in NDDs, according to the PRISMA guideline, using scholarly electronic databases, including Scopus, PubMed, ScienceDirect, and associated reference lists. RESULTS In the present study 141 articles were included from a total of 1267 results. The results showed that phenolic compounds such as curcumin, epigallocatechin-3-gallate, and quercetin, and alkaloids such as berberine could be introduced as new strategies in combating NDDs through JAK/STAT and IRS/PI3K signaling pathways. This is the first systematic review that reveals the correlation between the JAK/STAT and IRS/PI3K axis which is targeted by phytochemicals in NDDs. Hence, this review highlighted promising insights into the neuroprotective potential of polyphenols and alkaloids through the JAK/STAT and IRS/PI3K signaling pathway and interconnected mediators toward neuroprotection. CONCLUSION Amongst natural products, phenolic compounds and alkaloids are multi-targeting agents with the most antioxidants and anti-inflammatory effects possessing the potential of combating NDDs with high efficacy and lower toxicity. However, additional reports are needed to prove the efficacy and possible side effects of natural products.
Collapse
Affiliation(s)
- Leila Kooshki
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Javier Echeverria
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
8
|
Li H, Xue YW, Quan Y, Zhang HY. Reducing Virus Infection Risk in Space Environments through Nutrient Supplementation. Genes (Basel) 2022; 13:1536. [PMID: 36140704 PMCID: PMC9498414 DOI: 10.3390/genes13091536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/24/2022] Open
Abstract
Space exploration has brought many challenges to human physiology. In order to evaluate and reduce possible pathological reactions triggered by space environments, we conducted bioinformatics analyses on the methylation data of the Mars 520 mission and human transcriptome data in the experiment simulating gravity changes. The results suggest that gene expression levels and DNA methylation levels were changed under the conditions of isolation and gravity changes, and multiple viral infection-related pathways were found in the enrichment analysis results of changed genes including Epstein Barr virus (EBV) infection, Hepatitis B virus (HBV) infection, Herpes simplex virus (HSV) infection and Kaposi's sarcoma-associated herpesvirus (KHSV) infection. In this study, we found that Epigallocatechin-3-gallate (EGCG) and vitamin D are helpful in reducing viral infection risk. In addition, the causal associations between nutrients and viral infections were calculated using Two sample Mendelian Randomization (2SMR) method, the results indicated that vitamin D can reduce EBV infection and HBV infection risk. In summary, our study suggests that space environments increase the risk of human viral infection, which may be reduced by supplementing EGCG and vitamin D. These results can be used to formulate medical plans for astronauts, which have practical application value for future space exploration.
Collapse
Affiliation(s)
| | | | - Yuan Quan
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | | |
Collapse
|
9
|
Sahadevan R, Singh S, Binoy A, Sadhukhan S. Chemico-biological aspects of (-)-epigallocatechin- 3-gallate (EGCG) to improve its stability, bioavailability and membrane permeability: Current status and future prospects. Crit Rev Food Sci Nutr 2022; 63:10382-10411. [PMID: 35491671 DOI: 10.1080/10408398.2022.2068500] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Natural products have been a bedrock for drug discovery for decades. (-)-Epigallocatechin-3-gallate (EGCG) is one of the widely studied natural polyphenolic compounds derived from green tea. It is the key component believed to be responsible for the medicinal value of green tea. Significant studies implemented in in vitro, in cellulo, and in vivo models have suggested its anti-oxidant, anti-cancer, anti-diabetic, anti-inflammatory, anti-microbial, neuroprotective activities etc. Despite having such a wide array of therapeutic potential and promising results in preclinical studies, its applicability to humans has encountered with rather limited success largely due to the poor bioavailability, poor membrane permeability, rapid metabolic clearance and lack of stability of EGCG. Therefore, novel techniques are warranted to address those limitations so that EGCG or its modified analogs can be used in the clinical setup. This review comprehensively covers different strategies such as structural modifications, nano-carriers as efficient drug delivery systems, synergistic studies with other bioactivities to improve the chemico-biological aspects (e.g., stability, bioavailability, permeability, etc.) of EGCG for its enhanced pharmacokinetics and pharmacological properties, eventually enhancing its therapeutic potentials. We think this review article will serve as a strong platform with comprehensive literature on the development of novel techniques to improve the bioavailability of EGCG so that it can be translated to the clinical applications.
Collapse
Affiliation(s)
- Revathy Sahadevan
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala, India
| | - Satyam Singh
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Madhya Pradesh, India
| | - Anupama Binoy
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala, India
| | - Sushabhan Sadhukhan
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala, India
- Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad, Kerala, India
| |
Collapse
|
10
|
Nutraceuticals in HIV and COVID-19-Related Neurological Complications: Opportunity to Use Extracellular Vesicles as Drug Delivery Modality. BIOLOGY 2022; 11:biology11020177. [PMID: 35205044 PMCID: PMC8869385 DOI: 10.3390/biology11020177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 12/03/2022]
Abstract
Simple Summary In this review, we discuss the potential use of extracellular vesicles (EVs) to deliver dietary supplements to the brain to reduce brain complications associated with HIV, COVID-19, and other brain disorders. Brain-related complications affect people with HIV and COVID-19 alike. Moreover, since HIV patients are at a higher risk of contracting COVID-19, their neurological problems can be exacerbated by COVID-19. The use of dietary supplements together with available treatment options has been shown to reduce the severity of infections. However, these treatments are not chemically compatible with the body’s blood–brain barrier defense mechanism. Therefore, a viable delivery method is needed to deliver drugs and nutraceuticals to the brain in HIV and COVID-19 comorbid patients. Abstract People living with HIV/AIDS (PLWHA) are at an increased risk of severe and critical COVID-19 infection. There is a steady increase in neurological complications associated with COVID-19 infection, exacerbating HIV-associated neurocognitive disorders (HAND) in PLWHA. Nutraceuticals, such as phytochemicals from medicinal plants and dietary supplements, have been used as adjunct therapies for many disease conditions, including viral infections. Appropriate use of these adjunct therapies with antiviral proprieties may be beneficial in treating and/or prophylaxis of neurological complications associated with these co-infections. However, most of these nutraceuticals have poor bioavailability and cannot cross the blood–brain barrier (BBB). To overcome this challenge, extracellular vesicles (EVs), biological nanovesicles, can be used. Due to their intrinsic features of biocompatibility, stability, and their ability to cross BBB, as well as inherent homing capabilities, EVs hold immense promise for therapeutic drug delivery to the brain. Therefore, in this review, we summarize the potential role of different nutraceuticals in reducing HIV- and COVID-19-associated neurological complications and the use of EVs as nutraceutical/drug delivery vehicles to treat HIV, COVID-19, and other brain disorders.
Collapse
|
11
|
Cordeiro PAS, Assone T, Prates G, Tedeschi MRM, Fonseca LAM, Casseb J. The role of IFN-γ production during retroviral infections: an important cytokine involved in chronic inflammation and pathogenesis. Rev Inst Med Trop Sao Paulo 2022; 64:e64. [PMID: 36197425 PMCID: PMC9528752 DOI: 10.1590/s1678-9946202264064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022] Open
Abstract
Interferon-gamma (IFN-γ) plays a crucial role in viral infections by preventing viral replication and in the promotion of innate and adaptive immune responses. However, IFN-gamma can exert distinct effects in different persistent viral infections. The long-term overproduction of IFN-γ in retroviral infections, such as the human immunodeficiency virus (HIV), human T-lymphotropic virus type 1 (HTLV-1), and human endogenous retroviruses (HERVs), resulting in inflammation, may cause neuronal damage. This review is provocative about the role of IFN-γ during persistent retroviral infections and its relationship with the causation of some neurological disorders that are important for public health.
Collapse
|
12
|
Manshadi Seyed Ali D, Seyed Alireza M, Mohammad Reza S, Jayran Z, SeyedAhmad S, Shams Ali R, Seyed Saeid M, Ali AA. Effect of green tea consumption in treatment of mild to moderate depression in Iranian patients living with HIV: A double-blind randomized clinical trial. CHINESE HERBAL MEDICINES 2021; 13:136-141. [PMID: 36117757 PMCID: PMC9476475 DOI: 10.1016/j.chmed.2020.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/20/2020] [Accepted: 08/05/2020] [Indexed: 11/28/2022] Open
Affiliation(s)
- Dehghan Manshadi Seyed Ali
- Department of Infectious Diseases and Tropical Medicine, Imam-Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Tehran 11519, Iran
| | - Mousavi Seyed Alireza
- Department of Infectious Diseases and Tropical Medicine, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd 11519, Iran
| | - Salehi Mohammad Reza
- Department of Infectious Diseases and Tropical Medicine, Imam-Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Tehran 11519, Iran
| | - Zebardast Jayran
- Cognitive Neuroscience Linguistics, Institute for Cognitive Science Studies (ICSS), Tehran 11519, Iran
| | - SeyedAlinaghi SeyedAhmad
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran 11519, Iran
| | - Rezazade Shams Ali
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Tehran 11519, Iran
| | - Mirhoseinian Seyed Saeid
- Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 11519, Iran
| | - Asadollahi-Amin Ali
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran 11519, Iran
- Corresponding author.
| |
Collapse
|
13
|
Maiti S, Banerjee A. Epigallocatechin gallate and theaflavin gallate interaction in SARS-CoV-2 spike-protein central channel with reference to the hydroxychloroquine interaction: Bioinformatics and molecular docking study. Drug Dev Res 2020; 82:86-96. [PMID: 32770567 PMCID: PMC7436314 DOI: 10.1002/ddr.21730] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/11/2020] [Accepted: 07/14/2020] [Indexed: 12/19/2022]
Abstract
SARS‐CoV‐2 or COVID‐19 pandemic global outbreak created the most unstable situation of human health–economy. In the past two decades different parts of the word experienced smaller or bigger outbreak related to human coronaviruses. The spike glycoproteins of the COVID‐19 (similar to SARS‐CoV) attach to the angiotensin‐converting enzyme (ACE2) and transit over a stabilized open state for the viral internalization to the host cells and propagate with great efficacy. Higher rate of mutability makes this virus unpredictable/less sensitive to the protein/nucleic acid based drugs. In this emergent situation, drug‐induced destabilization of spike binding to RBD could be a good strategy. In the current study we demonstrated by bioinformatics (CASTp: computed atlas of surface topography of protein, PyMol: molecular visualization) and molecular docking (PatchDock and Autodock) experiments that tea flavonoids catechin products mainly epigallocatechin gallate or other like theaflavin gallate demonstrated higher atomic contact energy (ACE) value, binding energy, Ki value, ligand efficiency, surface area and more amino acid interactions than hydroxychloroquine (HCQ) during binding in the central channel of the spike protein. Moreover, out of three distinct binding sites (I, II and III) of spike core when HCQ binds only with site III (farthest from the nCoV‐RBD of ACE2 contact), epigallocatechin gallate and theaflavin gallate bind all three sites. As sites I and II are in closer contact with open state location and viral–host contact area, these drugs might have significant effects. Taking into account the toxicity/side effects by chloroquine/HCQ, present drugs may be important. Our laboratory is working on tea flavonoids and other phytochemicals in the protection from toxicity, DNA/mitochondrial damage, inflammation and so on. The present data might be helpful for further analysis of flavonoids in this emergent pandemic situation.
Collapse
Affiliation(s)
- Smarajit Maiti
- Cell and Molecular Therapeutics Laboratory, Department of Biochemistry and Biotechnology, Oriental Institute of Science and Technology, Midnapore, India.,Agricure Biotech Research Society, Epidemiology and Human Health Division, Midnapore, India
| | - Amrita Banerjee
- Cell and Molecular Therapeutics Laboratory, Department of Biochemistry and Biotechnology, Oriental Institute of Science and Technology, Midnapore, India
| |
Collapse
|
14
|
Théberge ET, Baker JA, Dubose C, Boyle JK, Balce K, Goldowitz D, Hamre KM. Genetic Influences on the Amount of Cell Death in the Neural Tube of BXD Mice Exposed to Acute Ethanol at Midgestation. Alcohol Clin Exp Res 2019; 43:439-452. [PMID: 30589433 DOI: 10.1111/acer.13947] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 12/19/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Fetal alcohol spectrum disorders (FASD) have a strong genetic component although the genes that underlie this are only beginning to be elucidated. In the present study, one of the most common phenotypes of FASD, cell death within the early developing neural tube, was examined across a genetic reference population in a reverse genetics paradigm with the goal of identifying genetic loci that could influence ethanol (EtOH)-induced apoptosis in the early developing neural tube. METHODS BXD recombinant inbred mice as well as the parental strains were used to evaluate genetic differences in EtOH-induced cell death after exposure on embryonic day 9.5. Dams were given either 5.8 g/kg EtOH or isocaloric maltose-dextrin in 2 doses via intragastric gavage. Embryos were collected 7 hours after the initial exposure and cell death evaluated via TUNEL staining in the brainstem and forebrain. Genetic loci were evaluated using quantitative trait locus (QTL) analysis at GeneNetwork.org. RESULTS Significant strain differences were observed in the levels of EtOH-induced cell death that were due to genetic effects and not confounding variables such as differences in developmental maturity or cell death kinetics. Comparisons between the 2 regions of the developing neural tube showed little genetic correlation with the QTL maps exhibiting no overlap. Significant QTLs were found on murine mid-chromosome 4 and mid-chromosome 14 only in the brainstem. Within these chromosomal loci, a number of interesting candidate genes were identified that could mediate this differential sensitivity including Nfia (nuclear factor I/A) and Otx2 (orthodenticle homeobox 2). CONCLUSIONS These studies demonstrate that the levels of EtOH-induced cell death occur in strain- and region-dependent manners. Novel QTLs on mouse Chr4 and Chr14 were identified that modulate the differential sensitivity to EtOH-induced apoptosis in the embryonic brainstem. The genes underlying these QTLs could identify novel molecular pathways that are critical in this phenotype.
Collapse
Affiliation(s)
- Emilie T Théberge
- Centre for Molecular Medicine and Therapeutics , British Columbia Children's Research Institution, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jessica A Baker
- Department of Anatomy and Neurobiology , University of Tennessee Health Science Center, Memphis, Tennessee
| | - Candis Dubose
- Department of Anatomy and Neurobiology , University of Tennessee Health Science Center, Memphis, Tennessee
| | - Julia K Boyle
- Centre for Molecular Medicine and Therapeutics , British Columbia Children's Research Institution, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kristina Balce
- Centre for Molecular Medicine and Therapeutics , British Columbia Children's Research Institution, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dan Goldowitz
- Centre for Molecular Medicine and Therapeutics , British Columbia Children's Research Institution, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kristin M Hamre
- Department of Anatomy and Neurobiology , University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
15
|
Farzaei MH, Bahramsoltani R, Abbasabadi Z, Braidy N, Nabavi SM. Role of green tea catechins in prevention of age-related cognitive decline: Pharmacological targets and clinical perspective. J Cell Physiol 2018; 234:2447-2459. [PMID: 30187490 DOI: 10.1002/jcp.27289] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 08/30/2018] [Indexed: 12/19/2022]
Abstract
Over the past decade, a wide range of scientific investigations have been performed to reveal neuropathological aspects of cognitive disorders; however, only limited therapeutic approaches currently exist. The failures of conventional therapeutic options as well as the predicted dramatic rise in the prevalence of cognitive decline in the coming future show the necessity for novel therapeutic agents. Recently, a wide range of research has focused on pharmacological activities of green tea catechins worldwide. Current investigations have clarified mechanistic effects of the catechins in inflammatory cascades, oxidative damages, different cellular transcription as well as transduction pathway in various body systems. It has been demonstrated that green tea polyphenols prevent age-related neurodegeneration through improvement of endogenous antioxidant defense mechanisms, modulation of neural growth factors, attenuation of neuroinflammatory pathway, and regulation of apoptosis. The catechins exhibited beneficial effects in cellular and animal models of neurodegenerative diseases including Alzheimer's disease, MS, and Parkinson's disease. The present review discusses the current pharmacological targets, which can be involved in the treatment of cognitive decline and addresses the action of catechin derivatives elicited from green tea on the multiple neural targets.
Collapse
Affiliation(s)
- Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Roodabeh Bahramsoltani
- Department of Pharmacy in Persian Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Abbasabadi
- Phyto Pharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Jin J, Grimmig B, Izzo J, Brown LAM, Hudson C, Smith AJ, Tan J, Bickford PC, Giunta B. HIV Non-Nucleoside Reverse Transcriptase Inhibitor Efavirenz Reduces Neural Stem Cell Proliferation in Vitro and in Vivo. Cell Transplant 2018; 25:1967-1977. [PMID: 28836850 DOI: 10.3727/096368916x691457] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The prevalence of HIV-associated neurocognitive disorders (HAND) remains high despite combination antiretroviral therapy (cART). There is evidence that neural stem cells (NSCs) can migrate to sites of brain injury such as those caused by inflammation and oxidative stress, which are pathological features of HAND. Thus, reductions in NSCs may contribute to HAND pathogenesis. Since the HIV non-nucleoside reverse transcriptase inhibitor efavirenz (EFV) has previously been associated with cognitive deficits and promotion of oxidative stress pathways, we examined its effect on NSCs in vitro as well as in C57BL/6J mice. Here we report that EFV induced a decrease in NSC proliferation in vitro as indicated by MTT assay, as well as BrdU and nestin immunocytochemistry. In addition, EFV decreased intracellular NSC adenosine triphosphate (ATP) stores and NSC mitochondrial membrane potential (MMP). Further, we found that EFV promoted increased lactate dehydrogenase (LDH) release, activation of p38 mitogen-activated protein kinase (MAPK), and increased Bax expression in cultured NSCs. Moreover, EFV reduced the quantity of proliferating NSCs in the subventricular zone (SVZ) of C57BL/6J mice as suggested by BrdU, and increased apoptosis as measured by active caspase-3 immunohistochemistry. If these in vitro and in vivo models translate to the clinical syndrome, then a pharmacological or cell-based therapy aimed at opposing EFV-mediated reductions in NSC proliferation may be beneficial to prevent or treat HAND in patients receiving EFV.
Collapse
Affiliation(s)
- Jingji Jin
- Department of Psychiatry and Behavioral Neurosciences, Neuroimmunology Laboratory, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Bethany Grimmig
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - James Izzo
- Department of Psychiatry and Behavioral Neurosciences, Neuroimmunology Laboratory, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Lecia A M Brown
- Department of Psychiatry and Behavioral Neurosciences, Neuroimmunology Laboratory, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Charles Hudson
- Research Service, James A. Haley VA Hospital, Tampa, FL, USA
| | - Adam J Smith
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Jun Tan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA.,Research Service, James A. Haley VA Hospital, Tampa, FL, USA.,Department of Psychiatry and Behavioral Neurosciences, Rashid Laboratory for Developmental Neurobiology, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Paula C Bickford
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA.,Research Service, James A. Haley VA Hospital, Tampa, FL, USA
| | - Brian Giunta
- Department of Psychiatry and Behavioral Neurosciences, Neuroimmunology Laboratory, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| |
Collapse
|
17
|
A Review of the Antiviral Role of Green Tea Catechins. Molecules 2017; 22:molecules22081337. [PMID: 28805687 PMCID: PMC6152177 DOI: 10.3390/molecules22081337] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/07/2017] [Accepted: 08/10/2017] [Indexed: 12/16/2022] Open
Abstract
Over the centuries, infectious diseases caused by viruses have seriously threatened human health globally. Viruses are responsible not only for acute infections but also many chronic infectious diseases. To prevent diseases caused by viruses, the discovery of effective antiviral drugs, in addition to vaccine development, is important. Green tea catechins (GTCs) are polyphenolic compounds from the leaves of Camelliasinensis. In recent decades, GTCs have been reported to provide various health benefits against numerous diseases. Studies have shown that GTCs, especially epigallocatechin-3-gallate (EGCG), have antiviral effects against diverse viruses. The aim of this review is to summarize the developments regarding the antiviral activities of GTCs, to discuss the mechanisms underlying these effects and to offer suggestions for future research directions and perspectives on the antiviral effects of EGCG.
Collapse
|
18
|
Ansari MA, Nadeem A, Attia SM, Bakheet SA, Raish M, Ahmad SF. Adenosine A2A receptor modulates neuroimmune function through Th17/retinoid-related orphan receptor gamma t (RORγt) signaling in a BTBR T + Itpr3 tf /J mouse model of autism. Cell Signal 2017; 36:14-24. [DOI: 10.1016/j.cellsig.2017.04.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 04/16/2017] [Accepted: 04/20/2017] [Indexed: 12/19/2022]
|
19
|
Dysregulation of Th1, Th2, Th17, and T regulatory cell-related transcription factor signaling in children with autism. Mol Neurobiol 2016; 54:4390-4400. [PMID: 27344332 DOI: 10.1007/s12035-016-9977-0] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 06/14/2016] [Indexed: 10/21/2022]
Abstract
Autism is a neurodevelopmental disorder characterized by stereotypic repetitive behaviors, impaired social interactions, and communication deficits. Numerous immune system abnormalities have been described in individuals with autism including abnormalities in the ratio of Th1/Th2/Th17 cells; however, the expression of the transcription factors responsible for the regulation and differentiation of Th1/Th2/Th17/Treg cells has not previously been evaluated. Peripheral blood mononuclear cells (PBMCs) from children with autism (AU) or typically developing (TD) control children were stimulated with phorbol-12-myristate 13-acetate (PMA) and ionomycin in the presence of brefeldin A. The expressions of Foxp3, RORγt, STAT-3, T-bet, and GATA-3 mRNAs and proteins were then assessed. Our study shows that children with AU displayed altered immune profiles and function, characterized by a systemic deficit of Foxp3+ T regulatory (Treg) cells and increased RORγt+, T-bet+, GATA-3+, and production by CD4+ T cells as compared to TD. This was confirmed by real-time PCR (RT-PCR) and western blot analyses. Our results suggest that autism impacts transcription factor signaling, which results in an immunological imbalance. Therefore, the restoration of transcription factor signaling may have a great therapeutic potential in the treatment of autistic disorders.
Collapse
|
20
|
Bergstrom HC, Darvesh AS, Berger SP. Inducible Nitric Oxide Inhibitors Block NMDA Antagonist-Stimulated Motoric Behaviors and Medial Prefrontal Cortical Glutamate Efflux. Front Pharmacol 2015; 6:292. [PMID: 26696891 PMCID: PMC4678197 DOI: 10.3389/fphar.2015.00292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/23/2015] [Indexed: 11/20/2022] Open
Abstract
Nitric oxide (NO) plays a critical role in the motoric and glutamate releasing action of N-methyl-D-aspartate (NMDA)-antagonist stimulants. Earlier studies utilized neuronal nitric oxide synthase inhibitors (nNOS) for studying the neurobehavioral effects of non-competitive NMDA-antagonist stimulants such as dizocilpine (MK-801) and phencyclidine (PCP). This study explores the role of the inducible nitric oxide synthase inhibitors (iNOS) aminoguanidine (AG) and (-)-epigallocatechin-3-gallate (EGCG) in NMDA-antagonist induced motoric behavior and prefrontal cortical glutamate efflux. Adult male rats were administered a dose range of AG, EGCG, or vehicle prior to receiving NMDA antagonists MK-801, PCP, or a conventional psychostimulant (cocaine) and tested for motoric behavior in an open arena. Glutamate in the medial prefrontal cortex (mPFC) was measured using in vivo microdialysis after a combination of AG or EGCG prior to MK-801. Acute administration of AG or EGCG dose-dependently attenuated the locomotor and ataxic properties of MK-801 and PCP. Both AG and EGCG were unable to block the motoric effects of cocaine, indicating the acute pharmacologic action of AG and EGCG is specific to NMDA antagonism and not generalizable to all stimulant class drugs. AG and EGCG normalized MK-801-stimulated mPFC glutamate efflux. These data demonstrate that AG and EGCG attenuates NMDA antagonist-stimulated motoric behavior and cortical glutamate efflux. Our results suggest that EGCG-like polyphenol nutraceuticals (contained in “green tea” and chocolate) may be clinically useful in protecting against the adverse behavioral dissociative and cortical glutamate stimulating effects of NMDA antagonists. Medications that interfere with NMDA antagonists such as MK-801 and PCP have been proposed as treatments for schizophrenia.
Collapse
Affiliation(s)
- Hadley C Bergstrom
- Department of Psychology, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY, USA
| | - Altaf S Darvesh
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown OH, USA ; Department of Psychiatry, College of Medicine, Northeast Ohio Medical University, Rootstown OH, USA
| | - S P Berger
- Department of Veterans Affairs Medical Center, Portland OR, USA
| |
Collapse
|
21
|
Tyagi M, Weber J, Bukrinsky M, Simon GL. The effects of cocaine on HIV transcription. J Neurovirol 2015; 22:261-74. [PMID: 26572787 DOI: 10.1007/s13365-015-0398-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/01/2015] [Accepted: 10/21/2015] [Indexed: 11/29/2022]
Abstract
Illicit drug users are a high-risk population for infection with the human immunodeficiency virus (HIV). A strong correlation exists between prohibited drug use and an increased rate of HIV transmission. Cocaine stands out as one of the most frequently abused illicit drugs, and its use is correlated with HIV infection and disease progression. The central nervous system (CNS) is a common target for both drugs of abuse and HIV, and cocaine intake further accelerates neuronal injury in HIV patients. Although the high incidence of HIV infection in illicit drug abusers is primarily due to high-risk activities such as needle sharing and unprotected sex, several studies have demonstrated that cocaine enhances the rate of HIV gene expression and replication by activating various signal transduction pathways and downstream transcription factors. In order to generate mature HIV genomic transcript, HIV gene expression has to pass through both the initiation and elongation phases of transcription, which requires discrete transcription factors. In this review, we will provide a detailed analysis of the molecular mechanisms that regulate HIV transcription and discuss how cocaine modulates those mechanisms to upregulate HIV transcription and eventually HIV replication.
Collapse
Affiliation(s)
- Mudit Tyagi
- Division of Infectious Diseases, Department of Medicine, The George Washington University, 2300 Eye Street, N.W., Washington, DC, 20037, USA. .,Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC, 20037, USA.
| | - Jaime Weber
- Division of Infectious Diseases, Department of Medicine, The George Washington University, 2300 Eye Street, N.W., Washington, DC, 20037, USA
| | - Michael Bukrinsky
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC, 20037, USA
| | - Gary L Simon
- Division of Infectious Diseases, Department of Medicine, The George Washington University, 2300 Eye Street, N.W., Washington, DC, 20037, USA
| |
Collapse
|
22
|
Harilall SL, Choonara YE, Tomar LK, Tyagi C, Kumar P, du Toit LC, Modi G, Naidoo D, Iyuke SE, Danckwerts MP, Pillay V. Development and in vivo evaluation of an implantable nano-enabled multipolymeric scaffold for the management of AIDS dementia complex (ADC). Int J Pharm 2015; 496:863-77. [PMID: 26456249 DOI: 10.1016/j.ijpharm.2015.10.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 10/04/2015] [Indexed: 10/22/2022]
Abstract
This study reports the use of biocompatible and biodegradable polymers for the formulation and design of an implantable multipolymeric drug delivery device (MDDD) for the management of AIDS dementia complex (ADC), a debilitating condition affecting the cognitive, motor and behavioral systems in HIV+ individuals. A 3-factor Box-Behnken statistical design was employed for the optimization of nanoparticle and multipolymeric scaffold formulations. Fifteen formulations were generated using the Box-Behnken template, which were assessed for physicochemical and physicomechanical characterization. The optimised nanoparticle formulation yielded nanoparticles measuring 68.04nm in size and zeta potential (ZP) of -13.4mV was calculated for the colloidal system. In an attempt to further retard drug release and to formulate a device for implantation in the frontal lobe of the brain, nanoparticles were dispersed within a multipolymeric matrix. Matrix erosion was calculated at 28% for multipolymeric scaffold and a matrix resilience of 4.451% was observed 30 days post exposure to PBS, indicating slow degradation of the MDDD. In vivo studies showed 12.793ng/mL and 35.225ng/mL AZT level in plasma and CSF. In view of the physicomechanical properties, in vitro and in vivo drug release kinetics of MDDD makes it a potential candidate for the management of the ADC.
Collapse
Affiliation(s)
- Sheri-Lee Harilall
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Lomas Kumar Tomar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Charu Tyagi
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Lisa C du Toit
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Girish Modi
- Department of Neurology, Division of Neurosciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Dinesh Naidoo
- Department of Neurosurgery, Division of Neurosciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Sunny E Iyuke
- School of Chemical and Metallurgical Engineering, University of the Witwatersrand, Johannesburg, South Africa
| | - Michael P Danckwerts
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa.
| |
Collapse
|
23
|
Kim SH, Smith AJ, Tan J, Shytle RD, Giunta B. MSM ameliorates HIV-1 Tat induced neuronal oxidative stress via rebalance of the glutathione cycle. Am J Transl Res 2015; 7:328-338. [PMID: 25893035 PMCID: PMC4399096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 02/03/2015] [Indexed: 06/04/2023]
Abstract
HIV-1 Tat protein is a key neuropathological element in HIV associated neurogcognitive disorders (HAND); a type of cognitive syndrome thought to be at least partially mediated by increased levels of brain reactive oxygen species (ROS) and nitric oxide (NO). Methylsulfonylmethane (MSM) is a sulfur-containing compound known to reduce oxidative stress. This study was conducted to determine whether administration of MSM attenuates HIV-1 Tat induced oxidative stress in mouse neuronal cells. MSM treatment significantly decreased neuronal cell NO and ROS secretion. Further, MSM significantly reversed HIV-1 Tat mediated reductions in reduced glutathione (GSH) as well as HIV-1 Tat mediated increases in oxidized glutathione (GSSG). In addition, Tat reduced nuclear translocation of nuclear factor-erythroid 2 p45-related factor 2 (Nrf2), a key nuclear promoter of antioxidant activity, while MSM increased its translocation to the nucleus in the presence of Tat. These results suggest that HIV-1 Tat reduces the resiliency of neuron cells to oxidative stress which can be reversed by MSM. Given the clinical safety of MSM, future preclinical in vivo studies will be required to further confirm these results in effort to validate MSM as a neuroprotectant in patients at risk of, or who are already diagnosed with, HAND.
Collapse
Affiliation(s)
- Seol-hee Kim
- Department of Psychiatry, Neuroimmunology Laboratory, University of South Florida, Morsani College of MedicineTampa, FL, USA
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida, Morsani College of MedicineTampa, FL, USA
| | - Adam J Smith
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida, Morsani College of MedicineTampa, FL, USA
| | - Jun Tan
- Department of Psychiatry, Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, University of South Florida, Morsani College of MedicineTampa, FL, USA
| | - R Douglas Shytle
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida, Morsani College of MedicineTampa, FL, USA
| | - Brian Giunta
- Department of Psychiatry, Neuroimmunology Laboratory, University of South Florida, Morsani College of MedicineTampa, FL, USA
| |
Collapse
|
24
|
Li Z, Jiang H, Xu C, Gu L. A review: Using nanoparticles to enhance absorption and bioavailability of phenolic phytochemicals. Food Hydrocoll 2015. [DOI: 10.1016/j.foodhyd.2014.05.010] [Citation(s) in RCA: 240] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
25
|
Wu X, Shao F, Yang Y, Gu L, Zheng W, Wu X, Gu Y, Shu Y, Sun Y, Xu Q. Epigallocatechin-3-gallate sensitizes IFN-γ-stimulated CD4+ T cells to apoptosis via alternative activation of STAT1. Int Immunopharmacol 2014; 23:434-41. [PMID: 25261409 DOI: 10.1016/j.intimp.2014.09.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 09/10/2014] [Accepted: 09/10/2014] [Indexed: 12/23/2022]
Abstract
Epigallocatechin-3-gallate (EGCG) exerts anti-inflammatory properties on immune cells and binds to CD4 molecules. However, the effects of EGCG on CD4(+) T cells remain largely unknown. Here, we found that EGCG enhanced IFN-γ-induced signal transducer and activator of transcription 1 (STAT1) activation in primary CD4(+) T cells from C57BL/6 mice and in a human leukemic CD4(+) T-cell line of Hut 78 cells, while it inhibited the classical pathway of IFN-γ signaling including activating phosphorylations of Janus kinase (JAK) 1, JAK2 and STAT3, forming interferon-γ activated sequence (GAS)-binding STAT1 homodimers, and producing pro-inflammatory chemokine (C-X-C motif) ligand 9 (CXCL9). CD4 blockade did not suppress the increase in IFN-γ-induced STAT1 activation in CD4(+) T cells by EGCG. Furthermore, activation of Src kinase was also triggered by IFN-γ plus EGCG in both Hut 78 and primary CD4(+) T cells. Interestingly, EGCG promoted apoptosis of CD4(+) T cells treated with IFN-γ. The increases in STAT1 activation and apoptosis induced by EGCG in IFN-γ-activated CD4(+) T cells were almost completely abolished by a selective Src family kinase inhibitor, SU6656. Moreover, EGCG alleviates CD4(+) CD45RB(hi) CD25(-) T cell transfer induced colitis with less accumulation of CD4(+) T cells in the colon. In conclusion, the present study reports an alternative activation of STAT1 via Src by EGCG in IFN-γ-activated CD4(+) T cells, which promotes the apoptosis of IFN-γ-activated CD4(+) T cells and contributes to the improvement of T cell-mediated colitis. Our findings suggest a novel role of EGCG in regulating IFN-γ signaling and controlling inflammation.
Collapse
Affiliation(s)
- Xingxin Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Fenli Shao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Yuanyuan Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Liyun Gu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Wei Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Xuefeng Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Yanhong Gu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China.
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
26
|
Glutamate metabolism and HIV-associated neurocognitive disorders. J Neurovirol 2014; 20:315-31. [PMID: 24867611 DOI: 10.1007/s13365-014-0258-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 03/14/2014] [Accepted: 05/09/2014] [Indexed: 12/21/2022]
Abstract
HIV-1 infection can lead to neurocognitive impairment collectively known as HIV-associated neurocognitive disorders (HAND). Although combined antiretroviral treatment (cART) has significantly ameliorated HIV's morbidity and mortality, persistent neuroinflammation and neurocognitive dysfunction continue. This review focuses on the current clinical and molecular evidence of the viral and host factors that influence glutamate-mediated neurotoxicity and neuropathogenesis as an important underlying mechanism during the course of HAND development. In addition, discusses potential pharmacological strategies targeting the glutamatergic system that may help prevent and improve neurological outcomes in HIV-1-infected subjects.
Collapse
|
27
|
|
28
|
Davis RL, Das S, Buck DJ, Stevens CW. Β-funaltrexamine inhibits chemokine (CXCL10) expression in normal human astrocytes. Neurochem Int 2013; 62:478-85. [PMID: 23376103 DOI: 10.1016/j.neuint.2013.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 11/03/2012] [Accepted: 01/09/2013] [Indexed: 10/27/2022]
Abstract
Neuroinflammation is an integral component of neurodegenerative disorders, CNS infection and trauma. Astroglial chemokines, such as CXCL10, are instrumental in neuroinflammatory signaling as well as neurotoxicity. We have utilized proinflammatory-induced CXCL10 expression in normal human astrocytes (NHA) as a model in which to assess the anti-inflammatory actions of the selective, mu-opioid receptor (MOR) antagonist, β-funaltrexamine (β-FNA). Interferon (IFN)γ+HIV-1 Tat-induced CXCL10 expression (secreted protein and mRNA) was inhibited by co-treatment with β-FNA. Neither the MOR-selective antagonist, D-Phe-Cys-Tyr-D-Trp-Arg-Pen-Thr-NH2 (CTAP) nor the nonselective opioid receptor antagonist, naltrexone inhibited IFNγ+HIV-1 Tat-induced CXCL10 expression. Furthermore, co-treatment with excess CTAP or naltrexone did not prevent β-FNA mediated inhibition of IFNγ+HIV-1 Tat-induced CXCL10 expression. Additionally, we utilized an inhibitor of NF-κB activation (SN50) to demonstrate that IFNγ+HIV-1 Tat-induced CXCL10 expression is NF-κB-dependent in NHA. Subsequent experiments revealed that β-FNA did not significantly affect NF-κB activation. Interestingly, we discovered that β-FNA inhibited p38 activation as indicated by decreased expression of phospho-p38. Together, these findings suggest that the inhibitory actions of β-FNA are MOR-independent and mediated, in part, via a transcriptional mechanism. These findings add to our understanding of the mechanism by which chemokine expression is inhibited by β-FNA. In conjunction with future investigations, these novel findings are expected to provide insights into the development of safe and effective treatments for neuroinflammation.
Collapse
Affiliation(s)
- Randall L Davis
- Department of Pharmacology/Physiology, Oklahoma State University Center for Health Sciences, Tulsa, OK 74107, United States.
| | | | | | | |
Collapse
|
29
|
Giunta B, Obregon D, Velisetty R, Sanberg PR, Borlongan CV, Tan J. The immunology of traumatic brain injury: a prime target for Alzheimer's disease prevention. J Neuroinflammation 2012; 9:185. [PMID: 22849382 PMCID: PMC3458981 DOI: 10.1186/1742-2094-9-185] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 07/09/2012] [Indexed: 01/03/2023] Open
Abstract
A global health problem, traumatic brain injury (TBI) is especially prevalent in the current era of ongoing world military conflicts. Its pathological hallmark is one or more primary injury foci, followed by a spread to initially normal brain areas via cascades of inflammatory cytokines and chemokines resulting in an amplification of the original tissue injury by microglia and other central nervous system immune cells. In some cases this may predispose individuals to later development of Alzheimer’s disease (AD). The inflammatory-based progression of TBI has been shown to be active in humans for up to 17 years post TBI. Unfortunately, all neuroprotective drug trials have failed, and specific treatments remain less than efficacious. These poor results might be explained by too much of a scientific focus on neurons without addressing the functions of microglia in the brain, which are at the center of proinflammatory cytokine generation. To address this issue, we provide a survey of the TBI-related brain immunological mechanisms that may promote progression to AD. We discuss these immune and microglia-based inflammatory mechanisms involved in the progression of post-trauma brain damage to AD. Flavonoid-based strategies to oppose the antigen-presenting cell-like inflammatory phenotype of microglia will also be reviewed. The goal is to provide a rationale for investigations of inflammatory response following TBI which may represent a pathological link to AD. In the end, a better understanding of neuroinflammation could open therapeutic avenues for abrogation of secondary cell death and behavioral symptoms that may mediate the progression of TBI to later AD.
Collapse
Affiliation(s)
- Brian Giunta
- James A. Haley Veterans' Administration Hospital, 13000 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Nolting T, Lindecke A, Hartung HP, Koutsilieri E, Maschke M, Husstedt IW, Sopper S, Stüve O, Arendt G. Cytokine levels in CSF and neuropsychological performance in HIV patients. J Neurovirol 2012; 18:157-61. [PMID: 22528475 DOI: 10.1007/s13365-012-0091-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 03/04/2012] [Accepted: 03/08/2012] [Indexed: 10/28/2022]
Abstract
HIV-associated dementia and its precursors are frequently observed complications of HIV infection, even in the presence of combination antiretroviral treatment (cART). The development, surveillance and treatment of this condition are still not completely understood. Cytokines, as immunological transmitters, may be one key to gaining a deeper understanding of the disease. A total of 33 HIV-positive male patients were evaluated by neuropsychological testing, lumbar and venous puncture, neuroimaging and neurological examination. The cytokine content in the CSF (cerebrospinal fluid) was examined by a solid-phase protein array. The Digit-Symbol Test, contraction time analysis, Rey-Osterrieth Figure and Grooved-Pegboard Test showed inferior results in the presence of an inflammatory CSF environment, whereas neuroprotective or anti-inflammatory conditions were correlated to better results in contraction time analysis. Higher CSF levels of cytokines were independently correlated with the duration of HIV infection. The study showed a correlation of cytokine levels in the CSF of HIV patients with test results of their neuropsychological functioning. The effect was pronounced with regard to the more complex executive tasks. Determining CSF cytokine levels may be a useful supplement to the assessment of HIV patients and contribute helpful information to predict neurocognitive performance. Therapeutic strategies to ameliorate a negative impact of an altered cytokine milieu may aid in slowing the evolution of neurocognitive dysfunction.
Collapse
Affiliation(s)
- Thorsten Nolting
- Department of Neurology, Medical School, Heinrich-Heine-University, Duesseldorf, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Stankiewicz TR, Loucks FA, Schroeder EK, Nevalainen MT, Tyler KL, Aktories K, Bouchard RJ, Linseman DA. Signal transducer and activator of transcription-5 mediates neuronal apoptosis induced by inhibition of Rac GTPase activity. J Biol Chem 2012; 287:16835-48. [PMID: 22378792 DOI: 10.1074/jbc.m111.302166] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In several neuronal cell types, the small GTPase Rac is essential for survival. We have shown previously that the Rho family GTPase inhibitor Clostridium difficile toxin B (ToxB) induces apoptosis in primary rat cerebellar granule neurons (CGNs) principally via inhibition of Rac GTPase function. In the present study, incubation with ToxB activated a proapoptotic Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway, and a pan-JAK inhibitor protected CGNs from Rac inhibition. STAT1 expression was induced by ToxB; however, CGNs from STAT1 knock-out mice succumbed to ToxB-induced apoptosis as readily as wild-type CGNs. STAT3 displayed enhanced tyrosine phosphorylation following treatment with ToxB, and a reputed inhibitor of STAT3, cucurbitacin (JSI-124), reduced CGN apoptosis. Unexpectedly, JSI-124 failed to block STAT3 phosphorylation, and CGNs were not protected from ToxB by other known STAT3 inhibitors. In contrast, STAT5A tyrosine phosphorylation induced by ToxB was suppressed by JSI-124. In addition, roscovitine similarly inhibited STAT5A phosphorylation and protected CGNs from ToxB-induced apoptosis. Consistent with these results, adenoviral infection with a dominant negative STAT5 mutant, but not wild-type STAT5, significantly decreased ToxB-induced apoptosis of CGNs. Finally, chromatin immunoprecipitation with a STAT5 antibody revealed increased STAT5 binding to the promoter region of prosurvival Bcl-xL. STAT5 was recruited to the Bcl-xL promoter region in a ToxB-dependent manner, and this DNA binding preceded Bcl-xL down-regulation, suggesting transcriptional repression. These data indicate that a novel JAK/STAT5 proapoptotic pathway significantly contributes to neuronal apoptosis induced by the inhibition of Rac GTPase.
Collapse
Affiliation(s)
- Trisha R Stankiewicz
- Department of Biological Sciences and Eleanor Roosevelt Institute, University of Denver, Denver, Colorado 80208, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Deng J, Hou H, Giunta B, Mori T, Wang YJ, Fernandez F, Weggen S, Araki W, Obregon D, Tan J. Autoreactive-Aβ antibodies promote APP β-secretase processing. J Neurochem 2012; 120:732-40. [PMID: 22188568 DOI: 10.1111/j.1471-4159.2011.07629.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Several prior investigations of Alzheimer's disease (AD) patients have indicated naturally occurring autoantibodies against amyloid-β (Aβ) species are produced. Although many studies have focused on the relative concentrations or binding affinities of autoantibodies against Aβ-related proteins in AD and aging, data regarding their functional properties are limited. It is generally believed that these antibodies act to aid in clearance of Aβ. However, as antibodies which bind to Aβ also typically bind to the parent amyloid precursor protein (APP), we reasoned that certain Aβ-targeting autoantibodies may bind to APP thereby altering its conformation and processing. Here we show for the first time, that naturally occurring Aβ-reactive autoantibodies isolated from AD patients, but not from healthy controls, promote β-secretase activity in cultured cells. Furthermore, using monoclonal antibodies to various regions of Aβ, we found that antibodies generated against the N-terminal region, especially Aβ(1-17) , dose dependently promoted amyloidogenic processing of APP viaβ-secretase activation. Thus, this property of certain autoantibodies in driving Aβ generation could be of etiological importance in the development of sporadic forms of AD. Furthermore, future passive or active anti-Aβ immunotherapies must consider potential off-target effects resulting from antibodies targeting the N-terminus of Aβ, as co-binding to the corresponding region of APP may actually enhance Aβ generation.
Collapse
Affiliation(s)
- Juan Deng
- Rashid Laboratory for Developmental Neurobiology, Department of Psychiatry and Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kashif M, Hellwig A, Hashemolhosseini S, Kumar V, Bock F, Wang H, Shahzad K, Ranjan S, Wolter J, Madhusudhan T, Bierhaus A, Nawroth P, Isermann B. Nuclear factor erythroid-derived 2 (Nfe2) regulates JunD DNA-binding activity via acetylation: a novel mechanism regulating trophoblast differentiation. J Biol Chem 2011; 287:5400-11. [PMID: 22174410 DOI: 10.1074/jbc.m111.289801] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We recently demonstrated that the bZip transcription factor nuclear factor erythroid-derived 2 (Nfe2) represses protein acetylation and expression of the transcription factor glial cell missing 1 (Gcm1) in trophoblast cells, preventing excess syncytiotrophoblast formation and permitting normal placental vascularization and embryonic growth. However, the Gcm1 promoter lacks a Nfe2-binding site and hence the mechanisms linking Nfe2 and Gcm1 expression remained unknown. Here we show that Nfe2 represses JunD DNA-binding activity to the Gcm1 promoter during syncytiotrophoblast differentiation. Interventional studies using knockdown and knockin approaches show that enhanced JunD DNA-binding activity is required for increased expression of Gcm1 and syncytiotrophoblast formation as well as impaired placental vascularization and reduced growth of Nfe2(-/-) embryos. Induction of Gcm1 expression requires binding of JunD to the -1441 site within the Gcm1 promoter, which is distinct from the -1314 site previously shown to induce Gcm1 expression by other bZip transcription factors. Nfe2 modulates JunD binding to the Gcm1 promoter via acetylation, as reducing JunD acetylation using the histone acetyltransferase inhibitor curcumin reverses the increased JunD DNA-binding activity observed in the absence of Nfe2. This identifies a novel mechanism through which bZip transcription factors interact. Within the placenta this interaction regulates Gcm1 expression, syncytiotrophoblast formation, placental vascularization, and embryonic growth.
Collapse
Affiliation(s)
- Muhammed Kashif
- Department of Internal Medicine I and Clinical Chemistry, University of Heidelberg, INF 410, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kashif M, Hellwig A, Kolleker A, Shahzad K, Wang H, Lang S, Wolter J, Thati M, Vinnikov I, Bierhaus A, Nawroth PP, Isermann B. p45NF-E2 represses Gcm1 in trophoblast cells to regulate syncytium formation, placental vascularization and embryonic growth. Development 2011; 138:2235-47. [PMID: 21558372 DOI: 10.1242/dev.059105] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Absence of the leucine zipper transcription factor p45NF-E2 results in thrombocytopenia, impaired placental vascularization and intrauterine growth restriction (IUGR) in mice. The mechanism underlying the p45NF-E2-dependent placental defect and IUGR remains unknown. Here, we show that the placental defect and IUGR of p45NF-E2 (Nfe2) null mouse embryos is unrelated to thrombocytopenia, establishing that embryonic platelets and platelet-released mediators are dispensable for placentation. Rather, p45NF-E2, which was hitherto thought to be specific to hematopoietic cells, is expressed in trophoblast cells, where it is required for normal syncytiotrophoblast formation, placental vascularization and embryonic growth. Expression of p45NF-E2 in labyrinthine trophoblast cells colocalizes with that of Gcm1, a transcription factor crucial for syncytiotrophoblast formation. In the absence of p45NF-E2, the width of syncytiotrophoblast layer 2 and the expression of Gcm1 and Gcm1-dependent genes (Synb and Cebpa) are increased. In vitro, p45NF-E2 deficiency results in spontaneous syncytiotrophoblast formation, which can be reversed by Gcm1 knockdown. Increased Gcm1 expression in the absence of p45NF-E2 is dependent on enhanced protein acetylation, including post-translational modification of Gcm1. Increasing and inhibiting acetylation in the placenta of wild-type control embryos phenocopies and corrects, respectively, the changes observed in p45NF-E2-deficient embryos. These studies identify a novel function of p45NF-E2 during placental development: in trophoblast cells, p45NF-E2 represses Gcm1 and syncytiotrophoblast formation via acetylation.
Collapse
Affiliation(s)
- Muhammed Kashif
- Department of Medicine I and Clinical Chemistry, University of Heidelberg, INF 410, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Bethel-Brown C, Yao H, Callen S, Lee YH, Dash PK, Kumar A, Buch S. HIV-1 Tat-mediated induction of platelet-derived growth factor in astrocytes: role of early growth response gene 1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:4119-29. [PMID: 21368226 PMCID: PMC3110059 DOI: 10.4049/jimmunol.1002235] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
HIV-associated neurologic disorders (HAND) are estimated to affect almost 60% of HIV-infected individuals. HIV encephalitis, the pathologic correlate of the most severe form of HAND, is often characterized by glial activation, cytokine-chemokine dysregulation, and neuronal damage and loss. However, the severity of HIV encephalitis correlates better with glial activation rather than viral load. Using the macaque model, it has been demonstrated that SIV encephalitis correlates with increased expression of the mitogen platelet-derived growth factor (PDGF) B chain in the brain. The goal of this study was to explore the role of PDGF-B chain in HIV-associated activation and proliferation of astrocytes. Specifically, the data demonstrate that exposure of rat and human astrocytes to the HIV-1 protein Tat resulted in the induction of PDGF at both the mRNA and protein levels. Furthermore, PDGF-BB induction was regulated by activation of ERK1/2 and JNK signaling pathways and the downstream transcription factor early growth response 1. Chromatin immunoprecipitation assays demonstrated binding of Egr-1 to the PDGF-B promoter. Exposure of astrocytes to PDGF-BB in turn led to increased proliferation and the release of proinflammatory cytokines MCP-1 and IL-1β. Because astrogliosis is linked to disease severity, understanding its regulation by PDGF-BB could aid in the development of therapeutic intervention strategies for HAND.
Collapse
Affiliation(s)
- Crystal Bethel-Brown
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
With the introduction of combination antiretroviral therapy AIDS dementia complex or HIV-associated dementia, as it was termed later, largely disappeared in clinical practice. However, in the past few years, patients, long-term infected and treated, including those with systemically well controlled infection, started to complain about milder memory problems and slowness, difficulties in concentration, planning, and multitasking. Neuropsychological studies have confirmed that cognitive impairment occurs in a substantial (15-50%) proportion of patients. Among HIV-1-infected patients cognitive impairment was and is one of the most feared complications of HIV-1 infection. In addition, neurocognitive impairment may affect adherence to treatment and ultimately result in increased morbidity for systemic disease. So what may be going on in the CNS after so many years of apparently controlled HIV-1 infection is an urgent and important challenge in the field of HIV medicine. In this review we summarize the key currently available data. We describe the clinical neurological and neuropsychological findings, the preferred diagnostic approach with new imaging techniques and cerebrospinal fluid analysis. We try to integrate data on pathogenesis and finally discuss possible therapeutic interventions.
Collapse
|
37
|
Xia C, Luo D, Yu X, Jiang S, Liu S. HIV-associated dementia in the era of highly active antiretroviral therapy (HAART). Microbes Infect 2011; 13:419-25. [PMID: 21262373 DOI: 10.1016/j.micinf.2011.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 01/09/2011] [Accepted: 01/10/2011] [Indexed: 12/19/2022]
Abstract
Neurological complications associated with HIV-1 are being recognized as a common disorder in AIDS patients, especially patients with HIV-associated dementia (HAD). However, our knowledge of the complicated pathogenesis and clinical symptoms of HAD is limited by an incomplete understanding of the biology of HIV-1 in the nervous system. Therefore, this review focuses on the pathogenesis of HAD in the context of novel highly active antiretroviral therapy (HARRT) regimens.
Collapse
Affiliation(s)
- Chenglai Xia
- Pharmacy Department, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | | | | | | | | |
Collapse
|
38
|
Salemi J, Obregon DF, Cobb A, Reed S, Sadic E, Jin J, Fernandez F, Tan J, Giunta B. Flipping the switches: CD40 and CD45 modulation of microglial activation states in HIV associated dementia (HAD). Mol Neurodegener 2011; 6:3. [PMID: 21223591 PMCID: PMC3030526 DOI: 10.1186/1750-1326-6-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 01/11/2011] [Indexed: 12/21/2022] Open
Abstract
Microglial dysfunction is associated with the pathogenesis and progression of a number of neurodegenerative disorders including HIV associated dementia (HAD). HIV promotion of an M1 antigen presenting cell (APC) - like microglial phenotype, through the promotion of CD40 activity, may impair endogenous mechanisms important for amyloid- beta (Aβ) protein clearance. Further, a chronic pro-inflammatory cycle is established in this manner. CD45 is a protein tyrosine phosphatase receptor which negatively regulates CD40L-CD40-induced microglial M1 activation; an effect leading to the promotion of an M2 phenotype better suited to phagocytose and clear Aβ. Moreover, this CD45 mediated activation state appears to dampen harmful cytokine production. As such, this property of microglial CD45 as a regulatory "off switch" for a CD40-promoted M1, APC-type microglia activation phenotype may represent a critical therapeutic target for the prevention and treatment of neurodegeneration, as well as microglial dysfunction, found in patients with HAD.
Collapse
Affiliation(s)
- Jon Salemi
- Department of Psychiatry and Neurosciences, Neuroimmunology Laboratory, University of South Florida, College of Medicine, Tampa, FL 33613, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Mupawose A, Broom Y. Assessing cognitive-linguistic abilities in South African adults living with HIV: the Cognitive Linguistic Quick Test. AJAR-AFRICAN JOURNAL OF AIDS RESEARCH 2010; 9:147-52. [DOI: 10.2989/16085906.2010.517481] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
40
|
Role of HIV-1 Tat in AIDS pathogenesis: its effects on cytokine dysregulation and contributions to the pathogenesis of opportunistic infection. AIDS 2010; 24:1609-23. [PMID: 20588103 DOI: 10.1097/qad.0b013e32833ac6a0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
41
|
Williams R, Yao H, Peng F, Yang Y, Bethel-Brown C, Buch S. Cooperative induction of CXCL10 involves NADPH oxidase: Implications for HIV dementia. Glia 2010; 58:611-21. [PMID: 19941336 DOI: 10.1002/glia.20949] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
With the increasing prevalence of HIV-associated neurocognititve disorders (HAND), understanding the mechanisms by which HIV-1 induces neuro-inflammation and subsequent neuronal damage is important. The hallmark features of HIV-encephalitis, the pathological correlate of HIV-associated Dementia (HAD), are gliosis, oxidative stress, chemokine dysregulation, and neuronal damage/death. Since neurons are not infected by HIV-1, the current thinking is that these cells are damaged indirectly by pro-inflammatory chemokines released by activated glial cells. CXCL10 is a neurotoxic chemokine that is upregulated in astroglia activated by HIV-1 Tat, IFN-gamma, and TNF-alpha. In this study we have demonstrated that HIV-1 Tat increases CXCL10 expression in IFN-gamma and TNF-alpha stimulated human astrocytes via NADPH oxidase. We have shown that the treatment of astrocytes with a mixture of Tat and cytokines leads to a respiratory burst that is abrogated by apocynin, an NADPH oxidase inhibitor. Pretreatment of Tat, IFN-gamma, and TNF-alpha stimulated astrocytes with apocynin also resulted in concomitant inhibition of CXCL10 expression. Additionally, apocynin was also able to reduce Tat and cytokine-mediated activation of the corresponding signaling molecules Erk1/2, Jnk, and Akt with a decrease in activation and nuclear translocation of NF-kappaB, important regulators of CXCL10 induction. Understanding the mechanisms involved in reducing both oxidative stress and the release of pro-inflammatory agents could lead to the development of therapeutics aimed at decreasing neuro-inflammation in patients suffering from HAD.
Collapse
Affiliation(s)
- Rachel Williams
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | | | | | | | | | | |
Collapse
|
42
|
Smith A, Giunta B, Bickford PC, Fountain M, Tan J, Shytle RD. Nanolipidic particles improve the bioavailability and α-secretase inducing ability of epigallocatechin-3-gallate (EGCG) for the treatment of Alzheimer's disease. Int J Pharm 2010. [DOI: 78495111110.1016/j.ijpharm.2010.01.012' target='_blank'>'"<>78495111110.1016/j.ijpharm.2010.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [78495111110.1016/j.ijpharm.2010.01.012','', '10.1016/j.brainres.2006.09.057')">Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
78495111110.1016/j.ijpharm.2010.01.012" />
|
43
|
Smith A, Giunta B, Bickford PC, Fountain M, Tan J, Shytle RD. Nanolipidic particles improve the bioavailability and alpha-secretase inducing ability of epigallocatechin-3-gallate (EGCG) for the treatment of Alzheimer's disease. Int J Pharm 2010; 389:207-12. [PMID: 20083179 DOI: 10.1016/j.ijpharm.2010.01.012] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 01/05/2010] [Accepted: 01/10/2010] [Indexed: 01/27/2023]
Abstract
Prevention of amyloidogenic processing of amyloid precursor protein with the use of natural phytochemicals capable of enhancing alpha-secretase activity may be a therapeutic approach for treatment of neurodegenerative diseases including Alzheimer's disease (AD) and HIV-associated dementia (HAD). We have recently shown promising preclinical results with the use of green tea polyphenol, (-)-epigallocatechin-3-gallate (EGCG) in mouse models of both diseases, however the translation into clinical use has been problematic primarily as a result of poor bioavailability and inefficient delivery to the central nervous system (CNS). While the antioxidant properties of EGCG are well known, we have shown that it is able to promote non-amyloidogenic processing of amyloid precursor protein (APP) by upregulating alpha-secretase, thus preventing brain beta amyloid plaque formation, a hallmark of AD pathology and common finding in HIV infection. In this preliminary study, we investigated the ability of one preformulation method to improve the oral bioavailability of EGCG. We found that forming nanolipidic EGCG particles improves the neuronal (SweAPP N2a cells) alpha-secretase enhancing ability in vitro by up to 91% (P<001) and it's oral bioavailability in vivo by more than two-fold over free EGCG.
Collapse
Affiliation(s)
- Adam Smith
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | | | | | | | | | | |
Collapse
|
44
|
Flavonoids, a prenatal prophylaxis via targeting JAK2/STAT3 signaling to oppose IL-6/MIA associated autism. J Neuroimmunol 2009; 217:20-7. [PMID: 19766327 DOI: 10.1016/j.jneuroim.2009.08.012] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 07/15/2009] [Accepted: 08/24/2009] [Indexed: 11/23/2022]
Abstract
Maternal immune activation (MIA) can affect fetal brain development and thus behavior of young and adult offspring. Reports have shown that increased Interleukin-6 (IL-6) in the maternal serum plays a key role in altering fetal brain development, and may impair social behaviors in the offspring. Interestingly, these effects could be attenuated by blocking IL-6. The current study investigated the effects of luteolin, a citrus bioflavonoid, and its structural analog, diosmin, on IL-6 induced JAK2/STAT3 (Janus tyrosine kinase-2/signal transducer and activator of transcription-3) phosphorylation and signaling as well as behavioral phenotypes of MIA offspring. Luteolin and diosmin inhibited neuronal JAK2/STAT3 phosphorylation both in vitro and in vivo following IL-6 challenge as well as significantly diminishing behavioral deficits in social interaction. Importantly, our results showed that diosmin (10mg/kgday) was able to block the STAT3 signal pathway; significantly opposing MIA-induced abnormal behavior and neuropathological abnormalities in MIA/adult offspring. Diosmin's molecular inhibition of JAK2/STAT3 pathway may underlie the attenuation of abnormal social interaction in IL-6/MIA adult offspring.
Collapse
|
45
|
Williams R, Yao H, Dhillon NK, Buch SJ. HIV-1 Tat co-operates with IFN-gamma and TNF-alpha to increase CXCL10 in human astrocytes. PLoS One 2009; 4:e5709. [PMID: 19479051 PMCID: PMC2684622 DOI: 10.1371/journal.pone.0005709] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Accepted: 05/01/2009] [Indexed: 12/12/2022] Open
Abstract
HIV-associated neurological disorders (HAND) are estimated to affect 60% of the HIV infected population. HIV-encephalitis (HIVE), the pathological correlate of the most severe form of HAND is often characterized by glial activation, cytokine/chemokine dysregulation, and neuronal damage and loss. However, the severity of HIVE correlates better with glial activation rather than viral load. One of the characteristic features of HIVE is the increased amount of the neurotoxic chemokine, CXCL10. This chemokine can be released from astroglia activated with the pro-inflammatory cytokines IFN-γ and TNF-α, in conjunction with HIV-1 Tat, all of which are elevated in HIVE. In an effort to understand the pathogenesis of HAND, this study was aimed at exploring the regulation of CXCL10 by cellular and viral factors during astrocyte activation. Specifically, the data herein demonstrate that the combined actions of HIV-1 Tat and the pro-inflammatory cytokines, IFN-γ and TNF-α, result in the induction of CXCL10 at both the RNA and protein level. Furthermore, CXCL10 induction was found to be regulated transcriptionally by the activation of the p38, Jnk, and Akt signaling pathways and their downstream transcription factors, NF-κB and STAT-1α. Since CXCL10 levels are linked to disease severity, understanding its regulation could aid in the development of therapeutic intervention strategies for HAND.
Collapse
Affiliation(s)
- Rachel Williams
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Honghong Yao
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Navneet K. Dhillon
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Shilpa J. Buch
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
46
|
Williams R, Dhillon NK, Hegde ST, Yao H, Peng F, Callen S, Chebloune Y, Davis RL, Buch SJ. Proinflammatory cytokines and HIV-1 synergistically enhance CXCL10 expression in human astrocytes. Glia 2009; 57:734-43. [PMID: 18985732 PMCID: PMC2667210 DOI: 10.1002/glia.20801] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
HIV encephalitis (HIVE), the pathologic correlate of HIV-associated dementia (HAD) is characterized by astrogliosis, cytokine/chemokine dysregulation, and neuronal degeneration. Increasing evidence suggests that inflammation is actively involved in the pathogenesis of HAD. In fact, the severity of HAD/HIVE correlates more closely with the presence of activated glial cells than with the presence and amount of HIV-infected cells in the brain. Astrocytes, the most numerous cell type within the brain, provide an important reservoir for the generation of inflammatory mediators, including interferon-gamma inducible peptide-10 (CXCL10), a neurotoxin and a chemoattractant, implicated in the pathophysiology of HAD. Additionally, the proinflammatory cytokines, IFN-gamma and TNF-alpha, are also markedly increased in CNS tissues during HIV-1 infection. In this study, we hypothesized that the interplay of host cytokines and HIV-1 could lead to enhanced expression of the toxic chemokine, CXCL10. Our findings demonstrate a synergistic induction of CXCL10 mRNA and protein in human astrocytes exposed to HIV-1 and the proinflammatory cytokines. Signaling molecules, including JAK, STATs, MAPK (via activation of Erk1/2, AKT, and p38), and NF-kappaB were identified as instrumental in the synergistic induction of CXCL10. Understanding the mechanisms involved in HIV-1 and cytokine-mediated up-regulation of CXCL10 could aid in the development of therapeutic modalities for HAD.
Collapse
Affiliation(s)
- Rachel Williams
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Navneet K. Dhillon
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Sonia T. Hegde
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Honghong Yao
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Fuwang Peng
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Shannon Callen
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Yahia Chebloune
- Department of Microbiology, Molecular Genetics & Immunology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Randall L. Davis
- Department of Pharmacology/Physiology, Oklahoma State University Center for Health Sciences, Tulsa, OK 74107
| | - Shilpa J. Buch
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160
| |
Collapse
|
47
|
HIV-1 transactivator protein induction of suppressor of cytokine signaling-2 contributes to dysregulation of IFN{gamma} signaling. Blood 2009; 113:5192-201. [PMID: 19279332 DOI: 10.1182/blood-2008-10-183525] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
HIV infection remains a worldwide threat. HIV-1 transactivator protein Tat is one of the retroviral proteins identified as a key immunomodulator in AIDS pathogenesis. Although the primary function of Tat is to regulate HIV-1 replication in the infected cell, it also dysregulates cytokine production resulting in perturbation of the host immune response and enhancement of the retrovirus survival. Because interferon-gamma (IFNgamma) is a pleiotropic cytokine with potent antiviral and immunoregulatory effects, we investigated whether Tat interferes with the IFNgamma signal transduction in primary monocytes. We demonstrated that Tat impaired the IFNgamma-receptor signaling pathway at the level of STAT1 activation, possibly via Tat-dependent induction of suppressor of cytokine signaling-2 (SOCS-2) activity. We delineated the inhibitory role of SOCS-2 in IFNgamma signaling pathway by overexpression of exogenous SOCS-2 in HEK293 cell. The results showed that SOCS-2 suppressed the IFNgamma-activated STAT1 phosphorylation and consequent IFNgamma-regulated transcription of specific genes. To confirm the role of SOCS2 in the Tat-induced process, we demonstrated that SOCS-2 siRNA in human blood monocytes abrogated the Tat-dependent inhibition of IFNgamma signaling. Our data suggested a possible mechanism implicating the role of SOCS-2 in mediating HIV-1-induced immune evasion and dysregulation of IFNgamma signaling in primary human monocytes.
Collapse
|
48
|
Schroeder EK, Kelsey NA, Doyle J, Breed E, Bouchard RJ, Loucks FA, Harbison RA, Linseman DA. Green tea epigallocatechin 3-gallate accumulates in mitochondria and displays a selective antiapoptotic effect against inducers of mitochondrial oxidative stress in neurons. Antioxid Redox Signal 2009; 11:469-80. [PMID: 18754708 DOI: 10.1089/ars.2008.2215] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Epigallocatechin-3-gallate (EGCG) is a major flavonoid component of green tea that displays antiapoptotic effects in numerous models of neurotoxicity. Although the intrinsic free radical scavenging activity of EGCG likely contributes to its antiapoptotic effect, other modes of action have also been suggested. We systematically analyzed the antiapoptotic action of EGCG in primary cultures of rat cerebellar granule neurons (CGNs). The dose-dependent protective effects of EGCG were determined after coincubation with eight different stimuli that each induced neuronal apoptosis by distinct mechanisms. Under these conditions, EGCG provided significant neuroprotection only from insults that induce apoptosis by causing mitochondrial oxidative stress. Despite this selective antiapoptotic effect, EGCG did not significantly alter the endogenous activities or expression of Mn(2+)- superoxide dismutase, glutathione peroxidase, Nrf2, or Bcl-2. Subfractionation of CGNs after incubation with (3)H-EGCG revealed that a striking 90-95% of the polyphenol accumulated in the mitochondrial fraction. These data demonstrate that EGCG selectively protects neurons from apoptosis induced by mitochondrial oxidative stress. This effect is likely due to accumulation of EGCG in the mitochondria, where it acts locally as a free radical scavenger. These properties of EGCG make it an interesting therapeutic candidate for neurodegenerative diseases involving neuronal apoptosis triggered by mitochondrial oxidative stress.
Collapse
Affiliation(s)
- Emily K Schroeder
- Research Service, Veterans Affairs Medical Center, Denver, Colorado, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Giunta B, Hou H, Zhu Y, Rrapo E, Tian J, Takashi M, Commins D, Singer E, He J, Fernandez F, Tan J. HIV-1 Tat contributes to Alzheimer's disease-like pathology in PSAPP mice. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2009; 2:433-443. [PMID: 19294002 PMCID: PMC2655152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 01/30/2009] [Indexed: 05/27/2023]
Abstract
Prevalence of HIV-associated cognitive impairment is rising. Amyloid-beta (A-beta) plaque deposition in the brain may be a contributing factor as epidemiological data suggests significant numbers of long-term HIV survivors are at elevated risk of developing Alzheimer's disease (AD). HIV-1 Tat-induced A-beta deposition, tau phosphorylation, and subsequent neuronal death could be risk factors for subsequent AD and/or HIV-related cognitive impairment. To mimic this clinical condition, we generated mice with HIV-1 Tat-induced AD-like pathology. We first performed a short-term Doxycycline (dox) dosing (54, 108, and 216 mg/kg/day) study in transgenic mice whose astrocytes express HIV-1 Tat via activation of a GFAP/dox-inducible promoter. After one week, mouse brains were examined histologically and the expression of Bcl-xL, Bax, and phospho-tau was investigated by Western blotting. We next cross-bred these mice with the PSAPP mouse model of AD. To simulate chronic Tat secretion over periods longer than one week, we used an optimized dose of 54 mg/kg/day on a biweekly basis over three months; based on the initial dose ranging study in the Tat transgenic mice. This was followed by antisera detection of A-beta, and Western blot for phospho-tau, Bcl-xL, and Bax. Tat significantly induced neuron degeneration and tau phosphorylation in Tat transgenic mice, dox dependently (P<0.001) with the most robust effects at the 216 mg/kg/day dose. In the long term study, similar effects at the chronic 54 mg/kg/day dose were observed in PSAPP/Tat mice induced with dox. These mice also showed significantly more A-beta deposition (P < 0.05), neurodegeneration, neuronal apoptotic signaling, and phospho-tau than PSAPP mice (P < 0.05). In conclusion, HIV-1 Tat significantly promotes AD-like pathology in PSAPP/Tat mice. This model may provide a framework in which to identify new mechanisms involved in cognitive impairment in the HIV infected population, and possible treatments. Additional works will be needed to fully characterize the mechanism(s) of HIV- induced amyloid deposition, and also to uncover viral mechanisms promoting AD-like pathology in general.
Collapse
Affiliation(s)
- Brian Giunta
- Department of Psychiatry and Behavioral Medicine, Neuroimmunology Laboratory, University of South Florida College of MedicineTampa, Florida 33613, USA
| | - Houyan Hou
- Department of Psychiatry and Behavioral Medicine, Neuroimmunology Laboratory, University of South Florida College of MedicineTampa, Florida 33613, USA
- Rashid Laboratory for Neurodevelopmental Biology, Department of Psychiatry and Behavioral Medicine, University of South Florida College of MedicineTampa, Florida 33613, USA
| | - Yuyan Zhu
- Department of Psychiatry and Behavioral Medicine, Neuroimmunology Laboratory, University of South Florida College of MedicineTampa, Florida 33613, USA
- Rashid Laboratory for Neurodevelopmental Biology, Department of Psychiatry and Behavioral Medicine, University of South Florida College of MedicineTampa, Florida 33613, USA
| | - Elona Rrapo
- Department of Psychiatry and Behavioral Medicine, Neuroimmunology Laboratory, University of South Florida College of MedicineTampa, Florida 33613, USA
| | - Jun Tian
- Rashid Laboratory for Neurodevelopmental Biology, Department of Psychiatry and Behavioral Medicine, University of South Florida College of MedicineTampa, Florida 33613, USA
| | - Mori Takashi
- Institute of Medical Science, Saitama Medical School1981 Kamoda, Kawagoe, Saitama, 350-8550, Japan
| | - Deborah Commins
- Department of Pathology, University of Southern California University HospitalLos Angeles, CA 90095, USA
- National Neurological AIDS Bank, University of CaliforniaLos Angeles, CA 90095, USA
| | - Elyse Singer
- National Neurological AIDS Bank, University of CaliforniaLos Angeles, CA 90095, USA
| | - Johnny He
- Departments of Microbiology and Immunology and the Walther Cancer Institute, Indiana University School of MedicineIndianapolis, Indiana 46202, USA
| | - Francisco Fernandez
- Department of Psychiatry and Behavioral Medicine, Neuroimmunology Laboratory, University of South Florida College of MedicineTampa, Florida 33613, USA
- Rashid Laboratory for Neurodevelopmental Biology, Department of Psychiatry and Behavioral Medicine, University of South Florida College of MedicineTampa, Florida 33613, USA
| | - Jun Tan
- Department of Psychiatry and Behavioral Medicine, Neuroimmunology Laboratory, University of South Florida College of MedicineTampa, Florida 33613, USA
- Rashid Laboratory for Neurodevelopmental Biology, Department of Psychiatry and Behavioral Medicine, University of South Florida College of MedicineTampa, Florida 33613, USA
| |
Collapse
|
50
|
Rrapo E, Zhu Y, Tian J, Hou H, Smith A, Fernandez F, Tan J, Giunta B. Green Tea-EGCG reduces GFAP associated neuronal loss in HIV-1 Tat transgenic mice. Am J Transl Res 2009; 1:72-79. [PMID: 19966940 PMCID: PMC2776283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Accepted: 12/31/2008] [Indexed: 05/28/2023]
Abstract
In the current era of antiretroviral treatment, the prevalence of HIV-associated dementia is on the rise. Many past works have associated inflammation and neuronal loss with cognitive deficits inherent to the syndrome. Importantly, HIV-1 induced astrogliosis has been shown to play a central role in this process. Here we examined the effect of green tea derived (-)-epigallocatechin-3-gallate (EGCG) food supplementation for its ability to modulate GFAP expression and neuronal loss in an HIV-1 Tat transgenic mouse model whose expression was controlled by a brain specific doxycycline promoter. By immunohistochemistry we found that EGCG (300mg/kg/day) dramatically reduced astrogliosis as demonstrated by GFAP expression. This was accompanied by a mild reduction in activated microglia by Iba-1 staining and significant reduction in neuronal loss through apoptosis as demonstrated by MAP2 staining and Western blot analysis respectively. Future studies will be required to determine intracellular mechanism involved in EGCG mediated downregulation of GFAP and associated astrocytosis and neuronal loss.
Collapse
Affiliation(s)
- Elona Rrapo
- Neuroimmunology Laboratory, Institute for Research in Psychiatry and Department of Psychiatry and Behavioral Medicine, University of South Florida College of MedicineTampa, FL 33613, USA
| | - Yuyan Zhu
- Neuroimmunology Laboratory, Institute for Research in Psychiatry and Department of Psychiatry and Behavioral Medicine, University of South Florida College of MedicineTampa, FL 33613, USA
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, University of South Florida College of MedicineTampa, Florida, USA
| | - Jun Tian
- Neuroimmunology Laboratory, Institute for Research in Psychiatry and Department of Psychiatry and Behavioral Medicine, University of South Florida College of MedicineTampa, FL 33613, USA
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, University of South Florida College of MedicineTampa, Florida, USA
| | - Huayan Hou
- Neuroimmunology Laboratory, Institute for Research in Psychiatry and Department of Psychiatry and Behavioral Medicine, University of South Florida College of MedicineTampa, FL 33613, USA
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, University of South Florida College of MedicineTampa, Florida, USA
| | - Adam Smith
- Neuroimmunology Laboratory, Institute for Research in Psychiatry and Department of Psychiatry and Behavioral Medicine, University of South Florida College of MedicineTampa, FL 33613, USA
- Center for Excellence in Aging and Brain Repair, Department of Neurosurgery, University of South Florida3515 East Fletcher Avenue Tampa, FL 33613, USA
| | - Francisco Fernandez
- Neuroimmunology Laboratory, Institute for Research in Psychiatry and Department of Psychiatry and Behavioral Medicine, University of South Florida College of MedicineTampa, FL 33613, USA
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, University of South Florida College of MedicineTampa, Florida, USA
| | - Jun Tan
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, University of South Florida College of MedicineTampa, Florida, USA
- Center for Excellence in Aging and Brain Repair, Department of Neurosurgery, University of South Florida3515 East Fletcher Avenue Tampa, FL 33613, USA
| | - Brian Giunta
- Neuroimmunology Laboratory, Institute for Research in Psychiatry and Department of Psychiatry and Behavioral Medicine, University of South Florida College of MedicineTampa, FL 33613, USA
| |
Collapse
|