1
|
Sulaksono HLS, Annisa A, Ruslami R, Mufeeduzzaman M, Panatarani C, Hermawan W, Ekawardhani S, Joni IM. Recent Advances in Graphene Oxide-Based on Organoid Culture as Disease Model and Cell Behavior - A Systematic Literature Review. Int J Nanomedicine 2024; 19:6201-6228. [PMID: 38911499 PMCID: PMC11193994 DOI: 10.2147/ijn.s455940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/02/2024] [Indexed: 06/25/2024] Open
Abstract
Due to their ability to replicate the in vivo microenvironment through cell interaction and induce cells to stimulate cell function, three-dimensional cell culture models can overcome the limitations of two-dimensional models. Organoids are 3D models that demonstrate the ability to replicate the natural structure of an organ. In most organoid tissue cultures, matrigel made of a mouse tumor extracellular matrix protein mixture is an essential ingredient. However, its tumor-derived origin, batch-to-batch variation, high cost, and safety concerns have limited the usefulness of organoid drug development and regenerative medicine. Its clinical application has also been hindered by the fact that organoid generation is dependent on the use of poorly defined matrices. Therefore, matrix optimization is a crucial step in developing organoid culture that introduces alternatives as different materials. Recently, a variety of substitute materials has reportedly replaced matrigel. The purpose of this study is to review the significance of the latest advances in materials for cell culture applications and how they enhance build network systems by generating proper cell behavior. Excellence in cell behavior is evaluated from their cell characteristics, cell proliferation, cell differentiation, and even gene expression. As a result, graphene oxide as a matrix optimization demonstrated high potency in developing organoid models. Graphene oxide can promote good cell behavior and is well known for having good biocompatibility. Hence, advances in matrix optimization of graphene oxide provide opportunities for the future development of advanced organoid models.
Collapse
Affiliation(s)
| | - Annisa Annisa
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung, Indonesia
| | - Rovina Ruslami
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Mufeeduzzaman Mufeeduzzaman
- Functional Nano Powder University Center of Excellence (FiNder U-CoE), Universitas Padjadjaran, Bandung, Indonesia
| | - Camellia Panatarani
- Functional Nano Powder University Center of Excellence (FiNder U-CoE), Universitas Padjadjaran, Bandung, Indonesia
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung, Indonesia
| | - Wawan Hermawan
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung, Indonesia
- Functional Nano Powder University Center of Excellence (FiNder U-CoE), Universitas Padjadjaran, Bandung, Indonesia
| | - Savira Ekawardhani
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Functional Nano Powder University Center of Excellence (FiNder U-CoE), Universitas Padjadjaran, Bandung, Indonesia
| | - I Made Joni
- Functional Nano Powder University Center of Excellence (FiNder U-CoE), Universitas Padjadjaran, Bandung, Indonesia
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
2
|
Li W, Shan B, Cheng X, He H, Qin J, Zhao H, Tian M, Zhang X, Jin G. circRNA Acbd6 promotes neural stem cell differentiation into cholinergic neurons via the miR-320-5p-Osbpl2 axis. J Biol Chem 2022; 298:101828. [PMID: 35305988 PMCID: PMC9018392 DOI: 10.1016/j.jbc.2022.101828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 11/29/2022] Open
Abstract
Neural stem cells (NSCs) persist in the dentate gyrus of the hippocampus into adulthood and are essential for both neurogenesis and neural circuit integration. Exosomes have also been shown to play vital roles in regulating biological processes of receptor cells as a medium for cell-to-cell communication signaling molecules. The precise molecular mechanisms of exosome-mediated signaling, however, remain largely unknown. Here, we found that exosomes produced by denervated hippocampi following fimbria–fornix transection could promote the differentiation of hippocampal neural precursor cells into cholinergic neurons in coculture with NSCs. Furthermore, we found that 14 circular RNAs (circRNAs) were upregulated in hippocampal exosomes after fimbria–fornix transection using high-throughput RNA-Seq technology. We further characterized the function and mechanism by which the upregulated circRNA Acbd6 (acyl-CoA-binding domain–containing 6) promoted the differentiation of NSCs into cholinergic neurons using RT–quantitative PCR, Western blot, ELISA, flow cytometry, immunohistochemistry, and immunofluorescence assay. By luciferase reporter assay, we demonstrated that circAcbd6 functioned as an endogenous miR-320-5p sponge to inhibit miR-320-5p activity, resulting in increased oxysterol-binding protein–related protein 2 expression with subsequent facilitation of NSC differentiation. Taken together, our results suggest that circAcbd6 promotes differentiation of NSCs into cholinergic neurons via miR-320-5p/oxysterol-binding protein–related protein 2 axis, which contribute important insights to our understanding of how circRNAs regulate neurogenesis.
Collapse
Affiliation(s)
- Wen Li
- Department of Human Anatomy, Institute of Neurobiology, Medical School of Nantong University, Nantong, Jiangsu, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China; Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Nantong University, Nantong, Jiangsu, China
| | - Boquan Shan
- Department of Human Anatomy, Institute of Neurobiology, Medical School of Nantong University, Nantong, Jiangsu, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China; Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Nantong University, Nantong, Jiangsu, China
| | - Xiang Cheng
- Department of Human Anatomy, Institute of Neurobiology, Medical School of Nantong University, Nantong, Jiangsu, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China; Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Nantong University, Nantong, Jiangsu, China
| | - Hui He
- Department of Human Anatomy, Institute of Neurobiology, Medical School of Nantong University, Nantong, Jiangsu, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China; Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Nantong University, Nantong, Jiangsu, China
| | - Jianbing Qin
- Department of Human Anatomy, Institute of Neurobiology, Medical School of Nantong University, Nantong, Jiangsu, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China; Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Nantong University, Nantong, Jiangsu, China
| | - Heyan Zhao
- Department of Human Anatomy, Institute of Neurobiology, Medical School of Nantong University, Nantong, Jiangsu, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China; Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Nantong University, Nantong, Jiangsu, China
| | - Meiling Tian
- Department of Human Anatomy, Institute of Neurobiology, Medical School of Nantong University, Nantong, Jiangsu, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China; Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Nantong University, Nantong, Jiangsu, China
| | - Xinhua Zhang
- Department of Human Anatomy, Institute of Neurobiology, Medical School of Nantong University, Nantong, Jiangsu, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China; Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Nantong University, Nantong, Jiangsu, China.
| | - Guohua Jin
- Department of Human Anatomy, Institute of Neurobiology, Medical School of Nantong University, Nantong, Jiangsu, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China; Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
3
|
Reid GA, Darvesh S. Interaction of Exogenous Butyrylcholinesterase with β-Amyloid Plaques in 5XFAD/Butyrylcholinesterase-Knockout Mouse Brain. Curr Alzheimer Res 2021; 18:470-481. [PMID: 34455970 DOI: 10.2174/1567205018666210827122704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/03/2021] [Accepted: 07/01/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND In Alzheimer's disease (AD), and amyloid models such as the 5XFAD mouse, butyrylcholinesterase (BChE) is associated with β-amyloid (Aβ) plaques and has unique biochemical features which distinguish it from that found in neurons. It has been suggested that BChE associated with Aβ plaques may be involved in the maturation of this structure and thus disease progression. OBJECTIVE Currently, it is unknown whether BChE bound to Aβ plaques has altered biochemical properties due to a different primary structure or because of the association of this enzyme with Aβ plaques. Also, the source and binding mechanism of this BChE remains unknown. METHODS Brain tissue sections from the 5XFAD/BChE-KO mouse were incubated with exogenous sources of BChE and stained for this enzyme's activity. Efforts were made to determine what region of BChE or Aβ may be involved in this association. RESULTS We found that incubation of 5XFAD/BChE-KO brain tissues with exogenous BChE led to this enzyme becoming associated with Aβ plaques and neurons. In contrast to neuronal BChE, the BChE bound to Aβ plaques had similar biochemical properties to those seen in AD. Mutations to BChE and efforts to block Aβ epitomes failed to prevent this association. CONCLUSION The association of BChE with Aβ plaques, and the resultant biochemical changes, suggests that BChE may undergo a conformational change when bound to Aβ plaques but not neurons. The 5XFAD/BChE-KO model is ideally suited to explore the binding mechanism of BChE to Aβ plaques as well as the involvement of BChE in AD pathogenesis.
Collapse
Affiliation(s)
- G A Reid
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - S Darvesh
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
4
|
Hollas MA, Ben Aissa M, Lee SH, Gordon-Blake JM, Thatcher GRJ. Pharmacological manipulation of cGMP and NO/cGMP in CNS drug discovery. Nitric Oxide 2019; 82:59-74. [PMID: 30394348 PMCID: PMC7645969 DOI: 10.1016/j.niox.2018.10.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/14/2018] [Accepted: 10/25/2018] [Indexed: 12/21/2022]
Abstract
The development of small molecule modulators of NO/cGMP signaling for use in the CNS has lagged far behind the use of such clinical agents in the periphery, despite the central role played by NO/cGMP in learning and memory, and the substantial evidence that this signaling pathway is perturbed in neurodegenerative disorders, including Alzheimer's disease. The NO-chimeras, NMZ and Nitrosynapsin, have yielded beneficial and disease-modifying responses in multiple preclinical animal models, acting on GABAA and NMDA receptors, respectively, providing additional mechanisms of action relevant to synaptic and neuronal dysfunction. Several inhibitors of cGMP-specific phosphodiesterases (PDE) have replicated some of the actions of these NO-chimeras in the CNS. There is no evidence that nitrate tolerance is a phenomenon relevant to the CNS actions of NO-chimeras, and studies on nitroglycerin in the periphery continue to challenge the dogma of nitrate tolerance mechanisms. Hybrid nitrates have shown much promise in the periphery and CNS, but to date only one treatment has received FDA approval, for glaucoma. The potential for allosteric modulation of soluble guanylate cyclase (sGC) in brain disorders has not yet been fully explored nor exploited; whereas multiple applications of PDE inhibitors have been explored and many have stalled in clinical trials.
Collapse
Affiliation(s)
- Michael A Hollas
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, USA
| | - Manel Ben Aissa
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, USA
| | - Sue H Lee
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, USA
| | - Jesse M Gordon-Blake
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, USA
| | - Gregory R J Thatcher
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, USA.
| |
Collapse
|
5
|
Woodling NS, Andreasson KI. Untangling the Web: Toxic and Protective Effects of Neuroinflammation and PGE2 Signaling in Alzheimer's Disease. ACS Chem Neurosci 2016; 7:454-63. [PMID: 26979823 DOI: 10.1021/acschemneuro.6b00016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The neuroinflammatory response has received increasing attention as a key factor in the pathogenesis of Alzheimer's disease (AD). Microglia, the innate immune cells and resident phagocytes of the brain, respond to accumulating Aβ peptides by generating a nonresolving inflammatory response. While this response can clear Aβ peptides from the nervous system in some settings, its failure to do so in AD accelerates synaptic injury, neuronal loss, and cognitive decline. The complex molecular components of this response are beginning to be unraveled, with identification of both damaging and protective roles for individual components of the neuroinflammatory response. Even within one molecular pathway, contrasting effects are often present. As one example, recent studies of the inflammatory cyclooxygenase-prostaglandin pathway have revealed both beneficial and detrimental effects dependent on the disease context, cell type, and downstream signaling pathway. Nonsteroidal anti-inflammatory drugs (NSAIDs), which inhibit cyclooxygenases, are associated with reduced AD risk when taken by cognitively normal populations, but additional clinical and mouse model studies have added complexities and caveats to this finding. Downstream of cyclooxygenase activity, prostaglandin E2 signaling exerts both damaging pro-inflammatory and protective anti-inflammatory effects through actions of specific E-prostanoid G-protein coupled receptors on specific cell types. These complexities underscore the need for careful study of individual components of the neuroinflammatory response to better understand their contribution to AD pathogenesis and progression.
Collapse
Affiliation(s)
- Nathaniel S. Woodling
- Department of Neurology and
Neurological Sciences, Stanford University School of Medicine, 1201
Welch Road, Stanford, California 94305, United States
| | - Katrin I. Andreasson
- Department of Neurology and
Neurological Sciences, Stanford University School of Medicine, 1201
Welch Road, Stanford, California 94305, United States
| |
Collapse
|
6
|
Marchese M, Cowan D, Head E, Ma D, Karimi K, Ashthorpe V, Kapadia M, Zhao H, Davis P, Sakic B. Autoimmune manifestations in the 3xTg-AD model of Alzheimer's disease. J Alzheimers Dis 2014; 39:191-210. [PMID: 24150111 DOI: 10.3233/jad-131490] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Immune system activation is frequently reported in patients with Alzheimer's disease (AD). However, it remains unknown whether this is a cause, a consequence, or an epiphenomenon of brain degeneration. OBJECTIVE The present study examines whether immunological abnormalities occur in a well-established murine AD model and if so, how they relate temporally to behavioral deficits and neuropathology. METHODS A broad battery of tests was employed to assess behavioral performance and autoimmune/inflammatory markers in 3xTg-AD (AD) mice and wild type controls from 1.5 to 12 months of age. RESULTS Aged AD mice displayed severe manifestations of systemic autoimmune/inflammatory dise6ase, as evidenced by splenomegaly, hepatomegaly, elevated serum levels of anti-nuclear/anti-dsDNA antibodies, low hematocrit, and increased number of double-negative T splenocytes. However, anxiety-related behavior and altered spleen function were evident as early as 2 months of age, thus preceding typical AD-like brain pathology. Moreover, AD mice showed altered olfaction and impaired "cognitive" flexibility in the first 6 months of life, suggesting mild cognitive impairment-like manifestations before general learning/memory impairments emerged at an older age. Interestingly, all of these features were present in 3xTg-AD mice prior to significant amyloid-β or tau pathology. CONCLUSION The results indicate that behavioral deficits in AD mice develop in parallel with systemic autoimmune/inflammatory disease. These changes antedate AD-like neuropathology, thus supporting a causal link between autoimmunity and aberrant behavior. Consequently, 3xTg-AD mice may be a useful model in elucidating the role of immune system in the etiology of AD.
Collapse
Affiliation(s)
- Monica Marchese
- Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, ON, Canada
| | - David Cowan
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Elizabeth Head
- Department of Molecular & Biomedical Pharmacology, Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Donglai Ma
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Khalil Karimi
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | | | - Minesh Kapadia
- Department of Psychiatry & Behavioral Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Hui Zhao
- Department of Psychiatry & Behavioral Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Paulina Davis
- Department of Molecular & Biomedical Pharmacology, Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Boris Sakic
- Department of Psychiatry & Behavioral Neurosciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
7
|
Modulating nitric oxide signaling in the CNS for Alzheimer's disease therapy. Future Med Chem 2014; 5:1451-68. [PMID: 23919554 DOI: 10.4155/fmc.13.111] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Nitric oxide (NO)/solube GC (sGC)/cGMP signaling is important for modulating synaptic transmission and plasticity in the hippocampus and cerebral cortex, which are critical for learning and memory. Physiological concentrations of NO also elicit anti-apoptotic/prosurvival effects against various neurotoxic challenges and brain insults through multiple mechanisms. Depression of the NO/sGC pathway is a feature of Alzheimer's disease (AD), attributed to amyloid-β neuropathology, and altered expression and activity of NOS, sGC and PDE enzymes. Different classes of NO-releasing hybrid drugs, including nomethiazoles, NO-NSAIDs and NO-acetylcholinesterase inhibitors were designed to deliver low concentrations of exogenous NO to the CNS while targeting other underlying disease mechanisms, such as excitotoxicity, neuro-inflammation and acetylcholine deficiency, respectively. Incorporating a NO-donating moiety may also reduce gastrointestinal and liver toxicity of the parent drugs. Progress has also been made in targeting downstream sGC and PDE enzymes. The PDE9 inhibitor PF-04447943 has completed Phase II clinical trials for AD. The search for effective NO-donating hybrid drugs, CNS-targeting sGC stimulators/activators and selective PDE inhibitors is an important goal for pharmacotherapy that manipulates NO biochemical pathways involved in cognitive function and neuroprotection. Rigorous preclinical validation of target engagement, and optimization of pharmacokinetic and toxicity profiles are likely to advance more drug candidates into clinical trials for mild cognitive impairment and early stage AD.
Collapse
|
8
|
van Groen T, Kadish I, Funke SA, Bartnik D, Willbold D. Treatment with D3 removes amyloid deposits, reduces inflammation, and improves cognition in aged AβPP/PS1 double transgenic mice. J Alzheimers Dis 2013; 34:609-20. [PMID: 23271316 DOI: 10.3233/jad-121792] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
One of the characteristic pathological hallmarks of Alzheimer's disease (AD) is neuritic plaques. The sequence of events leading to deposition of amyloid-β (Aβ) peptides in plaques is not clear. Here we investigate the effects of D3, an Aβ oligomer directed D-enantiomeric peptide that was obtained from a mirror image phage display selection against monomeric or small oligomeric forms of Aβ42, on Aβ deposition in aged AβPP/PS1 double transgenic AD-model mice. Using Alzet minipumps, we infused the brains of these AD model mice for 8 weeks with FITC-labeled D3, and examined the subsequent changes in pathology and cognitive deficits. Initial cognitive deficits are similar comparing control and D3-FITC-treated mice, but the treated mice show a significant improvement on the last day of testing. Further, we show that there is a substantial reduction in the amount of amyloid deposits in the animals treated with D3-FITC, compared to the control mice. Finally, the amount of activated microglia and astrocytes surrounding Aβ deposits is dramatically reduced in the D3-FITC-treated mice. Our findings demonstrate that treatments with the high affinity Aβ42 oligomer binding D-enantiomeric peptide D3 significantly decrease Aβ deposits and the associated inflammatory response, and improve cognition even when applied only at late stages and high age. Together, this suggests that the treatment reduces the level of Aβ peptide in the brains of AβPP/PS1 mice, possibly by increasing Aβ outflow from the brain. In conclusion, treatments with this D-peptide have great potential to be successful in AD patients.
Collapse
Affiliation(s)
- Thomas van Groen
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | | | | | | | |
Collapse
|
9
|
Beitnere U, van Groen T, Kumar A, Jansone B, Klusa V, Kadish I. Mildronate improves cognition and reduces amyloid-β pathology in transgenic Alzheimer's disease mice. J Neurosci Res 2013; 92:338-46. [PMID: 24273007 DOI: 10.1002/jnr.23315] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 09/23/2013] [Accepted: 09/23/2013] [Indexed: 11/08/2022]
Abstract
Mildronate, a carnitine congener drug, previously has been shown to provide neuroprotection in an azidothymidine-induced mouse model of neurotoxicity and in a Parkinson's disease rat model. The aim of this study was to investigate the effects of mildronate treatment on cognition and pathology in Alzheimer's disease (AD) model mice (APP(SweDI)). Mildronate was administered i.p. daily at 50 or 100 mg/kg for 28 days. At the end of treatment, the animals were behaviorally and cognitively tested, and brains were assessed for AD-related pathology, inflammation, synaptic markers, and acetylcholinesterase (AChE). The data show that mildronate treatment significantly improved animal performance in water maze and social recognition tests, lowered amyloid-β deposition in the hippocampus, increased expression of the microglia marker Iba-1, and decreased AChE staining, although it did not alter expression of proteins involved in synaptic plasticity (GAP-43, synaptophysin, and GAD67). Taken together, these findings indicate mildronate's ability to improve cognition and reduce amyloid-β pathology in a mouse model of AD and its possible therapeutic utility as a disease-modifying drug in AD patients.
Collapse
Affiliation(s)
- Ulrika Beitnere
- Department of Pharmacology, Faculty of Medicine, University of Latvia, Riga, Latvia
| | | | | | | | | | | |
Collapse
|
10
|
Wang CC, Tsai YJ, Hsieh YC, Lin RJ, Lin CL. The aqueous extract from Toona sinensis leaves inhibits microglia-mediated neuroinflammation. Kaohsiung J Med Sci 2013; 30:73-81. [PMID: 24444536 PMCID: PMC7118447 DOI: 10.1016/j.kjms.2013.09.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 08/30/2013] [Indexed: 01/24/2023] Open
Abstract
The leaves of Toona sinensis, a well‐known traditional oriental medicine, have been prescribed for the treatment of enteritis and infection. Recently, aqueous extracts of Toona sinensis leaves (TSL‐1) have demonstrated many biological effects both in vitro and in vivo. In the central nervous system, microglial activation and their proinflammatory responses are considered an important therapeutic strategy for neuroinflammatory disorders such as cerebral ischemia, Alzheimer's disease, and Parkinson's disease. The present study attempted to validate the effect of TSL‐1 on microglia‐mediated neuroinflammation stimulated by lipopolysaccharide (LPS). As inflammatory parameters, the production of nitric oxide (NO), inducible NO synthase, and tumor necrosis factor‐α were evaluated. Our results demonstrate that TSL‐1 suppresses LPS‐induced NO production, tumor necrosis factor‐α secretion, and inducible NO synthase protein expression in a concentration‐dependent manner, without causing cytotoxicity. In addition, the inhibitory effects of TSL‐1 in LPS‐stimulated BV‐2 microglia were extended to post‐treatment suggesting the therapeutic potential of TSL‐1. Therefore, this work provides the future evaluation of the role of TSL‐1 in the treatment of neurodegenerative diseases by inhibition of inflammatory mediator production in activated microglia.
Collapse
Affiliation(s)
- Chao-Chuan Wang
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yee-Jean Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ya-Ching Hsieh
- Department of Medical Research, E-Da Hospital/I-Shou University, Kaohsiung, Taiwan
| | - Rong-Jyh Lin
- Department of Parasitology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Lung Lin
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Faculty of Medicine, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
11
|
McGeer PL, McGeer EG. The amyloid cascade-inflammatory hypothesis of Alzheimer disease: implications for therapy. Acta Neuropathol 2013; 126:479-97. [PMID: 24052108 DOI: 10.1007/s00401-013-1177-7] [Citation(s) in RCA: 310] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 09/03/2013] [Accepted: 09/05/2013] [Indexed: 12/14/2022]
Abstract
The amyloid cascade hypothesis is widely accepted as the centerpiece of Alzheimer disease (AD) pathogenesis. It proposes that abnormal production of beta amyloid protein (Abeta) is the cause of AD and that the neurotoxicity is due to Abeta itself or its oligomeric forms. We suggest that this, in itself, cannot be the cause of AD because demonstrating such toxicity requires micromolar concentrations of these Abeta forms, while their levels in brain are a million times lower in the picomolar range. AD probably results from the inflammatory response induced by extracellular Abeta deposits, which later become enhanced by aggregates of tau. The inflammatory response, which is driven by activated microglia, increases over time as the disease progresses. Disease-modifying therapeutic attempts to date have failed and may continue to do so as long as the central role of inflammation is not taken into account. Multiple epidemiological and animal model studies show that NSAIDs, the most widely used antiinflammatory agents, have a substantial sparing effect on AD. These studies provide a proof of concept regarding the anti-inflammatory approach to disease modification. Biomarker studies have indicated that early intervention may be necessary. They have established that disease onset occurs more than a decade before it becomes clinically evident. By combining biomarker and pathological data, it is possible to define six phases of disease development, each separated by about 5 years. Phase one can be identified by decreases in Abeta in the CSF, phase 2 by increases of tau in the CSF plus clear evidence of Abeta brain deposits by PET scanning, phase 3 by slight decreases in brain metabolic rate by PET-FDG scanning, phase 4 by slight decreases in brain volume by MRI scanning plus minimal cognitive impairment, phase 5 by increased scanning abnormalities plus clinical diagnosis of AD, and phase 6 by advanced AD requiring institutional care. Utilization of antiinflammatory agents early in the disease process remains an overlooked therapeutic opportunity. Such agents, while not preventative, have the advantage of being able to inhibit the consequences of both Abeta and tau aggregation. Since there is more than a decade between disease onset and cognitive decline, a window of opportunity exists to introduce truly effective disease-modifying regimens. Taking advantage of this opportunity is the challenge for the future.
Collapse
Affiliation(s)
- Patrick L McGeer
- Kinsmen Laboratory of Neurological Research, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T1Z3, Canada,
| | | |
Collapse
|
12
|
Dhurandhar EJ, Allison DB, van Groen T, Kadish I. Hunger in the absence of caloric restriction improves cognition and attenuates Alzheimer's disease pathology in a mouse model. PLoS One 2013; 8:e60437. [PMID: 23565247 PMCID: PMC3614512 DOI: 10.1371/journal.pone.0060437] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 02/26/2013] [Indexed: 12/24/2022] Open
Abstract
It has been shown that caloric restriction (CR) delays aging and possibly delays the development of Alzheimer's disease (AD). We conjecture that the mechanism may involve interoceptive cues, rather than reduced energy intake per se. We determined that hunger alone, induced by a ghrelin agonist, reduces AD pathology and improves cognition in the APP-SwDI mouse model of AD. Long-term treatment with a ghrelin agonist was sufficient to improve the performance in the water maze. The treatment also reduced levels of amyloid beta (Aβ) and inflammation (microglial activation) at 6 months of age compared to the control group, similar to the effect of CR. Thus, a hunger-inducing drug attenuates AD pathology, in the absence of CR, and the neuroendocrine aspects of hunger also prevent age-related cognitive decline.
Collapse
Affiliation(s)
- Emily J. Dhurandhar
- School of Public Health, Office of Energetics, Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - David B. Allison
- School of Public Health, Office of Energetics, Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Thomas van Groen
- Department of Cell, Developmental and Integrative Biology, Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Inga Kadish
- Department of Cell, Developmental and Integrative Biology, Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
13
|
Drummond ES, Martins RN, Handelsman DJ, Harvey AR. Altered expression of Alzheimer's disease-related proteins in male hypogonadal mice. Endocrinology 2012; 153:2789-99. [PMID: 22514046 DOI: 10.1210/en.2011-2003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Age-related depletion of estrogens and androgens is associated with an increase in Alzheimer's disease (AD) brain pathology and diminished cognitive function. Here we investigated AD-associated molecular and cellular changes in brains of aged hypogonadal (hpg) male and female mice. hpg Mice have a spontaneous, inactivating genetic mutation in the GnRH gene resulting in life-long deficiency of gonadotropins and gonadal sex hormones. Western blot analysis revealed low levels of amyloid precursor protein and high levels of presenilin 1, amyloid precursor protein C-terminal fragment, and β-amyloid 42 in brains of aged male, but not female, hpg mice. Changes were confined to the hippocampus and were not evident in the cerebellum or other brain tissues. Male hpg mice tended to have lower levels of IL-1β protein than male littermate controls. Immunohistochemical staining of the basal forebrain revealed that male hpg mice had lower choline acetyltransferase levels per neuron compared with controls. These AD-like changes specific to male hpg mice supports a link between androgen depletion and the development of AD pathology.
Collapse
Affiliation(s)
- Eleanor S Drummond
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Western Australia, 6009 Australia.
| | | | | | | |
Collapse
|
14
|
Dong C, Zhao H, Chen W, Wang L, Zhang L, Zhang X, Shi J, Li H, Jin G. The dynamic expression of Mash1 in the hippocampal subgranular zone after fimbria-fornix transection. Neurosci Lett 2012; 520:26-31. [DOI: 10.1016/j.neulet.2012.05.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 05/02/2012] [Accepted: 05/03/2012] [Indexed: 02/04/2023]
|
15
|
Butyrylcholinesterase is associated with β-amyloid plaques in the transgenic APPSWE/PSEN1dE9 mouse model of Alzheimer disease. J Neuropathol Exp Neurol 2012; 71:2-14. [PMID: 22157615 DOI: 10.1097/nen.0b013e31823cc7a6] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Histochemical analysis of Alzheimer disease (AD) brain tissues indicates that butyrylcholinesterase (BuChE) is present in β-amyloid (Aβ) plaques. The role of BuChE in AD pathology is unknown, but an animal model developing similar BuChE-associated Aβ plaques could provide insights. The APPSWE/PSEN1dE9 transgenic mouse (ADTg), which develops Aβ plaques, was examined to determine if BuChE associates with these plaques, as in AD. We found that in mature ADTg mice, BuChE activity associated with Aβ plaques. The Aβ-, thioflavin-S- and BuChE-positive plaques mainly accumulated in the olfactory structures, cerebral cortex, hippocampal formation, amygdala, and cerebellum. No plaques were stained for acetylcholinesterase activity. The distribution and abundance of plaque staining in ADTg closely resembled many aspects of plaque staining in AD. Butyrylcholinesterase staining consistently showed fewer plaques than were detected with Aβ immunostaining but a greater number of plaques than were visualized with thioflavin-S. Double-labeling experiments demonstrated that all BuChE-positive plaques were Aβ positive, whereas only some BuChE-positive plaques were thioflavin-S positive. These observations suggest that BuChE is associated with a subpopulation of Aβ plaques and may play a role in AD plaque maturation. A further study of this animal model could clarify the role of BuChE in AD pathology.
Collapse
|
16
|
Treatment with Aβ42 binding D-amino acid peptides reduce amyloid deposition and inflammation in APP/PS1 double transgenic mice. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2012; 88:133-52. [PMID: 22814708 DOI: 10.1016/b978-0-12-398314-5.00005-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
One of the two characteristic pathological hallmarks of Alzheimer's disease (AD) are neuritic plaques. The sequence of events leading to the extracellular deposition of amyloid β (Aβ) peptides in plaques or in diffuse deposits is not clear. Here we investigate the relationship between aggregation and deposition of Aβ by using peptides that bind to Aβ as antifibrillization treatments in APP/PS1 double transgenic AD-model mice. Using Alzet minipumps, we infused the brain of these AD-model mice for 4 weeks with one of the three small D-amino acid peptides (i.e., D1, D3, or D3-FITC) that were designed to bind specifically to Aβ42, and examined the subsequent improvement in cognitive deficits after 3 weeks and analyzed amyloid deposition in the brain following the behavioral analysis. Cognitive deficits are similar comparing control and D3-treated mice, but D1-treated mice are slightly, but significantly, impaired. In contrast, there is a substantial improvement in the cognitive deficits in the animals treated with D3-FITC, compared to the other mice. In contrast, we show that there is a substantial reduction in the amount of amyloid deposits in the animals treated with D3, compared to the other groups of mice. Furthermore, the amount of activated microglia and astrocytes surrounding Aβ deposits is dramatically reduced in both the D3- and D3-FITC-treated mice. Our findings demonstrate that treatments with a high-affinity Aβ-42-binding D-amino acid peptide significantly decrease Aβ deposits and the associated inflammatory response. Together, this suggests that aggregation likely plays an important role in the deposition of Aβ protein in APP/PS1 transgenic mice and that antiaggregation treatments with D-peptides may be successful in AD patients.
Collapse
|
17
|
Christensen DD. Changing the course of Alzheimer's disease: anti-amyloid disease-modifying treatments on the horizon. PRIMARY CARE COMPANION TO THE JOURNAL OF CLINICAL PSYCHIATRY 2011; 9:32-41. [PMID: 17599166 PMCID: PMC1894844 DOI: 10.4088/pcc.v09n0106] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2006] [Accepted: 05/31/2006] [Indexed: 12/16/2022]
Abstract
OBJECTIVES To review the amyloid hypothesis as the predominant mechanistic theory of Alzheimer's disease and update the status of new disease-modifying, anti-amyloid treatments in clinical development. DATA SOURCES Governmental Web sites and those of professional Alzheimer's disease associations and drug manufacturers were searched for new drugs in development. An English-language search of PubMed (January 2003-January 2006) was conducted using the search terms Alzheimer's disease and amyloid hypothesis and each of the drugs and immunotherapies from the 4 identified classes of anti-amyloid, disease-modifying therapies. STUDY SELECTION AND DATA EXTRACTION Studies and reports were selected on the basis of recent publication, adequate methodology, and completeness of data. DATA SYNTHESIS Immunotherapy, γ-secretase inhibitors, selective neurotoxic aggregated 42-amino acid peptide subspecies of amyloid β (Aβ₄₂)-lowering agents (tarenflurbil), inhibitors of amyloid aggregation (tramiprosate), and statins show promise in clinical trials. Safety remains an important factor. Disease-modifying drugs that specifically target the amyloid cascade and do not interact with essential biological pathways are expected to possess a lower rate of unintended adverse events.Agents that selectively target Aβ₄₂ production (e.g., tarenflurbil), block Aβ aggregation (e.g., tramiprosate), or enhance alpha-secretase activity (statins) offer hope for disease modification and prevention and do not appear to interfere with other biological pathways. CONCLUSIONS Discovery of safe and effective disease-modifying therapies will usher in a new age of Alzheimer's disease treatment.
Collapse
Affiliation(s)
- Daniel D Christensen
- Departments of Psychiatry, Neurology, and Pharmacology, Neuropsychiatric Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
18
|
Kapadia M, Sakic B. Autoimmune and inflammatory mechanisms of CNS damage. Prog Neurobiol 2011; 95:301-333. [PMID: 21889967 DOI: 10.1016/j.pneurobio.2011.08.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Revised: 08/18/2011] [Accepted: 08/19/2011] [Indexed: 12/13/2022]
Abstract
Brain morphology and function are susceptible to various psysiological influences, including changes in the immune system. Inflammation and autoimmunity are two principal immunological responses that can compromise the function of multiple organs and tissues, including the central nervous system. The present article reviews clinical and experimental evidence pointing to structural brain damage induced by chronic autoimmune and/or inflammatory processes. Largely due to the vast complexity of neuroendocrine and immune systems, most of the principal pathogenic circuits are far from elucidated. In addition to summarizing the current knowledge, this article aims to highlight the importance of interdisciplinary research and combined efforts of physicians and scientists in revealing the intricate links between immunity and mental health.
Collapse
Affiliation(s)
- Minesh Kapadia
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
19
|
Sagi SA, Lessard CB, Winden KD, Maruyama H, Koo JC, Weggen S, Kukar TL, Golde TE, Koo EH. Substrate sequence influences γ-secretase modulator activity, role of the transmembrane domain of the amyloid precursor protein. J Biol Chem 2011; 286:39794-803. [PMID: 21868380 DOI: 10.1074/jbc.m111.277228] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A subset of non-steroidal anti-inflammatory drugs modulates the γ cleavage site in the amyloid precursor protein (APP) to selectively reduce production of Aβ42. It is unclear precisely how these γ-secretase modulators (GSMs) act to preferentially spare Aβ40 production as well as Notch processing and signaling. In an effort to determine the substrate requirements in NSAID/GSM activity, we determined the effects of sulindac sulfide and flurbiprofen on γ-cleavage of artificial constructs containing several γ-secretase substrates. Using FLAG-tagged constructs that expressed extracellularly truncated APP, Notch-1, or CD44, we found that these substrates have different sensitivities to sulindac sulfide. γ-Secretase cleavage of APP was altered by sulindac sulfide, but CD44 and Notch-1 were either insensitive or only minimally altered by this compound. Using chimeric APP constructs, we observed that the transmembrane domain (TMD) of APP played a pivotal role in determining drug sensitivity. Substituting the APP TMD with that of APLP2 retained the sensitivity to γ-cleavage modulation, but replacing TMDs from Notch-1 or ErbB4 rendered the resultant molecules insensitive to drug treatment. Specifically, the GXXXG motif within APP appeared to be critical to GSM activity. Consequently, the modulatory effects on γ-cleavage appears to be substrate-dependent. We hypothesize that the substrate present in the γ-secretase complex influences the conformation of the complex so that the binding site of GSMs is either stabilized or less favorable to influence the cleavage of the respective substrates.
Collapse
Affiliation(s)
- Sarah A Sagi
- Department of Neurosciences, University of California San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Schiefer IT, Abdul-Hay S, Wang H, Vanni M, Qin Z, Thatcher GRJ. Inhibition of amyloidogenesis by nonsteroidal anti-inflammatory drugs and their hybrid nitrates. J Med Chem 2011; 54:2293-306. [PMID: 21405086 DOI: 10.1021/jm101450p] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Poor blood-brain barrier penetration of nonsteroidal anti-inflammatory drugs (NSAIDs) has been blamed for the failure of the selective amyloid lowering agent (SALA) R-flurbiprofen in phase 3 clinical trials for Alzheimer's disease (AD). NO-donor NSAIDs (NO-NSAIDs) provide an alternative, gastric-sparing approach to NSAID SALAs, which may improve bioavailability. NSAID analogues were studied for anti-inflammatory activity and for SALA activity in N2a neuronal cells transfected with human amyloid precursor protein (APP). Flurbiprofen (1) analogues were obtained with enhanced anti-inflammatory and antiamyloidogenic properties compared to 1, however, esterification led to elevated Aβ(1-42) levels. Hybrid nitrate prodrugs possessed superior anti-inflammatory activity and reduced toxicity relative to the parent NSAIDs, including clinical candidate CHF5074. Although hybrid nitrates elevated Aβ(1-42) at higher concentration, SALA activity was observed at low concentrations (≤1 μM): both Aβ(1-42) and the ratio of Aβ(1-42)/Aβ(1-40) were lowered. This biphasic SALA activity was attributed to the intact nitrate drug. For several compounds, the selective modulation of amyloidogenesis was tested using an immunoprecipitation MALDI-TOF approach. These data support the development of NO-NSAIDs as an alternative approach toward a clinically useful SALA.
Collapse
Affiliation(s)
- Isaac T Schiefer
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, MC 781, 833 South Wood Street, Chicago, Illinois 60612-7231, United States
| | | | | | | | | | | |
Collapse
|
21
|
Zhang X, Jin G, Li W, Zou L, Shi J, Qin J, Tian M, Li H. Ectopic neurogenesis in the forebrain cholinergic system-related areas of a rat dementia model. Stem Cells Dev 2011; 20:1627-38. [PMID: 21142974 DOI: 10.1089/scd.2010.0285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lesions to the fimbria fornix (FiFx) plus cingulate bundle (CB), the principal routes of communication of forebrain cholinergic regions, produce lasting impairment of spatial learning and memory in mice. We report that extensive neurogenesis takes place in the FiFx, CB, and basalis magnocellularis following FiFx plus CB transection. Immunofluorescence revealed that nestin-expressing cells were present in all 3 areas following lesion; the majority of nestin-positive cells were also positive for 5-bromo-2-deoxy-uridine, a marker of DNA synthesis. Nestin-positive proliferative cells were almost entirely absent from unlesioned tissue. Neurospheres cultured in vitro from lesioned FiFx displayed the characteristics of neural stem cells--proliferation, expression of embryonic markers, and multipotential differentiation into neurons, astrocytes, and oligodendrocytes. At early stages after transection, a small number of immature and migrating doublecortin-immunopositive neurons were detected in lesioned FiFx, where neuronal cell bodies are normally absent. At later stages, postlesion immature neurons developed into β-tubulin III-positive mature neurons. Lentivirus labeling assay implied that the injury-induced neurogenesis in FiFx may be from local neurogenic astrocytes but not from dentate gyrus. These results demonstrate that insult to cholinergic tracts can stimulate neural stem cell proliferation and neuronal regeneration not only in innervated regions but also in the projection pathways themselves. Ectopic neurogenesis in cholinergic system-related areas provides an additional mechanism for repair of cholinergic innervation following damage.
Collapse
Affiliation(s)
- Xinhua Zhang
- Department of Anatomy and Neurobiology, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong City, Jiangsu, China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Bendlin BB, Newman LM, Ries ML, Puglielli L, Carlsson CM, Sager MA, Rowley HA, Gallagher CL, Willette AA, Alexander AL, Asthana S, Johnson SC. NSAIDs may protect against age-related brain atrophy. Front Aging Neurosci 2010; 2. [PMID: 20877426 PMCID: PMC2944647 DOI: 10.3389/fnagi.2010.00035] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 07/20/2010] [Indexed: 01/21/2023] Open
Abstract
The use of non-steroidal anti-inflammatory drugs (NSAIDs) in humans is associated with brain differences including decreased number of activated microglia. In animals, NSAIDs are associated with reduced microglia, decreased amyloid burden, and neuronal preservation. Several studies suggest NSAIDs protect brain regions affected in the earliest stages of AD, including hippocampal and parahippocampal regions. In this cross-sectional study, we examined the protective effect of NSAID use on gray matter volume in a group of middle-aged and older NSAID users (n = 25) compared to non-user controls (n = 50). All participants underwent neuropsychological testing and T1-weighted magnetic resonance imaging. Non-user controls showed smaller volume in portions of the left hippocampus compared to NSAID users. Age-related loss of volume differed between groups, with controls showing greater medial temporal lobe volume loss with age compared to NSAID users. These results should be considered preliminary, but support previous reports that NSAIDs may modulate age-related loss of brain volume.
Collapse
Affiliation(s)
- Barbara B Bendlin
- William S. Middleton Memorial Veterans Hospital, Geriatric Research Education and Clinical Center Madison, WI, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Non-Steroidal Anti-Inflammatory Drugs and Brain Inflammation: Effects on Microglial Functions. Pharmaceuticals (Basel) 2010; 3:1949-1965. [PMID: 27713336 PMCID: PMC4033961 DOI: 10.3390/ph3061949] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 05/21/2010] [Accepted: 06/11/2010] [Indexed: 01/04/2023] Open
Abstract
The term NSAID refers to structurally diverse chemical compounds that share the ability to inhibit the activity of the prostaglandin (PG) biosynthetic enzymes, the cyclooxygenase (COX) isoforms 1 and 2. The suppression of PG synthesis at sites of inflammation has been regarded as primarily responsible for the beneficial properties of NSAIDs, but several COX-independent effects have been described in recent years. Epidemiological studies indicate that NSAIDs are neuroprotective, although the mechanisms underlying their beneficial effect remain largely unknown. Microglial cells play a major role in brain inflammation and are often viewed as major contributors to the neurodegeneration. Therefore, microglia represent a likely target for NSAIDs within the brain. In the present review, we focused on the direct effects of NSAIDs and selective COX-2 inhibitors on microglial functions and discuss the potential efficacy in controlling brain inflammation.
Collapse
|
24
|
Camins A, Sureda FX, Junyent F, Verdaguer E, Folch J, Beas-Zarate C, Pallas M. An overview of investigational antiapoptotic drugs with potential application for the treatment of neurodegenerative disorders. Expert Opin Investig Drugs 2010; 19:587-604. [DOI: 10.1517/13543781003781898] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Imbimbo BP. An update on the efficacy of non-steroidal anti-inflammatory drugs in Alzheimer's disease. Expert Opin Investig Drugs 2010; 18:1147-68. [PMID: 19589092 DOI: 10.1517/13543780903066780] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Several epidemiological studies suggest that long-term use of non-steroidal anti-inflammatory drugs (NSAIDs) may protect against Alzheimer's disease (AD), especially for patients carrying one or more epsilon4 allele of the apolipoprotein E. The biological mechanism of this protection is not completely understood and may involve inhibition of COX activity, inhibition of beta-amyloid(1-42) (Abeta42) production and aggregation, inhibition of beta-secretase activity, activation of PPAR-gamma or stimulation of neurotrophin synthesis. Unfortunately, long-term, placebo-controlled clinical trials with both non-selective and COX-2 selective NSAIDs in AD patients produced negative results. A secondary prevention study with rofecoxib in patients with mild cognitive impairment and a primary prevention study with naproxen and celecoxib in elderly subjects with a family history of AD were also negative. All these failures have diminished the hope that NSAIDs could be beneficial in the treatment of AD. It is hypothesized that the chronic use of NSAIDs may be beneficial only in the normal brain by inhibiting the production of Abeta42. Once the Abeta deposition process has started, NSAIDs are no longer effective and may even be detrimental because of their inhibiting activity on activated microglia of the AD brain, which mediates Abeta clearance and activates compensatory hippocampal neurogenesis.
Collapse
Affiliation(s)
- Bruno P Imbimbo
- Research & Development Department, Chiesi Farmaceutici, Via Palermo 26/A, 43100 Parma, Italy.
| |
Collapse
|
26
|
Abstract
Aromatase is the enzyme that catalyzes the last step of estrogen biosynthesis. It is expressed in many tissues such as the gonads, brain and adipose tissue. The regulation of the level and activity of aromatase determines the levels of estrogens that have endocrine, paracrine and autocrine effects on tissues. Estrogens play many roles in the body, regulating reproduction, metabolism and behavior. In the brain, cell survival and the activity of neurons are affected by estrogens and hence aromatase.
Collapse
|
27
|
Fang F, Lue LF, Yan S, Xu H, Luddy JS, Chen D, Walker DG, Stern DM, Yan S, Schmidt AM, Chen JX, Yan SS. RAGE-dependent signaling in microglia contributes to neuroinflammation, Abeta accumulation, and impaired learning/memory in a mouse model of Alzheimer's disease. FASEB J 2009; 24:1043-55. [PMID: 19906677 DOI: 10.1096/fj.09-139634] [Citation(s) in RCA: 244] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Microglia are critical for amyloid-beta peptide (Abeta)-mediated neuronal perturbation relevant to Alzheimer's disease (AD) pathogenesis. We demonstrate that overexpression of receptor for advanced glycation end products (RAGE) in imbroglio exaggerates neuroinflammation, as evidenced by increased proinflammatory mediator production, Abeta accumulation, impaired learning/memory, and neurotoxicity in an Abeta-rich environment. Transgenic (Tg) mice expressing human mutant APP (mAPP) in neurons and RAGE in microglia displayed enhanced IL-1beta and TNF-alpha production, increased infiltration of microglia and astrocytes, accumulation of Abeta, reduced acetylcholine esterase (AChE) activity, and accelerated deterioration of spatial learning/memory. Notably, introduction of a signal transduction-defective mutant RAGE (DN-RAGE) to microglia attenuates deterioration induced by Abeta. These findings indicate that RAGE signaling in microglia contributes to the pathogenesis of an inflammatory response that ultimately impairs neuronal function and directly affects amyloid accumulation. We conclude that blockade of microglial RAGE may have a beneficial effect on Abeta-mediated neuronal perturbation relevant to AD pathogenesis.-Fang, F., Lue, L.-F., Yan, S., Xu, H., Luddy, J. S., Chen, D., Walker, D. G., Stern, D. M., Yan, S., Schmidt, A. M., Chen, J. X., Yan, S. S. RAGE-dependent signaling in microglia contributes to neuroinflammation, Abeta accumulation, and impaired learning/memory in a mouse model of Alzheimer's disease.
Collapse
Affiliation(s)
- Fang Fang
- P&S 17-410, Department Surgery, College of Physicians and Surgeons, Columbia University, 630 West 168th St., New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Schwab C, Klegeris A, McGeer PL. Inflammation in transgenic mouse models of neurodegenerative disorders. Biochim Biophys Acta Mol Basis Dis 2009; 1802:889-902. [PMID: 19883753 DOI: 10.1016/j.bbadis.2009.10.013] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 10/09/2009] [Accepted: 10/23/2009] [Indexed: 12/31/2022]
Abstract
Much evidence is available that inflammation contributes to the development of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease and Huntington's disease. Our review investigates how well current mouse models reflect this aspect of the pathogenesis. Transgenic models of AD have been available for several years and are the most extensively studied. Modulation of cytokine levels, activation of microglia and, to a lesser extent, activation of the complement system have been reported. Mouse models of PD and HD so far show less evidence for the involvement of inflammation. An increasing number of transgenic mouse strains is being created to model human neurodegenerative diseases. A perfect model should reflect all aspects of a disease. It is important to evaluate continuously the models for their match with the human disease and reevaluate them in light of new findings in human patients. Although none of the transgenic mouse models recapitulates all aspects of the human disorder they represent, all models have provided valuable information on basic molecular pathways. In particular, the mouse models of Alzheimer disease have also led to the development of new therapeutic strategies such as vaccination and modulation of microglial activity.
Collapse
Affiliation(s)
- Claudia Schwab
- Department of Psychiatry, Kinsmen Laboratory of Neurological Research, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T1Z3, Canada.
| | | | | |
Collapse
|
29
|
Abdul-Hay SO, Luo J, Ashghodom RT, Thatcher GRJ. NO-flurbiprofen reduces amyloid-beta, is neuroprotective in cell culture, and enhances cognition in response to cholinergic blockade. J Neurochem 2009; 111:766-76. [PMID: 19702655 DOI: 10.1111/j.1471-4159.2009.06353.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The non-steroidal anti-inflammatory drug flurbiprofen is a selective amyloid lowering agent which has been studied clinically in Alzheimer's disease. HCT-1026 is an ester prodrug of flurbiprofen incorporating a nitrate carrier moiety that in vivo provides NO bioactivity and an improved safety profile. In vitro, HCT-1026 retained the cyclooxygenase inhibitory and non-steroidal anti-inflammatory drug activity of flurbiprofen, but at concentrations at which levels of amyloid-beta 1-42 amino acid were lowered by flurbiprofen, amyloid-beta 1-42 amino acid levels were elevated 200% by HCT-1026. Conversely, at lower concentrations, HCT-1026 behaved as a selective amyloid lowering agent with greater potency than flurbiprofen. The difference in concentration-responses between flurbiprofen and HCT-1026 in vitro suggests different cellular targets; and in no case did a combination of nitrate drug with flurbiprofen provide similar actions. In vivo, HCT-1026 was observed to reverse cognitive deficits induced by scopolamine in two behavioral assays; activity that was also shown by a classical nitrate drug, but not by flurbiprofen. The ability to restore aversive memory and spatial working and reference memory after cholinergic blockade has been demonstrated by other agents that stimulate NO/cGMP signaling. These observations add positively to the preclinical profile of HCT-1026 and NO chimeras in Alzheimer's disease.
Collapse
Affiliation(s)
- Samer O Abdul-Hay
- Department of Medicinal Chemistry & Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | | | |
Collapse
|
30
|
Zhang X, Jin G, Wang L, Hu W, Tian M, Qin J, Huang H. Brn-4 is upregulated in the deafferented hippocampus and promotes neuronal differentiation of neural progenitors in vitro. Hippocampus 2009; 19:176-86. [PMID: 18831054 DOI: 10.1002/hipo.20498] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Fimbria-fornix (FF), the septo-hippocampal pathway, was transected to model Alzheimer's disease (AD), which is characterized by loss of cholinergic afferent fibers in hippocampus. Various alternations may happen in the deafferented hippocampus. In this study, we determined the expression of Brn-4 in hippocampus after FF lesion. RT-PCR and Western blot showed that mRNA transcription and protein of Brn-4 increased significantly and reached to the peak at day 14 after FF lesion. Hybridization and immunohistochemistry indicated that Brn-4 signals in hippocampus and dentate gyrus (DG) of the deafferented side were significantly stronger than the normal side. More Brn-4 positive cells were identified in the DG of deafferented hippocampus. In the pyramidal and granular cells, Brn-4 positive cells were all NeuN positive neurons, whereas in the neurogenic area, subgranular zone (SGZ), only a part of Brn-4 positive cells were NeuN positive, and these Brn-4/NeuN double positive neurons in SGZ and hilus of DG increased significantly after the trauma induced by FF lesion. In vitro Brn-4 antibody attenuated the role of extract from deafferented hippocampus in promoting differentiation of hippocampal progenitors into MAP-2 positive neurons. This study demonstrated that after FF lesion, Brn-4 in the deafferented hippocampus was upregulated and might play an important role in inducing local progenitors to differentiate into neurons, which may compensate for the loss of cholinergic afferent fibers or other dysfunctions.
Collapse
Affiliation(s)
- Xinhua Zhang
- Department of Anatomy and Neurobiology, The Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, PR China
| | | | | | | | | | | | | |
Collapse
|
31
|
van Groen T, Kadish I, Wiesehan K, Funke S, Willbold D. In vitro and in vivo Staining Characteristics of Small, Fluorescent, Aβ42-Binding D-Enantiomeric Peptides in Transgenic AD Mouse Models. ChemMedChem 2009; 4:276-82. [DOI: 10.1002/cmdc.200800289] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
32
|
Nadon NL, Strong R, Miller RA, Nelson J, Javors M, Sharp ZD, Peralba JM, Harrison DE. Design of aging intervention studies: the NIA interventions testing program. AGE (DORDRECHT, NETHERLANDS) 2008; 30:187-99. [PMID: 19424842 PMCID: PMC2585647 DOI: 10.1007/s11357-008-9048-1] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Accepted: 02/07/2008] [Indexed: 05/15/2023]
Abstract
The field of biogerontology has made great strides towards understanding the biological processes underlying aging, and the time is ripe to look towards applying this knowledge to the pursuit of aging interventions. Identification of safe, inexpensive, and non-invasive interventions that slow the aging process and promote healthy aging could have a significant impact on quality of life and health care expenditures for the aged. While there is a plethora of supplements and interventions on the market that purport to slow aging, the evidence to validate such claims is generally lacking. Here we describe the development of an aging interventions testing program funded by the National Institute on Aging (NIA) to test candidate interventions in a model system. The development of this program highlights the challenges of long-term intervention studies and provides approaches to cope with the stringent requirements of a multi-site testing program.
Collapse
Affiliation(s)
- N L Nadon
- Biology of Aging Program, National Institute on Aging, 7201 Wisconsin Ave GW 2C231, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Imbimbo BP, Del Giudice E, Colavito D, D'Arrigo A, Dalle Carbonare M, Villetti G, Facchinetti F, Volta R, Pietrini V, Baroc MF, Serneels L, De Strooper B, Leon A. 1-(3',4'-Dichloro-2-fluoro[1,1'-biphenyl]-4-yl)-cyclopropanecarboxylic acid (CHF5074), a novel gamma-secretase modulator, reduces brain beta-amyloid pathology in a transgenic mouse model of Alzheimer's disease without causing peripheral toxicity. J Pharmacol Exp Ther 2007; 323:822-30. [PMID: 17895400 DOI: 10.1124/jpet.107.129007] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Some nonsteroidal anti-inflammatory drugs has been shown to allosterically modulate the activity of gamma-secretase, the enzymatic complex responsible for the formation of beta-amyloid (Abeta). 1-(3',4'-Dichloro-2-fluoro[1,1'-biphenyl]-4-yl)-cyclopropanecarboxylic acid (CHF5074) is a new gamma-secretase modulator, devoid of anticyclooxygenase (COX) and Notch-interfering activities in vitro. We evaluated the effects of chronic CHF5074 treatment on brain Abeta pathology in Tg2576 transgenic mice. Twenty-eight animals of 9.5 to 10.5 months of age received CHF5074-medicated diet (375 ppm) or standard diet for 17 weeks. Compared with controls, CHF5074 treatment significantly reduced the area occupied by plaques and the number of plaques in cortex (-52.2 +/- 5.6%, p = 0.0003 and -48.9 +/- 6.6%, p = 0.0004, respectively) and hippocampus (-76.7 +/- 6.4%, p = 0.004 and -66.2 +/- 10.3%, p = 0.037, respectively). Biochemical analysis confirmed the histopathological measures, with CHF5074-treated animals showing reduced total brain Abeta40 (-49.2 +/- 9.2%, p = 0.017) and Abeta42 (-43.5 +/- 9.7%, p = 0.027) levels. In a human neuroglioma cell line expressing Swedish mutated form of amyloid precursor protein (H4swe), CHF5074 reduced Abeta42 and Abeta40 secretion, with an IC50 of 3.6 and 18.4 microM, respectively, values consistent with those measured in the brain of the CHF5074-treated Tg2576 mice (6.4 +/- 0.4 microM). At 5 microM, no effects were observed on Notch intracellular cleavage in human embryonic kidney 293swe cells. CHF5074 was well tolerated by Tg2576 mice. No abnormal findings were observed upon histopathological examination of the gastrointestinal tract, indicating the absence of COX-related toxicity. Semiquantitative histochemical evaluation of goblet cells in the ileum of vehicle- and CHF5074-treated animals yielded similar results, suggesting no effects on Notch pathway. CHF5074 is therefore a promising therapeutic agent for Alzheimer's disease.
Collapse
Affiliation(s)
- Bruno P Imbimbo
- Research & Development, Chiesi Farmaceutici, via Palermo 26/A, 43100 Parma, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Rojo LE, Fernández JA, Maccioni AA, Jimenez JM, Maccioni RB. Neuroinflammation: implications for the pathogenesis and molecular diagnosis of Alzheimer's disease. Arch Med Res 2007; 39:1-16. [PMID: 18067990 DOI: 10.1016/j.arcmed.2007.10.001] [Citation(s) in RCA: 245] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Accepted: 05/31/2007] [Indexed: 12/27/2022]
Abstract
During the past few years, an increasing set of evidence has supported the major role of deregulation of the interaction patterns between glial cells and neurons in the pathway toward neuronal degeneration. Neurons and glial cells, together with brain vessels, constitute an integrated system for brain function. Inflammation is a process related with the onset of several neurodegenerative disorders, including Alzheimer's disease (AD). Several hypotheses have been postulated to explain the pathogenesis of AD, but none provides insight into the early events that trigger metabolic and cellular alterations in neuronal degeneration. The amyloid hypothesis was sustained on the basis that Abeta-peptide deposition into senile plaques is responsible for neurodegeneration. However, recent findings point to Abeta oligomers as responsible for synaptic impairment in neuronal degeneration. Amyloid is only one among many other major factors affecting the quality of neuronal cells. Another explanation derives from the tau hypothesis, supported by the observations that tau hyperphosphorylations constitute a common feature of most of the altered signaling pathways in degenerating neurons. Altered tau patterns have been detected in the cerebrospinal fluids of AD patients, and a close correlation was observed between the levels of hyperphosphorylated tau isoforms and the degree of cognitive impairment. On the other hand, the anomalous effects of cytokines and trophic factors share in common the activation of tau hyperphosphorylation patterns. In this context, a neuroimmunological approach to AD becomes relevant. When glial cells that normally provide neurotrophic factors essential for neurogenesis are activated by a set of stressing events, they overproduce cytokines and NGF, thus triggering altered signaling patterns in the etiopathogenesis of AD. A solid set of discoveries has strengthened the idea that altered patterns in the glia-neuron interactions constitute early molecular events within the cascade of cellular signals that lead to neurodegeneration in AD. A direct correlation has been established between the Abeta-induced neurodegeneration and cytokine production and its subsequent release. In effect, neuroinflammation is responsible for an abnormal secretion of proinflammatory cytokines that trigger signaling pathways that activate brain tau hyperphosphorylation in residues that are not modified under normal physiological conditions. Other cytokines such as IL-3 and TNF-alpha seem to display neuroprotective activities. Elucidation of the events that control the transitions from neuroprotection to neurodegeneration should be a critical point toward elucidation of AD pathogenesis.
Collapse
Affiliation(s)
- Leonel E Rojo
- Laboratory of Cellular and Molecular Neurosciences, Faculty of Sciences, University of Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|
35
|
Hua X, Lei M, Zhang Y, Ding J, Han Q, Hu G, Xiao M. Long-term d-galactose injection combined with ovariectomy serves as a new rodent model for Alzheimer's disease. Life Sci 2007; 80:1897-905. [PMID: 17391708 DOI: 10.1016/j.lfs.2007.02.030] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 12/22/2006] [Accepted: 02/17/2007] [Indexed: 10/23/2022]
Abstract
Estrogen deprivation and oxidative stress have been well established as two main factors closely related to the pathological development of Alzheimer's disease (AD). The aim of the present study is to investigate whether these two components act synergistically to accelerate the pathophysiological course of AD. To do this, we examined the effect of long-term intraperitoneal administration of D-galactose (D-gal) into ovariectomized (OVX) rats. Six weeks later, the OVX and d-gal-injected rats exhibited a higher degree of cognitive and memory impairment. This was accompanied by cholinergic neuronal loss in the forebrain and synaptic degeneration in the hippocampus and cerebral cortex which was not observed in intact controls, animals receiving injections of d-gal alone, untreated OVX animals or OVX animals receiving both D-gal and 17-beta estradiol. The typical histopathological alterations associated with AD, including intracellular deposition of amyloid beta peptide and the appearance of intracellular neurofibrillary tangles and nuclear granulovacuolar bodies, were observed in the hippocampus of OVX and D-gal-injected rats but not in other control groups. These results strongly suggest that estrogen deprivation and oxidative stress behave synergistically to enhance the development and progression of AD. Long-term OVX combined with D-gal injection serves as an ideal AD rodent model capable of mimicking pathological, neurochemical and behavioral alterations in AD.
Collapse
Affiliation(s)
- Xiangdong Hua
- Department of Human Anatomy, Histology and Embryology, Institute of Neurosciences, Nanjing Medical University, Nanjing, 210029 China
| | | | | | | | | | | | | |
Collapse
|
36
|
Zhang X, Jin G, Tian M, Qin J, Huang Z. The denervated hippocampus provides proper microenvironment for the survival and differentiation of neural progenitors. Neurosci Lett 2007; 414:115-20. [PMID: 17300870 DOI: 10.1016/j.neulet.2006.07.078] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 07/07/2006] [Accepted: 07/17/2006] [Indexed: 10/23/2022]
Abstract
The fate of neural stem/progenitor cells (NSCs/NPCs) in vivo lies on the local microenvironment. Whether the denervated hippocampus provides a stimulative role on the survival and differentiation of the anterior subventricular zone (SVZa) progenitors was investigated in the present study. In vivo the SVZa progenitors were transplanted into the denervated hippocampus and the contralateral side, and were found migrating along the subgranular layer. More implanted cells were found survived and differentiated into the Neurofilament 200 (NF-200) or beta-Tubulin-III positive neurons in the denervated than in the normal hippocampus at all points studied. In vitro the extracts from the denervated and normal hippocampus were used to induce differentiation of the SVZa progenitors. More progenitors incubated with the denervated hippocampal extract differentiated significantly into the MAP-2 or AChE positive neurons than those incubated with the normal hippocampal extract (P<0.05). We concluded that the deafferented hippocampus provided proper microenvironment for the survival and neuronal differentiation of neural progenitors.
Collapse
Affiliation(s)
- Xinhua Zhang
- Department of Anatomy and Neurobiology, The Jiangsu Key Laboratory of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, People's Republic of China
| | | | | | | | | |
Collapse
|
37
|
Christensen DD. Alzheimer's disease: progress in the development of anti-amyloid disease-modifying therapies. CNS Spectr 2007; 12:113-6, 119-23. [PMID: 17277711 DOI: 10.1017/s1092852900020629] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The amyloid hypothesis--the leading mechanistic theory of Alzheimer's disease--states that an imbalance in production or clearance of amyloid beta (Abeta) results in accumulation of Abeta and triggers a cascade of events leading to neurodegeneration and dementia. The number of persons with Alzheimer's disease is expected to triple by mid-century. If steps are not taken to delay the onset or slow the progression of Alzheimer's disease, the economic and personal tolls will be immense. Different classes of potentially disease-modifying treatments that interrupt early pathological events (ie, decreasing production or aggregation of Abeta or increasing its clearance) and potentially prevent downstream events are in phase II or III clinical studies. These include immunotherapies; secretase inhibitors; selective Abeta42-lowering agents; statins; anti-Abeta aggregation agents; peroxisome proliferator-activated receptor-gamma agonists; and others. Safety and serious adverse events have been a concern with immunotherapy and gamma-secretase inhibitors, though both continue in clinical trials. Anti-amyloid disease-modifying drugs that seem promising and have reached phase III clinical trials include those that selectively target Abeta42 production (eg, tarenflurbil), enhance the activity of alpha-secretase (eg, statins), and block Abeta aggregation (eg, transiposate).
Collapse
|
38
|
Imbimbo BP, Del Giudice E, Cenacchi V, Volta R, Villetti G, Facchinetti F, Riccardi B, Puccini P, Moretto N, Grassi F, Ottonello S, Leon A. In vitro and in vivo profiling of CHF5022 and CHF5074 Two beta-amyloid1-42 lowering agents. Pharmacol Res 2007; 55:318-28. [PMID: 17292621 DOI: 10.1016/j.phrs.2006.12.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 12/13/2006] [Accepted: 12/18/2006] [Indexed: 11/21/2022]
Abstract
Long-term use of non-steroidal anti-inflammatory drugs (NSAIDs) may delay or prevent the onset of Alzheimer's disease (AD). A subset of NSAIDs, including flurbiprofen, has been shown to selectively inhibit the production of beta-amyloid(1-42) (Abeta42), independently from their cyclooxygenase (COX) inhibiting activity. We evaluated the in vitro and in vivo profiles of CHF5022 and CHF5074, two flurbiprofen analogues. The in vitro Abeta inhibiting activity was evaluated in a human neuroglioma cell line (H4) carrying the double Swedish mutation (K595N/M596L) of the human amyloid precursor protein (APPsw). The in vitro anti-COX activity was evaluated using human recombinant enzymes isolated from transfected Sf-9 cells. The in vivo pharmacokinetic and pharmacodynamic profiles of the two compounds were evaluated in young APPsw transgenic mice (Tg2576) after oral gavage (100 or 300mgkg(-1) day(-1) for 4-5 days) and after medicated diet (375ppm for 4 weeks). R-Flurbiprofen was used as comparator. In vitro, CHF5022 and CHF5074 were found to be 3- and 7-fold more potent than R-flurbiprofen in inhibiting Abeta42 secretion (IC(50)s of 92, 40 and 268microM, respectively). Differently from R-flurbiprofen, CHF5022 and CHF5074 did not affect COX-1 (at 100microM) and COX-2 (at 300microM) activity. Similarly to R-flurbiprofen, no significant alteration in the expression profile of a subset of Notch intracellular domain-responsive genes was observed with either CHF5022 or CHF5074. In Tg2576 mice, CHF5022 was well tolerated when administered by oral gavage (100mgkg(-1) day(-1) for 5 days) or by medicated diet (56mg kg(-1) day(-1) for 4 weeks). R-Flurbiprofen was poorly tolerated in the diet (32mgkg(-1) day(-1)) with 55% of the animals dying during the first week of treatment. After 4-5 days of oral gavage, CHF5022 and CHF5074 plasma and brain levels at 3h were found to increase with the dose, leading to brain concentrations of about 10% and 5% of the corresponding plasma concentrations, respectively. In animals fed for 4 weeks with compound-supplemented diet, mean plasma (580microM) and brain (20microM) Cyrillic) concentrations of CHF5022 were 8 and 15 times higher than those of R-flurbiprofen. Plasma Abeta42 concentration was dose-dependently decreased by CHF5022 and CHF5074. Brain Abeta levels (formic acid-extractable) were not significantly affected by either compound, although Abeta42 levels tended to inversely correlate (P=0.105) with CHF5022 concentration in the brain. CHF5022 and CHF5074 thus appear to have a promising in vitro and in vivo profile. This warrants further evaluation of their long-term effects on Abeta brain pathology.
Collapse
Affiliation(s)
- Bruno P Imbimbo
- Research & Development Department, Chiesi Farmaceutici, Via Palermo 26/A, 43100 Parma, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Brunelli S, Sciorati C, D'Antona G, Innocenzi A, Covarello D, Galvez BG, Perrotta C, Monopoli A, Sanvito F, Bottinelli R, Ongini E, Cossu G, Clementi E. Nitric oxide release combined with nonsteroidal antiinflammatory activity prevents muscular dystrophy pathology and enhances stem cell therapy. Proc Natl Acad Sci U S A 2006; 104:264-9. [PMID: 17182743 PMCID: PMC1765447 DOI: 10.1073/pnas.0608277104] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Duchenne muscular dystrophy is a relatively common disease that affects skeletal muscle, leading to progressive paralysis and death. There is currently no resolutive therapy. We have developed a treatment in which we combined the effects of nitric oxide with nonsteroidal antiinflammatory activity by using HCT 1026, a nitric oxide-releasing derivative of flurbiprofen. Here, we report the results of long-term (1-year) oral treatment with HCT 1026 of two murine models for limb girdle and Duchenne muscular dystrophies (alpha-sarcoglycan-null and mdx mice). In both models, HCT 1026 significantly ameliorated the morphological, biochemical, and functional phenotype in the absence of secondary effects, efficiently slowing down disease progression. HCT 1026 acted by reducing inflammation, preventing muscle damage, and preserving the number and function of satellite cells. HCT 1026 was significantly more effective than the corticosteroid prednisolone, which was analyzed in parallel. As an additional beneficial effect, HCT 1026 enhanced the therapeutic efficacy of arterially delivered donor stem cells, by increasing 4-fold their ability to migrate and reconstitute muscle fibers. The therapeutic strategy we propose is not selective for a subset of mutations; it provides ground for immediate clinical experimentation with HCT 1026 alone, which is approved for use in humans; and it sets the stage for combined therapies with donor or autologous, genetically corrected stem cells.
Collapse
Affiliation(s)
- Silvia Brunelli
- *Department of Experimental Medicine, University of Milano–Bicocca, 20052 Monza, Italy
- San Raffaele Scientific Institute, Stem Cell Research Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Clara Sciorati
- San Raffaele Scientific Institute, Stem Cell Research Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Giuseppe D'Antona
- Department of Experimental Medicine, University of Pavia, 27100 Pavia, Italy
| | - Anna Innocenzi
- San Raffaele Scientific Institute, Stem Cell Research Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Diego Covarello
- San Raffaele Scientific Institute, Stem Cell Research Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Beatriz G. Galvez
- San Raffaele Scientific Institute, Stem Cell Research Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Cristiana Perrotta
- San Raffaele Scientific Institute, Stem Cell Research Institute, Via Olgettina 58, 20132 Milan, Italy
- Department of Preclinical Sciences, University of Milano, 20157 Milan, Italy
| | - Angela Monopoli
- Nicox Research Institute, Via Ariosto 21, 20091 Bresso, Italy
| | - Francesca Sanvito
- San Raffaele Scientific Institute, Stem Cell Research Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Roberto Bottinelli
- Department of Experimental Medicine, University of Pavia, 27100 Pavia, Italy
| | - Ennio Ongini
- Nicox Research Institute, Via Ariosto 21, 20091 Bresso, Italy
| | - Giulio Cossu
- San Raffaele Scientific Institute, Stem Cell Research Institute, Via Olgettina 58, 20132 Milan, Italy
- Department of Biology, University of Milano, 20130 Milan, Italy
- **To whom correspondence may be addressed at:
Stem Cell Research Institute, H. San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy. E-mail:
or
| | - Emilio Clementi
- San Raffaele Scientific Institute, Stem Cell Research Institute, Via Olgettina 58, 20132 Milan, Italy
- E. Medea Scientific Institute, 23842 Bosisio Parini, Italy; and
- Department of Preclinical Sciences, University of Milano, 20157 Milan, Italy
- **To whom correspondence may be addressed at:
Stem Cell Research Institute, H. San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy. E-mail:
or
| |
Collapse
|
40
|
Arnaud L, Robakis NK, Figueiredo-Pereira ME. It may take inflammation, phosphorylation and ubiquitination to 'tangle' in Alzheimer's disease. NEURODEGENER DIS 2006; 3:313-9. [PMID: 16954650 DOI: 10.1159/000095638] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Accepted: 05/16/2006] [Indexed: 01/08/2023] Open
Abstract
Neurofibrillary tangles (NFT) are one of the pathologic hallmarks of Alzheimer's disease (AD). Their major component is tau, a protein that becomes hyperphosphorylated and accumulates into insoluble paired helical filaments. During the course of the disease such filaments aggregate into bulky NFT that get ubiquitinated. What triggers their formation is not known, but neuroinflammation could play a role. Neuroinflammation is an active process detectable in the earliest stages of AD. The neuronal toxicity associated with inflammation makes it a potential risk factor in the pathogenesis of chronic neurodegenerative diseases, such as AD. Determining the sequence of events that lead to this devastating disease has become one of the most important goals for AD prevention and treatment. In this review we focus on three topics relevant to AD pathology and to NFT formation: (1) what triggers CNS inflammation resulting in glia activation and neuronal toxicity; (2) how products of inflammation might change the substrate specificity of kinases/phosphatases leading to tau phosphorylation at pathological sites; (3) the relationship between the ubiquitin/proteasome pathway and tau ubiquitination and accumulation in NFT. The overall aim of this review is to provide a challenging and sometimes provocative survey of important contributions supporting the view that CNS inflammation might be a critical contributor to AD pathology. Neuronal cell death resulting from neuroinflammatory processes may have devastating effects as, in the vast majority of cases, neurons lost to disease cannot be replaced. In order to design therapies that will prevent endangered neurons from dying, it is critical that we learn more about the effects of neuroinflammation and its products.
Collapse
Affiliation(s)
- Lisette Arnaud
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10021, USA
| | | | | |
Collapse
|
41
|
Morales LBJ, Loo KK, Liu HB, Peterson C, Tiwari-Woodruff S, Voskuhl RR. Treatment with an estrogen receptor alpha ligand is neuroprotective in experimental autoimmune encephalomyelitis. J Neurosci 2006; 26:6823-33. [PMID: 16793889 PMCID: PMC6673842 DOI: 10.1523/jneurosci.0453-06.2006] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Multiple sclerosis is an inflammatory, neurodegenerative disease for which experimental autoimmune encephalomyelitis (EAE) is a model. Treatments with estrogens have been shown to decrease the severity of EAE through anti-inflammatory mechanisms. Here we investigated whether treatment with an estrogen receptor alpha (ERalpha) ligand could recapitulate the estrogen-mediated protection in clinical EAE. We then went on to examine both anti-inflammatory and neuroprotective mechanisms. EAE was induced in wild-type, ERalpha-, or ERbeta-deficient mice, and each was treated with the highly selective ERalpha agonist, propyl pyrazole triol, to determine the effect on clinical outcomes, as well as on inflammatory and neurodegenerative changes. ERalpha ligand treatment ameliorated clinical disease in both wild-type and ERbeta knock-out mice, but not in ERalpha knock-out mice, thereby demonstrating that the ERalpha ligand maintained ERalpha selectivity in vivo during disease. ERalpha ligand treatment also induced favorable changes in autoantigen-specific cytokine production in the peripheral immune system [decreased TNFalpha, interferon-gamma, and interleukin-6, with increased interleukin-5] and decreased CNS white matter inflammation and demyelination. Interestingly, decreased neuronal staining [NeuN+ (neuronal-specific nuclear protein)/beta3-tubulin+/Nissl], accompanied by increased immunolabeling of microglial/monocyte (Mac 3+) cells surrounding these abnormal neurons, was observed in gray matter of spinal cords of EAE mice at the earliest stage of clinical disease, 1-2 d after the onset of clinical signs. Treatment with either estradiol or the ERalpha ligand significantly reduced this gray matter pathology. In conclusion, treatment with an ERalpha ligand is highly selective in vivo, mediating both anti-inflammatory and neuroprotective effects in EAE.
Collapse
|
42
|
McGeer PL, McGeer EG. NSAIDs and Alzheimer disease: epidemiological, animal model and clinical studies. Neurobiol Aging 2006; 28:639-47. [PMID: 16697488 DOI: 10.1016/j.neurobiolaging.2006.03.013] [Citation(s) in RCA: 356] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Revised: 03/27/2006] [Accepted: 03/31/2006] [Indexed: 12/30/2022]
Abstract
This review reports correlations between four independent fields related to inflammation and Alzheimer disease: fundamental pathology, epidemiology, transgenic animal studies and clinical trials. Activated microglia, along with a spectrum of inflammatory mediators, have been identified in association with the lesions of Alzheimer disease (AD), suggesting that antiinflammatory agents such as NSAIDs should protect against the disease. In multiple epidemiological investigations testing this hypothesis, a significant risk reduction, or a trend towards such a reduction has been observed in long term as opposed to short term users of traditional NSAIDs. In studies where such NSAIDs have been administered to AD transgenic mice, a dose dependent reduction in pathology was observed. The selective C0X-2 inhibitors were ineffective. Results of clinical investigations have so far been disappointing but have nevertheless correlated with fundamental pathological findings and with transgenic mouse results. Four clinical trials using selective COX-2 inhibitors failed which is in keeping with the animal results and is consistent with pathological findings demonstrating that COX-1 and not COX-2 is the appropriate target in activated human microglia. A low dose trial of the traditional NSAID naproxen also failed, but pilot trials using therapeutically established doses of indomethacin and diclofenac/misoprostol showed promise. Further clinical investigations with relatively high doses of traditional NSAIDs might be warranted, although significant side effects should be anticipated.
Collapse
Affiliation(s)
- Patrick L McGeer
- Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, BC, Canada.
| | | |
Collapse
|
43
|
Gervais F, Paquette J, Morissette C, Krzywkowski P, Yu M, Azzi M, Lacombe D, Kong X, Aman A, Laurin J, Szarek WA, Tremblay P. Targeting soluble Abeta peptide with Tramiprosate for the treatment of brain amyloidosis. Neurobiol Aging 2006; 28:537-47. [PMID: 16675063 DOI: 10.1016/j.neurobiolaging.2006.02.015] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Revised: 12/22/2005] [Accepted: 02/16/2006] [Indexed: 10/24/2022]
Abstract
Amyloid beta-peptide (Abeta) is a major constituent of senile plaques in Alzheimer's disease (AD). Neurotoxicity results from the conformational transition of Abeta from random-coil to beta-sheet and its oligomerization. Among a series of ionic compounds able to interact with soluble Abeta, Tramiprosate (3-amino-1-propanesulfonic acid; 3APS; Alzhemedtrade mark) was found to maintain Abeta in a non-fibrillar form, to decrease Abeta(42)-induced cell death in neuronal cell cultures, and to inhibit amyloid deposition. Tramiprosate crosses the murine blood-brain barrier (BBB) to exert its activity. Treatment of TgCRND8 mice with Tramiprosate resulted in significant reduction (approximately 30%) in the brain amyloid plaque load and a significant decrease in the cerebral levels of soluble and insoluble Abeta(40) and Abeta(42) (approximately 20-30%). A dose-dependent reduction (up to 60%) of plasma Abeta levels was also observed, suggesting that Tramiprosate influences the central pool of Abeta, changing either its efflux or its metabolism in the brain. We propose that Tramiprosate, which targets soluble Abeta, represents a new and promising therapeutic class of drugs for the treatment of AD.
Collapse
Affiliation(s)
- Francine Gervais
- Neurochem Inc., 275 Armand-Frappier Blvd., Laval, QC, Canada H7V 4A7
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Bernardo A, Gasparini L, Ongini E, Minghetti L. Dynamic regulation of microglial functions by the non-steroidal anti-inflammatory drug NCX 2216: Implications for chronic treatments of neurodegenerative diseases. Neurobiol Dis 2006; 22:25-32. [PMID: 16307889 DOI: 10.1016/j.nbd.2005.09.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Revised: 09/21/2005] [Accepted: 09/29/2005] [Indexed: 12/22/2022] Open
Abstract
The nitric oxide-releasing derivative of flurbiprofen, NCX 2216, has a safer gastrointestinal profile than the parent drug flurbiprofen and a strong anti-amyloidogenic activity. Here, we show that in primary microglial cultures, in addition to the expected inhibition of prostaglandin synthesis, NCX 2216 specifically activated the peroxisome proliferator-activated receptor-gamma (PPAR-gamma), a ligand-dependent transcription factor controlling several important microglial functions. Prolonged treatment (16 h) of microglial cultures with NCX 2216 induced PPAR-gamma nitration and prevented further activation of the receptor by specific agonists. At functional levels, NCX 2216 treatment of LPS-activated microglial cultures resulted in the transient reduction of TNF-alpha and NO production and in the protracted inhibition of IL-1beta and PGE2 synthesis. The dynamic regulation of the functional state of activated microglia by NCX 2216 helps explaining recent findings in Alzheimer's disease animal models and may offer new therapeutic opportunities for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Antonietta Bernardo
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | | | | | | |
Collapse
|
45
|
Abstract
The subiculum has long been considered as a simple bidirectional relay region interposed between the hippocampus and the temporal cortex. Recent evidence, however, suggests that this region has specific roles in the cognitive functions and pathological deficits of the hippocampal formation. A group of 20 researchers participated in an ESF-sponsored meeting in Oxford in September, 2005 focusing on the neurobiology of the subiculum. Each brought a distinct expertise and approach to the anatomy, physiology, psychology, and pathologies of the subiculum. Here, we review the recent findings that were presented at the meeting.
Collapse
|
46
|
Peretto I, Radaelli S, Parini C, Zandi M, Raveglia LF, Dondio G, Fontanella L, Misiano P, Bigogno C, Rizzi A, Riccardi B, Biscaioli M, Marchetti S, Puccini P, Catinella S, Rondelli I, Cenacchi V, Bolzoni PT, Caruso P, Villetti G, Facchinetti F, Del Giudice E, Moretto N, Imbimbo BP. Synthesis and biological activity of flurbiprofen analogues as selective inhibitors of beta-amyloid(1)(-)(42) secretion. J Med Chem 2005; 48:5705-20. [PMID: 16134939 DOI: 10.1021/jm0502541] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Flurbiprofen, a nonsteroidal antiinflammatory drug (NSAID), has been recently described to selectively inhibit beta-amyloid(1)(-)(42) (Abeta42) secretion, the most toxic component of the senile plaques present in the brain of Alzheimer patients. The use of this NSAID in Alzheimer's disease (AD) is hampered by a significant gastrointestinal toxicity associated with cyclooxygenase (COX) inhibition. New flurbiprofen analogues were synthesized, with the aim of increasing Abeta42 inhibitory potency while removing anti-COX activity. In vitro ADME developability parameters were taken into account in order to identify optimized compounds at an early stage of the project. Appropriate substitution patterns at the alpha position of flurbiprofen allowed for the complete removal of anti-COX activity, while modifications at the terminal phenyl ring resulted in increased inhibitory potency on Abeta42 secretion. In rats, some of the compounds appeared to be well absorbed after oral administration and to penetrate into the central nervous system. Studies in a transgenic mice model of AD showed that selected compounds significantly decreased plasma Abeta42 concentrations. These new flurbiprofen analogues represent potential drug candidates to be developed for the treatment of AD.
Collapse
Affiliation(s)
- Ilaria Peretto
- Research and Development, Chiesi Farmaceutici S.p.A., Via Palermo 26/A, 43100 Parma, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|