1
|
Caro G, Swedzky J, Guisasola EEB, Solis C, Bringas L, Auderut M, Previtali G, Campetelli AN, Monesterolo NE, Santander VS, Bisig G, Previtali C, Casale CH, Antonelli JFR. Spectroscopic and in silico data indicate that phenolic acids interact with aldose reductase with different degrees of affinity at a single binding site. Int J Biol Macromol 2025; 301:140319. [PMID: 39884623 DOI: 10.1016/j.ijbiomac.2025.140319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/01/2025]
Abstract
Our previous studies demonstrated that the enzyme aldose reductase (AR) is activated by its interaction with tubulin, a mechanism which can lead to the emergence of secondary diseases in diabetic patients. We also found that different compounds derived from phenolic acid (CAFs) can prevent this interaction and thus AR activation. Here, we used spectroscopic and bioinformatic techniques to explore the interaction between AR and three CAFs: 3-nitrotyrosine (NTyr), Tyrosine (Tyr), and vanillic acid (Van). The results revealed that the CAFs alter the UV-Vis absorption spectrum of AR and significantly quenchAR fluorescence. These changes suggest the formation of stable AR-CAF complexes. Moreover, a single binding site for the CAFs was identified in AR, to which a single molecule of NTyr and at least two molecules of Tyr or Van appear to bind. NTyr showed the most affinity for interacting with the enzyme, followed by Tyr and Van. Binding occurs through a thermodynamically favorable and exothermic process. It involves van der Waals interactions and the creation of hydrogen bonds between the phenol substituent in the CAFs and the side residues in AR. Molecular docking calculations confirmed NTyr as the compound with the most affinity and revealed the multiple interactions that contribute to this affinity. These findings enhance our understanding of the molecular mechanisms through which different CAFs bind to AR and inhibit its interaction with tubulin. As such, they could pave the way for the design of novel adjunctive treatments that complement conventional antihyperglycemic therapies and mitigate complications associated with diabetes mellitus.
Collapse
Affiliation(s)
- Gustavo Caro
- INBIAS-CONICET, Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800 Córdoba, Argentina
| | - Julieta Swedzky
- INBIAS-CONICET, Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800 Córdoba, Argentina
| | | | - Claudia Solis
- Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800 Córdoba, Argentina
| | - Lucrecia Bringas
- INBIAS-CONICET, Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800 Córdoba, Argentina
| | - Mariel Auderut
- INBIAS-CONICET, Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800 Córdoba, Argentina
| | - Gabriela Previtali
- INBIAS-CONICET, Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800 Córdoba, Argentina
| | - Alexis Nazareno Campetelli
- INBIAS-CONICET, Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800 Córdoba, Argentina
| | - Noelia Edith Monesterolo
- INBIAS-CONICET, Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800 Córdoba, Argentina
| | - Verónica Silvina Santander
- INBIAS-CONICET, Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800 Córdoba, Argentina
| | - Gastón Bisig
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), UNC-CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Carlos Previtali
- Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800 Córdoba, Argentina
| | - César Horacio Casale
- INBIAS-CONICET, Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800 Córdoba, Argentina
| | - Juan Franco Rivelli Antonelli
- INBIAS-CONICET, Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800 Córdoba, Argentina.
| |
Collapse
|
2
|
Vašková J, Kováčová G, Pudelský J, Palenčár D, Mičková H. Methylglyoxal Formation-Metabolic Routes and Consequences. Antioxidants (Basel) 2025; 14:212. [PMID: 40002398 PMCID: PMC11852113 DOI: 10.3390/antiox14020212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/04/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Methylglyoxal (MGO), a by-product of glycolysis, plays a significant role in cellular metabolism, particularly under stress conditions. However, MGO is a potent glycotoxin, and its accumulation has been linked to the development of several pathological conditions due to oxidative stress, including diabetes mellitus and neurodegenerative diseases. This paper focuses on the biochemical mechanisms by which MGO contributes to oxidative stress, particularly through the formation of advanced glycation end products (AGEs), its interactions with antioxidant systems, and its involvement in chronic diseases like diabetes, neurodegeneration, and cardiovascular disorders. MGO exerts its effects through multiple signaling pathways, including NF-κB, MAPK, and Nrf2, which induce oxidative stress. Additionally, MGO triggers apoptosis primarily via intrinsic and extrinsic pathways, while endoplasmic reticulum (ER) stress is mediated through PERK-eIF2α and IRE1-JNK signaling. Moreover, the activation of inflammatory pathways, particularly through RAGE and NF-κB, plays a crucial role in the pathogenesis of these conditions. This study points out the connection between oxidative and carbonyl stress due to increased MGO formation, and it should be an incentive to search for a marker that could have prognostic significance or could be a targeted therapeutic intervention in various diseases.
Collapse
Affiliation(s)
- Janka Vašková
- Department of Medical Biology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia
| | - Gabriela Kováčová
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik, 040 11 Košice, Slovakia; (G.K.)
| | - Jakub Pudelský
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik, 040 11 Košice, Slovakia; (G.K.)
| | - Drahomír Palenčár
- Department of Plastic Surgery, Faculty of Medicine, Comenius University Bratislava, 813 72 Bratislava, Slovakia
| | - Helena Mičková
- Department of Medical Biology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia
| |
Collapse
|
3
|
Song D, Wang M, Zhao X, Zhang Y, Zhang Y, Hao X, Yuan J, Tang H. Aldose Reductase: A Promising Therapeutic Target for High-Altitude Pulmonary Edema. Int J Mol Sci 2025; 26:341. [PMID: 39796195 PMCID: PMC11720669 DOI: 10.3390/ijms26010341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
The Qinghai-Tibet Plateau, famously known as the "Roof of the World", has witnessed a surge in individuals traveling or working there. However, a considerable percentage of these individuals may suffer from acute mountain sickness (AMS), with high-altitude pulmonary edema (HAPE) being a severe and potentially life-threatening manifestation. HAPE disrupts the balance of intrapulmonary tissue fluid, resulting in severe lung function impairment. Current therapeutic interventions for HAPE have limitations and are accompanied by significant side effects. Aldose reductase (AR), a crucial enzyme in the polyol metabolic pathway, has been implicated in various diseases. In this study, we sought to explore the role of AR in HAPE. Utilizing both in vivo and in vitro models, we investigated the impact of AR on hypoxia-induced pulmonary edema, vascular pressure, inflammatory factors, and oxidative stress. Our findings revealed that AR knockdown mitigated hypoxia-induced pulmonary edema, decreased the expression of vascular pressure and inflammatory factors, and enhanced the expression related to oxidative stress. These results indicate that AR may serve as a potential therapeutic target for HAPE, offering a plausible pathological basis and novel drug targets for the prevention and treatment of this condition.
Collapse
|
4
|
Yepuri G, Kancharla K, Perfetti R, Shendelman S, Wasmuth A, Ramasamy R. The aldose reductase inhibitors AT-001, AT-003 and AT-007 attenuate human keratinocyte senescence. FRONTIERS IN AGING 2024; 5:1466281. [PMID: 39741583 PMCID: PMC11685203 DOI: 10.3389/fragi.2024.1466281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/28/2024] [Indexed: 01/03/2025]
Abstract
Human skin plays an important role protecting the body from both extrinsic and intrinsic factors. Skin aging at cellular level, which is a consequence of accumulation of irreparable senescent keratinocytes is associated with chronological aging. However, cell senescence may occur independent of chronological aging and it may be accelerated by various pathological conditions. Recent studies have shown that oxidative stress driven keratinocyte senescence is linked to the rate limiting polyol pathway enzyme aldose reductase (AR). Here we investigated the role of three novel synthetic AR inhibitors (ARIs) AT-001, AT-003 and AT-007 in attenuating induced skin cell senescence, in primary normal human keratinocytes (NHK cells), using three different senescence inducing agents: high glucose (HG), hydrogen peroxide (H2O2) and mitomycin-c (MMC). To understand the efficacy of ARIs in reducing senescence, we have assessed markers of senescence, including SA-β-galactosidase activity, γ-H2AX foci, gene expression of CDKN1A, TP53 and SERPINE1, reactive oxygen species generation and senescence associated secretory phenotypes (SASP). Strikingly, all three ARIs significantly inhibited the assessed senescent markers, after senescence induction. Our data confirms the potential role of ARIs in reducing NHK cell senescence and paves the way for preclinical and clinical testing of these ARIs in attenuating cell aging and aging associated diseases.
Collapse
Affiliation(s)
- Gautham Yepuri
- Diabetes Research Program, Holman Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Kushie Kancharla
- Diabetes Research Program, Holman Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, NY, United States
| | | | | | | | - Ravichandran Ramasamy
- Diabetes Research Program, Holman Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
5
|
Han X, Wu X, Liu F, Chen H, Hou H. Inhibition of LPS-induced inflammatory response in RAW264.7 cells by natural Chlorogenic acid isomers involved with AKR1B1 inhibition. Bioorg Med Chem 2024; 114:117942. [PMID: 39396466 DOI: 10.1016/j.bmc.2024.117942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/05/2024] [Accepted: 10/06/2024] [Indexed: 10/15/2024]
Abstract
Inflammation is the physiological response of the immune system to injury or infection, typically manifested by local tissue congestion, swelling, heat, and pain. Prolonged or excessive inflammation can lead to tissue damage and the development of many diseases. The anti-inflammatory effects of natural ingredients have been extensively researched and confirmed. This study investigated the effects of Chlorogenic acid (CGA) isomers -- 3-Caffeolyquninic acid (3-CQA), 4-Caffeolyquninic acid (4-CQA), and 5-Caffeolyquninic acid (5-CQA) -- on the inflammatory response and oxidative stress reaction induced by LPS in RAW264.7 cells. Overall, 3-CQA exhibited the most significant reduction in levels of TNF-α, IL-6, NO, and ROS. 4-CQA showed superior inhibition of TNF-α compared to 5-CQA (p < 0.05), while no significant difference in other parameters. We further used DARTS and CETSA to demonstrate that CGA isomers have stable affinity with AKR1B1. As a positive control, the AKR1B1 antagonist epalrestat exhibited similar effects to the CGA isomers. 3-CQA having the smallest half-inhibitory concentration (IC50) for AKR1B1, while 4-CQA and 5-CQA have similar values. AutoDock simulations of the docking conformations revealed minimal differences in the average binding energies of the CGA isomers. The main differences were that VAL47 formed a hydrogen bond with 3-CQA, whereas GLN49 formed hydrogen bonds with 4-CQA and 5-CQA. Additionally, the number of hydrophobic bonds involving PHE122 and LEU300 varies. Our conclusion is that differences in non-covalent interactions result in the varying inhibitory abilities of CGA isomers on AKR1B1, which further affect the anti-inflammatory and antioxidant effects of CGA isomers.
Collapse
Affiliation(s)
- Xu Han
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China; China National Tobacco Quality Supervision & Test Center, Zhengzhou 450001, PR China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, PR China
| | - Xiaqing Wu
- China National Tobacco Quality Supervision & Test Center, Zhengzhou 450001, PR China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, PR China
| | - Fanglin Liu
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China.
| | - Huan Chen
- China National Tobacco Quality Supervision & Test Center, Zhengzhou 450001, PR China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, PR China.
| | - Hongwei Hou
- China National Tobacco Quality Supervision & Test Center, Zhengzhou 450001, PR China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, PR China.
| |
Collapse
|
6
|
Misra R, Barman P, Bhabak KP. Esterase-Responsive Fluorogenic Prodrugs of Aldose Reductase Inhibitor Epalrestat: An Innovative Strategy toward Enhanced Anticancer Activity. ACS APPLIED BIO MATERIALS 2024; 7:6542-6553. [PMID: 39146213 DOI: 10.1021/acsabm.4c00719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
In addition to the conventional chemotherapeutic drugs, potent inhibitors of key enzymes that are differentially overexpressed in cancer cells and associated with its progression are often considered as the drugs of choice for treating cancer. Aldose reductase (AR), which is primarily associated with complications of diabetes, is known to be closely related to the development of cancer and drug resistance. Epalrestat (EPA), an FDA-approved drug, is a potent inhibitor of AR and exhibits anticancer activity. However, its poor pharmacokinetic properties limit its bioavailability and therapeutic benefits. We report herein the first examples of esterase-responsive turn-on fluorogenic prodrugs for the sustained release of EPA to cancer cells with a turn-on fluorescence readout. Carboxylesterases are known to be overexpressed in several organ-specific cancer cells and help in selective uncaging of drug from the prodrugs. The prodrugs were synthesized using a multistep organic synthesis and successfully characterized. Absorption and emission spectroscopic studies indicated successful activation of the prodrugs in the presence of porcine liver esterase (PLE) under physiological condition. HPLC studies revealed a simultaneous release of both the drug and the fluorophore from the prodrugs over time with mechanistic insights. While the inhibitory potential of EPA released from the prodrugs toward the enzyme AR was validated in the aqueous medium, the anticancer activity of the prodrugs was studied in a representative cervical cancer cell line. Interestingly, our results revealed that the development of the prodrugs can significantly enhance the anticancer potential of EPA. Finally, the drug uncaging process from the prodrugs by the intracellular esterases was studied in the cellular medium by measuring the turn-on fluorescence using fluorescence microscopy. Therefore, the present study highlights the rational development of the fluorogenic prodrugs of EPA, which will help enhance its anticancer potential with better therapeutic potential.
Collapse
Affiliation(s)
- Roopjyoti Misra
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Pallavi Barman
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Krishna P Bhabak
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
7
|
Ahmad S, Ahmad MFA, Alouffi S, Khan S, Khan M, Khan MWA, Prakash C, Ahmad N, Ansari IA. Aldose reductase inhibitory and antiglycation properties of phytoconstituents of Cichorium intybus: Potential therapeutic role in diabetic retinopathy. Int J Biol Macromol 2024; 277:133816. [PMID: 39002911 DOI: 10.1016/j.ijbiomac.2024.133816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/27/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Diabetic vascular complication including diabetic retinopathy is a major morbidity in Saudia Arabia. The polyol pathway aka aldose reductase (AR) pathway has gained significant association with diabetic retinopathy with regard to chronically enhanced glucose metabolism. Considerable research has been put forth to develop more effective therapeutic strategies to overcome the overwhelming challenges of vascular complications associated with diabetes. In this regard, constituents of Cichorium intybus can offer strong AR inhibitory potential because of their strong antidiabetic properties. Therefore, aim of this study was to investigate the AR inhibitory as well as antiglycation potential of C. intybus extract/compounds. The preliminary in vitro results showed that methanolic extract of C. intybus could significantly inhibit AR enzyme and advanced glycation end product formation. Eventually, based on previous studies and reviews, we selected one hundred fifteen C. intybus root constituents and screened them through Lipinski's rule of five and ADMET analysis. Later, after molecular docking analysis of eight compounds, five best were selected for molecular dynamics simulation to deduce their binding affinity with the AR enzyme. Finally, three out of five compounds were further tested in vitro for their AR inhibitory potential and antiglycation properties. Enzyme assay and kinetic studies showed that all the three tested compounds were having potent AR inhibitory properties, although to a lesser extent than ellagic acid and tolrestat. Similarly, kaempferol showed strong antiglycation property equivalent to ellagic acid, but greater than aminoguanidine. Intriguingly, significant reduction in sorbitol accumulation in RBCs by the tested compounds substantiated strong AR inhibition by these compounds. Moreover, decrease in sorbitol accumulation under high glucose environment also signifies the potential application of these compounds in diabetic retinopathy and other vascular complications. Thus, in sum, the in silico and in vitro studies combinedly showed that C. intybus root is a treasure for therapeutic compounds and can be explored further for drug development against diabetic retinopathy.
Collapse
Affiliation(s)
- Saheem Ahmad
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail- 2440, Saudi Arabia.
| | | | - Sultan Alouffi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail- 2440, Saudi Arabia.
| | - Saif Khan
- Department of Basic Dental and Medical Sciences, College of Dentistry, University of Hail, Saudi Arabia.
| | - Mahvish Khan
- Department of Biology, College of Science, University of Hail- 2440, Saudi Arabia.
| | - Mohd Wajid Ali Khan
- Department of Chemistry, College of Science, University of Hail- 2440, Saudi Arabia.
| | - Chander Prakash
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, India.
| | - Naved Ahmad
- Department of Computer Science and Information System, College of Applied Sciences, AlMaarefa University, P.O. Box 71666, Riyadh 13713, Saudi Arabia.
| | | |
Collapse
|
8
|
Summer M, Ali S, Fiaz U, Hussain T, Khan RRM, Fiaz H. Revealing the molecular mechanisms in wound healing and the effects of different physiological factors including diabetes, age, and stress. J Mol Histol 2024; 55:637-654. [PMID: 39120834 DOI: 10.1007/s10735-024-10223-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/05/2024] [Indexed: 08/10/2024]
Abstract
Wounds are the common fates in various microbial infections and physical damages including accidents, surgery, and burns. In response, a healthy body with a potent immune system heals that particular site within optimal time by following the coagulation, inflammation, proliferation, and remodeling phenomenon. However, certain malfunctions in the body due to various diseases particularly diabetes and other physiological factors like age, stress, etc., prolong the process of wound healing through various mechanisms including the Akt, Polyol, and Hexosamine pathways. The current review thoroughly explains the wound types, normal wound healing mechanisms, and the immune system's role. Moreover, the mechanistic role of diabetes is also elaborated comprehensively.
Collapse
Affiliation(s)
- Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, GC University Lahore, Lahore, 54000, Pakistan.
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, GC University Lahore, Lahore, 54000, Pakistan.
| | - Umaima Fiaz
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, GC University Lahore, Lahore, 54000, Pakistan
| | - Tauqeer Hussain
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, GC University Lahore, Lahore, 54000, Pakistan
| | | | - Hashim Fiaz
- Ammer-ud-Din Medical College, Lahore, 54000, Pakistan
| |
Collapse
|
9
|
Khanal P, Patil VS, Bhattacharya K, Patil BM. Multifaceted targets of cannabidiol in epilepsy: Modulating glutamate signaling and beyond. Comput Biol Med 2024; 179:108898. [PMID: 39047503 DOI: 10.1016/j.compbiomed.2024.108898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/16/2024] [Accepted: 07/14/2024] [Indexed: 07/27/2024]
Abstract
Cannabidiol has been reported to interact with broad-spectrum biological targets with pleiotropic pharmacology including epilepsy although a cohesive mechanism is yet to be determined. Even though some studies propose that cannabidiol may manipulate glutamatergic signals, there is insufficient evidence to support cannabidiol direct effect on glutamate signaling, which is important in intervening epilepsy. Therefore, the present study aimed to analyze the epilepsy-related targets for cannabidiol, assess the differentially expressed genes with its treatment, and identify the possible glutamatergic signaling target. In this study, the epileptic protein targets of cannabidiol were identified using the Tanimoto coefficient and similarity index-based targets fishing which were later overlapped with the altered expression, epileptic biomarkers, and genetically altered proteins in epilepsy. The common proteins were then screened for possible glutamatergic signaling targets with differentially expressed genes. Later, molecular docking and simulation were performed using AutoDock Vina and GROMACS to evaluate binding affinity, ligand-protein stability, hydrophilic interaction, protein compactness, etc. Cannabidiol identified 30 different epilepsy-related targets of multiple protein classes including G-protein coupled receptors, enzymes, ion channels, etc. Glutamate receptor 2 was identified to be genetically varied in epilepsy which was targeted by cannabidiol and its expression was increased with its treatment. More importantly, cannabidiol showed a direct binding affinity with Glutamate receptor 2 forming a stable hydrophilic interaction and comparatively lower root mean squared deviation and residual fluctuations, increasing protein compactness with broad conformational changes. Based on the cheminformatic target fishing, evaluation of differentially expressed genes, molecular docking, and simulations, it can be hypothesized that cannabidiol may possess glutamate receptor 2-mediated anti-epileptic activities.
Collapse
Affiliation(s)
- Pukar Khanal
- KLE College of Pharmacy Belagavi, KLE Academy of Higher Education and Research (KAHER), Belagavi, 590010, India; Silicon Script Sciences Private Limited, Bharatpur, Ghorahi, Dang, Nepal.
| | - Vishal S Patil
- KLE College of Pharmacy Belagavi, KLE Academy of Higher Education and Research (KAHER), Belagavi, 590010, India
| | | | - B M Patil
- KLE College of Pharmacy Belagavi, KLE Academy of Higher Education and Research (KAHER), Belagavi, 590010, India; PRES's Pravara Rural College of Pharmacy Pravaranagar, Loni, Maharashtra, India
| |
Collapse
|
10
|
Li W, Yao T, Zhang X, Weng X, Li F, Yue X. Oxylipin profiling analyses reveal that ω-3 PUFA is more susceptible to lipid oxidation in sheep testis under oxidative stress. Anim Reprod Sci 2024; 268:107567. [PMID: 39068814 DOI: 10.1016/j.anireprosci.2024.107567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/22/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Reactive oxygen species causes oxidative stress, which oxidizes polyunsaturated fatty acids (PUFAs) to form oxidative metabolites. Sertoli cell is an important cellular metabolism of PUFA in testicular cells, and it regulates the testis development and spermatogenesis. However, the oxylipins generated in testes with different developmental statuses are lacking. In this study, twelve 6-month-old Hu sheep were selected and divided into large testicular group (L) and the small testicular group (S) (n=6). UPLC-MS/MS was conducted to screen oxylipins in the testis, and the total oxylipin and ω-3 PUFA-derived oxylipin contents in the S group were higher. A total of 20 differential oxylipins between the two groups were screened. Among them, the contents of ω-3 PUFA, DHA-derived oxylipins were increased in the S group. The arachidonic acid-derived oxylipin was lower in the S group. The mRNA expression levels of genes related to oxylipin regulation (AKR1B1, PTGER2, and PTGDS) were higher in the S group (P < 0.05). In vitro, 200 µM α-linolenic acid alleviated oxidative stress damage to Sertoli cells and improved cell viability by increasing the superoxide dismutase contents and mRNA expression levels of GPX4 and Bcl2. These results indicate that ω-3 PUFA is more susceptible to lipid oxidation in the S group under oxidative stress, which might alleviate the damage of oxidative stress to testis. Moreover, ALA could stimulate the proliferation of Sertoli cells by increasing the capacity of antioxidants. This work may provide a theoretical basis for further studies on the antioxidant properties of the testis for Hu sheep.
Collapse
Affiliation(s)
- Wanhong Li
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou 730020, China; Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou University, Lanzhou 730020, China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou, 730020, China.
| | - Ting Yao
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou 730020, China; Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou University, Lanzhou 730020, China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou, 730020, China
| | - Xinyue Zhang
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou 730020, China; Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou University, Lanzhou 730020, China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou, 730020, China
| | - Xiuxiu Weng
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou 730020, China; Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou University, Lanzhou 730020, China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou, 730020, China
| | - Fadi Li
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou 730020, China; Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou University, Lanzhou 730020, China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou, 730020, China
| | - Xiangpeng Yue
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou 730020, China; Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou University, Lanzhou 730020, China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou, 730020, China
| |
Collapse
|
11
|
Shu L, Fu H, Pi A, Feng Y, Dong H, Si C, Li S, Zhu F, Zheng P, Zhu Q. Protective effect of andrographolide against ulcerative colitis by activating Nrf2/HO-1 mediated antioxidant response. Front Pharmacol 2024; 15:1424219. [PMID: 39135804 PMCID: PMC11317410 DOI: 10.3389/fphar.2024.1424219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/11/2024] [Indexed: 08/15/2024] Open
Abstract
Ulcerative colitis (UC) is a recurring inflammatory bowel disease, in which oxidative stress plays a role in its progression, and regulation of the oxidative/antioxidative balance has been suggested as a potential target for the treatment of UC. The aim of this study was to evaluate the protective effect of andrographolide against UC and its potential antioxidant properties by modulating the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway. Dextran sulfate sodium (DSS) -induced UC mice and the LPS-induced HT29 inflammatory cell model were established to uncover the potential mechanisms of andrographolide. ML385, a Nrf2 inhibitor, was used in both models to assess whether andrographolide exerts a protective effect against UC through the Nrf2/HO-1 pathway. The in vivo experiment showed that andrographolide ameliorated the symptoms and histopathology of DSS-induced mice and restored the expressions of ZO-1, Occludin-1 and Claudin-1. Meanwhile, DSS-induced oxidative stress and inflammation were suppressed by andrographolide treatment, along with the upregulation of key proteins in the Nrf2/HO-1 pathway. In vitro experiments showed that andrographolide attenuated LPS-induced excessive generation of ROS in HT29 cells, reduced inflammatory factors, and upregulated the expression of proteins related to tight junctions and Nrf2/HO-1 pathway. In addition, ML385 abolished the beneficial effect of andrographolide. In conclusion, the protective effect of andrographolide against UC may involve the suppression of oxidative stress and inflammation via the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Long Shu
- Department of Clinical Nutrition, Zhejiang Hospital, Hangzhou, China
| | - Hangjie Fu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Aiwen Pi
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuliang Feng
- Department of Digestion, Zhejiang Hospital, Hangzhou, China
| | - Hui Dong
- Department of Digestion, Zhejiang Hospital, Hangzhou, China
| | - Caijuan Si
- Department of Clinical Nutrition, Zhejiang Hospital, Hangzhou, China
| | - Songtao Li
- Department of Clinical Nutrition, Zhejiang Hospital, Hangzhou, China
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Feiye Zhu
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Peifen Zheng
- Department of Clinical Nutrition, Zhejiang Hospital, Hangzhou, China
- Department of Digestion, Zhejiang Hospital, Hangzhou, China
| | - Qin Zhu
- Department of Clinical Nutrition, Zhejiang Hospital, Hangzhou, China
- Department of Digestion, Zhejiang Hospital, Hangzhou, China
| |
Collapse
|
12
|
NAGINI SIDDAVARAM, KALLAMADI PRATHAPREDDY, TANAGALA KRANTHIKIRANKISHORE, REDDY GEEREDDYBHANUPRAKASH. Aldo-keto reductases: Role in cancer development and theranostics. Oncol Res 2024; 32:1287-1308. [PMID: 39055885 PMCID: PMC11267078 DOI: 10.32604/or.2024.049918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/08/2024] [Indexed: 07/28/2024] Open
Abstract
Aldo-keto reductases (AKRs) are a superfamily of enzymes that play crucial roles in various cellular processes, including the metabolism of xenobiotics, steroids, and carbohydrates. A growing body of evidence has unveiled the involvement of AKRs in the development and progression of various cancers. AKRs are aberrantly expressed in a wide range of malignant tumors. Dysregulated expression of AKRs enables the acquisition of hallmark traits of cancer by activating oncogenic signaling pathways and contributing to chemoresistance. AKRs have emerged as promising oncotherapeutic targets given their pivotal role in cancer development and progression. Inhibition of aldose reductase (AR), either alone or in combination with chemotherapeutic drugs, has evolved as a pragmatic therapeutic option for cancer. Several classes of synthetic aldo-keto reductase (AKR) inhibitors have been developed as potential anticancer agents, some of which have shown promise in clinical trials. Many AKR inhibitors from natural sources also exhibit anticancer effects. Small molecule inhibitors targeting specific AKR isoforms have shown promise in preclinical studies. These inhibitors disrupt the activation of oncogenic signaling by modulating transcription factors and kinases and sensitizing cancer cells to chemotherapy. In this review, we discuss the physiological functions of human AKRs, the aberrant expression of AKRs in malignancies, the involvement of AKRs in the acquisition of cancer hallmarks, and the role of AKRs in oncogenic signaling, and drug resistance. Finally, the potential of aldose reductase inhibitors (ARIs) as anticancer drugs is summarized.
Collapse
|
13
|
Yang L, Jiang Z, Yang L, Zheng W, Chen Y, Qu F, Crabbe MJC, Zhang Y, Andersen ME, Zheng Y, Qu W. Disinfection Byproducts of Haloacetaldehydes Disrupt Hepatic Lipid Metabolism and Induce Lipotoxicity in High-Fat Culture Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12356-12367. [PMID: 38953388 DOI: 10.1021/acs.est.3c11009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Unhealthy lifestyles, obesity, and environmental pollutants are strongly correlated with the development of nonalcoholic fatty liver disease (NAFLD). Haloacetaldehyde-associated disinfection byproducts (HAL-DBPs) at various multiples of concentrations found in finished drinking water together with high-fat (HF) were examined to gauge their mixed effects on hepatic lipid metabolism. Using new alternative methods (NAMs), studying effects in human cells in vitro for risk assessment, we investigated the combined effects of HF and HAL-DBPs on hepatic lipid metabolism and lipotoxicity in immortalized LO-2 human hepatocytes. Coexposure of HAL-DBPs at various multiples of environmental exposure levels with HF increased the levels of triglycerides, interfered with de novo lipogenesis, enhanced fatty acid oxidation, and inhibited the secretion of very low-density lipoproteins. Lipid accumulation caused by the coexposure of HAL-DBPs and HF also resulted in more severe lipotoxicity in these cells. Our results using an in vitro NAM-based method provide novel insights into metabolic reprogramming in hepatocytes due to coexposure of HF and HAL-DBPs and strongly suggest that the risk of NAFLD in sensitive populations due to HAL-DBPs and poor lifestyle deserves further investigation both with laboratory and epidemiological tools. We also discuss how results from our studies could be used in health risk assessments for HAL-DBPs.
Collapse
Affiliation(s)
- Lili Yang
- Key Laboratory of Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Zhiqiang Jiang
- Key Laboratory of Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Lan Yang
- Key Laboratory of Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Weiwei Zheng
- Key Laboratory of Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yu Chen
- Key Laboratory of Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Fei Qu
- Key Laboratory of Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - M James C Crabbe
- Wolfson College, Oxford University, Oxford OX2 6UD, United Kingdom
- Institute of Biomedical and Environmental Science & Technology, University of Bedfordshire, Luton LU1 3JU, U.K
| | - Yubin Zhang
- Key Laboratory of Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Melvin E Andersen
- ScitoVation, LLC, 6 Davis Drive, Suite 146, Research Triangle Park, North Carolina 27713, United States
| | - Yuxin Zheng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China
| | - Weidong Qu
- Key Laboratory of Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| |
Collapse
|
14
|
Yuan J, Meng H, Liu Y, Wang L, Zhu Q, Wang Z, Liu H, Zhang K, Zhao J, Li W, Wang Y. Bacillus amyloliquefaciens attenuates the intestinal permeability, oxidative stress and endoplasmic reticulum stress: transcriptome and microbiome analyses in weaned piglets. Front Microbiol 2024; 15:1362487. [PMID: 38808274 PMCID: PMC11131103 DOI: 10.3389/fmicb.2024.1362487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/22/2024] [Indexed: 05/30/2024] Open
Abstract
Endoplasmic reticulum (ER) stress is related to oxidative stress (OS) and leads to intestinal injury. Bacillus amyloliquefaciens SC06 (SC06) can regulate OS, but its roles in intestinal ER stress remains unclear. Using a 2 × 2 factorial design, 32 weaned piglets were treated by two SC06 levels (0 or 1 × 108 CFU/g), either with or without diquat (DQ) injection. We found that SC06 increased growth performance, decreased ileal permeability, OS and ER stress in DQ-treated piglets. Transcriptome showed that differentially expressed genes (DEGs) induced by DQ were enriched in NF-κB signaling pathway. DEGs between DQ- and SC06 + DQ-treated piglets were enriched in glutathione metabolism pathway. Ileal microbiome revealed that the SC06 + DQ treatment decreased Clostridium and increased Actinobacillus. Correlations were found between microbiota and ER stress genes. In conclusion, dietary SC06 supplementation increased the performance, decreased the permeability, OS and ER stress in weaned piglets by regulating ileal genes and microbiota.
Collapse
Affiliation(s)
- Junmeng Yuan
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Hongling Meng
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Yu Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Li Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Qizhen Zhu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Zhengyu Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Huawei Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Kai Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Jinshan Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Weifen Li
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yang Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
15
|
Rao M, Chang KC. Aldose reductase is a potential therapeutic target for neurodegeneration. Chem Biol Interact 2024; 389:110856. [PMID: 38185272 PMCID: PMC10842418 DOI: 10.1016/j.cbi.2024.110856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/22/2023] [Accepted: 01/04/2024] [Indexed: 01/09/2024]
Abstract
Neurodegeneration is a complex process involving various inflammatory mediators and cellular responses. Aldose reductase (AR) is a key enzyme in the polyol pathway, which converts glucose to sorbitol. Beyond its metabolic role, AR has also been found to play a significant role in modulating neuroinflammation. This review aims to provide an overview of the current knowledge regarding the involvement of AR inhibition in attenuating neuroinflammation and complications from diabetic neuropathies. Here, we review the literature regarding AR and neuropathy/neurodegeneration. We discuss the mechanisms underlying the influence of AR inhibitors on ocular inflammation, beta-amyloid-induced neurodegeneration, and optic nerve degeneration. Furthermore, potential therapeutic strategies targeting AR in neurodegeneration are explored. The understanding of AR's role in neurodegeneration may lead to the development of novel therapeutic interventions for other neuroinflammatory disorders.
Collapse
Affiliation(s)
- Mishal Rao
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Kun-Che Chang
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA; Department of Neurobiology, Center of Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
16
|
Qiang J, Yang R, Li X, Xu X, Zhou M, Ji X, Lu Y, Dong Z. Monotropein induces autophagy through activation of the NRF2/PINK axis, thereby alleviating sepsis-induced colonic injury. Int Immunopharmacol 2024; 127:111432. [PMID: 38142644 DOI: 10.1016/j.intimp.2023.111432] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/04/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Sepsis is a systemic inflammatory disease that is caused by a dysregulated host response to infection and is a life-threatening organ dysfunction that affects many organs, which includes the colon. Mounting evidence suggests that sepsis-induced colonic damage is a major contributor to organ failure and cellular dysfunction. Monotropein (MON) is the major natural compound in the iris glycoside that is extracted from Morendae officinalis radix, which possesses the potent pharmacological activities of anti-inflammatory and antioxidant properties. This research evaluated whether MON is able to alleviate septic colonic injury in mice by cecal ligation and puncture. Colonic tissues were analyzed using histopathology, immunofluorescence, quantitative real-time polymerase chain reaction, and Western blot methods. It was initially discovered that MON reduced colonic damage in infected mice, in addition to inflammation, apoptosis, and oxidative stress in colonic tissues, while it activated autophagy, with the NRF2/keap1 and PINK1/Parkin pathways also being activated. Through the stimulation of NCM460 cells with lipopolysaccharides, an in vitro model of sepsis was created as a means of further elucidating the potential mechanisms of MON. In the in vitro model, it was found that MON could still activate the NRF2/keap1, PINK1/Parkin, and autophagy pathways. However, when MON was paired with the NRF2 inhibitor ML385, it counteracted MON-induced activation of PINK1/Parkin and autophagy, while also promoting inflammatory response and apoptosis in NCM460 cells. Therefore, the data implies that MON could play a therapeutic role through the activation of the NFR2/PINK pathway as a means of inducing autophagy to alleviate the oxidative stress in colonic tissues that is induced by sepsis, which will improve inflammation and apoptosis in colonic tissues.
Collapse
Affiliation(s)
- Jingchao Qiang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Rongrong Yang
- Department of Oncology, The Second People's Hospital of Lianyungang (The Oncology Hospital of Lianyungang), Lianyungang 222000, China
| | - Xueqing Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xuhui Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mengyuan Zhou
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiaomeng Ji
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yingzhi Lu
- Department of Oncology, The Second People's Hospital of Lianyungang (The Oncology Hospital of Lianyungang), Lianyungang 222000, China.
| | - Zibo Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
17
|
Shen J, Li M. Gastric Cancer Immune Subtypes and Prognostic Modeling: Insights from Aging-Related Gene Analysis. Crit Rev Immunol 2024; 44:1-13. [PMID: 38618724 DOI: 10.1615/critrevimmunol.2024052391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Gastric cancer (GC) is highly heterogeneous and influenced by aging-related factors. This study aimed to improve individualized prognostic assessment of GC by identifying aging-related genes and subtypes. Immune scores of GC samples from GEO and TCGA databases were calculated using ESTIMATE and scored as high immune (IS_high) and low immune (IS_low). ssGSEA was used to analyze immune cell infiltration. Univariate Cox regression was employed to identify prognosis-related genes. LASSO regression analysis was used to construct a prognostic model. GSVA enrichment analysis was applied to determine pathways. CCK-8, wound healing, and Transwell assays tested the proliferation, migration, and invasion of the GC cell line (AGS). Cell cycle and aging were examined using flow cytometry, β-galactosidase staining, and Western blotting. Two aging-related GC subtypes were identified. Subtype 2 was characterized as lower survival probability and higher risk, along with a more immune-responsive tumor microenvironment. Three genes (IGFBP5, BCL11B, and AKR1B1) screened from aging-related genes were used to establish a prognosis model. The AUC values of the model were greater than 0.669, exhibiting strong prognostic value. In vitro, IGFBP5 overexpression in AGS cells was found to decrease viability, migration, and invasion, alter the cell cycle, and increase aging biomarkers (SA-β-galactosidase, p53, and p21). This analysis uncovered the immune characteristics of two subtypes and aging-related prognosis genes in GC. The prognostic model established for three aging-related genes (IGFBP5, BCL11B, and AKR1B1) demonstrated good prognosis performance, providing a foundation for personalized treatment strategies aimed at GC.
Collapse
Affiliation(s)
- Jian Shen
- Beijing Chao-Yang Hospital, Capital Medical University
| | - Minzhe Li
- Department of General Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| |
Collapse
|
18
|
Dwivedi J, Sachan P, Wal P, Wal A, Rai AK. Current State and Future Perspective of Diabetic Wound Healing Treatment: Present Evidence from Clinical Trials. Curr Diabetes Rev 2024; 20:e280823220405. [PMID: 37641999 DOI: 10.2174/1573399820666230828091708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/29/2023] [Accepted: 05/01/2023] [Indexed: 08/31/2023]
Abstract
Diabetes is a chronic metabolic condition that is becoming more common and is characterised by sustained hyperglycaemia and long-term health effects. Diabetes-related wounds often heal slowly and are more susceptible to infection because of hyperglycaemia in the wound beds. The diabetic lesion becomes harder to heal after planktonic bacterial cells form biofilms. A potential approach is the creation of hydrogels with many functions. High priority is given to a variety of processes, such as antimicrobial, pro-angiogenesis, and general pro-healing. Diabetes problems include diabetic amputations or chronic wounds (DM). Chronic diabetes wounds that do not heal are often caused by low oxygen levels, increased reactive oxygen species, and impaired vascularization. Several types of hydrogels have been developed to get rid of contamination by pathogens; these hydrogels help to clean up the infection, reduce wound inflammation, and avoid necrosis. This review paper will focus on the most recent improvements and breakthroughs in antibacterial hydrogels for treating chronic wounds in people with diabetes. Prominent and significant side effects of diabetes mellitus include foot ulcers. Antioxidants, along with oxidative stress, are essential to promote the healing of diabetic wounds. Some of the problems that can come from a foot ulcer are neuropathic diabetes, ischemia, infection, inadequate glucose control, poor nutrition, also very high morbidity. Given the worrying rise in diabetes and, by extension, diabetic wounds, future treatments must focus on the rapid healing of diabetic wounds.
Collapse
Affiliation(s)
- Jyotsana Dwivedi
- Department of Pharmacy, PSIT-Pranveer Singh Institute of Technology, Kanpur, India
| | - Pranjal Sachan
- Department of Pharmacy, PSIT-Pranveer Singh Institute of Technology, Kanpur, India
| | - Pranay Wal
- Department of Pharmacy, PSIT-Pranveer Singh Institute of Technology, Kanpur, India
| | - Ankita Wal
- Department of Pharmacy, PSIT-Pranveer Singh Institute of Technology, Kanpur, India
| | - A K Rai
- Department of Pharmacy, PSIT-Pranveer Singh Institute of Technology, Kanpur, India
| |
Collapse
|
19
|
Conklin DJ, Haberzettl P, MacKinlay KG, Murphy D, Jin L, Yuan F, Srivastava S, Bhatnagar A. Aldose Reductase (AR) Mediates and Perivascular Adipose Tissue (PVAT) Modulates Endothelial Dysfunction of Short-Term High-Fat Diet Feeding in Mice. Metabolites 2023; 13:1172. [PMID: 38132854 PMCID: PMC10744918 DOI: 10.3390/metabo13121172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Increased adiposity of both visceral and perivascular adipose tissue (PVAT) depots is associated with an increased risk of diabetes and cardiovascular disease (CVD). Under healthy conditions, PVAT modulates vascular tone via the release of PVAT-derived relaxing factors, including adiponectin and leptin. However, when PVAT expands with high-fat diet (HFD) feeding, it appears to contribute to the development of endothelial dysfunction (ED). Yet, the mechanisms by which PVAT alters vascular health are unclear. Aldose reductase (AR) catalyzes glucose reduction in the first step of the polyol pathway and has been long implicated in diabetic complications including neuropathy, retinopathy, nephropathy, and vascular diseases. To better understand the roles of both PVAT and AR in HFD-induced ED, we studied structural and functional changes in aortic PVAT induced by short-term HFD (60% kcal fat) feeding in wild type (WT) and aldose reductase-null (AR-null) mice. Although 4 weeks of HFD feeding significantly increased body fat and PVAT mass in both WT and AR-null mice, HFD feeding induced ED in the aortas of WT mice but not of AR-null mice. Moreover, HFD feeding augmented endothelial-dependent relaxation in aortas with intact PVAT only in WT and not in AR-null mice. These data indicate that AR mediates ED associated with short-term HFD feeding and that ED appears to provoke 'compensatory changes' in PVAT induced by HFD. As these data support that the ED of HFD feeding is AR-dependent, vascular-localized AR remains a potential target of temporally selective intervention.
Collapse
Affiliation(s)
- Daniel J. Conklin
- Center for Cardiometabolic Science, University of Louisville, Louisville, KY 40202, USA; (P.H.); (D.M.); (L.J.); (S.S.); (A.B.)
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY 40202, USA;
- School of Medicine, University of Louisville, Louisville, KY 40202, USA;
- Christina Lee Brown Envirome Institute, Louisville, KY 40202, USA
| | - Petra Haberzettl
- Center for Cardiometabolic Science, University of Louisville, Louisville, KY 40202, USA; (P.H.); (D.M.); (L.J.); (S.S.); (A.B.)
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY 40202, USA;
- School of Medicine, University of Louisville, Louisville, KY 40202, USA;
- Christina Lee Brown Envirome Institute, Louisville, KY 40202, USA
| | | | - Daniel Murphy
- Center for Cardiometabolic Science, University of Louisville, Louisville, KY 40202, USA; (P.H.); (D.M.); (L.J.); (S.S.); (A.B.)
| | - Lexiao Jin
- Center for Cardiometabolic Science, University of Louisville, Louisville, KY 40202, USA; (P.H.); (D.M.); (L.J.); (S.S.); (A.B.)
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY 40202, USA;
- School of Medicine, University of Louisville, Louisville, KY 40202, USA;
- Christina Lee Brown Envirome Institute, Louisville, KY 40202, USA
| | - Fangping Yuan
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY 40202, USA;
- Christina Lee Brown Envirome Institute, Louisville, KY 40202, USA
| | - Sanjay Srivastava
- Center for Cardiometabolic Science, University of Louisville, Louisville, KY 40202, USA; (P.H.); (D.M.); (L.J.); (S.S.); (A.B.)
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY 40202, USA;
- School of Medicine, University of Louisville, Louisville, KY 40202, USA;
- Christina Lee Brown Envirome Institute, Louisville, KY 40202, USA
| | - Aruni Bhatnagar
- Center for Cardiometabolic Science, University of Louisville, Louisville, KY 40202, USA; (P.H.); (D.M.); (L.J.); (S.S.); (A.B.)
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY 40202, USA;
- School of Medicine, University of Louisville, Louisville, KY 40202, USA;
- Christina Lee Brown Envirome Institute, Louisville, KY 40202, USA
| |
Collapse
|
20
|
Shi W, Xu G, Gao Y, Zhao J, Liu T, Zhao J, Yang H, Wei Z, Li H, Xu AL, Bai Z, Xiao X. Novel role for epalrestat: protecting against NLRP3 inflammasome-driven NASH by targeting aldose reductase. J Transl Med 2023; 21:700. [PMID: 37805545 PMCID: PMC10560438 DOI: 10.1186/s12967-023-04380-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/21/2023] [Indexed: 10/09/2023] Open
Abstract
BACKGROUND Nonalcoholic steatohepatitis (NASH) is a progressive and inflammatory subtype of nonalcoholic fatty liver disease (NAFLD) characterized by hepatocellular injury, inflammation, and fibrosis in various stages. More than 20% of patients with NASH will progress to cirrhosis. Currently, there is a lack of clinically effective drugs for treating NASH, as improving liver histology in NASH is difficult to achieve and maintain through weight loss alone. Hence, the present study aimed to investigate potential therapeutic drugs for NASH. METHODS BMDMs and THP1 cells were used to construct an inflammasome activation model, and then we evaluated the effect of epalrestat on the NLRP3 inflammasome activation. Western blot, real-time qPCR, flow cytometry, and ELISA were used to evaluate the mechanism of epalrestat on NLRP3 inflammasome activation. Next, MCD-induced NASH models were used to evaluate the therapeutic effects of epalrestat in vivo. In addition, to evaluate the safety of epalrestat in vivo, mice were gavaged with epalrestat daily for 14 days. RESULTS Epalrestat, a clinically effective and safe drug, inhibits NLRP3 inflammasome activation by acting upstream of caspase-1 and inducing ASC oligomerization. Importantly, epalrestat exerts its inhibitory effect on NLRP3 inflammasome activation by inhibiting the activation of aldose reductase. Further investigation revealed that the administration of epalrestat inhibited NLRP3 inflammasome activation in vivo, alleviating liver inflammation and improving NASH pathology. CONCLUSIONS Our study indicated that epalrestat, an aldose reductase inhibitor, effectively suppressed NLRP3 inflammasome activation in vivo and in vitro and might be a new therapeutic approach for NASH.
Collapse
Affiliation(s)
- Wei Shi
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Guang Xu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.
| | - Yuan Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Jun Zhao
- Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Tingting Liu
- Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, China
| | - Jia Zhao
- Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Huijie Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Ziying Wei
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - An-Long Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
| | - Zhaofang Bai
- Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China.
- Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, China.
| | - Xiaohe Xiao
- Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China.
- Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, China.
| |
Collapse
|
21
|
Man AWC, Zhou Y, Xia N, Li H. Perivascular Adipose Tissue Oxidative Stress in Obesity. Antioxidants (Basel) 2023; 12:1595. [PMID: 37627590 PMCID: PMC10451984 DOI: 10.3390/antiox12081595] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Perivascular adipose tissue (PVAT) adheres to most systemic blood vessels in the body. Healthy PVAT exerts anticontractile effects on blood vessels and further protects against cardiovascular and metabolic diseases. Healthy PVAT regulates vascular homeostasis via secreting an array of adipokine, hormones, and growth factors. Normally, homeostatic reactive oxygen species (ROS) in PVAT act as secondary messengers in various signalling pathways and contribute to vascular tone regulation. Excessive ROS are eliminated by the antioxidant defence system in PVAT. Oxidative stress occurs when the production of ROS exceeds the endogenous antioxidant defence, leading to a redox imbalance. Oxidative stress is a pivotal pathophysiological process in cardiovascular and metabolic complications. In obesity, PVAT becomes dysfunctional and exerts detrimental effects on the blood vessels. Therefore, redox balance in PVAT emerges as a potential pathophysiological mechanism underlying obesity-induced cardiovascular diseases. In this review, we summarise new findings describing different ROS, the major sources of ROS and antioxidant defence in PVAT, as well as potential pharmacological intervention of PVAT oxidative stress in obesity.
Collapse
Affiliation(s)
| | | | | | - Huige Li
- Department of Pharmacology, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany; (A.W.C.M.); (Y.Z.); (N.X.)
| |
Collapse
|
22
|
Wang L, Huang B, Zeng Y, Yang J, Li Z, Ng JPL, Xu X, Su L, Yun X, Qu L, Chen R, Luo W, Wang Y, Chen C, Yang L, Qu Y, Zhang W, Chan JTW, Wang X, Law BYK, Mok SWF, Chung SK, Wong VKW. N-Acetylcysteine overcomes epalrestat-mediated increase of toxic 4-hydroxy-2-nonenal and potentiates the anti-arthritic effect of epalrestat in AIA model. Int J Biol Sci 2023; 19:4082-4102. [PMID: 37705749 PMCID: PMC10496504 DOI: 10.7150/ijbs.85028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/29/2023] [Indexed: 09/15/2023] Open
Abstract
Epalrestat, an aldose reductase inhibitor (ARI), has been clinically adopted in treating diabetic neuropathy in China and Japan. Apart from the involvement in diabetic complications, AR has been implicated in inflammation. Here, we seek to investigate the feasibility of clinically approved ARI, epalrestat, for the treatment of rheumatoid arthritis (RA). The mRNA level of AR was markedly upregulated in the peripheral blood mononuclear cells (PBMCs) of RA patients when compared to those of healthy donors. Besides, the disease activity of RA patients is positively correlated with AR expression. Epalrestat significantly suppressed lipopolysaccharide (LPS) induced TNF-α, IL-1β, and IL-6 in the human RA fibroblast-like synoviocytes (RAFLSs). Unexpectedly, epalrestat treatment alone markedly exaggerated the disease severity in adjuvant induced arthritic (AIA) rats with elevated Th17 cell proportion and increased inflammatory markers, probably resulting from the increased levels of 4-hydroxy-2-nonenal (4-HNE) and malondialdehyde (MDA). Interestingly, the combined treatment of epalrestat with N-Acetylcysteine (NAC), an anti-oxidant, to AIA rats dramatically suppressed the production of 4-HNE, MDA and inflammatory cytokines, and significantly improved the arthritic condition. Taken together, the anti-arthritic effect of epalrestat was diminished or even overridden by the excessive accumulation of toxic 4-HNE or other reactive aldehydes in AIA rats due to AR inhibition. Co-treatment with NAC significantly reversed epalrestat-induced upregulation of 4-HNE level and potentiated the anti-arthritic effect of epalrestat, suggesting that the combined therapy of epalrestat with NAC may sever as a potential approach in treating RA. Importantly, it could be regarded as a safe intervention for RA patients who need epalrestat for the treatment of diabetic complications.
Collapse
Affiliation(s)
- Linna Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Baixiong Huang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Yaling Zeng
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Jiujie Yang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
- Macau Medical Science and Technology Research Association, Macau, China
| | - Zhi Li
- Centro Hospitalar Conde de São Januário, Macau, China
- Macau Medical Science and Technology Research Association, Macau, China
| | - Jerome P. L. Ng
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xiongfei Xu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Lu Su
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xiaoyun Yun
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Liqun Qu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Ruihong Chen
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Weidan Luo
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Yuping Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Chang Chen
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Lijun Yang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Yuanqing Qu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Wei Zhang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Joyce Tsz Wai Chan
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xingxia Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Betty Yuen Kwan Law
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Simon Wing Fai Mok
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Sookja Kim Chung
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| | - Vincent Kam Wai Wong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| |
Collapse
|
23
|
Rao M, Huang YK, Liu CC, Meadows C, Cheng HC, Zhou M, Chen YC, Xia X, Goldberg JL, Williams AM, Kuwajima T, Chang KC. Aldose reductase inhibition decelerates optic nerve degeneration by alleviating retinal microglia activation. Sci Rep 2023; 13:5592. [PMID: 37019993 PMCID: PMC10076364 DOI: 10.1038/s41598-023-32702-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
As part of the central nervous system (CNS), retinal ganglion cells (RGCs) and their axons are the only neurons in the retina that transmit visual signals from the eye to the brain via the optic nerve (ON). Unfortunately, they do not regenerate upon injury in mammals. In ON trauma, retinal microglia (RMG) become activated, inducing inflammatory responses and resulting in axon degeneration and RGC loss. Since aldose reductase (AR) is an inflammatory response mediator highly expressed in RMG, we investigated if pharmacological inhibition of AR can attenuate ocular inflammation and thereby promote RGC survival and axon regeneration after ON crush (ONC). In vitro, we discovered that Sorbinil, an AR inhibitor, attenuates BV2 microglia activation and migration in the lipopolysaccharide (LPS) and monocyte chemoattractant protein-1 (MCP-1) treatments. In vivo, Sorbinil suppressed ONC-induced Iba1 + microglia/macrophage infiltration in the retina and ON and promoted RGC survival. Moreover, Sorbinil restored RGC function and delayed axon degeneration one week after ONC. RNA sequencing data revealed that Sorbinil protects the retina from ONC-induced degeneration by suppressing inflammatory signaling. In summary, we report the first study demonstrating that AR inhibition transiently protects RGC and axon from degeneration, providing a potential therapeutic strategy for optic neuropathies.
Collapse
Affiliation(s)
- Mishal Rao
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, 203 Lothrop, Pittsburgh, PA, 15213, USA
| | - Yu-Kai Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan
- Department of Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, 80145, Taiwan
| | - Chia-Chun Liu
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, 203 Lothrop, Pittsburgh, PA, 15213, USA
| | - Chandler Meadows
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, 203 Lothrop, Pittsburgh, PA, 15213, USA
| | - Hui-Chun Cheng
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, 203 Lothrop, Pittsburgh, PA, 15213, USA
| | - Mengli Zhou
- Department of Computational and Systems Biology, Hillman Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, USA
| | - Yu-Chih Chen
- Department of Computational and Systems Biology, Hillman Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, USA
| | - Xin Xia
- Spencer Center for Vision Research, Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, CA, 94304, USA
| | - Jeffrey L Goldberg
- Spencer Center for Vision Research, Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, CA, 94304, USA
| | - Andrew M Williams
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, 203 Lothrop, Pittsburgh, PA, 15213, USA
| | - Takaaki Kuwajima
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, 203 Lothrop, Pittsburgh, PA, 15213, USA
| | - Kun-Che Chang
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, 203 Lothrop, Pittsburgh, PA, 15213, USA.
- Department of Neurobiology, Center of Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
24
|
Syamprasad NP, Jain S, Rajdev B, Prasad N, Kallipalli R, Naidu VGM. Aldose reductase and cancer metabolism: The master regulator in the limelight. Biochem Pharmacol 2023; 211:115528. [PMID: 37011733 DOI: 10.1016/j.bcp.2023.115528] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
It is strongly established that metabolic reprogramming mediates the initiation, progression, and metastasis of a variety of cancers. However, there is no common biomarker identified to link the dysregulated metabolism and cancer progression. Recent studies strongly advise the involvement of aldose reductase (AR) in cancer metabolism. AR-mediated glucose metabolism creates a Warburg-like effect and an acidic tumour microenvironment in cancer cells. Moreover, AR overexpression is associated with the impairment of mitochondria and the accumulation of free fatty acids in cancer cells. Further, AR-mediated reduction of lipid aldehydes and chemotherapeutics are involved in the activation of factors promoting proliferation and chemo-resistance. In this review, we have delineated the possible mechanisms by which AR modulates cellular metabolism for cancer proliferation and survival. An in-depth understanding of cancer metabolism and the role of AR might lead to the use of AR inhibitors as metabolic modulating agents for the therapy of cancer.
Collapse
Affiliation(s)
- N P Syamprasad
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam 781101, India
| | - Siddhi Jain
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam 781101, India
| | - Bishal Rajdev
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam 781101, India
| | - Neethu Prasad
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam 781101, India
| | - Ravindra Kallipalli
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam 781101, India
| | - V G M Naidu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam 781101, India.
| |
Collapse
|
25
|
Ghaffarinia A, Ayaydin F, Póliska S, Manczinger M, Bolla BS, Flink LB, Balogh F, Veréb Z, Bozó R, Szabó K, Bata-Csörgő Z, Kemény L. Psoriatic Resolved Skin Epidermal Keratinocytes Retain Disease-Residual Transcriptomic and Epigenomic Profiles. Int J Mol Sci 2023; 24:ijms24054556. [PMID: 36901987 PMCID: PMC10002496 DOI: 10.3390/ijms24054556] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
The disease-residual transcriptomic profile (DRTP) within psoriatic healed/resolved skin and epidermal tissue-resident memory T (TRM) cells have been proposed to be crucial for the recurrence of old lesions. However, it is unclear whether epidermal keratinocytes are involved in disease recurrence. There is increasing evidence regarding the importance of epigenetic mechanisms in the pathogenesis of psoriasis. Nonetheless, the epigenetic changes that contribute to the recurrence of psoriasis remain unknown. The aim of this study was to elucidate the role of keratinocytes in psoriasis relapse. The epigenetic marks 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) were visualized using immunofluorescence staining, and RNA sequencing was performed on paired never-lesional and resolved epidermal and dermal compartments of skin from psoriasis patients. We observed diminished 5-mC and 5-hmC amounts and decreased mRNA expression of the ten-eleven translocation (TET) 3 enzyme in the resolved epidermis. SAMHD1, C10orf99, and AKR1B10: the highly dysregulated genes in resolved epidermis are known to be associated with pathogenesis of psoriasis, and the DRTP was enriched in WNT, TNF, and mTOR signaling pathways. Our results suggest that epigenetic changes detected in epidermal keratinocytes of resolved skin may be responsible for the DRTP in the same regions. Thus, the DRTP of keratinocytes may contribute to site-specific local relapse.
Collapse
Affiliation(s)
- Ameneh Ghaffarinia
- HCEMM-USZ Skin Research Group, H-6720 Szeged, Hungary
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary
| | - Ferhan Ayaydin
- HCEMM-USZ, Functional Cell Biology and Immunology, Advanced Core Facility, H-6728 Szeged, Hungary
- Laboratory of Cellular Imaging, Biological Research Centre, Eötvös Loránd Research Network, H-6726 Szeged, Hungary
- Institute of Plant Biology, Biological Research Centre, H-6726 Szeged, Hungary
| | - Szilárd Póliska
- Genomic Medicine and Bioinformatics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Máté Manczinger
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary
- Systems Immunology Research Group, Institute of Biochemistry, Biological Research Centre, ELKH, H-6726 Szeged, Hungary
- HCEMM-Systems Immunology Research Group, H-6726 Szeged, Hungary
| | - Beáta Szilvia Bolla
- HCEMM-USZ Skin Research Group, H-6720 Szeged, Hungary
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary
| | - Lili Borbála Flink
- HCEMM-USZ Skin Research Group, H-6720 Szeged, Hungary
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary
| | - Fanni Balogh
- HCEMM-USZ Skin Research Group, H-6720 Szeged, Hungary
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary
- ELKH-SZTE Dermatological Research Group, Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary
| | - Zoltán Veréb
- Regenerative Medicine and Cellular Pharmacology Laboratory (HECRIN), Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary
- Research Institute of Translational Biomedicine, Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary
| | - Renáta Bozó
- HCEMM-USZ Skin Research Group, H-6720 Szeged, Hungary
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary
- ELKH-SZTE Dermatological Research Group, Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary
| | - Kornélia Szabó
- HCEMM-USZ Skin Research Group, H-6720 Szeged, Hungary
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary
- ELKH-SZTE Dermatological Research Group, Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary
| | - Zsuzsanna Bata-Csörgő
- HCEMM-USZ Skin Research Group, H-6720 Szeged, Hungary
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary
- ELKH-SZTE Dermatological Research Group, Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary
| | - Lajos Kemény
- HCEMM-USZ Skin Research Group, H-6720 Szeged, Hungary
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary
- ELKH-SZTE Dermatological Research Group, Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary
- Correspondence:
| |
Collapse
|
26
|
Comparative Evaluation of Aldose Reductase Inhibition in Polycystic Ovarian Syndrome-Induced Rats. Reprod Sci 2023; 30:622-632. [PMID: 35930177 DOI: 10.1007/s43032-022-01039-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/12/2022] [Indexed: 10/16/2022]
Abstract
Polycystic ovary syndrome (PCOS) represents a spectrum of disorders, associated with hyperandrogenism, oligoanovulation, and polycystic ovaries. Aldose reductase (AR), a rate-limiting enzyme of polyol pathway, is responsible for maintenance of intracellular osmotic balance, facilitation of oocyte development, and organization of the granulosa cells in the ovary. Cyclic changes in the aldose reductase level were found during the 4-5 days estrus cycle in rat, which is regulated by gonadotropin-releasing hormone (GnRH). Irregular GnRH secretion in PCOS patients may lead to altered aldose reductase expression and ovarian dysfunction. Treatment with a novel AR inhibitor, fidarestat, has been reported to improve erythrocyte sorbitol content in diabetic patients. Hence, the potential role AR in pathogenesis of PCOS was investigated by inhibiting AR with fidarestat in PCOS-induced rats. Pre-pubertal female Sprague-Dawley rats were divided into five groups. PCOS is induced either by administering letrozole or by feeding high-fat diet for 90 days. After induction of PCOS, fidarestat treatment was given for 28 days and various parameters were measured. In PCOS-induced rats, parameters like food intake, body weight, insulin, OGTT, triglycerides, cholesterol, prolonged diestrus phase, ovary weight, and immunohistological localization AR were found to be significantly altered. Fidarestat treatment significantly improved ovary weight, ovarian aldose reductase localization in PCOS-induced rats. Improvement in all these parameters suggest involvement of aldose reductase in the pathogenesis of PCOS.
Collapse
|
27
|
Wang T, Xu ZH. Natural Compounds with Aldose Reductase (AR) Inhibition: A Class of Medicative Agents for Fatty Liver Disease. Comb Chem High Throughput Screen 2023; 26:1929-1944. [PMID: 36655533 DOI: 10.2174/1386207326666230119101011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/03/2022] [Accepted: 11/16/2022] [Indexed: 01/20/2023]
Abstract
Fatty liver disease (FLD), which includes both non-alcoholic fatty liver disease (NAFLD) and alcoholic fatty liver disease (ALD), is a worldwide health concern. The etiology of ALD is long-term alcohol consumption, while NAFLD is defined as an abnormal amount of lipid present in liver cells, which is not caused by alcohol intake and has recently been identified as a hepatic manifestation of metabolic syndrome (such as type 2 diabetes, obesity, hypertension, and obesity). Inflammation, oxidative stress, and lipid metabolic dysregulation are all known to play a role in FLD progression. Alternative and natural therapies are desperately needed to treat this disease since existing pharmaceuticals are mostly ineffective. The aldose reductase (AR)/polyol pathway has recently been shown to play a role in developing FLD by contributing to inflammation, oxidative stress, apoptosis, and fat accumulation. Herein, we review the effects of plantderived compounds capable of inhibiting AR in FLD models. Natural AR inhibitors have been found to improve FLD in part by suppressing inflammation, oxidative stress, and steatosis via the regulation of several critical pathways, including the peroxisome proliferator-activated receptor (PPAR) pathway, cytochrome P450 2E1 (CYP2E1) pathway, AMP-activated protein kinase (AMPK) pathway, etc. This review revealed that natural compounds with AR inhibitory effects are a promising class of therapeutic agents for FLD.
Collapse
Affiliation(s)
- Tong Wang
- Department of Integrative Medicine, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Zi-Hui Xu
- Department of Integrative Medicine, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China
| |
Collapse
|
28
|
Zhang S, Ge G, Qin Y, Li W, Dong J, Mei J, Ma R, Zhang X, Bai J, Zhu C, Zhang W, Geng D. Recent advances in responsive hydrogels for diabetic wound healing. Mater Today Bio 2022; 18:100508. [PMID: 36504542 PMCID: PMC9729074 DOI: 10.1016/j.mtbio.2022.100508] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
Poor wound healing after diabetes mellitus remains a challenging problem, and its pathophysiological mechanisms have not yet been fully elucidated. Persistent bleeding, disturbed regulation of inflammation, blocked cell proliferation, susceptible infection and impaired tissue remodeling are the main features of diabetic wound healing. Conventional wound dressings, including gauze, films and bandages, have a limited function. They generally act as physical barriers and absorbers of exudates, which fail to meet the requirements of the whol diabetic wound healing process. Wounds in diabetic patients typically heal slowly and are susceptible to infection due to hyperglycemia within the wound bed. Once bacterial cells develop into biofilms, diabetic wounds will exhibit robust drug resistance. Recently, the application of stimuli-responsive hydrogels, also known as "smart hydrogels", for diabetic wound healing has attracted particular attention. The basic feature of this system is its capacities to change mechanical properties, swelling ability, hydrophilicity, permeability of biologically active molecules, etc., in response to various stimuli, including temperature, potential of hydrogen (pH), protease and other biological factors. Smart hydrogels can improve therapeutic efficacy and limit total toxicity according to the characteristics of diabetic wounds. In this review, we summarized the mechanism and application of stimuli-responsive hydrogels for diabetic wound healing. It is hoped that this work will provide some inspiration and suggestions for research in this field.
Collapse
Affiliation(s)
- Siming Zhang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230022, China
| | - Gaoran Ge
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Yi Qin
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Wenhao Li
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Jiale Dong
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230022, China
| | - Jiawei Mei
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230022, China
| | - Ruixiang Ma
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230022, China
| | - Xianzuo Zhang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230022, China
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Chen Zhu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230022, China,Corresponding author.
| | - Weiwei Zhang
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230022, China,Corresponding author.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China,Corresponding author.
| |
Collapse
|
29
|
The Role of Aldose Reductase in Beta-Amyloid-Induced Microglia Activation. Int J Mol Sci 2022; 23:ijms232315088. [PMID: 36499422 PMCID: PMC9739496 DOI: 10.3390/ijms232315088] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
The occurrence of Alzheimer's disease has been associated with the accumulation of beta-amyloid (β-amyloid) plaques. These plaques activate microglia to secrete inflammatory molecules, which damage neurons in the brain. Thus, understanding the underlying mechanism of microglia activation can provide a therapeutic strategy for alleviating microglia-induced neuroinflammation. The aldose reductase (AR) enzyme catalyzes the reduction of glucose to sorbitol in the polyol pathway. In addition to mediating diabetic complications in hyperglycemic environments, AR also helps regulate inflammation in microglia. However, little is known about the role of AR in β-amyloid-induced inflammation in microglia and subsequent neuronal death. In this study, we confirmed that AR inhibition attenuates increased β-amyloid-induced reactive oxygen species and tumor necrosis factor α secretion by suppressing ERK signaling in BV2 cells. In addition, we are the first to report that AR inhibition reduced the phagocytotic capability and cell migration of BV2 cells in response to β-amyloid. To further investigate the protective role of the AR inhibitor sorbinil in neurons, we co-cultured β-amyloid-induced microglia with stem cell-induced neurons. sorbinil ameliorated neuronal damage in both cells in the co-culture system. In summary, our findings reveal AR regulation of microglia activation as a novel therapeutic target for Alzheimer's disease.
Collapse
|
30
|
Zhong K, Huang Y, Zilundu PLM, Wang Y, Zhou Y, Yu G, Fu R, Chung SK, Tang Y, Cheng X, Zhou L. Motor neuron survival is associated with reduced neuroinflammation and increased autophagy after brachial plexus avulsion injury in aldose reductase-deficient mice. J Neuroinflammation 2022; 19:271. [PMID: 36352421 PMCID: PMC9648007 DOI: 10.1186/s12974-022-02632-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
Abstract
Brachial plexus root avulsion (BPRA) is frequently caused by high-energy trauma including traffic accident and birth trauma, which will induces massive motoneurons (MNs) death as well as loss of motor and sensory function in the upper limb. The death of MNs is attributed to energy deficiency, neuroinflammation and oxidative stress at the injured ventral horn of spinal cord triggered by BPRA injury. It has been reported which aldose reductase (AR), an endogenous enzyme that catalyzes fructose synthesis, positively correlates with the poor prognosis following cerebral ischemic injury, diabetic retinopathy and diabetic peripheral neuropathy. However, the role of AR in BPRA remains unknown. Herein, we used a mouse model and found that in the spinal cord of BPRA mice, the upregulation of AR correlated significantly with (1) an inactivated SIRT1-AMPK-mTOR pathway and disrupted autophagy; (2) increased byproducts accumulation of lipid peroxidation metabolism and neuroinflammation; and (3) increased MNs death. Furthermore, our results demonstrated the role of AR in BPRA injury whereby the absence of AR (AR knockout mice, AR-/-) prevented the hyper-neuroinflammation and disrupted autophagy as well as motor neuron death caused by BPRA injury. Finally, we further demonstrate that AR inhibitor epalrestat is neuroprotective against BPRA injury by increasing autophagy level, alleviating neuroinflammation and rescuing MNs death in mice. Collectively, our data demonstrate that the AR upregulation in the spinal cord is an important factor contributing to autophagy disruption, neuroinflammation and MNs death following brachial plexus roots avulsion in mice. Our study also provides a promising therapy drug to assist re-implantation surgery for the treatment of BPRA.
Collapse
Affiliation(s)
- Ke Zhong
- Department of Pharmacy, Sun-Yat-Sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, Guangdong, China
| | - Yu Huang
- Department of Anatomy, School of Medicine (Shenzhen), Sun Yat-sen University, Shenzhen, 518000, Guangdong, China
| | | | - Yaqiong Wang
- Department of Electron Microscope, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yingying Zhou
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Guangyin Yu
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, Guangdong, China
| | - Rao Fu
- Department of Anatomy, School of Medicine (Shenzhen), Sun Yat-sen University, Shenzhen, 518000, Guangdong, China
| | - Sookja Kim Chung
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Yamei Tang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, China
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiao Cheng
- Guangdong Provincial Chinese Emergency Key Laboratory, Guangzhou, Guangdong, China.
- State Key Laboratory of Dampness, Syndrome of Traditional Chinese Medicine, Guangzhou, Guangdong, China.
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine, 111 Dade Road, Guangzhou, Guangdong, China.
| | - Lihua Zhou
- Department of Anatomy, School of Medicine (Shenzhen), Sun Yat-sen University, Shenzhen, 518000, Guangdong, China.
| |
Collapse
|
31
|
2′-Hydroxy-4′,5′-dimethoxyacetophenone Exhibit Collagenase, Aldose Reductase Inhibition, and Anticancer Activity Against Human Leukemic Cells: An In Vitro, and In Silico Study. Mol Biotechnol 2022; 65:881-890. [DOI: 10.1007/s12033-022-00588-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
|
32
|
Vitheejongjaroen P, Kasorn A, Puttarat N, Loison F, Taweechotipatr M. Bifidobacterium animalis MSMC83 Improves Oxidative Stress and Gut Microbiota in D-Galactose-Induced Rats. Antioxidants (Basel) 2022; 11:2146. [PMID: 36358518 PMCID: PMC9686799 DOI: 10.3390/antiox11112146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 09/10/2023] Open
Abstract
The development of many chronic diseases is associated with an excess of free radicals leading to harmful oxidative stress. Certain probiotic strains have been shown to have antioxidant and anti-aging properties and are an important resource for development of microbial antioxidants. The present study aimed to explore the protection offered by Bifidobacterium animalis strain MSMC83 in a model of oxidative stress induced by D-galactose (D-gal). Male Sprague Dawley rats were randomly allocated to four groups: a control group injected with saline, a group injected subcutaneously with D-galactose, a probiotic group injected with D-galactose and administered B. animalis MSMC83 (109 CFU/mL) via daily oral gavage, and an ascorbic acid group. The probiotics significantly increased the superoxide dismutase, catalase, and glutathione peroxidase and significantly decreased the malondialdehyde in the plasma and livers of D-galactose-treated rats. Moreover, tumor necrosis factor-alpha level in the liver was significantly decreased. Furthermore, the treatment with B. animalis MSMC83 restored the microbiota diversity after D-galactose injection. Therefore, our results supported a beneficial role of B. animalis MSMC83 in alleviating oxidative stress through the increased expression of antioxidant enzymes and reduction of pro-inflammatory cytokines in rats. Our study suggests that B. animalis MSMC83 may be part of a healthy diet to prevent oxidative stress-associated diseases.
Collapse
Affiliation(s)
- Porntipha Vitheejongjaroen
- Center of Excellence in Probiotics, Srinakharinwirot University, Bangkok 10110, Thailand
- Department of Microbiology, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Anongnard Kasorn
- Department of Biomedical Science, Faculty of Medicine, Vajira Hospital, Navamindradhiraj University, Bangkok 10300, Thailand
| | - Narathip Puttarat
- Center of Excellence in Probiotics, Srinakharinwirot University, Bangkok 10110, Thailand
- Department of Microbiology, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Fabien Loison
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Malai Taweechotipatr
- Center of Excellence in Probiotics, Srinakharinwirot University, Bangkok 10110, Thailand
- Department of Microbiology, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| |
Collapse
|
33
|
Lai SWT, Lopez Gonzalez EDJ, Zoukari T, Ki P, Shuck SC. Methylglyoxal and Its Adducts: Induction, Repair, and Association with Disease. Chem Res Toxicol 2022; 35:1720-1746. [PMID: 36197742 PMCID: PMC9580021 DOI: 10.1021/acs.chemrestox.2c00160] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Metabolism is an essential part of life that provides energy for cell growth. During metabolic flux, reactive electrophiles are produced that covalently modify macromolecules, leading to detrimental cellular effects. Methylglyoxal (MG) is an abundant electrophile formed from lipid, protein, and glucose metabolism at intracellular levels of 1-4 μM. MG covalently modifies DNA, RNA, and protein, forming advanced glycation end products (MG-AGEs). MG and MG-AGEs are associated with the onset and progression of many pathologies including diabetes, cancer, and liver and kidney disease. Regulating MG and MG-AGEs is a potential strategy to prevent disease, and they may also have utility as biomarkers to predict disease risk, onset, and progression. Here, we review recent advances and knowledge surrounding MG, including its production and elimination, mechanisms of MG-AGEs formation, the physiological impact of MG and MG-AGEs in disease onset and progression, and the latter in the context of its receptor RAGE. We also discuss methods for measuring MG and MG-AGEs and their clinical application as prognostic biomarkers to allow for early detection and intervention prior to disease onset. Finally, we consider relevant clinical applications and current therapeutic strategies aimed at targeting MG, MG-AGEs, and RAGE to ultimately improve patient outcomes.
Collapse
Affiliation(s)
- Seigmund Wai Tsuen Lai
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| | - Edwin De Jesus Lopez Gonzalez
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| | - Tala Zoukari
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| | - Priscilla Ki
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| | - Sarah C Shuck
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| |
Collapse
|
34
|
Bourebaba Y, Marycz K, Mularczyk M, Bourebaba L. Postbiotics as potential new therapeutic agents for metabolic disorders management. Biomed Pharmacother 2022; 153:113138. [PMID: 35717780 DOI: 10.1016/j.biopha.2022.113138] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/07/2022] [Accepted: 05/15/2022] [Indexed: 11/24/2022] Open
Abstract
The prevalence of obesity, diabetes, non-alcoholic fatty liver disease, and related metabolic disorders has been steadily increasing in the past few decades. Apart from the establishment of caloric restrictions in combination with improved physical activity, there are no effective pharmacological treatments for most metabolic disorders. Many scientific-studies have described various beneficial effects of probiotics in regulating metabolism but others questioned their effectiveness and safety. Postbiotics are defined as preparation of inanimate microorganisms, and/or their components, which determine their safety of use and confers a health benefit to the host. Additionally, unlike probiotics postbiotics do not require stringent production/storage conditions. Recently, many lines of evidence demonstrated that postbiotics may be beneficial in metabolic disorders management via several potential effects including anti-inflammatory, antibacterial, immunomodulatory, anti-carcinogenic, antioxidant, antihypertensive, anti-proliferative, and hypocholesterolaemia properties that enhance both the immune system and intestinal barrier functions by acting directly on specific tissues of the intestinal epithelium, but also on various organs or tissues. In view of the many reports that demonstrated the high biological activity and safety of postbiotics, we summarized in the present review the current findings reporting the beneficial effects of various probiotics derivatives for the management of metabolic disorders and related alterations.
Collapse
Affiliation(s)
- Yasmina Bourebaba
- Laboratoire de Biomathématique, Biophysique, Biochimie et Scientométrie (L3BS), Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algeria.
| | - Krzysztof Marycz
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland; Department of Medicine and Epidemiology, UC Davis School of Veterinary Medicine, Davis, CA 95516, USA
| | - Malwina Mularczyk
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland; International Institute of Translational Medicine, Jesionowa, 11, Malin, 55-114 Wisznia Mała, Poland
| | - Lynda Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland; International Institute of Translational Medicine, Jesionowa, 11, Malin, 55-114 Wisznia Mała, Poland.
| |
Collapse
|
35
|
Wang F, Zhang W, Li H, Chen X, Feng S, Mei Z. How Effective are Nano-Based Dressings in Diabetic Wound Healing? A Comprehensive Review of Literature. Int J Nanomedicine 2022; 17:2097-2119. [PMID: 35592100 PMCID: PMC9113038 DOI: 10.2147/ijn.s361282] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/04/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic wound caused by diabetes is an important cause of disability and seriously affects the quality of life of patients. Therefore, it is of great clinical significance to develop a wound dressing that can accelerate the healing of diabetic wounds. Nanoparticles have great advantages in promoting diabetic wound healing due to their antibacterial properties, low cytotoxicity, good biocompatibility and drug delivery ability. Adding nanoparticles to the dressing matrix and using nanoparticles to deliver drugs and cytokines to promote wound healing has proven to be effective. This review will focus on the effects of diabetes on wound healing, introduce the properties, preparation methods and action mechanism of nanoparticles in wound healing, and describe the effects and application status of various nanoparticle-loaded dressings in diabetes-related chronic wound healing.
Collapse
Affiliation(s)
- Feng Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, People’s Republic of China
| | - Wenyao Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, People’s Republic of China
| | - Hao Li
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, People’s Republic of China
| | - Xiaonan Chen
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, People’s Republic of China
| | - Sining Feng
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, People’s Republic of China
| | - Ziqing Mei
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, People’s Republic of China
| |
Collapse
|
36
|
Han FX, Zhang R, Yang XX, Ma SB, Hu SJ, Li B. Neuroprotective effect of aldose reductase knockout in a mouse model of spinal cord injury involves NF-κB pathway. Exp Brain Res 2022; 240:853-859. [PMID: 35066597 DOI: 10.1007/s00221-021-06223-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 09/13/2021] [Indexed: 11/27/2022]
Abstract
The inflammatory response following spinal cord injury (SCI) involves the activation of resident microglia and the infiltration of macrophages. Activated microglia/macrophages have either detrimental or beneficial effects on neural regeneration based on their functional polarized M1/M2 subsets. Aldose reductase (AR) has recently been shown to be a key component of the innate immune response. However, the mechanisms involved in AR and innate immune response remain unclear. In this study, wild-type (WT) or AR-deficiency (KO) mice were subjected to SCI by a spinal crush injury model. AR KO mice showed better locomotor recovery and smaller injury lesion areas after spinal cord crushing compared with WT mice. Here, we first demonstrated that AR deficiency repressed the expression level of inducible nitric oxide synthase (iNOS) induced by lipopolysaccharide (LPS) in vitro via the activation of autophagy. AR deficiency caused 4-hydroxy-2-(E)-nonenal (4-HNE) accumulation in LPS-induced macrophages. We also found that exogenous addition of low concentrations of 4-HNE in LPS-induced macrophages had the effect of promoting further activation of NF-κB pathway, whereas high concentrations of 4-HNE had inhibitory effects. Together, these results indicated that autophagy as a mechanism underlying AR and 4-HNE in LPS-induced macrophages.
Collapse
Affiliation(s)
- Fu-Xin Han
- Department of Neurosurgery, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, 710004, P. R. China
| | - Rui Zhang
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Xin-Xing Yang
- Department of Ultrasound, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Shan-Bo Ma
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Shi-Jie Hu
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China.
| | - Bing Li
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China.
| |
Collapse
|
37
|
Chabert C, Vitte AL, Iuso D, Chuffart F, Trocme C, Buisson M, Poignard P, Lardinois B, Debois R, Rousseaux S, Pepin JL, Martinot JB, Khochbin S. AKR1B10, One of the Triggers of Cytokine Storm in SARS-CoV2 Severe Acute Respiratory Syndrome. Int J Mol Sci 2022; 23:ijms23031911. [PMID: 35163833 PMCID: PMC8836815 DOI: 10.3390/ijms23031911] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 02/07/2023] Open
Abstract
Preventing the cytokine storm observed in COVID-19 is a crucial goal for reducing the occurrence of severe acute respiratory failure and improving outcomes. Here, we identify Aldo-Keto Reductase 1B10 (AKR1B10) as a key enzyme involved in the expression of pro-inflammatory cytokines. The analysis of transcriptomic data from lung samples of patients who died from COVID-19 demonstrates an increased expression of the gene encoding AKR1B10. Measurements of the AKR1B10 protein in sera from hospitalised COVID-19 patients suggests a significant link between AKR1B10 levels and the severity of the disease. In macrophages and lung cells, the over-expression of AKR1B10 induces the expression of the pro-inflammatory cytokines Interleukin-6 (IL-6), Interleukin-1β (IL-1β) and Tumor Necrosis Factor a (TNFα), supporting the biological plausibility of an AKR1B10 involvement in the COVID-19-related cytokine storm. When macrophages were stressed by lipopolysaccharides (LPS) exposure and treated by Zopolrestat, an AKR1B10 inhibitor, the LPS-induced production of IL-6, IL-1β, and TNFα is significantly reduced, reinforcing the hypothesis that the pro-inflammatory expression of cytokines is AKR1B10-dependant. Finally, we also show that AKR1B10 can be secreted and transferred via extracellular vesicles between different cell types, suggesting that this protein may also contribute to the multi-organ systemic impact of COVID-19. These experiments highlight a relationship between AKR1B10 production and severe forms of COVID-19. Our data indicate that AKR1B10 participates in the activation of cytokines production and suggest that modulation of AKR1B10 activity might be an actionable pharmacological target in COVID-19 management.
Collapse
Affiliation(s)
- Clovis Chabert
- Institute for Advanced Biosciences—UGA—INSERM U1209—CNRS UMR 5309, 38700 La Tronche, France; (A.-L.V.); (D.I.); (F.C.); (S.R.); (S.K.)
- Correspondence: ; Tel.: +33-6-8898-4506
| | - Anne-Laure Vitte
- Institute for Advanced Biosciences—UGA—INSERM U1209—CNRS UMR 5309, 38700 La Tronche, France; (A.-L.V.); (D.I.); (F.C.); (S.R.); (S.K.)
| | - Domenico Iuso
- Institute for Advanced Biosciences—UGA—INSERM U1209—CNRS UMR 5309, 38700 La Tronche, France; (A.-L.V.); (D.I.); (F.C.); (S.R.); (S.K.)
| | - Florent Chuffart
- Institute for Advanced Biosciences—UGA—INSERM U1209—CNRS UMR 5309, 38700 La Tronche, France; (A.-L.V.); (D.I.); (F.C.); (S.R.); (S.K.)
| | - Candice Trocme
- Laboratoire BEP (Biochimie des Enzymes et les Protéines), Institut de Biologie et de Pathologie, CHU Grenoble Alpes, 38700 La Tronche, France;
| | - Marlyse Buisson
- Institut de Biologie Structurale, CEA, CNRS and Centre Hospitalier Universitaire Grenoble Alpes, Université Grenoble Alpes, 38000 Grenoble, France; (M.B.); (P.P.)
| | - Pascal Poignard
- Institut de Biologie Structurale, CEA, CNRS and Centre Hospitalier Universitaire Grenoble Alpes, Université Grenoble Alpes, 38000 Grenoble, France; (M.B.); (P.P.)
| | - Benjamin Lardinois
- Laboratory Department, CHU UCL Namur Site de Ste Elisabeth, 5000 Namur, Belgium; (B.L.); (R.D.)
| | - Régis Debois
- Laboratory Department, CHU UCL Namur Site de Ste Elisabeth, 5000 Namur, Belgium; (B.L.); (R.D.)
| | - Sophie Rousseaux
- Institute for Advanced Biosciences—UGA—INSERM U1209—CNRS UMR 5309, 38700 La Tronche, France; (A.-L.V.); (D.I.); (F.C.); (S.R.); (S.K.)
| | - Jean-Louis Pepin
- HP2 Laboratory, INSERM U1300, Grenoble Alpes University, 38000 Grenoble, France;
- Sleep Laboratory, Pole Thorax et Vaisseaux, Grenoble Alpes University Hospital, 38000 Grenoble, France
| | - Jean-Benoit Martinot
- Sleep Laboratory and Pulmonology and Allergy Department—CHU UCL Namur, St. Elisabeth Site, 5000 Namur, Belgium;
- Institute of Experimental and Clinical Research, UCL Bruxelles Woluwe, 1200 Brussels, Belgium
| | - Saadi Khochbin
- Institute for Advanced Biosciences—UGA—INSERM U1209—CNRS UMR 5309, 38700 La Tronche, France; (A.-L.V.); (D.I.); (F.C.); (S.R.); (S.K.)
| |
Collapse
|
38
|
He JY, Hong Q, Chen BX, Cui SY, Liu R, Cai GY, Guo J, Chen XM. Ginsenoside Rb1 alleviates diabetic kidney podocyte injury by inhibiting aldose reductase activity. Acta Pharmacol Sin 2022; 43:342-353. [PMID: 34811512 PMCID: PMC8791932 DOI: 10.1038/s41401-021-00788-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 09/29/2021] [Indexed: 02/03/2023]
Abstract
Panax notoginseng, a traditional Chinese medicine, exerts beneficial effect on diabetic kidney disease (DKD), but its mechanism is not well clarified. In this study we investigated the effects of ginsenoside Rb1 (Rb1), the main active ingredients of Panax notoginseng, in alleviating podocyte injury in diabetic nephropathy and the underlying mechanisms. In cultured mouse podocyte cells, Rb1 (10 μM) significantly inhibited high glucose-induced cell apoptosis and mitochondrial injury. Furthermore, Rb1 treatment reversed high glucose-induced increases in Cyto c, Caspase 9 and mitochondrial regulatory protein NOX4, but did not affect the upregulated expression of aldose reductase (AR). Molecular docking analysis revealed that Rb1 could combine with AR and inhibited its activity. We compared the effects of Rb1 with eparestat, a known aldose reductase inhibitor, in high glucose-treated podocytes, and found that both alleviated high glucose-induced cell apoptosis and mitochondrial damage, and Rb1 was more effective in inhibiting apoptosis. In AR-overexpressing podocytes, Rb1 (10 μM) inhibited AR-mediated ROS overproduction and protected against high glucose-induced mitochondrial injury. In streptozotocin-induced DKD mice, administration of Rb1 (40 mg·kg-1·d-1, ig, for 7 weeks) significantly mitigated diabetic-induced glomerular injuries, such as glomerular hypertrophy and mesangial matrix expansion, and reduced the expression of apoptotic proteins. Collectively, Rb1 combines with AR to alleviate high glucose-induced podocyte apoptosis and mitochondrial damage, and effectively mitigates the progression of diabetic kidney disease.
Collapse
Affiliation(s)
- Jia-yi He
- grid.414252.40000 0004 1761 8894Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853 China ,grid.411847.f0000 0004 1804 4300Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006 China
| | - Quan Hong
- grid.414252.40000 0004 1761 8894Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853 China
| | - Bi-xia Chen
- grid.414252.40000 0004 1761 8894Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853 China ,grid.411847.f0000 0004 1804 4300Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006 China
| | - Shao-yuan Cui
- grid.414252.40000 0004 1761 8894Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853 China
| | - Ran Liu
- grid.414252.40000 0004 1761 8894Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853 China
| | - Guang-yan Cai
- grid.414252.40000 0004 1761 8894Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853 China
| | - Jiao Guo
- grid.411847.f0000 0004 1804 4300Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006 China
| | - Xiang-mei Chen
- grid.414252.40000 0004 1761 8894Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853 China ,grid.411847.f0000 0004 1804 4300Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006 China
| |
Collapse
|
39
|
Singh M, Kapoor A, Bhatnagar A. Physiological and Pathological Roles of Aldose Reductase. Metabolites 2021; 11:655. [PMID: 34677370 PMCID: PMC8541668 DOI: 10.3390/metabo11100655] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 12/15/2022] Open
Abstract
Aldose reductase (AR) is an aldo-keto reductase that catalyzes the first step in the polyol pathway which converts glucose to sorbitol. Under normal glucose homeostasis the pathway represents a minor route of glucose metabolism that operates in parallel with glycolysis. However, during hyperglycemia the flux of glucose via the polyol pathway increases significantly, leading to excessive formation of sorbitol. The polyol pathway-driven accumulation of osmotically active sorbitol has been implicated in the development of secondary diabetic complications such as retinopathy, nephropathy, and neuropathy. Based on the notion that inhibition of AR could prevent these complications a range of AR inhibitors have been developed and tested; however, their clinical efficacy has been found to be marginal at best. Moreover, recent work has shown that AR participates in the detoxification of aldehydes that are derived from lipid peroxidation and their glutathione conjugates. Although in some contexts this antioxidant function of AR helps protect against tissue injury and dysfunction, the metabolic transformation of the glutathione conjugates of lipid peroxidation-derived aldehydes could also lead to the generation of reactive metabolites that can stimulate mitogenic or inflammatory signaling events. Thus, inhibition of AR could have both salutary and injurious outcomes. Nevertheless, accumulating evidence suggests that inhibition of AR could modify the effects of cardiovascular disease, asthma, neuropathy, sepsis, and cancer; therefore, additional work is required to selectively target AR inhibitors to specific disease states. Despite past challenges, we opine that a more gainful consideration of therapeutic modulation of AR activity awaits clearer identification of the specific role(s) of the AR enzyme in health and disease.
Collapse
Affiliation(s)
- Mahavir Singh
- Eye and Vision Science Laboratory, Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Aniruddh Kapoor
- Internal Medicine—Critical Care, School of Medicine, Saint Louis University, St. Louis, MO 63141, USA;
| | - Aruni Bhatnagar
- Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, Louisville, KY 40202, USA;
| |
Collapse
|
40
|
Peter Ventura AM, Haeberlein S, Konopka L, Obermann W, Grünweller A, Grevelding CG, Schlitzer M. Synthesis and antischistosomal activity of linker- and thiophene-modified biaryl alkyl carboxylic acid derivatives. Arch Pharm (Weinheim) 2021; 354:e2100259. [PMID: 34523746 DOI: 10.1002/ardp.202100259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 01/22/2023]
Abstract
Schistosomiasis is a neglected tropical disease caused by blood flukes of the genus Schistosoma and causes severe morbidity in infected patients. In 2018, 290.8 million people required treatment, and 200,000 deaths are reported per year. Treatment of this disease depends on a single drug, praziquantel (PZQ). However, in the past few years, reduced sensitivity of the parasites toward PZQ has been reported. Therefore, there is an urgent need for new drugs against this disease. In the past few years, we have focused on a new substance class called biaryl alkyl carboxylic acid derivatives, which showed promising antischistosomal activity in vitro. Structure-activity relationship (SAR) studies of the carboxylic acid moiety led to three promising carboxylic amides (morpholine, thiomorpholine, and methyl sulfonyl piperazine) with an antischistosomal activity down to 10 µM (morpholine derivative) and no cytotoxicity up to 100 µM. Here, we show our continued work on this substance class. We investigated, in extended SAR studies, whether modification of the linker and the thiophene ring could improve the antischistosomal activity. We found that the exchange of the alkyl linker by a pentadienyl or benzyl linker was tolerated and led to similar antischistosomal effects, whereas the exchange of the thiophene ring was not tolerated. Our data suggest that the thiophene ring is important for the antischistosomal activity of this compound class.
Collapse
Affiliation(s)
| | - Simone Haeberlein
- BFS, Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Leonie Konopka
- Institute of Pharmaceutical Chemistry, Philipps University Marburg, Marburg, Germany
| | - Wiebke Obermann
- Institute of Pharmaceutical Chemistry, Philipps University Marburg, Marburg, Germany
| | - Arnold Grünweller
- Institute of Pharmaceutical Chemistry, Philipps University Marburg, Marburg, Germany
| | | | - Martin Schlitzer
- Institute of Pharmaceutical Chemistry, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
41
|
Sulistiani RP, Afifah DN, Pemayun TGD, Widyastiti NS, Anjani G, Kurniawati DM. The Effects of Colocasia esculenta Leaf Extract in Inhibition of Erythrocyte Aldose Reductase Activity and Increase of Haemoglobin in Experimental Rats. J Nutr Sci Vitaminol (Tokyo) 2021; 66:S320-S323. [PMID: 33612618 DOI: 10.3177/jnsv.66.s320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Diabetes Mellitus (DM) has reached a number of 382 million in 2013 and expected to rise to 592 million by 2035. Chronic diabetes can lead to impaired formation of erythropoietin in haemoglobin production and may cause anemia. Inhibition of aldose reductase is a key point of diabetes treatment and prevention of complications in diabetes. Colocasia esculenta (CE) leaf is one of Indonesian vegetables which has inhibition effect on aldose reductase activity. This research was a true experimental study with post-test only group design. 21 male Sprague dawley rats were divided into: K (control group), P1 (extract CE 200 mg/KgBW) and P2 (extract CE 400 mg/KgBW). Rats were induced to become obese with High Fat Sucrose Diet (HFSD) for 4 wk then extract CE were given for 3 wk. The data were analyzed with independent t-test. CE have a significant effect to increase haemoglobin but have no significant inhibition effect to erythrocyte aldose reductase activity. The results of this research found that the mean haemoglobin of control group was 13.14±1.55, treatment group 1 (P1) was 15.22±0.59, and treatment group 2 (P2) was 15.77±0.71. There was significant increase in haemoglobin (p<0.05). The mean of aldose reductase activity of treatment group was lower than control group. However, there was no significant difference found (p>0.05) between the groups. 200 mg/kgBW and 400 mg/kgBW dose of CE could increase haemoglobin and decrease the mean of aldose reductase activity.
Collapse
Affiliation(s)
- Ria Purnawian Sulistiani
- Department of Nutrition, Muhammadiyah Semarang University, Faculty of Nursing and Health Sciences, Universitas Muhammadiyah Semarang.,Department of Nutrition Science, Faculty of Medicine, Diponegoro University
| | - Diana Nur Afifah
- Department of Nutrition Science, Faculty of Medicine, Diponegoro University
| | | | | | - Gemala Anjani
- Department of Nutrition Science, Faculty of Medicine, Diponegoro University
| | | |
Collapse
|
42
|
Petrash JM, Shieh B, Ammar DA, Pedler MG, Orlicky DJ. Diabetes-Independent Retinal Phenotypes in an Aldose Reductase Transgenic Mouse Model. Metabolites 2021; 11:metabo11070450. [PMID: 34357344 PMCID: PMC8305400 DOI: 10.3390/metabo11070450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/21/2021] [Accepted: 06/26/2021] [Indexed: 11/16/2022] Open
Abstract
Aldose reductase (AR), the first and rate-limiting enzyme of the polyol pathway, has been implicated in the onset and development of the ocular complications of diabetes, including cataracts and retinopathy. Despite decades of research conducted to address possible mechanisms, questions still persist in understanding if or how AR contributes to imbalances leading to diabetic eye disease. To address these questions, we created a strain of transgenic mice engineered for the overexpression of human AR (AR-Tg). In the course of monitoring these animals for age-related retinal phenotypes, we observed signs of Müller cell gliosis characterized by strong immunostaining for glial fibrillary acidic protein. In addition, we observed increased staining for Iba1, consistent with an increase in the number of retinal microglia, a marker of retinal inflammation. Compared to age-matched nontransgenic controls, AR-Tg mice showed an age-dependent loss of Brn3a-positive retinal ganglion cells and an associated decrease in PERG amplitude. Both RGC-related phenotypes were rescued in animals treated with Sorbinil in drinking water. These results support the hypothesis that increased levels of AR may be a risk factor for structural and functional changes known to accompany retinopathy in humans.
Collapse
Affiliation(s)
- Jonathan Mark Petrash
- Department of Ophthalmology, University of Colorado School of Medicine, 12800 E. 19th Ave., Aurora, CO 80045, USA; (B.S.); (M.G.P.)
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 1635 Aurora Ct, Aurora, CO 80045, USA
- Correspondence:
| | - Biehuoy Shieh
- Department of Ophthalmology, University of Colorado School of Medicine, 12800 E. 19th Ave., Aurora, CO 80045, USA; (B.S.); (M.G.P.)
| | - David A. Ammar
- Lions Eye Institute for Transplant and Research, 1410 N 21st St, Tampa, FL 33605, USA;
| | - Michelle G. Pedler
- Department of Ophthalmology, University of Colorado School of Medicine, 12800 E. 19th Ave., Aurora, CO 80045, USA; (B.S.); (M.G.P.)
| | - David J. Orlicky
- Department of Pathology, University of Colorado School of Medicine, 12800 E. 19th Ave., Aurora, CO 80045, USA;
| |
Collapse
|
43
|
Sonowal H, Ramana KV. Development of Aldose Reductase Inhibitors for the Treatment of Inflammatory Disorders and Cancer: Current Drug Design Strategies and Future Directions. Curr Med Chem 2021; 28:3683-3712. [PMID: 33109031 DOI: 10.2174/0929867327666201027152737] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 11/22/2022]
Abstract
Aldose Reductase (AR) is an enzyme that converts glucose to sorbitol during the polyol pathway of glucose metabolism. AR has been shown to be involved in the development of secondary diabetic complications due to its involvement in causing osmotic as well as oxidative stress. Various AR inhibitors have been tested for their use to treat secondary diabetic complications, such as retinopathy, neuropathy, and nephropathy in clinical studies. Recent studies also suggest the potential role of AR in mediating various inflammatory complications. Therefore, the studies on the development and potential use of AR inhibitors to treat inflammatory complications and cancer besides diabetes are currently on the rise. Further, genetic mutagenesis studies, computer modeling, and molecular dynamics studies have helped design novel and potent AR inhibitors. This review discussed the potential new therapeutic use of AR inhibitors in targeting inflammatory disorders and cancer besides diabetic complications. Further, we summarized studies on how AR inhibitors have been designed and developed for therapeutic purposes in the last few decades.
Collapse
Affiliation(s)
- Himangshu Sonowal
- Moores Cancer Center, University of California San Diego, La Jolla, California 92037, United States
| | - Kota V Ramana
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, United States
| |
Collapse
|
44
|
Wu R, Guo S, Lai S, Pan G, Zhang L, Liu H. A stable gene set for prediction of prognosis and efficacy of chemotherapy in gastric cancer. BMC Cancer 2021; 21:684. [PMID: 34112138 PMCID: PMC8194165 DOI: 10.1186/s12885-021-08444-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Background Gastric cancer (GC) is a primary reason for cancer death in the world. At present, GC has become a public health issue urgently to be solved to. Prediction of prognosis is critical to the development of clinical treatment regimens. This work aimed to construct the stable gene set for guiding GC diagnosis and treatment in clinic. Methods A public microarray dataset of TCGA providing clinical information was obtained. Dimensionality reduction was carried out by selection operator regression on the stable prognostic genes discovered through the bootstrap approach as well as survival analysis. Findings A total of 2 prognostic models were built, respectively designated as stable gene risk scores of OS (SGRS-OS) and stable gene risk scores of PFI (SGRS-PFI) consisting of 18 and 21 genes. The SGRS set potently predicted the overall survival (OS) along with progression-free interval (PFI) by means of univariate as well as multivariate analysis, using the specific risk scores formula. Relative to the TNM classification system, the SGRS set exhibited apparently higher predicting ability. Moreover, it was suggested that, patients who had increased SGRS were associated with poor chemotherapeutic outcomes. Interpretation The SGRS set constructed in this study potentially serves as the efficient approach for predicting GC patient survival and guiding their treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08444-w.
Collapse
Affiliation(s)
- Rui Wu
- The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Sixuan Guo
- The Second Clinical College, Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Shuhui Lai
- The First Clinical College, Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Guixing Pan
- Shangrao Maternity and Child Care Hospital, Shangrao, Jiangxi, China
| | - Linyi Zhang
- School of Ophthalmology & Optometry, Nanchang University, Nanchang, Jiangxi, China
| | - Huanbing Liu
- The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
45
|
Protective Effect of Aldo-keto Reductase 1B1 Against Neuronal Cell Damage Elicited by 4'-Fluoro-α-pyrrolidinononanophenone. Neurotox Res 2021; 39:1360-1371. [PMID: 34043181 DOI: 10.1007/s12640-021-00380-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/17/2021] [Accepted: 05/21/2021] [Indexed: 10/21/2022]
Abstract
Chronic exposure to cathinone derivatives increases the risk of severe health hazards, whereas little is known about the detailed pathogenic mechanisms triggered by the derivatives. We have recently shown that treatment with α-pyrrolidinononanophenone (α-PNP, a highly lipophilic cathinone derivative possessing a long hydrocarbon main chain) provokes neuronal cell apoptosis and its 4'-fluorinated analog (F-α-PNP) potently augments the apoptotic effect. In this study, we found that neuronal SK-N-SH cell damage elicited by F-α-PNP treatment is augmented most potently by pre-incubation with an AKR1B1 inhibitor tolrestat, among specific inhibitors of four aldo-keto reductase (AKR) family members (1B1, 1C1, 1C2, and 1C3) expressed in the neuronal cells. In addition, forced overexpression of AKR1B1 remarkably lowered the cell sensitivity to F-α-PNP toxicity, clearly indicating that AKR1B1 protects from neurotoxicity of the derivative. Treatment of SK-N-SH cells with F-α-PNP resulted in a dose-dependent up-regulation of AKR1B1 expression and activation of its transcription factor NF-E2-related factor 2. Metabolic analyses using liquid chromatography/mass spectrometry/mass spectrometry revealed that AKR1B1 is hardly involved in the F-α-PNP metabolism. The F-α-PNP treatment resulted in production of reactive oxygen species and lipid peroxidation byproduct 4-hydroxy-2-nonenal (HNE) in the cells. The enhanced HNE level was reduced by overexpression of AKR1B1, which also lessened the cell damage elicited by HNE. These results suggest that the AKR1B1-mediated neuronal cell protection is due to detoxification of HNE formed by F-α-PNP treatment, but not to metabolism of the derivative.
Collapse
|
46
|
Antioxidant and Anti-Inflammatory Properties of Recombinant Bifidobacterium bifidum BGN4 Expressing Antioxidant Enzymes. Microorganisms 2021; 9:microorganisms9030595. [PMID: 33805797 PMCID: PMC7998161 DOI: 10.3390/microorganisms9030595] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 12/14/2022] Open
Abstract
Bifidobacterium bifidum BGN4-SK (BGN4-SK), a recombinant strain which was constructed from B. bifidum BGN4 (BGN4) to produce superoxide dismutase (SOD) and catalase, was analyzed to determine its antioxidant and anti-inflammatory properties in vitro. Culture conditions were determined to maximize the SOD and catalase activities of BGN4-SK. The viability, intracellular radical oxygen species (ROS) levels, intracellular antioxidant enzyme activities, and pro-inflammatory cytokine levels were determined to evaluate the antioxidant and anti-inflammatory activities of BGN4-SK in human intestinal epithelial cells (HT-29) and murine macrophage cells (RAW 264.7). Antioxidant enzymes (SOD and catalase) were produced at the highest levels when BGN4-SK was cultured for 24 h in a medium containing 500 μM MnSO4 and 30 μM hematin, with glucose as the carbon source. The viability and intracellular antioxidant enzyme activities of H2O2-stimulated HT-29 treated with BGN4-SK were significantly higher (p < 0.05) than those of cells treated with BGN4. The intracellular ROS levels of H2O2-stimulated HT-29 cells treated with BGN4-SK were significantly lower (p < 0.05) than those of cells treated with BGN4. BGN4-SK more significantly suppressed the production of interleukin (IL)-6 (p < 0.05), tumor necrosis factor-α (p < 0.01), and IL-8 (p < 0.05) in lipopolysaccharide (LPS)-stimulated HT-29 and LPS-stimulated RAW 264.7 cells compared to BGN4. These results suggest that BGN4-SK may have enhanced antioxidant activities against oxidative stress in H2O2-stimulated HT-29 cells and enhanced anti-inflammatory activities in LPS-stimulated HT-29 and RAW 264.7 cells.
Collapse
|
47
|
Jannapureddy S, Sharma M, Yepuri G, Schmidt AM, Ramasamy R. Aldose Reductase: An Emerging Target for Development of Interventions for Diabetic Cardiovascular Complications. Front Endocrinol (Lausanne) 2021; 12:636267. [PMID: 33776930 PMCID: PMC7992003 DOI: 10.3389/fendo.2021.636267] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/19/2021] [Indexed: 12/18/2022] Open
Abstract
Diabetes is a leading cause of cardiovascular morbidity and mortality. Despite numerous treatments for cardiovascular disease (CVD), for patients with diabetes, these therapies provide less benefit for protection from CVD. These considerations spur the concept that diabetes-specific, disease-modifying therapies are essential to identify especially as the diabetes epidemic continues to expand. In this context, high levels of blood glucose stimulate the flux via aldose reductase (AR) pathway leading to metabolic and signaling changes in cells of the cardiovascular system. In animal models flux via AR in hearts is increased by diabetes and ischemia and its inhibition protects diabetic and non-diabetic hearts from ischemia-reperfusion injury. In mouse models of diabetic atherosclerosis, human AR expression accelerates progression and impairs regression of atherosclerotic plaques. Genetic studies have revealed that single nucleotide polymorphisms (SNPs) of the ALD2 (human AR gene) is associated with diabetic complications, including cardiorenal complications. This Review presents current knowledge regarding the roles for AR in the causes and consequences of diabetic cardiovascular disease and the status of AR inhibitors in clinical trials. Studies from both human subjects and animal models are presented to highlight the breadth of evidence linking AR to the cardiovascular consequences of diabetes.
Collapse
Affiliation(s)
| | | | | | | | - Ravichandran Ramasamy
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
48
|
Abstract
Neuropathy is a common complication of long-term diabetes that impairs quality of life by producing pain, sensory loss and limb amputation. The presence of neuropathy in both insulin-deficient (type 1) and insulin resistant (type 2) diabetes along with the slowing of progression of neuropathy by improved glycemic control in type 1 diabetes has caused the majority of preclinical and clinical investigations to focus on hyperglycemia as the initiating pathogenic lesion. Studies in animal models of diabetes have identified multiple plausible mechanisms of glucotoxicity to the nervous system including post-translational modification of proteins by glucose and increased glucose metabolism by aldose reductase, glycolysis and other catabolic pathways. However, it is becoming increasingly apparent that factors not necessarily downstream of hyperglycemia can also contribute to the incidence, progression and severity of neuropathy and neuropathic pain. For example, peripheral nerve contains insulin receptors that transduce the neurotrophic and neurosupportive properties of insulin, independent of systemic glucose regulation, while the detection of neuropathy and neuropathic pain in patients with metabolic syndrome and failure of improved glycemic control to protect against neuropathy in cohorts of type 2 diabetic patients has placed a focus on the pathogenic role of dyslipidemia. This review provides an overview of current understanding of potential initiating lesions for diabetic neuropathy and the multiple downstream mechanisms identified in cell and animal models of diabetes that may contribute to the pathogenesis of diabetic neuropathy and neuropathic pain.
Collapse
|
49
|
Ayuso P, García-Martín E, Agúndez JAG. Variability of the Genes Involved in the Cellular Redox Status and Their Implication in Drug Hypersensitivity Reactions. Antioxidants (Basel) 2021; 10:antiox10020294. [PMID: 33672092 PMCID: PMC7919686 DOI: 10.3390/antiox10020294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022] Open
Abstract
Adverse drug reactions are a major cause of morbidity and mortality. Of the great diversity of drugs involved in hypersensitivity drug reactions, the most frequent are non-steroidal anti-inflammatory drugs followed by β-lactam antibiotics. The redox status regulates the level of reactive oxygen and nitrogen species (RONS). RONS interplay and modulate the action of diverse biomolecules, such as inflammatory mediators and drugs. In this review, we address the role of the redox status in the initiation, as well as in the resolution of inflammatory processes involved in drug hypersensitivity reactions. We summarize the association findings between drug hypersensitivity reactions and variants in the genes that encode the enzymes related to the redox system such as enzymes related to glutathione: Glutathione S-transferase (GSTM1, GSTP, GSTT1) and glutathione peroxidase (GPX1), thioredoxin reductase (TXNRD1 and TXNRD2), superoxide dismutase (SOD1, SOD2, and SOD3), catalase (CAT), aldo-keto reductase (AKR), and the peroxiredoxin system (PRDX1, PRDX2, PRDX3, PRDX4, PRDX5, PRDX6). Based on current evidence, the most relevant candidate redox genes related to hypersensitivity drug reactions are GSTM1, TXNRD1, SOD1, and SOD2. Increasing the understanding of pharmacogenetics in drug hypersensitivity reactions will contribute to the development of early diagnostic or prognosis tools, and will help to diminish the occurrence and/or the severity of these reactions.
Collapse
Affiliation(s)
- Pedro Ayuso
- Correspondence: ; Tel.: +34-927257000 (ext. 51038)
| | | | | |
Collapse
|
50
|
Deng L, Du C, Song P, Chen T, Rui S, Armstrong DG, Deng W. The Role of Oxidative Stress and Antioxidants in Diabetic Wound Healing. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8852759. [PMID: 33628388 PMCID: PMC7884160 DOI: 10.1155/2021/8852759] [Citation(s) in RCA: 268] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022]
Abstract
Foot ulcers are one of the most common and severe complication of diabetes mellitus with significant resultant morbidity and mortality. Multiple factors impair wound healing include skin injury, diabetic neuropathy, ischemia, infection, inadequate glycemic control, poor nutritional status, and severe morbidity. It is currently believed that oxidative stress plays a vital role in diabetic wound healing. An imbalance of free radicals and antioxidants in the body results in overproduction of reactive oxygen species which lead to cell, tissue damage, and delayed wound healing. Therefore, decreasing ROS levels through antioxidative systems may reduce oxidative stress-induced damage to improve healing. In this context, we provide an update on the role of oxidative stress and antioxidants in diabetic wound healing through following four perspectives. We then discuss several therapeutic strategies especially dietary bioactive compounds by targeting oxidative stress to improve wounds healing.
Collapse
Affiliation(s)
- Liling Deng
- Department of Endocrinology, Multidisciplinary Diabetic Foot Medical Center, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing 400014, China
| | - Chenzhen Du
- Department of Endocrinology, Multidisciplinary Diabetic Foot Medical Center, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing 400014, China
| | - Peiyang Song
- Department of Endocrinology, Multidisciplinary Diabetic Foot Medical Center, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing 400014, China
| | - Tianyi Chen
- Department of Endocrinology, Multidisciplinary Diabetic Foot Medical Center, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing 400014, China
| | - Shunli Rui
- Department of Endocrinology, Multidisciplinary Diabetic Foot Medical Center, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing 400014, China
| | - David G. Armstrong
- Department of Surgery, Keck School of Medicine of the University of Southern California, CA, USA
| | - Wuquan Deng
- Department of Endocrinology, Multidisciplinary Diabetic Foot Medical Center, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing 400014, China
| |
Collapse
|