1
|
Xu L, Xie N, Liu Y, Tang H, Li T, Peng J, Li R. Development of a Novel Multi-Epitope Vaccine Against Streptococcus anginosus Infection via Reverse Vaccinology Approach. Immunology 2025. [PMID: 40267989 DOI: 10.1111/imm.13936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/25/2025] [Accepted: 04/14/2025] [Indexed: 04/25/2025] Open
Abstract
Streptococcus anginosus is an opportunistic pathogen known for its capability to cause a broad range of infections, posing a significant and growing global health concern. Alongside enhancing diagnostic capabilities and bolstering public health initiatives, developing a safe and effective vaccine represents a promising strategy to tackle this health challenge. In this paper, we employed an array of bioinformatics tools to engineer a subunit vaccine that exhibits high immunogenicity against S. anginosus. After constructing the multi-epitope vaccine, we subsequently predicted its secondary and tertiary protein structures. After refining and validating the modelled structure, we utilised advanced computational approaches, including molecular docking and dynamic simulations, to evaluate the binding affinity, compatibility, and stability of the vaccine-adjuvant complexes. Eventually, in silico cloning was conducted to optimise protein expression and production. The multi-epitope subunit vaccine we developed showed properties in antigenicity and immunity theoretically. The computational study revealed that this vaccine demonstrates significant efficacy against S. anginosus.
Collapse
Affiliation(s)
- Linglan Xu
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Clinical Laboratory, Affiliated Hengyang Hospital of Hunan Normal University & Hengyang Central Hospital, Hengyang, Hunan, China
- Hunan Prevention and Treatment Institute for Occupational Diseases, Affiliated Prevention and Treatment Institute for Occupational Diseases of University of South China, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Nan Xie
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yiqing Liu
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Hongmei Tang
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Tian Li
- Tianjin Key Laboratory of Acute Abdomen Disease-Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Jiaofeng Peng
- Department of Clinical Laboratory, Affiliated Hengyang Hospital of Hunan Normal University & Hengyang Central Hospital, Hengyang, Hunan, China
| | - Ranhui Li
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Prevention and Treatment Institute for Occupational Diseases, Affiliated Prevention and Treatment Institute for Occupational Diseases of University of South China, Hengyang Medical School, University of South China, Changsha, Hunan, China
| |
Collapse
|
2
|
Félix P, Melo AA, Costa JP, Colaço M, Pereira D, Núñez J, de Almeida LP, Borges O. Exploring TLR agonists as adjuvants for COVID-19 oral vaccines. Vaccine 2025; 53:127078. [PMID: 40184639 DOI: 10.1016/j.vaccine.2025.127078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/18/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
The COVID-19 pandemic underscored the importance of advancing technologies that enable the rapid development and distribution of more effective vaccines when required. Since SARS-CoV-2 enters the body through the nasal mucosa, optimising the induction of secretory IgA (sIgA) production, a key component of the mucosal immune response, is essential. It has long been known that the induction of sIgA occurs when a vaccine is administered through mucosal surfaces and the immune responses initiated at one mucosal site can influence immune activity at other mucosal surfaces. Consequently, we propose an oral vaccine formulation (Vacform) comprising the immunomodulator CL097, a TLR7/8 agonist, and the SARS-CoV-2 spike protein, both encapsulated within glucan particles (GPs). The studies demonstrated that Vacform induced ROS production in RAW 264.7 cells but not in human neutrophils. The concentrations of Vacform tested did not induce NO production in RAW 264.7 cells. While Vacform stimulated the production of TNF-α and IL-6 in mouse spleen cells, this effect was not observed in RAW 264.7 cells. Finally, Vacform stimulated the proliferation of human PBMCs. Thus, its immunomodulatory properties were evident in specific cells under certain in vitro conditions. The Vacform was subsequently tested in vaccination studies. C57BL/6 mice were initially immunized subcutaneously, followed by two oral boosts with Vacform every two weeks. The Vacform elicited both, humoral (serum IgG and mucosal sIgA) and cellular immune responses. A balanced Th1/Th2/Th17 immune profile was observed. In conclusion, the GPs:CL097 adjuvant system shows promise for eliciting robust immune responses against SARS-CoV-2 and provides a foundation for future studies on dose-response optimization and challenge models.
Collapse
Affiliation(s)
- Paulo Félix
- Faculty of Pharmacy (FFUC), University of Coimbra, 3000-548 Coimbra, Portugal; Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra 3004-504, Portugal; Centre for Neuroscience and Cell Biology - University of Coimbra (CNC - UC), Coimbra 3004-504, Portugal
| | - Alexandra A Melo
- Faculty of Pharmacy (FFUC), University of Coimbra, 3000-548 Coimbra, Portugal; Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra 3004-504, Portugal; Centre for Neuroscience and Cell Biology - University of Coimbra (CNC - UC), Coimbra 3004-504, Portugal
| | - João Panão Costa
- Faculty of Pharmacy (FFUC), University of Coimbra, 3000-548 Coimbra, Portugal; Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra 3004-504, Portugal; Centre for Neuroscience and Cell Biology - University of Coimbra (CNC - UC), Coimbra 3004-504, Portugal
| | - Mariana Colaço
- Faculty of Pharmacy (FFUC), University of Coimbra, 3000-548 Coimbra, Portugal; Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra 3004-504, Portugal; Centre for Neuroscience and Cell Biology - University of Coimbra (CNC - UC), Coimbra 3004-504, Portugal
| | - Dina Pereira
- Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra 3004-504, Portugal; Centre for Neuroscience and Cell Biology - University of Coimbra (CNC - UC), Coimbra 3004-504, Portugal; Gene Therapy Center of Excellence (GeneT), Coimbra 3004-504, Portugal; IIIUC - Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Jisette Núñez
- Faculty of Pharmacy (FFUC), University of Coimbra, 3000-548 Coimbra, Portugal; Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra 3004-504, Portugal; Centre for Neuroscience and Cell Biology - University of Coimbra (CNC - UC), Coimbra 3004-504, Portugal; Gene Therapy Center of Excellence (GeneT), Coimbra 3004-504, Portugal
| | - Luís Pereira de Almeida
- Faculty of Pharmacy (FFUC), University of Coimbra, 3000-548 Coimbra, Portugal; Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra 3004-504, Portugal; Centre for Neuroscience and Cell Biology - University of Coimbra (CNC - UC), Coimbra 3004-504, Portugal; Gene Therapy Center of Excellence (GeneT), Coimbra 3004-504, Portugal
| | - Olga Borges
- Faculty of Pharmacy (FFUC), University of Coimbra, 3000-548 Coimbra, Portugal; Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra 3004-504, Portugal; Centre for Neuroscience and Cell Biology - University of Coimbra (CNC - UC), Coimbra 3004-504, Portugal.
| |
Collapse
|
3
|
Zhang H, Zhu Y, Ma J, Ma Y, Jin L, Li J, Yang R, Song G. Cyclic Acetal-Based Lipid Nanoparticles Deliver mRNA In Vivo for Tumor Immunotherapy. ACS APPLIED BIO MATERIALS 2025. [PMID: 40241379 DOI: 10.1021/acsabm.5c00076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Lipid nanoparticle (LNP)-mRNA-based tumor immunotherapy needs to address challenges such as low efficacy of mRNA delivery, targeted protein expression, and compromised innate immunogenicity. Here, we screen a panel of 16 cyclic acetal-based ionizable lipid nanoparticles by in vitro and in vivo assays to develop a more effective and safer system specifically for tumor immunotherapy and mRNA delivery. Furthermore, by incorporating a cyclic acetal-based adjuvant lipid YK-TLR-001, two optimized cyclic acetal-based LNP formulations (YK-712 and YK-716) are demonstrated to enhance mRNA expression in the spleens and to induce exceptional maturation of antigen-presenting cells (APCs) and to promote antigen presentation. Moreover, animal studies treated with these formulations show activated cellular immunogenicity in healthy mice and inhibited tumor growth in the B16F10 melanoma model. Thus, the cyclic acetal-based LNPs with YK-TLR-001 present a promising direction in the design of mRNA vectors for the advancement of mRNA tumor immunotherapy.
Collapse
Affiliation(s)
- Honglei Zhang
- Beijing Youcare Kechuang Pharmaceutical Technology Co., Ltd., Beijing 100176, P. R. China
| | - Yizi Zhu
- National Institutes for Food and Drug Control, Beijing 100050, P. R. China
| | - Jingxuan Ma
- Beijing Youcare Kechuang Pharmaceutical Technology Co., Ltd., Beijing 100176, P. R. China
| | - Yuqing Ma
- Beijing Youcare Kechuang Pharmaceutical Technology Co., Ltd., Beijing 100176, P. R. China
| | - Lijie Jin
- Beijing Youcare Kechuang Pharmaceutical Technology Co., Ltd., Beijing 100176, P. R. China
| | - Jing Li
- Beijing Youcare Kechuang Pharmaceutical Technology Co., Ltd., Beijing 100176, P. R. China
| | - Rui Yang
- National Institutes for Food and Drug Control, Beijing 100050, P. R. China
| | - Gengshen Song
- Beijing Youcare Kechuang Pharmaceutical Technology Co., Ltd., Beijing 100176, P. R. China
| |
Collapse
|
4
|
Kawakita T, Sekiya T, Kameda Y, Nomura N, Ohno M, Handabile C, Yamaya A, Fukuhara H, Anraku Y, Kita S, Toba S, Tsukamoto H, Sawa T, Oshiumi H, Itoh Y, Maenaka K, Sato A, Sawa H, Suzuki Y, Brown LE, Jackson DC, Kida H, Matsumoto M, Seya T, Shingai M. ARNAX is an ideal adjuvant for COVID-19 vaccines to enhance antigen-specific CD4 + and CD8 + T-cell responses and neutralizing antibody induction. J Virol 2025:e0229024. [PMID: 40231823 DOI: 10.1128/jvi.02290-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/02/2025] [Indexed: 04/16/2025] Open
Abstract
ARNAX is a synthetic nucleotide-based Toll-like receptor 3 (TLR3) ligand that specifically stimulates the TLR3/TIR domain-containing adaptor molecule 1 (TICAM-1) pathway without activating inflammatory responses. ARNAX activates cellular immunity via cross-presentation; hence, its practical application has been demonstrated in cancer immunotherapy. Given the importance of cellular immunity in virus infections, ARNAX is expected to be a more effective vaccine adjuvant for virus infections than alum, an adjuvant approved for human use that mainly enhances humoral immunity. In the present study, the trimeric recombinant spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was prepared as a vaccine antigen and formulated with ARNAX. When T-cell and neutralizing antibody responses were evaluated in immunized mice, antigen formulated with ARNAX generated significantly larger numbers of antigenspecific CD4+ and CD8+ T cells, as well as higher titers of neutralizing antibodies, compared to antigen alone or antigen formulated with alum. In experiments where immunized mice were challenged with a SARS-CoV-2 mouse-adapted virus derived from the ancestral strain, immunization with antigen formulated with ARNAX reduced virus titers in the lungs at 3 days post-infection to a much greater extent than did immunization with either antigen alone or that formulated with alum. These results show that ARNAX potently enhances the levels of both cellular and humoral immunity above those seen with alum, providing significantly greater viral clearing responses. Thus, ARNAX may act as a useful adjuvant for prophylactic vaccines, particularly for viral infectious diseases. IMPORTANCE Cellular immunity is a critical immunological defense system against virus infections. However, aluminum salts, the most widely used adjuvant for vaccines for human use, do not promote strong cellular immunity. To prepare for the next pandemic of viral origin, the development of Th1-type adjuvants with low adverse reactions that induce cellular immunity is necessary. ARNAX is a TLR3 agonist consisting of DNA-RNA hybrid nucleic acid, which is expected to be an adjuvant that induces cellular immunity. The present study using a coronavirus disease 2019 mouse model demonstrated that ARNAX potently induces cellular immunity in addition to humoral immunity with minimal induction of inflammatory cytokines. Therefore, ARNAX has the potential to be used as a potent and welltolerated adjuvant for vaccines against pandemic viruses emerging in the future.
Collapse
Affiliation(s)
- Tomomi Kawakita
- Division of Vaccine Immunology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- Division of Biologics Development, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Toshiki Sekiya
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- Division of Biologics Development, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- The Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Yayoi Kameda
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Naoki Nomura
- Division of Biologics Development, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Marumi Ohno
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- Division of Biologics Development, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Chimuka Handabile
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- Division of Biologics Development, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Akari Yamaya
- Nebuta Research Institute for Life Sciences, Aomori University, Aomori, Japan
| | - Hideo Fukuhara
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- Division of Pathogen Structure, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yuki Anraku
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Shunsuke Kita
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Shinsuke Toba
- Shionogi Pharmaceutical Research Center, Shionogi & Company, Limited, Toyonaka, Japan
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Hirotake Tsukamoto
- Division of Clinical Immunology and Cancer Immunotherapy, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomohiro Sawa
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroyuki Oshiumi
- Department of Immunology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yasushi Itoh
- Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Katsumi Maenaka
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- Division of Pathogen Structure, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo, Japan
| | - Akihiko Sato
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- Shionogi Pharmaceutical Research Center, Shionogi & Company, Limited, Toyonaka, Japan
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Hirofumi Sawa
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yasuhiko Suzuki
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Lorena E Brown
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- The Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - David C Jackson
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- The Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Hiroshi Kida
- Division of Vaccine Immunology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- Division of Biologics Development, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Misako Matsumoto
- Division of Vaccine Immunology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Nebuta Research Institute for Life Sciences, Aomori University, Aomori, Japan
- Department of Vaccine Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Tsukasa Seya
- Division of Vaccine Immunology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Nebuta Research Institute for Life Sciences, Aomori University, Aomori, Japan
- Department of Vaccine Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masashi Shingai
- Division of Vaccine Immunology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- Division of Biologics Development, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| |
Collapse
|
5
|
Wu H, Weng R, Li J, Huang Z, Tie X, Li J, Chen K. Self-Assembling protein nanoparticle platform for multivalent antigen delivery in vaccine development. Int J Pharm 2025; 676:125597. [PMID: 40233885 DOI: 10.1016/j.ijpharm.2025.125597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/07/2025] [Accepted: 04/12/2025] [Indexed: 04/17/2025]
Abstract
Nanoparticle vaccines can efficiently and repeatedly display multivalent antigens, thereby improving the targeted delivery of antigens and inducing more durable immune responses, making them an important representative of novel vaccines. The global COVID-19 pandemic has accelerated the development of nanoparticle vaccines, offering a promising solution for the prevention and control of infectious diseases. Currently, the development of nanoparticle vaccines involves the use of various types of nanoparticles, including liposomes, polymers, inorganic materials, and emulsions. Protein nanoparticles candidate vaccines are attracting increasing attention because of their unique antigen presentation methods and self-assembly characteristics during their development, leading to a broad consensus on their promising future. Naturally self-assembling protein nanoparticles, such as ferritin, enhance antigen presentation, which aids in the activation of both humoral and cellular immune responses. This has led to significant advancements in the study of hepatitis B virus. Meanwhile, some synthetically engineered protein nanoparticles, such as mi3, and I53-50, can induce higher antibody titers through chemical conjugation with the SpyTag-SpyCatcher system, thereby providing better immunoprotection and showing promising prospects in the prevention of H1N1 and H3N2 influenza virus infections. This article reviews the unique advantages of protein nanoparticles as antigen delivery platforms, progress made in immunological design mechanisms, advances in the application of related adjuvants in preclinical and clinical trials, and the performance of commonly used computationally designed protein nanoparticles in preclinical trials, with a particular emphasis on the progress in the application of cationic nanoparticle vaccines. The aim is to provide future researchers with effective adjuvant strategies and high-quality selections for computationally designed protein nanoparticles, thereby promoting the clinical trial process of protein nanoparticles vaccines.
Collapse
Affiliation(s)
- Hao Wu
- Zhejiang Chinese Medical University, Hangzhou 310053, PR China; Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, PR China
| | - Ruiqi Weng
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, PR China
| | - Jiaxuan Li
- Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Zhiwei Huang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, PR China
| | - Xiaotian Tie
- Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Jianhua Li
- Zhejiang Key Laboratory of Public Health Detection and Pathogenesis Research, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, PR China.
| | - Keda Chen
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, PR China.
| |
Collapse
|
6
|
Meany EL, Klich JH, Jons CK, Mao T, Chaudhary N, Utz A, Baillet J, Song YE, Saouaf OM, Ou BS, Williams SC, Eckman N, Irvine DJ, Appel E. Generation of an inflammatory niche in a hydrogel depot through recruitment of key immune cells improves efficacy of mRNA vaccines. SCIENCE ADVANCES 2025; 11:eadr2631. [PMID: 40215318 PMCID: PMC11988412 DOI: 10.1126/sciadv.adr2631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 03/07/2025] [Indexed: 04/14/2025]
Abstract
Messenger RNA (mRNA) delivered in lipid nanoparticles (LNPs) rose to the forefront of vaccine candidates during the COVID-19 pandemic due to scalability, adaptability, and potency. Yet, there remain critical areas for improvements of these vaccines in durability and breadth of humoral responses. In this work, we explore a modular strategy to target mRNA/LNPs to antigen-presenting cells with an injectable polymer-nanoparticle (PNP) hydrogel technology, which recruits key immune cells and forms an immunological niche in vivo. We characterize this niche on a single-cell level and find it is highly tunable through incorporation of adjuvants like MPLAs and 3M-052. Delivering commercially available severe acute respiratory syndrome coronavirus 2 mRNA vaccines in PNP hydrogels improves the durability and quality of germinal center reactions, and the magnitude, breadth, and durability of humoral responses. The tunable immune niche formed within PNP hydrogels effectively skews immune responses based on encapsulated adjuvants, creating opportunities to precisely modulate mRNA/LNP vaccines for various indications from infectious diseases to cancers.
Collapse
Affiliation(s)
- Emily L. Meany
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - John H. Klich
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Carolyn K. Jons
- Department of Material Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Tianyang Mao
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Namit Chaudhary
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Ashley Utz
- Sarafan ChEM- H, Stanford University, Stanford, CA 94305, USA
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Biophysics Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Julie Baillet
- Department of Material Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Ye E. Song
- Department of Material Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Olivia M. Saouaf
- Department of Material Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Ben S. Ou
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Shoshana C. Williams
- Sarafan ChEM- H, Stanford University, Stanford, CA 94305, USA
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Noah Eckman
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Darrell J. Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eric Appel
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Material Science and Engineering, Stanford University, Stanford, CA 94305, USA
- Sarafan ChEM- H, Stanford University, Stanford, CA 94305, USA
- Wood Institute for the Environment, Stanford University, Stanford, CA 94305, USA
- Department of Pediatrics (Endocrinology), Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
7
|
Wu J, Liang J, Li S, Lu J, Zhou J, Gao M, Zhang Y, Chen J. DNA nanovaccines derived from ferritin-modified glycogens for targeted delivery to immature dendritic cells and for promotion of Th1 cell differentiation. Acta Biomater 2025; 196:436-452. [PMID: 40023466 DOI: 10.1016/j.actbio.2025.02.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 02/15/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
DNA vaccines have emerged as a powerful approach for advanced cancer therapy. Despite the development of various delivery systems to enhance the immunogenicity of DNA vaccines, many still face challenges such as limited DNA condensation, rapid degradation in vivo and insufficient targeting to lymph nodes (LNs). Synthetic dendrimers with modifiable surfaces exhibit high efficiency in DNA condensation, but their synthesis is extremely complex. This study utilizes cationic glycogen, a natural branched dendrimer-like polymer, as the core structure for efficient DNA condensation and delivery, ensuring good biocompatibility. By connecting ferritin light chain to the glycogen surfaces, active targeting of LNs can be achieved due to its affinity for the SCARA5 receptor on immature dendritic cells (DCs), facilitating vaccine migration to the LNs. In addition, a seperate plasmid encoding adjuvant IL-12 was co-delivered to further boost the immunogenicity of the DNA nanovaccine. In vivo and in vitro experiments confirmed the effective transfection capability of this DNA vaccine, demonstrating promoted DC maturation, increased antigen presentation, and Th1 cell differentiation, resulting in improved anti-tumor efficiency in vivo. This innovative multi-gene co-loaded DNA vaccine offers valuable insights into combined gene therapy and broadens the research horizon on non-viral gene carriers. STATEMENT OF SIGNIFICANCE: The DNA vaccine encounters challenges such as limited DNA condensation, rapid degradation and insufficient targeting to lymph nodes (LNs), resulting in generally weak immunogenicity. In the current study, a novel nanovaccine is developed by connecting ferritin light chain to natural dendrimer glycogen, for simultaneous delivery of dual plasmids. The cationized glycogen provides strong DNA condensation ability, while ensuring excellent stability of the nanovaccine. The presence of ferritin light chain leads to effective targeting of dendritic cells (DCs), facilitating its migration to LNs. Moreover, the plasmid encoding the adjuvant IL-12 is co-incorporated with the antigen plasmid to mitigate the immunosuppression environment. This strategy significantly improves the immunogenicity of DNA vaccines, demonstrating high efficiency in cancer immunotherapy.
Collapse
Affiliation(s)
- Jun Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China; School of Chemical & Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Jing Liang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Sichen Li
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Jinjin Lu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Juan Zhou
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Min Gao
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Yan Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China.
| | - Jinghua Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China.
| |
Collapse
|
8
|
Wu J, Liang J, Li S, Lu J, Li Y, Zhang B, Gao M, Zhou J, Zhang Y, Chen J. Cancer vaccine designed from homologous ferritin-based fusion protein with enhanced DC-T cell crosstalk for durable adaptive immunity against tumors. Bioact Mater 2025; 46:516-530. [PMID: 39868073 PMCID: PMC11764028 DOI: 10.1016/j.bioactmat.2024.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/30/2024] [Accepted: 12/27/2024] [Indexed: 01/28/2025] Open
Abstract
Peptide vaccines based on tumor antigens face the challenges of rapid clearance of peptides, low immunogenicity, and immune suppressive tumor microenvironment. However, the traditional solution mainly uses exogenous substances as adjuvants or carriers to enhance innate immune responses, but excessive inflammation can damage adaptive immunity. In the current study, we propose a straightforward novel nanovaccine strategy by employing homologous human ferritin light chain for minimized innate immunity and dendritic cell (DC) targeting, the cationic KALA peptide for enhanced cellular uptake, and suppressor of cytokine signaling 1 (SOCS1) siRNA for modulating DC activity. Upon fusing with the KALA peptide, this nanovaccine presents as a novel 40-mer cage structure, with highly enriched antigen peptides of proper size (25 nm) for targeted delivery to lymph nodes. The loading of SOCS1 siRNA onto the KALA peptide promoted DC maturation in tumor environment, leading to a 3-fold increase in antigen presentation compared to alum adjuvant. Moreover, it demonstrates remarkable efficacy in suppressing tumor progression and metastasis, together with prolonged survival. In addition, the nanovaccine stimulates up to 40 % memory T cells, thereby achieving sustained protection against tumor re-challenge. This unprecedented nanovaccine platform can ignite fresh interdisciplinary discussions on interactive strategies for future peptide vaccine development.
Collapse
Affiliation(s)
- Jun Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
- School of Chemical & Material Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Jing Liang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Sichen Li
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Jinjin Lu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Yi Li
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Bin Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Min Gao
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Juan Zhou
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Yan Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Jinghua Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| |
Collapse
|
9
|
Ramirez A, Hernandez‐Davies JE, Jain A, Wang L, Strahsburger E, Davies DH, Wang S. Co-Delivery of Multiple Toll-Like Receptor Agonists and Avian Influenza Hemagglutinin on Protein Nanoparticles Enhances Vaccine Immunogenicity and Efficacy. Adv Healthc Mater 2025; 14:e2404335. [PMID: 39924738 PMCID: PMC12004444 DOI: 10.1002/adhm.202404335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/28/2024] [Indexed: 02/11/2025]
Abstract
Most seasonal and pandemic influenza vaccines are derived from inactivated or attenuated virus propagated in chicken eggs, while more advanced delivery technologies, such as the use of recombinant proteins and adjuvants, are under-utilized. In this study, the E2 protein nanoparticle (NP) platform is engineered to synthesize vaccines that simultaneously co-deliver influenza hemagglutinin (H5) antigen, TLR5 agonist flagellin (FliCc), and TLR9 agonist CpG 1826 (CpG) all on one particle (termed H5-FliCc-CpG-E2), with uniform molecular orientation significant for immunomodulation. Antigen-bound NP formulations elicit higher IgG antibody responses and broader homosubtypic cross-reactivity against different H5 variants than unconjugated antigen alone. IgG1/IgG2c skewing is modulated by adjuvant type and NP attachment. Conjugation of flagellin to the NP causes significant IgG1 (Th2) skewing while attachment of CpG yields significant IgG2c (Th1) skewing, and simultaneous conjugation of both flagellin and CpG results in a balanced IgG1/IgG2c (Th2/Th1) response. Animals immunized with E2-based NP vaccines and subsequently challenged with H5N1 influenza show 100% survival, and only animals that receive adjuvanted NP formulations are also protected against morbidity. This investigation highlights that NP-based delivery of antigen and multiple adjuvants can be designed to effectively modulate the strength, breadth toward variants, and bias of an immune response against influenza viruses.
Collapse
Affiliation(s)
- Aaron Ramirez
- Department of Chemical and Biomolecular EngineeringUniversity of CaliforniaIrvineCA92697USA
| | - Jenny E. Hernandez‐Davies
- Vaccine Research and Development CenterDepartment of Physiology and BiophysicsUniversity of CaliforniaIrvineCA92697USA
| | - Aarti Jain
- Vaccine Research and Development CenterDepartment of Physiology and BiophysicsUniversity of CaliforniaIrvineCA92697USA
| | - Lu Wang
- Department of Chemical and Biomolecular EngineeringUniversity of CaliforniaIrvineCA92697USA
| | - Erwin Strahsburger
- Vaccine Research and Development CenterDepartment of Physiology and BiophysicsUniversity of CaliforniaIrvineCA92697USA
| | - D. Huw Davies
- Vaccine Research and Development CenterDepartment of Physiology and BiophysicsUniversity of CaliforniaIrvineCA92697USA
- Institute for ImmunologyUniversity of CaliforniaIrvineCA92697USA
| | - Szu‐Wen Wang
- Department of Chemical and Biomolecular EngineeringUniversity of CaliforniaIrvineCA92697USA
- Institute for ImmunologyUniversity of CaliforniaIrvineCA92697USA
- Department of Biomedical EngineeringUniversity of CaliforniaIrvineCA92697USA
- Chao Family Comprehensive Cancer CenterUniversity of CaliforniaIrvineCA92697USA
| |
Collapse
|
10
|
Liu D, Liu L, Zhao X, Zhang X, Chen X, Che X, Wu G. A comprehensive review on targeting diverse immune cells for anticancer therapy: Beyond immune checkpoint inhibitors. Crit Rev Oncol Hematol 2025; 210:104702. [PMID: 40122356 DOI: 10.1016/j.critrevonc.2025.104702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/02/2025] [Accepted: 03/07/2025] [Indexed: 03/25/2025] Open
Abstract
Although immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment, primary resistance and acquired resistance continue to limit their efficacy for many patients. To address resistance and enhance the anti-tumor activity within the tumor immune microenvironment (TIME), numerous therapeutic strategies targeting both innate and adaptive immune cells have emerged. These include combination therapies with ICIs, chimeric antigen receptor T-cell (CAR-T), chimeric antigen receptor macrophages (CAR-Ms) or chimeric antigen receptor natural killer cell (CAR-NK) therapy, colony stimulating factor 1 receptor (CSF1R) inhibitors, dendritic cell (DC) vaccines, toll-like receptor (TLR) agonists, cytokine therapies, and chemokine inhibition. These approaches underscore the significant potential of the TIME in cancer treatment. This article provides a comprehensive and up-to-date review of the mechanisms of action of various innate and adaptive immune cells within the TIME, as well as the therapeutic strategies targeting each immune cell type, aiming to deepen the understanding of their therapeutic potential.
Collapse
Affiliation(s)
- Dequan Liu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Lei Liu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xinming Zhao
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiaoman Zhang
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiaochi Chen
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Xiangyu Che
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Guangzhen Wu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| |
Collapse
|
11
|
Zhu J, Huang Z, Lin Y, Zhu W, Zeng B, Tang D. Intestinal-pulmonary axis: a 'Force For Good' against respiratory viral infections. Front Immunol 2025; 16:1534241. [PMID: 40170840 PMCID: PMC11959011 DOI: 10.3389/fimmu.2025.1534241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/28/2025] [Indexed: 04/03/2025] Open
Abstract
Respiratory viral infections are a major global public health concern, and current antiviral therapies still have limitations. In recent years, research has revealed significant similarities between the immune systems of the gut and lungs, which interact through the complex physiological network known as the "gut-lung axis." As one of the largest immune organs, the gut, along with the lungs, forms an inter-organ immune network, with strong parallels in innate immune mechanisms, such as the activation of pattern recognition receptors (PRRs). Furthermore, the gut microbiota influences antiviral immune responses in the lungs through mechanisms such as systemic transport of gut microbiota-derived metabolites, immune cell migration, and cytokine regulation. Studies have shown that gut dysbiosis can exacerbate the severity of respiratory infections and may impact the efficacy of antiviral therapies. This review discusses the synergistic role of the gut-lung axis in antiviral immunity against respiratory viruses and explores potential strategies for modulating the gut microbiota to mitigate respiratory viral infections. Future research should focus on the immune mechanisms of the gut-lung axis to drive the development of novel clinical treatment strategies.
Collapse
Affiliation(s)
- Jianing Zhu
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Zihang Huang
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Ying Lin
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Wenxu Zhu
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Binbin Zeng
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
- Northern Jiangsu People’s Hospital, Yangzhou, China
- The Yangzhou Clinical Medical College of Xuzhou Medical University, Yangzhou, China
- The Yangzhou School of Clinical Medicine of Dalian Medical University, Yangzhou, China
- The Yangzhou School of Clinical Medicine of Nanjing Medical University, Yangzhou, China
- Northern Jiangsu People’s Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Yangzhou, China
| |
Collapse
|
12
|
Huang S, Li X, Cao Y, Mou M, Li J, Zhuo K, Wang L, Zeng Z, Wei X, Tang C, Zhong M. TLR5 activation in respiratory epithelial cells orchestrate mucosal Th17 response through both indirect and direct pathways. Respir Res 2025; 26:104. [PMID: 40098159 PMCID: PMC11916947 DOI: 10.1186/s12931-025-03186-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/10/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Flagellin, a potent mucosal adjuvant administered via the intranasal route, has been widely recognized for its capacity to enhance immune responses against diverse pathogens. However, the effects and the underlying mechanisms by which flagellin modulates CD4+ T cell differentiation remain incompletely understood. METHODS Recombinant flagellin proteins, including full-length flagellin (SF) and a TLR5-binding deficient variant (SFΔ90-97), were produced and purified. An OT-II derived CD4+ T cell adoptive transfer model, a classical intranasal immunization model and dendritic cell (DC)-CD4+ T co-culturing system were used. The proliferation and differentiation of CD4+ T cells were analyzed using flow cytometry analysis. RNA sequencing and neutralizing antibody blocking experiments were performed to determine the essential cytokines involved in flagellin modulated Th17 differentiation. RESULTS Flagellin preferentially promotes Th17 cells differentiation. Respiratory epithelial cells (RECs), acting as sentinel cells, are the first to encounter exogenous stimuli during intranasal immunization. Flagellin stimulates the secretion of various soluble cytokines by binding to TLR5 on the surface of RECs, with GM-CSF facilitating the functional activation of airway DCs. GM-CSF-conditioned DCs exhibit upregulated IL-6 expression which in turn drives the polarization of naïve CD4+ T cells toward the Th17 phenotype. Furthermore, TLR5-regulated REC-derived IL-6 synergizes with TLR5-modulated DCs to amplify Th17 polarization signals, thereby enhancing the Th17 induction. CONCLUSION Flagellin preferentially induced a Th17-enhanced immune response and RECs were highlighted its essential roles during this process through both indirect and direct pathways. For indirect pathway, RECs modulate DC function through GM-CSF. Moreover, RECs directly contribute to Th17 differentiation by secreting IL-6.
Collapse
Affiliation(s)
- Sijian Huang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, # 2 Huangjiahu West Road, Wuhan, Hubei, 430065, China
| | - Xu Li
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, # 2 Huangjiahu West Road, Wuhan, Hubei, 430065, China
- Clinical Laboratory, Wuhan Asia General Hospital, Wuhan University of Science and Technology, Wuhan, Hubei, 430056, China
| | - Yuan Cao
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, # 2 Huangjiahu West Road, Wuhan, Hubei, 430065, China
- Analytical & Testing Center, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, China
| | - Man Mou
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, # 2 Huangjiahu West Road, Wuhan, Hubei, 430065, China
- Department of Blood Transfusion, Wuhan Asia General Hospital, Wuhan University of Science and Technology, Wuhan, Hubei, 430056, China
| | - Jianlun Li
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, # 2 Huangjiahu West Road, Wuhan, Hubei, 430065, China
| | - Kexing Zhuo
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, # 2 Huangjiahu West Road, Wuhan, Hubei, 430065, China
| | - Lijuan Wang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, # 2 Huangjiahu West Road, Wuhan, Hubei, 430065, China
| | - Zihang Zeng
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, # 2 Huangjiahu West Road, Wuhan, Hubei, 430065, China
| | - Xianghong Wei
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, # 2 Huangjiahu West Road, Wuhan, Hubei, 430065, China
| | - Chunlian Tang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, # 2 Huangjiahu West Road, Wuhan, Hubei, 430065, China.
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, 430063, China.
| | - Maohua Zhong
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, # 2 Huangjiahu West Road, Wuhan, Hubei, 430065, China.
| |
Collapse
|
13
|
Zhang J, Wang F, Sun Z, Ye J, Chu H. Multidimensional applications of prussian blue-based nanoparticles in cancer immunotherapy. J Nanobiotechnology 2025; 23:161. [PMID: 40033359 DOI: 10.1186/s12951-025-03236-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 02/16/2025] [Indexed: 03/05/2025] Open
Abstract
Immunotherapy holds notable progress in the treatment of cancer. However, the clinical therapeutic effect remains a significant challenge due to immune-related side effects, poor immunogenicity, and immunosuppressive microenvironment. Nanoparticles have emerged as a revolutionary tool to surmount these obstacles and amplify the potency of immunotherapeutic agents. Prussian blue nanoparticles (PBNPs) exhibit multi-dimensional immune function in cancer immunotherapy, including acting as a nanocarrier to deliver immunotherapeutic agents, as a photothermal agent to improve the efficacy of immunotherapy through photothermal therapy, as a nanozyme to regulate tumor microenvironment, and as an iron donor to induce immune events related to ferroptosis and tumor-associated macrophages polarization. This review focuses on the advances and applications of PBNPs in cancer immunotherapy. First, the biomedical functions of PBNPs are introduced. Then, based on the immune function of PBNPs, we systematically reviewed the multidimensional application of PBNPs in cancer immunotherapy. Finally, the challenges and future developments of PBNPs-based cancer immunotherapy are highlighted.
Collapse
Affiliation(s)
- Jiayi Zhang
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Fang Wang
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Zhaogang Sun
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Jun Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Hongqian Chu
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China.
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China.
| |
Collapse
|
14
|
Huang Y, Yan P, Zhu J, Gong Y, Liu M, Cheng H, Yi T, Zhang F, Yang X, Su Y, Guo L. From Genes to Healing: The Protective Mechanisms of Poria cocos Polysaccharide in Endometrial Health. Curr Issues Mol Biol 2025; 47:139. [PMID: 40136393 PMCID: PMC11940905 DOI: 10.3390/cimb47030139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/27/2025] Open
Abstract
The aim of this study is to investigate the therapeutic effect of Poria cocos polysaccharide (PCP) on bovine endometritis. Initially, an inflammation model was induced using LPS-treated bovine endometrial epithelial cells (BEND) to identify the differentially expressed genes (DEGs) between the control and LPS groups by transcriptome sequencing, and GO functional annotation and KEGG enrichment analysis were performed. Subsequently, the mechanism of PCP treatment for endometritis was further evaluated using protein immunoblotting and real-time fluorescence quantitative analysis. Finally, the efficacy of PCP in treating endometritis was evaluated using a rat model of endometritis established with a mixed bacterial infection. The results show that transcriptome sequencing identified 4367 DEGs, with enrichment analysis highlighting the primary influences on the cell cycle and apoptosis signaling pathways. Following treatment of BEND with LPS resulted in cell apoptosis and inflammatory response. However, the introduction of PCP intervention significantly inhibited the progression of apoptosis and inflammation. Animal test results indicate that PCP significantly decreases the levels of serum inflammatory in rats suffering from endometritis and enhances antioxidant capacity. Furthermore, it effectively improved uterine swelling and tissue vacuolization caused by bacterial infection. These findings suggest that PCP could alleviate endometritis by modulating the inflammatory response and suppressing cell apoptosis. Poria cocos polysaccharides demonstrate significant potential for applications in immune modulation, anti-inflammatory responses, and antioxidant activities. Their high safety profile makes them suitable candidates as alternative therapeutic agents for the treatment of endometritis in the veterinary field.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Liwei Guo
- College of Animal Science and Technology, Yangtze University, Jingzhou 434025, China; (Y.H.); (P.Y.); (J.Z.); (Y.G.); (M.L.); (H.C.); (T.Y.); (F.Z.); (X.Y.); (Y.S.)
| |
Collapse
|
15
|
Graciotti M, Kandalaft LE. Vaccines for cancer prevention: exploring opportunities and navigating challenges. Nat Rev Drug Discov 2025; 24:134-150. [PMID: 39622986 DOI: 10.1038/s41573-024-01081-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 02/06/2025]
Abstract
Improved understanding of cancer immunology has gradually brought increasing attention towards cancer-preventive vaccines as an important tool in the fight against cancer. The aim of this approach is to reduce cancer occurrence by inducing a specific immune response targeting tumours at an early stage before they can fully develop. The great advantage of preventive cancer vaccines lies in the potential to harness a less-compromised immune system in vaccine recipients before their immune responses become affected by the advanced status of the disease itself or by aggressive treatments such as chemotherapy. Successful implementation of immunoprevention against oncogenic viruses such as hepatitis B and papillomavirus has led to a dramatic decrease in virally induced cancers. Extending this approach to other cancers holds great promise but remains a major challenge. Here, we provide a comprehensive review of preclinical evidence supporting this approach, encouraging results from pioneering clinical studies as well as a discussion on the key aspects and open questions to address in order to design potent prophylactic cancer vaccines in the near future.
Collapse
Affiliation(s)
- Michele Graciotti
- Center of Experimental Therapeutics, Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
| | - Lana E Kandalaft
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland.
- Department of Oncology, University of Lausanne (UNIL), Lausanne, Switzerland.
- AGORA Cancer Research Center, Lausanne, Lausanne, Switzerland.
- Swiss Medical Network, Genolier Innovation Network, Genolier Clinic, Genolier, Switzerland.
| |
Collapse
|
16
|
Dollinger E, Hernandez-Davies J, Felgner J, Jain A, Hwang M, Strahsburger E, Nakajima R, Jasinskas A, Nie Q, Pone EJ, Othy S, Davies DH. Combination adjuvant improves influenza virus immunity by downregulation of immune homeostasis genes in lymphocytes. Immunohorizons 2025; 9:vlae007. [PMID: 39849993 PMCID: PMC11841980 DOI: 10.1093/immhor/vlae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 01/30/2025] Open
Abstract
Adjuvants play a central role in enhancing the immunogenicity of otherwise poorly immunogenic vaccine antigens. Combining adjuvants has the potential to enhance vaccine immunogenicity compared with single adjuvants, although the cellular and molecular mechanisms of combination adjuvants are not well understood. Using the influenza virus hemagglutinin H5 antigen, we define the immunological landscape of combining CpG and MPLA (TLR-9 and TLR-4 agonists, respectively) with a squalene nanoemulsion (AddaVax) using immunologic and transcriptomic profiling. Mice immunized and boosted with recombinant H5 in AddaVax, CpG+MPLA, or AddaVax plus CpG+MPLA (IVAX-1) produced comparable levels of neutralizing antibodies and were equally well protected against the H5N1 challenge. However, after challenge with H5N1 virus, H5/IVAX-1-immunized mice had 100- to 300-fold lower virus lung titers than mice receiving H5 in AddaVax or CpG+MPLA separately. Consistent with enhanced viral clearance, unsupervised expression analysis of draining lymph node cells revealed the combination adjuvant IVAX-1 significantly downregulated immune homeostasis genes, and induced higher numbers of antibody-producing plasmablasts than either AddaVax or CpG+MPLA. IVAX-1 was also more effective after single-dose administration than either AddaVax or CpG+MPLA. These data reveal a novel molecular framework for understanding the mechanisms of combination adjuvants, such as IVAX-1, and highlight their potential for the development of more effective vaccines against respiratory viruses.
Collapse
Affiliation(s)
- Emmanuel Dollinger
- Department of Mathematics, University of California Irvine, Irvine, CA, United States
| | - Jenny Hernandez-Davies
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Jiin Felgner
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Aarti Jain
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Michael Hwang
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Erwin Strahsburger
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Rie Nakajima
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Algimantas Jasinskas
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Qing Nie
- Department of Mathematics, University of California Irvine, Irvine, CA, United States
| | - Egest James Pone
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Shivashankar Othy
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - David Huw Davies
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| |
Collapse
|
17
|
Wang J, Yan S. Integration of histone modification-based risk signature with drug sensitivity analysis reveals novel therapeutic strategies for lower-grade glioma. Front Pharmacol 2025; 15:1523779. [PMID: 39872055 PMCID: PMC11770009 DOI: 10.3389/fphar.2024.1523779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/18/2024] [Indexed: 01/29/2025] Open
Abstract
Background Lower-grade glioma (LGG) exhibits significant heterogeneity in clinical outcomes, and current prognostic markers have limited predictive value. Despite the growing recognition of histone modifications in tumor progression, their role in LGG remains poorly understood. This study aimed to develop a histone modification-based risk signature and investigate its relationship with drug sensitivity to guide personalized treatment strategies. Methods We performed single-cell RNA sequencing analysis on LGG samples (n = 4) to characterize histone modification patterns. Through integrative analysis of TCGA-LGG (n = 513) and CGGA datasets (n = 693 and n = 325), we constructed a histone modification-related risk signature (HMRS) using machine learning approaches. The model's performance was validated in multiple independent cohorts. We further conducted comprehensive analyses of molecular mechanisms, immune microenvironment, and drug sensitivity associated with the risk stratification. Results We identified distinct histone modification patterns across five major cell populations in LGG and developed a robust 20-gene HMRS from 129 candidate genes that effectively stratified patients into high- and low-risk groups with significantly different survival outcomes (training set: AUC = 0.77, 0.73, and 0.71 for 1-, 3-, and 5-year survival; P < 0.001). Integration of HMRS with clinical features further improved prognostic accuracy (C-index >0.70). High-risk tumors showed activation of TGF-β and IL6-JAK-STAT3 signaling pathways, and distinct mutation profiles including TP53 (63% vs 28%), IDH1 (68% vs 85%), and ATRX (46% vs 20%) mutations. The high-risk group demonstrated significantly elevated immune and stromal scores (P < 0.001), with distinct patterns of immune cell infiltration, particularly in memory CD4+ T cells (P < 0.001) and CD8+ T cells (P = 0.001). Drug sensitivity analysis revealed significant differential responses to six therapeutic agents including Temozolomide and targeted drugs (P < 0.05). Conclusion Our study establishes a novel histone modification-based prognostic model that not only accurately predicts LGG patient outcomes but also reveals potential therapeutic targets. The identified associations between risk stratification and drug sensitivity provide valuable insights for personalized treatment strategies. This integrated approach offers a promising framework for improving LGG patient care through molecular-based risk assessment and treatment selection.
Collapse
Affiliation(s)
- Jingyuan Wang
- Department of Neurological Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Shuai Yan
- Department of Neurological Function Examination, Affiliated Hospital of Hebei University, Baoding, China
| |
Collapse
|
18
|
Zhang M, Wang C, Pan J, Cui H, Zhao X. Advancing novel veterinary vaccines: From comprehensive antigen and adjuvant design to preparation process optimization. Int Immunopharmacol 2025; 145:113784. [PMID: 39672026 DOI: 10.1016/j.intimp.2024.113784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/15/2024]
Abstract
Vaccination stands as the paramount and cost-effective strategy for the prevention and management of animal infectious diseases. With the advances in biological technology, materials science and industrial optimization, substantial progress has been made in the development of innovative veterinary vaccines. A majority of the novel vaccines under current investigation tend to stimulate multiple immune pathways and to achieve long-term resistance against infectious diseases, yet it remains imperative to concentrate research efforts on the efficient utilization of vaccines, mitigating toxic side effects, and ensuring safe production processes. This article presents an overview of research progress in veterinary vaccines, encompassing comprehensive antigen design, adjuvant formulation advancements, preparation process optimization, and rigorous immune efficacy evaluation. It summarizes cutting-edge vaccines derived from in vitro synthesis and in vivo application, emphasizing immunogenic components and immune response mechanisms. It also highlights novel biological adjuvants that enhance immune efficacy, diversify raw materials, and possess targeted functions, while comprehensively exploring advancements in production methodologies and compatible vaccine products. By establishing a foundation for the integrated use of these innovative veterinary vaccines, this work facilitates future interdisciplinary cooperation in their advancement, aiming to accelerate the achievement of herd immunity through concerted efforts.
Collapse
Affiliation(s)
- Meng Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chunxin Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Junqian Pan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haixin Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiang Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
19
|
Jung M, Kim H, Choi E, Shin MK, Shin SJ. Enhancing vaccine effectiveness in the elderly to counter antibiotic resistance: The potential of adjuvants via pattern recognition receptors. Hum Vaccin Immunother 2024; 20:2317439. [PMID: 39693178 DOI: 10.1080/21645515.2024.2317439] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/24/2024] [Accepted: 02/07/2024] [Indexed: 12/20/2024] Open
Abstract
Vaccines are an effective way to prevent the emergence and spread of antibiotic resistance by preventing diseases and establishing herd immunity. However, the reduced effectiveness of vaccines in the elderly due to immunosenescence is one of the significant contributors to the increasing antibiotic resistance. To counteract this decline and enhance vaccine effectiveness in the elderly, adjuvants play a pivotal role. Adjuvants are designed to augment the effectiveness of vaccines by activating the innate immune system, particularly through pattern recognition receptors on antigen-presenting cells. To improve vaccine effectiveness in the elderly using adjuvants, it is imperative to select the appropriate adjuvants based on an understanding of immunosenescence and the mechanisms of adjuvant functions. This review demonstrates the phenomenon of immunosenescence and explores various types of adjuvants, including their mechanisms and their potential in improving vaccine effectiveness for the elderly, thereby contributing to developing more effective vaccines for this vulnerable demographic.
Collapse
Affiliation(s)
- Myunghwan Jung
- Department of Microbiology, Institute of Medical Science, Department of Convergence Medical Science, BK21 Center for Human Resource Development in the Bio-Health Industry, Gyeongsang National University College of Medicine, Jinju, South Korea
| | - Hongmin Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Eunsol Choi
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Min-Kyoung Shin
- Department of Microbiology, Institute of Medical Science, Department of Convergence Medical Science, BK21 Center for Human Resource Development in the Bio-Health Industry, Gyeongsang National University College of Medicine, Jinju, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
20
|
Meany EL, Klich JH, Jons CK, Mao T, Chaudhary N, Utz A, Baillet J, Song YE, Saouaf OM, Ou BS, Williams SC, Eckman N, Irvine DJ, Appel E. Generation of an inflammatory niche in an injectable hydrogel depot through recruitment of key immune cells improves efficacy of mRNA vaccines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.05.602305. [PMID: 39026835 PMCID: PMC11257424 DOI: 10.1101/2024.07.05.602305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Messenger RNA (mRNA) delivered in lipid nanoparticles (LNPs) rose to the forefront of vaccine candidates during the COVID-19 pandemic due in part to scalability, adaptability, and potency. Yet there remain critical areas for improvements of these vaccines in durability and breadth of humoral responses. In this work, we explore a modular strategy to target mRNA/LNPs to antigen presenting cells with an injectable polymer-nanoparticle (PNP) hydrogel depot technology which recruits key immune cells and forms an immunological niche in vivo. We characterize this niche on a single cell level and find it is highly tunable through incorporation of adjuvants like MPLAs and 3M-052. Delivering commercially available SARS-CoV-2 mRNA vaccines in PNP hydrogels improves the durability and quality of germinal center reactions, and the magnitude, breadth, and durability of humoral responses. The tunable immune niche formed within PNP hydrogels effectively skews immune responses based on encapsulated adjuvants, creating opportunities to precisely modulate mRNA/LNP vaccines for various indications from infectious diseases to cancers.
Collapse
|
21
|
Zhao X, Qi X, Liu D, Che X, Wu G. A Novel Approach for Bladder Cancer Treatment: Nanoparticles as a Drug Delivery System. Int J Nanomedicine 2024; 19:13461-13483. [PMID: 39713223 PMCID: PMC11662911 DOI: 10.2147/ijn.s498729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/05/2024] [Indexed: 12/24/2024] Open
Abstract
Bladder cancer represents one of the most prevalent malignant neoplasms of the urinary tract. In the Asian context, it represents the eighth most common cancer in males. In 2022, there were approximately 613,791 individuals diagnosed with bladder cancer worldwide. Despite the availability of efficacious treatments for the two principal forms of bladder cancer, namely non-invasive and invasive bladder cancer, the high incidence of recurrence following treatment and the suboptimal outcomes observed in patients with high-grade and advanced disease represent significant concerns in the management of bladder cancer at this juncture. Nanoparticles have gained attention for their excellent properties, including stable physical properties, a porous structure that can be loaded with a variety of substances, and so on. The in-depth research on nanoparticles has led to their emergence as a new class of nanoparticles for combination therapy, due to their advantageous properties. These include the extension of the drug release window, the enhancement of drug bioavailability, the improvement of drug targeting ability, the reduction of local and systemic toxicity, and the simultaneous delivery of multiple drugs for combination therapy. As a result, nanoparticles have become a novel agent of the drug delivery system. The advent of nanoparticles has provided a new impetus for the development of non-surgical treatments for bladder cancer, including chemotherapy, immunotherapy, gene therapy and phototherapy. The unique properties of nanoparticles have facilitated the combination of diverse non-surgical therapeutic modalities, enhancing their overall efficacy. This review examines the recent advancements in the use of nanoparticles in non-surgical bladder cancer treatments, encompassing aspects such as delivery, therapeutic efficacy, and the associated toxicity of nanoparticles, as well as the challenges encountered in clinical applications.
Collapse
Affiliation(s)
- Xinming Zhao
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People’s Republic of China
| | - Xiaochen Qi
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People’s Republic of China
| | - Dequan Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People’s Republic of China
| | - Xiangyu Che
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People’s Republic of China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People’s Republic of China
| |
Collapse
|
22
|
Shah M, Rafiq S, Woo HG. Challenges and considerations in multi-epitope vaccine design surrounding toll-like receptors. Trends Pharmacol Sci 2024; 45:1104-1118. [PMID: 39603961 DOI: 10.1016/j.tips.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/18/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024]
Abstract
Epitope-based peptide vaccines elicit targeted immune responses, making them effective for diseases requiring focused immune activation, such as targeting cancer-associated antigens. Strategies like peptide cocktails and mRNA-based epitope vaccines have revolutionized the field; however, the term 'multi-epitope peptide vaccine' has been overextended, especially concerning the use of toll-like receptors (TLRs), their ligands, and peptide linkers. TLRs are often conflated with T cell receptors (TCRs) and B cell receptors (BCRs), which recognize immunogenic peptides within vaccines. This Opinion clarifies the role of TLRs and highlights challenges linked to their indiscriminate use in multi-epitope vaccine design. While peptide linkers are crucial in creating multivalent vaccines, their unsupervised application is increasing and warrants attention. After highlighting their role in advancing peptide vaccines, we discuss critical factors in linker implementation and caution against their misuse, which could undermine vaccines' efficacy.
Collapse
Affiliation(s)
- Masaud Shah
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; Ajou Translational Omics Center (ATOC), Research Institute for Innovative Medicine, Ajou University Medical Center, Suwon, Republic of Korea
| | - Sobia Rafiq
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Hyun G Woo
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; Ajou Translational Omics Center (ATOC), Research Institute for Innovative Medicine, Ajou University Medical Center, Suwon, Republic of Korea; Department of Biomedical Science, Graduate School, Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
23
|
Brar DS, Kaur A, Patil MT, Honda-Okubo Y, Petrovsky N, Salunke DB. Simplified scalable synthesis of a water-soluble toll-like receptor 2 agonistic lipopeptide adjuvant for use with protein-based viral vaccines. Bioorg Chem 2024; 153:107835. [PMID: 39342891 PMCID: PMC11614683 DOI: 10.1016/j.bioorg.2024.107835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/06/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
Toll-like receptors (TLRs) form a key bridge between the innate and adaptive immune systems. The lipopeptide based TLR2 agonists such as Pam2CSK4 are promising vaccine adjuvants but drawbacks include its surfactant like nature and cumbersome synthesis. Although the TLR2 activity of Pam2CS-OMe is commensurate with Pam2CSK4, its water solubility is much less, rendering it ineffective for clinical use. In the present investigation, we designed a synthesis pathway for a novel water-soluble TLR2-active analogue, Pam2CS-DMAPA (13), which enhanced the immunogenicity of recombinant SARS-CoV2 and hepatitis B antigens in mice. Co-formulation of compound 13 with 2 % aluminium hydroxide gel led to a further significant improvement in vaccine immunogenicity. This synthetically simpler compound 13 was water soluble and equally potent to Pam2CSK4 adjuvant, but was superior in terms of manufacturing simplicity and scalability. This makes compound 13 a promising TLR2 targeted adjuvant for further development.
Collapse
Affiliation(s)
- Deshkanwar S Brar
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India; National Interdisciplinary Centre of Vaccine Immunotherapeutics and Antimicrobials, Panjab University, Chandigarh 160014, India
| | - Arshpreet Kaur
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Madhuri T Patil
- Department of Chemistry, Mehr Chand Mahajan DAV College for Women, Chandigarh 160036, India
| | - Yoshikazu Honda-Okubo
- Vaxine Pty Ltd, 11 Walkley Avenue, Warradale, South Australia 5046, Australia; Australian Respiratory and Sleep Medicine Institute, Bedford Park, South Australia 5042, Australia
| | - Nikolai Petrovsky
- Vaxine Pty Ltd, 11 Walkley Avenue, Warradale, South Australia 5046, Australia; Australian Respiratory and Sleep Medicine Institute, Bedford Park, South Australia 5042, Australia; National Interdisciplinary Centre of Vaccine Immunotherapeutics and Antimicrobials, Panjab University, Chandigarh 160014, India.
| | - Deepak B Salunke
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India; National Interdisciplinary Centre of Vaccine Immunotherapeutics and Antimicrobials, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
24
|
Yan Y, Huang X, Yuan L, Ngai T, Ma G, Xia Y. Dictating the spatial-temporal delivery of molecular adjuvant and antigen for the enhanced vaccination. Biomaterials 2024; 311:122697. [PMID: 38968687 DOI: 10.1016/j.biomaterials.2024.122697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/24/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
The incorporation of molecular adjuvants has revolutionized vaccine by boosting overall immune efficacy. While traditional efforts have been concentrated on the quality and quantity of vaccine components, the impact of adjuvant and antigen delivery kinetics on immunity remains to be fully understood. Here, we employed poly (lactic-co-glycolic acid) nanoparticle (PLGA NP) -stabilized Pickering emulsion (PPE) to refine the delivery kinetics of molecular adjuvant CpG and antigen, aiming to optimize immune responses. The hierarchical structure of PPE enabled spatially differential loading of CpG and antigen. The component inserted on the oil-water interphase exhibited a rapid release profile, while the one encapsulated in the PLGA NPs demonstrated a sustained release. This led to distinct intracellular spatial-temporal release kinetics. Compared to the PPE with sustained CpG release and burst release of antigen, we found that the PPE with rapid CpG release and sustained antigen release triggered an early and robust activation of Toll-like receptor 9 (TLR9) in direct way. This fostered a more immunogenic microenvironment, significantly outperforming the inverted delivery profile in dendritic cells (DCs) activation, resulting in higher CD40 expression, elevated proinflammatory cytokine levels, sustained antigen cross-presentation, an enhanced Th1 response, and increased CD8+ T cells. Moreover, prior exposure of CpG led to suppressed tumor growth and enhanced efficacy in Varicella-zoster virus (VZV) vaccine. Our findings underscore the importance of tuning adjuvant and antigen delivery kinetics in vaccine design, proposing a novel path for enhancing vaccination outcomes.
Collapse
Affiliation(s)
- Yumeng Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100081, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Xiaonan Huang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100081, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, PR China; Sinovac Biotech Ltd., Beijing, 100085, PR China
| | - Lili Yuan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, Shatin, N.T., PR China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100081, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Yufei Xia
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100081, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, PR China.
| |
Collapse
|
25
|
Liu S, Wu T, Song X, Quan L, Wang X, Liu Q, Zhou X. Single-cell sequencing reveals PTX3 involvement in ovarian cancer metastasis. J Ovarian Res 2024; 17:235. [PMID: 39580424 PMCID: PMC11585133 DOI: 10.1186/s13048-024-01558-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 11/13/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Pentraxin 3 (PTX3) has been associated with the development and progression of various malignant tumors. However, its roles and the mechanisms underlying its involvement in ovarian cancer (OC) peritoneal metastasis remain unclear. METHODS Single-cell RNA sequencing (scRNA-seq) and immunohistochemistry (IHC) were conducted to determine the expression profiles, potential functionalities, and underlying mechanisms of PTX3 within the context of OC. To assess the proliferative response of OC cells, we utilized both EdU (5-ethynyl-2' -deoxyuridine) and CCK8 assays. The role of PTX3 in facilitating cell migration and invasion was quantified through the use of Transwell assays. The protein expression levels were meticulously analyzed via Western blotting. Furthermore, to explore the interactions between proteins, we conducted immunofluorescence (IF) staining and co-immunoprecipitation (Co-IP) experiments. To determine the factors responsible for the upregulation of PTX3, we performed both coculture and suspension assays, providing a comprehensive approach to understanding the regulatory mechanisms involved. RESULTS This study confirmed, for the first time, that the expression of PTX3 in OC metastatic lesions is greater than that in primary lesions and that tumor cells with high PTX3 expression have greater metastatic ability. PTX3 can activate the EMT and NF-κB signaling pathways in OC cells and can interact with the TLR4 and CD44 receptors in OC cells. Additionally, PTX3's modulation of the EMT and NF-κB pathways is partially dependent on its interaction with TLR4. Furthermore, this study revealed the intercellular regulatory network related to PTX3 in OC cells via bioinformatic analysis. High levels of PTX3 in OC cells potentially enhance the attraction of dendritic cells (DCs) and CD4 + T cells while diminishing the recruitment of B cells and CD8 + T cells. Finally, this study indicated that PTX3 upregulation was driven by multiple factors, including specific transcription factors (TFs) and modifications within the tumor microenvironment (TME). CONCLUSIONS Our research revealed the contribution of PTX3 to the peritoneal dissemination process in OC patients, identifying a novel potential biomarker and therapeutic target for this disease.
Collapse
Affiliation(s)
- Shuangyan Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China
| | - Tianhao Wu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China
| | - Xueying Song
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China
| | - Linru Quan
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China
| | - Xinyi Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China
| | - Qing Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China.
| | - Xin Zhou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China.
| |
Collapse
|
26
|
Wei Y, Qiu T, Ai Y, Zhang Y, Xie J, Zhang D, Luo X, Sun X, Wang X, Qiu J. Advances of computational methods enhance the development of multi-epitope vaccines. Brief Bioinform 2024; 26:bbaf055. [PMID: 39951549 PMCID: PMC11827616 DOI: 10.1093/bib/bbaf055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/28/2024] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Vaccine development is one of the most promising fields, and multi-epitope vaccine, which does not need laborious culture processes, is an attractive alternative to classical vaccines with the advantage of safety, and efficiency. The rapid development of algorithms and the accumulation of immune data have facilitated the advancement of computer-aided vaccine design. Here we systemically reviewed the in silico data and algorithms resource, for different steps of computational vaccine design, including immunogen selection, epitope prediction, vaccine construction, optimization, and evaluation. The performance of different available tools on epitope prediction and immunogenicity evaluation was tested and compared on benchmark datasets. Finally, we discuss the future research direction for the construction of a multiepitope vaccine.
Collapse
Affiliation(s)
- Yiwen Wei
- School of Health Science and Engineering, University of Shanghai for Science and Technology, No. 334, Jungong Road, Yangpu District, Shanghai 200093, China
| | - Tianyi Qiu
- Institute of Clinical Science, Zhongshan Hospital; Intelligent Medicine Institute; Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Medical College, Fudan University, No. 180, Fenglin Road, Xuhui Destrict, Shanghai 200032, China
| | - Yisi Ai
- School of Health Science and Engineering, University of Shanghai for Science and Technology, No. 334, Jungong Road, Yangpu District, Shanghai 200093, China
| | - Yuxi Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, No. 334, Jungong Road, Yangpu District, Shanghai 200093, China
| | - Junting Xie
- School of Health Science and Engineering, University of Shanghai for Science and Technology, No. 334, Jungong Road, Yangpu District, Shanghai 200093, China
| | - Dong Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, No. 334, Jungong Road, Yangpu District, Shanghai 200093, China
| | - Xiaochuan Luo
- School of Health Science and Engineering, University of Shanghai for Science and Technology, No. 334, Jungong Road, Yangpu District, Shanghai 200093, China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Foods, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, China
| | - Xin Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, No. 334, Jungong Road, Yangpu District, Shanghai 200093, China
- Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, No. 334, Jungong Road, Yangpu District, Shanghai 200093, China
| | - Jingxuan Qiu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, No. 334, Jungong Road, Yangpu District, Shanghai 200093, China
- Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, No. 334, Jungong Road, Yangpu District, Shanghai 200093, China
| |
Collapse
|
27
|
Newman MJ. Invention and characterization of a systemically administered, attenuated and killed bacteria-based multiple immune receptor agonist for anti-tumor immunotherapy. Front Immunol 2024; 15:1462221. [PMID: 39606250 PMCID: PMC11599860 DOI: 10.3389/fimmu.2024.1462221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024] Open
Abstract
Activation of immune receptors, such as Toll-like (TLR), NOD-like (NLR) and Stimulator of Interferon Genes (STING) is critical for efficient innate and adaptive immunity. Gram-negative bacteria (G-NB) contain multiple TLR, NOD and STING agonists. Potential utility of G-NB for cancer immunotherapy is supported by observations of tumor regression in the setting of infection and Coley's Toxins. Coley reported that intravenous (i.v.) administration was likely most effective but produced uncontrollable toxicity. The discovery of TLRs and their agonists, particularly the potent TLR4 agonist lipopolysaccharide (LPS)-endotoxin, comprising ~75% of the outer membrane of G-NB, suggests that LPS may be both a critical active ingredient and responsible for dose-limiting i.v. toxicity of G-NB. This communication reports the production of killed, stabilized, intact bacteria products from non-pathogenic G-NB with ~96% reduction of LPS-endotoxin activity. One resulting product candidate, Decoy10, was resistant to standard methods of cell disruption and contained TLR2,4,8,9, NOD2 and STING agonist activity. Decoy10 also exhibited reduced i.v. toxicity in mice and rabbits, and a largely uncompromised ability to induce cytokine and chemokine secretion by human immune cells in vitro, all relative to unprocessed, parental bacterial cells. Decoy10 and a closely related product, Decoy20, produced single agent anti-tumor activity or combination-mediated durable regression of established subcutaneous, metastatic or orthotopic colorectal, hepatocellular (HCC), pancreatic, and non-Hodgkin's lymphoma (NHL) tumors in mice, with induction of both innate and adaptive immunological memory (syngeneic and human tumor xenograft models). Decoy bacteria combination-mediated regressions were observed with a low-dose, oral non-steroidal anti-inflammatory drug (NSAID), anti-PD-1 checkpoint therapy, low-dose cyclophosphamide (LDC), and/or a targeted antibody (rituximab). Efficient tumor eradication was associated with plasma expression of 15-23 cytokines and chemokines, broad induction of cytokine, chemokine, innate and adaptive immune pathway genes in tumors, cold to hot tumor inflammation signature transition, and required NK, CD4+ and CD8+ T cells, collectively demonstrating a role for both innate and adaptive immune activation in the anti-tumor immune response.
Collapse
|
28
|
Zang X, Li G, Zhu J, Dong X, Zhai Y. Evaluation of the adjuvant effect of imiquimod and CpG ODN 1826 in chimeric DNA vaccine against Japanese encephalitis. Int Immunopharmacol 2024; 140:112816. [PMID: 39083930 DOI: 10.1016/j.intimp.2024.112816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/15/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
Vaccines represent a significant milestone in the history of human medical science and serve as the primary means for controlling infectious diseases. In recent years, the geographical distribution of Japanese encephalitis viruses (JEV) of various genotypes has become increasingly complex, which provides a rationale for the development of safer and more effective vaccines. The advent of subunit and nucleic acid vaccines, especially propelled by advancements in genetic engineering since the 1980s, has accelerated the application of novel adjuvants. These novel vaccine adjuvants have diversified into toll-like receptor (TLR) agonists, complex adjuvants, nanoparticles and so on. However, the efficacy of adjuvant combinations can vary depending on the host system, disease model, or vaccine formulation, sometimes resulting in competitive or counteractive effects. In our previous study, we constructed a pJME-LC3 chimeric DNA vaccine aimed at inducing an immune response through autophagy induction. Building on this, we investigated the impact of the TLR7/8 agonist imiquimod (IMQ) and the TLR9 agonist CpG ODN 1826 as adjuvants on the immunogenicity of the Japanese encephalitis chimeric DNA vaccine. Our findings indicate that the combination of the pJME-LC3 vaccine with IMQ and CpG ODN 1826 adjuvants enhanced the innate immune response, promoting the maturation and activation of antigen-presenting cells in the early immune response. Furthermore, it played a regulatory and optimizing role in subsequent antigen-specific immune responses, resulting in effective cellular and humoral immunity and providing prolonged immune protection. The synergistic effect of IMQ and CpG ODN 1826 as adjuvants offers a novel approach for the development of Japanese encephalitis nucleic acid vaccines.
Collapse
Affiliation(s)
- Xin Zang
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Guozhen Li
- Department of Gastroenterology, Wuhan Red Cross Hospital, Wuhan 430015, China
| | - Junyao Zhu
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xiaoying Dong
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yongzhen Zhai
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
29
|
Naorem RS, Pangabam BD, Bora SS, Fekete C, Teli AB. Immunoinformatics Design of a Multiepitope Vaccine (MEV) Targeting Streptococcus mutans: A Novel Computational Approach. Pathogens 2024; 13:916. [PMID: 39452787 PMCID: PMC11509883 DOI: 10.3390/pathogens13100916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Dental caries, a persistent oral health challenge primarily linked to Streptococcus mutans, extends its implications beyond dental decay, affecting over 4 billion individuals globally. Despite its historical association with childhood, dental caries often persists into adulthood with prevalence rates ranging from 60 to 90% in children and 26 to 85% in adults. Currently, there is a dearth of multiepitope vaccines (MEVs) specifically designed to combat S. mutans. To address this gap, we employed an immunoinformatics approach for MEV design, identifying five promising vaccine candidates (PBP2X, PBP2b, MurG, ATP-F, and AGPAT) based on antigenicity and conservation using several tools including CELLO v.2.5, Vaxign, v2.0, ANTIGENpro, and AllerTop v2.0 tools. Subsequent identification of linear B-cell and T-cell epitopes by SVMTrip and NetCTL/NetMHC II tools, respectively, guided the construction of a MEV comprising 10 Cytotoxic T Lymphocyte (CTL) epitopes, 5 Helper T Lymphocyte (HTL) epitopes, and 5 linear B-cell epitopes, interconnected by suitable linkers. The resultant MEV demonstrated high antigenicity, solubility, and structural stability. In silico immune simulations showcased the MEV's potential to elicit robust humoral and cell-mediated immune responses. Molecular docking studies revealed strong interactions between the MEV construct and Toll-Like Receptors (TLRs) and Major Histocompatibility Complex (MHC) molecules. Remarkably, the MEV-TLR-4 complexes exhibited a low energy score, high binding affinity, and a low dissociation constant. The Molecular Dynamic (MD) simulation analysis suggested that MEV-TLR-4 complexes had the highest stability and minimal conformational changes indicating equilibrium within 40 nanosecond time frames. Comprehensive computational analyses strongly support the potential of the proposed MEV to combat dental caries and associated infections. The study's computational assays yielded promising results, but further validation through in vitro and in vivo experiments is needed to assess its efficacy and safety.
Collapse
Affiliation(s)
- Romen Singh Naorem
- Multidisciplinary Research Unit, Jorhat Medical College and Hospital, Jorhat 785001, India; (R.S.N.); (S.S.B.)
| | - Bandana Devi Pangabam
- Department of Molecular Biology and Microbiology, University of Pecs, Ifusag utja. 6, 7624 Pecs, Hungary;
| | - Sudipta Sankar Bora
- Multidisciplinary Research Unit, Jorhat Medical College and Hospital, Jorhat 785001, India; (R.S.N.); (S.S.B.)
| | - Csaba Fekete
- Department of Molecular Biology and Microbiology, University of Pecs, Ifusag utja. 6, 7624 Pecs, Hungary;
| | - Anju Barhai Teli
- Multidisciplinary Research Unit, Jorhat Medical College and Hospital, Jorhat 785001, India; (R.S.N.); (S.S.B.)
- Department of Biochemistry, Jorhat Medical College and Hospital, Jorhat 785001, India
| |
Collapse
|
30
|
Kos M, Bojarski K, Mertowska P, Mertowski S, Tomaka P, Dziki Ł, Grywalska E. Immunological Strategies in Gastric Cancer: How Toll-like Receptors 2, -3, -4, and -9 on Monocytes and Dendritic Cells Depend on Patient Factors? Cells 2024; 13:1708. [PMID: 39451226 PMCID: PMC11506270 DOI: 10.3390/cells13201708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
(1) Introduction: Toll-like receptors (TLRs) are key in immune response by recognizing pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). In gastric cancer (GC), TLR2, TLR3, TLR4, and TLR9 are crucial for modulating immune response and tumor progression. (2) Objective: This study aimed to assess the percentage of dendritic cells and monocytes expressing TLR2, TLR3, TLR4, and TLR9, along with the concentration of their soluble forms in the serum of GC patients compared to healthy volunteers. Factors such as disease stage, tumor type, age, and gender were also analyzed. (3) Materials and Methods: Blood samples from newly diagnosed GC patients and healthy controls were immunophenotyped using flow cytometry to assess TLR expression on dendritic cell subpopulations and monocytes. Serum-soluble TLRs were measured by ELISA. Statistical analysis considered clinical variables such as tumor type, stage, age, and gender. (4) Results: TLR expression was significantly higher in GC patients, except for TLR3 on classical monocytes. Soluble forms of all TLRs were elevated in GC patients, with significant differences based on disease stage but not tumor type, except for serum TLR2, TLR4, and TLR9. (5) Conclusions: Elevated TLR expression and soluble TLR levels in GC patients suggest a role in tumor pathogenesis and progression, offering potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Marek Kos
- Department of Public Health, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland;
| | - Krzysztof Bojarski
- General Surgery Department, SP ZOZ in Leczna, 52 Krasnystawska Street, 21-010 Leczna, Poland;
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodźki Street, 20-093 Lublin, Poland; (P.M.); (E.G.)
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodźki Street, 20-093 Lublin, Poland; (P.M.); (E.G.)
| | - Piotr Tomaka
- Department of Anesthesiology and Intensive Care, SP ZOZ in Leczna, 52 Krasnystawska Street, 21-010 Leczna, Poland;
| | - Łukasz Dziki
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, 251 Street, 92-213 Lodz, Poland;
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodźki Street, 20-093 Lublin, Poland; (P.M.); (E.G.)
| |
Collapse
|
31
|
Kumar K, Honda-Okubo Y, Sakala IG, Singh KN, Petrovsky N, Salunke DB. Modulation of the Adjuvant Potential of Imidazoquinoline-Based TLR7/8 Agonists via Alum Adsorption. ACS Med Chem Lett 2024; 15:1677-1684. [PMID: 39411538 PMCID: PMC11472459 DOI: 10.1021/acsmedchemlett.4c00200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 10/19/2024] Open
Abstract
Toll-like receptor (TLR)-7/8 agonists are promising candidates for the development of new-generation vaccine adjuvants. Adsorption of TLR7/8 agonists on aluminum salts (alum) may further enhance vaccine immunogenicity. Evaluation of the adjuvanticity of the most active dual TLR7/8 agonists, 1-(3-(aminomethyl)benzyl)-2-butyl-1H-imidazo[4,5-c]quinolin-4-amine (m-AM-BBIQ, 10) and its para derivative p-AM-BBIQ (11), along with their gallic acid and protocatechuic acid amides in a recombinant-protein-based COVID-19 vaccine platform confirmed the importance of vic-polyphenolic functionality in TLR7/8 agonists for the alum adsorption, thereby resulting in a balanced Th1/Th2 immune response. A novel 7,8-dihydroxy-IMDQ derivative (dh-p-AM-BBIQ, 21) was designed wherein the vic-diphenolic functionality was introduced in the quinoline ring of the imidazo[4,5-c]quinoline scaffold. Compound 21 not only retained the TLR7 agonistic activity (EC50 = 3.72 μM) but also showed high adsorption to alum and induced a potent antibody response to SARS-CoV-2 spike protein and hepatitis B surface antigen immunized mice. The combination adjuvant comprising compound 21 adsorbed to alum represents a promising candidate for further development as a human and veterinary vaccine adjuvant.
Collapse
Affiliation(s)
- Kushvinder Kumar
- Department
of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Yoshikazu Honda-Okubo
- Vaxine
Pty Ltd, 11 Walkley Avenue, Warradale, South Australia 5046, Australia
- Australian
Respiratory and Sleep Medicine Institute, Bedford Park, South Australia 5042, Australia
| | - Isaac G. Sakala
- Vaxine
Pty Ltd, 11 Walkley Avenue, Warradale, South Australia 5046, Australia
- Australian
Respiratory and Sleep Medicine Institute, Bedford Park, South Australia 5042, Australia
| | - Kamal Nain Singh
- Department
of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Nikolai Petrovsky
- Vaxine
Pty Ltd, 11 Walkley Avenue, Warradale, South Australia 5046, Australia
- Australian
Respiratory and Sleep Medicine Institute, Bedford Park, South Australia 5042, Australia
- National
Interdisciplinary Centre of Vaccine, Immunotherapeutics and Antimicrobials
(NICOVIA), Panjab University, Chandigarh 160014, India
| | - Deepak B. Salunke
- Department
of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
- National
Interdisciplinary Centre of Vaccine, Immunotherapeutics and Antimicrobials
(NICOVIA), Panjab University, Chandigarh 160014, India
| |
Collapse
|
32
|
Shi YJ, Sheng KW, Zhao HN, Liu C, Wang H. Toll-Like Receptor 2 Deficiency Exacerbates Dextran Sodium Sulfate-Induced Intestinal Injury through Marinifilaceae-Dependent Attenuation of Cell Cycle Signaling. FRONT BIOSCI-LANDMRK 2024; 29:338. [PMID: 39344335 DOI: 10.31083/j.fbl2909338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/06/2024] [Accepted: 08/21/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Ulcerative colitis (UC) is an intestinal disorder marked by chronic, recurring inflammation, yet its underlying mechanisms have not been fully elucidated. METHODS The current research dealt with examining the biological impacts of toll-like receptor 2 (TLR2) on dextran sulfate sodium (DSS)-triggered inflammation in the intestines of wild-type (WT) and TLR2-knockout (TLR2-KO) colitis mouse models. To elucidate the protective function of TLR2 in DSS-triggered colitis, RNA-sequencing (RNA-Seq) was carried out to compare the global gene expression data in the gut of WT and TLR2-KO mice. Further, 16S rRNA gene sequencing revealed notable variations in gut microbiota composition between WT and TLR2-KO colitis mice. RESULTS It was revealed that TLR2-KO mice exhibited increased susceptibility to DSS-triggered colitis. RNA-Seq results demonstrated that cell cycle pathway-related genes were notably downregulated in TLR2-KO colitis mice (enrichment score = 30, p < 0.001). 16S rRNA gene sequencing revealed that in comparison to the WT colitis mice, the relative abundance of Marinifilacea (p = 0.006), Rikenellacea (p = 0.005), Desulfovibrionaceae (p = 0.045), Tannerellaceae (p = 0.038), Ruminococcaceae (p = 0.003), Clostridia (p = 0.027), and Mycoplasmataceae (p = 0.0009) was significantly increased at the family level in the gut of TLR2-KO colitis mice. In addition, microbiome diversity-transcriptome collaboration analysis highlighted that the relative abundance of Marinifilaceae was negatively linked to the expression of cell cycle signaling-related genes (p values were all less than 0.001). CONCLUSION Based on these findings, we concluded that TLR2-KO exacerbates DSS-triggered intestinal injury by mitigating cell cycle signaling in a Marinifilaceae-dependent manner.
Collapse
Affiliation(s)
- Yun-Jie Shi
- Department of Colorectal Surgery, The First Affiliated Hospital (Changhai Hospital), Naval Medical University, 200433 Shanghai, China
| | - Kai-Wen Sheng
- Department of Colorectal Surgery, The First Affiliated Hospital (Changhai Hospital), Naval Medical University, 200433 Shanghai, China
| | - Hai-Nan Zhao
- Department of Radiology Intervention, The First Affiliated Hospital (Changhai Hospital), Naval Medical University, 200433 Shanghai, China
| | - Cong Liu
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 200433 Shanghai, China
| | - Hao Wang
- Department of Colorectal Surgery, The First Affiliated Hospital (Changhai Hospital), Naval Medical University, 200433 Shanghai, China
| |
Collapse
|
33
|
Liao H, Liao J, Zeng L, Cao X, Fan H, Chen J. Strategies for Organ-Targeted mRNA Delivery by Lipid Nanoparticles. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e2004. [PMID: 39400518 DOI: 10.1002/wnan.2004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024]
Abstract
Messenger RNA (mRNA) technology has rapidly evolved, significantly impacting various therapeutic applications, including vaccines, protein replacement, and gene editing. Lipid nanoparticles (LNPs) have emerged as a pivotal nonviral vector for mRNA delivery, crucial for organ-targeted therapies. Despite their success, most LNP formulations predominantly target the liver, limiting their use in nonliver diseases. This review explores strategies to achieve organ-specific mRNA delivery using LNPs, including the discovery of new lipid structures, modification of targeting ligands, incorporation of additional components, and optimization of LNP formulations. These advancements aim to enhance the precision and efficacy of mRNA therapeutics across a broader range of diseases.
Collapse
Affiliation(s)
- Hangping Liao
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan, People's Republic of China
| | - Jing Liao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ling Zeng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xinxiu Cao
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan, People's Republic of China
| | - Hui Fan
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan, People's Republic of China
| | - Jinjin Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
34
|
Gu Z, Yin J, Da Silva CG, Liu Q, Cruz LJ, Ossendorp F, Snaar-Jagalska E. Therapeutic liposomal combination to enhance chemotherapy response and immune activation of tumor microenvironment. J Control Release 2024; 373:38-54. [PMID: 38986909 DOI: 10.1016/j.jconrel.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/26/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Multiple oxaliplatin-resistance mechanisms have been proposed such as increase of anti-inflammatory M2 macrophages and lack of cytotoxic T-cells. Thereby oxaliplatin chemotherapy promotes an immunosuppressive tumor microenvironment and inhibits anti-tumor efficacy. It has been shown that toll-like receptor (TLR) agonists are capable of triggering broad inflammatory responses, which may potentially reduce oxaliplatin-resistance and improve the efficacy of chemotherapy. In this study, we established colorectal tumor-bearing zebrafish and mice, and investigated the effects of TLR agonists and oxaliplatin in macrophage function and anti-tumor T cell immunity as well as tumor growth control in vivo. To increase the potential of this strategy as well minimize side effects, neutral liposomes carrying oxaliplatin and cationic liposomes co-loaded with TLR agonists Poly I:C and R848 were employed for maximum immune activation. Both of two liposomal systems exhibited good physicochemical properties and excellent biological activities in vitro. The combination strategy delivered by liposomes showed more pronounced tumor regression and correlated with decreased M2 macrophage numbers in both zebrafish and mice. Increasing numbers of dendritic cells, DC maturation and T cell infiltration mediated via immunogenic cell death were observed in treated mice. Our study offers valuable insights into the potential of liposomal combination therapy to improve cancer treatment by reprogramming the tumor microenvironment and enhancing immune responses.
Collapse
Affiliation(s)
- Zili Gu
- Department of Radiology, Leiden University Medical Center, the Netherlands
| | - Jie Yin
- Institution of Biology Leiden, Leiden University, the Netherlands
| | - Candido G Da Silva
- Department of Radiology, Leiden University Medical Center, the Netherlands
| | - Qi Liu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Luis J Cruz
- Department of Radiology, Leiden University Medical Center, the Netherlands
| | - Ferry Ossendorp
- Department of Immunology, Leiden University Medical Center, the Netherlands.
| | | |
Collapse
|
35
|
Zhang X, Wu Y, Lin J, Lu S, Lu X, Cheng A, Chen H, Zhang W, Luan X. Insights into therapeutic peptides in the cancer-immunity cycle: Update and challenges. Acta Pharm Sin B 2024; 14:3818-3833. [PMID: 39309492 PMCID: PMC11413705 DOI: 10.1016/j.apsb.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/05/2024] [Accepted: 04/12/2024] [Indexed: 09/25/2024] Open
Abstract
Immunotherapies hold immense potential for achieving durable potency and long-term survival opportunities in cancer therapy. As vital biological mediators, peptides with high tissue penetration and superior selectivity offer significant promise for enhancing cancer immunotherapies (CITs). However, physicochemical peptide features such as conformation and stability pose challenges to their on-target efficacy. This review provides a comprehensive overview of recent advancements in therapeutic peptides targeting key steps of the cancer-immunity cycle (CIC), including tumor antigen presentation, immune cell regulation, and immune checkpoint signaling. Particular attention is given to the opportunities and challenges associated with these peptides in boosting CIC within the context of clinical progress. Furthermore, possible future developments in this field are also discussed to provide insights into emerging CITs with robust efficacy and safety profiles.
Collapse
Affiliation(s)
- Xiaokun Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ye Wu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiayi Lin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shengxin Lu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinchen Lu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Aoyu Cheng
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hongzhuan Chen
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Weidong Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science &, Peking Union Medical College, Beijing 100193, China
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Xin Luan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
36
|
Shams N, Jaydari A, Najafi H, Hataminejad M, Khanizadeh S, Pouladi I. An Overview of the Types of Adjuvants Used in the Vaccination Industry And Their Mechanisms of Action. Viral Immunol 2024; 37:324-336. [PMID: 39172659 DOI: 10.1089/vim.2024.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
The widespread use of efficient vaccines against infectious diseases is regarded as one of the most significant advancements in public health and techniques for preventing and protecting against infectious diseases and cancer. Because the purpose of vaccination is to elicit an appropriate, powerful, and long-lasting immune response against the pathogen, compounds such as adjuvants must be used to enhance these responses. Adjuvants have been widely used since their discovery to boost immune responses, prevent diseases, and activate protective immunity. Today, several types of adjuvants with varying properties are available for specific applications. Adjuvants are supramolecular substances or complexes that strengthen and prolong the immune response to antigens. These compounds have long-term immunological effects and are low in toxicity. They also lower the amount of antigen or the number of immunogenic reactions needed to improve vaccine efficacy and are used in specific populations. This article provides an overview of the adjuvants commonly used in the vaccination industry, their respective mechanisms of action, and discusses how they function to stimulate the immune system. Understanding the mechanisms of action of adjuvants is crucial for the development of effective and safe vaccines.
Collapse
Affiliation(s)
- Nemat Shams
- Department of Microbiology and Food Hygiene, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Amin Jaydari
- Department of Microbiology and Food Hygiene, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Hamideh Najafi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Maryam Hataminejad
- Department of Parasitology and Mycology, Faculty of Medicine, Mazandaran University of Medical Science, Sari, Iran
| | - Sayyad Khanizadeh
- Hepatitis Research Center, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Iman Pouladi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
37
|
Zhang WY, Zheng XL, Coghi PS, Chen JH, Dong BJ, Fan XX. Revolutionizing adjuvant development: harnessing AI for next-generation cancer vaccines. Front Immunol 2024; 15:1438030. [PMID: 39206192 PMCID: PMC11349682 DOI: 10.3389/fimmu.2024.1438030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
With the COVID-19 pandemic, the importance of vaccines has been widely recognized and has led to increased research and development efforts. Vaccines also play a crucial role in cancer treatment by activating the immune system to target and destroy cancer cells. However, enhancing the efficacy of cancer vaccines remains a challenge. Adjuvants, which enhance the immune response to antigens and improve vaccine effectiveness, have faced limitations in recent years, resulting in few novel adjuvants being identified. The advancement of artificial intelligence (AI) technology in drug development has provided a foundation for adjuvant screening and application, leading to a diversification of adjuvants. This article reviews the significant role of tumor vaccines in basic research and clinical treatment and explores the use of AI technology to screen novel adjuvants from databases. The findings of this review offer valuable insights for the development of new adjuvants for next-generation vaccines.
Collapse
Affiliation(s)
- Wan-Ying Zhang
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Xiao-Li Zheng
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Paolo Saul Coghi
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Jun-Hui Chen
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, China
| | - Bing-Jun Dong
- Gynecology Department, Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai, China
| | - Xing-Xing Fan
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| |
Collapse
|
38
|
Gong N, Alameh MG, El-Mayta R, Xue L, Weissman D, Mitchell MJ. Enhancing in situ cancer vaccines using delivery technologies. Nat Rev Drug Discov 2024; 23:607-625. [PMID: 38951662 DOI: 10.1038/s41573-024-00974-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 07/03/2024]
Abstract
In situ cancer vaccination refers to any approach that exploits tumour antigens available at a tumour site to induce tumour-specific adaptive immune responses. These approaches hold great promise for the treatment of many solid tumours, with numerous candidate drugs under preclinical or clinical evaluation and several products already approved. However, there are challenges in the development of effective in situ cancer vaccines. For example, inadequate release of tumour antigens from tumour cells limits antigen uptake by immune cells; insufficient antigen processing by antigen-presenting cells restricts the generation of antigen-specific T cell responses; and the suppressive immune microenvironment of the tumour leads to exhaustion and death of effector cells. Rationally designed delivery technologies such as lipid nanoparticles, hydrogels, scaffolds and polymeric nanoparticles are uniquely suited to overcome these challenges through the targeted delivery of therapeutics to tumour cells, immune cells or the extracellular matrix. Here, we discuss delivery technologies that have the potential to reduce various clinical barriers for in situ cancer vaccines. We also provide our perspective on this emerging field that lies at the interface of cancer vaccine biology and delivery technologies.
Collapse
Affiliation(s)
- Ningqiang Gong
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, Center for BioAnalytical Chemistry, Hefei National Research Center for Physical Science at the Microscale, University of Science and Technology of China, Hefei, China
| | - Mohamad-Gabriel Alameh
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn institute for RNA innovation, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, George Mason University, Fairfax, VA, USA
| | - Rakan El-Mayta
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lulu Xue
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Penn institute for RNA innovation, University of Pennsylvania, Philadelphia, PA, USA.
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Penn institute for RNA innovation, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
39
|
Ybarra TK, Bishop GA. TRAF3 regulation of proximal TLR signaling in B cells. J Leukoc Biol 2024; 116:210-223. [PMID: 38489541 PMCID: PMC11271984 DOI: 10.1093/jleuko/qiae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/24/2024] [Accepted: 02/09/2024] [Indexed: 03/17/2024] Open
Abstract
Toll-like receptors are pattern recognition receptors that bridge the innate and adaptive immune responses and are critical for host defense. Most studies of Toll-like receptors have focused upon their roles in myeloid cells. B lymphocytes express most Toll-like receptors and are responsive to Toll-like receptor ligands, yet Toll-like receptor-mediated signaling in B cells is relatively understudied. This is an important knowledge gap, as Toll-like receptor functions can be cell type specific. In striking contrast to myeloid cells, TRAF3 inhibits TLR-mediated functions in B cells. TRAF3-deficient B cells display enhanced IRF3 and NFκB activation, cytokine production, immunoglobulin isotype switching, and antibody production in response to Toll-like receptors 3, 4, 7, and 9. Here, we address the question of how TRAF3 impacts initial B-cell Toll-like receptor signals to regulate downstream activation. We found that TRAF3 in B cells associated with proximal Toll-like receptor 4 and 7 signaling proteins, including MyD88, TRAF6, and the tyrosine kinase Syk. In the absence of TRAF3, TRAF6 showed a greater association with several Toll-like receptor signaling proteins, suggesting that TRAF3 may inhibit TRAF6 access to Toll-like receptor signaling complexes and thus early Toll-like receptor signaling. In addition, our results highlight a key role for Syk in Toll-like receptor signaling in B cells. In the absence of TRAF3, Syk activation was enhanced in response to ligands for Toll-like receptors 4 and 7, and Syk inhibition reduced downstream Toll-like receptor-mediated NFκB activation and proinflammatory cytokine production. This study reveals multiple mechanisms by which TRAF3 serves as a key negative regulator of early Toll-like receptor signaling events in B cells.
Collapse
Affiliation(s)
- Tiffany K Ybarra
- Interdisciplinary Graduate Program in Immunology, University of Iowa, 285 Newton Road, Iowa City, IA 52242, United States
- Departments of Microbiology and Immunology, University of Iowa, 285 Newton Road, Iowa City, IA 52242, United States
| | - Gail A Bishop
- Interdisciplinary Graduate Program in Immunology, University of Iowa, 285 Newton Road, Iowa City, IA 52242, United States
- Departments of Microbiology and Immunology, University of Iowa, 285 Newton Road, Iowa City, IA 52242, United States
- VA Medical Center, University of Iowa, 285 Newton Road, Iowa City, IA 52242, United States
| |
Collapse
|
40
|
Kumar K, Sihag B, Patil MT, Singh R, Sakala IG, Honda-Okubo Y, Singh KN, Petrovsky N, Salunke DB. Design and Synthesis of Polyphenolic Imidazo[4,5- c]quinoline Derivatives to Modulate Toll Like Receptor-7 Agonistic Activity and Adjuvanticity. ACS Pharmacol Transl Sci 2024; 7:2063-2079. [PMID: 39022355 PMCID: PMC11249636 DOI: 10.1021/acsptsci.4c00163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/16/2024] [Accepted: 05/28/2024] [Indexed: 07/20/2024]
Abstract
TLR-7/8 agonists are a well-known class of vaccine adjuvants, with a leading example now included in Covaxin, a licensed human COVID-19 vaccine. This thereby provides the opportunity to develop newer, more potent adjuvants based on structure-function studies of these classes of compounds. Imidazoquinoline-based TLR7/8 agonists are the most potent, but when used as a vaccine adjuvant side effects can arise due to diffusion from the injection site into a systemic circulation. In this work, we sought to address this issue through structural modifications in the agonists to enhance their adsorption capacity to the classic adjuvant alum. We selected a potent TLR7-selective agonist, BBIQ (EC50 = 0.85 μM), and synthesized polyphenolic derivatives to assess their TLR7 agonistic activity and adjuvant potential alone or in combination with alum. Most of the phenolic derivatives were more active than BBIQ and, except for 12b, all were TLR7 specific. Although the synthesized compounds were less active than resiquimod, the immunization data on combination with alum, specifically the IgG1, IgG2b and IgG2c responses, were superior in comparison to BBIQ as well as the reference standard resiquimod. Compound 12b was 5-fold more potent (EC50 = 0.15 μM in TLR7) than BBIQ and induced double the IgG response to SARS-CoV-2 and hepatitis antigens. Similarly, compound 12c (EC50 = 0.31 μM in TLR7) was about 3-fold more potent than BBIQ and doubled the IgG levels. Even though compound 12d exhibited low TLR7 activity (EC50 = 5.13 μM in TLR7), it demonstrated superior adjuvant results, which may be attributed to its enhanced alum adsorption capability as compared with BBIQ and resiquimod. Alum-adsorbed polyphenolic TLR7 agonists thereby represent promising combination adjuvants resulting in a balanced Th1/Th2 immune response.
Collapse
Affiliation(s)
- Kushvinder Kumar
- Department
of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Binita Sihag
- Department
of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Madhuri T. Patil
- Mehr
Chand Mahajan DAV College for Women, Sector 36A, Chandigarh 160 036, India
| | - Rahul Singh
- Department
of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Isaac G. Sakala
- Vaxine
Pty Ltd, 11 Walkley Avenue, Warradale, South Australia 5046, Australia
- College
of Medicine and Public Health, Flinders
University, Bedford Park, South Australia 5042, Australia
| | - Yoshikazu Honda-Okubo
- Vaxine
Pty Ltd, 11 Walkley Avenue, Warradale, South Australia 5046, Australia
- College
of Medicine and Public Health, Flinders
University, Bedford Park, South Australia 5042, Australia
| | - Kamal Nain Singh
- Department
of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Nikolai Petrovsky
- Vaxine
Pty Ltd, 11 Walkley Avenue, Warradale, South Australia 5046, Australia
- College
of Medicine and Public Health, Flinders
University, Bedford Park, South Australia 5042, Australia
| | - Deepak B. Salunke
- Department
of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
- National
Interdisciplinary Centre of Vaccines, Immunotherapeutics and Antimicrobials
(NICOVIA), Panjab University, Chandigarh 160 014, India
| |
Collapse
|
41
|
Zhao G, Wang S, Nie G, Li N. Unlocking the power of nanomedicine: Cell membrane-derived biomimetic cancer nanovaccines for cancer treatment. MED 2024; 5:660-688. [PMID: 38582088 DOI: 10.1016/j.medj.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/26/2024] [Accepted: 03/14/2024] [Indexed: 04/08/2024]
Abstract
Over the past decades, nanomedicine researchers have dedicated their efforts to developing nanoscale platforms capable of more precisely delivering drug payloads to attack tumors. Cancer nanovaccines are exhibiting a distinctive capability in inducing tumor-specific antitumor responses. Nevertheless, there remain numerous challenges that must be addressed for cancer nanovaccines to evoke sufficient therapeutic effects. Cell membrane-derived nanovaccines are an emerging class of cancer vaccines that comprise a synthetic nanoscale core camouflaged by naturally derived cell membranes. The specific cell membrane has a biomimetic nanoformulation with several distinctive abilities, such as immune evasion, enhanced biocompatibility, and tumor targeting, typically associated with a source cell. Here, we discuss the advancements of cell membrane-derived nanovaccines and how these vaccines are used for cancer therapeutics. Translational endeavors are currently in progress, and additional research is also necessary to effectively address crucial areas of demand, thereby facilitating the future successful translation of these emerging vaccine platforms.
Collapse
Affiliation(s)
- Guo Zhao
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shuhang Wang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100000, China.
| | - Ning Li
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
42
|
Jia J, Zhao H, Li F, Zheng Q, Wang G, Li D, Liu Y. Research on drug treatment and the novel signaling pathway of chronic atrophic gastritis. Biomed Pharmacother 2024; 176:116912. [PMID: 38850667 DOI: 10.1016/j.biopha.2024.116912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Chronic atrophic gastritis (CAG) is a global digestive system disease and one of the important causes of gastric cancer. The incidence of CAG has been increasing yearly worldwide. PURPOSE This article reviews the latest research on the common causes and future therapeutic targets of CAG as well as the pharmacological effects of corresponding clinical drugs. We provide a detailed theoretical basis for further research on possible methods for the treatment of CAG and reversal of the CAG process. RESULTS CAG often develops from chronic gastritis, and its main pathological manifestation is atrophy of the gastric mucosa, which can develop into gastric cancer. The drug treatment of CAG can be divided into agents that regulate gastric acid secretion, eradicate Helicobacter. pylori (H. pylori), protect gastric mucous membrane, or inhibit inflammatory factors according to their mechanism of action. Although there are limited specific drugs for the treatment of CAG, progress is being made in defining the pathogenesis and therapeutic targets of the disease. Growing evidence shows that NF-κB, PI3K/AKT, Wnt/ β-catenin, MAPK, Toll-like receptors (TLRs), Hedgehog, and VEGF signaling pathways play an important role in the development of CAG.
Collapse
Affiliation(s)
- Jinhao Jia
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Huijie Zhao
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Fangfei Li
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Special Administrative Region of China
| | - Qiusheng Zheng
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China; Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, Xinjiang 832003, PR China
| | - Guoli Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Defang Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China; Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, Xinjiang 832003, PR China.
| | - Ying Liu
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China.
| |
Collapse
|
43
|
Zhou H, Wang Z, Guo J, Zhu Z, Sun G. Analysis of the potential biological significance of glycosylation in triple-negative breast cancer on patient prognosis. Am J Transl Res 2024; 16:2212-2232. [PMID: 39006258 PMCID: PMC11236660 DOI: 10.62347/pxar3644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/06/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Breast cancer is the most common malignancy in women, with its prognosis varying greatly according to its subtype. Triple-negative breast cancer (TNBC) has the worst prognosis among all subtypes. Glycosylation is a critical factor influencing the prognosis of patients with TNBC. Our aim is to develop a tumor prognosis model by analyzing genes related to glycosylation to predict patient outcomes. METHODS The dataset used in this study was downloaded from the Cancer Genome Atlas Program (TCGA) database, and predictive genes were identified through Cox one-way regression analysis. The model genes with the highest risk scores among the 18 samples were obtained by lasso regression analysis to establish the model. We analyzed the pathways affecting the progression of TNBC and discovered key genes for subsequent research. RESULTS Our model was constructed using data from TCGA database and validated through Kaplan-Meier curve analysis and Receiver Operating Characteristic (ROC) curve assessment. Our analysis revealed that a high expression of tumor-related chemokines in the high-risk group may be associated with poor tumor prognosis. Furthermore, we conducted a random survival forest analysis and identified two significant genes, namely DPM2 and PINK1, which have been selected for further investigation. CONCLUSION The prognostic analysis model, developed based on the glycosylation genes in TNBC, exhibits excellent validation efficacy. This model is valuable for the prognostic analysis of patients with TNBC.
Collapse
Affiliation(s)
- Han Zhou
- Department of Breast and Thyroid Surgery, The Affiliated Cancer Hospital of Xinjiang Medical UniversityUrumqi 830011, Xinjiang, China
| | - Zhiwei Wang
- Department of Breast and Thyroid Surgery, The Affiliated Cancer Hospital of Xinjiang Medical UniversityUrumqi 830011, Xinjiang, China
| | - Jun Guo
- Key Laboratory of Oncology of Xinjiang Uyghur Autonomous RegionUrumqi 830011, Xinjiang, China
- Department of Cancer Research Institute, Affiliated Cancer Hospital of Xinjiang Medical UniversityUrumqi 830011, Xinjiang, China
| | - Zihui Zhu
- Department of Breast Surgery, The Affiliated Cancer Hospital of Xinjiang Medical UniversityUrumqi 830011, Xinjiang, China
| | - Gang Sun
- Department of Breast and Thyroid Surgery, The Affiliated Cancer Hospital of Xinjiang Medical UniversityUrumqi 830011, Xinjiang, China
- Key Laboratory of Oncology of Xinjiang Uyghur Autonomous RegionUrumqi 830011, Xinjiang, China
| |
Collapse
|
44
|
Hao J, Wang H, Lu X, Li Z, Zhang X. TLR4 signalling: the key to controlling EV71 replication and inflammatory response. Front Cell Infect Microbiol 2024; 14:1393680. [PMID: 38938877 PMCID: PMC11208322 DOI: 10.3389/fcimb.2024.1393680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/30/2024] [Indexed: 06/29/2024] Open
Abstract
Hand, foot, and mouth disease (HFMD) is a common infectious disease caused by enterovirus 71 (EV71) that frequently affects children, leading to severe infections in some cases. In general, when infection occurs, the body upregulates inflammatory responses to eliminate pathogenic microorganisms to protect the host from infection. However, EV71 may inhibit host's innate immunity to promote virus infection. At present, it is not fully understood how EV71 hijack the host cells for its own replication. Toll-like receptor 4 (TLR4), a natural immune receptor, historically associated with bacterial endotoxin-induced inflammatory responses. However, it is still unclear whether and how TLR4 is altered during EV71 infection. In this study, we observed a reduction in both TLR4 protein and gene transcript levels in RD, GES-1, and Vero cells following EV71 infection, as detected by RT-qPCR, immunofluorescence staining and western blot. Furthermore, we observed that the TLR4 downstream molecules of MYD88, p-NF-κB p65, p-TBK1 and related inflammatory cytokines were also reduced, suggesting that antiviral innate immune and inflammatory response were suppressed. To determine the impact of TLR4 changes on EV71 infection, we interfered EV71-infected RD cells with TLR4 agonist or inhibitor and the results showed that activation of TLR4 inhibited EV71 replication, while inhibition of TLR4 promote EV71 replication. Besides, EV71 replication was also promoted in TLR4 siRNA-transfected and EV71-infected RD cells. This suggests that down-regulation the expression of TLR4 by EV71 can inhibit host immune defense to promote EV71 self-replication. This novel mechanism may be a strategy for EV71 to evade host immunity.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoyan Zhang
- Department of Laboratory Medicine of Fenyang College, School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
45
|
Liu Z, Yang L, Liu C, Wang Z, Xu W, Lu J, Wang C, Xu X. Identification and validation of immune-related gene signature models for predicting prognosis and immunotherapy response in hepatocellular carcinoma. Front Immunol 2024; 15:1371829. [PMID: 38933262 PMCID: PMC11199539 DOI: 10.3389/fimmu.2024.1371829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Background This study seeks to enhance the accuracy and efficiency of clinical diagnosis and therapeutic decision-making in hepatocellular carcinoma (HCC), as well as to optimize the assessment of immunotherapy response. Methods A training set comprising 305 HCC cases was obtained from The Cancer Genome Atlas (TCGA) database. Initially, a screening process was undertaken to identify prognostically significant immune-related genes (IRGs), followed by the application of logistic regression and least absolute shrinkage and selection operator (LASSO) regression methods for gene modeling. Subsequently, the final model was constructed using support vector machines-recursive feature elimination (SVM-RFE). Following model evaluation, quantitative polymerase chain reaction (qPCR) was employed to examine the gene expression profiles in tissue samples obtained from our cohort of 54 patients with HCC and an independent cohort of 231 patients, and the prognostic relevance of the model was substantiated. Thereafter, the association of the model with the immune responses was examined, and its predictive value regarding the efficacy of immunotherapy was corroborated through studies involving three cohorts undergoing immunotherapy. Finally, the study uncovered the potential mechanism by which the model contributed to prognosticating HCC outcomes and assessing immunotherapy effectiveness. Results SVM-RFE modeling was applied to develop an OS prognostic model based on six IRGs (CMTM7, HDAC1, HRAS, PSMD1, RAET1E, and TXLNA). The performance of the model was assessed by AUC values on the ROC curves, resulting in values of 0.83, 0.73, and 0.75 for the predictions at 1, 3, and 5 years, respectively. A marked difference in OS outcomes was noted when comparing the high-risk group (HRG) with the low-risk group (LRG), as demonstrated in both the initial training set (P <0.0001) and the subsequent validation cohort (P <0.0001). Additionally, the SVMRS in the HRG demonstrated a notable positive correlation with key immune checkpoint genes (CTLA-4, PD-1, and PD-L1). The results obtained from the examination of three cohorts undergoing immunotherapy affirmed the potential capability of this model in predicting immunotherapy effectiveness. Conclusions The HCC predictive model developed in this study, comprising six genes, demonstrates a robust capability to predict the OS of patients with HCC and immunotherapy effectiveness in tumor management.
Collapse
Affiliation(s)
- Zhiqiang Liu
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lingge Yang
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chun Liu
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zicheng Wang
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wendi Xu
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jueliang Lu
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Chunmeng Wang
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xundi Xu
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of General Surgery, South China Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
46
|
Chen Y, Li Z, Bai L, Lu B, Peng Y, Xu P, Song X, Bian Y, Wang X, Zhao S. Glycyrrhiza polysaccharides may have an antitumor effect in γδT cells through gut microbiota and TLRs/NF-κB pathway in mice. FEBS Open Bio 2024; 14:1011-1027. [PMID: 38604998 PMCID: PMC11148121 DOI: 10.1002/2211-5463.13800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/30/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
Tumor immunotherapy can be a suitable cancer treatment option in certain instances. Here we investigated the potential immunomodulatory effect of oral glycyrrhiza polysaccharides (GCP) on the antitumor function of γδT cells in intestinal epithelial cells in mice. We found that GCP can inhibit tumor growth and was involved in the regulation of systemic immunosuppression. GCP administration also promoted the differentiation of gut epithelia γδT cells into IFN-γ-producing subtype through regulation of local cytokines in gut mucosa. GCP administration increased local cytokine levels through gut microbiota and the gut mucosa Toll-like receptors / nuclear factor kappa-B pathway. Taken together, our results suggest that GCP might be a suitable candidate for tumor immunotherapy, although further clinical research, including clinical trials, are required to validate these results.
Collapse
Affiliation(s)
- Yinxiao Chen
- College of Integrative MedicineTianjin University of Traditional Chinese MedicineChina
| | - Zhaodong Li
- College of Integrative MedicineTianjin University of Traditional Chinese MedicineChina
| | - Liding Bai
- College of Integrative MedicineTianjin University of Traditional Chinese MedicineChina
| | - Bin Lu
- College of Integrative MedicineTianjin University of Traditional Chinese MedicineChina
| | - Yanfei Peng
- College of Integrative MedicineTianjin University of Traditional Chinese MedicineChina
| | - Pengjuan Xu
- College of Integrative MedicineTianjin University of Traditional Chinese MedicineChina
| | - Xinbo Song
- College of Integrative MedicineTianjin University of Traditional Chinese MedicineChina
| | - Yuhong Bian
- College of Integrative MedicineTianjin University of Traditional Chinese MedicineChina
| | - Xiangling Wang
- College of Integrative MedicineTianjin University of Traditional Chinese MedicineChina
| | - Shuwu Zhao
- College of Integrative MedicineTianjin University of Traditional Chinese MedicineChina
| |
Collapse
|
47
|
Kaushik D, Kaur A, Patil MT, Sihag B, Piplani S, Sakala I, Honda-Okubo Y, Ramakrishnan S, Petrovsky N, Salunke DB. Structure-Activity Relationships toward the Identification of a High-Potency Selective Human Toll-like Receptor-7 Agonist. J Med Chem 2024; 67:8346-8360. [PMID: 38741265 DOI: 10.1021/acs.jmedchem.4c00464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Toll-like receptor (TLR)-7 agonists are immunostimulatory vaccine adjuvants. A systematic structure-activity relationship (SAR) study of TLR7-active 1-benzyl-2-butyl-1H-imidazo[4,5-c]quinolin-4-amine led to the identification of a potent hTLR7-specific p-hydroxymethyl IMDQ 23 with an EC50 value of 0.22 μM. The SAR investigation also resulted in the identification of TLR7 selective carboxamide 12 with EC50 values of 0.32 μM for hTLR7 and 18.25 μM for hTLR8. In the vaccination study, TLR7-specific compound 23 alone or combined with alum (aluminum hydroxide wet gel) showed adjuvant activity for a spike protein immunogen in mice, with enhanced anti-spike antibody production. Interestingly, the adjuvant system comprising carboxamide 12 and alum showed prominent adjuvant activity with high levels of IgG1, IgG2b, and IgG2c in immunized mice, confirming a balanced Th1/Th2 response. In the absence of any apparent toxicity, the TLR7 selective agonists in combination with alum may make a suitable vaccine adjuvant.
Collapse
Affiliation(s)
- Deepender Kaushik
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Arshpreet Kaur
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Madhuri T Patil
- Mehr Chand Mahajan DAV College for Women, Sector 36A, Chandigarh 160 036, India
| | - Binita Sihag
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Sakshi Piplani
- Vaxine Pty Ltd., 11 Walkley Avenue, Warradale, South Australia 5046, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Isaac Sakala
- Vaxine Pty Ltd., 11 Walkley Avenue, Warradale, South Australia 5046, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Yoshikazu Honda-Okubo
- Vaxine Pty Ltd., 11 Walkley Avenue, Warradale, South Australia 5046, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | | | - Nikolai Petrovsky
- Vaxine Pty Ltd., 11 Walkley Avenue, Warradale, South Australia 5046, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Deepak B Salunke
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
- National Interdisciplinary Centre of Vaccines, Immunotherapeutics and Antimicrobials (NICOVIA), Panjab University, Chandigarh 160 014, India
| |
Collapse
|
48
|
Gu L, Kong X, Li M, Chen R, Xu K, Li G, Qin Y, Wu L. Molecule engineering strategy of toll-like receptor 7/8 agonists designed for potentiating immune stimuli activation. Chem Commun (Camb) 2024; 60:5474-5485. [PMID: 38712400 DOI: 10.1039/d4cc00792a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Toll-like receptor 7/8 (TLR-7/8) agonists serve as a promising class of pattern recognition receptors that effectively evoke the innate immune response, making them promising immunomodulatory agents for tumor immunotherapy. However, the uncontrollable administration of TLR-7/8 agonists frequently leads to the occurrence of severe immune-related adverse events (irAEs). Thus, it is imperative to strategically design tumor-microenvironment-associated biomarkers or exogenous stimuli responsive TLR-7/8 agonists in order to accurately evaluate and activate innate immune responses. No comprehensive elucidation has been documented thus far regarding TLR-7/8 immune agonists that are specifically engineered to enhance immune activation. In this feature article, we provide an overview of the advancements in TLR-7/8 agonists, aiming to enhance the comprehension of their mechanisms and promote the clinical progression through nanomedicine strategies. The current challenges and future directions of cancer immunotherapy are also discussed, with the hope that this work will inspire researchers to explore innovative applications for triggering immune responses through TLR-7/8 agonists.
Collapse
Affiliation(s)
- Liuwei Gu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, P. R. China.
| | - Xiaojie Kong
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, P. R. China.
| | - Mengyan Li
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, P. R. China.
| | - Rui Chen
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, P. R. China.
| | - Ke Xu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, P. R. China.
| | - Guo Li
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, P. R. China.
| | - Yulin Qin
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, P. R. China.
| | - Li Wu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, P. R. China.
| |
Collapse
|
49
|
Han Y, Hu J, Pan J, Song X, Zhou Y, Zhang J, Yang Y, Shi X, Sun M, Yang J. LPS exposure alleviates multiple tissues damage by facilitating macrophage efferocytosis. Int Immunopharmacol 2024; 135:112283. [PMID: 38772299 DOI: 10.1016/j.intimp.2024.112283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/05/2024] [Accepted: 05/14/2024] [Indexed: 05/23/2024]
Abstract
Toll-like receptors (TLRs) play a crucial role in mediating immune responses by recognizing pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs), as well as facilitating apoptotic cell (ACs) clearance (efferocytosis), thus contributing significantly to maintaining homeostasis and promoting tissue resolution. In this study, we investigate the impact of TLR agonists on macrophage efferocytosis. Our findings demonstrate that pretreatment with the TLR agonist lipopolysaccharide (LPS) significantly enhances macrophage phagocytic ability, thereby promoting efferocytosis both in vitro and in vivo. Moreover, LPS pretreatment confers tissue protection against damage by augmenting macrophage efferocytic capacity in murine models. Further examination reveals that LPS modulates efferocytosis by upregulating the expression of Tim4.These results underscore the pivotal role of TLR agonists in regulating the efferocytosis process and suggest potential therapeutic avenues for addressing inflammatory diseases. Overall, our study highlights the intricate interplay between LPS pretreatment and efferocytosis in maintaining tissue homeostasis and resolving inflammation.
Collapse
Affiliation(s)
- Yuwen Han
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Jiangsu Key Lab of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Keling Road No. 88, Suzhou 215163, China
| | - Jiukun Hu
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Jiangsu Key Lab of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Keling Road No. 88, Suzhou 215163, China
| | - Jinlin Pan
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Jiangsu Key Lab of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Keling Road No. 88, Suzhou 215163, China
| | - Xueyan Song
- Jiangsu Key Lab of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Keling Road No. 88, Suzhou 215163, China
| | - Yuanshuai Zhou
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Jiangsu Key Lab of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Keling Road No. 88, Suzhou 215163, China
| | - Jun Zhang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Jiangsu Key Lab of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Keling Road No. 88, Suzhou 215163, China
| | - Yue Yang
- Jiangsu Key Lab of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Keling Road No. 88, Suzhou 215163, China; Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Xiaohua Shi
- Department of Gastroenterology, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 1 Lijiang Road, Suzhou 215153, China
| | - Minxuan Sun
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Jiangsu Key Lab of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Keling Road No. 88, Suzhou 215163, China.
| | - Jiao Yang
- Institute of Clinical Medicine Research, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Lijiang Road No. 1, Suzhou 215153, China.
| |
Collapse
|
50
|
Kamboj A, Patil MT, Petrovsky N, Salunke DB. Structure-activity relationship in NOD2 agonistic muramyl dipeptides. Eur J Med Chem 2024; 271:116439. [PMID: 38691886 PMCID: PMC11099613 DOI: 10.1016/j.ejmech.2024.116439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/04/2024] [Accepted: 04/18/2024] [Indexed: 05/03/2024]
Abstract
Nucleotide-binding oligomerization domain 2 (NOD2) is a receptor of the innate immune system that is capable of perceiving bacterial and viral infections. Muramyl dipeptide (MDP, N-acetyl muramyl L-alanyl-d-isoglutamine), identified as the minimal immunologically active component of bacterial cell wall peptidoglycan (PGN) is recognized by NOD2. In terms of biological activities, MDP demonstrated vaccine adjuvant activity and stimulated non-specific protection against bacterial, viral, and parasitic infections and cancer. However, MDP has certain drawbacks including pyrogenicity, rapid elimination, and lack of oral bioavailability. Several detailed structure-activity relationship (SAR) studies around MDP scaffolds are being carried out to identify better NOD2 ligands. The present review elaborates a comprehensive SAR summarizing structural aspects of MDP derivatives in relation to NOD2 agonistic activity.
Collapse
Affiliation(s)
- Aarzoo Kamboj
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
| | - Madhuri T Patil
- Department of Chemistry, Mehr Chand Mahajan DAV College for Women, Chandigarh 160036, India
| | - Nikolai Petrovsky
- Vaxine Pty Ltd, Warradale, Australia; Australian Respiratory and Sleep Medicine Institute, Bedford Park, South Australia 5042, Australia.
| | - Deepak B Salunke
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India; National Interdisciplinary Centre of Vaccine, Immunotherapeutics and Antimicrobials, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|